ANTI-OBESITY AGENT AND ANTI-OBESITY FOOD

Abstract
An anti-obesity agent containing, as an active ingredient, a microorganism which belongs to the species Lactobacillus reuteri and is capable of producing lipases having the amino acid sequences respectively depicted in SEQ ID NO: 1, 3 or 5 or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences respectively depicted in SEQ ID NO: 1, 3 or 5. The anti-obesity agent enables a patient to take a normal meal yet preventing the absorption of a fat into the body which is the primary cause of obesity.
Description
TECHNICAL FIELD

The present invention relates to an anti-obesity agent and an anti-obesity food, and in more detail, the invention relates to an anti-obesity agent and an anti-obesity food each capable of inhibiting a lipid from being taken from a digestive tract to prevent obesity from occurring.


BACKGROUND ART

The obesity is a disease in a weight control system which is characterized by an excess of body fat. In the modern society, as the result of lack of exercise and meals with excessive calories, a neutral fat is accumulated in the body, and the number of persons who are judged to be obese continues to increase, resulting in a serious problem.


In order to prevent this obesity, though it is the best to perform exercise for consuming a fat to be ingested, it is actually difficult to perform exercise, and a reduction in the ingestion of a fat is demanded.


However, when it was intended to inhibit the obesity through unreasonable dietary restrictions, an intake of other necessary nutrients was insufficient, or the balance was upset, resulting in possibly adversely affecting the body. It may be said that the same is also applicable to the case where a food which makes a person feel full in spite of less nutrients and which is called a diet food is ingested.


DISCLOSURE OF THE INVENTION
Problems to be solved by the invention

Accordingly, it has been eagerly demanded to develop a measure capable of preventing a lipid (triacylglycerol) as a primary cause of obesity from being absorbed into the body while taking a normal meal.


Means for Solving the Problems

The present inventors paid attention to a mechanism where a lipid is absorbed into the body and made studies regarding a method of inhibiting obesity. As a result, it was found that when a microorganism flora within intestine ingests and degrades a lipid, the lipid to be ingested by a person reduces as a result, whereby the obesity can be spontaneously prevented. Then, the present inventors have made extensive and intensive investigations regarding microorganisms capable of ingesting and degrading such a lipid and as a result, found out a microorganism having such an action among those belonging to lactic acid bacteria, leading to accomplishment of the invention.


Specifically, the invention is concerned with an anti-obesity agent comprising, as an active ingredient, a microorganism belonging to the species Lactobacillus reuteri and capable of producing lipases respectively depicted in the following amino acid sequences (1) to (3) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (1) to (3). The “amino acid sequence having deletion, substitution, inversion, addition or insertion of one or more amino acids” as referred to herein means a sequence equivalent to the original sequence thereof and refers to a sequence still keeping lipase activity. Examples of such an amino acid sequence include those exhibiting homology of 80% or more.









(1)









MVKLMTIHELANNPTLSGQVRLIENIVYGA







MDGEALHMSILAPWTQRFPKQYQTEPRPLI







VFVQGSSWRTPKMGEEIPQLVQFVRAGYIV







ATVQHRSSIDSHPFPAFLQDVKTAIRFLRA







NAQKYAIDPQQVAIWGTSSGANAAMLVGLT







GDDPRYKVDLYQDESDAVDAVVSCFAPMDV







EKTFEYDANVPGNKLLQYCLLGPDVSKWPE







IEKQMSPLYQVKDGQNYPPFLLFHGDADKV







VPYEQMEKMYMRLKDNGNSVEAYRVKGANH







ERDFWSPTIYNIVQKFLGDQFK











(2)









LIYVLKDLCNTIAEVYGKSILKGVFIMKHT







LKVDQVRDGLWLDSDITYTQVPGWLGNTTR







DLKLSVIRHFQTNDDTRYPVIFWFAGGGWM







DTDHNVHLPNLVDFARHGYIVVGVEYRDSN







KVQFPGQLEDAKAAIRYMRANAKRFQADPN







RFIVMGESAGGHMASMLGVTNGLNQFDKGA







NLDYSSDVQVAVPFYGVVDPLTAKTGSASN







DFDFVYRNLLGAEPENAPELDSAANPLTYV







NSNSTPFLIFHGTEDVVVPIKDSEKLYDAL







VENNVPAELYEIEGASHMDVKFLQPQVFKI







VMDFLDKYLTRS











(3)









MEIKSVNLDQPYSSLDIYHSNTDKALPGLV







ILPGGSYNQIMERDSERVALTFATHAWQTF







VVRYPVVEHKNYEEAKIAVHQAFEYIVNHA







AELDVDADRLGIIGFSAGGQIAAAYSNEKL







THARFAALGYPVIQPLIDERMGVTTENVAK







LVNPQTPPTFMWGSAKDELTPFVDHLQVYA







DALIKNDIPYELHEFGTGGHGIALANEYTG







IVNNDRVDNHMGKWFPLFLEWLTELNLI






Also, the invention is concerned with an anti-obesity food comprising, as an active ingredient, a microorganism belonging to the species Lactobacillus reuteri and capable of producing lipases respectively depicted in the foregoing amino acid sequences (1) to (3) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (1) to (3).


Furthermore, the invention is concerned with a glycerol-degrading enzyme composed of subunits respectively depicted in the following amino acid sequences (5) to (7) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (5) to (7). The “amino acid sequence having deletion, substitution, inversion, addition or insertion of one or more amino acids” as referred to herein means a sequence equivalent to the original sequence thereof and refers to a sequence still keeping glycerol-degrading activity. Examples of such an amino acid sequence include those exhibiting homology of 80% or more.









(5)









MKRQKRFEELEKRPIHQDTFVKEWPEEGFV







AMMGPNDPKPSVKVENGKIVEMDGKKLEDF







DLIDLYIAKYGINIDNVEKVMNMDSTKIAR







MLVDPNVSRDEIIEITSALTPAKAEEIISK







LDFGEMIMAVKKMRPRRKPDNQCHVTNTVD







NPVQIAADAADAALRGFPEQETTTAVARYA







PFNAISILIGAQTGRPGVLTQCSVEEATEL







QLGMRGFTAYAETISVYGTDRVFTDGDDTP







WSKGFLASCYASRGLKMRFTSGAGSEVLMG







YPEGKSMLYLEARCILLTKASGVQGLQNGA







VSCIEIPGAVPNGIREVLGENLLCMMCDIE







CASGCDQAYSHSDMRRTERFIGQFIAGTDY







INSGYSSTPNYDNTFAGSNTDAMDYDDMYV







MERDLGQYYGIHPVKEETIIKARNKAAKAL







QAVFEDLGLPKITDEEVEAATYANTHDDMP







KRDMVADMKAAQDMMDRGITAIDIIKALYN







HGFKDVAEAILNLQKQKVVGDYLQTSSIFD







KDWNVTSAVNDGNDYQGPGTGYRLYEDKEE







WDRIKDLPFALDPEHLEL











(6)









MADIDENLLRKIVKEVLSETNQIDTKIDFD







KSNDSTATATQEVQQPNSKAVPEKKLDWFQ







PVGEAKPGYSKDEVVIAVGPAFATVLDKTE







TGIPHKEVLRQVIAGIEEEGLKARVVKVYR







SSDVAFCAVQGDHLSGSGIAIGIQSKGTTV







IHQKDQDPLGNLELFPQAPVLTPETYRAIG







KNAAMYAKGESPEPVPAKNDQLARIHYQAI







SAIMHIRETHQVVVGKPEEEIKVTFD











(7)









MSEVDDLVAKIMAQMGNSSSANSSTGTSTA







STSKEMTADDYPLYQKHRDLVKTPKGHNLD







DINLQKVVNNQVDPKELRITPEALKLQGEI







AANAGRPAIQKNLQRAAELTRVPDERVLEM







YDALRPFRSTKQELLNIAKELRDKYDANVC







AAWFEEAADYYESRKKLKGDN






Moreover, the invention is concerned with an enteroadherent protein depicted in the following amino acid sequence (8) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (8). The “amino acid sequence having deletion, substitution, inversion, addition or insertion of one or more amino acids” as referred to herein means a sequence equivalent to the original sequence thereof and refers to a sequence still keeping activity for making a lactic acid bacterium adhere to the vicinity of intestinal mucosa cells. Examples of such an amino acid sequence include those exhibiting homology of 80% or more.









(8)









MFGHDGRIVTKVYQWAGTYYYFDPNTYLRV







DNDYRQSQWGDWYMFGPDGRIVTGLKEWYG







SYYYFDPTTYLKVTNKWIDNKYFGPAGQQA







ISRFERLDNKYYYFDANGAVLNIHDQFKNI







DNHTYYFGADGACYTSQFLNKDGKQYYFDN







DGIMLTDQEKIIDGKFYHFNVNGEAIQVND







PSEI






EFFECT OF THE INVENTION

The anti-obesity agent and anti-obesity food and drink of the invention are able to prevent the absorption of a lipid from the intestinal tract by ingesting them while taking a normal meal. Since lactic acid bacteria are used from old in producing fermented foods such as yogurt and fermented milk and have extremely high safety, they can be ingested without anxiety.







BEST MODES FOR CARRYING OUT THE INVENTION

The microorganism which is an active ingredient of the anti-obesity agent and anti-obesity food and drink of the invention (hereinafter often referred to as “anti-obesity agent and the like”) is one belonging to the species Lactobacillus reuteri which is a lactic acid bacterium and capable of producing lipases respectively depicted in the foregoing amino acid sequences (1) to (3) (corresponding to SEQ ID NO: 1, 3 and 5, respectively) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (1) to (3) (these lipases will be hereinafter referred to as “lipases of the invention”) (this microorganism will be hereinafter referred to as “lactic acid bacterium of the invention”).


The lipases of the invention degrade a lipid (triacylglycerol) present in the vicinity of intestinal mucosa cells into a fatty acid and glycerol, which are then taken into the lactic acid bacterium of the invention. As shown in FIG. 1, the thus taken fatty acid is utilized as a fungus constituent, and the glycerol is converted into carbon dioxide, acetone, ethanol, lactate or reuterin through various metabolic pathways.


It is preferable that the lactic acid bacterium of the invention has ability for producing the foregoing lipases, namely has the nucleotide sequences (genes) for encoding the foregoing lipases and besides, has a nucleotide sequence as a gene encoding a transporter and depicted in the following (4) (corresponding to SEQ ID NO: 8). The invention also includes a nucleotide sequence having homology of 80% or more with the nucleotide sequence depicted in (4) and encoding a protein having glycerol transporter activity; and a nucleotide sequence for achieving hybridization with the nucleotide sequence depicted in (4) under a stringent condition and encoding a protein having glycerol transporter activity.










(4)









ATGCATGGATTTATTGGCGAATTTTTTGGCACCATGGTTTTAATCCTATTAGGAGCAGGA






TGTTGTGCTGGTAATAGTTTGAATAAAACATATGGGAAACAAAGTGGCTGGTGGTTTATC





TGTATTTTCATGGGGCTTAGCAGTTACAATGGGAGTTTATGTTGCAGGATTTCTGGGTTCA





TTAGGGCACTTAAATCCCGCTGTAACAATTCCTTTTGCTATTTTTGGCTTATTCCCATGG





AGTAACGTTATACCTTACTTACTTGGTCAATTTCTTGGTGCGTTTGTTGGTGCAGTATTA





GTAATTATTCAATTCTATCCACAATTTAAAGCAACCCCAAATGAAGAAGAAGGAAATAAT





GTTGGTATTTTTGCTACTCGTCCAGCGATAAATAGTCCAATTTTTAACTTTTTCTCAGAA





GTGATTGCGACCTTTGCATTTATTTTCATCTTATTAAATCTTGGCAACTTTACACAGGGA





TTGAAGCCATTTATCGTAGGAATGGTTATTGCAGTTGTTGGTACATGTCTCGGGACAACT





ACTGGCTTTGCATTAAACCCAGCTCGTGATTGGTCACCACGTTTAGCATATACTATTTTG





CCAATTCCTAATAAGGGTGTTTCAGAATGGTGGTATGCATGGGTTCCAATGTGTGGCCCA





ATTGTTGGGGGCCTTCTTGCTTGTGCTTTACAAACGGCACTAGTTTAG






This gene is one encoding a transporter for taking glycerol into the cell of the lactic acid bacterium of the invention, and, as shown in FIG. 1, the thus taken glycerol is subjected to metabolism by the enzymes within the lactic acid bacterium.


Furthermore, it is preferable that the lactic acid bacterium of the invention is one having a glycerol-degrading enzyme composed of the subunits respectively depicted in the foregoing amino acid sequences (5) to (7) (corresponding to SEQ ID NO: 9, 11 and 13, respectively) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (5) to (7). This glycerol-degrading enzyme composed of the subunits (5) to (7) is a glycerol dehydratase which functions in a pdu (propanediol utilization) operon and is able to efficiently metabolize glycerol produced by the action of the lipases of the invention.


It is also possible to obtain a lactic acid bacterium with high glycerol-degrading properties by incorporating the following nucleotide sequences (9) to (11) (corresponding to SED ID NO: 10, 12 and 14, respectively) encoding the subunits (5) to (7) into other lactic acid bacterium or the like by a genetic engineering technique. The invention also includes nucleotide sequences having homology of 80% or more with the nucleotide sequences (9) to (11) and encoding a protein having glycerol-degrading activity; and nucleotide sequences for achieving hybridization with the nucleotide sequences (9) to (12) under a stringent condition and encoding a protein having glycerol-degrading activity.










(9)









ATGAAACGTCAAAAACGATTTGAAGAACTAGAAAAACGGCCAATTCATCAAGATACATTT






GTTAAAGAATGGCCAGAAGAAGGTTTCGTTGCAATGATGGGGCCTAATGACCCTAAGCCT





AGTGTAAAAGTTGAAAATGGCAAGATCGTAGAGATGGATGGTAAAAAGCTCGAAGATTTT





GATTTGATTGACTTGTACATTGCTAAGTATGGAATCAATATTGACAACGTTGAAAAAGTT





ATGAATATGGATTCTACCAAGATTGCACGGATGCTTGTTGATCCTAATGTTTCTCGTGAT





GAAATTATTGAAATTACATCAGCTTTGACTCCTGCTAAGGCTGAAGAGATCATCAGTAAG





CTTGATTTTGGTGAAATGATTATGGCTGTCAAGAAGATGCGCCCACGTCGTAAGCCTGAC





AACCAGTGTCACGTTACCAATACTGTTGATAACCCAGTTCAAATTGCTGCTGATGCTGCT





GATGCCGCTCTTCGTGGATTTCCAGAACAAGAAACCACGACAGCTGTGGCACGTTATGCA





CCATTCAATGCTATTTCAATTTTAATTGGTGCACAAACAGGTCGCCCTGGTGTATTGACA





CAATGTTCTGTTGAAGAAGCTACTGAATTGCAATTAGGTATGCGTGGTTTTACCGCATAT





GCTGAAACCATTTCAGTTTACGGTACTGATCGTGTATTTACCGATGGTGATGATACTCCA





TGGTCTAAAGGCTTCTTGGCATCTTGTTATGCATCACGTGGTTTGAAGATGCGATTTACT





TCAGGTGCCGGTTCAGAAGTTTTGATGGGTTATCCAGAAGGTAAGTCAATGCTTTACCTT





GAAGCGCGTTGTATTTTACTTACTAAGGCTTCAGGTGTTCAAGGACTTCAAAATGGTGCC





GTAAGTTGTATTGAAATTCCTGGTGCTGTTCCTAATGGTATTCGTGAAGTTCTCGGTGAA





AACTTGTTATGTATGATGTGTGACATCGAATGTGCTTCTGGTTGTGACCAAGCATACTCA





CACTCCGATATGCGGCGGACTGAACGGTTTATTGGTCAATTTATTGCCGGTACTGATTAT





ATTAACTCTGGTTACTCATCAACTCCTAACTACGATAATACCTTCGCTGGTTCAAACACT





GATGCTATGGACTACGATGATATGTATGTTATGGAACGTGACTTGGGTCAATATTATGGT





ATTCACCCTGTTAAGGAAGAAACCATTATTAAGGCACGTAATAAGGCCGCTAAAGCCCTT





CAAGCAGTATTTGAAGATCTTGGATTACCAAAGATTACTGATGAAGAGGTCGAAGCAGCA





ACGTATGCTAACACCCATGATGACATGCCAAAGCGGGATATGGTTGCAGATATGAAGGCT





GCTCAAGATATGATGGATCGTGGAATTACTGCTATTGATATTATCAAGGCATTGTACAAC





CACGGATTTAAAGATGTCGCTGAAGCAATTTTGAACCTTCAAAAACAAAAAGTTGTTGGT





GATTACCTTCAAACATCTTCTATTTTTGATAAAGATTGGAACGTCACTTCTGCTGTTAAC





GACGGAAATGATTATCAAGGACCAGGTACTGGATACCGTCTATATGAAGACAAGGAAGAA





TGGGATCGGATTAAAGACTTACCATTCGCCCTTGATCCAGAACATTTGGAACTGTAG











(10)









ATGGCTGATATTGATGAAAACTTATTACGTAAAATCGTTAAAGAAGTTTTAAGCGAAACT






AATCAAATCGATACTAAGATTGACTTTGATAAAAGTAATGATAGTACTGCAACAGCAACT





CAAGAGGTGCAACAACCAAATAGTAAAGCTGTTCCAGAAAAGAAACTTGACTGGTTCCAA





CCAGTTGGAGAAGCAAAACCTGGATATTCTAAGGATGAAGTTGTAATTGCAGTCGGTCCT





GCATTCGCAACTGTTCTTGATAAGACAGAAACTGGTATTCCTCATAAAGAAGTGCTTCGT





CAAGTTATTGCTGGTATTGAAGAAGAAGGGCTTAAGGCGCGGGTAGTTAAAGTTTACCGG





AGTTCAGATGTAGCATTCTGTGCTGTCCAAGGTGATCACCTTTCTGGTTCAGGAATTGCT





ATTGGTATCCAATCAAAAGGGACGACAGTTATTCACCAAAAGGATCAAGACCCTCTTGGT





AACCTTGAGTTATTCCCACAAGCGCCAGTACTTACTCCCGAAACTTATCGTGCAATTGGT





AAGAATGCCGCTATGTATGCTAAGGGTGAATCTCCAGAACCAGTTCCAGCTAAAAACGAT





CAACTTGCTCGTATTCACTATCAAGCTATTTCAGCAATTATGCATATTCGTGAAACTCAC





CAAGTTGTTGTTGGTAAGCCTGAAGAAGAAATTAAGGTTACGTTTGATTAA











(11)









ATGAGTGAAGTTGATGATTTAGTAGCAAAGATCATGGCTCAGATGGGAAACAGTTCATCT






GCTAATAGCTCTACAGGTACTTCAACTGCAAGTACTAGTAAGGAAATGACAGCAGATGAT





TACCCACTTTATCAAAAGCACCGTGATTTAGTAAAAACACCAAAAGGACACAATCTTGAT





GACATCAATTTACAAAAAGTAGTAAATAATCAAGTTGATCCTAAGGAATTACGGATTACA





CCAGAAGCATTGAAACTTCAAGGTGAAATTGCAGCTAATGCTGGCCGTCCAGCTATTCAA





AAGAATCTTCAACGAGCTGCAGAATTAACACGAGTACCTGACGAACGGGTTCTTGAAATG





TATGATGCATTGCGTCCTTTCCGTTCAACTAAGCAAGAATTATTGAACATTGCAAAGGAA





TTACGGGACAAGTATGACGCTAATGTTTGCGCAGCATGGTTTGAAGAAGCTGCTGATTAT





TATGAAAGTCGTAAGAAGCTAAAGGGCGATAACTAA






Moreover, it is more preferable that the lactic acid bacterium of the invention is one holding an enteroadherent protein depicted in the following amino acid sequence (8) (corresponding to SEQ ID NO: 15) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (8).









(8)









MFGHDGRIVTKVYQWAGTYYYFDPNTYLRV







DNDYRQSQWGDWYMFGPDGRIVTGLKEWYG







SYYYFDPTTYLKVTNKWIDNKYFGPAGQQA







ISRFERLDNKYYYFDANGAVLNIHDQFKNI







DNHTYYFGADGACYTSQFLNKDGKQYYFDN







DGIMLTDQEKIIDGKFYHFNVNGEAIQVND







PSEI






This enteroadherent protein has an action for making a lactic acid bacterium adhere to the vicinity of intestinal mucosa cells, and the lactic acid bacterium of the invention having this is able to exist in the vicinity of an intestinal mucosa for a certain period of time and stably take a lipid thereinto. It becomes possible to obtain a lactic acid bacterium with a long intestinal residence time by incorporating a gene encoding this protein and depicted in the following (12) (corresponding to SEQ ID NO: 16) into other lactic acid bacterium by a known technique. The invention also involves a nucleotide sequence having homology of 80% or more with the nucleotide sequence (12) and encoding a protein having activity for making a lactic acid bacterium adhere to the vicinity of intestinal mucosa cells; and a nucleotide sequence for achieving hybridization with the nucleotide sequence (12) under a stringent condition and encoding a protein having activity for making a lactic acid bacterium adhere to the vicinity of intestinal mucosa cells.










(12)









ATGTTCGGTCACGATGGCCGCATTGTTACTAAAGTTTACCAATGGGCTGGCACGTATTAC






TACTTTGATCCGAATACTTATTTGCGAGTAGATAATGATTACCGTCAATCTCAGTGGGGC





GATTGGTATATGTTTGGCCCAGATGGTCGTATCGTTACAGGGTTAAAGGAATGGTACGGT





AGTTATTATTACTTTGATCCGACGACTTACTTAAAAGTAACTAATAAGTGGATAGATAAT





AAGTACTTTGGTCCAGCTGGTCAGCAAGCTATTTCACGCTTTGAGAGACTTGATAATAAG





TATTACTATTTCGATGCTAATGGGGCAGTTCTTAATATCCATGATCAATTTAAGAATATT





GATAACCACACTTATTACTTTGGAGCTGATGGTGCTTGTTATACCAGTCAATTCTTAAAT





AAGGATGGTAAACAGTATTATTTCGATAATGATGGAATTATGCTCACTGATCAAGAGAAG





ATCATTGACGGTAAATTCTATCATTTCAATGTTAATGGTGAAGCAATCCAAGTAAATGAT





CCTTCTGAAATTTGA






Also, it is preferable that the lactic acid bacterium of the invention is one having a glycerol-degrading enzyme depicted in any of the following amino acid sequences (16) to (20) (corresponding to SEQ ID NO: 17, 19, 21, 23 and 25, respectively) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in any of the amino acid sequences (16) to (20). This glycerol-degrading enzyme is an alcohol dehydrogenase (ADH (8) in FIG. 1) and is able to efficiently metabolize glycerol produced by the action of the lipases of the invention. The “amino acid sequence having deletion, substitution, inversion, addition or insertion of one or more amino acids” as referred to herein means a sequence equivalent to the original sequence thereof and refers to a sequence still keeping glycerol-degrading activity. Examples of such an amino acid sequence include those exhibiting homology of 80% or more.









(16)









MKAAVINDPVDGFVTVKDVQLRDLKPGEAL







VDMEYCGLCHTDLHVAAGDFGKKPGRIIGH







EGVGRVSKVAPGVTSLKVGDRVSIAWFFKG







CGHCEYCLTGRETLCRNVLNAGYTADGAMA







EQCIVPADYAVKVPEGLDPVEATSLTCAGV







TMYKALKVADIKPGQWVSIVGAGGLGNLGI







QLAHNVFGAHVIAVDGNPDKLEAAKKNGAE







ILINRHDGDVDKQIQEKVGGVHAAVVTAVS







ASAFDQAVDSLRPDGKLVAVALPQGDMKLN







IAKTVLDGIIVAGSLVGTRQDLAECFQFGA







EGKVHPIVKTRKLSEINDMIQELKDNKVVG







RNVVDFVHNDND











(17)









MEKRENAIPKTMKAWAVTTPGPIDGKESPI







EFTEKPVPTPKRGEVLVKVITCGVCHTDLH







VTEGDLPVHHEHVTPGHEIVGKVVGFGPET







QRFKFGERIGIPWFRHACGVCKFCRSGHEN







LCPHSLYTGWDHDGGYAEYVTVPEGFAYRL







PEKFDSLEAAPLLCAGIIGYRAFERANVPA







GGRLGLYGFGGSAHITAQIALAQGIEVHVF







TRGEDAKKFALELGCASVQGSYDPAPVPLD







SSIIFAPVGDMVLPALASLVPGGTLALAGI







HMTDIPTMNYQKEIFHEKTLTSVESNTRRD







GEEFLTLADRLNIHPEVHEYPLAKADEALR







YVKHGDIKGACVLRVSED











(18)









MQIKAALATKPNADLEIQTVELDEPKENEV







LIKIASTGFCHTDIVGRSGATTPLPVVLGH







EGAGVVQKVGANVTDVKPGDHVVLSFSYCG







HCYNCTHNHQGLCENFNQLNFEGKTYDGTH







RLHLDDGTPVSVFFGQSSFATYVTANVHNI







VKVDQDVDLNLLGPLGCGMQTGAGTVLNYI







KPAPEDAIAVFGAGAVGLAAIMAAKIAGVK







HIIAINRNGNHLDLAKELGATETINNTAED







PVKAIKEIVPRGVTYAIDTTGNTGVIKSAI







DSLATAGECVLLGVGGDITLDLMNDILSES







KKISGVVEGDSNPQEFIPQLVKYYKQSKFP







LDKLVKYYDFADINQVIADSTNGKVIKPII







KIDPELAKLPLTNDGSNVQKMVAEAGLADQ







ITIDSAGTSNIAEGSPADSRTKAILDKYHI







KDDGMIARQLQDRDYYDADYIIAMDQMNVR







DAKDMAPAGLENKVHGIFEATPGKENCYIV







DPWITH











(19)









MKKAIFEKAGQMKIVDVDRPTIEKPDDVII







KVVRTCVCGSDLWNFRGINPVEKDSENSGH







EAIGIVEEVGEDITTVKPGDFVIAPFTHGC







GHCAACRAGFDGSCQSHNDNFSSGVQAQYV







RFQHGQWALVKVPGKPSDYSEGMLKSLLTL







ADVMATGYHAARVANVSDGDTVVVMGDGAV







GLCAIIAAKMRGAKKIISTSRHADRQALAK







EFGATDNVAERSDEAVQKIMELTNGAGADA







VLECVGTEQSTDTAMKVGRPGTIVGRVGLP







HTPKMDMTVLFYNNTIVGGGPASVTTYDKD







VLLKAVLDGDINPGKVFTKSFDLDQIQEAY







EAMDKREAIKSYIIMDGFERD











(20)









MGRLDNKVAIITGGSKGIGAAVAKKFIEEG







AKVVLTARKMDEGQKVADQLGDNAIFIQQD







VARKGDWDRVIRQTVQVFGKLNIVVNNAGI







AEYADVEKTDAEIWDKTIAVNLTGTMWGTK







LGIEAMKNNGEKNSIINMSSIEGLIGDPDL







FAYNASKGGVRLLTKSAALDCARKGYDIRV







NTIHPGYISTPLVDNLVKDDPKAEGHLESL







HPLGRLGKPEEIANLALYLASDESSFSTGS







EFVADGGYTAQ






It is also possible to obtain a lactic acid bacterium with high glycerol-degrading properties by incorporating the following nucleotide sequences (32) to (36) (corresponding to SED ID NO: 18, 20, 22, 24 and 26, respectively) encoding the glycerol-degrading enzymes (16) to (20), respectively into other lactic acid bacterium or the like by a genetic engineering technique. The invention also includes a nucleotide sequence having homology of 80% or more with any of the nucleotide sequences (32) to (36) and encoding a protein having glycerol-degrading activity; and a nucleotide sequence for achieving hybridization with any of the nucleotide sequences (32) to (36) under a stringent condition and encoding a protein having glycerol-degrading activity.










(32)









ATGAAAGCTGCTGTTATTAATGATCCAGTAGACGGTTTTGTTACTGTTAAAGATGTTCAA






CTTCGGGATTTGAAGCCCGGTGAAGCTTTAGTTGACATGGAATATTGTGGTCTTTGTCAC





ACTGATCTACACGTTGCTGCTGGGGACTTTGGTAAGAAGCCCGGTCGTATTATCGGTCAC





GAAGGGGTTGGTCGTGTATCTAAGGTTGCCCCTGGCGTTACTTCCTTGAAAGTTGGCGAC





CGTGTATCAATTGCATGGTTCTTCAAGGGCTGTGGACACTGTGAATATTGTTTAACTGGT





CGTGAAACTCTTTGTCGGAACGTTCTTAATGCGGGTTACACTGCTGACGGTGCAATGGCT





GAACAATGTATCGTACCAGCTGACTACGCTGTTAAGGTTCCAGAAGGTCTTGATCCTGTT





GAAGCTACTTCATTAACTTGTGCTGGTGTTACGATGTACAAGGCATTAAAGGTTGCTGAC





ATCAAGCCAGGTCAATGGGTATCAATCGTTGGTGCTGGTGGTTTAGGTAACTTGGGTATT





CAACTTGCTCACAACGTATTTGGTGCTCATGTTATCGCTGTTGATGGTAATCCTGATAAG





CTTGAAGCCGCTAAGAAGAATGGTGCTGAAATTTTAATTAACCGTCATGACGGTGATGTT





GATAAGCAAATTCAAGAAAAGGTTGGCGGTGTTCACGCTGCTGTAGTAACAGCTGTTTCT





GCCTCTGCATTCGACCAAGCAGTTGATTCACTTCGCCCAGATGGTAAGCTTGTTGCCGTT





GCGCTTCCACAAGGTGACATGAAGCTTAACATTGCTAAGACTGTTCTTGATGGTATCATT





GTTGCTGGTTCATTAGTTGGTACCCGTCAAGACTTAGCTGAATGTTTCCAATTTGGTGCA





GAAGGTAAGGTTCACCCAATTGTTAAGACTCGTAAGTTAAGCGAAATTAATGATATGATC





CAAGAACTTAAGGATAACAAGGTTGTTGGTCGGAATGTTGTTGATTTTGTTCACAACGAT





AACGACTAA











(33)









ATGGAAAAACGCGAAAATGCTATTCCGAAAACAATGAAGGCTTGGGCAGTCACAACTCCT






GGGCCGATTGATGGTAAGGAATCACCAATCGAATTTACCGAAAAGCCTGTGCCGACTCCT





AAACGGGGAGAAGTCCTTGTTAAGGTAATAACGTGTGGAGTATGTCATACGGACTTGCAC





GTGACTGAAGGAGACTTGCCGGTTCACCACGAACACGTTACTCCTGGTCATGAAATTGTT





GGTAAAGTTGTCGGCTTTGGACCAGAGACACAACGATTTAAGTTTGGTGAGCGAATTGGG





ATTCCATGGTTTCGGCATGCTTGTGGTGTATGCAAGTTTTGCCGATCAGGTCATGAGAAT





CTCTGTCCTCATTCACTTTATACCGGTTGGGATCATGATGGCGGTTATGCAGAATATGTC





ACAGTTCCAGAAGGATTTGCATATCGGCTTCCAGAAAAGTTTGATTCCCTAGAGGCAGCT





CCGTTATTATGTGCAGGGATTATTGGTTATCGGGCCTTTGAACGTGCCAATGTTCCGGCT





GGCGGTCGCCTAGGATTATATGGCTTCGGTGGTTCAGCTCATATTACAGCTCAAATTGCA





CTTGCTCAGGGAATTGAAGTGCATGTCTTTACGCGTGGTGAGGATGCCAAGAAATTCGCC





CTAGAATTAGGTTGTGCTTCTGTTCAGGGCTCCTATGACCCAGCACCAGTTCCTTTGGAT





TCATCAATCATTTTTGCGCCGGTTGGTGATATGGTCTTGCCGGCTTTAGCTAGTTTAGTT





CCAGGGGGGACATTAGCATTAGCCGGTATTCATATGACTGATATTCCAACAATGAATTAC





CAAAAAGAAATATTCCACGAAAAGACATTAACGAGTGTTGAGAGTAATACTCGTCGTGAT





GGGGAAGAATTCTTAACATTAGCTGATCGTCTTAATATCCATCCTGAAGTCCACGAATAT





CCCCTAGCAAAGGCTGACGAAGCATTACGCTATGTTAAGCACGGTGATATTAAGGGAGCT





TGTGTATTACGTGTTAGTGAGGACTAA











(34)









ATGCAAATTAAAGCTGCTCTTGCAACCAAACCTAACGCTGATTTAGAGATTCAAACCGTC






GAATTGGATGAACCAAAAGAAAATGAAGTATTAATAAAAATTGCTTCAACAGGTTTTTGT





CATACAGATATTGTTGGTCGAAGCGGTGCCACTACCCCTCTCCCCGTTGTCCTCGGGCAT





GAAGGTGCGGGCGTCGTCCAAAAAGTAGGAGCTAACGTTACGGACGTTAAACCCGGCGAC





CATGTTGTTCTATCATTTAGCTACTGTGGCCATTGCTATAACTGTACTCATAATCATCAA





GGCTTATGCGAAAACTTCAATCAGCTAAACTTTGAAGGAAAAACCTATGATGGTACTCAC





CGCCTGCACTTAGATGATGGCACGCCAGTCAGTGTCTTTTTTGGTCAGTCTTCCTTTGCG





ACCTATGTAACAGCCAATGTCCATAATATTGTTAAAGTTGATCAAGATGTTGATCTTAAC





TTATTAGGGCCACTCGGTTGTGGAATGCAAACAGGTGCTGGAACCGTTCTAAATTATATT





AAACCTGCTCCTGAAGATGCAATTGCCGTTTTCGGTGCTGGTGCTGTTGGCTTAGCCGCA





ATTATGGCTGCTAAAATTGCTGGAGTTAAACATATTATTGCGATTAATCGTAACGGTAAC





CACCTTGACCTGGCGAAGGAATTGGGCGCTACTGAAACGATTAATAATACGGCTGAAGAT





CCCGTCAAAGCAATTAAAGAAATCGTTCCGCGTGGTGTAACTTATGCAATCGATACTACC





GGAAACACCGGTGTAATTAAATCAGCAATTGATAGTCTTGCCACCGCTGGAGAATGTGTC





CTCTTAGGAGTTGGCGGCGATATTACCTTAGACTTAATGAATGATATCTTATCAGAATCT





AAGAAAATCTCTGGGGTTGTCGAAGGAGATAGCAATCCCCAAGAGTTTATTCCTCAACTA





GTTAAGTACTACAAGCAAAGCAAGTTCCCCCTTGATAAGCTTGTTAAGTACTACGATTTT





GCTGATATTAACCAAGTTATCGCTGACTCAACAAACGGAAAGGTTATTAAGCCAATCATC





AAAATTGATCCTGAATTAGCTAAATAATTGCCGCTCACCAATGACGGAAGCAATGTTCAA





AAAATGGTTGCAGAAGCTGGCCTTGCTGATCAAATTACTATTGATTCAGCCGGAACAAGT





AACATTGCAGAAGGTTCACCTGCTGATAGTCGAACAAAAGCCATTCTCGATAAATATCAC





ATTAAAGACGACGGAATGATTGCCCGTCAATTGCAGGACAGGGATTATTATGATGCCGAT





TATATTATCGCAATGGATCAGATGAATGTCCGGGACGCAAAAGATATGGCACCAGCTGGG





TTAGAAAATAAGGTTCATGGAATCTTTGAAGCTACCCCAGGAAAAGAAAATTGCTATATC





GTTGACCCCTGGATCACTCACTGA











(35)









ATGAAAAAAGCTATTTTTGAAAAGGCGGGTCAAATGAAGATTGTTGATGTTGACCGTCCA






ACAATTGAAAAGCCTGATGACGTAATTATTAAGGTAGTGCGGACCTGTGTTTGTGGTTCT





GACCTATGGAACTTCCGAGGAATTAATCCGGTTGAAAAAGATTCTGAAAACTCTGGCCAT





GAAGCAATTGGAATTGTTGAAGAAGTTGGTGAAGATATCACTACTGTCAAACCTGGGGAC





TTTGTGATTGCTCCATTTACTCATGGATGTGGGCACTGTGCTGCTTGTCGCGCGGGCTTC





GATGGTTCTTGCCAAAGTCACAACGATAACTTTAGCTCTGGTGTGCAAGCTCAATACGTT





CGGTTCCAACACGGTCAATGGGCGCTTGTTAAAGTTCCGGGCAAGCCAAGTGACTACAGT





GAAGGAATGCTTAAGTCCCTCTTAACCCTTGCTGATGTTATGGCTACTGGTTACCACGCT





GCACGAGTTGCTAACGTTAGTGATGGTGATACAGTTGTTGTAATGGGTGACGGTGCTGTT





GGCCTTTGTGCGATTATTGCTGCTAAGATGCGGGGCGCTAAGAAGATCATTTCTACTAGT





CGCCATGCTGACCGTCAAGCCCTTGCTAAGGAATTTGGTGCTACTGACAATGTTGCTGAA





CGTAGTGACGAAGCGGTTCAAAAGATCATGGAACTCACTAACGGTGCCGGTGCTGATGCT





GTCCTTGAATGCGTTGGTACTGAACAATCAACTGATACTGCCATGAAAGTTGGCCGTCCA





GGTACCATCGTTGGTCGGGTTGGCTTACCTCATACCCCAAAGATGGACATGACGGTGCTA





TTCTACAACAACACTATTGTCGGCGGTGGTCCAGCATCAGTAACCACTTACGACAAGGAC





GTATTGTTGAAGGCTGTTCTTGATGGTGACATTAACCCTGGTAAGGTCTTTACTAAGAGC





TTCGACCTTGACCAAATTCAAGAAGCTTATGAAGCAATGGATAAGCGTGAAGCAATCAAG





TCTTACATTATTATGGATGGCTTTGAACGCGATTAA











(36)









ATGGGTCGTTTAGATAATAAAGTTGCAATTATTACTGGTGGTTCTAAAGGAATTGGAGCT






GCTGTCGCAAAAAAGTTTATCGAAGAAGGCGCAAAGGTTGTTTTAACCGCTCGGAAGATG





GATGAGGGACAAAAAGTCGCTGACCAACTAGGTGACAATGCGATCTTTATCCAACAAGAC





GTTGCTCGGAAAGGAGACTGGGACCGGGTAATCCGCCAAACTGTCCAAGTCTTTGGGAAG





CTCAATATTGTGGTTAACAATGCGGGAATTGCCGAATACGCCGATGTTGAGAAGACGGAC





GCTGAAATTTGGGATAAAACAATTGCCGTTAACCTTACCGGTACGATGTGGGGAACTAAG





CTCGGTATTGAAGCAATGAAGAACAACGGGGAAAAGAATTCAATCATCAATATGTCATCC





ATTGAAGGACTAATTGGTGATCCTGATCTCTTTGCATACAATGCTTCTAAGGGTGGTGTC





CGCCTCTTAACTAAGTCCGCTGCGCTTGATTGTGCCCGGAAAGGCTATGACATCCGTGTA





AATACAATTCATCCTGGTTATATCTCAACTCCACTAGTTGATAATTTGGTCAAGGATGAT





CCAAAAGCAGAAGGACACCTAGAAAGCCTTCATCCCCTTGGCCGTCTTGGAAAGCCAGAA





GAGATTGCTAACCTCGCTTTATACCTTGCTTCAGATGAATCAAGCTTTAGTACTGGTTCG





GAATTTGTCGCTGATGGTGGCTATACGGCTCAATAA






Also, it is preferable that the lactic acid bacterium of the invention is one having a glycerol-degrading enzyme depicted in the following amino acid sequence (21) or (22) (corresponding to SEQ ID NO: 27 or 29, respectively) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (21) or (22). This glycerol-degrading enzyme is an alcohol dehydrogenase (ADH (8) in FIG. 1) and is able to efficiently metabolize glycerol produced by the action of the lipases of the invention. The “amino acid sequence having deletion, substitution, inversion, addition or insertion of one or more amino acids” as referred to herein means a sequence equivalent to the original sequence thereof and refers to a sequence still keeping glycerol-degrading activity. Examples of such an amino acid sequence include those exhibiting homology of 80% or more.









(21)









MTNVPTVKLNNGVEMPTLGFEVFQVPDLSQ







AEQAVTDALEVGYRLIDTAAAYQNEEAVGK







AIKNSSVNREDVFVTSKLWVSDFNYKRAKA







GIDASLQKLGLDYMDLYLLHQPYGDTMGAW







RALQEAQKEGKIRAIGVSNFYADQLKDLEL







TMPVKPAVNQIEVNPWYQQDQEVKFAQSED







IRVEAWAPFAEGKHDIFTNEIIAEIAAKYG







KSNGQVILRWLLQRGITVIPKSVHKNRMEE







NIDVFDFELSNDDMKKIASLNKKESQFFDH







RDPVTIEQIFGSSLKMVQDDEK











(22)









MILDETITLNSGVKIPKFALGTWMIDDDQA







AEAVRNAIKMGYRHIDTAQAYDNERGVGEG







VRTAGIDRDKIFVTSKIAAEHKDYDVTKKS







IDETLEKMGLDYIDMMLIHSPQPWKEVNQS







DNRYLEGNLAAWRAMEDAVNEGKIRTIGVS







NFKKADLENIIKNSDTVPAVDQVLAHIGHT







PFNLLSFTHEHDIAVEAYSPVAHGAALDNP







VIEKMAKKYNVSVPQLCIRYDWQIGMIVLP







KTTNPEHMKENTEIDFEISEADMDLLRRVK







PLDYGDFDIYPVYGGKM






It is also possible to obtain a lactic acid bacterium with high glycerol-degrading properties by incorporating the following nucleotide sequence (37) or (38) (corresponding to SED ID NO: 28 or 30, respectively) encoding the glycerol-degrading enzyme (21) or (22), respectively into other lactic acid bacterium or the like by a genetic engineering technique. The invention also includes a nucleotide sequence having homology of 80% or more with the nucleotide sequence (37) or (38) and encoding a protein having glycerol-degrading activity; and a nucleotide sequence for achieving hybridization with the nucleotide sequence (37) or (38) under a stringent condition and encoding a protein having glycerol-degrading activity.










(37)









ATGACAAATGTACCAACAGTAAAATTAAATAACGGAGTAGAAATGCCAACCCTTGGATTT






GAAGTATTCCAAGTTCCAGACTTAAGCCAAGCTGAACAAGCAGTTACCGATGCTCTTGAA





GTCGGCTATCGTTTAATCGATACTGCTGCTGCTTACCAAAATGAAGAAGCAGTTGGAAAG





GCAATTAAGAATAGTAGTGTAAACCGTGAAGATGTCTTTGTAACTTCTAAGTTATGGGTG





TCTGATTTTAACTATAAGCGGGCTAAAGCAGGGATTGACGCTTCACTGCAAAAACTTGGC





CTTGATTACATGGATCTTTACCTTCTCCATCAACCATATGGCGATACAATGGGGGCTTGG





CGAGCATTACAAGAAGCACAGAAAGAAGGTAAGATTCGCGCAATCGGTGTATCGAACTTC





TACGCTGATCAACTAAAGGATCTTGAATTAACAATGCCTGTTAAGCCAGCGGTCAACCAA





ATTGAAGTTAACCCTTGGTACCAGCAAGATCAAGAGGTTAAGTTTGCGCAAAGTGAAGAT





ATTCGTGTTGAAGCATGGGCACCATTTGCGGAAGGTAAGCATGATATTTTTACCAACGAA





ATAATTGCGGAAATTGCTGCCAAGTATGGCAAGAGCAATGGTCAAGTAATTCTTCGCTGG





CTTTTACAACGGGGTATTACTGTCATTCCAAAGTCAGTCCACAAGAACCGGATGGAAGAA





AATATCGATGTCTTTGATTTTGAACTTTCCAATGATGATATGAAAAAGATAGCTAGTCTT





AACAAGAAGGAAAGCCAATTCTTTGACCACCGTGATCCGGTTACGATTGAACAAATCTTT





GGCTCCAGCTTAAAGATGGTTCAAGATGACGAAAAATAA











(38)









ATGATTTTAGATGAGACAATTACTCTTAATAGTGGTGTGAAAATTCCAAAGTTTGCATTA






GGAACCTGGATGATTGATGATGACCAAGCAGCCGAAGCAGTTCGGAATGCGATTAAGATG





GGATATCGGCACATCGATACAGCTCAGGCTTATGATAATGAGCGGGGAGTCGGTGAAGGT





GTACGAACAGCCGGTATTGATCGGGATAAAATCTTTGTTACTTCAAAGATCGCTGCTGAA





CACAAAGATTATGATGTAACTAAAAAGTCGATTGACGAGACTCTTGAAAAGATGGGTCTT





GATTATATCGACATGATGCTTATTCATAGTCCTCAACCATGGAAAGAAGTAAATCAATCT





GATAATCGTTACCTTGAAGGAAATCTCGCTGCTTGGCGAGCCATGGAAGATGCCGTTAAC





GAAGGTAAGATTCGAACAATTGGCGTTTCTAATTTCAAAAAAGCCGATCTTGAAAATATT





ATTAAGAATAGCGATACCGTTCCCGCTGTTGATCAAGTTTTAGCTCATATTGGTCATACT





CCATTCAATCTTTTATCATTTACTCATGAACATGACATTGCGGTTGAAGCATATTCACCA





GTTGCTCACGGCGCTGCTTTAGACAACCCCGTAATTGAAAAGATGGCTAAAAAGTACAAC





GTTTCAGTCCCACAATTGTGCATTCGGTATGATTGGCAAATAGGAATGATCGTCTTACCA





AAGACTACTAATCCAGAACACATGAAGGAAAACACTGAAATTGATTTTGAAATTTCTGAA





GCTGATATGGACCTATTGCGGCGAGTAAAGCCATTAGACTATGGCGATTTTGATATCTAC





CCTGTTTACGGTGGAAAAATGTAA






Also, it is preferable that the lactic acid bacterium of the invention is one having an aldehyde dehydrogenase depicted in any of the following amino acid sequences (23) to (25) (corresponding to SEQ ID NO: 31, 33 and 35, respectively) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in any of the amino acid sequences (23) to (25). This aldehyde dehydrogenase is an aldehyde dehydrogenase (9) in FIG. 1 and is able to efficiently metabolize glycerol produced by the action of the lipases of the invention. The “amino acid sequence having deletion, substitution, inversion, addition or insertion of one or more amino acids” as referred to herein means a sequence equivalent to the original sequence thereof and refers to a sequence still keeping aldehyde dehydrogenase activity. Examples of such an amino acid sequence include those exhibiting homology of 80% or more.









(23)









MPANNKKQVEKKELTAEEKKQNAQKLVDDL







MTKSQAAFEKLRYYSQEQVDKICQAMALAA







EEHHMDLAVDAANETGRGVAEDKAIKNIYA







SEYIWNNIRHDKTVGIIEDNDEDQTIKIAD







PLGVIAGIVPVTNPTSTTIFKSIISAKTRN







TIIFSFHRQAMKSSIKTAKILQEAAEKAGA







PKNMIQWLPESTRENTTALLQHPNTATILA







TGGPSLVKAAYSSGNPALGVGPGNGPAYIE







KTANIERSVYDIVLSKTFDNGMICATENSV







VVDEEIYDKVKEEFQKWNCYFLKPNEIDKF







TDGFIDPDRHQVRGPIAGRSANAIADMCGI







KVPDNTKVIIAEYEGVGDKYPLSAEKLSPV







LTMYKATSHENAFDICAQLLHYGGEGHTAA







IHTLDDDLATKYGLEMRASRIIVNSPSGIG







GIGNIYNNMTPSLTLGTGSYGSNSISHNVT







DWDLLNIKTIAKRRENRQWVKIPPKVYFQR







NSLKELQDIPNINRAFIVTGPGMSKRGYVQ







RVIDQLRQRQNNTAFLVFDDVEEDPSTNTV







EKGVAMMNDFKPDTIIALGGGSPMDAAKAM







WMFYEHPETSWYGVMQKYLDIRKRAYQIKK







PTKSQLIGIPTTSGTGSEVTPFAVITDSKT







HVKYPLADYALTPNIAIVDSQFVETVPAKT







TAWTGLDVLCHATESYVSVMATDYTRGWSL







QTIKGVMENLPKSVQGDKLARRKMHDFSTM







AGMAFGQAFLGINHSLAHKMGGAFGLPHGL







LIAIAMPQVIRFNAKRPQKLALWPHYETYH







ATKDYADIARFIGLKGNTDEELAEAYAKKV







IELAHECGVKLSLKDNGVTREEFDKAVDDL







ARLAYEDQCTTTNPVEPLVSQLKELLERCY







DGTGVEEK











(24)









MAYQSINPFTNQVEKTFENTTDEELEQTLT







TAHQLYLDWRKYNDLEERKRQILKLGQILR







ERRVEYATVMSKEMGKLISEAEGEVDLCAS







FCDYYAAHADEFLQPKIIATTSGRAKVLKQ







SLGILVAVEPWNFPFYQIARVFIPNFIAGN







PMILKDASNCPASAQAFNDAVKEAGAPAGS







LTNLFLSYDQVNKAIADKRVAGVCLTGSER







GGATVAKEAGANLKKSTLELGGNDAFIILD







DADWDLVEKVAPAARLYNAGQVCTSSKRFI







VLEKDYDRFLKMMKDAFSKVKMGDPLDPLT







TLAPLSSKKAKEKLQQQVATAVENGAKVYY







GNKPVDMEGQFFMPTILTDITPDNPIFDTE







MFGPVASVYKVSSEEEAIELANNSSYGLGN







TIFSNDSEHAERVAAKIETGMSWINAGWAS







LPELPFGGVKNSGYGRELSSYGIDEFTNKH







LIYEARQ











(25)









MQINDIESAVRKILAEELDNASSSSANVAA







TTDNGHRGIFTNVNDAIAAAKAAQEIYRDK







PIAVRQQVIDAIKEGFRPYIEKMAKDIKEE







TGMGTVEAKIAKLNNALYNTPGPEILEPVV







ENGDGGMVMYERLPYGVIGAVGPSTNPSET







VIANAIMMLAGGNTLYFGAHPGAKNVTRWT







IEKMNDFIADATGLHNLVVSIETPTIESVQ







QMMKHPDIAMLAVTGGPAVVHQAMTSGKKA







VGAGPGNPPAMVDATADIDLAAHNIITSAS







FDNDILCTAEKEVVAESSIKDELIRKMQDE







GAFVVNREQADKLADMCIQENGAPDRKFVG







KDATYILDQANIPYTGHPVEIICELPKEHP







LVMTEMLMPILPVVSCPTFDDVLKTAVEVE







KGNHHTATIHSNNLKHINNAAHRMQCSIFV







VNGPSYVGTGVADNGAHSGASALTIATPTG







EGTCTARTFTRRVRLNSPQGFSVRNWY






It is also possible to obtain a lactic acid bacterium with high glycerol-degrading properties by incorporating the following nucleotide sequences (39) to (41) (corresponding to SED ID NO: 32, 34 and 36, respectively) encoding the aldehyde dehydrogenases (23) to (25), respectively into other lactic acid bacterium or the like by a genetic engineering technique. The invention also includes a nucleotide sequence having homology of 80% or more with any of the nucleotide sequences (39) to (41) and encoding a protein having aldehyde dehydrogenase activity; and a nucleotide sequence for achieving hybridization with any of the nucleotide sequences (39) to (41) under a stringent condition and encoding a protein having aldehyde dehydrogenase activity.










(39)









ATGCCTGCTAACAACAAGAAACAAGTTGAAAAGAAAGAATTAACTGCTGAAGAAAAAAAG






CAAAACGCCCAAAAGCTAGTTGACGATTTAATGACTAAGAGTCAAGCTGCTTTTGAAAAG





TTACGTTACTATTCACAAGAACAAGTTGACAAGATTTGTCAGGCAATGGCTCTCGCTGCC





GAAGAACACCACATGGACTTAGCTGTTGATGCTGCTAACGAAACTGGTCGTGGGGTTGCT





GAAGATAAGGCTATCAAGAACATCTACGCAAGTGAATACATTTGGAACAACATCCGTCAC





GATAAGACTGTTGGTATTATCGAAGACAATGATGAAGACCAAACTATCAAAATTGCTGAT





CCACTTGGTGTCATTGCCGGAATTGTTCCAGTTACTAACCCTACTTCAACAACGATCTTC





AAATCAATCATTAGTGCTAAGACACGGAATACAATCATCTTTTCTTTCCACCGTCAAGCA





ATGAAGTCATCTATCAAGACTGCAAAGATTCTCCAAGAAGCTGCTGAAAAAGCCGGTGCG





CCAAAGAACATGATTCAATGGCTCCCTGAAAGTACCCGCGAAAACACTACCGCATTACTC





CAACACCCTAATACTGCTACTATTTTAGCAACCGGTGGTCCTTCATTAGTTAAGGCTGCC





TACAGTTCTGGTAACCCTGCTCTTGGTGTTGGTCCTGGTAACGGTCCTGCTTACATCGAA





AAAACTGCCAACATCGAACGTTCTGTTTACGACATCGTTCTTTCTAAGACATTCGATAAC





GGTATGATTTGTGCCACTGAAAACTCAGTTGTTGTTGATGAAGAAATCTACGACAAGGTT





AAAGAAGAATTCCAAAAGTGGAACTGTTACTTCTTGAAGCCAAACGAAATTGATAAATTT





ACTGATGGCTTTATTGACCCAGATCGTCATCAAGTTCGTGGTCCAATCGCTGGTCGTTCA





GCTAATGCTATTGCTGACATGTGTGGTATTAAAGTACCTGACAACACTAAGGTTATCATT





GCTGAATACGAAGGTGTTGGTGACAAGTACCCACTTTCAGCTGAAAAGCTTTCACCAGTA





TTAACAATGTACAAGGCAACCTCTCACGAAAATGCCTTTGATATCTGTGCTCAATTATTA





CACTACGGTGGTGAAGGTCACACTGCTGCTATTCACACCCTTGATGATGATTTAGCTACT





AAGTACGGTCTTGAAATGCGTGCTTCACGGATCATTGTTAACTCCCCATCTGGTATTGGT





GGTATTGGTAACATCTACAACAACATGACTCCATCCCTTACTTTAGGTACTGGTTCATAC





GGTACTAACTCAATTTCTCACAACGTTACTGATTGGGACCTCTTAAACATCAAAACAATT





GCAAAGCGGCGTGAAAACCGTCAATGGGTTAAGATTCCCCCAAAAGTATACTTTCAACGC





AACTCACTAAAAGAATTGCAAGATATTCCAAACATTAACCGGGCATTCATCGTTACTGGT





CCTGGAATGAGCAAGCGTGGTTACGTTCAACGTGTTATCGATCAATTGCGTCAACGCCAA





AACAACACTGCTTTCTTAGTATTTGATGACGTTGAAGAAGATCCATCAACAAACACTGTT





GAAAAAGGTGTTGCCATGATGAATGACTTCAAACCTGATACAATTATTGCTCTTGGTGGT





GGTTCACCAATGGATGCTGCTAAGGCTATGTGGATGTTCTATGAGCACCCAGAAACTTCA





TGGTATGGGGTTATGCAAAAGTACCTTGATATTCGGAAGCGTGCTTACCAAATCAAGAAG





CCTACTAAGTCTCAACTTATTGGTATCCCTACTACATCAGGTACTGGTTCAGAAGTTACT





CCATTTGCGGTTATTACCGATTCAAAAACTCATGTTAAGTACCCACTTGCTGACTACGCC





TTAACACCAAACATTGCAATCGTTGACTCACAATTCGTTGAAACTGTTCCAGCAAAAACT





ACTGCTTGGACTGGACTAGATGTTTTATGTCACGCTACTGAATCATATGTTTCTGTTATG





GCAACTGACTACACTCGTGGTTGGTCACTACAAACCATCAAGGGTGTTATGGAAAACCTT





CCTAAGTCAGTTCAAGGTGATAAGTTAGCTCGTCGTAAGATGCACGACTTCTCAACAATG





GCCGGGATGGCATTTGGTCAAGCCTTCTTAGGAATTAACCACTCCCTTGCCCACAAGATG





GGTGGAGCATTCGGTCTTCCTCACGGTTTGCTTATCGCTATTGCAATGCCACAAGTAATT





CGCTTTAACGCAAAACGTCCACAAAAGCTTGCTCTCTGGCCTCACTATGAGACTTACCAT





GCAACTAAGGACTACGCTGACATTGCACGGTTCATTGGTTTGAAAGGCAACACTGATGAA





GAATTAGCTGAAGCATATGCTAAGAAAGTTATCGAACTTGCTCACGAATGTGGTGTTAAG





CTTAGTCTTAAGGACAATGGTGTTACACGTGAAGAATTTGATAAGGCGGTTGACGATCTT





GCTCGCTTAGCTTACGAAGATCAATGTACTACTACTAACCCAGTTGAACCACTTGTTAGC





CAACTCAAGGAATTACTTGAACGTTGCTACGATGGTACTGGCGTTGAAGAAAAATAA











(40)









ATGGCATATCAAAGTATCAATCCATTTACGAACCAAGTAGAAAAAACGTTTGAAAATACA






ACTGATGAAGAATTAGAACAAACATTAACTAGGGCGCATCAATTATATTTAGATTGGCGG





AAGTATAATGACCTTGAAGAACGGAAACGGCAAATTTTAAAGTTAGGTCAAATATTACGT





GAACGGCGTGTTGAATATGCGACAGTTATGAGTAAGGAAATGGGAAAATTAATTAGCGAA





GCAGAAGGCGAGGTTGACCTTTGTGCTTCTTTCTGTGATTATTATGCAGCCCATGCAGAT





GAATTTCTGCAACCAAAAATTATTGCGACAACGAGTGGACGCGCCAAAGTTTTGAAGCAA





TCATTAGGAATTTTAGTTGCAGTTGAACCTTGGAATTTCCCATTCTATCAAATTGCCCGG





GTATTTATTCCCAACTTTATTGCAGGAAACCCCATGATCTTGAAGGATGCGTCGAATTGT





CCAGCATCCGCCCAAGCATTTAACGATGCCGTTAAGGAAGCTGGTGCGCCAGCCGGCAGT





TTAACTAATTTATTCCTTTCATATGACCAAGTAAATAAGGCAATTGCTGATAAGCGGGTA





GCCGGCGTTTGTCTTACTGGTTCTGAACGTGGTGGTGCAACCGTTGCTAAAGAGGCTGGT





GCTAATTTGAAGAAGAGCACTTTGGAACTTGGTGGTAATGATGCCTTTATTATCTTAGAC





GATGCAGATTGGGATCTTGTCGAAAAAGTTGCCCCGGCAGCCCGTCTGTATAATGCTGGA





CAAGTATGTACATCATCAAAACGTTTTATTGTCCTTGAAAAGGATTATGATCGTTTCTTA





AAGATGATGAAAGATGCGTTCTCGAAAGTTAAAATGGGTGATCCCCTTGATCCATTAACA





ACTCTGGCACCATTATCATCTAAGAAAGCAAAAGAAAAGCTCCAACAGCAAGTCGCAACA





GCAGTAGAAAATGGGGCCAAAGTTTACTATGGTAATAAGCCGGTTGACATGGAAGGTCAA





TTCTTTATGCCAACGATCTTAACTGATATCACTCCAGATAACCCAATATTTGATACGGAA





ATGTTTGGGCCAGTGGCTTCGGTTTATAAGGTTAGTTCCGAAGAGGAAGCAATCGAACTG





GCTAATAATTCAAGCTATGGGTTAGGAAACACTATCTTTAGCAATGATTCCGAACATGCG





GAACGAGTAGCAGCGAAGATCGAAACTGGAATGAGTTGGATTAATGCCGGCTGGGCTTCA





TTACCAGAATTACCATTTGGTGGTGTTAAGAATTCAGGTTACGGTCGTGAACTCAGCAGT





TACGGAATTGATGAATTTACTAACAAACATCTAATTTACGAAGCACGACAATAA











(41)









ATGCAGATTAATGATATTGAAAGTGCTGTACGCAAAATTCTTGCCGAAGAACTAGATAAT






GCCAGCTCTTCAAGTGCAAACGTTGCAGCTACTACTGATAATGGTCATCGCGGAATTTTC





ACTAATGTCAATGATGCAATTGCTGCTGCAAAAGCTGCTCAAGAAATATATCGGGATAAG





CCAATTGCTGTTCGCCAACAAGTGATTGATGCCATTAAGGAAGGATTCCGCCCATATATT





GAAAAAATGGCTAAAGATATCAAAGAAGAAACAGGAATGGGAACAGTAGAGGCCAAAATT





GCTAAGTTAAACAATGCCTTGTACAACACTCCTGGTCCCGAGATTCTTGAACCAGTTGTA





GAAAACGGTGACGGTGGGATGGTTATGTATGAACGGTTACCATATGGTGTTATTGGTGCG





GTTGGCCCAAGTACAAACCCTTCAGAAACTGTAATTGCTAATGCGATCATGATGCTTGCC





GGTGGTAATACTCTTTACTTTGGTGCTCACCCTGGCGCAAAGAATGTTACTCGCTGGACA





ATTGAAAAGATGAACGATTTTATTGCAGATGCAACAGGCGTTCATAATTTAGTTGTAAGT





ATTGAAACACCAACAATTGAATCAGTTCAACAAATGATGAAGCACCCCGACATTGCAATG





TTAGCAGTAACTGGTGGCCCAGCTGTTGTTCACCAAGCAATGACCAGTGGTAAGAAAGCG





GTTGGTGCTGGTCCTGGTAATCCTCCTGCAATGGTTGATGCTACTGCTGATATTGATTTA





GCTGCTCATAATATCATTACATCTGCTTCATTTGATAATGATATTTTATGTACTGCTGAA





AAGGAAGTAGTTGCAGAAAGTAGCATTAAAGATGAATTAATTCGTAAGATGCAAGATGAA





GGTGCCTTTGTAGTTAACCGTGAACAAGCCGATAAATTAGCTGATATGTGTATCCAAGAA





AATGGTGCTCCTGATCGTAAATTTGTTGGTAAGGATGCAACTTATATCTTAGACCAAGCT





AATATTCCTTACACAGGCCACCCAGTTGAAATTATTTGTGAACTTCCTAAGGAACATCCA





TTAGTAATGACTGAAATGTTAATGCCAATTTTACCAGTTGTTTCTTGTCCAACATTTGAT





GATGTTTTGAAGACTGCTGTTGAAGTTGAAAAAGGTAACCATCACACAGCTACTATTCAT





TCCAATAACCTTAAGCATATTAATAATGCTGCTCACCGGATGCAATGTTCAATCTTTGTT





GTTAATGGCCCATCCTATGTTGGTACAGGTGTTGCAGATAATGGAGCTCACTCAGGTGCT





TCAGCATTAACAATTGCTACGCCAACTGGTGAAGGAACATGTACTGCACGAACATTTACT





CGTCGGGTTCGTTTGAACTCACCACAAGGATTCTCAGTACGTAACTGGTATTAA






Also, it is preferable that the lactic acid bacterium of the invention is one having a glycerate kinase depicted in the following amino acid sequence (26) (corresponding to SEQ ID NO: 37) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (26). This glycerate kinase is Glycerate kinase (10) in FIG. 1 and is able to efficiently metabolize glycerol produced by the action of the lipases of the invention. The “amino acid sequence having deletion, substitution, inversion, addition or insertion of one or more amino acids” as referred to herein means a sequence equivalent to the original sequence thereof and refers to a sequence still keeping glycerate kinase activity. Examples of such an amino acid sequence include those exhibiting homology of 80% or more.









(26)









MKFVIAPDSFKGGLTAKEAANVMAEGIKRV







FPNAEYALVPMADGGEGTVQSLVDATNGQK







MIAKVHNPLNKLVNAEYGILGDGETAVIEM







AAASGLQFVNKETANPLITTTYGTGELIKD







ALDHNIKKIIIGIGGSATVDGGAGMAQALG







ARLLDADNHEIGLGGGELASLEQVDFGGLD







PRLKNVDIQIASDVTNPLTGKNGAAPVFGP







QKGADEEMVNILDKNLHHYARKIVAAGGPD







VEQTAGAGAAGGLGAGLIAFTGATMKRGVE







LVIEATQLQKKAVGADYVFTGEGGIDFQTK







FGKTPYGVAKATKEVAPTAPVIVLAGNIGK







GVNDLYSSTAIDAIFATPEGAKPLKTALAD







APIDIAQTAENVARLIKVSHVSN






It is also possible to obtain a lactic acid bacterium with high glycerol-degrading properties by incorporating the following nucleotide sequence (42) (corresponding to SED ID NO: 38) encoding the glycerate kinase (26) into other lactic acid bacterium or the like by a genetic engineering technique. The invention also includes a nucleotide sequence having homology of 80% or more with the nucleotide sequence (42) and encoding a protein having glycerate kinase activity; and a nucleotide sequence for achieving hybridization with the nucleotide sequence (42) under a stringent condition and encoding a protein having glycerate kinase activity.










(42)









ATGAAATTTGTAATTGCTCCAGATTCATTTAAAGGCGGATTAACAGCAAAAGAAGCAGCA






AATGTGATGGCAGAAGGAATCAAAAGAGTGTTTCCGAATGCCGAGTATGCTTTAGTTCCA





ATGGCTGATGGAGGAGAGGGGACTGTTCAATCCTTAGTTGATGCGACTAACGGTCAAAAA





ATGATTGCTAAAGTCCACAACCCATTAAATAAATTAGTTAATGCTGAGTACGGAATATTA





GGTGATGGGGAAACGGCAGTGATTGAGATGGCGGCGGCAAGTGGCCTTCAATTTGTTAAT





AAGGAGACTGCGAACCCGCTTATTACAACTACATATGGTACCGGCGAGTTAATTAAGGAT





GCTCTTGACCATAACATTAAAAAAATAATTATTGGAATTGGTGGAAGTGCAACCGTTGAT





GGCGGAGCGGGGATGGCCCAAGCACTTGGAGCACGTTTATTGGATGCTGATAATCATGAA





ATTGGTTTAGGCGGTGGTGAGTTAGCAAGTTTAGAGCAAGTAGATTTTGGAGGATTAGAT





CCTCGCTTAAAAAATGTAGATATTCAGATTGCATCAGACGTAACCAACCCATTAACAGGA





AAAAATGGGGCAGCCCCAGTATTTGGCCCGCAAAAAGGAGCTGATGAAGAAATGGTGAAC





ATCTTGGACAAAAATCTTCATCATTATGCCCGAAAAATAGTTGCAGCTGGTGGGCCAGAC





GTTGAACAAACGGCAGGTGCAGGGGCAGCCGGTGGTTTAGGAGCCGGGTTGATAGCATTT





ACCGGTGCGACAATGAAGCGAGGAGTAGAATTAGTGATTGAAGCAACTCAACTACAAAAA





AAGGCAGTTGGCGCTGATTATGTTTTTACTGGTGAAGGAGGAATTGATTTCCAGACTAAA





TTTGGTAAAACGCCATATGGAGTCGCTAAGGCAACTAAAGAGGTGGCTCCAACTGCTCCG





GTAATTGTGTTGGCTGGAAATATTGGTAAAGGCGTAAATGATCTATATTCATCCACGGCC





ATTGATGCAATTTTTGCAACTCCTGAAGGGGCTAAACCATTAAAAACAGCATTAGCAGAT





GCACCTATTGATATTGCTCAAACAGCGGAAAACGTTGCACGTTTAATTAAAGTGAGTCAT





GTTAGTAATTAA






Also, it is preferable that the lactic acid bacterium of the invention is one having a glycerol kinase depicted in the following amino acid sequence (27) (corresponding to SEQ ID NO: 39) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (27). This glycerol kinase is GK (5) in FIG. 1 and is able to efficiently metabolize glycerol produced by the action of the lipases of the invention. The “amino acid sequence having deletion, substitution, inversion, addition or insertion of one or more amino acids” as referred to herein means a sequence equivalent to the original sequence thereof and refers to a sequence still keeping glycerol kinase activity. Examples of such an amino acid sequence include those exhibiting homology of 80% or more.









(27)









LSEQQYIMAIDQGTTSSRAIIFDHDGNKVA







ISQQEFPQYFPQPGWVEHDPLEIWDSVQSV







ISNVMIKSQIKPYKIAAIGITNQRETTVIW







DRHTGKPIYNAIVWQSKQTSDIAEQLIKDG







YKDMIHQKTGLVIDSYFAATKIKWILDHVP







GAREKAAKGDLMFGTIDTWLLWNLSGRRVH







ATDVTNASRTMLFNIHTLDWDQDILDLLDI







PQSLLPVVKPSSAIYGYTGDYHFYGVQIPI







AGIAGDQQAALFGQAAYDKGSIKNTYGTGA







FIVMNTGLKPTLSDNGLLTTIAYGLDGQTH







YALEGSIFVAGSAVQWLRDGLKMFDKASES







EQMAVDAKTTGGVYVVPAFTGLGAPYWDQE







VRGAMFGLTRGTERGHIIRATLEAIAYQTK







DVVDTMVKDTQLPLTALTVNGGASRNNFMM







QFQADILQTPIKRAAMEETTALGAAFLAGL







AVDFWEDQDELRKLSRIGDQFDPQMDPQKA







ADLYRGWQRAIAAAQFYGKD






It is also possible to obtain a lactic acid bacterium with high glycerol-degrading properties by incorporating the following nucleotide sequence (43) (corresponding to SED ID NO: 40) encoding the glycerol kinase (27) into other lactic acid bacterium or the like by a genetic engineering technique. The invention also includes a nucleotide sequence having homology of 80% or more with the nucleotide sequence (43) and encoding a protein having glycerol kinase activity; and a nucleotide sequence for achieving hybridization with the nucleotide sequence (43) under a stringent condition and encoding a protein having glycerol kinase activity.










(43)









TTGAGTGAACAACAATATATCATGGCGATTGACCAGGGAACGACGAGCTCACGGGCGATT






ATCTTTGACCATGACGGAAATAAGGTTGCGATCAGTCAGCAGGAATTTCCCCAATACTTC





CCGCAGCCGGGGTGGGTTGAACATGATCCTCTAGAGATTTGGGATAGCGTTCAATCAGTG





ATTTCAAATGTAATGATTAAGTCCCAGATCAAGCCCTATAAGATTGCGGCAATTGGGATT





ACTAACCAACGGGAGACGACGGTTATTTGGGATCGCCATACCGGTAAGCCGATTTATAAC





GCAATTGTCTGGCAATCGAAGCAAACGAGCGACATCGCCGAACAATTGATTAAAGATGGT





TATAAGGATATGATCCACCAGAAGACTGGCTTGGTGATTGATTCGTATTTCGCGGCCACT





AAGATCAAGTGGATCCTTGACCATGTTCCTGGTGCCCGGGAAAAAGCAGCAAAGGGAGAC





TTGATGTTTGGGACTATCGATACTTGGTTACTATGGAATTTATCGGGACGGCGGGTCCAC





GCAACGGATGTGACCAATGCCAGCCGGACGATGCTTTTTAATATCCATACCCTCGACTGG





GATCAAGATATCCTTGACCTGCTTGATATTCCCCAGTCGCTTTTGCCAGTAGTAAAGCCA





AGTTCAGCCATTTACGGTTATACTGGCGACTACCACTTCTATGGGGTGCAGATTCCAATT





GCCGGGATTGCAGGTGACCAACAAGCAGCCCTCTTTGGTCAAGCAGCCTATGATAAAGGT





TCAATCAAGAACACCTATGGGACTGGAGCCTTCATCGTCATGAATACGGGACTAAAACCC





ACGCTTTCGGATAACGGCTTGTTGACGACGATTGCGTATGGCCTGGACGGGCAAACTCAT





TACGCGCTTGAAGGAAGTATCTTTGTGGCCGGTTCTGCCGTTCAATGGTTGCGGGATGGT





CTCAAGATGTTTGATAAGGCAAGCGAGTCCGAACAAATGGCTGTCGATGCCAAGACAACT





GGCGGCGTTTATGTCGTCCCCGCCTTTACAGGATTAGGCGCACCGTACTGGGATCAAGAA





GTGCGGGGCGCAATGTTTGGCCTTACCCGTGGAACTGAACGGGGACATATCATCCGTGCA





ACTTTGGAAGCCATTGCCTACCAGACCAAAGATGTTGTCGATACGATGGTCAAGGACACC





CAATTACCACTAACAGCACTAACGGTTAACGGGGGCGCTTCACGGAACAACTTCATGATG





CAGTTCCAGGCCGATATCTTACAAACGCCAATCAAGCGGGCAGCAATGGAAGAGACAACC





GCGCTGGGAGCAGCCTTTCTCGCTGGATTGGCCGTTGATTTCTGGGAAGACCAGGATGAG





TTACGGAAGCTATCACGGATTGGCGACCAGTTTGATCCACAAATGGATCCGCAAAAGGCA





GCTGACTTGTATCGGGGATGGCAACGGGCCATTGCAGCTGCGCAGTTTTATGGCAAAGAT





TAA






Also, it is preferable that the lactic acid bacterium of the invention is one having a glycerol-3-phosphate dehydrogenase depicted in the following amino acid sequence (28) (corresponding to SEQ ID NO: 41) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (28). This glycerol-3-phosphate dehydrogenase is GPD (6) in FIG. 1 and is able to efficiently metabolize glycerol produced by the action of the lipases of the invention. The “amino acid sequence having deletion, substitution, inversion, addition or insertion of one or more amino acids” as referred to herein means a sequence equivalent to the original sequence thereof and refers to a sequence still keeping glycerol-3-phosphate dehydrogenase activity. Examples of such an amino acid sequence include those exhibiting homology of 80% or more.









(28)









MAEKIAVLGAGSWGSVLANMLTENGHDVTL







WSRNEEQVKQLNTEHTNPRYMKDFVYSTNL







TATTDMKKAVKGASVVLIVIPTKGLREVAK







QLNAILTELHQKPLVIHATKGLEQNTYKRP







SEMLSEDISPENRQAIVVLSGPSHAEDVAI







KDMTAVTAACEDLASAKKAQKLFSNSYFRV







YTNDDVIGAEFGAALKNIIAIGAGAIQGLG







YHDNARAALITRGLAEIRRLGVAFGANPMT







FIGLSGVGDLVVTATSKNSRNWRAGYQLGQ







GKKLQDVIDNMGMVIEGVYTTKAAYELSRK







RQVQMPITEALYRVLYEGEDIKTAISQLMD







RDLTSENE






It is also possible to obtain a lactic acid bacterium with high glycerol-degrading properties by incorporating the following nucleotide sequence (44) (corresponding to SED ID NO: 42) encoding the glycerol-3-phosphate dehydrogenase (28) into other lactic acid bacterium or the like by a genetic engineering technique. The invention also includes a nucleotide sequence having homology of 80% or more with the nucleotide sequence (44) and encoding a protein having glycerol-3-phosphate dehydrogenase activity; and a nucleotide sequence for achieving hybridization with the nucleotide sequence (44) under a stringent condition and encoding a protein having glycerol-3-phosphate dehydrogenase activity.










(44)









ATGGCAGAAAAAATTGCTGTTTTAGGTGCTGGTTCGTGGGGCAGTGTTTTAGCAAACATG






CTTACAGAAAATGGCCACGATGTAACATTATGGTCTCGTAATGAGGAACAAGTTAAGCAA





TTAAATACTGAACATACAAATCCTCGCTATATGAAAGATTTTGTTTATTCTACTAACTTA





ACAGCAACAACGGACATGAAAAAAGCTGTTAAGGGTGCCAGTGTGGTCCTGATTGTAATT





CCAACAAAGGGTCTTCGTGAAGTTGCTAAGCAATTAAATGCAATTTTGACTGAATTACAT





CAAAAACCGCTAGTTATTCACGCAACGAAAGGCTTAGAACAAAATACTTATAAGCGGCCA





TCGGAAATGCTTAGCGAAGATATTTCTCCTGAAAACCGTCAGGCAATTGTTGTTTTATCA





GGTCCGAGTCATGCTGAAGATGTGGCGATTAAAGATATGACAGCTGTAACCGCAGCTTGT





GAGGACCTGGCCAGTGCTAAAAAGGCGCAGAAGTTATTTAGTAATTCTTATTTCCGTGTG





TACACTAATGACGATGTAATTGGTGCCGAATTTGGCGCAGCCTTAAAGAACATTATTGCA





ATTGGTGCTGGAGCTATTCAGGGACTTGGTTATCATGATAATGCTCGGGCAGCGTTAATT





ACTCGTGGACTTGCAGAAATTCGCCGATTGGGAGTTGCTTTTGGTGCCAACCCGATGACT





TTTATTGGTCTTTCTGGGGTTGGTGACCTTGTTGTTACTGCTACCAGTAAAAATTCTCGA





AATTGGCGTGCTGGCTATCAATTGGGGCAAGGAAAAAAGCTTCAAGATGTAATTGATAAT





ATGGGAATGGTTATCGAAGGTGTCTATACTACCAAAGCCGCTTATGAATTAAGTCGTAAA





CGACAAGTACAGATGCCAATTACCGAAGCTCTTTACCGTGTTTTGTATGAAGGCGAAGAT





ATTAAAACTGCAATTTCTCAATTAATGGACCGAGATCTTACTTCAGAAAACGAATAA






Also, it is preferable that the lactic acid bacterium of the invention is one having triosephosphate isomerase depicted in any of the following amino acid sequences (29) to (32) (corresponding to SEQ ID NO: 43, 45 and 47, respectively) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in any of the amino acid sequences (29) to (32). This triosephosphate isomerase is Triosephosphate isomerase (15) in FIG. 1 and is able to efficiently metabolize glycerol produced by the action of the lipases of the invention. The “amino acid sequence having deletion, substitution, inversion, addition or insertion of one or more amino acids” as referred to herein means a sequence equivalent to the original sequence thereof and refers to a sequence still keeping triosephosphate isomerase activity. Examples of such an amino acid sequence include those exhibiting homology of 80% or more.









(29)









MRKPFIAANWKMHKNVQESVEFVDAIKGKL







PDPQEVEVGIAAQAFALPSMVQAADDSGLK







IIAQNAAAEYSGAFTGEISLRGLADAGVSY







VMLGHIERRHLFHEDNELVNRKVLAALQMG







VTPIICTDETMVQKEVNGEIHYVFQQLMSV







LRGVSLDQIKNVVVSYEPSWAVGYGQHANP







VLAEEGCRQIRRTIADNYTYEIADKIRILY







GGSVNPDNIGMIMNKPDVDGVLIGRASLDV







DNFLRMVNYLKNDQEK











(30)









MRKPFIIANWKMNKNVHESVAFVKAIKEKL







PADKEIGIAAQAVSLYNMKKVASSSNLQII







AQNASAELEGPYTGEISMRSLADAGVTYVM







LGHLERRRLFNESNDSINQKVLAALNAGII







PIICTDEEMVQTEVNGQIHYVFRQLKSVLK







GVPANKLSQIVISYEPSWAVGSTHQANPDI







AEEGCQAIRQSLVEMYGNEIGEQVRILYGG







SVNPENIGQIMSKPNVDGALIGRASLEIES







FLQMINYIELASKQKLQVI











(31)









MRVPIIAGNWKMHKDVQEAVSFIEKVKNQL







PPADQLETAIAAPTLCLVPMVKAAEESPLK







IMAENCYYKNEGAYTGETSPYALYQAGIHH







VILGHSERRTYFNETDELINKKVKAALVNG







LCPIVCCDDTMRRRVAGKKVHWVVSRILAD







LHGLTNDEICHVTVAYEPSWAIGTGESADP







EQAAEGCYLIRQTISDMYGDEVANNVRILY







GGSVTTSNINALMAKNDIDGVLVGAASLNP







ETFLQLVHH






It is also possible to obtain a lactic acid bacterium with high glycerol-degrading properties by incorporating the following nucleotide sequences (45) to (47) (corresponding to SED ID NO: 44, 46 and 48, respectively) encoding the triosephosphate isomerases (29) to (31), respectively into other lactic acid bacterium or the like by a genetic engineering technique. The invention also includes a nucleotide sequence having homology of 80% or more with any of the nucleotide sequences (45) to (47) and encoding a protein having triosephosphate isomerase activity; and a nucleotide sequence for achieving hybridization with any of the nucleotide sequences (45) to (47) under a stringent condition and encoding a protein having triosephosphate isomerase activity.










(45)









ATGCGCAAACCCTTTATTGCTGCTAATTGGAAGATGCATAAGAATGTCCAAGAATCGGTT






GAATTTGTGGATGCAATTAAAGGAAAGCTACCAGATCCGCAAGAAGTTGAAGTCGGAATT





GCAGCCCAAGCTTTTGCATTACCCAGTATGGTTCAAGCCGCTGATGATTCAGGATTAAAG





ATAATCGCGCAAAACGCGGCGGCTGAATATTCGGGAGCTTTCACTGGTGAAATTAGCTTA





CGAGGTTTAGCTGACGCCGGTGTTTCATATGTAATGTTAGGACATATTGAACGGCGCCAT





TTATTCCACGAGGATAATGAGTTGGTTAATCGGAAAGTGTTGGCAGCCCTTCAAATGGGA





GTTACCCCGATAATTTGTACGGATGAAACGATGGTCCAGAAAGAAGTTAATGGTGAAATT





CACTACGTTTTCCAGCAATTGATGAGCGTATTGAGGGGCGTTTCTCTTGATCAAATTAAA





AATGTAGTTGTTTCCTATGAACCAAGTTGGGCAGTTGGATATGGTCAGCATGCTAATCCA





GTTCTTGCTGAAGAAGGATGCCGTCAAATTCGGCGAACGATTGCTGATAACTACACTTAT





GAGATTGCTGATAAGATCAGGATTCTTTATGGGGGCAGTGTCAATCCAGATAATATCGGA





ATGATTATGAACAAGCCAGATGTAGATGGGGTATTAATCGGTCGGGCAAGTTTAGATGTT





GATAATTTTTTGCGAATGGTCAATTATTTAAAAAATGATCAAGAAAAATAA











(46)









ATGCGCAAACCGTTTATTATTGCGAACTGGAAAATGAATAAAAACGTTCATGAATCTGTT






GCGTTTGTTAAAGCAATTAAAGAAAAGCTCCCGGCAGATAAAGAAATTGGGATCGCCGCG





CAAGCAGTTTCGCTATATAACATGAAAAAAGTGGCGAGCTCTTCCAACTTACAAATTATT





GCTCAAAATGCATCTGCTGAGTTAGAGGGACCATATACTGGAGAAATTAGCATGCGAAGT





TTAGCAGATGCGGGCGTGACATACGTGATGCTAGGCCATTTAGAGCGCCGACGCCTTTTT





AACGAGAGTAATGATTCAATTAATCAAAAAGTTTTAGCAGCCCTCAATGCTGGTATTATT





CCAATCATTTGTACGGATGAAGAGATGGTCCAAACAGAAGTTAACGGACAAATTCATTAT





GTATTTCGCCAACTAAAAAGCGTCCTTAAAGGGGTACCAGCTAATAAACTATCACAGATT





GTTATTTCGTATGAACCAAGTTGGGCCGTTGGGAGCACGCATCAAGCAAATCCAGACATT





GCGGAAGAGGGATGTCAGGCAATTCGTCAAAGCCTGGTTGAAATGTATGGTAATGAGATT





GGCGAGCAAGTCCGAATACTCTATGGTGGCAGCGTTAATCCCGAGAACATTGGTCAAATT





ATGAGTAAACCAAATGTTGATGGGGCGCTAATCGGTCGCGCAAGTCTCGAGATTGAAAGT





TTCTTACAAATGATTAATTATATCGAATTAGCGAGCAAGCAGAAGTTACAGGTAATTTAG











(47)









ATGAGAGTACCGATTATTGCTGGTAATTGGAAAATGCATAAGGATGTACAAGAAGCTGTC






TCTTTTATCGAAAAAGTAAAAAATCAGCTTCCGCCTGCCGACCAACTTGAAACAGCAATT





GCTGCTCCTACTCTTTGTTTAGTACCAATGGTTAAAGCAGCTGAAGAATCCCCGTTAAAA





ATAATGGCAGAAAACTGCTACTATAAGAATGAGGGAGCTTATACTGGTGAAACAAGTCCA





TATGCTTTATACCAAGCAGGAATCCATCATGTGATTTTAGGCCATTCTGAACGCCGAACT





TACTTTAATGAAACTGATGAATTAATTAATAAAAAAGTGAAGGCAGCATTAGTAAATGGG





TTATGTCCGATTGTTTGTTGTGATGATACTATGCGTCGACGAGTTGCTGGAAAGAAAGTT





CATTGGGTGGTGAGCCGAATTCTCGCTGACCTTCATGGATTGACCAATGACGAAATTTGT





CATGTTACGGTTGCTTATGAACCAAGTTGGGCGATTGGAACAGGCGAGAGTGCTGATCCA





GAACAAGCGGCGGAAGGTTGTTACCTTATTCGGCAAACGATTAGTGATATGTATGGCGAT





GAAGTTGCAAATAACGTTCGAATTCTCTATGGCGGAAGTGTGACAACTTCTAATATCAAT





GCACTAATGGCAAAAAATGATATTGATGGTGTTTTAGTCGGAGCGGCGAGCTTAAATCCA





GAAACATTTTTACAATTAGTTCACCATTAG






The above-described lactic acid bacteria of the invention can be obtained by subjecting a microorganism belonging to the species Lactobacillus reuteri to genetic analysis by the ordinary method. For example, with respect to many microorganisms belonging to the species Lactobacillus reuteri, it is possible to obtain the targeted lactic acid bacterium of the invention by examining whether or not there are nucleotide sequences having high homology with the following genes (13) to (15) (corresponding to SEQ ID NO: 2, and 6, respectively) encoding the lipases (1) to (3), respectively.










(13)









ATGGTGAAATTGATGACAATACACGAATTAGCAAATAACCCAACGTTAAGCGGCCAAGTA






CGCTTGATTGAAAATATTGTTTATGGTGCGATGGATGGTGAGGCATTACATATGTCGATC





TTAGCACCGTGGACGCAACGTTTCCCGAAACAATATCAAACTGAACCTCGACCATTGATT





GTCTTTGTTCAAGGAAGCTCGTGGCGAACACCAAAAATGGGAGAAGAAATTCCACAACTG





GTTCAATTTGTTCGGGCCGGTTATATTGTAGCGACTGTTCAACACCGTAGTTCAATTGAT





AGCCACCCATTTCCTGCCTTTTTGCAAGATGTTAAGACTGCCATTCGTTTCTTACGGGCC





AATGCGCAAAAATATGCAATTGATCCGCAACAGGTTGCAATTTGGGGGACTTCCTCTGGA





GCCAATGCGGCAATGCTAGTCGGCTTAACGGGTGATGATCCGCGCTATAAAGTTGACCTT





TATCAAGACGAATCGGATGCAGTAGATGCTGTGGTTAGTTGTTTTGCCCCAATGGACGTG





GAGAAGACGTTTGAGTATGATGCTAATGTTCCAGGAAATAAGTTACTGCAATATTGCTTA





TTAGGGCCTGATGTATCAAAGTGGCCAGAAATTGAAAAGCAAATGAGTCCCTTATATCAA





GTCAAAGATGGGCAAAACTACCCACCATTCTTATTGTTCCACGGAGATGCTGATAAAGTT





GTTCCATATGAACAGATGGAAAAAATGTATATGCGGTTGAAGGATAATGGAAATTCTGTT





GAAGCGTACCGGGTTAAGGGTGCGAACCATGAACGAGATTTCTGGAGTCCAACAATTTAT





AATATTGTGCAGAAGTTTCTTGGCGATCAATTTAAATAA











(14)









TTGATTTATGTTTTAAAAGATTTATGTAATACTATTGCTGAAGTCTATGGCAAAAGTATT






TTAAAAGGAGTTTTTATCATGAAACATACGCTTAAAGTTGATCAAGTACGTGACGGTTTA





TGGCTAGATTCAGATATTACGTATACGCAAGTTCCTGGATGGCTTGGTAATACAACGCGA





GATTTGAAGCTTTCAGTCATTCGACATTTTCAAACTAATGATGATACACGTTATCCAGTA





ATTTTTTGGTTTGCTGGTGGCGGCTGGATGGATACTGACCACAATGTTCATCTGCCGAAT





TTGGTTGATTTTGCTCGGCATGGTTACATTGTTGTCGGCGTCGAATATCGTGATAGCAAC





AAAGTTCAGTTTCCTGGGCAATTAGAAGATGCTAAGGCTGCTATTCGTTATATGAGAGCT





AATGCCAAGCGCTTCCAAGCTGATCCTAATCGGTTTATTGTGATGGGAGAATCGGCCGGT





GGACATATGGCAAGTATGCTAGGTGTTACTAACGGCCTTAACCAATTTGACAAAGGTGCT





AATTTAGATTACTCCAGTGATGTTCAAGTAGCAGTTCCTTTTTATGGTGTGGTTGATCCC





TTAACCGCTAAAACAGGAAGTGCATCAAACGATTTTGATTTTGTTTACCGTAACTTGCTT





GGTGCTGAGCCTGAAAACGCTCCTGAGCTTGATTCTGCCGCAAATCCCCTCACCTATGTA





AATTCTAATTCTACGCCCTTTCTTATCTTTCATGGGACAGAAGATGTCGTTGTTCCAATT





AAAGATAGTGAAAAGCTTTATGATGCATTAGTTGAAAACAACGTTCCTGCTGAATTATAC





GAAATCGAAGGCGCAAGTCACATGGATGTGAAATTCCTTCAACCACAGGTATTTAAGATT





GTGATGGACTTTTTAGATAAGTATTTAACTCGGTCATAG











(15)









ATGGAAATTAAAAGTGTTAACTTAGATCAACCATATTCGTCTCTAGATATTTATCATAGT






AATACTGATAAAGCTTTGCCCGGTCTTGTTATTTTACCAGGAGGCAGTTATAACCAGATC





ATGGAGCGAGATTCTGAACGGGTGGCATTAACGTTTGCAACCCATGCATGGCAAACATTT





GTTGTACGATATCCGGTAGTTGAGCATAAGAATTATGAAGAAGCCAAAATAGCGGTTCAC





CAAGCATTTGAATATATCGTCAACCATGCAGCTGAATTAGATGTTGACGCTGATCGGTTG





GGGATTATTGGCTTTTCTGCAGGAGGCCAAATTGCCGCTGCATATAGTAATGAAAAACTA





ACACACGCTAGATTCGCCGCATTAGGATATCCTGTTATTCAACCCTTGATTGATGAACGT





ATGGGGGTTACAACAGAGAATGTAGCGAAATTAGTAAATCCGCAAACACCACCAACCTTT





ATGTGGGGATCGGCAAAAGATGAACTGACTCCCTTTGTTGATCACCTTCAAGTATATGCA





GATGCGTTAATTAAGAATGATATTCCATATGAATTACATGAGTTTGGCACTGGGGGACAT





GGAATCGCGTTAGCTAACGAATATACTGGTATTGTTAATAATGATCGGGTAGATAATCAT





ATGGGAAAGTGGTTCCCGCTATTTCTTGAGTGGTTAACTGAACTGAATTTAATTTAG






Examples of the “stringent condition” as referred to in the invention include a condition under which hybridization is carried out by preserving in a solution containing 6×SSC (composition of 1×SSC: 0.15 M of NaCl, 0.015 M of sodium citrate, pH 7.0), 0.5% SDS, 5×Denhardt and 100 μg/mL of thermally denatured herring sperm DNA together with a probe at a temperature of from 50 to 65° C. overnight.


Furthermore, the lactic acid bacterium of the invention having the transport gene (4) and the lactic acid bacteria of the invention having each of the genes (9) to (11) encoding a subunit of glycerol-degrading enzyme, the genes (32) to (38) encoding a glycerol-degrading enzyme, the genes (39) to (41) encoding an aldehyde dehydrogenase, the gene (42) encoding a glycerate kinase, the gene (43) encoding a glycerol kinase, the gene (44) encoding a glycerol-3-phosphate dehydrogenase, the genes (45) to (47) encoding triosephosphate isomerase and the gene (12) encoding an enteroadherent protein can also be obtained in the same manner as described above.


Representative examples of the lactic acid bacterium of the invention include Lactobacillus reuteri JCM1112T which is a standard strain of RIKEN, Japan.


The anti-obesity agent of the invention is prepared by processing the foregoing lactic acid bacterium of the invention into a live bacterial agent which can be orally administered and made to arrive at the intestinal tract in a live state as it is. The formulation is not particularly limited and may be, for example, a solid such as a powder, a granule, a tablet and a capsule, a semi-solid such as a jelly and a paste or a liquid such as a suspension and a syrup. These respective formulations can be produced by a known method in the pharmaceutical field.


The lactic acid bacterium of the invention which is blended in the foregoing anti-obesity agent can be cultured by applying a known culture method of lactic acid bacteria. With respect to this culture method, a culture obtained by liquid culturing the lactic acid bacterium of the invention by the ordinary method may be utilized as it is; bacterial cells collected from this culture by means of centrifugation or the like may be used; or a powder obtained by freeze-drying a culture may be used.


As a general production method of the anti-obesity agent of the invention which is a solid, there is exemplified a method in which the lactic acid bacterium of the invention is blended together with a carrier such as water, starch, microcrystalline cellulose, wheat flour and sugar and processed into a desired form. The foregoing carrier is also known and can be properly chosen and used in conformity with the use form. More specifically, powder may be prepared by freeze-drying a bacterial cell of the lactic acid bacterium of the invention as obtained by culturing by the ordinary method to form a powder and mixing it with sugar. Also, a tablet can be obtained by mixing a bacterial cell of the lactic acid bacterium of the invention together with an adequate carrier for tablet and subjecting to tablet making by the ordinary method. Furthermore, a wet bacterial cell of the lactic acid bacterium of the invention may be suspended in a syrup to form a syrup formulation. In preparing the anti-obesity agent of the invention, other components, for example, other microorganisms and active ingredients, sweeteners, flavors and coloring agents may be contained as the need arises.


The dose of the thus obtained anti-obesity agent can be properly determined while taking into consideration the physical state of a subject, for example, state of health, weight, age, medical history and other components to be used. In general, it is from about 108 to 109 CFU/day per an adult in terms of a bacterial number of the lactic acid bacterium of the invention.


Also, in order to prepare an anti-obesity food and drink by using the lactic acid bacterium of the invention, an orally ingestible fermented food may be prepared by utilizing a conventionally known culture method of lactic acid bacteria. Specifically, fermented milk such as yogurt, lactic acid bacteria beverage and fermented sausage can be prepared, and the production of such a food can be achieved by processing apart or the whole of used lactic acid bacteria into the lactic acid bacterium of the invention. Also, the lactic acid bacterium of the invention can be processed into a form containing a larger amount thereof to prepare a healthy food or functional good. In preparing this anti-obesity food, needless to say, other lactic acid bacteria may be contained instead of single use of the lactic acid bacterium of the invention, and food additives or seasonings or the like may be added.


The lactic acid bacterium of the invention shows a significant body weight gain-inhibiting effect (slimming effect) as described later in Examples, and the reasons for this are thought as follows.


That is, as illustrated in FIG. 1, the lactic acid bacterium of the invention degrades a fat in a digestive tract into glycerol and a fatty acid by the action of three lipases (lipases (1) to (3)). The degraded glycerol is then taken into a bacterial cell by a transporter (PduF; encoded by the nucleotide (4)) of the lactic acid bacterium and metabolized by a glycerol-degrading enzyme gene in the bacterial cell (PduCDE; composed of the subunits (5) to (7)) to produce reuterin, or converted into an energy source of the bacterium per se.


On the other hand, the fatty acid is utilized as a bacterial cell component of the present bacterium but not absorbed in a living body. Furthermore, the peptide (8) has such a function to fix the lactic acid bacterium of the invention to the intestinal tract of a human being or a mammal and enables the lactic acid bacterium of the invention to stably exist in the intestinal tract for a fixed period of time.


As has been described previously, since the lactic acid bacterium of the invention stably exists in the intestinal tract, positively degrades a fat and utilizes its metabolites or further metabolizes them, it inhibits the absorption of a lipid from the intestinal tract into the body and even when a normal meal is ingested, is able to prevent obesity from occurring and bring maintenance and improvement of a slimming effect.


Also, an embodiment of the invention includes the use of the lactic acid bacterium of the invention for the prevention or therapy of obesity and further includes the use of the lactic acid bacterium of the invention for the production of an anti-obesity agent.


Moreover, another embodiment of the invention includes a method for therapy of obesity, which is characterized by administering a patient suffering from obesity with the lactic acid bacterium of the invention and also a method for therapy of obesity, which is characterized by administering the anti-obesity agent of the invention.


EXAMPLES

The invention is hereunder described in more detail with reference to the following Examples, but it should be construed that the invention is not limited to these Examples at all.


Example 1
Anti-obesity Effect Test of L. reuteri JCM1112T

An anti-obesity effect of L. reuteri JCM1112T was examined by the following materials and method.


Materials and Test Method:
(1) Experimental Animal:

Wistar rats of SPF grade (males of 8-week-old; Japan SLC, Inc.) having a body weight of from about 180 to 200 g were used, an acclimatization period of 7 days from the day for the sending in a laboratory was provided, and the experiment was then started. The breeding circumstance was set up at a temperature of 22±1° C., a humidity of 55±5% and a lighting time of 12 hours (from 8:00 to 20:00); and the rats were caged individually and provided with free access to sterile distilled water through a watering bottle and a radiation-sterilized solid diet* for rat (CE-2, CLEA Japan, Inc.) by a feeder, respectively. All of the breeding instruments to be used were ones sterilized by a high-pressure steam sterilizer.


*: Use for breeding and propagation (crude fat: 4.6%)


(2) Preparation of Test Bacterial Solution:

As test bacteria, L. reuteri JCM1112T (a standard strain of RIKEN, Japan, which was received from the same) and L. rhamnosus ATCC53103 (GG strain) were used. These test bacteria were inoculated in an MRS liquid medium (Oxid) and cultured at 37° C. overnight to prepare pre-culture solutions. An MRS liquid medium was newly added such that the concentration of this pre-culture solution was 1% and cultured at 37° C. for 18 hours to prepare a test bacterial solution.


(3) Administration of Test Bacterial Solution:

The foregoing experimental animals were divided into two test bacterial groups and a control group (five animals per group), and the foregoing test bacterial solutions were orally administered in the test bacterial groups respectively. The test bacterial solution was forcibly administered via probe. The bacterial solutions were prepared at the time of use, and the bacterial dose was set up at 109 CFU per rat. Also, the control group was administered with the same volume of PBS.


(4) Measurement of Body Weight and General Observation of Symptoms:

The body weight of the experimental animal was measured every day by a scale. General observation of symptoms was made every day. The symptoms were recorded for every individual, and symptom items at which a remarkable change was observed were expressed in terms of number of the animals.


(5) Results:


FIG. 2 shows the body weight gain with time in the rats of the groups administered either of the foregoing Lactobacillus bacteria and the control group. As is clear from this drawing, in the L. reuteri JCM1112T group, the body weight gain was significantly inhibited as compared with the control group, and the degree of the inhibition was larger than that in the L. rhamnosus ATCC53103 group.


As well as favorable progress of the body weight gain, a medical examination of the rats of each group confirmed that the state of health of the animals was good.


Example 2
Genome Analysis of L. reuteri JCM1112T

DNA was obtained from L. reuteri JCM1112T by using the following chemicals in the following method, thereby achieving genome analysis.


Method for Obtaining DNA:
(Chemicals)





    • Nuclei Lysis solution (Wizard genome DNA purification kit; manufactured by Promega)

    • Physiological saline

    • 50 mM EDTA (pH: 7.0)

    • 50 mg/mL lysozyme solution (prepared on the day by dissolving a prescribed amount of lysozyme in a TE buffer solution, 0.25 M Tris-HCl (pH 8.0) or 10 mM Tris-HCl (pH 8.0)/10 mM EDTA/0.5% SDS)

    • 2 mg/mL EDTA

    • Phenol/chloroform/isoamyl alcohol (25:24:1) mixed solution (hereinafter abbreviated as “PCI”)

    • Chloroform/isoamyl alcohol (24:1) mixed solution (hereinafter abbreviated as “CIA”)

    • 99% Ethanol

    • 70% Ethanol

    • TE buffer solution





(Method)

1. L. reuteri JCM1112T is cultured at 37° C. for 24 hours under static conditions, and the obtained culture solution (50 mL) is centrifuged at 3,500 r.p.m. for 15 minutes and then suspended in physiological saline.


2. The suspension as obtained in 1 is centrifuged at 3,500 r.p.m. for 15 minutes, a supernatant is removed, and the residue is suspended in 5 mL of 50 mM EDTA.


3. To the suspension as obtained in 2, 200 μL of a 50 mg/mL lysozyme solution is added and incubated at 37° C. for 60 minutes. (On that occasion, in the case where an air incubator is used, the incubation time is set up at from 2 to 3 hours.)


4. After the incubation, the resultant is centrifuged at 3,500 r.p.m. for 15 hours, and a supernatant is removed.


5. To the precipitate as obtained in 4, 5 mL of a Nuclei Lysis solution is added and incubated at 80° C. for 10 minutes.


6. 1 μL of 2 mg/mL RNase A is added and incubated at 37° C. for 45 minutes.


7. 10 mL of PCI is added and mixed, and the mixture is centrifuged at 3,500 r.p.m. for 15 minutes.


8. A supernatant is transferred into a new tube, and 10 mL of PCI is further added and mixed.


9. The same operations are repeated 3 times in total. (The operations are carried out until no protein layer is identified.)


10. 10 mL of CIA is added and gently mixed, and the mixture is then centrifuged at 3,500 r.p.m for 15 minutes (removal of phenol).


11. A supernatant is transferred into a new tube, followed by precipitation with ethanol.


12. A precipitate as obtained in 11 is dissolved in 1 mL of a TE buffer solution to obtain a lactic acid bacterium DNA.


Genome Analysis Method:

The DNA thus obtained was subjected to structural gene prediction and annotation. The structural gene prediction and the like were carried out by combining the results of GENOMEGAMBLER (Sakiyama, T., Takami, H., Ogasawara, N., Kuhara, S., Kozuki, T., Doga, K., Ohyama, A., Horikoshi, K., “An automated system for genome analysis to support microbial whole-genome shotgun sequencing”, Biosci. Biotechnol. Biochem., 64: 670 to 673 2000), GLIMMER 2.0 (Salzberg, SL., Delcher, A L., Kasif, S., and White, O., “Microbial gene identification using interpolated Markov models”, Nucleic. Acid. Res., 26: 544 to 548, 1998) and BLAST program blastp (Altschul, SF., Gish, W., Miller, W., Myers, EW., and Lipman, DJ., “Basic local alignment search tool”, J. Mol. Biol., 215: 403 to 410, 1990).


Also, INTERPRO (Mulder, N J., Apweiler, R., Attwood, T K., Bairoch, A., Barrell, D., Bateman, A., Binns, D., Biswas, M., Bradley, P., Bork, P., Bucher, P., Copley, R R., Courcelle, E., Das, U., Durbin, R., Falquet, L., Fleischmann, W., Griffiths-Jones, S., Haft, D., Harte, N., Hulo, N., Kahn, D., Kanapin, A., Krestyaninova, M., Lopez, R., Letunic, I., Lonsdale, D., Silventoinen, V., Orchard, S E., Pagni, M., Peyruc, D., Ponting, CP., Selengut, J D., Servant, F., Sigrist, CJ., Vaughan, R., and Zdobnov, E M., “The InterPro Database, 2003 brings increased coverage and new features”, Nucleic. Acids. Res., 31: 315 to 318, 2003; http://www.ebi.ac.uk/interpro) was used for the analysis of a domain structure; and CLUSTALW (Thompson, JD., Higgins, DG., and Gibson, TJ., “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice”, Nucleic. Acids. Res., 22: 4673 to 4680, 1994; http://clustalw.genome.ad.jp/) was used for the preparation of a molecular phylogenetic tree.


Furthermore, the used DNA and amino acid sequences were obtained from National Center of Biological Information (NCBI, http://www.ncbi.nlm.nih.gov) and KEGG database (Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M., “KEGG: Kyoto Encyclopedia of Genes and Genomes”, Nucleic. Acids. Res., 27: 29 to 34, 1999; http://www.genome.ad.jp/kegg/kegg2.html); and a draft sequence of the Lactobacillus bacterium was obtained from DOE JOINT GENOME INSTITUTE (JGI; http://www.jgi.doe.gov/JGI_microbial/html/index.html).


Based on the foregoing information, the genes depicted in (13) to (15) were identified as encoding the lipases; the gene depicted in (4) as encoding a transporter gene; the genes depicted in (9), (10) and (11) as encoding a glycerol-degrading enzyme; and the gene depicted in (12) as an adhesive gene, respectively. Also, the genes depicted in (32) to (38) were identified as encoding a glycerol-degrading enzyme; the genes depicted in (39) to (41) as encoding an aldehyde dehydrogenase; the gene depicted in (42) as encoding a glycerate kinase; the gene depicted in (43) as encoding a glycerol kinase; the gene depicted in (44) as encoding a glycerol-3-phosphate dehydrogenase; and the genes depicted in (45) to (47) as encoding triosephosphate isomerase, respectively.


Example 3
Amplification of Glycerol-degrading Gene

PCR was carried out by using DNA as purified in Example 2 as a template and the following nucleotide sequences as primers and using the following reaction solutions. The PCR condition is also shown below.











(Primer)



pduCDE(F):



CACCATGAAACGTCAAAAACGATTT







pduCDE(R):



AAAAGCTTAGTTATCGCCCTTTAGC
















(PCR reaction solution)


















Template DNA:
 1 μL



KOD-plus:
 1 μL



10 × KOD-plus buffer solution:
 5 μL



dNTP (2 mM each):
 5 μL



Primer (20 mm):
 1 μL each



MgSO4 (25 mm):
 2 μL



Deionized water (D.W.):
34 μL










(PCR Condition)

(1) To hold at 94° C. for 3 minutes.


(2) To hold at 94° C. for 15 seconds.


(3) To hold at 56° C. (Tm) for 30 seconds.


(4) To hold at 68° C. for 3 minutes 30 seconds.


(5) To perform (2) to (4) in 30 cycles.


(6) To preserve at 4° C.


Example 4
Amplification of L. reuteri-derived Lipase Gene and Adhesive Gene

PCR was carried out in the same manner as in Example 3, except using the following sequences as primers, thereby amplifying the lipase gene and adhesive gene.











(Primer)



Lipase (1)



5′-ATGGTGAAATTGATGACAAT



5′-TTATTTAAATTGATCGCCAA







Lipase (2)



5′-TTGATTTATGTTTTAAAAGA



5′-CTATGACCGAGTTAAATACT







Lipase (3)



5′-ATGGAAATTAAAAGTGTTAA



5′-CTAAATTAAATTCAGTTCAG







Adhesive gene



5′-ATGTTCGGTCACGATGGCCG



5′-TCAAATTTCAGAAGGATCAT






INDUSTRIAL APPLICABILITY

As is clear from the results of the foregoing Examples using L. reuteri JCM1112T which is a representative of the lactic acid bacterium of the invention, the administration of this microorganism could inhibit the body weight gain without affecting the health of the experimental animals and without particularly limiting nutrition intake.


Accordingly, the anti-obesity agent or anti-obesity food and drink utilizing the lactic acid bacterium of the invention is able to prevent obesity and to bring a slimming effect without requiring particular therapy or treatment other than intake of the agent, or the food or drink per se.


Also, by incorporating genes encoding subunits of a glycerol-degrading enzyme or a gene encoding an enteroadherent protein, each of which has been found out from the lactic acid bacterium of the invention, into other lactic acid bacterium by a known measure, it becomes possible to obtain a lactic acid bacterium with high glycerol-degrading properties or a lactic acid bacterium with a long intestinal residence time. It is also possible to advantageously use it for the modification of other useful lactic acid bacteria.


BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a drawing showing a metabolism map of L. reuteri JCM1112T.



FIG. 2 is a drawing showing the body weight gain with time in the rats administered with L. reuteri JCM1112T in comparison with the comparative group and the control group.

Claims
  • 1. An anti-obesity agent comprising, as an active ingredient, a microorganism belonging to the species Lactobacillus reuteri and capable of producing lipases depicted in the following amino acid sequences (1) to (3) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (1) to (3):
  • 2. The anti-obesity agent according to claim 1, wherein the microorganism belonging to the species Lactobacillus reuteri has nucleotide sequences encoding the amino acid sequences (1) to (3) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (1) to (3), and a nucleotide sequence depicted in the following formula (4):
  • 3. The anti-obesity agent according to claim 1 or 2, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerol-degrading enzyme composed of subunits depicted in the following amino acid sequences (5) to (7) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (5) to (7):
  • 4. The anti-obesity agent according to any one of claims 1 to 3, wherein the microorganism belonging to the species Lactobacillus reuteri further produces an enteroadherent protein depicted in the following amino acid sequence (8) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (8):
  • 5. The anti-obesity agent according to any one of claims 1 to 4, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerol-degrading enzyme depicted in any of the following amino acid sequences (16) to (20) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in any of the amino acid sequences (16) to (20):
  • 6. The anti-obesity agent according to any one of claims 1 to 5, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerol-degrading enzyme depicted in the following amino acid sequence (21) or (22) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (21) or (22):
  • 7. The anti-obesity agent according to any one of claims 1 to 6, wherein the microorganism belonging to the species Lactobacillus reuteri further produces an aldehyde dehydrogenase depicted in any of the following amino acid sequences (23) to (25) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in any of the amino acid sequences (23) to (25):
  • 8. The anti-obesity agent according to any one of claims 1 to 7, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerate kinase depicted in the following amino acid sequence (26) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (26):
  • 9. The anti-obesity agent according to any one of claims 1 to 8, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerol kinase depicted in the following amino acid sequence (27) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (27):
  • 10. The anti-obesity agent according to any one of claims 1 to 9, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerol-3-phosphate dehydrogenase depicted in the following amino acid sequence (28) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (28):
  • 11. The anti-obesity agent according to any one of claims 1 to 10, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a triosephosphate isomerase depicted in any of the following amino acid sequences (29) to (31) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in any of the amino acid sequences (29) to (31):
  • 12. The anti-obesity agent according to any one of claims 1 to 11, wherein the microorganism belonging to the species Lactobacillus reuteri is Lactobacillus reuteri JCM1112T.
  • 13. An anti-obesity food and drink comprising, as an active ingredient, a microorganism belonging to the species Lactobacillus reuteri and capable of producing lipases depicted in the following amino acid sequences (1) to (3) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (1) to (3):
  • 14. The anti-obesity food and drink according to claim 13, wherein the microorganism belonging to the species Lactobacillus reuteri has nucleotide sequences encoding the amino acid sequences (1) to (3) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (1) to (3), and a nucleotide sequence depicted in the following formula (4):
  • 15. The anti-obesity food and drink according to claim 13 or 14, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerol-degrading enzyme composed of subunits depicted in the following amino acid sequences (5) to (7) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (5) to (7):
  • 16. The anti-obesity food and drink according to any one of claims 13 to 15, wherein the microorganism belonging to the species Lactobacillus reuteri further produces an enteroadherent protein depicted in the following amino acid sequence (8) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (8):
  • 17. The anti-obesity food and drink according to any one of claims 13 to 16, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerol-degrading enzyme depicted in any of the following amino acid sequences (16) to (20) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in any of the amino acid sequences (16) to (20):
  • 18. The anti-obesity food and drink according to any one of claims 13 to 17, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerol-degrading enzyme depicted in the following amino acid sequence (21) or (22) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (21) or (22):
  • 19. The anti-obesity food and drink according to any one of claims 13 to 18, wherein the microorganism belonging to the species Lactobacillus reuteri further produces an aldehyde dehydrogenase depicted in any of the following amino acid sequences (23) to (25) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in any of the amino acid sequences (23) to (25):
  • 20. The anti-obesity food and drink according to any one of claims 13 to 19, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerate kinase depicted in the following amino acid sequence (26) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (26):
  • 21. The anti-obesity food and drink according to any one of claims 13 to 20, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerol kinase depicted in the following amino acid sequence (27) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (27):
  • 22. The anti-obesity food and drink according to any one of claims 13 to 21, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a glycerol-3-phosphate dehydrogenase depicted in the following amino acid sequence (28) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (28):
  • 23. The anti-obesity food and drink according to any one of claims 13 to 22, wherein the microorganism belonging to the species Lactobacillus reuteri further produces a triosephosphate isomerase depicted in any of the following amino acid sequences (29) to (31) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in any of the amino acid sequences (29) to (31):
  • 24. The anti-obesity food and drink according to any one of claims 13 to 23, wherein the microorganism belonging to the species Lactobacillus reuteri is Lactobacillus reuteri JCM1112T.
  • 25. A glycerol-degrading enzyme composed of subunits depicted in the following amino acid sequences (5) to (7) or amino acid sequences having deletion, substitution or addition of one or more amino acids in the amino acid sequences (5) to (7):
  • 26. Nucleotide sequences encoding the glycerol-degrading enzyme subunits according to claim 25, which are depicted in the following (9) to (11):
  • 27. An enteroadherent protein depicted in the following amino acid sequence (8) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (8):
  • 28. A nucleotide sequence encoding the enteroadherent protein according to claim 27, which is depicted in the
  • 29. A glycerol-degrading enzyme depicted in the following amino acid sequence (16) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (16):
  • 30. A nucleotide sequence encoding the glycerol-degrading enzyme according to claim 29, which is depicted in the following (32):
  • 31. A glycerol-degrading enzyme depicted in the following amino acid sequence (17) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (17):
  • 32. A nucleotide sequence encoding the glycerol-degrading enzyme according to claim 31, which is depicted in the following (33):
  • 33. A glycerol-degrading enzyme depicted in the following amino acid sequence (18) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (18):
  • 34. A nucleotide sequence encoding the glycerol-degrading enzyme according to claim 33, which is depicted in the following (34):
  • 35. A glycerol-degrading enzyme depicted in the following amino acid sequence (19) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (19):
  • 36. A nucleotide sequence encoding the glycerol-degrading enzyme according to claim 35, which is depicted in the following (35):
  • 37. A glycerol-degrading enzyme depicted in the following amino acid sequence (20) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (20):
  • 38. A nucleotide sequence encoding the glycerol-degrading enzyme according to claim 37, which is depicted in the following (36):
  • 39. A glycerol-degrading enzyme depicted in the following amino acid sequence (21) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (21):
  • 40. A nucleotide sequence encoding the glycerol-degrading enzyme according to claim 39, which is depicted in the following (37):
  • 41. A glycerol-degrading enzyme depicted in the following amino acid sequence (22) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (22):
  • 42. A nucleotide sequence encoding the glycerol-degrading enzyme according to claim 41, which is depicted in the following (38):
  • 43. An aldehyde dehydrogenase depicted in the following amino acid sequence (23) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (23):
  • 44. A nucleotide sequence encoding the aldehyde dehydrogenase according to claim 43, which is depicted in the following (39):
  • 45. An aldehyde dehydrogenase depicted in the following amino acid sequence (24) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (24):
  • 46. A nucleotide sequence encoding the aldehyde dehydrogenase according to claim 45, which is depicted in the following (40):
  • 47. An aldehyde dehydrogenase depicted in the following amino acid sequence (25) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (25):
  • 48. A nucleotide sequence encoding the aldehyde dehydrogenase according to claim 47, which is depicted in the following (41):
  • 49. A glycerate kinase depicted in the following amino acid sequence (26) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (26):
  • 50. A nucleotide sequence encoding the glycerate kinase according to claim 49, which is depicted in the following (42):
  • 51. A glycerol kinase depicted in the following amino acid sequence (27) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (27):
  • 52. A nucleotide sequence encoding the glycerol kinase according to claim 51, which is depicted in the following (43):
  • 53. A glycerol-3-phosphate dehydrogenase depicted in the following amino acid sequence (28) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (28):
  • 54. A nucleotide sequence encoding the glycerol-3-phosphate dehydrogenase according to claim 53, which is depicted in the following (44):
  • 55. A triosephosphate isomerase depicted in the following amino acid sequence (29) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (29):
  • 56. A nucleotide sequence encoding the triosephosphate isomerase according to claim 55, which is depicted in the following (45):
  • 57. A triosephosphate isomerase depicted in the following amino acid sequence (30) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (30):
  • 58. A nucleotide sequence encoding the triosephosphate isomerase according to claim 57, which is depicted in the following (46):
  • 59. A triosephosphate isomerase depicted in the following amino acid sequence (31) or an amino acid sequence having deletion, substitution or addition of one or more amino acids in the amino acid sequence (31):
  • 60. A nucleotide sequence encoding the triosephosphate isomerase according to claim 59, which is depicted in the following (47):
Priority Claims (1)
Number Date Country Kind
2005-215895 Jul 2005 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2006/314640 7/25/2006 WO 00 1/28/2008