This application claims benefit of European patent application number 05425680.5, filed Sep. 30, 2005, which is herein incorporated by reference.
1. Field of the Invention
The present invention relates to an anti-panic control device for doors.
2. Description of the Related Art
A control device is disclosed in FR-A-2814190.
More specifically. FR-A-2814190 discloses an anti-panic control device comprising an oscillating spring latch provided with a slit able to receive a retaining element. The spring latch is provided with an arresting tooth that co-operates with a locking element borne by an oscillating cam. The oscillating cam prevents the rotation of the spring latch towards an open position. The control lever of the device controls the motion of the oscillating cam away from the spring latch, in such a way as to leave the spring latch free to rotate towards the open position.
In this known solution, the spring latch can be locked in closed position even when the door is open. If this occurs, when the door is closed the spring latch impacts against the fixed part of the door frame and prevents the door from closing. If an attempt is made to close the door when the spring latch is locked in closed position, the spring latch or the door frame can be damaged.
The object of the present invention is to provide an improved control device that allows to overcome the aforesaid drawbacks.
The present invention shall now be described in detail with reference to the accompanying drawings, provided purely by way of non limiting example, in which:
With reference to
With reference to
With reference to
With reference again to
The two cursors 42, 44 are provided with respective transverse idle pivot pins 58. The pivot pin 58 of the lower cursor 44 co-operates with a cam surface 60 of the actuating lever 28. When the actuating bar 18 is pressed towards the door 10, the two levers 28 of the control device 12 oscillate around a common horizontal axis 62. The lever 28 co-operates with the lower cursor 44 by means of the cam surface 60 and the transverse pivot pin 58 and actuates an upwards sliding of the lower cursor 44. Consequently, the upper cursor 42 moves downwards being connected to the lower cursor 44 by means of the transmission with gearwheel 48 and racks 46. This movement of the cursors 42, 44 towards each other controls the unlocking of the upper and lower locking elements 54, 56 through the transmission rods 52. This solution enables to use the aforesaid mechanism both for doors with right-side opening, and for doors with left-side opening simply by reversing the supports 14, 16 and rotating the rotating the support 14 by 180°.
With reference to
A helical compression spring 66 is interposed between the first locking element 64 and the cursor 44. The spring 66 tends to thrust the cursor 44 downwards and, simultaneously, it tends to thrust the first locking element 64 upwards towards its arresting position.
The spring latch 20 has an opening in which is slidably mounted a second locking element 68. The second locking element 68 is slidable relative to the spring latch 20 between an arresting position and a disengaged position. The second locking element 68 is slidable orthogonally relative to the main axis 38 and it is thrust by a helical compression spring 70 towards the disengaged position. The spring 70 is preferably positioned between the pivot pin 36 and a surface 72 of the second locking element 68. In the disengaged position, the second locking element 68 projects partially within the slit 40. When the retaining element 22 is engaged in the slit 40, the second locking element 68 is thrust by the retaining element 22 towards its locking position, against the action of the helical spring 70. When instead the retaining element 22 is not engaged within the slit 40 of the spring latch 20, the second arresting organ 68 moves to the disengaged position under the action of the elastic force of the spring 70.
The first locking element 64 is thrust by the spring 66 into its arresting position and moves towards its disengagement position when the lever 28 is pressed. The first locking element 64 has an appendage (not shown in the drawings) which co-operates with the upper cursor 42. When the lever 28 is operated by pushing the actuating bar 18 towards the door, the lower cursor 44 moves upwards and the upper cursor 42 moves downwards, as described previously. The downwards movement of the upper cursor 42 thrusts the first locking element 64 towards its disengagement position.
The first and the second locking element 64, 68 are positioned in such a way as to co-operate with each other in abutment relationship when they are both in the respective arresting positions. In practice, the first locking element 64 constitutes an abutment against which acts the second locking element 68. The mutual abutment between the first and the second locking element 64, 68 prevents the rotation of the spring latch 20 around the axis 38 from the closed position towards the open position. Therefore, when both locking elements 64, 68 are in their arresting position, the spring latch 20 is maintained in its closed position against the action of the spring 39 which tends to thrust it towards its open position. When either of the two locking elements 64, 68 is in its disengaged position, the spring latch 20 is no longer maintained in its closed position and it is free to rotate towards the open position under the return action of the spring 39.
In the configuration of
As shown in
In the fully closed position shown in
Starting from the configuration of
With reference to
With reference to
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
05425680 | Sep 2005 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
1677271 | Carroll | Jul 1928 | A |
2765648 | Hatcher | Oct 1956 | A |
2991107 | Eichacker et al. | Jul 1961 | A |
4969343 | Luker | Nov 1990 | A |
5322332 | Toledo et al. | Jun 1994 | A |
6953211 | Di Vinadio | Oct 2005 | B2 |
Number | Date | Country |
---|---|---|
3244647 | Jun 1984 | DE |
0 481 931 | Apr 1992 | EP |
1 050 642 | Nov 2000 | EP |
2 814 190 | Jun 2003 | FR |
2 861 789 | May 2005 | FR |
2 863 000 | Jun 2005 | FR |
Number | Date | Country | |
---|---|---|---|
20070075551 A1 | Apr 2007 | US |