Anti-pinch control system for powered vehicle doors

Abstract
A vehicle includes a body and front and rear doors having front and rear powered latches, front and rear anti-pinch sensors, and front and rear electrically-powered door openers. The vehicle further includes a controller that is configured to receive an unlatch signal from unlatch sensors/switches and generate a signal to unlatch the front and rear powered latches and actuate the front and rear door openers after the front and rear powered latches are unlatched. The controller may also be configured to actuate the rear door opener to retain the rear door in an open position when the front pinch sensor detects a hand to thereby prevent pinching.
Description
FIELD OF THE INVENTION

The present invention generally relates to vehicle doors, and in particular to a vehicle including one or more powered door opening mechanisms and anti-pinch sensors to prevent pinching of user's hands.


BACKGROUND OF THE INVENTION

Various types of vehicle doors and door latch mechanisms have been developed. The vehicle doors may have powered door opening mechanisms. Known vehicle doors may also include powered latches that can be actuated to permit opening a vehicle door without requiring movement of an external door handle. However, known vehicle door systems may suffer from various drawbacks.


SUMMARY OF THE INVENTION

One aspect of the present disclosure is a vehicle door system including a vehicle structure having a door opening and a door that is rotatably mounted to the vehicle structure to close off the door opening when the door is in a closed position. The vehicle door system also includes an anti-pinch sensor that is configured to detect a user's hand if a user's hand is positioned adjacent the door opening. An electrically-powered latch mechanism permits the door to open when the electrically-powered latch mechanism is unlatched. The electrically-powered latch mechanism retains the door in a closed position when the electrically-powered latch mechanism is latched. The door system further includes an electrically-powered door actuator that can be actuated to shift the door from a closed position to a partially open position. The vehicle door system further includes a controller that is configured to actuate the electrically powered door actuator to prevent the door from closing if the anti-pinch sensor detects a user's hand.


Another aspect of the present disclosure is a vehicle including a body and front and rear doors having, respectively, front and rear powered latches, front and rear pinch sensors, and front and rear electrically-powered door openers. The vehicle further includes a controller that is configured to receive an unlatch signal and unlatch the front and rear powered latches and actuate the front and rear door openers and actuate the rear door opener to retain the rear door in an open position when the front pinch sensor detects a user's hand.


Another aspect of the present disclosure is a vehicle door system including a vehicle structure having adjacent front and rear door openings. Front and rear doors are rotatably mounted to the vehicle structure to close off the front and rear door openings, respectively, when the doors are in closed positions. Front and rear anti-pinch sensors that are configured to detect user's hands adjacent the front and rear door openings, respectively. Front and rear electrically-powered latch mechanisms are configured to permit the front and rear doors, respectively, to open when the electrically-powered latch mechanisms are unlatched. The front and rear electrically-powered latch mechanisms retain the front and rear doors in closed positions when the electrically-powered latch mechanisms are latched. The vehicle door system also includes front and rear electrically-powered door actuators that can be actuated to shift the front and rear doors, respectively, from closed positions to open positions. A controller is configured to actuate at least one of the front and rear electrically-powered door actuators to prevent the at least one of the front and rear doors from closing if at least one of the front and rear anti-pinch sensors detects a user's hand.


These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a partially schematic plan view of a vehicle including anti-pinch sensors and powered door actuators that open the vehicle doors;



FIG. 2 is a schematic view of a portion of the vehicle of FIG. 1;



FIG. 3 is a schematic view of a portion of the vehicle of FIG. 1;



FIG. 4 is a schematic view of a powered door actuator in a first check position;



FIG. 5 is a schematic view of a powered door actuator in a second check position;



FIG. 6 is a schematic plan view of a vehicle door in a closed position;



FIG. 7 is a schematic plan view of a vehicle door in a partially open position;



FIG. 8 is a schematic plan view of a vehicle door in a fully open position;



FIG. 9 is a flow chart showing operation of a vehicle including a power release latch and powered door opening actuator with locally controlled anti-pinch door sensors;



FIG. 10A is a first portion of a flow chart showing operation of a vehicle door system that includes front and rear doors having powered door latches, powered door opening mechanisms and front and rear anti-pinch door sensors;



FIG. 10B is a second portion of the flow chart of FIG. 10A; and rear doors having powered door latches, powered door opening mechanisms and front and rear anti-pinch door sensors;



FIG. 11A is a first portion of a flow chart showing vehicle door operation for doors including powered door latches, powered door opening actuators, front and rear anti-pinch sensors, and front and rear door position sensors;



FIG. 11B is a second portion of the flow chart of FIG. 11A;



FIG. 12A is a first portion of a flow chart for a door system including powered front and rear door latches, powered front and rear door opening mechanisms, and front and rear anti-pinch door sensors;



FIG. 12B is a second portion of the flow chart of FIG. 12A;



FIG. 13A is a first portion of a flow chart showing operation of a vehicle door system including powered cinching front and rear door latches, powered front and rear door opening actuators, front and rear anti-pinch sensors, and front and rear door position sensors; and



FIG. 13B is a second portion of the flow chart of FIG. 13A.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in FIG. 1. However, it is to be understood that the invention may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


With reference to FIG. 1, a motor vehicle 1 includes a body structure 2, front doors 4A and 4B, and rear doors 6A and 6B. The front doors 4A and 4B are configured to open and close to provide access to interior 12 of vehicle 1 through front openings 10A and 10B, respectively. Similarly, rear doors 6A and 6B are configured to open and close to provide access through rear door openings 14A and 14B. Front doors 4A and 4B are rotatably mounted to body structure 2 by hinges 16A and 16B, and rear doors 6A and 6B are rotatably mounted to body structure 2 by rear hinges 18A and 18B, respectively. As discussed in more detail below, the vehicle doors 4A, 4B, 6A and 6B may include exterior switches or sensors 20A-20B, respectively that can be actuated by a user to unlatch and open the vehicle doors. Vehicle 1 may comprise a two door vehicle having only front doors 4A and 4B, and front openings 10A and 10B.


Vehicle 1 further includes anti-pinch sensors 22A-22D that are configured to detect a user's hand if the user's hand is inserted into an opening 10A, 10B, 14A, 14B when a vehicle door is opened. Pinch sensors 22A-22D may comprise capacitive sensors, pressure sensitive sensors, or other suitable sensor capable of detecting a user's hand. Pinch sensors 22A-22D may be mounted to the body structure 2 adjacent the door openings. Vehicle door 4A also includes a powered door opener 24 that includes a plunger 26 that can be shifted to a first extended position to partially open the door 4A (see also FIG. 7). The doors 4B, 6A, and 6B may also include powered door opening mechanisms 24. The doors 4A, 4B, 6A, and 6B also include powered latch mechanisms 32A-32D. The powered latches 32A-32D can be actuated by controller 28 to unlatch the doors if unlatch switches 20A-20D, respectively, are actuated by a user. The controller 28 may be operably connected to the anti-pinch sensors 22A-22D, powered door opening mechanisms 24A-24D, and powered latches 32A-32D. Controller 28 may comprise a single central controller as shown in FIG. 1, or controller 28 may comprise separate controllers that are located in each door 4A, 4B, 6A, and 6B. The powered door opening mechanisms 24A-24D and powered latches 32A-32D are described in more detail in U.S. Pat. No. 10,227,810, issued on Mar. 12, 2019, entitled “PRIORITY DRIVEN POWER SIDE DOOR OPEN/CLOSE OPERATIONS,” the entire contents of which are incorporated herein by reference. As discussed in the above-referenced '810 patent, powered latches 32A-32D may include a rotating claw that engages a striker on body structure 2 to retain doors 4A, 4B, 6A and 6B in closed positions. A movably pawl engages the claw to prevent rotation of the claw when powered latches 32A-32D are latched. Conversely, the pawl permits rotation of the claw when latches 32A-32D are unlatched. An electrically-powered actuator is operably connected to the pawl and shifts the pawl between engaged (latched), and disengaged (unlatched) positions when electrical power is supplied to the powered actuator by controller 28.


As discussed in more detail below, to enter vehicle 1 a user pushes release switch 20A which is operably connected to a controller or electric control unit (“ECU”) 28. It will be understood that controller 28 may comprise various hardware and/or software, and the terms “controller” and “ECU” are not limited to any specific device and/or software. Controller 28 then actuates the powered door opening mechanism 24 to thereby cause the plunger 26 to shift to an extended (“first check”) position to thereby at least partially open door 4A whereby rear edge 30A of door 4A is spaced apart from vehicle body 2. A user then grasps edge 30A and pulls door 4A to a fully open position. The other doors 4B, 6A, and 6B may be opened in a substantially similar manner.


The powered door opening mechanism 24 permits elimination of external vehicle door handles that would otherwise be required to permit a user to grasp the door handle to pull the door open.


Opening and closing of the driver's side front and rear doors 4A and 6A is shown schematically in FIGS. 2 and 3. It will be understood that the passenger side doors 4B and 6B operate in a substantially similar manner as driver's side doors 4A and 6A. As discussed below in connection with FIGS. 4-8, in use, a user initially actuates a sensor or switch 20A or 20C to generate an unlatch request to controller 28. For example, if a user pushes the unlatch switch 20A, controller 28 generates a signal to powered latch 32A of front door 4A to thereby provide powered unlatching of latch 32A. Similarly, if unlatch switch 20C is actuated, controller 28 generates a signal to unlatch powered latch 32C of rear door 6A. After the powered latch is unlatched, controller 28 then generates a signal to the powered actuator 24A or 24C, causing plunger 26 to extend and push door 4A or 6A to a partially opened position. A user then grasps rear edge 30A or 30C of door 4A or 6A to pull the door to a fully open position. As a user grasps the edge 30A or 30C, anti-pinch sensors 22A or 22C generate a signal to controller 28 indicating that a user's hand is present. Controller 28 may then generate a signal to retain the plunger 26 in an extended position to prevent pinching of a user's hand.


Referring to FIG. 3, when rear door 6A is opened and front door 4A remains closed, a user may nevertheless insert a hand and grasp rear edge 30A of front door 4A even though front door 4A is in a closed position. If rear door 6A were to be closed this could pinch a user's hand positioned adjacent front pinch sensor 22A. As discussed in more detail below in connection with FIGS. 10A, 10B, 11A, 11B, 12A, 12B, 13A, and 13B, controller 28 is configured/programmed to prevent pinching if the front door 4A is closed while the rear door 6A is open as shown in FIG. 3. As shown in FIG. 3, anti-pinch sensors 122A, 122C, etc. may optionally be mounted to the vehicle doors 4A, 6A adjacent the rear edges 30A, 30C, etc.


With further reference to FIGS. 4 and 5, an electrically-powered door opening mechanism 24A is disposed in an interior space 34A of door 4A between outer side 36A and inner side 38A of door 4A. All doors of the vehicle 1 may include powered door opening mechanisms that are substantially similar to the mechanism 24A. Mechanism 24A may include a housing or base structure 46 and a plunger 26 that is movably interconnected with the housing 46 for reciprocating movement relative to the housing 46. The mechanism 24A may include an electric motor 40 and gear drive 42 that provide for powered movement of plunger 26. A sensor 44 enables controller 28 to determine the position of plunger 26 relative to housing 46. The components of powered actuator 24A are shown schematically in FIGS. 4 and 5. It will be understood that the powered door opening mechanism 24A may have various configurations as required for a particular application. For example, the powered door opening mechanism 24 may be configured as disclosed in U.S. Pat. No. 10,227,810, issued on Mar. 12, 2019, entitled “PRIORITY DRIVEN POWER SIDE DOOR OPEN/CLOSE OPERATIONS.”


Plunger 26 may be actuated to extend to a first check position 26A (FIG. 4) in which plunger 26 extends a distance “P1,” causing door 4A to open to a first partially open position (see also FIG. 7) whereby a gap “G1” is formed between inner surface 38A of door 4A and surface 50 of vehicle body 2. A pad or surface 48 may be disposed on surface 50 of body 2 in the region where plunger 26 contacts surface 50 of vehicle body 2. As also discussed below, the plunger 26 may be further extended to a fully extended position “P2” that is slightly greater than distance P1 as shown in FIG. 5. Plunger 26 shifts to fully extended position P2 after door 4A has been shifted to a fully open position (e.g. pulled open by a user). Controller 28 may be configured to detect travel of plunger 26 to fully extended position P2, and utilize the P2 position as an indication that the door has been shifted to a fully open position. Alternatively, door hinges 16A, 18A, etc. may include a sensor (not shown) that detects the angular positions of the doors such that controller 28 can determine when the doors are fully open. The second check position P2 and/or rotation sensors are optional, and controller 28 may be configured to operate without a sensor input indicating that a vehicle door has been fully opened. In general, the distance P1 (and gap G1) may be about one to about four inches. The second distance P2 may be, for example, 0.25 inches, 0.50 inches (or more) greater than distance P1.


With further reference to FIGS. 6-8, a user initially actuates switch or sensor 20A when door 4A is in a closed position (FIG. 6). Controller 28 then unlatches the powered latch 32A, and actuates powered door opener 24A to extend plunger 26 to a first check (distance P1) position in which door 4A is in a first partially opened position creating a gap G1 as shown in FIG. 7. A user then grasps edge 30A of door 4A and pulls the door to a fully open position shown in FIG. 8. As discussed below, the plunger 26 is retracted while the door 4A is in a fully open position (FIG. 8), and the powered latch 32A is then reset. A user can then push the door 4A from the open position (FIG. 8) to the closed position (FIG. 6), and powered latch 32A retains the door 4A in the fully closed position (FIG. 6). Powered latch 32A may comprise a cinching door latch. For example, the claw 180 of the powered latch described in the U.S. Pat. No. 10,227,810 may be operably connected to a powered actuator (e.g. electric motor) whereby the claw rotates from an open/released position to a latched/closed position to engage a striker to pull the door to a fully-closed position. If the powered latch 32A is a cinching door latch, door 4A may be initially pushed to a mostly closed position 52 (FIG. 8), and the powered latch 32A may then be actuated to shift the door to the fully closed position of FIG. 6. Cinching latch mechanisms are disclosed in U.S. Pat. No. 9,004,570, issued on Apr. 14, 2015 and entitled “ADJUSTABLE LATCH ASSEMBLY” and U.S. Pat. No. 9,951,547, issued on Apr. 24, 2018 and entitled “ADJUSTABLE DECKLID LATCH ASSEMBLY” the entire contents of each being incorporated herein by reference. Cinching door latches are generally known in the art, and a detailed description of a cinching door latch is therefore not believed to be necessary. It will be understood that all of the doors 4A, 4B, 6A, and 6B of vehicle 1 may operate in substantially the same manner as the doors shown and described above in connection with FIGS. 2-8.


Operation of a single vehicle door having a locally controlled anti-pinch door sensor is shown in the flow chart of FIG. 9. The control arrangement of FIG. 9 may be utilized if, for example, vehicle 1 includes only front doors 4A and 4B, such that a pinch situation involving adjacent front and rear doors (e.g. FIG. 3) is not present. In steps 54-62, a user presses or otherwise actuates a sensor or button 20 on the outside of the vehicle door, and the controller/ECU 28 sends a signal to the powered door opening mechanism or actuator 24, and plunger 26 then extends to a first check position 26A (FIG. 4). At step 64, the ECU 28 cuts off electrical current to the door actuator 24. At step 66, the ECU 28 determines if a user's hand is detected by anti-pinch sensors 22. If not, the process continues at step 68, and ECU 28 determines if the door has been opened past the first check position of FIG. 4. At step 66, if a user's hand is detected, the process continues to step 70, and the anti-pinch sensors 22 send a signal to the ECU 28. At step 72, the ECU 28 provides electrical power to the actuator 24 to retain the plunger 26 in a first check position (FIG. 4) and prevent pinching. At step 74, if a user does not pull the door open, the process goes back to step 66 described above. If the user does pull the door open at step 74, the process may optionally continue at step 76 and extend plunger 26 to the full travel position of FIG. 5. The ECU 28 detects that the plunger 26 is in the full travel position (FIG. 5) at step 78, and the ECU 28 determines (i.e. assumes) that the door has been fully opened because the plunger 26 is in the fully extended position, and the process then continues at step 80 and the ECU 28 resets the doors powered latch 32 to enable latching. Alternatively, if the door includes sensors that directly detect that the door has been opened past the first check position as shown at step 82, the process generally proceeds from step 74 to step 82, and then to step 80. After step 80, the ECU 28 sends a signal to the powered door actuator 24 to retract the plunger 26 as shown at step 86. A user can then push on the door to return it to its closed position. Because the plunger 26 is retracted at step 86, the plunger 26 does not in any way interfere with closing of the vehicle door.


The flow chart of FIGS. 10A and 10B shows operation of a vehicle 1 including adjacent front and rear doors (e.g. FIGS. 2 and 3). Front door operation begins at step 88 (FIG. 10A), and rear door operation begins at step 122 (FIG. 10B). Steps 88-110 of FIG. 10A are substantially similar to steps 54-72 described above in FIG. 9, and steps 122-136 of FIG. 10B are substantially similar to steps 54-66 of FIG. 9. However, if the rear door is opened, and if a hand is detected by the front door anti pinch sensors 22A (step 138; FIG. 10B), the process moves from step 138 to step 158 (FIG. 10A), and the anti-pinch sensor 22A of the front door sends a signal to the ECU 28. At step 160, the ECU 28 then powers both the front and rear door actuators 24A and 24C to maintain the doors in the first check position (FIG. 4) to prevent pinching. At step 162, a user pulls the rear door 6A open, the process continues to step 138 (FIG. 10B). If a user does not pull the rear door open at step 162, the process continues as shown at step 164. At step 112 (optional) the ECU 28 determines that the front door 4A is open because plunger 26A is at full travel (FIG. 5). Similarly, at step 148 (FIG. 10B), if the rear door actuator is at full travel the ECU 28 determines at step 150 that the rear doors opened. It will be understood that the vehicle doors may include sensors that enable ECU 28 to determine if the door is fully opened, such that the ECU 28 does not necessarily need to use full travel of plungers 26 to determine if the door is fully open. After the ECU 28 detects that the front or rear door is fully open, the ECU 28 resets the powered latches and retracts the plungers of the powered door actuators 24A and 24C to permit a user to return the door to a closed position.


The flow chart of FIGS. 11A and 11B shows operation of a vehicle 1 including front and rear doors and door position sensors. Operation of the front door generally begins at step 160 (FIG. 11A), and operation of the rear door generally begins at step 196 (FIG. 11B). The door operations of FIGS. 11A and 11B are similar to the operations of FIGS. 10A and 10B, respectively. However, rear door operation further includes determining if the front door is open at step 232 (FIG. 11A). If the front door is not open, the process continues to step 162 as shown in FIG. 11A. Thus, as shown in FIG. 11A if the rear door is closed and the front door is open (Step 232), the ECU 28 unlatches the front door is shown at steps 162 and 164.


The flow chart of FIGS. 12A and 12B shows operation of a vehicle including front and rear doors with powered latches 32A and 32C that comprise cinching latches. The operation shown in FIGS. 12A and 12B is generally similar to the vehicle door operations described above. However, in FIGS. 12A and 12B the ECU 28 actuates the cinching sensors as required.


The flow chart of FIGS. 13A and 13B shows operation of a vehicle including front and rear doors having powered cinching latches, door position sensors, and anti-pinch sensors. The operations shown in FIGS. 13A and 13B are generally similar to the operations discussed above in connection with FIGS. 9, 10A, 10B, 11A and 11B, and 12A and 12B. However, as shown in FIGS. 13A and 13B, if the vehicle includes both cinching latches and door position sensors, the ECU 28 utilizes the door position data to control the cinching latches and/or the powered door opening mechanism.


It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A vehicle comprising: a body and front and rear doors having front and rear: a) powered latches; b) unlatch switches; c) anti-pinch sensors; and d) electrically-powered door openers;a controller configured to: receive unlatch signals and unlatch the respective front and rear powered latches and actuate the front and rear door openers; and:actuate the rear door opener to retain the rear door in an open position when the front anti-pinch sensor detects a hand.
  • 2. The vehicle of claim 1, wherein: the front and rear electrically-powered door openers include plungers that shift from retracted positions to extended positions to push the doors open.
  • 3. The vehicle of claim 2, wherein: the body includes front and rear strikers;the front and rear powered latches each include a rotating claw that is configured to engage a striker on the body, and an electrically-powered actuator that shifts a pawl between a latched position in which the pawl prevents rotation of the rotating claw, and an unlatched position in which the rotating claw can rotate and disengage from a striker, and wherein:the controller resets the front and rear powered latches to permit latching when the controller determines that the front and rear doors, respectively, are in a fully open position.
  • 4. The vehicle of claim 2, wherein: the front and rear powered latches comprise electrically-powered cinching latches that are configured to shift the front and rear doors to fully closed positions;the controller is configured to prevent cinching of the front and rear powered latches when the front and rear anti-pinch sensors, respectively, detect a user's hand.
  • 5. A vehicle, comprising: a body having adjacent front and rear door openings;front and rear doors rotatably mounted to the body to close off the front and rear door openings, respectively, when the doors are in closed positions;front and rear anti-pinch sensors that are configured to detect user's hands adjacent the front and rear door openings, respectively;front and rear electrically-powered latch mechanisms that are configured to permit the front and rear doors, respectively, to open when the electrically-powered latch mechanisms are unlatched, and retain the front and rear doors in closed positions when the electrically-powered latch mechanisms are latched;front and rear electrically-powered door actuators that can be actuated to shift the front and rear doors, respectively, from closed positions to open positions;a controller configured to actuate at least one of the front and rear electrically-powered door actuators to prevent the at least one of the front and rear doors from closing if at least one of the front and rear anti-pinch sensors detects a user's hand.
  • 6. The vehicle of claim 5, wherein: the controller is configured to actuate the rear electrically-powered door actuator to retain the rear door in an open position if the front anti-pinch sensor detects a hand.
  • 7. The vehicle of claim 5, wherein: the open positions comprise first partially open positions;the front and rear electrically-powered door actuators can be actuated to shift the front and rear doors, respectively, to second partially open positions in which the front and rear doors are further open than in the first partially open positions.
  • 8. The vehicle of claim 7, wherein: the front and rear electrically-powered door actuators each include a plunger that shifts from a retracted position to first and second extended positions to push the front and rear doors from closed positions to first and second partially open positions, respectively;the controller is configured to cause the plungers to stop at the first extended position only if predefined operation conditions are present.
  • 9. The vehicle of claim 8, wherein: the controller is configured to retract the plungers of the front and rear electrically-powered door actuators to retracted positions when the front and rear doors, respectively, are open only if the front and rear anti-pinch sensors, respectively, do not detect a user's hand.
  • 10. The vehicle of claim 9, wherein: the controller is configured to reset the front and rear electrically-powered latch mechanisms to enable the front and rear electrically-powered latch mechanisms to latch when the controller detects that the plunger has shifted to the second extended position.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. patent application Ser. No. 15/245,622, filed Aug. 24, 2016, now U.S. Pat. No. 10,329,823, issued on Jun. 25, 2019, and entitled “ANTI-PINCH CONTROL SYSTEM FOR POWERED VEHICLE DOORS,” the entire disclosure of which is hereby incorporated herein by reference.

US Referenced Citations (412)
Number Name Date Kind
2229909 Wread Jan 1941 A
2553023 Walters May 1951 A
3479767 Gardner et al. Nov 1969 A
3605459 Van Dalen Sep 1971 A
3751718 Hanchett Aug 1973 A
3771823 Schnarr Nov 1973 A
3854310 Paull Dec 1974 A
3858922 Yamanaka Jan 1975 A
4193619 Jeril Mar 1980 A
4206491 Ligman et al. Jun 1980 A
4425597 Schramm Jan 1984 A
4457148 Johansson et al. Jul 1984 A
4640050 Yamagishi et al. Feb 1987 A
4672348 Duve Jun 1987 A
4674230 Takeo et al. Jun 1987 A
4674781 Reece et al. Jun 1987 A
4702117 Tsutsumi et al. Oct 1987 A
4848031 Yamagishi et al. Jun 1989 A
4858971 Haag Aug 1989 A
4889373 Ward et al. Dec 1989 A
4929007 Bartczak et al. May 1990 A
5018057 Biggs et al. May 1991 A
5056343 Kleefeldt et al. Oct 1991 A
5058258 Harvey Oct 1991 A
5074073 Zwebner Dec 1991 A
5092637 Miller Mar 1992 A
5173991 Carswell Dec 1992 A
5239779 Deland et al. Aug 1993 A
5263762 Long et al. Nov 1993 A
5297010 Camarota et al. Mar 1994 A
5332273 Komachi Jul 1994 A
5334969 Abe et al. Aug 1994 A
5494322 Menke Feb 1996 A
5497641 Linde et al. Mar 1996 A
5535608 Brin Jul 1996 A
5547208 Chappell et al. Aug 1996 A
5551187 Brouwer et al. Sep 1996 A
5581230 Barrett Dec 1996 A
5583405 Sai et al. Dec 1996 A
5613716 Cafferty Mar 1997 A
5618068 Mitsui et al. Apr 1997 A
5632120 Shigematsu et al. May 1997 A
5632515 Dowling May 1997 A
5644869 Buchanan, Jr. Jul 1997 A
5653484 Brackmann et al. Aug 1997 A
5662369 Tsuge Sep 1997 A
5684470 DeLand et al. Nov 1997 A
5744874 Yoshida et al. Apr 1998 A
5755059 Schap May 1998 A
5783994 Koopman, Jr. et al. Jul 1998 A
5802894 Jahrsetz et al. Sep 1998 A
5808555 Bartel Sep 1998 A
5852944 Collard, Jr. et al. Dec 1998 A
5859417 David Jan 1999 A
5895089 Singh et al. Apr 1999 A
5896026 Higgins Apr 1999 A
5896768 Cranick et al. Apr 1999 A
5898536 Won Apr 1999 A
5901991 Hugel et al. May 1999 A
5921612 Mizuki et al. Jul 1999 A
5927794 Mobius Jul 1999 A
5964487 Shamblin Oct 1999 A
5979754 Martin et al. Nov 1999 A
5992194 Baukholt et al. Nov 1999 A
6000257 Thomas Dec 1999 A
6027148 Shoemaker Feb 2000 A
6038895 Menke et al. Mar 2000 A
6042159 Spitzley et al. Mar 2000 A
6043735 Barrett Mar 2000 A
6050117 Weyerstall Apr 2000 A
6056076 Bartel et al. May 2000 A
6065316 Sato et al. May 2000 A
6072403 Iwasaki et al. Jun 2000 A
6075294 Van den Boom et al. Jun 2000 A
6075298 Maue et al. Jun 2000 A
6089626 Shoemaker Jul 2000 A
6091162 Williams, Jr. et al. Jul 2000 A
6099048 Salmon et al. Aug 2000 A
6125583 Murray et al. Oct 2000 A
6130614 Miller Oct 2000 A
6145918 Wilbanks, II Nov 2000 A
6157090 Vogel Dec 2000 A
6181024 Geil Jan 2001 B1
6198995 Settles et al. Mar 2001 B1
6241294 Young et al. Jun 2001 B1
6247343 Weiss et al. Jun 2001 B1
6256932 Jyawook et al. Jul 2001 B1
6271745 Anazi et al. Aug 2001 B1
6305737 Corder et al. Oct 2001 B1
6341448 Murray Jan 2002 B1
6357803 Lorek Mar 2002 B1
6361091 Weschler Mar 2002 B1
6405485 Itami et al. Jun 2002 B1
6406073 Watanabe Jun 2002 B1
6441512 Jakel et al. Aug 2002 B1
6460905 Suss Oct 2002 B2
6470719 Franz et al. Oct 2002 B1
6480098 Flick Nov 2002 B2
6481056 Jesse Nov 2002 B1
6515377 Uberlein et al. Feb 2003 B1
6523376 Baukholt et al. Feb 2003 B2
6550826 Fukushima et al. Apr 2003 B2
6554328 Cetnar et al. Apr 2003 B2
6556900 Brynielsson Apr 2003 B1
6602077 Kasper et al. Aug 2003 B2
6606492 Losey Aug 2003 B1
6629711 Gleason et al. Oct 2003 B1
6639161 Meagher et al. Oct 2003 B2
6657537 Hauler Dec 2003 B1
6659515 Raymond et al. Dec 2003 B2
6701671 Fukumoto et al. Mar 2004 B1
6712409 Monig Mar 2004 B2
6715806 Arlt et al. Apr 2004 B2
6734578 Konno et al. May 2004 B2
6740834 Sueyoshi et al. May 2004 B2
6768413 Kemmann et al. Jul 2004 B1
6779372 Arlt et al. Aug 2004 B2
6783167 Bingle et al. Aug 2004 B2
6786070 Dimig et al. Sep 2004 B1
6794837 Whinnery et al. Sep 2004 B1
6825752 Nahata et al. Nov 2004 B2
6829357 Alrabady et al. Dec 2004 B1
6843085 Dimig Jan 2005 B2
6854870 Huizenga Feb 2005 B2
6879058 Lorenz et al. Apr 2005 B2
6883836 Breay et al. Apr 2005 B2
6883839 Belmond et al. Apr 2005 B2
6910302 Crawford Jun 2005 B2
6914346 Girard Jul 2005 B2
6923479 Aiyama et al. Aug 2005 B2
6933655 Morrison et al. Aug 2005 B2
6948978 Schofield Sep 2005 B2
7005959 Amagasa Feb 2006 B2
7038414 Daniels et al. May 2006 B2
7055997 Baek Jun 2006 B2
7062945 Saitoh et al. Jun 2006 B2
7070018 Kachouh Jul 2006 B2
7070213 Willats et al. Jul 2006 B2
7090285 Markevich et al. Aug 2006 B2
7091823 Ieda et al. Aug 2006 B2
7091836 Kachouh et al. Aug 2006 B2
7097226 Bingle et al. Aug 2006 B2
7106171 Burgess Sep 2006 B1
7108301 Louvel Sep 2006 B2
7126453 Sandau et al. Oct 2006 B2
7145436 Ichikawa et al. Dec 2006 B2
7161152 Dipoala Jan 2007 B2
7163221 Leitner Jan 2007 B2
7170253 Spurr et al. Jan 2007 B2
7173346 Aiyama et al. Feb 2007 B2
7176810 Inoue Feb 2007 B2
7180400 Amagasa Feb 2007 B2
7192076 Ottino Mar 2007 B2
7204530 Lee Apr 2007 B2
7205777 Schultz et al. Apr 2007 B2
7221255 Johnson et al. May 2007 B2
7222459 Taniyama May 2007 B2
7248955 Hein et al. Jul 2007 B2
7263416 Sakurai et al. Aug 2007 B2
7270029 Papanikolaou et al. Sep 2007 B1
7325843 Coleman et al. Feb 2008 B2
7342373 Newman et al. Mar 2008 B2
7360803 Parent et al. Apr 2008 B2
7363788 Dimig et al. Apr 2008 B2
7375299 Pudney May 2008 B1
7399010 Hunt et al. Jul 2008 B2
7446656 Steegmann Nov 2008 B2
7576631 Bingle et al. Aug 2009 B1
7642669 Spurr Jan 2010 B2
7686378 Gisler et al. Mar 2010 B2
7688179 Kurpinski et al. Mar 2010 B2
7705722 Shoemaker et al. Apr 2010 B2
7747286 Conforti Jun 2010 B2
7780207 Gotou et al. Aug 2010 B2
7791218 Mekky et al. Sep 2010 B2
7926385 Papanikolaou et al. Apr 2011 B2
7931314 Nitawaki et al. Apr 2011 B2
7937893 Pribisic May 2011 B2
8028375 Nakaura et al. Oct 2011 B2
8093987 Kurpinski et al. Jan 2012 B2
8126450 Howarter et al. Feb 2012 B2
8141296 Bern Mar 2012 B2
8141916 Tomaszewski et al. Mar 2012 B2
8169317 Lemerand et al. May 2012 B2
8193462 Zanini et al. Jun 2012 B2
8224313 Howarter et al. Jul 2012 B2
8228077 Wuerstlein et al. Jul 2012 B2
8272165 Tomioka Sep 2012 B2
8376416 Arabia, Jr. et al. Feb 2013 B2
8398128 Arabia et al. Mar 2013 B2
8405515 Ishihara et al. Mar 2013 B2
8405527 Chung et al. Mar 2013 B2
8419114 Fannon Apr 2013 B2
8451087 Krishnan et al. May 2013 B2
8454062 Rohlfing et al. Jun 2013 B2
8474889 Reifenberg et al. Jul 2013 B2
8532873 Bambenek Sep 2013 B1
8534101 Mette et al. Sep 2013 B2
8544901 Krishnan et al. Oct 2013 B2
8573657 Papanikolaou et al. Nov 2013 B2
8584402 Yamaguchi Nov 2013 B2
8601903 Klein et al. Dec 2013 B1
8616595 Wellborn, Sr. et al. Dec 2013 B2
8648689 Hathaway et al. Feb 2014 B2
8690204 Lang et al. Apr 2014 B2
8746755 Papanikolaou et al. Jun 2014 B2
8826596 Tensing Sep 2014 B2
8833811 Ishikawa Sep 2014 B2
8903605 Bambenek Dec 2014 B2
8915524 Charnesky Dec 2014 B2
8963701 Rodriguez Feb 2015 B2
8965287 Lam Feb 2015 B2
9003707 Reddmann Apr 2015 B2
9004570 Krishnan et al. Apr 2015 B1
9076274 Kamiya Jul 2015 B2
9159219 Magner et al. Oct 2015 B2
9184777 Esselink et al. Nov 2015 B2
9187012 Sachs et al. Nov 2015 B2
9189900 Penilla et al. Nov 2015 B1
9260882 Krishnan et al. Feb 2016 B2
9284757 Kempel Mar 2016 B2
9322204 Suzuki Apr 2016 B2
9353566 Miu et al. May 2016 B2
9382741 Konchan et al. Jul 2016 B2
9405120 Graf Aug 2016 B2
9409579 Eichin et al. Aug 2016 B2
9416565 Papanikolaou et al. Aug 2016 B2
9475369 Sugiura Oct 2016 B2
9481325 Lange Nov 2016 B1
9493975 Li Nov 2016 B1
9518408 Krishnan Dec 2016 B1
9522590 Fujimoto et al. Dec 2016 B2
9546502 Lange Jan 2017 B2
9551166 Patel et al. Jan 2017 B2
9725069 Krishnan Aug 2017 B2
9777528 Elie et al. Oct 2017 B2
9797178 Elie et al. Oct 2017 B2
9797181 Wheeler et al. Oct 2017 B2
9834964 Van Wiemeersch et al. Dec 2017 B2
9845071 Krishnan Dec 2017 B1
9903142 Van Wiemeersch et al. Feb 2018 B2
9909344 Krishnan et al. Mar 2018 B2
9951547 Puscas et al. Apr 2018 B2
9957737 Patel et al. May 2018 B2
10087671 Linden et al. Oct 2018 B2
10227810 Linden et al. Mar 2019 B2
20010005078 Fukushima et al. Jun 2001 A1
20010030871 Anderson Oct 2001 A1
20020000726 Zintler Jan 2002 A1
20020111844 Vanstory et al. Aug 2002 A1
20020121967 Bowen et al. Sep 2002 A1
20020186144 Meunier Dec 2002 A1
20030009855 Budzynski Jan 2003 A1
20030025337 Suzuki et al. Feb 2003 A1
20030038544 Spurr Feb 2003 A1
20030101781 Budzynski et al. Jun 2003 A1
20030107473 Pang et al. Jun 2003 A1
20030111863 Weyerstall et al. Jun 2003 A1
20030139155 Sakai Jul 2003 A1
20030172695 Buschmann Sep 2003 A1
20030182863 Mejean et al. Oct 2003 A1
20030184098 Aiyama Oct 2003 A1
20030216817 Pudney Nov 2003 A1
20040061462 Bent et al. Apr 2004 A1
20040093155 Simonds et al. May 2004 A1
20040124708 Giehler et al. Jul 2004 A1
20040195845 Chevalier Oct 2004 A1
20040217601 Gamault et al. Nov 2004 A1
20050057047 Kachouch Mar 2005 A1
20050068712 Schulz et al. Mar 2005 A1
20050173886 Leitner Aug 2005 A1
20050216133 MacDougall et al. Sep 2005 A1
20050218913 Inaba Oct 2005 A1
20060056663 Call Mar 2006 A1
20060100002 Luebke et al. May 2006 A1
20060186987 Wilkins Aug 2006 A1
20070001467 Muller et al. Jan 2007 A1
20070089527 Shank Apr 2007 A1
20070090654 Eaton Apr 2007 A1
20070115191 Hashiguchi et al. May 2007 A1
20070120645 Nakashima May 2007 A1
20070126243 Papanikolaou et al. Jun 2007 A1
20070132553 Nakashima Jun 2007 A1
20070170727 Kohlstrand et al. Jul 2007 A1
20080021619 Steegmann et al. Jan 2008 A1
20080060393 Johansson et al. Mar 2008 A1
20080068129 Ieda et al. Mar 2008 A1
20080129446 Vader Jun 2008 A1
20080143139 Bauer et al. Jun 2008 A1
20080202912 Boddie et al. Aug 2008 A1
20080203737 Tomaszewski et al. Aug 2008 A1
20080211623 Scheurich Sep 2008 A1
20080217956 Gschweng et al. Sep 2008 A1
20080224482 Cumbo et al. Sep 2008 A1
20080230006 Kirchoff et al. Sep 2008 A1
20080250718 Papanikolaou et al. Oct 2008 A1
20080296927 Gisler Dec 2008 A1
20080303291 Spurr Dec 2008 A1
20080307711 Kern et al. Dec 2008 A1
20090033104 Konchan et al. Feb 2009 A1
20090033477 Illium et al. Feb 2009 A1
20090145181 Pecoul et al. Jun 2009 A1
20090146668 Wuerstlein Jun 2009 A1
20090146827 Wuerstlein Jun 2009 A1
20090160211 Kirshnan et al. Jun 2009 A1
20090177336 McClellan et al. Jul 2009 A1
20090240400 Lachapelle et al. Sep 2009 A1
20090256578 Wuerstlein Oct 2009 A1
20090257241 Meinke et al. Oct 2009 A1
20100007463 Dingman et al. Jan 2010 A1
20100005233 Arabia et al. Mar 2010 A1
20100050787 Abert Mar 2010 A1
20100052337 Arabia, Jr. et al. Mar 2010 A1
20100060505 Witkowski Mar 2010 A1
20100097186 Wielebski Apr 2010 A1
20100156440 Weingartner Jun 2010 A1
20100175945 Helms Jul 2010 A1
20100235057 Papanikolaou et al. Sep 2010 A1
20100235058 Papanikolaou et al. Sep 2010 A1
20100235059 Krishnan et al. Sep 2010 A1
20100237635 Ieda et al. Sep 2010 A1
20100253535 Thomas Oct 2010 A1
20100265034 Cap et al. Oct 2010 A1
20100315267 Chung et al. Dec 2010 A1
20110041409 Newman et al. Feb 2011 A1
20110060480 Mottla et al. Mar 2011 A1
20110148575 Sobecki et al. Jun 2011 A1
20110154740 Matsumoto et al. Jun 2011 A1
20110180350 Thacker Jul 2011 A1
20110203181 Magner et al. Aug 2011 A1
20110203336 Mette et al. Aug 2011 A1
20110227351 Grosedemouge Sep 2011 A1
20110248862 Budampati Oct 2011 A1
20110252845 Webb et al. Oct 2011 A1
20110254292 Ishii Oct 2011 A1
20110259661 Thiele Oct 2011 A1
20110313937 Moore, Jr. et al. Dec 2011 A1
20120119524 Bingle et al. May 2012 A1
20120154292 Zhao et al. Jun 2012 A1
20120180394 Shinohara Jul 2012 A1
20120192489 Pribisic Aug 2012 A1
20120205925 Muller et al. Aug 2012 A1
20120228886 Muller et al. Sep 2012 A1
20120252402 Jung Oct 2012 A1
20130049403 Fannon et al. Feb 2013 A1
20130069761 Tieman Mar 2013 A1
20130079984 Aerts et al. Mar 2013 A1
20130104459 Patel et al. May 2013 A1
20130127180 Heberer et al. May 2013 A1
20130138303 McKee et al. May 2013 A1
20130207794 Patel Aug 2013 A1
20130282226 Pollmann Oct 2013 A1
20130295913 Matthews, III et al. Nov 2013 A1
20130311046 Heberer et al. Nov 2013 A1
20130321065 Salter et al. Dec 2013 A1
20130325521 Jameel Dec 2013 A1
20140000165 Patel et al. Jan 2014 A1
20140007404 Krishnan et al. Jan 2014 A1
20140015637 Dassanakake et al. Jan 2014 A1
20140088825 Lange et al. Mar 2014 A1
20140129113 Van Wiemersch et al. May 2014 A1
20140150581 Scheuring et al. Jun 2014 A1
20140156111 Ehrman Jun 2014 A1
20140188999 Leonard et al. Jul 2014 A1
20140200774 Lange et al. Jul 2014 A1
20140227980 Esselink et al. Aug 2014 A1
20140242971 Aladenize et al. Aug 2014 A1
20140245666 Ishida et al. Sep 2014 A1
20140256304 Frye et al. Sep 2014 A1
20140278599 Reh Sep 2014 A1
20140293753 Pearson Oct 2014 A1
20140338409 Kraus et al. Nov 2014 A1
20140347163 Banter et al. Nov 2014 A1
20150001926 Kageyama et al. Jan 2015 A1
20150048927 Simmons Feb 2015 A1
20150059250 Miu et al. Mar 2015 A1
20150084739 Lemoult et al. Mar 2015 A1
20150149042 Cooper et al. May 2015 A1
20150161832 Esselink et al. Jun 2015 A1
20150197205 Kiong Jul 2015 A1
20150240548 Bendel et al. Aug 2015 A1
20150294518 Peplin Oct 2015 A1
20150330112 Van Wiemeersch et al. Nov 2015 A1
20150330113 Van Wiemeersch et al. Nov 2015 A1
20150330114 Linden et al. Nov 2015 A1
20150330117 Van Wiemeersch et al. Nov 2015 A1
20150330133 Konchan et al. Nov 2015 A1
20150360545 Nanla Dec 2015 A1
20150371031 Ueno et al. Dec 2015 A1
20160060909 Krishnan et al. Mar 2016 A1
20160130843 Bingle May 2016 A1
20160138306 Krishnan et al. May 2016 A1
20160153216 Funahashi et al. Jun 2016 A1
20160273255 Suzuki et al. Sep 2016 A1
20160326779 Papanikolaou et al. Nov 2016 A1
20170014039 Pahlevan et al. Jan 2017 A1
20170022742 Seki et al. Jan 2017 A1
20170058588 Wheeler et al. Mar 2017 A1
20170074006 Patel Mar 2017 A1
20170247016 Krishnan Aug 2017 A1
20170270490 Penilla et al. Sep 2017 A1
20170306662 Och et al. Oct 2017 A1
20170349146 Krishnan Dec 2017 A1
20180038146 Linden Feb 2018 A1
20180038147 Linden et al. Feb 2018 A1
20180051493 Krishnan et al. Feb 2018 A1
20180051498 Van Wiemeersch et al. Feb 2018 A1
20180058128 Khan et al. Mar 2018 A1
20180065598 Krishnan Mar 2018 A1
20180080270 Khan Mar 2018 A1
20180128022 Van Wiemeersh et al. May 2018 A1
20180363354 Linden et al. Dec 2018 A1
Foreign Referenced Citations (74)
Number Date Country
2683455 Mar 2005 CN
1232936 Dec 2005 CN
201198681 Feb 2009 CN
201280857 Jul 2009 CN
101527061 Sep 2009 CN
201567872 Sep 2010 CN
101932466 Dec 2010 CN
102071860 May 2011 CN
201915717 Aug 2011 CN
202200933 Apr 2012 CN
202686247 Jan 2013 CN
103206117 Jul 2013 CN
103264667 Aug 2013 CN
203237009 Oct 2013 CN
203511548 Apr 2014 CN
203783335 Aug 2014 CN
204326814 May 2015 CN
103195324 Jun 2015 CN
204899549 Dec 2015 CN
4403655 Aug 1995 DE
19620059 Nov 1997 DE
19642698 Apr 1998 DE
19642698 Nov 2000 DE
10212794 Jun 2003 DE
20121915 Nov 2003 DE
10309821 Sep 2004 DE
102005041551 Mar 2007 DE
102006029774 Jan 2008 DE
102006040211 Mar 2008 DE
102006041928 Mar 2008 DE
102010052582 May 2012 DE
102011051165 Dec 2012 DE
102015101164 Jul 2015 DE
102014107809 Dec 2015 DE
0372791 Jun 1990 EP
0694664 Jan 1996 EP
1162332 Dec 2001 EP
1284334 Feb 2003 EP
1288403 Mar 2003 EP
1284334 Sep 2003 EP
1460204 Sep 2004 EP
1465119 Oct 2004 EP
1338731 Feb 2005 EP
1944436 Jul 2008 EP
2053744 Apr 2009 EP
2314803 Apr 2011 EP
2698838 Jun 1994 FR
2783547 Mar 2000 FR
2841285 Dec 2003 FR
2860261 Apr 2005 FR
2898632 Sep 2007 FR
2948402 Jul 2009 FR
2955604 Jul 2011 FR
2402840 Dec 2004 GB
2496754 May 2013 GB
62255256 Nov 1987 JP
05059855 Mar 1993 JP
406167156 Jun 1994 JP
406185250 Jul 1994 JP
2000064685 Feb 2000 JP
2000314258 Nov 2000 JP
2006152780 Jun 2006 JP
2007100342 Apr 2007 JP
2007138500 Jun 2007 JP
20030025738 Mar 2003 KR
20120108580 Oct 2012 KR
0123695 Apr 2001 WO
03095776 Nov 2003 WO
2013111615 Aug 2013 WO
2013146918 Oct 2013 WO
2014146186 Sep 2014 WO
2015064001 May 2015 WO
2015145868 Oct 2015 WO
2017160787 Sep 2017 WO
Non-Patent Literature Citations (19)
Entry
Kisteler Instruments, “Force Sensors Ensure Car Door Latch is Within Specification,” Article, Jan. 1, 2005, 3 pages.
General Motors Corporation, 2006 Chevrolet Corvette Owner Manual, © 2005 General Motors Corporation (month unknown), 4 pages.
General Motors LLC, 2013 Chevrolet Corvette Owner Manual, © 2012 General Motors LLC (month unknown), 17 pages.
General Motors, “Getting to Know Your 2014 Corvette,” Quick Reference Guide, Copyright 2013 General Motors (month unknown), 16 pages.
InterRegs Ltd., Federal Motor Vehicle Safety Standard, “Door Locks and Door Retention Components,” 2012, F.R. vol. 36 No. 2326—Feb. 12, 1971, 23 pages.
Ross Downing, “How to Enter & Exit a Corvette With a Dead Battery,” YouTube video http://www.youtube.com/watch?v=DLDqmGQU6L0, Jun. 6, 2011, 1 page.
Jeff Glucker, “Friends videotape man ‘trapped’ inside C6 Corette with dead battery,” YouTube via Corvett Online video http://www.autoblog.com/2011/05/14/friends-videotape-man-trapped-inside-c6-corvette-with-dead-bat/, May 14, 2011, 1 page.
Don Roy, “ZR1 Owner Calls 911 After Locking Self in Car,” website http://www.corvetteonline.com/news/zr1-owner-calls-911-after-locking-self-in-car/, Apr. 13, 2011, 2 pages.
Zach Bowman, “Corvette with dead battery traps would-be thief,” website http://www.autoblog.com/2011/10/25/corvette-with-dead-battery-traps-would-be-thief/, Oct. 25, 2011, 2 pages.
Hyundai Bluelink, “Send Directions to your car,” Link to App, 2015 (month unknown), 3 pages.
Bryan Laviolette, “GM's New App Turns Smartphones into Virtual Keys,” Article, Jul. 22, 2010, 2 pages.
Zipcar.com, “Car Sharing from Zipcar: How Does car Sharing Work?” Feb. 9, 2016, 6 pages.
Department of Transportation, “Federal Motor Vehicle Safety Standards; Door Locks and Door Retention Components and Side Impact Protection, ”http://www.nhtsa.gov/cars/rules/rulings/DoorLocks/DoorLocks_NPRM.html#VI_C, 23 pages, Aug. 28, 2010.
“Push Button to open your car door” Online video clip. YouTube, Mar. 10, 2010. 1 page.
Car of the Week: 1947 Lincoln convertible by: bearnest May 29, 2012 http://www.oldcarsweekly.com/car-of-the-week-car-of-the-week-1947-lincoln-convertible. 7 pages.
George Kennedy, “Keyfree app replaces conventional keys with your smart phone,” website, Jan. 5, 2015, 2 pages.
Hyundai Motor India Limited, “Hyundai Care,” website, Dec. 8, 2015, 3 pages.
Keyfree Technologies, Inc., “Keyfree,” website, Jan. 26, 2016, 2 pages.
PRWEB “Keyfree Technologies Inc. Launches the First Digital Car Key,” PRWeb ebooks, Jun. 6, 2016 (3 pages).
Related Publications (1)
Number Date Country
20190249475 A1 Aug 2019 US
Divisions (1)
Number Date Country
Parent 15245622 Aug 2016 US
Child 16395612 US