Anti-pinch logic for door opening actuator

Information

  • Patent Grant
  • 11180943
  • Patent Number
    11,180,943
  • Date Filed
    Tuesday, September 17, 2019
    5 years ago
  • Date Issued
    Tuesday, November 23, 2021
    3 years ago
Abstract
A vehicle door system includes a vehicle door and electrically-powered linear and rotary actuators. The vehicle door system also includes a pinch sensor. Upon receiving an open door command, a controller actuates the linear actuator and then actuates the rotary actuator to open the door. The controller also actuates the linear actuator to prevent closing of the door if the pinch-sensor detects an object in a door opening. The controller actuates the rotary actuator to close the door upon receiving a close door command.
Description
FIELD OF THE INVENTION

The present invention generally relates to vehicle doors, and in particular to a vehicle including one or more powered door opening mechanisms and anti-pinch sensors to prevent pinching of user's hands.


BACKGROUND OF THE INVENTION

Various types of vehicle doors and door latch mechanisms have been developed. The vehicle doors may have powered door opening mechanisms. Known vehicle doors may also include powered latches that can be actuated to permit opening a vehicle door without requiring movement of an external door handle. However, known vehicle door systems may suffer from various drawbacks.


SUMMARY OF THE INVENTION

One aspect of the present disclosure is a vehicle door system including a vehicle structure having a door opening. A door having a front edge portion is rotatably mounted to the vehicle structure to close off the door opening when the door is in a closed position. The door includes a rear edge portion that is opposite the front edge portion. The system includes an anti-pinch sensor that is configured to detect a user's hand if a user's hand is positioned adjacent the door opening. The system also includes an electrically-powered door actuator that can be actuated to partially open the door by shifting the door from a closed position to a partially open position to form a gap between the rear edge portion of the door and the vehicle structure such that a user can grasp the rear edge portion and pull the door to a fully open position. The electrically-powered latch mechanism can be actuated to shift the door from the fully open position towards the closed position. The system also includes a controller that is configured to actuate the electrically-powered door actuator to prevent the door from closing if the anti-pinch sensor detects a user's hand. Actuation of the electrically-powered door actuator may include causing an electric motor of the electrically-powered door actuator to remain mechanically connected to the door without supplying electrical power to the electrically-powered door actuator such that the electric motor acts as a brake to prevent movement of the door. The controller is also configured to actuate the electrically powered actuator to shift the door from the fully open position towards the closed position.


Another aspect of the present disclosure is a vehicle door system including a door that is configured to move between open and closed positions. The system includes at least one electrically-powered actuator that is configured to open and close the door. The system also includes an anti-pinch sensor that is configured to detect a user's hand adjacent a door opening, and a controller that is configured to actuate the electrically-powered actuator to prevent closing of the door if the anti-pinch sensor detects a user's hand.


Another aspect of the present disclosure is a vehicle door system including a door and electrically-powered linear and rotary actuators. The vehicle door system also includes a pinch sensor and a controller actuates the linear actuator and then actuates the rotary actuator upon receiving an open door command. The controller also actuates the linear actuator to prevent closing of the door if the pinch sensor detects an object in a door opening. The controller also actuates the rotary actuator to close the door upon receiving a close door command.


Another aspect of the present disclosure is a vehicle door system including a vehicle structure having adjacent front and rear door openings. Front and rear doors are rotatably mounted to the vehicle structure to close off the front and rear door openings, respectively, when the doors are in closed positions. Front and rear anti-pinch sensors that are configured to detect user's hands adjacent the front and rear door openings, respectively. Front and rear electrically-powered latch mechanisms are configured to permit the front and rear doors, respectively, to open when the electrically-powered latch mechanisms are unlatched. The front and rear electrically-powered latch mechanisms retain the front and rear doors in closed positions when the electrically-powered latch mechanisms are latched. The vehicle door system also includes front and rear electrically-powered door actuators that can be actuated to shift the front and rear doors, respectively, from closed positions to open positions. A controller is configured to actuate at least one of the front and rear electrically-powered door actuators to prevent the at least one of the front and rear doors from closing if at least one of the front and rear anti-pinch sensors detects a user's hand.


These and other aspects, objects, and features of the present disclosure/invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a partially schematic plan view of a vehicle including anti-pinch sensors and linear and rotary electrically-powered door actuators that open and/or close the vehicle doors;



FIG. 2 is a schematic view of a portion of the vehicle of FIG. 1;



FIG. 3 is a schematic view of a portion of the vehicle of FIG. 1;



FIG. 4 is a schematic view of an electrically-powered linear door actuator in a first check position;



FIG. 5 is a schematic view of an electrically-powered linear door actuator in a second check position;



FIG. 5A is a partially fragmentary isometric view of an electrically-powered rotary door actuator;



FIG. 6 is a schematic plan view of a vehicle door in a closed position;



FIG. 7 is a schematic plan view of a vehicle door in a partially opened first check position;



FIG. 8 is a schematic plan view of a vehicle door in a fully open position;



FIG. 9A is a first portion of a flow chart showing operation of front and rear vehicle doors that include an electrically-powered rotary actuator that opens and closes the vehicle doors;



FIG. 9B is a second portion of the flow chart of FIG. 9A;



FIG. 10A is a first portion of a flow chart showing operation of front and rear vehicle doors that include an electrically-powered rotary actuator and an electrically-powered linear actuator; and



FIG. 10B is a second portion of the flow chart of FIG. 10A.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in FIG. 1. However, it is to be understood that the disclosure/invention may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


The present Application is related to U.S. Pat. No. 10,329,823, issued on Jun. 25, 2019, entitled “ANTI-PINCH CONTROL SYSTEM FOR POWERED VEHICLE DOORS,” and U.S. Pat. No. 10,227,810, issued on Mar. 12, 2019, entitled “PRIORITY DRIVEN POWER SIDE DOOR OPEN/CLOSE OPERATIONS,” the entire contents of each of which are being incorporated by reference.


With reference to FIG. 1, a motor vehicle 1 includes a body structure 2, front doors 4A and 4B, and rear doors 6A and 6B. The front doors 4A and 4B are configured to open and close to provide access to interior 12 of vehicle 1 through front openings 10A and 10B, respectively. Similarly, rear doors 6A and 6B are configured to open and close to provide access through rear door openings 14A and 14B. Front doors 4A and 4B are rotatably mounted to body structure 2 by hinges 16A and 16B, and rear doors 6A and 6B are rotatably mounted to body structure 2 by rear hinges 18A and 18B, respectively. In general, the doors may be opened and/or closed by powered actuators. The doors may also be manually pulled open or pushed closed by a user. As discussed in more detail below, the vehicle doors 4A, 4B, 6A and 6B may include exterior switches or sensors 20A-20B, respectively, that can be actuated by a user to generate “door open” commands to unlatch and open the vehicle doors.


Vehicle 1 further includes front and rear anti-pinch sensors 22A-22D that are configured to detect a user's hand if the user's hand is inserted into an opening 10A, 10B, 14A, 14B when a vehicle door is opened. Pinch sensors 22A-22D may comprise capacitive sensors, pressure sensitive sensors, or other suitable sensor capable of detecting a user's hand. Pinch sensors 22A-22D may be mounted to the body structure 2 adjacent the door openings. The doors 4A, 4B, 6A, and 6B include electrically-powered rotary actuators 60 (FIG. 5A) that rotate the doors to a partially or fully open position and/or close the doors. The vehicle doors 4A, 4B, 6A, and 6B may optionally include an electrically-powered linear door opener or actuator 24 that includes a plunger 26 that can be shifted linearly to a first extended position to partially open the doors (see also FIG. 7). It will be understood that hydraulic, pneumatic, or other types of powered mechanisms may be utilized in linear powered actuator 24 and rotary powered actuator 60. The doors 4A, 4B, 6A, and 6B also include electrically-powered latch mechanisms 32A-32D. Powered latch mechanisms 32A-32D retain the doors in closed positions when in a latched configuration, and permit opening of the doors when in unlatched configurations. The powered latches 32A-32D can be actuated by an Electronic Control Unit (“ECU”) such as controller 28 to unlatch the doors if unlatch switches 20A-20D, respectively, are actuated by a user. The powered latches 32A-32D may define locked and unlocked states such that powered latches 32A-32D will not unlatch unless they are in an unlocked state. The locked and unlocked states may be electronic (e.g. a stored state or flag in controller 28), and the powered latches 32A-32D may be unlocked if the vehicle's security system detects an authorized fob near the vehicle 1. Alternatively, a user may enter a security code (“PIN”) utilizing a touchpad or keypad (not shown) to unlock the powered latches 32A-32D, or the vehicle may include a fingerprint reader (not shown) or other system/device to permit authorized users to unlock the powered latches 32A-32D.


The controller 28 may be operably connected to the anti-pinch sensors 22A-22D, powered door opening mechanisms 24A-24D, and powered latches 32A-32D. Controller 28 may comprise a single central controller as shown in FIG. 1, or controller 28 may comprise separate controllers that are located in each door 4A, 4B, 6A, and 6B. The powered door opening mechanisms 24A-24D and powered latches 32A-32D are described in more detail in copending U.S. Pat. No. 10,227,810.


As discussed in more detail below, to enter vehicle 1 a user pushes release switch 20A which is operably connected to a controller 28. Controller 28 then unlatches the powered latch 32A (provided the door/latch is unlocked) and actuates the linear powered door opening mechanism 24 to thereby cause the plunger 26 to shift to an extended (“first check”) position to thereby at least partially open door 4A whereby rear edge 30A of door 4A is spaced apart from vehicle body 2. A user may then grasp edge 30A and pull door 4A to a fully open position. The other doors 4B, 6A, and 6B may be opened in a substantially similar manner. Doors 4A, 4B, 6A, 6B may also include electrically-powered rotary actuators 60 (FIGS. 2, 3, 6, 7 and 8) that rotate the doors from the first check position (or a second check position) to a fully open position. Electrically-powered rotatory actuators 60 may also rotate the doors from an open position back to a closed position. Doors 4A, 4B, 6A, 6B may include both linear powered actuators 24 and rotary powered actuators 60. Alternatively, the doors may include only rotary actuators 60. The powered door opening mechanisms 24 and/or 60 eliminates the need for external vehicle door handles that would otherwise be required to permit a user to grasp the door handle to pull the door open.


Opening and closing of the driver's side front and rear doors 4A and 6A is shown schematically in FIGS. 2-8. It will be understood that the passenger side doors 4B and 6B operate in a substantially similar manner as driver's side doors 4A and 6A. In use, a user initially actuates a sensor or switch 20A or 20C to generate an unlatch or open request/command to controller 28. For example, if a user actuates/pushes the unlatch (“open command”) sensor/switch 20A, controller 28 generates a signal to powered latch 32A of front door 4A to thereby cause powered unlatching of latch 32A. Similarly, if unlatch (open) sensor/switch 20C is actuated, controller 28 generates a signal to unlatch powered latch 32C of rear door 6A. If vehicle 1 is equipped with linear actuators 24, after the powered latch 32A or 32B is unlatched, controller 28 then generates a signal to the linear powered actuator 24A or 24C, causing plunger 26 to extend and push door 4A or 6A to a partially opened position. A user then grasps rear edge 30A or 30C of door 4A or 6A to pull the door to a fully open position. As a user grasps the edge 30A or 30C, anti-pinch sensors 22A or 22C generate a signal to controller 28 indicating that a user's hand is present. Controller 28 may then generate a signal to retain the plunger 26 in an extended position to prevent pinching of a user's hand.


Alternatively, if vehicle 1 is only equipped with rotary actuators 60 (i.e., vehicle 1 does not include linear actuators 24), after the unlatch/open sensor/switch 20 is actuated, controller 28 actuates rotary actuator 60 to rotate the door to a partially or fully open position after the powered latch 32 is unlatched. If the door is rotated to a fully open position by rotary actuator 60, a user does not need to pull the door to the fully open position.


Referring to FIG. 3, when rear door 6A is opened and front door 4A remains closed, a user may nevertheless insert a hand and grasp rear edge 30A of front door 4A. If rear door 6A were to be closed this could pinch a user's hand positioned adjacent front pinch sensor 22A. As discussed in more detail below in connection with FIGS. 9A, 9B, 10A, and 10B, controller 28 may be configured/programmed to actuate linear actuators 24 and/or rotary actuators 60 to prevent pinching if the front door 4A is closed while the rear door 6A is open. As shown in FIG. 3, anti-pinch sensors 122A, 122C, etc. may optionally be mounted to the vehicle doors 4A, 6A adjacent the rear edges 30A, 30C, etc. rather than to the vehicle body.


With reference to FIGS. 4 and 5, the doors 4A may optionally include a linear electrically-powered door opening mechanism 24A that is disposed in an interior space 34A of door 4A between outer side 36A and inner side 38A of door 4A. All doors of the vehicle 1 may include powered door opening mechanisms 24 that are substantially similar to the mechanism 24A. Mechanism 24A may include a housing or base structure 46 and a plunger 26 that is movably interconnected with the housing 46 for reciprocating movement relative to the housing 46. The mechanism 24A may include an electric motor 40 and gear drive 42 that provide for powered movement of plunger 26 between a retracted position and one or more extended positions. A sensor 44 enables controller 28 to determine the position of plunger 26 relative to housing 46. The components of powered actuator 24A are shown schematically in FIGS. 4 and 5. It will be understood that the powered door opening mechanism 24A may have various configurations as required for a particular application. For example, the powered door opening mechanism 24 may be configured as disclosed in copending U.S. Pat. No. 10,227,810.


Plunger 26 may be actuated to extend to a first check position 26A (FIG. 4), causing door 4A to open to a first partially open position (see also FIG. 7) whereby a gap “G1” is formed between inner surface 38A of door 4A and surface 50 of vehicle body 2. A pad or surface 48 may be disposed on surface 50 of body 2 in the region where plunger 26 contacts surface 50 of vehicle body 2. As shown in FIG. 5, the plunger 26 may be further extended to a fully extended position 26B that is slightly further extended than position 26A of FIG. 4. Plunger 26 may be shifted to the fully extended position 26B to cause the door to shift to a first check position having a gap “G2” that is slightly greater than gap G1. Actuator 24 may be actuated to shift plunger 26 directly to position 26B to move the door to a first check position having a gap G2. In general, the gap G2 of the first check position is sufficiently large to ensure that pinching does not occur. Actuator 24 can be actuated by controller 28 to maintain plunger 26 in position 26B to ensure that the vehicle door does not close on a user's hand. Plunger 26 may shift to fully extended position 26B after door 4A has been shifted to a fully open position (e.g. pulled open by a user). Controller 28 may be configured to detect travel of plunger 26 to fully extended position 26B, and utilize the position 26B as an indication that the door has been shifted to a fully open position. Alternatively, door hinges 16A, 18A, etc., and/or rotary actuators 60 may include a position sensor (not shown) that detects the angular positions of the doors such that controller 28 can determine when the doors are fully open utilizing data from rotary actuators 60. In general, the gap G2 may be about one to about four inches.


With reference to FIG. 5A, electrically-powered rotary actuator 60 may include an electric motor 59 that is operably connected to a strap 61 by a gear drive 61A including a linear gear rack 61B mounted on a strap 61. Electrically-powered rotary actuator 60 includes rotary and/or linear sensors (not shown) that sense (measure) the position of electric motor 59 and/or strap 61 and provide position data concerning the angular position of doors 4, 6 relative to vehicle body 2 to controller 28. Controller 28 is operably connected to electric motor 14 and selectively actuates electric motor 14 to open and close doors 4, 6. Gear drive 61A of electrically-powered rotary actuator 60 may include a mechanism (not shown) that selectively disconnects electric motor 59 from strap 61 such that strap 61 can move freely without rotating electric motor 59. The mechanism may comprise a clutch or other suitable mechanism that includes an electrically-powered actuator (e.g. solenoid) that can be actuated to disengage the electric motor 59 from gear drive 61A such that the door can be opened/closed freely. If the clutch is engaged (i.e. gear rack 61B is mechanically connected to electric motor 59 by gear drive 61A) but electric power is not supplied to electric motor 59, a relatively large force must be applied to move the door and back drive electric motor 59. This will tend to retain the door in a fixed position (open or partially open) to prevent pinching. Nevertheless, if the clutch is engaged, a user can still grasp the door and apply sufficient force to back drive electric motor 59 and pull the door open or push the door closed. Controller 28 and electrically powered actuator 60 may be configured such that a relatively large opening force acting on the door is detected by controller 28, and controller 28 may be configured to interpret this as an “open door” command and provide electrical power to electric motor 59 to open the door and/or cause the clutch to disengage to permit the door to open freely without back driving electric motor 59. Controller 28 may also be configured to interpret back driving of electric motor 59 (i.e. rotation of electric motor 59 when no electric power is supplied to electric motor 59) in open and/or closed directions as “open door” and “close door” commands, respectively.


Gear drive 61A and electric motor 59 may also be configured such that a force applied to the door while the clutch is engaged does not (cannot) result in back driving of electric motor 59. For example, gear drive 61A may comprise a worm gear arrangement that is non-back drivable. If gear drive 61A is configured in this way, electric motor 59 acts as a brake that prevents rotation of the door when the clutch is engaged and no electric power is supplied to electric motor 59. Also, the clutch may include a spring (not shown) that biases the clutch to an engaged position such that electric power must be supplied to an actuator (e.g. solenoid) to disengage the clutch. Conversely, the clutch may include a spring or the like that biases the clutch to a disengaged position such that a powered actuator must be actuated to engage the clutch. In general, for both back drivable and non-back drivable gear drives 61A, when the clutch is engaged the electric motor 60 generates a force tending to prevent closing of the door to thereby provide an anti-pinching feature or function. Also, electric power tending to open the door may also be supplied to electric motor 60 by ECU 28 while the clutch is engaged to cause electric motor 60 to generate a force tending to prevent closing of the door to provide an anti-pinch feature or function.


With further reference to FIGS. 6-8, a user initially actuates unlatch/open switch or sensor 20A when door 4 or 6 is in a closed position (FIG. 6). Controller 28 then unlatches the powered latch 32. If the door includes a linear powered actuator 24, the controller 28 actuates linear powered door opener 24 to extend plunger 26 to a first check (distance P1) position in which door 4 or 6 is in a first partially opened position creating a gap G1 as shown in FIG. 7. A user may then grasp edge 30 of door 4 and pull the door to a fully open position shown in FIG. 8. Alternatively, controller 28 actuates rotary actuator 60 to rotate the door from the first check position to the fully open position. If the door does not include a linear powered actuator 24, controller 28 unlatches powered latch 32 upon actuation of sensor 20, and controller 28 then actuates rotary actuator 60 to rotate the door 4 or 6 to a first or second check position or to the fully open position (FIG. 8). Controller 28 retracts the plunger 26 when the door is in a fully open position (FIG. 8), and the powered latch 32 is then reset. A user may then manually close the door by pushing the door 4 from the open position (FIG. 8) to the closed position (FIG. 6). Powered latch 32 then retains the door 4A in the fully closed position (FIG. 6). Alternatively, a user may actuate “close” switch or sensor 21 to generate a “close” signal to controller 28, and controller 28 then actuates rotary actuator 60 to rotate the door from an open position to a closed position. Powered latch 32 may comprise a cinching door latch. For example, the claw 180 of the powered latch described in the U.S. Pat. No. 10,227,810 may be operably connected to a powered actuator (e.g. electric motor) whereby the claw rotates from an open/released position to a latched/closed position to engage a striker to pull the door to a fully-closed position. If the powered latch 32 is a cinching door latch, door may be initially moved by a user or by actuator 60 to a mostly closed position 52 (FIG. 8), and the powered latch 32 may then be actuated to shift the door to the fully closed position of FIG. 6. Cinching latch mechanisms are disclosed in U.S. Pat. No. 9,004,570, issued on Apr. 14, 2015 and entitled “ADJUSTABLE LATCH ASSEMBLY,” and U.S. Pat. No. 9,951,547, issued on Apr. 24, 2018 and entitled “ADJUSTABLE DECKLID LATCH ASSEMBLY,” the entire contents of each being incorporated herein by reference. Cinching door latches are generally known in the art, and a detailed description of a cinching door latch is therefore not believed to be necessary. It will be understood that all of the doors 4A, 4B, 6A, and 6B of vehicle 1 may operate in substantially the same manner as the doors shown and described above in connection with FIGS. 2-8.



FIGS. 9A and 9B are first and second portions, respectively, of a flow chart showing operation of a vehicle door system that includes an electrically-powered rotary actuator 60, but does not include an electrically-powered linear actuator 24. The process for opening a vehicle front door begins at step 102 (FIG. 9A), and the process for opening a rear vehicle door begins at step 150 (FIG. 9B).


Referring to FIG. 9A, at step 102 a user actuates the open sensor/button 20 on the front door of the vehicle to generate an “open door” command signal to controller 28. It will be understood that the sensor 20 may comprise a push button or other manually-actuated switch, or it may comprise a proximity sensor. Also, the security system of the vehicle 1 (e.g., ECU 28 and/or other components) may be configured to permit opening of the vehicle doors only if an authorized user is detected. For example, a vehicle 1 may include a passive entry passive start (PEPS) system that detects the presence of a wireless fob carried by a user. If an authorized fob is detected, the system may shift to an authorized or unlocked state in which the powered latches 32 can be unlatched. The security system may be configured to require both detection of an authorized fob and actuation of a proximity sensor (e.g., an “unlock” proximity sensor that is positioned on an outer surface of a vehicle door in addition to the switches or sensors 20, 21) to unlock the vehicle doors to permit unlatching and opening of the vehicle doors.


As shown at step 104, if the ECU 28 determines that an authorized user (e.g. wireless fob) has been detected to thereby authorize/unlock the door, and if the open (unlatch) sensor 20 is actuated, the ECU 28 sends a signal to the powered front door latch 32 to unlatch the front door latch 32 as shown at step 106. As shown at steps 108 and 110, the ECU 28 then sends a signal to the electrically-powered rotary actuator 60, and the electrically-powered rotary actuator 60 starts rotating the door to a second check position. The term “second check position” as used in FIGS. 9A and 9B generally corresponds to a fully open position (e.g. FIG. 8). However, the second check position could alternatively be an open position in which the door is more open than the first check position (e.g. FIG. 5), but not fully open.


As shown at step 112 and 116 (FIG. 9A), if an obstacle is detected the ECU 28 cuts off electrical current to the electrically-powered rotary actuator 60 before the door reaches the second check position to stop movement of the door. The clutch of electrically-powered rotary actuator 60 may, however, remain engaged at step 112 such that a user must apply a significant force on the door to rotate the door and backdrive the electric motor 59, to provide an anti-pinch safety feature.


As discussed above in connection with FIG. 5A, the electrically-powered rotary actuator 60 may include an electric motor 59 (e.g., stepper motor) and a rotary position sensor. The ECU 28 may be configured to provide electrical power (electric current) to the electrically-powered rotary actuator 60 to open the door at a known rate, and the ECU 28 may be configured to increase or decrease electrical current supplied to the rotary actuator 60 to maintain a constant angular velocity of the door during opening and/or closing operations. If the door encounters an object that impedes opening of the door, the door will typically slow (or stop) rotation relative to an expected rotation rate for a given amount of electrical power supplied to the rotary actuator 60. The ECU 28 may be configured to limit the electrical current supplied to the rotary actuator 60 to a predefined maximum to prevent damage. Also, ECU 28 may be configured to interpret a sudden increase in voltage to maintain a target velocity and/or reduced (or zero) angular velocity at constant or increasing electrical current as indicating that an object has been encountered by the door. Proximity sensors or the like (not shown) may also be utilized to detect objects in the path of the door. Proximity sensors may be utilized to detect objects before the door contacts the object, and ECU 28 may be configured to stop actuation of electrically-powered rotary actuator 60 before the door contacts an object.


As shown at steps 112 and 114 (FIG. 9A), if an obstacle is not detected, the ECU continues to supply electric power to electrically powered rotary actuator 60 and the front door will rotate to the second check (fully open) position, and the ECU 28 will then cut off electrical current to the rotary actuator 60. When the door reaches the fully open position, ECU 28 may (optionally) disengage the clutch of electrically-powered rotary actuator 60 to permit the door to be manually closed without backdriving electric motor 59.


As shown at steps 118, 120, 122, if a user places a hand on the anti-pinch sensors 22 of a front door after the door has moved to the second position, the ECU 28 may provide electrical power to the front electrically-powered rotary actuator 60 to cause electrically-powered rotary actuator 60 to rotate the door to a fully open position. Alternatively, at step 122 the ECU 28 may cut off electric power to electrically-powered rotary actuator 60 while causing the clutch of electrically-powered rotary actuator 60 to remain engaged such that an external force on the door will not move the door unless the force is sufficient to back drive the electric motor 59 of electrically-powered rotary actuator 60.


The controller 28 may be configured to provide power to front electrically-powered rotary actuator 60 to rotate the front door to a partially open position (FIG. 4), or to a first check position (FIG. 5). Alternatively, controller 28 and electrically-powered rotary actuator 60 may be configured to rotate the door to a fully open second check position (e.g., FIG. 8). If the controller 28 and rotary actuator 60 are not configured to rotate the door to a fully open second check position, the ECU 28 determines at step 126 if the door has reached a fully open position due to a user pulling the front door to a fully open position, or due to actuation of electrically-powered of rotary actuator 60 by ECU 28. At step 126, ECU utilizes the door sensor position of rotary actuator 60 to determine if the door is open. If the door is not open at step 126, the process returns to step 122, and the ECU 28 powers the actuator 60, or actuates the clutch/brake of electrically-powered rotary actuator 60 without supplying electric power to electric motor 59 of electrically-powered rotary actuator 60 to prevent closing of the door. However, if the door has been a fully opened, at step 130 the ECU 28 resets the front door latch 32 to enable cinching and latching. It will be understood that the door latch 32 may comprise a powered cinching latch, or it may comprise a powered latch that does not have a cinching function. If the door latch 32 does not have a powered cinching feature, the ECU 28 does not enable cinching at step 130.


As shown at step 132 (FIG. 9A), if a user actuates the close switch/button/sensor 21 on the front door to generate a “close door” request, the process continues to step 134. Alternatively, at step 132, if the clutch of electrically-powered rotary actuator 60 is engaged and a user pushes on the front door (i.e. starts to backdrive electric motor 59 of electrically-powered rotary actuator 60), ECU 28 may construe this as a “close door” request. In response to this close door request, the ECU may disengage the clutch of electrically-powered rotary actuator 60 to permit the front door to close freely, or ECU 28 may actuate electrically-powered rotary actuator 60 to close the door. At step 134, the ECU 28 provides electrical power to the rotary actuator 60 to rotate the front door to a closed position, and the door rotates as shown at step 136. As the front door is closing, the position sensor (e.g., rotary actuator 60) senses the door closing and provides a signal to the ECU 28. As discussed above in connection to step 112, the ECU 28 may utilize data from rotary actuator 60 to determine if an object has been encountered by the door. As shown as step 146 (FIG. 9A), the ECU cuts off electrical power/current to the front rotary actuator 60 if an object is detected, and the process then returns to step 132. If an object is not detected at step 140, the process continues to 142 and the ECU 28 resets the front latch 32 to enable cinching and latching. The front door then closes as shown at step 144.


The rear door operation (FIG. 9B) shown at steps 150-186 generally corresponds to front door operation (steps 102-140 of FIG. 9A). Step 170 may include substantially the same operations with respect to rear electrically-powered rotary actuator 60 as discussed above in connection with step 122 and front electrically-powered rotary actuator 60.


However, the rear door operation is not identical to front door operation. Specifically, at step 188 (FIG. 9B), if an object is not detected, the process returns to step 192 (FIG. 9A). The system (ECU 28) then determines at step 192 if a user's hand is on the front door anti-pinch sensors 22. If not, at steps 196 and 198 the ECU 28 resets the rear latch and the rear door is allowed to close and latch. However, if a user's hand is detected on the front door anti-pinch sensor 22 at step 192, the process then continues to step 194. If the front door is open, the process continues at step 122 as described above. If the front door is not open at step 194, the process continues to step 104 as described above.


Thus, it can be seen that the rear door does not close unless a user's hand on the front door is not detected at step 192. This prevents pinching if a user were to position a hand along the rear edge of a closed front door (FIG. 3) while the adjacent rear door 6A is open. If a user's hand were to be positioned along the rear edge 30A of the front door 4A while the rear door 6A is open (FIG. 3), and if the rear door 6A were then to be closed (FIG. 2), a pinch condition could result. The process shown at steps 192, 194, and 122 of FIG. 9A prevents this pinching situation.



FIGS. 10A and 10B are first and second portions, respectively, of a flow chart showing operation of a vehicle door system including both linear electrically-powered actuators 24 and electrically-powered rotary actuators 60. Operation of the front door begins at step 202 (FIG. 10A) and operation of the rear door begins at step 252 (FIG. 10B).


Steps 202-210 generally correspond to steps 102-110 of FIG. 9A. However, at step 210, the plunger of linear actuator 24 is extended to push the door to a first check position, and the ECU 28 then sends a signal to the rotary actuator 60 as shown at step 212. The rotary actuator 60 then starts rotating the front door to the fully open second check position as shown in step 214. If an object is detected at step 216, the ECU cuts off electrical current (power) to the front rotary actuator 60 as shown at step 220 to prevent further opening of the door. If an object is not detected at step 216, the front door rotates to the fully open second check position as shown at step 218. As shown at steps 222, 224 and 226, a user then places a hand on the front door anti-pinch sensors 22, and the ECU 28 powers the rotary actuator 60 and/or the linear actuator 24 to maintain the door at a first check position to prevent pinching.


At step 228, the ECU 28 activates the front door cinching. At step 230, the ECU determines if a user has pulled the front door to an open position utilizing, for example, sensors of rotary actuators 60. If a user has not pulled a door open at step 230, the process returns to step 226. However, if a user has pulled a front door open at step 230 utilizing rotary actuator 60 (Step 232), the ECU 28 then retracts plunger 26 of linear actuator 24 as shown at step 234 to permit the door to be closed.


As shown at step 238, a user then actuates the close button/sensor 21 on the door to generate a “close door” command/request to ECU 28 to close the door. The ECU 28 then powers the rotary actuator 60 to close the front door as is shown in step 240. As shown at steps 242 and 244, as the front door is closing, the ECU 28 receives a signal from rotary actuator 60 concerning the position of the door. If an object is detected at step 246, the ECU 28 cuts off electrical current (power) to the rotary actuator 60 as shown at step 252 to stop the door. As discussed above, ECU 28 may monitor the power and position of actuator 60 to determine if an object has been encountered by the door.


If an object is not detected at step 246, the ECU 28 resets the front latch 32 as is shown at step 248, and the rear door is allowed to close and latch as shown at step 250.


Referring to FIG. 10B, rear door open operation begins at step 252. Steps 254-286 of rear door operation (FIG. 10B) generally correspond to steps 204-238, respectively of the front door operation (FIG. 10A), such that a detailed description of these steps is not believed to be necessary. Similarly, steps 288, 290, 292, and 294 (FIG. 10B) are substantially similar to steps 240, 242, 244, and 246, respectively of FIG. 10A. If an object is detected at step 294, the ECU 28 cuts off electrical current (power) to the rear door rotary actuator 60 as shown at step 296 to stop movement of the door, and the process then returns to step 286. However, if an object is not detected at step 294 (e.g., the ECU 28 determines that rotary actuator 60 is not closing the door and/or a sudden increase in electrical power to the rotary actuator 60 occurs) the process returns to step 298 (FIG. 10A). At step 298, the ECU 28 determines if a user's hand is on the front door anti-pinch sensor 22. If the front door is open and a user's hand is on the front door anti-pinch sensor 22, the process continues to step 226 and the rotary actuator 60 and/or the linear actuator 24 are actuated to prevent closing of the front door. This prevents pinching that could otherwise occur if a user's hand were to be placed on rear edge 30A (FIGS. 2 and 3) of front door 4A while rear door 6A is open and then closed. If a user's hand is not detected on the front door anti-pinch sensors 22 at step 298, the ECU 28 resets the powered latch 32 (FIG. 2) and the rear door is allowed to close and latch (step 304).


It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A vehicle door system, comprising: a vehicle structure having a door opening;a door having an edge including a front edge portion that is rotatably mounted to the vehicle structure by a hinge assembly to close off the door opening when the door is in a closed position, the edge of the door further including a rear edge portion that is opposite the front edge portion;an anti-pinch sensor that is configured to detect a user's hand when the user's hand is positioned adjacent the door opening alone, adjacent the edge of the door alone, or adjacent the door opening and the edge of the door taken together;an electrically-powered rotary door actuator that is configured to rotate the door about the hinge assembly, wherein the electrically-powered rotary door actuator can be actuated to partially open the door by shifting the door from a closed position to a partially open position to form a gap between the rear edge portion of the door and the vehicle structure such that a user can grasp the rear edge portion and pull the door to a fully open position, and wherein the electrically-powered rotary door actuator can be actuated to rotate the door from the fully open position towards the closed position; anda controller configured to: 1) cause the electrically-powered rotary door actuator to generate a force tending to prevent the door from closing if the anti-pinch sensor detects the user's hand; and 2) actuate the electrically-powered rotary door actuator to rotate the door from the fully open position towards the closed position.
  • 2. The vehicle door system of claim 1, including: an electrically-powered latch mechanism configured to permit the door to open when the electrically-powered latch mechanism is unlatched, wherein the electrically-powered latch mechanism is configured to retain the door in a closed position when the electrically-powered latch mechanism is latched; andthe controller is configured to actuate the electrically-powered latch mechanism prior to actuating the electrically-powered rotary door actuator to open the door.
  • 3. The vehicle door system of claim 2, wherein: the controller is configured to deactivate the electrically-powered rotary door actuator if the door encounters an object that impedes opening of the door.
  • 4. The vehicle door system of claim 3, wherein: the controller stops supplying electrical current to the electrically-powered rotary door actuator if an electric current to the electrically-powered rotary door actuator exceeds a predefined maximum.
  • 5. The vehicle door system of claim 4, wherein: the controller is configured to actuate the electrically-powered door actuator to shift the door towards the closed position if a close door request is received.
  • 6. The vehicle door system of claim 5, including: a door position sensor; and wherein:the controller is configured to utilize position data from the door position sensor to determine if the door has encountered an object while closing and to deactivate the electrically-powered rotary door actuator if an object is detected.
  • 7. The vehicle door system of claim 1, wherein: the anti-pinch sensor is positioned on the door adjacent the rear edge portion thereof.
  • 8. The vehicle door system of claim 1, wherein: the vehicle structure includes adjacent front and rear door openings;the door comprises a front door that closes off the front door opening when the front door is closed;the anti-pinch sensor comprises a front anti-pinch sensor;the electrically-powered rotary door actuator comprises a front electrically-powered rotary door actuator; and including:a rear door rotatably mounted to the vehicle structure to close off the rear door when the rear door is closed;a rear anti-pinch sensor;a rear electrically-powered rotary door actuator that can be actuated to rotate the rear door to an open position; and wherein:the controller is configured to cause the rear electrically-powered rotary door actuator to generate a force tending to prevent closing of the rear door if the front anti-pinch sensor detects the user's hand.
  • 9. A vehicle comprising: a body having an opening;a movable door that selectively closes the opening;an electrically-powered rotary actuator that is configured to rotate the door in open and closed directions when the electrically-powered rotary actuator is actuated;an anti-pinch sensor configured to detect a user's hand adjacent the door opening; anda controller that causes the electrically-powered rotary actuator to generate a force that tends to prevent closing of the door when the anti-pinch sensor detects the user's hand.
  • 10. The vehicle of claim 9, wherein: the controller actuates the electrically-powered rotary actuator and causes the electrically-powered rotary actuator to close the door upon receiving a close door command.
  • 11. The vehicle of claim 10, wherein: the door includes a close door sensor that can be actuated by a user to generate a close door command to the controller.
  • 12. The vehicle of claim 11, wherein: the close door sensor comprises a switch on an exterior surface of the door that is configured to be manually actuated by the user.
  • 13. The vehicle of claim 9, wherein: the door includes an electrically-powered latch that retains the door in a closed position when the electrically-powered latch is in a latched configuration, and wherein the electrically-powered latch permits opening of the door when the electrically-powered latch is in an unlatched configuration;and wherein the controller, upon receiving an open door command, unlatches the electrically-powered latch and then actuates the electrically-powered actuator to open the door.
  • 14. The vehicle of claim 13, wherein: the electrically-powered latch defines locked or unlocked states, and wherein the electrically-powered latch does not unlatch unless the electrically-powered latch is in the unlocked state.
  • 15. The vehicle of claim 14, wherein: the door includes an open door sensor on an exterior surface thereof that can be actuated by a user to generate an open door command.
  • 16. The vehicle of claim 9, including: an electrically-powered linear actuator having a plunger that shifts from a retracted position to an extended position to push the door to a partially open first check position, and wherein the electrically-powered rotary actuator rotates the door from the first check position to a fully open position, and wherein the electrically-powered rotary actuator moves the door from the fully open position to a closed position.
  • 17. The vehicle of claim 16, Wherein: the controller is configured to actuate the electrically-powered linear actuator to maintain the plunger in the extended position if the anti-pinch sensor detects the user's hand.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a Continuation of U.S. patent application Ser. No. 15/269,281 entitled “ANTI-PINCH LOGIC FOR DOOR OPENING ACTUATOR,” filed Sep. 19, 2016, now U.S. Pat. No. 10,458,171, which is incorporated herein by reference in its entirety.

US Referenced Citations (406)
Number Name Date Kind
2229909 Wread Jan 1941 A
2553023 Walters May 1951 A
3479767 Gardner et al. Nov 1969 A
3605459 Van Dalen Sep 1971 A
3751718 Hanchett Aug 1973 A
3771823 Schnarr Nov 1973 A
3854310 Paull Dec 1974 A
3858922 Yamanaka Jan 1975 A
4193619 Jeril Mar 1980 A
4206491 Ligman et al. Jun 1980 A
4425597 Schramm Jan 1984 A
4457148 Johansson et al. Jul 1984 A
4640050 Yamagishi et al. Feb 1987 A
4672348 Duve Jun 1987 A
4674230 Takeo Jun 1987 A
4674781 Reece et al. Jun 1987 A
4702117 Tsutsumi et al. Oct 1987 A
4848031 Yamagishi et al. Jun 1989 A
4858971 Haag Aug 1989 A
4889373 Ward et al. Dec 1989 A
4929007 Bartczak et al. May 1990 A
5018057 Biggs et al. May 1991 A
5056343 Kleefeldt et al. Oct 1991 A
5058258 Harvey Oct 1991 A
5074073 Zwebner Dec 1991 A
5092637 Miller Mar 1992 A
5173991 Carswell Dec 1992 A
5239779 DeLand et al. Aug 1993 A
5263762 Long et al. Nov 1993 A
5297010 Camarota et al. Mar 1994 A
5332273 Komachi Jul 1994 A
5334969 Abe et al. Aug 1994 A
5494322 Menke Feb 1996 A
5497641 Linde et al. Mar 1996 A
5535608 Brin Jul 1996 A
5547208 Chappell et al. Aug 1996 A
5551187 Brouwer et al. Sep 1996 A
5581230 Barrett Dec 1996 A
5583405 Sai et al. Dec 1996 A
5613716 Cafferty Mar 1997 A
5618068 Mitsui et al. Apr 1997 A
5632120 Shigematsu et al. May 1997 A
5632515 Dowling May 1997 A
5644869 Buchanan, Jr. Jul 1997 A
5653484 Brackmann et al. Aug 1997 A
5662369 Tsuge Sep 1997 A
5684470 DeLand et al. Nov 1997 A
5744874 Yoshida et al. Apr 1998 A
5755059 Schap May 1998 A
5783994 Koopman, Jr. et al. Jul 1998 A
5802894 Jahrsetz et al. Sep 1998 A
5808555 Bartel Sep 1998 A
5852944 Collard, Jr. et al. Dec 1998 A
5859479 David Jan 1999 A
5895089 Singh et al. Apr 1999 A
5896026 Higgins Apr 1999 A
5896768 Cranick et al. Apr 1999 A
5898536 Won Apr 1999 A
5901991 Hugel et al. May 1999 A
5921612 Mizuki et al. Jul 1999 A
5927794 Mobius Jul 1999 A
5964487 Shamblin Oct 1999 A
5979754 Martin et al. Nov 1999 A
5992194 Baukholt et al. Nov 1999 A
6000257 Thomas Dec 1999 A
6027148 Shoemaker Feb 2000 A
6038895 Menke et al. Mar 2000 A
6042159 Spitzley et al. Mar 2000 A
6043735 Barrett Mar 2000 A
6050117 Weyerstall Apr 2000 A
6056076 Bartel et al. May 2000 A
6065316 Sato et al. May 2000 A
6072403 Iwasaki et al. Jun 2000 A
6075294 Boom et al. Jun 2000 A
6075298 Maue et al. Jun 2000 A
6089626 Shoemaker Jul 2000 A
6091162 Williams, Jr. et al. Jul 2000 A
6099048 Salmon et al. Aug 2000 A
6125583 Murray et al. Oct 2000 A
6130614 Miller Oct 2000 A
6145918 Wilbanks, II Nov 2000 A
6157090 Vogel Dec 2000 A
6181024 Geil Jan 2001 B1
6198995 Settles et al. Mar 2001 B1
6241294 Young et al. Jun 2001 B1
6247343 Weiss et al. Jun 2001 B1
6256932 Jyawook et al. Jul 2001 B1
6271745 Anazi et al. Aug 2001 B1
6305737 Corder et al. Oct 2001 B1
6341448 Murray et al. Jan 2002 B1
6357803 Lorek Mar 2002 B1
6361091 Weschler Mar 2002 B1
6405485 Itami et al. Jun 2002 B1
6406073 Watanabe Jun 2002 B1
6441512 Jakel et al. Aug 2002 B1
6460905 Suss Oct 2002 B2
6470719 Franz et al. Oct 2002 B1
6480098 Flick Nov 2002 B2
6481056 Jesse Nov 2002 B1
6515377 Uberlein et al. Feb 2003 B1
6523376 Baukholt et al. Feb 2003 B2
6550826 Fukushima et al. Apr 2003 B2
6554328 Cetnar et al. Apr 2003 B2
6556900 Brynielsson Apr 2003 B1
6602077 Kasper et al. Aug 2003 B2
6606492 Losey Aug 2003 B1
6629711 Gleason et al. Oct 2003 B1
6639161 Meagher et al. Oct 2003 B2
6657537 Hauler Dec 2003 B1
6659515 Raymond et al. Dec 2003 B2
6701671 Fukumoto et al. Mar 2004 B1
6712409 Monig Mar 2004 B2
6715806 Arlt et al. Apr 2004 B2
6734578 Konno et al. May 2004 B2
6740834 Sueyoshi et al. May 2004 B2
6768413 Kemmann et al. Jul 2004 B1
6779372 Arlt et al. Aug 2004 B2
6783167 Bingle et al. Aug 2004 B2
6786070 Dimig et al. Sep 2004 B1
6794837 Whinnery et al. Sep 2004 B1
6825752 Nahata et al. Nov 2004 B2
6829357 Alrabady et al. Dec 2004 B1
6843085 Dimig Jan 2005 B2
6854870 Huizenga Feb 2005 B2
6879058 Lorenz et al. Apr 2005 B2
6883836 Breay et al. Apr 2005 B2
6883839 Belmond et al. Apr 2005 B2
6910302 Crawford Jun 2005 B2
6914346 Girard Jul 2005 B2
6923479 Aiyama et al. Aug 2005 B2
6933655 Morrison et al. Aug 2005 B2
6946978 Schofield Sep 2005 B2
7005959 Amagasa Feb 2006 B2
7038414 Daniels et al. May 2006 B2
7055997 Baek Jun 2006 B2
7062945 Saitoh et al. Jun 2006 B2
7070018 Kachouh Jul 2006 B2
7070213 Willats et al. Jul 2006 B2
7090285 Markevich et al. Aug 2006 B2
7091823 Ieda et al. Aug 2006 B2
7091836 Kachouh et al. Aug 2006 B2
7097226 Bingle et al. Aug 2006 B2
7106171 Burgess Sep 2006 B1
7108301 Louvel Sep 2006 B2
7126453 Sandau et al. Oct 2006 B2
7145436 Ichikawa et al. Dec 2006 B2
7161152 Dipoala Jan 2007 B2
7170253 Spurr et al. Jan 2007 B2
7173346 Aiyama et al. Feb 2007 B2
7176810 Inoue Feb 2007 B2
7180400 Amagasa Feb 2007 B2
7192076 Ottino Mar 2007 B2
7204530 Lee Apr 2007 B2
7205777 Schultz et al. Apr 2007 B2
7221255 Johnson et al. May 2007 B2
7224259 Bemond et al. May 2007 B2
7248955 Hein et al. Jul 2007 B2
7263416 Sakurai et al. Aug 2007 B2
7270029 Papanikolaou et al. Sep 2007 B1
7325843 Coleman et al. Feb 2008 B2
7342373 Newman Mar 2008 B2
7360803 Parent et al. Apr 2008 B2
7363788 Dimig et al. Apr 2008 B2
7375299 Pudney May 2008 B1
7399010 Hunt et al. Jul 2008 B2
7446645 Steegmann Nov 2008 B2
7576631 Bingle et al. Aug 2009 B1
7642669 Spurr Jan 2010 B2
7686378 Gisler et al. Mar 2010 B2
7688179 Kurpinski et al. Mar 2010 B2
7705722 Shoemaker et al. Apr 2010 B2
7747286 Conforti Jun 2010 B2
7780207 Gotou et al. Aug 2010 B2
7791218 Mekky et al. Sep 2010 B2
7926385 Papanikolaou et al. Apr 2011 B2
7931314 Nitawaki et al. Apr 2011 B2
7937893 Pribisic May 2011 B2
8028375 Nakaura et al. Oct 2011 B2
8093987 Kurpinski et al. Jan 2012 B2
8126450 Howarter et al. Feb 2012 B2
8141296 Bem Mar 2012 B2
8141916 Tomaszewski et al. Mar 2012 B2
8169317 Lemerand et al. May 2012 B2
8193462 Zanini et al. Jun 2012 B2
8224313 Howarter et al. Jul 2012 B2
8272165 Tomioke Sep 2012 B2
8376416 Arabia, Jr. et al. Feb 2013 B2
8398128 Arabia et al. Mar 2013 B2
8405515 Ishihara et al. Mar 2013 B2
8405527 Chung et al. Mar 2013 B2
8419114 Fannon Apr 2013 B2
8451087 Krishnan et al. May 2013 B2
8454062 Rohlfing et al. Jun 2013 B2
8474889 Reifenberg et al. Jul 2013 B2
8511739 Brown Aug 2013 B2
8532873 Bambenek Sep 2013 B1
8534101 Mette et al. Sep 2013 B2
8544901 Krishnan et al. Oct 2013 B2
8573657 Papanikolaou et al. Nov 2013 B2
8584402 Yamaguchi Nov 2013 B2
8601903 Klein et al. Dec 2013 B1
8616595 Wellborn, Sr. et al. Dec 2013 B2
8648689 Hathaway et al. Feb 2014 B2
8690204 Lang et al. Apr 2014 B2
8739468 Yamaguchi Jun 2014 B2
8746755 Papanikolaou et al. Jun 2014 B2
8826596 Tensing Sep 2014 B2
8833811 Ishikawa Sep 2014 B2
8903605 Bambenek Dec 2014 B2
8915524 Charnesky Dec 2014 B2
8963701 Rodriguez Feb 2015 B2
8965287 Lam Feb 2015 B2
9003707 Reddmann Apr 2015 B2
9076274 Kamiya Jul 2015 B2
9159219 Magnar et al. Oct 2015 B2
9184777 Esselink et al. Nov 2015 B2
9187012 Sachs et al. Nov 2015 B2
9189900 Penilla et al. Nov 2015 B1
9260882 Krishnan et al. Feb 2016 B2
9284757 Kempel Mar 2016 B2
9322204 Suzuki Apr 2016 B2
9353566 Miu et al. May 2016 B2
9382741 Konchan et al. Jul 2016 B2
9405120 Graf Aug 2016 B2
9409579 Eichin et al. Aug 2016 B2
9416565 Papanikolaou et al. Aug 2016 B2
9475369 Sugiura Oct 2016 B2
9481325 Lange Nov 2016 B1
9493975 Li Nov 2016 B1
9518408 Krishnan Dec 2016 B1
9522590 Fujimoto et al. Dec 2016 B2
9546502 Lange Jan 2017 B2
9551166 Patel et al. Jan 2017 B2
9725069 Krishnan Aug 2017 B2
9777528 Elie Oct 2017 B2
9797178 Elie Oct 2017 B2
9797181 Wheeler et al. Oct 2017 B2
9834964 Van Wiemeersch et al. Dec 2017 B2
9845071 Krishnan Dec 2017 B1
9903142 Van Wiemeersch et al. Feb 2018 B2
9909344 Krishnan et al. Mar 2018 B2
9957737 Patel et al. May 2018 B2
9995066 Ottolini Jun 2018 B1
10008069 Elie Jun 2018 B2
10822848 Worden Nov 2020 B2
10907386 Walawender Feb 2021 B2
20010005078 Fukushima et al. Jun 2001 A1
20010030871 Anderson Oct 2001 A1
20020000726 Zintler Jan 2002 A1
20020111844 Vanstory et al. Aug 2002 A1
20020121967 Bowen et al. Sep 2002 A1
20020186144 Meunier Dec 2002 A1
20030009855 Budzynski Jan 2003 A1
20030025337 Suzuki et al. Feb 2003 A1
20030038544 Spurr Feb 2003 A1
20030101781 Budzynski et al. Jun 2003 A1
20030107473 Pang et al. Jun 2003 A1
20030111863 Weyerstall et al. Jun 2003 A1
20030139155 Sakai Jul 2003 A1
20030172695 Buschmann Sep 2003 A1
20030182863 Mejean et al. Oct 2003 A1
20030184098 Aiyama Oct 2003 A1
20030216817 Pudney Nov 2003 A1
20040061462 Bent Apr 2004 A1
20040093155 Simonds et al. May 2004 A1
20040124708 Giehler et al. Jul 2004 A1
20040195845 Chevalier Oct 2004 A1
20040217601 Garnault et al. Nov 2004 A1
20050057047 Kachouch Mar 2005 A1
20050068712 Schulz et al. Mar 2005 A1
20050216133 MacDougall et al. Sep 2005 A1
20050218913 Inaba Oct 2005 A1
20060056663 Call Mar 2006 A1
20060100002 Luebke et al. May 2006 A1
20060186987 Wilkins Aug 2006 A1
20070001467 Muller et al. Jan 2007 A1
20070090654 Eaton Apr 2007 A1
20070115191 Hashiguchi et al. May 2007 A1
20070120645 Nakashima May 2007 A1
20070126243 Papanikolaou et al. Jun 2007 A1
20070132553 Nakashima Jun 2007 A1
20070170727 Kohlstrand et al. Jul 2007 A1
20080021619 Steegmann et al. Jan 2008 A1
20080060393 Johansson et al. Mar 2008 A1
20080068129 Ieda et al. Mar 2008 A1
20080129446 Vader Jun 2008 A1
20080143139 Bauer et al. Jun 2008 A1
20080202912 Boddie et al. Aug 2008 A1
20080203737 Tomaszewski et al. Aug 2008 A1
20080211623 Scheurich Sep 2008 A1
20080217956 Gschweng et al. Sep 2008 A1
20080224482 Cumbo et al. Sep 2008 A1
20080230006 Kirchoff et al. Sep 2008 A1
20080250718 Papanikolaou et al. Oct 2008 A1
20080296927 Gisler Dec 2008 A1
20080303291 Spurr Dec 2008 A1
20080307711 Kern et al. Dec 2008 A1
20090033104 Konchan et al. Feb 2009 A1
20090033477 Ilium et al. Feb 2009 A1
20090145181 Pecoul et al. Jun 2009 A1
20090160211 Krishnan et al. Jun 2009 A1
20090177336 McClellan et al. Jul 2009 A1
20090240400 Lachapelle et al. Sep 2009 A1
20090257241 Meinke et al. Oct 2009 A1
20100007463 Dingman et al. Jan 2010 A1
20100052337 Arabia et al. Mar 2010 A1
20100060505 Witkowski Mar 2010 A1
20100097186 Wielebski Apr 2010 A1
20100175945 Helms Jul 2010 A1
20100235057 Papanikolaou et al. Sep 2010 A1
20100235058 Papanikolaou et al. Sep 2010 A1
20100235059 Krishnan et al. Sep 2010 A1
20100237635 Ieda et al. Sep 2010 A1
20100253535 Thomas Oct 2010 A1
20100265034 Cap et al. Oct 2010 A1
20100315267 Chung et al. Dec 2010 A1
20110041409 Newman et al. Feb 2011 A1
20110060480 Mottla et al. Mar 2011 A1
20110148575 Sobecki et al. Jun 2011 A1
20110154740 Matsumoto et al. Jun 2011 A1
20110180350 Thacker Jul 2011 A1
20110203181 Magner Aug 2011 A1
20110203336 Mette et al. Aug 2011 A1
20110227351 Grosedemouge Sep 2011 A1
20110248862 Budampati Oct 2011 A1
20110252845 Webb et al. Oct 2011 A1
20110254292 Ishii Oct 2011 A1
20110295469 Rafii Dec 2011 A1
20110313937 Moore, Jr. et al. Dec 2011 A1
20120119524 Bingle et al. May 2012 A1
20120154292 Zhao et al. Jun 2012 A1
20120180394 Shinohara Jul 2012 A1
20120205925 Muller et al. Aug 2012 A1
20120228886 Muller et al. Sep 2012 A1
20120252402 Jung Oct 2012 A1
20130049403 Fannon et al. Feb 2013 A1
20130069761 Tieman Mar 2013 A1
20130079984 Aerts et al. Mar 2013 A1
20130104459 Patel et al. May 2013 A1
20130127180 Heberer et al. May 2013 A1
20130138303 McKee May 2013 A1
20130207794 Patel Aug 2013 A1
20130282226 Pollmann Oct 2013 A1
20130295913 Matthews, III et al. Nov 2013 A1
20130311046 Heberer et al. Nov 2013 A1
20130321065 Salter et al. Dec 2013 A1
20130325521 Jameel Dec 2013 A1
20140000165 Patel Jan 2014 A1
20140007404 Krishnan et al. Jan 2014 A1
20140015637 Dassanakake et al. Jan 2014 A1
20140088825 Lange et al. Mar 2014 A1
20140129113 Van Wiemeersch et al. May 2014 A1
20140150581 Scheuring Jun 2014 A1
20140156111 Ehrman Jun 2014 A1
20140188999 Leonard et al. Jul 2014 A1
20140200774 Lange et al. Jul 2014 A1
20140227980 Esselink et al. Aug 2014 A1
20140242971 Aladenize et al. Aug 2014 A1
20140245666 Ishida Sep 2014 A1
20140256304 Frye et al. Sep 2014 A1
20140278599 Reh Sep 2014 A1
20140293753 Pearson Oct 2014 A1
20140338409 Kraus et al. Nov 2014 A1
20140347163 Banter et al. Nov 2014 A1
20150001926 Kageyama et al. Jan 2015 A1
20150048927 Simmons Feb 2015 A1
20150059250 Miu et al. Mar 2015 A1
20150084739 Lemoult et al. Mar 2015 A1
20150149042 Cooper et al. May 2015 A1
20150161832 Esselink et al. Jun 2015 A1
20150197205 Xiong Jul 2015 A1
20150240548 Bendel Aug 2015 A1
20150294518 Peplin Oct 2015 A1
20150330112 Van Wiemeersch et al. Nov 2015 A1
20150330113 Van Wiemeersch et al. Nov 2015 A1
20150330114 Linden Nov 2015 A1
20150330117 Van Wiemeersch et al. Nov 2015 A1
20150330133 Konchan Nov 2015 A1
20150360545 Nania Dec 2015 A1
20150371031 Ueno et al. Dec 2015 A1
20160032624 Bendel Feb 2016 A1
20160060909 Krishnan Mar 2016 A1
20160130843 Bingle May 2016 A1
20160138306 Krishnan et al. May 2016 A1
20160153216 Funahashi et al. Jun 2016 A1
20160273255 Sukuki et al. Sep 2016 A1
20160326779 Papanikolaou et al. Nov 2016 A1
20170014039 Pahlevan et al. Jan 2017 A1
20170022742 Seki et al. Jan 2017 A1
20170030737 Elie Feb 2017 A1
20170058588 Wheeler et al. Mar 2017 A1
20170074006 Patel et al. Mar 2017 A1
20170247016 Krishnan Aug 2017 A1
20170247927 Elie Aug 2017 A1
20170270490 Penilla et al. Sep 2017 A1
20170306662 Och et al. Oct 2017 A1
20170349146 Krishnan Dec 2017 A1
20180038147 Linden Feb 2018 A1
20180051493 Krishnan et al. Feb 2018 A1
20180051498 Van Wiemeersch et al. Feb 2018 A1
20180058128 Khan Mar 2018 A1
20180065598 Krishnan Mar 2018 A1
20180080270 Khan Mar 2018 A1
20180106081 Bendel Apr 2018 A1
20180128022 Van Wiemeersch et al. May 2018 A1
20190203508 Harajli Jul 2019 A1
Foreign Referenced Citations (73)
Number Date Country
2683455 Mar 2005 CN
1232936 Dec 2005 CN
201198681 Feb 2009 CN
201280857 Jul 2009 CN
101527061 Sep 2009 CN
201567872 Sep 2010 CN
101932466 Dec 2010 CN
201915717 Aug 2011 CN
202200933 Apr 2012 CN
202686247 Jan 2013 CN
103206117 Jul 2013 CN
103264667 Aug 2013 CN
203237009 Oct 2013 CN
203511548 Apr 2014 CN
203783335 Aug 2014 CN
204326814 May 2015 CN
103195324 Jun 2015 CN
204899549 Dec 2015 CN
4403655 Aug 1995 DE
19620059 Nov 1997 DE
19642698 Apr 1998 DE
19642698 Nov 2000 DE
10212794 Jun 2003 DE
20121915 Nov 2003 DE
10309821 Sep 2004 DE
102005041551 Mar 2007 DE
102006029774 Jan 2008 DE
102006040211 Mar 2008 DE
102006041928 Mar 2008 DE
102010052582 May 2012 DE
102011051165 Dec 2012 DE
102015101164 Jul 2015 DE
102014107809 Dec 2015 DE
0372791 Jun 1990 EP
0694664 Jan 1996 EP
1162332 Dec 2001 EP
1284334 Feb 2003 EP
1288403 Mar 2003 EP
1284334 Sep 2003 EP
1460204 Sep 2004 EP
1465119 Oct 2004 EP
1338731 Feb 2005 EP
1944436 Jul 2008 EP
2053744 Apr 2009 EP
2314803 Apr 2011 EP
2698838 Jun 1994 FR
2783547 Mar 2000 FR
2841285 Dec 2003 FR
2860261 Apr 2005 FR
2898632 Sep 2007 FR
2948402 Jul 2009 FR
2955604 Jul 2011 FR
2402840 Dec 2004 GB
2496754 May 2013 GB
52255256 Nov 1987 JP
05059855 Mar 1993 JP
406167156 Jun 1994 JP
406185250 Jul 1994 JP
2000064685 Feb 2000 JP
2000314258 Nov 2000 JP
2006152780 Jun 2006 JP
2007100342 Apr 2007 JP
2007138500 Jun 2007 JP
20030025738 Mar 2003 KR
20120108580 Oct 2012 KR
0123695 Apr 2001 WO
03095776 Nov 2003 WO
2013111615 Aug 2013 WO
2013146918 Oct 2013 WO
2014146186 Sep 2014 WO
2015064001 May 2015 WO
2015145868 Oct 2015 WO
20170160787 Sep 2017 WO
Non-Patent Literature Citations (15)
Entry
Zipcar.com, “Car Sharing from Zipcar: How Does car Sharing Work?” Feb. 9, 2016, 6 pages.
Department of Transportation, “Federal Motor Vehicle Safety Standards; Door Locks and Door Retention Components and Side Impact Protection,” http://www.nhtsa.gov/cars/rules/rulings/DoorLocks/DoorLocks_NPRM.html#VI_C, 23 pages, Aug. 28, 2010.
“Push Button to open your car door” Online video clip. YouTube, Mar. 10, 2010. 1 page.
Car of the Week: 1947 Lincoln convertible By: bearnest May 29, 2012 http://www.oldcarsweekly.com/car-of-the-week/car-of-the-week-1947-lincoln-convertible. 7 pages.
Keyfree Technologies Inc., “Keyfree,” website, Jan. 10, 2014, 2 pages.
PRWEB, “Keyfree Technologies Inc. Launches the First Digital Car Key,” Jan. 9, 2014, 3 pages.
George Kennedy, “Keyfree app replaces conventional keys with your smart phone,” website, Jan. 5, 2015, 2 pages.
Kisteler Instruments, “Force Sensors Ensure Car Door Latch is Within Specification,” Article, Jan. 1, 2005, 3 pages.
InterRegs Ltd., Federal Motor Vehicle Safety Standard, “Door Locks and Door Retention Components,” 2012, F.R. vol. 36 No. 232-Feb. 12, 1971, 23 pages,.
Ross Downing, “How to Enter & Exit a Corvette With a Dead Battery,” YouTube video http://www.youtube.com/watch?v=DLDqmGQU6L0, Jun. 6, 2011, 1 page.
Jeff Glucker, “Friends videotape man ‘trapped’ inside C6 Corette with dead battery,” YouTube via Corvett Online video http://www.autoblog.com/2011/05/14/friends-videotape-man-trapped-inside-c6-corvette-with-dead-bat/, May 14, 2011, 1 page.
Don Roy, “ZR1 Owner Calls 911 After Locking Self in Car,” website http://www.corvetteonline.com/news/zr1-owner-calls-911-after-locking-self-in-car/, Apr. 13, 2011, 2 pages.
Zach Bowman, “Corvette with dead battery traps would-be thief,” website http://www.autoblog.com/2011/10/25/corvette-with-dead-battery-traps-would-be-thief/, Oct. 25, 2011, 2 pages.
Bryan Laviolette, “GM's New App Turns Smartphones into Virtual Keys,” Article, Jul. 22, 2010, 2 pages.
Hyundai Bluelink, “Send Directions to your car,” Link to App, 2015, 3 pages.
Related Publications (1)
Number Date Country
20200011111 A1 Jan 2020 US
Continuations (1)
Number Date Country
Parent 15269281 Sep 2016 US
Child 16573067 US