n/a
n/a
The present invention relates to an anti-pinching device for use in a folding chair to serve as a safety device.
Folding chairs are used in virtually every location where a large number of people need to gather and sit. Such chairs are used for two primary reasons. First, they are light and easily transported. Second, because they have a folding mechanism, they can collapse into a very compact shape that makes it easy to store and stack.
Conventional folding chairs have four principal parts. Each of these parts can be seen in the folding chair 1 depicted in
When assembled, the seat 30 is pivotably connected to the first part 10 at a first pivot point 16. The first pivot point 16 can be at any height on the first part 10 but is, typically, somewhere near the midpoint of the first part 10. The seat 30 is also pivotably connected to an upper region 24 of the second part 20 at a second pivot point 26. For stability of the legs 12, 22, both the first and second parts 10, 20 can have transverse beams 18, 28. These beams 18, 28 are optional depending upon the material of the chair 1 and the weight of the user.
The connecting device 40 is provided to limit movement between a stowed position and an open position in which the chair 1 is used for seating.
The connecting device 40 is pivotally connected to both the first part 10 and the second part 20 at third and fourth pivot points 42, 44, 42′, 44′, respectively.
In a first embodiment of the connecting device 40′ illustrated with dashed lines, the connecting device 40′ is merely a solid beam 40′. In the first embodiment, a first tie beam (formed between the respective pivoting connections of the seat 30 and the first and second parts 10, 20) and a second tie beam (formed between the two pivoting connections of the connecting device 40′), together, establish a system that limits movement of the first and second parts 10, 20. Simply put, the first and second parts 10, 20 are limited in movement between a storage position, in which the first and second parts 10, 20 are adjacent and parallel to one another (see, e.g.,
In a second configuration of the connecting device 40, also shown in
The first and second parts 10, 20 are, typically, formed from circular rods or rectangular columns. Therefore, an area between the first and second parts 10, 20 presents two relatively large pinching surfaces that are not sharp enough to cut a finger(s) disposed therebetween. Instead, the force acting upon the finger is a pressing force that, in some unfortunate cases, can crush a finger disposed therebetween.
In contrast to the crushing surfaces of the parts 10, 12, a typical configuration of the connecting device 40, 40′ is a thin, rectangular cross-sectioned bar of metal 40′ (or two of such bars 46, 48). Thus, the connecting device 40 presents a relatively thinner surface area that acts, not as a crushing surface, but, rather, as a cutting surface—like the blade of a scissors. The dangers presented by the connecting device 40, 40′ are, therefore, axiomatic.
Serious disadvantages exist in the construction of a conventional folding chair 1 shown in
Enough experience in the industry of folding chairs has shown that any cutting surfaces are to be avoided if inadvertent finger removal is to be entirely eliminated.
This danger to users is especially true when the folding chair 1 is sized for use by a child. Children typically do not have sufficient experience with using folding chairs and/or do not understand the folding chair mechanism to appreciate the finger-cutting danger and, therefore, to sufficiently avoid this danger. What is needed, therefore, is a chair that can easily fold up for convenient storage and that can be used by children with a minimum amount of pinching surfaces and with no cutting surfaces that can sever off a child's finger(s).
The present invention provides an anti-pinching device for use in a folding chair that has no cutting surfaces and that can be used by a child with minimal risk or no risk of pinching or cutting off the child's finger(s).
Although the invention is illustrated and described herein as embodied in an anti-pinching device for use in a folding chair, it is, nevertheless, not intended to be limited to the details shown because various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward.
Before the present invention is disclosed and described, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
Referring now to the figures of the drawings in detail and first, particularly to
When assembled, the seat 130 is pivotably connected to the first part 110 at a first pivot point 116. The first pivot point 116 can be at any height on the first part 110 but is, typically, somewhere near the midpoint of the first part 110. The seat 130 is also pivotably connected at an upper region 124 of the second part 120 at a second pivot point 126 (which cannot be seen in
In the configuration according to the present invention, the upper-most end of the second part 120 is pivotally connected to the first part 110 at a third pivot point 129. The structure of the connection between the locking connection 124 and the third pivot point 129 may be seen clearly in
Each leg 122 of the second part 120 is formed from two separate shafts 1222 and 1224. Specifically, as shown in
The outer diameter of the trunk portion 142 corresponds substantially to the inner diameter of the at least partially hollow outer shaft 1222. Therefore, the bushing 140 can merely be press-fitted into the open top end of the outer shaft 1222. It is preferable for the bushing to be formed from a relatively softer material than the inner and outer shafts 1222, 1224. Therefore, the outer diameter of the trunk portion 142 can be slightly larger than the inner diameter of the outer shaft 1222 so that the bushing 140, after being pressed into the outer shaft 1222, cannot be removed from the outer shaft 1222 without application of a substantial external force (such a force being greater than any frictional forces that will occur between the shafts 1222, 1224 during normal use). Also, forming the bushing 140 from a softer material allows the bushing 140 to absorb any frictional forces that are produced when the inner shaft 1224 slides in and out of the outer shaft 1222. Preferably, the bushing is made of polypropylene.
The configuration of the present invention allows the inner shaft 1224 to be slidably but snugly held in the bushing 140 and allows the lower portion of the inner shaft 1224 to extend into and out from the inside of the outer shaft 1222.
The outer diameter of the bushing 140 can be of any size but, preferably, is close in size to the outer diameter of the outer shaft 1222. To prevent the bushing 140 from sliding within the outer shaft 1222, the outer diameter of the head portion 144 is up to approximately 25% greater than the outer diameter of the outer shaft 1222.
To prevent the inner shaft 1224 from retreating into the outer shaft 1222 too far, or to set a particular locking distance of the inner shaft 1224 at a given point in the outer shaft 1222, a locking assembly 150 is provided inside the shafts 1222, 1224. The locking assembly 150 includes a bias device 152 (preferably, in the form of a spring) and a removable lock 154 (preferably, in the form of a push-button). The measures for locking the inner shaft 1224 in a defined position within the outer shaft 1222 utilizing the assembly 150 include providing a first bore 1223 in the outer shaft 1222 and a second bore 1225 in the inner shaft 1224. As shown particularly well in the hidden view of
Rotational stability of the inner shaft 1224 is guaranteed by the configuration of the connection between the inner shaft 1224 and the first part 110. As shown in
In particular, the clevis 156 has a lower portion 157 and an upper portion, the upper portion having two flanges 158. The lower portion 157 is, preferably, a hollow cylinder having an outer diameter and an inner diameter. The inner diameter of the lower portion 157 is sized to fit therein an upper-most end 1226 of the inner shaft 1224. To create this form fit, the upper-most end 1226 has a smaller outer diameter than the outer diameter of the remainder of the inner shaft 1224. This change in diameter, therefore, creates a seat 1228. If the inner diameter of the lower portion 157 of the clevis 156 is sized to fit on the end 1226 of the inner shaft 1224, then the seat 1228 can be used to limit the travel of the lower portion 157 onto the end 1226. Preferably, the clevis 156 is of the same relatively softer material as the bushing 140. Accordingly, if the inner diameter of the lower portion 157 is slightly smaller than the outer diameter of the end 1226, then the clevis 156 can be pressed upon the end 1226 so that it remains in place. Additionally, and/or alternatively, a fastener 170 (such as a screw) can be used to fix the clevis 156 in place (both longitudinally and rotationally) to the inner shaft 1224. The inner shaft 1224 can be provided with a non-illustrated screw hole for receiving the screw 170.
The outer diameter of the lower portion 157 can be of any size. The outer diameter, however, should be greater than the width A of the opening in the bushing 140 so that the clevis 156 does not enter the opening from a top side thereof. It is preferable to have the outer diameter be no more than 25% larger than the outer diameter of the lower portion of the inner shaft 1224.
The upper portion of the clevis 156 has two flanges 158, each defining a bore for receiving the axle 160 therethrough. After the clevis 156 and the inner shaft 1224 are connected to one another and inserted into the bushing 140 and the outer shaft 1222 as shown in
If there is a need to anchor the locking assembly 150 inside the inner shaft 1224 to prevent inadvertent removal of the locking assembly 150, then a protrusion 151 can be formed directly opposite the second bore 1225. See
The photographs of
As can be seen from
Two variations of the connection assembly can be applied to move the rear leg 122 in a position that is further away from the front leg 112 when the chair 100 is closed. A first embodiment can increase the length of the orthogonal portion of the flanges 158 as compared to the length shown in
It is noted that for a folding chair sized to fit a child, a preferred outer diameter of the outer shaft 1222 is 16 mm and outer diameter of the inner shaft 1222 is 13 mm. A preferred outer diameter of the upper-most end 1226 of the inner shaft 1224 is 10 mm.
In an alternative non-illustrated embodiment of the present invention, the chair can have three legs. In one variant, there are two rear legs and one front leg and, in another variant, there is one rear leg and two front legs. In the first variant, each rear leg has the piston of the connecting assembly and the pistons move correspondingly when the chair is folded closed or opened. In the second variant, there is only one piston.
The configurations according to the present invention, therefore, do not have any thin, rectangular cross-sectioned bar or bars of metal 40, 40′. Accordingly, no thin surface areas exist that can act as a cutting surface. As such, the cutting dangers presented by prior art folding chairs are entirely eliminated. In some embodiments of the present invention, the crushing dangers are eliminated as well, making the folding chair safer than chairs of the prior art. Simply put, the serious disadvantages presented by the conventional folding chair 1 as shown in
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described herein above. In addition, unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. A variety of modifications and variations are possible in light of the above teachings without departing from the scope and spirit of the invention, which is limited only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1789295 | Bauer | Jan 1931 | A |
2381574 | Clarin | Aug 1945 | A |
2692011 | Hickok | Oct 1954 | A |
2708962 | Rechler | May 1955 | A |
2757715 | Hendrickson | Aug 1956 | A |
3123396 | Searle | Mar 1964 | A |
4629245 | Hardarson | Dec 1986 | A |
4772068 | Gleckler et al. | Sep 1988 | A |
5413400 | Llanes | May 1995 | A |
5577799 | St. Germain | Nov 1996 | A |
5611594 | Findlay | Mar 1997 | A |
5634684 | Kojima et al. | Jun 1997 | A |
5707104 | Perego | Jan 1998 | A |
5718474 | Kojima et al. | Feb 1998 | A |
6095597 | Huang | Aug 2000 | A |
6279991 | Atkins et al. | Aug 2001 | B1 |
6332646 | Tseng | Dec 2001 | B1 |
6435607 | Liu | Aug 2002 | B1 |
6669281 | Huang | Dec 2003 | B1 |
6871911 | Alexander, Jr. | Mar 2005 | B2 |
20030234563 | Huang | Dec 2003 | A1 |
20040239153 | Leng | Dec 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060186712 A1 | Aug 2006 | US |