The disclosures of the following priority application is herein incorporated by reference:
Japanese Patent Application No. 2004-099131 filed on Mar. 30, 2004.
The present invention relates to an anti-reflection coating provided on an optical element, which is used at a plurality of wavelengths or bandwidths, for example, in a photographic optical system, a binocular, a telescope, a microscope and the like. The present invention relates also to an optical element and an optical system that are provided with anti-reflection coatings.
Anti-reflection coating is provided to reduce the reflection that occurs from the difference in refractive index between the media of optical elements that are incorporated in an optical system. If such reflected light rays are allowed to reach the image plane, then a ghost or a flare can appear, severely degrading the optical performance of the system. In recent years, optical systems have been required of increasingly higher optical performances, so the anti-reflection coating provided on optical elements in an optical system is likewise required to provide increasingly lower degrees of reflection in a range of incident angles wider than ever before.
To meet such demands, progresses have been made in the field of multilayer-film design technique, where various materials and film thicknesses are applied in combination, as well as in the field of multilayer coating technique (for example, refer to Japanese Laid-Open Patent Publication No. 2000-356704).
However, there has been a problem in the prior-art anti-reflection coating. If the angle of light rays incident to an optical surface where anti-reflection coating is provided increases greatly, the light rays entering obliquely, then this condition causes a rapid change in the property of the anti-reflection coating and abruptly weakens the effectiveness of the anti-reflection coating. As a result, there is an increase in the amount of light reflected. In a case where such a reflective surface exists singularly in an optical system, the reflected light is directed toward an object being observed through the system, so the above-mentioned problem does not affect directly the optical performance of the system. However, if such surfaces exist in plurality, then the system can experience at high probability a ghost or a flare, which is caused by the reflected light reaching the image. Nowadays, lenses are fabricated to have large diameters, and this manufacturing trend contributes to increases in the angular range of light rays that are incident to optical elements. As a result, optical systems are now prone to experience ghosts and flares.
In consideration of the above mentioned problem, it is an object of the present invention to provide an anti-reflection coating that realizes a low reflectance for light rays in a wide range of incident angles in the visible light range. It is also an object of the present invention to provide an optical element and an optical system that are equipped with such an anti-reflection coating.
To solve the above mentioned problem, an anti-reflection coating according to a first aspect of the present invention is provided on an optical surface of an optical member for reducing the amount of light rays reflected from the optical surface. For light rays in a wavelength range from 400 nm to 700 nm, the anti-reflection coating has a reflectance of 0.5% or less if the light rays are incident on the optical surface at angles within a range from 0 to 25 degrees, and it has a reflectance of 3.5% or less if the light rays are incident at angles within a range from 0 to 60 degrees.
Also, an anti-reflection coating according to a second aspect of the present invention is provided on an optical surface of an optical member for reducing the amount of light rays reflected from the optical surface. In this case, the anti-reflection coating comprises a plurality of successively superposed layers, and at least one layer is formed by using a sol-gel method. For light rays in a wavelength range from 400 nm to 700 nm, the anti-reflection coating has a reflectance of 0.5% or less if the light rays are incident on the optical surface at angles within a range from 0 to 25 degrees, and it has a reflectance of 3.5% or less if the light rays are incident at angles within a range from 0 to 60 degrees.
It is preferable that, for an optical member having a refractive index of approximately 1.52, the anti-reflection coating comprise a first layer, which is formed on the optical surface, with a refractive index of approximately 1.65 and an optical film thickness of approximately 0.27λ, a second layer, which is formed on the first layer, with a refractive index of approximately 2.12 and an optical film thickness of approximately 0.07λ, a third layer, which is formed on the second layer, with a refractive index of approximately 1.65 and an optical film thickness of approximately 0.30λ, and a fourth layer, which is formed on the third layer, with a refractive index of approximately 1.25 and an optical film thickness of approximately 0.26λ, the “λ” being a reference light-ray wavelength of 550 nm.
Furthermore, it is preferable that the anti-reflection coating be formed in the following way. The first layer is made from aluminum oxide by a vacuum deposition; the second layer is made from a mixture of titanium oxide and zirconium oxide also by a vacuum deposition; the third layer is made from aluminum oxide also by a vacuum deposition; and the fourth layer is made from magnesium fluoride by a sol-gel method.
An optical element according to the present invention comprises an optical member, whose optical surface is a plane or a curved surface, and any of the above described anti-reflection coating, which is provided on the optical surface of the optical member.
Furthermore, an optical system according to a first aspect of the present invention comprises an optical element (for example, the negative meniscus lens L1 described in the following embodiment), which is positioned between an object and an image plane. In this case, at least one of the optical surfaces of the optical element is provided with any of the above described anti-reflection coating.
Also, an optical system according to a second aspect of the present invention comprises a plurality of optical surfaces, and at least one of an n-th ghost-generating surface (for example, the object-side surface 3 of the negative meniscus lens L2) and an m-th ghost-generating surface (for example, the image-side surface 2 of the negative meniscus lens L1) of the optical surfaces is provided with any of the above described anti-reflection coatings. In this case, the optical system is constructed to satisfy the following formula:
Rn×Rm≦0.10 [%].
In the formula, the “Rn” represents the reflectance of the n-th ghost-generating surface while the “Rm” represents the reflectance of the m-th ghost-generating surface.
It is preferable that the optical systems according to the first and second aspects of the present invention be used for light rays in a wavelength range from 400 nm to 700 nm.
Moreover, it is preferable that the optical system according to the present invention be used as an imaging optical system or an viewing optical system.
By the anti-reflection coating, which is provided as described above, the present invention achieves a low reflectance for light rays in the visible light range (400 nm˜700 nm in wavelength) entering in a wide range of incident angles (0˜60 deg). As a result, for the optical element and the optical system equipped with the anti-reflection coating, the present invention can reduce the occurrence of a ghost and a flare effectively.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only and thus are not limitative of the present invention.
Now, preferred embodiments according to the present invention are described in reference to the drawings.
At first, an anti-reflection coating 1 as a first embodiment is described in reference to
In this way, the first through third layers 1a˜1c of the anti-reflection coating 1 are coated by electron-beam evaporations, which are a dry process. However, the fourth layer 1d, which is the uppermost layer, is coated by the following procedure, which is a wet process that uses a sol prepared by a process that uses hydrofluoric acid and magnesium acetate (this process is hereinafter referred to also as “hydrofluoric acid and magnesium acetate method”). Beforehand, the surface of the lens to be coated by this procedure (the above-mentioned optical surface of the optical member 2) is coated successively with an aluminum oxide layer as the first layer 1a, a titanium oxide and zirconium oxide mixed layer as the second layer 1b and an aluminum oxide as the third layer 1c by using a vacuum metallizer. After the optical member 2 is taken out of the vacuum metallizer, the surface of the lens is spin-coated with a sol prepared by a hydrofluoric acid and magnesium acetate method to form a magnesium fluoride layer as the fourth layer 1d. The following (1) is the reaction formula of the hydrofluoric acid and magnesium acetate method.
2HF+Mg(CH3COO)2→MgF2+2CH3COOH (1)
As a sol to be used for the coating, raw materials are mixed and then aged at a high pressure and a high temperature for 24 hours in an autoclave before being applied in the coating. After the optical member 2 is coated with the fourth layer 1d, it is heated at 150 deg C. for an hour in the atmosphere to complete the layer. In the sol-gel method, atoms or molecules gather into particles, each particle comprising a few atoms or molecules to tens of atoms or molecules, and the sizes of the particles range from a few nanometers to tens of nanometers. Furthermore, these particles gather into secondary particles, each secondary particle comprising a few original particles, and then these secondary particles deposit to form the fourth layer 1d.
Now, the optical performance of the anti-reflection coating 1, which is formed in the above described way, is explained in reference to
Furthermore, this anti-reflection coating 1 can be provided on an optical surface of the plane-parallel plate as an optical element or on an optical surface of a lens that is formed in a curvature as described in the following second embodiment.
Now, an imaging optical system 10, which comprises an optical element with the above described anti-reflection coating 1, is described as a second embodiment in reference to
The shape of the aspherical surface is defined by the following equation (2), where the “y” is the height in the direction perpendicular to the optical axis, the “x(y)” is the distance along the optical axis from the plane tangent to the vertex of the aspherical is surface to a point at the height y on the aspherical surface, the “r” is the paraxial radius of curvature (the radius of curvature of the datum sphere), the “k” is a conic section constant, and the “Cn” is the n-th aspherical coefficient.
Table 1 below lists the properties of the lenses of the imaging optical system 10 as the first embodiment. Surface numbers 1˜23 in Table 1 correspond to numerals 1˜23 in
(Data for the Aspherical Surfaces)
As shown in
Now, if the angles of the light ray R incident at the ghost-generating surfaces are considered, the angle of the light ray R incident at the first ghost-generating surface (surface number 3) is approximately 60 degrees while that of the light ray R reflected at the first ghost-generating surface and then incident at the second ghost-generating surface (surface number 2) is approximately 25 degrees. Therefore, the optical performance of a case where these ghost-generating surfaces (surface numbers 2 and 3) are provided with the anti-reflection coating 1 as the first embodiment is described in detail in reference to
The reflectance of the imaging optical system 10, which is plotted in the graph, is the product of the reflectance of the first ghost-generating surface (surface number 3) and that of the second ghost-generating surface (surface number 2). As a result, the values of the reflectance for the system are smaller than 0.10%. From this functional relation, the imaging optical system 10, whose ghost-generating surfaces are provided with the anti-reflection coating 1 as the first embodiment, satisfies the following formula:
Rn×Rm≦0.10 [%] (3)
wherein the “Rn” represents the reflectance of the n-th ghost-generating surface while the “Rm” represents that of the m-th ghost-generating surface.
It is preferable that the imaging optical system 10 be constructed such that the product, “Rn×Rm”, in formula (3) is equal to or smaller than 0.05 [%] to achieve a more favorable optical performance.
Furthermore, the anti-reflection coating 1 is provided on the image-side surface of the plane-parallel plate F, which is positioned closest to the object in the imaging optical system 10, to effectively prevent a ghost that would be otherwise generated at that surface. Moreover, even if the imaging optical system 10 comprises an eyepiece on the image side thereof to be used as a viewing optical system, the anti-reflection coating 1 can perform the same effect to suppress a ghost or a flare in achieving a sharp image for viewing.
As described above, the anti-reflection coating 1 in the above embodiment can provide an optical element with a low reflectance in a wide angular range in the visible light range (400 nm˜700 nm). By realizing such an optical element to be used in an optical system, the present invention provides an optical system that has a high optical performance, which is not affected by a ghost and a flare.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-099131 | Mar 2004 | JP | national |