Some references, which may include patents, patent applications and various publications, are cited and discussed in the description of this invention. The citation and/or discussion of such references is provided merely to clarify the description of the present invention and is not an admission that any such reference is “prior art” to the invention described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference were individually incorporated by reference.
The present invention relates generally to an optical surface, and more particularly to an anti-reflective lens and methods of manufacturing the same.
An anti-reflective lens normally is formed with an antireflective coating on a plastic ophthalmic lens. Anti-reflective (AR) coatings are applied to the surface of ophthalmic lenses and other optical devices to reduce reflection. For ophthalmic lenses in particular, the reduced reflection makes them not only look better, but more importantly work better because they produce less glare by eliminating multiple reflections, which is particularly noticeable when driving at night or working in front of a computer monitor. The decreased glare means that wearers often find their eyes are less tired, particularly at the end of the day. AR coatings also allow more light to pass through the lens which increases contrast and therefore increases visual acuity.
The art of casting plastic ophthalmic lenses involves introducing a lens forming material between two molds and then polymerizing the lens forming material to become a solid. Liquid plastic formulations such as CR39 monomer are injected into a cavity formed by front and rear molds which have been provided with interior polished mold surfaces for the finished surfaces of the lenses. The plastic is cured in the mold and then the mold is separated to yield a completed ophthalmic lens which meets a selected prescription. The lens is then ground around the edge to fit into the selected frame. Coatings can be applied to the finished lens or to the inside of the front or rear mold, whereupon they will bond to the lens upon curing.
Some optometrists offer on-site eyeglass services. Several companies have developed methods by which lenses can be cast on site, in an office. However, current methods of applying AR coatings to eyeglasses require that they be shipped to a different facility because the AR coatings must be applied via vacuum vapor deposition. This of course means additional time and expense. There is therefore a need for a method for making eyeglasses with an AR coating on-site.
One type of AR coating that is used for ophthalmic lenses is an alternating stack of a high index material and a low index material. The most commonly used low index material is silicon dioxide; zirconium dioxide and/or titanium dioxide is often used as the high index material.
An issue with AR coatings, particularly as applied to plastic ophthalmic lenses, is adhesion. AR coatings are generally applied via vacuum deposition. It is well known that adhesion of vacuum deposited coatings to their substrates is in general problematic. The organic, plastic lens material and inorganic AR material do not readily adhere to each other, resulting in peeling or scratching. Accordingly, a new method is needed to apply an AR coating to a plastic lens with greater adhesion.
Several patents are understood to disclose using silanes to bind an inorganic matrix to an organic matrix. U.S. Pat. No. 5,733,483 to Soane et al. teaches using a coupling layer to tie together an AR multilayer made of silicon oxide and an acrylate containing lens. The coupling agent has a siloxy head and an acrylate tail. An example of silanes used therein is methacryloxypropyltrimethoxysilane.
U.S. Pat. No. 4,615,947 to Goosens teaches an acrylic mixed with an organopolysiloxane to increase the adhesion of an organosiloxane hardcoat to a thermoplastic substrate. U.S. Pat. No. 5,025,049 to Takarada et al. also teaches a primer for increasing adhesion of an organopolysiloxane layer to a thermoplastic substrate. The primer is a mixture of an organic copolymer including an alkoxysilylated monomer and other ingredients.
Other patents discuss using silanes to bind an organic matrix to another organic matrix. U.S. Pat. No. 6,150,430 to Walters et al. teaches using organofunctional silanes to improve the adherence of an organic polymeric layer to an organic polymeric substrate.
U.S. Pat. No. 5,096,626 to Takamizawa et al. teaches a plastic lens having an AR coating and/or hard coat. The patent discusses poor adhesion of prior art methods and say they achieve excellent adhesion by forming the lens using a set of molds, wherein the AR coating is first applied to one of the molds and then the lens monomer is poured between the molds and polymerized. A silane coupling agent, such as methacryloxypropyltrimethoxysilane can be included in the hard coat/AR coat solution which may contain colloidal silica, colloidal antimony oxide or colloidal titanium dioxide.
U.S. Pat. No. 6,986,857 to Klemm et al. teaches a method of assembling a lens with a top coat, AR coat, scratch resistant coat, impact resistant primer, and lens substrate. Klemm's solution to the issue of poor adherence of the top coat to the AR coat is to apply the first layer of the AR coating (which comprises a stack of four layers) as two sublayers of SiO2. Another thin layer of SiO2 is applied between the AR stack and the scratch resistant coating to improve adherence between the two.
The above references in general use sol gel chemistry and require high heat (≧80° C.). Heating to high temperature however is not suitable for casting and curing lenses in plastic molds because the optical surface of the mold will be distorted.
Therefore, a heretofore unaddressed need exists in the art to address the aforementioned deficiencies and inadequacies.
In one aspect, the present invention relates to a method of applying an AR coating to a plastic substrate such as a plastic ophthalmic lens where the AR coating exhibits good adhesion to the substrate, wherein the method is practiced avoiding high or elevated temperatures.
In another aspect, the present invention relates to a method of on-site manufacturing of a plastic ophthalmic lens, particularly a spectacle lens having an AR coating.
In yet another aspect, the present invention relates to a method of making an anti-reflective coating to an optical surface of a mold. In one embodiment, the method includes the steps of:
providing a lens mold having an optical surface;
forming a layer of a first hydrophobic material with a thickness of about 10 to 30 nm over the optical surface;
forming a layer of a second hydrophobic material with a thickness of about 10 to 50 nm over the layer of a first hydrophobic material, wherein the first and second hydrophobic materials are different;
forming an anti-reflective coating layered structure over the layer of a second hydrophobic material; and
forming a layer of a silane coupling agent that is deposited using vapor deposition and aprotic conditions with a monolayer thickness over the anti-reflective coating layered structure.
The step of forming an anti-reflective coating layered structure over the layer of a second hydrophobic material can be performed with the steps of:
(1) forming a first layer of a first material with first index refraction and a thickness of about 5 to 100 nm over the layer of a second hydrophobic material;
(2) forming a second layer of a second material with second index refraction and a thickness of about 40 to 50 nm, to the first layer;
(3) forming a third layer of the first material with first index refraction and a thickness about 10 to 20 nm, to the second layer;
(4) forming a fourth layer of the second material with second index refraction and a thickness of about 50 to 70 nm, to the third layer;
(5) forming a fifth layer of the first material with first index refraction and a thickness of about 25 to 40 nm, to the fourth layer;
(6) forming a sixth layer of the second material with second index refraction and a thickness of about 10 to 25 nm, to the fifth layer; and
(7) forming a seventh layer of the first material with first index refraction and a thickness of about 5 to 15 nm, to the sixth layer.
In one embodiment, the first index refraction L and the second index refraction H satisfy a ratio of H/L>1. In other words, the value of the second index refraction is greater than the value of the first index refraction.
In one embodiment, the first material with first index refraction comprises SiO2, and the second material with second index refraction comprises ZrO2.
In practicing the present invention according to the methods set forth above, each layer of SiO2 is deposited using ion assist or without using ion assist.
It is further noted that these anti-reflecting layers may be deposited by techniques known in the art such as resistance evaporation, electron beam evaporation, sputtering and other known techniques. In some cases it is desirable to ion assist the evaporation techniques by exposing the evaporation stream to a plasma of Argon or Oxygen during the deposition. On the other hand, in some other cases it is desirable not to ion assist the evaporation techniques.
In one embodiment, the first hydrophobic material is a standard hydrophobic material, and the second hydrophobic material is a super hydrophobic material, respectively.
In one embodiment, the layer of silane coupling agent is formed of a composition that comprises cyclic azasilanes. In one particular embodiment, the layer of coupling agent is formed of N-n-butyl-aza-2,2-dimethoxy-silacyclopentane.
In yet another aspect, the present invention relates to a mold with an optical surface having an anti-reflective coating that is transferable to an optical surface of a lens.
In various embodiments, such a mold has:
a layer of a first hydrophobic material with a thickness of about 10 to 30 nm deposited over an optical surface the mold;
a layer of a second hydrophobic material with a thickness of about 10 to 50 nm deposited over the layer, wherein the first and second hydrophobic materials are different;
an anti-reflective coating layered structure deposited over the layer; and
a layer of a coupling agent that is deposited using vapor deposition under aprotic conditions, with a monolayer thickness deposited over the anti-reflective coating layered structure.
The first hydrophobic material is a standard hydrophobic material, and the second hydrophobic material is a super hydrophobic material, respectively.
The layer of coupling agent is formed of a composition that comprises cyclic azasilanes. In various embodiments, the layer of coupling agent is formed of N-n-butyl-aza-2,2-dimethoxy-silacyclopentane.
In a further aspect, the present invention relates to an optical lens. The optical lens has a lens body with an optical surface and an anti-reflective coating formed on the optical surface, where in various embodiments, the anti-reflective coating has:
a layer of a first hydrophobic material with a thickness of about 10 to 30 nm deposited over an optical surface of the mold;
a layer of a second hydrophobic material with a thickness of about 10 to 50 nm deposited over the layer of the first hydrophobic material, wherein the first and second hydrophobic materials are different;
an anti-reflective coating layered structure deposited over the layer of the second hydrophobic material; and
a layer of a silane coupling agent that is deposited using vapor deposition under aprotic conditions and a monolayer thickness deposited over the anti-reflective coating layered structure and coupled to the optical surface.
In yet another aspect, the present invention relates to a coupling agent usable in lens making. In one embodiment, the silane coupling agent comprises cyclic azasilanes. In one specific embodiment, cyclic azasilanes comprise N-n-butyl-aza-2,2-dimethoxy-silacyclopentane.
These and other aspects of the present invention will become apparent from the following description of the preferred embodiment taken in conjunction with the following drawings, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the disclosure.
The present invention is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Various embodiments of the invention are now described in detail. Referring to the drawings, like numbers indicate like parts throughout the views. As used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
The terms used in this specification generally have their ordinary meanings in the art, within the context of the invention, and in the specific context where each term is used. Certain terms that are used to describe the invention are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the invention. The use of examples anywhere in this specification, including examples of any terms discussed herein, is illustrative only, and in no way limits the scope and meaning of the invention or of any exemplified term. Likewise, the invention is not limited to various embodiments given in this specification.
As used herein, “around”, “about” or “approximately” shall generally mean within 20 percent, preferably within 10 percent, and more preferably within 5 percent of a given value or range. Numerical quantities given herein are approximate, meaning that the term “around”, “about” or “approximately” can be inferred if not expressly stated.
The description will be made as to the embodiments of the present invention in conjunction with the accompanying drawings in
According to various embodiments of the present invention, a layer of SiO2 is applied to a clean optical surface of a plastic mold by vapor deposition. A hydrophobic coating layer is then applied in the same manner, followed by a super-hydrophobic coating layer. No mold release coating is needed or desirable. Subsequent to the hydrophobic coatings, an anti-reflective (AR) coating is applied. The AR coating is a layered structure with multiple layers of dielectric materials (4 to 7 layers or even more) that are applied by vacuum deposition such that the first and last layer are ion-assisted SiO2. Preferably, the anti-reflective coating is a layered structure with multiple layers of three or more dielectric materials having alternating high and low refractive indexes.
A layer of cyclic azasilane as a silane coupling agent is applied to the AR-coated mold to promote adhesion of the hard coating. The coupling agent layer can be applied under dry, aprotic conditions. This can be done using methods commonly practiced in the lens industry today (such as spin, spray, dip, vacuum coating). The silane from the coupling agent will bond to the anti-reflective coating and the functional group will bond with the organic hard coat, respectively. The coupling agent layer is applied at room temperature.
The next coating layer applied to the mold is the scratch-resistant (hard) coating. The hard coat can be applied by conventional methods used in the lens industry, including spin, spray, or dip coating followed by curing.
The exemplary process illustrated above can be repeatedly applied to different optical surfaces of an optical mold assembly containing a front mold and a back mold. Following the applications of the coating to both of the front and back molds, they are assembled with a spacer ring to form the optical mold assembly. The cavity of the assembly is then filled with lens material formulation and cured. After the cure is complete, the lens is removed from the assembly. All coatings are transferred to the lens so that the lens has hydrophobic, anti-reflective, and scratch resistance coatings applied. This process may also be used to make polarized and photochromic lenses.
Thus, in one aspect, more specifically, the invention relates to a method for making an AR coated plastic substrate having good adhesion of the AR coating. The plastic substrate in one embodiment is a plastic ophthalmic lens.
In another aspect, the invention relates to a method of making AR coated plastic ophthalmic lenses on-site.
An AR coating is commonly applied to the surface of lenses to reduce reflection. Often, the AR coating is made of multiple layers of high index and low index materials such as ZrO2 and SiO2. One problem with inorganic silica AR coatings is that they do not readily adhere to plastic organic lenses. The present invention successfully solves the problem by, among other things, using a coupling layer between the inorganic silica AR coating and the lens. In one embodiment of the present invention, the coupling layer is formed by utilizing cyclic azasilane.
In general, the method for forming an ophthalmic lens having an AR coating thereon is comprised of the steps of preparing first and second molds having polished optical surfaces facing each other. In a preferred embodiment, molds and a gasket such as described in U.S. Pat. No. 7,114,696 are used. Various desired coatings are applied to the interior of one or both molds. The molds with the coatings thereon are placed in a gasket assembly which provides a space between the molds. A liquid monomer is placed in the space and is cured to provide a lens.
The molds can be formed of any suitable material which is capable of withstanding the processing temperatures hereinafter utilized and which can provide polished surfaces of the type required for the optical elements being prepared.
In one embodiment of the present invention, as a first step, a coating is applied by electron beam deposition directly onto the plastic mold optical surface. Subsequent to the first coating, a second coating may be applied before a multilayer AR coating is applied in reverse order. In one embodiment of the present invention, an AR coating is a multilayer structure with alternating layers formed with two different materials, a high index material and a low index material. In one preferred embodiment of the present invention, an AR coating is a multilayer structure with 7 alternating layers formed with two different materials, a high index material H and a low index material L with a ratio H/L>1. Materials found to be suitable for practicing the present invention are zirconium dioxide (referred as “ZrO2”) as a high index material and silicon dioxide as a low index material, having an index of refraction of approximately 1.46.
In one embodiment of the present invention, the layers are applied by vacuum deposition such that the first and last layers are silicon dioxide (SiO2). It is preferred that the AR chamber be humidified during application of the last layer of silicon oxide.
Following the AR coating application, a layer or film of the coupling agent cyclic azasilane is applied by vapor phase deposition. The cyclic azasilane will bond to surface hydroxyls on the silicon dioxide layer, opening the ring and resulting in an organic molecule on the surface. This can be done under vacuum, at room temperature, and does not require water as a catalyst.
Next, a scratch resistant (hard) coating is applied. The hard coat can be applied as either an extension of the AR coating process by vacuum deposition or by the more conventional methods of spin, spray, or dip coating with the coating application followed by curing.
Following the application of the various coatings to the mold, a front and back mold are assembled. The cavity of the assembly is then filled with lens material formulation which is then cured and bonds to the hard coat. After the cure is complete the lens is removed from the assembly. All coatings are transferred to the lens so that the lens has hydrophobic, anti-reflective, and scratch resistance coatings applied.
Cyclic azasilanes are available from Gelest, Inc. Generic formulas include azasilacyclopentanes having the formula:
where R1 and R2 are independently selected from the group consisting of branched and linear, substituted and unsubstituted alkyl, alkenyl and alkoxy groups, and where R3 is selected from the group consisting of substituted and unsubstituted, saturated and unsaturated, branched and linear aliphatic hydrocarbon groups, substituted and unsubstituted, branched and linear aralkyl groups, substituted and unsubstituted aryl groups, and hydrogen, and diazasilacyclic compounds. Diazasilacyclic compounds have the formula:
where the R3 are independently selected (i.e., they may be the same or different) from the group consisting of substituted and unsubstituted, saturated and unsaturated, branched and linear aliphatic hydrocarbon groups; substituted and unsubstituted, branched and linear aralkyl groups; substituted and unsubstituted aryl groups; and hydrogen; and wherein R4 and R5 are independently selected from the group consisting of substituted and unsubstituted, branched and linear alkyl and alkoxy groups.
These and other aspects of the present invention are more specifically described below.
Without intent to limit the scope of the invention, additional exemplary embodiment and their related results according to the embodiments of the present invention are given below. Note that titles or subtitles may be used in the examples for convenience of a reader, which in no way should limit the scope of the invention. Moreover, certain theories are proposed and disclosed herein; however, in no way they, whether they are right or wrong, should limit the scope of the invention so long as the invention is practiced according to the invention without regard for any particular theory or scheme of action.
Various types of cyclic azasilanes can be used to practice the present invention, including:
(a) SIB 1932.4 or N-n-BUTYL-AZA-2,2-DIMETHOXYSILACYCLOPENTANE, C9H21NO2Si, with the following formula:
(b) SID3543.0 or 2,2-DIMETHOXY-1,6-DIAZA-2-SILACYCLOOCTANE, C7H18N2O2Si, with the following formula:
(c) SIA0592.0 or N-AMINOETHYL-AZA-2,2,4-TRIMETHYLSILACYCLOPENTANE, C8H21NSi, with the following formula:
(d) SIA0380.0 or N-ALLYL-AZA-2,2-DIMETHOXYSILACYCLOPENTANE C8H17NO2Si, with the following formula:
This example shows various tests utilized for coating bonding produced according to various embodiments of the present invention.
Cross-Hatch Test. In the cross-hatch test, a series of 10 lines spaced 1 mm apart is cut into the coating with a razor blade. A second series of 10 lines spaced 1 mm apart at right angles to and overlaying the first is cut into the coating. A piece of cellophane tape is then applied over the crosshatch pattern and pulled quickly away from the coating.
Crazing Test. In the crazing test, a lens is de-molded then annealed at 80° C. for 20 minutes. The lens is quickly transferred to room temperature water and it is checked for crazing. If no crazing is apparent, then the AR/coupling agent system is acceptable.
Boiling Salt Water Test. In the boiling salt water test, the lens is first immersed for two minutes in a boiling salt solution containing 4.5% NaCl and 0.8% NaH2PO4.2H2O. Next, the lens is quickly transferred to room temperature (18-24° C.) deionized water. If no crazing or delamination in the coating is noted, then the AR/coupling agent system is acceptable.
In this Example, among other things, a process of preparation of applying an AR coating to a disposable mold is provided according to one embodiment of the present invention. It is noted that in this Example, SiO2 layers are formed or deposited with or without ion assist.
Referring now to
Procedure:
(1) Cleaning the optical surface 304 of the mold 302. In one embodiment of the present invention, a plasma cleaning is performed on the mold surface for about 2 min.
(2) Forming a layer 305 of SiO2 that is ion assisted with a thickness of 5 to 100 nm to the optical surface 304.
(3) Forming a layer 306 of a standard hydrophobic material with a thickness of about 10 to 30 nm to the layer 305.
(4) Forming a layer 308 of a super hydrophobic material with a thickness of about 10 to 50 nm to the layer 306.
(5) Forming a layer 310 of SiO2 that is deposited without using ion assist and with a thickness of about 5 to 40 nm to the layer 308.
(6) Forming a layer 312 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 100 nm to the layer 310.
(7) Forming a layer 314 of ZrO2 with a thickness of about 40 to 50 nm to the layer 312.
(8) Forming a layer 316 of SiO2 that is deposited using ion assist and with a thickness about 10 to 20 nm to the layer 314.
(9) Forming a layer 318 of ZrO2 with a thickness of about 50 to 70 nm to the layer 316.
(10) Forming a layer 320 of SiO2 that is deposited using ion assist and with a thickness of about 25 to 40 nm to the layer 318.
(11) Forming a layer 322 of ZrO2 with a thickness of about 10 to 25 nm to the layer 320.
(12) Forming a layer 324 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 15 nm to the layer 322.
(13) Forming a layer 326 of a coupling agent that is deposited using vapor deposition and with a monolayer of thickness to the layer 324.
It is noted that in this embodiment, the layer 306 of a standard hydrophobic material and layer 308 of a super hydrophobic material do not adherent or stick to each other; thus, when the layered structure is transferred to an optical surface of a lens during lens making process, the layer 306 of a standard hydrophobic material and the layer 308 of a super hydrophobic material will separate, resulting in that the layer 308 of a super hydrophobic material, at least in part, will become the outmost layer of the optical lens. It is noted that, however, the outmost layer of the optical lens will be a layer of hydrophobic material that likely contains the super hydrophobic material, may be a major portion of the later, as well as the standard hydrophobic material, may be a minor portion of the layer. The layer 306 of a standard hydrophobic material, at least in part, will adherent or stick to the layer 305 of SiO2. It is also noted that, some materials from layer 308 of a super hydrophobic material may also adherent or stick to the layer 305 of SiO2. Moreover, layer 310 of SiO2 functions as a protective seal to the AR layered structure 311 and also as natural bonding or a “link” between the AR layered structure 311 and the layer 308 of a super hydrophobic material. Likewise, layer 324 of SiO2 provides a natural bonding or “link” between the AR layered structure 311 and the layer 326 of coupling agent. It is noted that although layer 310 and layer 312 both are formed of SiO2, they are formed with different processes such that they adherent to each other but function differently.
In this Example, among other things, a process of preparation of applying an AR coating to a disposable mold is provided according to another embodiment of the present invention. It is noted that in this Example, SiO2 layers are formed or deposited with ion assisted.
Referring now to
Procedure:
(1) Cleaning the optical surface 404 of the mold 402. In one embodiment of the present invention, a plasma cleaning is performed on the mold surface for about 2 min.
(2) Forming a layer 406 of a standard hydrophobic material with a thickness of about 10 to 30 nm to the optical surface 404.
(3) Forming a layer 408 of a super hydrophobic material with a thickness of about 10 to 15 nm to the layer 406.
(4) Forming a layer 412 of SiO2 that is deposited using ion assist and with a thickness of about 60 to 120 nm to the layer 408.
(5) Forming a layer 414 of ZrO2 with a thickness of about 40 to 50 nm to the layer 412.
(6) Forming a layer 416 of SiO2 that is deposited using ion assist and with a thickness about 10 to 20 nm to the layer 414.
(7) Forming a layer 418 of ZrO2 with a thickness of about 50 to 70 nm to the layer 416.
(8) Forming a layer 420 of SiO2 that is deposited using ion assist and with a thickness of about 25 to 40 nm to the layer 418.
(9) Forming a layer 422 of ZrO2 with a thickness of about 10 to 25 nm to the layer 420.
(10) Forming a layer 424 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 15 nm to the layer 422.
(11) Forming a layer 426 of a coupling agent that is deposited using vapor deposition and with a monolayer thickness to the layer 424.
In this Example, among other things, a process of preparation of applying an AR coating to a disposable mold is provided according to yet another embodiment of the present invention. It is noted that in this Example, SiO2 layers are formed or deposited with or without ion assist.
Referring now to
Procedure:
(1) Cleaning the optical surface 504 of the mold 502. In one embodiment of the present invention, plasma cleaning is performed on the mold surface for about 2 min.
(2) Forming a layer 506 of a standard hydrophobic material with a thickness of about 10 to 30 nm to the optical surface 504.
(3) Forming a layer 508 of a super hydrophobic material with a thickness of about 10 to 50 nm to the layer 506.
(4) Forming a layer 510 of SiO2 that is deposited without using ion assist and with a thickness of about 5 to 40 nm to the layer 508.
(5) Forming a layer 512 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 100 nm to the layer 510.
(6) Forming a layer 514 of ZrO2 with a thickness of about 40 to 50 nm to the layer 512.
(7) Forming a layer 516 of SiO2 that is deposited without using ion assist and with a thickness about 10 to 20 nm to the layer 514.
(8) Forming a layer 518 of ZrO2 with a thickness of about 50 to 70 nm to the layer 516.
(9) Forming a layer 520 of SiO2 that is deposited without using ion assist and with a thickness of about 25 to 40 nm to the layer 518.
(10) Forming a layer 522 of ZrO2 with a thickness of about 10 to 25 nm to the layer 520.
(11) Forming a layer 524 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 15 nm to the layer 522.
(12) Forming a layer 526 of a coupling agent that is deposited using vapor deposition and with a monolayer thickness to the layer 524.
In this Example, among other things, a process of preparation of applying an AR coating to a disposable mold is provided according to a further embodiment of the present invention. It is noted that in this Example, SiO2 layers are formed or deposited with or without ion assist.
Referring now to
Procedure:
(1) Cleaning the optical surface 604 of the mold 602. In one embodiment of the present invention, plasma cleaning is performed on the mold surface for about 2 min.
(2) Forming a layer 606 of a standard hydrophobic material with a thickness of about 10 to 30 nm to the optical surface 604.
(3) Forming a layer 608 of a super hydrophobic material with a thickness of about 10 to 50 nm to the layer 606.
(4) Forming a layer 610 of SiO2 that is deposited without using ion assist and with a thickness of about 5 to 40 nm to the layer 608.
(5) Forming a layer 612 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 100 nm to the layer 610.
(6) Forming a layer 614 of ZrO2 with a thickness of about 40 to 50 nm to the layer 612.
(7) Forming a layer 616 of SiO2 that is deposited using ion assist and with a thickness about 10 to 20 nm to the layer 614.
(8) Forming a layer 618 of ZrO2 with a thickness of about 50 to 70 nm to the layer 616.
(9) Forming a layer 620 of SiO2 that is deposited using ion assist and with a thickness of about 25 to 40 nm to the layer 618.
(10) Forming a layer 622 of ZrO2 with a thickness of about 10 to 25 nm to the layer 620.
(11) Forming a layer 624 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 15 nm to the layer 622.
(12) Forming a layer 626 of a coupling agent that is deposited using vapor deposition and with a monolayer thickness to the layer 624.
In the Examples 3-6, among other things, the present invention is practiced with a layer of a coupling agent is applied to the AR-coated mold to promote adhesion of the hard coating.
Material-wise, the coupling agents are functional silanes in which the silane bonds to the anti-reflective coating and the functional group bonds with the organic hard coat. According to one embodiment of the present invention, cyclic azasilanes are particularly well suited for the application, as they will form silane bonds at room temperature via a ring-opening reaction. This results in a monolayer with functional groups that readily attach to the hard coat, forming a strong AR to hard-coat bond. It is believed that it is the first time in the industry and only by the inventive discovery of the present invention, that cyclic azasilanes are utilized in optical lens forming process as coupling agents. For embodiments as shown in
Procedure-wise, the coupling agent can be applied under dry, aprotic conditions and can be done using many of the methods commonly practiced in the lens industry today, such as spin, spray, dip, and vacuum coating. Two specific examples of coupling agent application are provide below.
A. Vacuum Coating—Procedure:
B. Dip Coating—Procedure:
This example shows a method or procedure of making an AR-coated lens according to one embodiment of the present invention.
The corresponding optical surfaces of a front mold and a back mold of an optical mold assembly were AR-coated according to the one embodiment of the present invention illustrated in Example 3. A layer (326) of a coupling agent consisting of or having N-n-butyl-aza-2,2-dimethoxy-silacyclopentane was then formed onto the AR surfaces (324) using a dip coating method as set forth above in Example 7. A solution was prepared of 0.2% coupling agent in petroleum ether. The optical surfaces were submerged in the solution for 5 minutes at room temperature. They were then rinsed with ethanol, blown dry with an air gun, and hard-coated within one hour using a spin-coating process. Upon lens monomer casting and curing, the AR and super-hydrophobic coatings transferred from the mold onto the lens.
This example shows a method or procedure of making an AR-coated lens according to one embodiment of the present invention.
The corresponding optical surfaces of a front mold and a back mold of an optical mold assembly were AR-coated according to the one embodiment of the present invention illustrated in one of Examples 4-6. A layer (426, 526, 626) of a coupling agent consisting of or having N-n-butyl-aza-2,2-dimethoxy-silacyclopentane was then formed onto the AR surfaces (424, 524, 624) using a dip coating method as set forth above in Example 7. A solution was prepared of 0.05% coupling agent in petroleum ether. The optical surfaces were submerged in the solution for 5 minutes at room temperature. They were then rinsed with ethanol, allowed to air-dry, and immediately hard-coated using a spin-coating process. Upon casting, the AR and super-hydrophobic coatings transferred from the mold onto the lens.
This example shows a method or procedure of making an AR-coated lens according to one embodiment of the present invention.
The corresponding optical surfaces of a front mold and a back mold of an optical mold assembly were AR-coated according to the one embodiment of the present invention illustrated in Example 3. The optical mold assembly with AR-coated optical surfaces was then placed on the floor of a vacuum chamber under a predetermined pressure of about −28.6 in. Hg. About 0.2mL of the N-n-butyl-aza-2,2-dimethoxy-silacyclopentane was injected into the chamber and vaporized under the predetermined pressure. The N-n-butyl-aza-2,2-dimethoxy-silacyclopentane was given 10 minutes to react with the AR-coated surfaces to form a layer of a coupling agent then on, after which the vacuum pump was turned on for 5 minutes in order to remove any excess coupling agent. Molds were then immediately hard-coated and cast into lenses. The AR and super-hydrophobic coatings transferred from the mold onto the lens.
This example shows a method or procedure of making an AR-coated lens according to one embodiment of the present invention.
The corresponding optical surfaces of a front mold and a back mold of an optical mold assembly were AR-coated according to the one embodiment of the present invention illustrated in Example 3. The optical mold assembly with AR-coated optical surfaces was then placed on the floor of a vacuum chamber under a predetermined pressure of about −28.6 in. Hg. 0.05 mL of the N-n-butyl-aza-2,2-dimethoxy-silacyclopentane coupling agent was injected into the chamber and vaporized under the predetermined pressure. The coupling agent was given 10 minutes to react with the AR coated optical surfaces, after which the vacuum pump was turned on for 5 minutes in order to remove any excess coupling agent. Molds were then immediately hard-coated and lens monomer cast and cured into lenses. The AR and super-hydrophobic coatings transferred from the mold onto the lens.
This example shows a method or procedure of making an AR-coated lens according to one embodiment of the present invention.
The corresponding optical surfaces of a front mold and a back mold of an optical mold assembly were AR-coated according to the one embodiment of the present invention illustrated in Example 3. The optical mold assembly with AR-coated optical surfaces was then placed on the floor of a vacuum chamber under a predetermined pressure of about −28.6 in. Hg. A solution was prepared with 10% of N-n-butyl-aza-2,2-dimethoxy-silacyclopentane coupling agent in hexane. 0.1 mL of the solution (0.01 mL of the coupling agent) was injected into the chamber and vaporized under the predetermined pressure. The coupling agent was given 10 minutes to react with the AR surfaces, after which the vacuum pump was turned on for 5 minutes in order to remove any excess coupling agent. Molds were then immediately hard-coated and cast into lenses. The AR and super-hydrophobic coatings transferred from the mold onto the lens.
Thus, in another aspect, the present invention relates to a method of making an anti-reflective coating to an optical surface of a mold. In one embodiment, referring to
providing a lens mold 302 having an optical surface 304;
forming a layer 305 of SiO2 that is ion assisted with a thickness of 5 to 100 nm to the optical surface 304;
forming a layer 306 of a first hydrophobic material with a thickness of about 10 to 30 nm to the layer 305;
forming a layer 308 of a second hydrophobic material with a thickness of about 10 to 50 nm to the layer 306, wherein the first and second hydrophobic materials are different;
forming a layer 310 of SiO2 that is deposited without using ion assist and with a thickness of about 5 to 40 nm to the layer 308;
forming an anti-reflective coating layered structure 311 to the layer 310; and
forming a layer 326 of a coupling agent that is deposited using vapor deposition and with a monolayer thickness to the layer 324.
In the embodiment shown in
(1) forming a layer 312 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 100 nm to the layer 310;
(2) forming a layer 314 of ZrO2 with a thickness of about 40 to 50 nm to the layer 312;
(3) forming a layer 316 of SiO2 that is deposited using ion assist and with a thickness about 10 to 20 nm to the layer 314;
(4) forming a layer 318 of ZrO2 with a thickness of about 50 to 70 nm to the layer 316;
(5) forming a layer 320 of SiO2 that is deposited using ion assist and with a thickness of about 25 to 40 nm to the layer 318;
(6) forming a layer 322 of ZrO2 with a thickness of about 10 to 25 nm to the layer 320; and
(7) forming a layer 324 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 15 nm to the layer 322.
In one embodiment, the first hydrophobic material is a standard hydrophobic material, and the second hydrophobic material is a super hydrophobic material, respectively.
In one embodiment, the layer of coupling agent is formed of a composition that comprises cyclic azasilanes.
More specifically, in one embodiment, the layer of coupling agent is formed of N-n-butyl-aza-2,2-dimethoxy-silacyclopentane.
Furthermore, in a more general embodiment, the anti-reflective coating layered structure 311 to the layer 310 can be formed by the steps of:
(1) forming a layer 312 of a first material with first index refraction, which is deposited using ion assist and with a thickness of about 5 to 100 nm, to the layer 310;
(2) forming a layer 314 of a second material with second index refraction, with a thickness of about 40 to 50 nm, to the layer 312;
(3) forming a layer 316 of the first material with first index refraction, which is deposited using ion assist and with a thickness about 10 to 20 nm, to the layer 314;
(4) forming a layer 318 of the second material with second index refraction, with a thickness of about 50 to 70 nm, to the layer 316;
(5) forming a layer 320 of the first material with first index refraction, which is deposited using ion assist and with a thickness of about 25 to 40 nm, to the layer 318;
(6) forming a layer 322 of the second material with second index refraction, with a thickness of about 10 to 25 nm, to the layer 320; and
(7) forming a layer 324 of the first material with first index refraction, which is deposited using ion assist and with a thickness of about 5 to 15 nm, to the layer 322.
In one embodiment, the first index refraction L and the second index refraction H satisfy a ratio of H/L>1. In other words, the value of the second index refraction is greater than the value of the first index refraction.
In one embodiment as shown in
In another aspect, the present invention relates to a mold with an optical surface having an anti-reflective coating that is transferable to an optical surface of a lens. In one embodiment as shown in
a layer 305 of SiO2 that is ion assisted with a thickness of 5 to 100 nm deposited to an optical surface 304 of the mold 302;
a layer 306 of a first hydrophobic material with a thickness of about 10 to 30 nm deposited to the layer 305;
a layer 308 of a second hydrophobic material with a thickness of about 10 to 50 nm deposited to the layer 306, wherein the first and second hydrophobic materials are different;
a layer 310 of SiO2 that is deposited without using ion assist and with a thickness of about 5 to 40 nm deposited to the layer 308;
an anti-reflective coating layered structure 311 deposited to the layer 310; and
a layer 326 of a coupling agent that is deposited using vapor deposition and with a monolayer thickness deposited to the layer 324.
In one embodiment, the anti-reflective coating layered structure 311 has:
(1) a layer 312 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 100 nm deposited to the layer 310;
(2) a layer 314 of ZrO2 with a thickness of about 40 to 50 nm deposited to the layer 312;
(3) a layer 316 of SiO2 that is deposited using ion assist and with a thickness about 10 to 20 nm deposited to the layer 314;
(4) a layer 318 of ZrO2 with a thickness of about 50 to 70 nm deposited to the layer 316;
(5) a layer 320 of SiO2 that is deposited using ion assist and with a thickness of about 25 to 40 nm deposited to the layer 318;
(6) a layer 322 of ZrO2 with a thickness of about 10 to 25 nm deposited to the layer 320; and
(7) a layer 324 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 15 nm deposited to the layer 322.
In one embodiment, the first hydrophobic material is a standard hydrophobic material, and the second hydrophobic material is a super hydrophobic material, respectively.
In one embodiment, the layer of coupling agent is formed of a composition that comprises cyclic azasilanes. In one particular embodiment, the layer of coupling agent is formed of N-n-butyl-aza-2,2-dimethoxy-silacyclopentane.
In one embodiment, the anti-reflective coating layered structure 311 is formed with:
(1) a layer 312 of a first material with first index refraction, which is deposited using ion assist and with a thickness of about 5 to 100 nm, deposited to the layer 310;
(2) a layer 314 of a second material with second index refraction, with a thickness of about 40 to 50 nm, deposited to the layer 312;
(3) a layer 316 of the first material with first index refraction, which is deposited using ion assist and with a thickness about 10 to 20 nm, deposited to the layer 314;
(4) a layer 318 of the second material with second index refraction, with a thickness of about 50 to 70 nm, deposited to the layer 316;
(5) a layer 320 of the first material with first index refraction, which is deposited using ion assist and with a thickness of about 25 to 40 nm, deposited to the layer 318;
(6) a layer 322 of the second material with second index refraction, with a thickness of about 10 to 25 nm, deposited to the layer 320; and
(7) a layer 324 of the first material with first index refraction, which is deposited using ion assist and with a thickness of about 5 to 15 nm, deposited to the layer 322.
In one embodiment, the first index refraction L and the second index refraction H satisfy a ratio of H/L>1. In other words, the value of the second index refraction is greater than the value of the first index refraction.
In one embodiment, the first material with first index refraction comprises SiO2, and the second material with second index refraction comprises ZrO2.
In yet another aspect, the present invention relates to an optical lens. In one embodiment, the optical lens has a lens body with an optical surface, and an anti-reflective coating formed on, or more specifically, transferred from a mold such as one set forth above to, the optical surface, where the anti-reflective coating is formed with:
a layer 305 of SiO2 that is ion assisted with a thickness of 5 to 100 nm;
a layer 306 of a first hydrophobic material with a thickness of about 10 to 30 nm deposited to the layer 305;
a layer 308 of a second hydrophobic material with a thickness of about 10 to 50 nm deposited to the layer 306, wherein the first and second hydrophobic materials are different;
a layer 310 of SiO2 that is deposited without using ion assist and with a thickness of about 5 to 40 nm deposited to the layer 308;
an anti-reflective coating layered structure 311 deposited to the layer 310; and
a layer 326 of a coupling agent that is deposited using vapor deposition and with a monolayer thickness deposited to the layer 324 and coupled to the optical surface.
In one embodiment as shown in
(1) a layer 312 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 100 nm deposited to the layer 310;
(2) a layer 314 of ZrO2 with a thickness of about 40 to 50 nm deposited to the layer 312;
(3) a layer 316 of SiO2 that is deposited using ion assist and with a thickness about 10 to 20 nm deposited to the layer 314;
(4) a layer 318 of ZrO2 with a thickness of about 50 to 70 nm deposited to the layer 316;
(5) a layer 320 of SiO2 that is deposited using ion assist and with a thickness of about 25 to 40 nm deposited to the layer 318;
(6) a layer 322 of ZrO2 with a thickness of about 10 to 25 nm deposited to the layer 320; and
(7) a layer 324 of SiO2 that is deposited using ion assist and with a thickness of about 5 to 15 nm deposited to the layer 322.
In one embodiment, the first hydrophobic material is a standard hydrophobic material, and the second hydrophobic material is a super hydrophobic material, respectively.
In one embodiment, the layer of coupling agent is formed of a composition that comprises cyclic azasilanes. In one particular embodiment, the layer of coupling agent is formed of N-n-butyl-aza-2,2-dimethoxy-silacyclopentane.
Furthermore, in a more general embodiment, the optical lens has an anti-reflective coating layered structure 311 that is formed with:
(1) a layer 312 of a first material with first index refraction, which is deposited using ion assist and with a thickness of about 5 to 100 nm, deposited to the layer 310;
(2) a layer 314 of a second material with second index refraction, with a thickness of about 40 to 50 nm, deposited to the layer 312;
(3) a layer 316 of the first material with first index refraction, which is deposited using ion assist and with a thickness about 10 to 20 nm, deposited to the layer 314;
(4) a layer 318 of the second material with second index refraction, with a thickness of about 50 to 70 nm, deposited to the layer 316;
(5) a layer 320 of the first material with first index refraction, which is deposited using ion assist and with a thickness of about 25 to 40 nm, deposited to the layer 318;
(6) a layer 322 of the second material with second index refraction, with a thickness of about 10 to 25 nm, deposited to the layer 320; and
(7) a layer 324 of the first material with first index refraction, which is deposited using ion assist and with a thickness of about 5 to 15 nm, deposited to the layer 322.
In one embodiment, the first index refraction L and the second index refraction H satisfy a ratio of H/L>1. In other words, the value of the second index refraction is greater than the value of the first index refraction.
In one embodiment, the first material with first index refraction comprises SiO2, and the second material with second index refraction comprises ZrO2.
In a further aspect, the present invention relates to a method for making an anti-reflective coating to an optical surface of a mold. In various embodiments of the present invention as shown in
providing a lens mold 302, 402, 502 or 602 having an optical surface 304, 404, 504 or 604;
forming a layer 306, 406, 506 or 606 of a first hydrophobic material with a thickness of about 10 to 50 nm over the optical surface 304, 404, 504 or 604;
forming a layer 308, 408, 508 or 608 of a second hydrophobic material with a thickness of about 10 to 50 nm over the layer 306, 406, 506 or 606, wherein the first and second hydrophobic materials are different;
forming an anti-reflective coating layered structure 311, 411, 511 or 611 over the layer 308, 408, 508 or 608; and
forming a layer 326, 426, 526 or 626 of a coupling agent that is deposited using vapor deposition and with a monolayer thickness over the anti-reflective coating layered structure 311, 411, 511 or 611.
The step of forming an anti-reflective coating layered structure 311, 411, 511 or 611 over the layer 308, 408, 508 or 608 can be performed with the steps of:
(1) forming a layer 312, 412, 512 or 612 of a first material with first index refraction and a thickness of about 5 to 100 nm over the layer 308, 408, 508 or 608;
(2) forming a layer 314, 414, 514 or 614 of a second material with second index refraction and a thickness of about 40 to 50 nm, to the layer 312, 412, 512 or 612;
(3) forming a layer 316, 416, 516 or 616 of the first material with first index refraction and a thickness about 10 to 20 nm, to the layer 314, 414, 514 or 614;
(4) forming a layer 318, 418, 518 or 618 of the second material with second index refraction and a thickness of about 50 to 70 nm, to the layer 316, 416, 516 or 616;
(5) forming a layer 320, 420, 520 or 620 of the first material with first index refraction and a thickness of about 25 to 40 nm, to the layer 318, 418, 518 or 618;
(6) forming a layer 322, 422, 522 or 622 of the second material with second index refraction and a thickness of about 10 to 25 nm, to the layer 320, 420, 520 or 620; and
(7) forming a layer 324, 424, 524 or 624 of the first material with first index refraction and a thickness of about 5 to 15 nm, to the layer 322, 422, 522 or 622.
In one embodiment, the first index refraction L and the second index refraction H satisfy a ratio of H/L>1. In other words, the value of the second index refraction is greater than the value of the first index refraction.
In one embodiment, the first material with first index refraction comprises SiO2, and the second material with second index refraction comprises ZrO2.
In one embodiment as shown in
Furthermore, in one embodiment as shown in
In embodiments as shown in
In practicing the present invention according to the methods set forth above, each layer of SiO2 is deposited using ion assist or without using ion assist.
In one embodiment, the first hydrophobic material is a standard hydrophobic material, and the second hydrophobic material is a super hydrophobic material, respectively.
In one embodiment, the layer of coupling agent is formed of a composition that comprises cyclic azasilanes. In one particular embodiment, the layer of coupling agent is formed of N-n-butyl-aza-2,2-dimethoxy-silacyclopentane.
In yet another aspect, the present invention relates to a mold with an optical surface having an anti-reflective coating that is transferable to an optical surface of a lens. In various embodiments as shown in
a layer 306, 406, 506 or 606 of a first hydrophobic material with a thickness of about 10 to 30 nm deposited over an optical surface 304, 404, 504 or 604 the mold 302, 402, 502 or 602;
a layer 308, 408, 508 or 608 of a second hydrophobic material with a thickness of about 10 to 50 nm deposited over the layer 306, 406, 506 or 606, wherein the first and second hydrophobic materials are different;
an anti-reflective coating layered structure 311, 411, 511 or 611 deposited over the layer 308, 408, 508 or 608; and
a layer 326, 426, 526 or 626 of a coupling agent that is deposited using vapor deposition and with a monolayer thickness deposited over the anti-reflective coating layered structure 311, 411, 511 or 611.
As shown in
(1) a layer 312, 412, 512 or 612 of a first material with first index refraction and a thickness of about 5 to 100 nm deposited over the layer 308, 408, 508 or 608;
(2) a layer 314, 414, 514 or 614 of a second material with second index refraction and a thickness of about 40 to 50 nm, deposited to the layer 312, 412, 512 or 612;
(3) a layer 316, 416, 516 or 616 of the first material with first index refraction and a thickness about 10 to 20 nm, deposited to the layer 314, 414, 514 or 614;
(4) a layer 318, 418, 518 or 618 of the second material with second index refraction and a thickness of about 50 to 70 nm, deposited to the layer 316, 416, 516 or 616;
(5) a layer 320, 420, 520 or 620 of the first material with first index refraction and a thickness of about 25 to 40 nm, deposited to the layer 318, 418, 518 or 618;
(6) a layer 322, 422, 522 or 622 of the second material with second index refraction and a thickness of about 10 to 25 nm, deposited to the layer 320, 420, 520 or 620; and
(7) a layer 324, 424, 524 or 624 of the first material with first index refraction and a thickness of about 5 to 15 nm, deposited to the layer 322, 422, 522 or 622.
The first index refraction L and the second index refraction H satisfy a ratio of H/L>1. In other words, the value of the second index refraction is greater than the value of the first index refraction.
In one embodiment, the first material with first index refraction comprises SiO2, and the second material with second index refraction comprises ZrO2.
In one embodiment as shown in
In various embodiments as shown in
Each layer of SiO2 is deposited using ion assist or without using ion assist.
The first hydrophobic material is a standard hydrophobic material, and the second hydrophobic material is a super hydrophobic material, respectively.
The layer of coupling agent is formed of a composition that comprises cyclic azasilanes. In various embodiments as shown in
In a further aspect, the present invention relates to an optical lens. The optical lens has a lens body with an optical surface and an anti-reflective coating formed on the optical surface, where in various embodiments as shown in
a layer 306, 406, 506 or 606 of a first hydrophobic material with a thickness of about 10 to 30 nm deposited over an optical surface 304, 404, 504 or 604 the mold 302, 402, 502 or 602;
a layer 308, 408, 508 or 608 of a second hydrophobic material with a thickness of about 10 to 50 nm deposited over the layer 306, 406, 506 or 606, wherein the first and second hydrophobic materials are different;
an anti-reflective coating layered structure 311, 411, 511 or 611 deposited over the layer 308, 408, 508 or 608; and
a layer 326, 426, 526 or 626 of a coupling agent that is deposited using vapor deposition and with a monolayer thickness deposited over the anti-reflective coating layered structure 311, 411, 511 or 611 and coupled to the optical surface.
The anti-reflective coating layered structure 311, 411, 511 or 611 is formed with:
(1) a layer 312, 412, 512 or 612 of a first material with first index refraction and a thickness of about 5 to 100 nm deposited over the layer 308, 408, 508 or 608;
(2) a layer 314, 414, 514 or 614 of a second material with second index refraction and a thickness of about 40 to 50 nm, deposited to the layer 312, 412, 512 or 612;
(3) a layer 316, 416, 516 or 616 of the first material with first index refraction and a thickness about 10 to 20 nm, deposited to the layer 314, 414, 514 or 614;
(4) a layer 318, 418, 518 or 618 of the second material with second index refraction and a thickness of about 50 to 70 nm, deposited to the layer 316, 416, 516 or 616;
(5) a layer 320, 420, 520 or 620 of the first material with first index refraction and a thickness of about 25 to 40 nm, deposited to the layer 318, 418, 518 or 618;
(6) a layer 322, 422, 522 or 622 of the second material with second index refraction and a thickness of about 10 to 25 nm, deposited to the layer 320, 420, 520 or 620; and
(7) a layer 324, 424, 524 or 624 of the first material with first index refraction and a thickness of about 5 to 15 nm, deposited to the layer 322, 422, 522 or 622.
The first index refraction L and the second index refraction H satisfy a ratio of H/L>1. In other words, the value of the second index refraction is greater than the value of the first index refraction.
In various embodiments as shown in
In one embodiment as shown in
In various embodiments as shown in
In yet another aspect, the present invention relates to a coupling agent usable in lens making. In one embodiment, the coupling agent comprises cyclic azasilanes. In one specific embodiment, cyclic azasilanes comprise N-n-butyl-aza-2,2-dimethoxy-silacyclopentane. It is noted that in use, cyclic azasilanes are applied in a solvent. For embodiments as shown in
It is further noted that in practicing the present invention, the steps for each embodiment given above can be performed in sequence as given, or in different orders.
In a further aspect, the present invention relates to an optical lens. In one embodiment, the optical lens has a lens body with an optical surface, a hard coat layer over the optical surface, and an anti-reflective coating over the optical surface.
In one embodiment, the anti-reflective coating has a layer of a coupling agent with a monolayer thickness over the hard coat layer, an anti-reflective coating layered structure over the layer of a coupling agent, a second layer of SiO2 that is deposited without using ion assist and with a thickness of about 5 to 40 nm over the anti-reflective coating layered structure over the layer of a coupling agent, and a layer of a hydrophobic material over the second layer of SiO2. The layer of a hydrophobic material may include a first hydrophobic material and a second hydrophobic material, wherein the first and second hydrophobic materials are different, and wherein the first hydrophobic material is a standard hydrophobic material, and the second hydrophobic material is a super hydrophobic material, respectively.
The foregoing description of the exemplary embodiments of the invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the invention and their practical application so as to enable others skilled in the art to utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description and the exemplary embodiments described therein.