1. Field of the Invention
The present invention is directed to a device for treating conditions such as gastroesophageal reflux, heartburn and hiatal hernias.
2. Description of the Related Art
Many people suffer from gastroesophageal reflux disorder (GERD). Gastroesophageal reflux disorder is a backward or return flow of gastric or intestinal contents into the esophagus. Heartburn is a symptom of this disorder.
This disorder arises when the lower esophageal sphincter between the stomach and the esophagus becomes lax, spastic, or is interfered with as result of a hiatal hernia. This allows gastric acid to move from the stomach into the esophagus. The gastric juices irritate the esophagus lining causing heartburn.
Common causes of this disorder include improper diet, obesity, pregnancy and a hiatal hernia. Treatment of this disorder typically includes a change in diet and/or the use of over-the-counter or prescription medications, such as antacids H2 blockers and proton pump inhibitors. Severe cases may require invasive anti-reflux surgery which often prove to be ineffective, with recurrence of this problem being common. Additionally, invasive anti-flux surgery can sometimes worsen the problem.
U.S. Pat. No. 6,274,786 to Heller describes a device for applying pressure to a patient's abdomen to treat heartburn, GERD or a hiatal hernia. The device described in the '786 patent includes an immobile protrusion or nub provided between an inner and outer layer of the device. The device is attached to a strap which encircles a patient's body, allowing the protrusion or nub to apply pressure to an anatomical particular point on the patient's abdomen to relive the symptoms of heartburn/reflux. Since it is of utmost importance that pressure be applied to the appropriate portion of the patient's abdomen, and since the physiological structure of patients are different, it is of crucial importance that the protrusion or nub be applied to a particular portion of the patient's abdomen. Due to the immobile nature of the protrusion, proper placement of the protrusion on the patient's abdomen is difficult. Improper placement of the protrusion on the abdomen is ultimately ineffective in correcting the patient's symptoms.
Chiropractors may treat heartburn, GERD and hiatal hernias by manually pressing down on the patient's abdomen using a particular pressure and motion. This mechanical pressure serves to return the stomach to its correct position, thereby assisting in closing the cardiac sphincter in helping to reduce heartburn/reflux. It is very important pressure be applied to the appropriate position of the patient's abdomen. This position is at a similar location that an acupuncturist would utilize to treat a patient's heartburn. It has been found the application of pressure at locations such as Ren 12, Ren 13 and Ren 17, as well as when acupuncture needles are inserted therein, results in relief of heartburn. The Ren 12 point is located on the midline of the abdomen about the width of the thumb at the knuckle above the umbilicus. This is a very important point of the stomach, as according to Chinese methods, the application of pressure or acupuncture needles imparts tone to the stomach and the spleen. Ren 13 is a point on the midline of the abdomen several inches above the umbilicus. Ren 17 is located on the interior midline level with the fourth rib or intercostal space. The anatomical locations listed hereinabove are but examples to show that acupuncture needles and/or acupressure by a practitioner's finger or hand are commonly utilized to relieve these and other symptoms. The device of the present invention is employed to delegate pressure to the upper abdominal region, thereby replacing the need for a needle or digital pressure.
It is, therefore, an object of the present invention to provide an anti-reflux/heartburn device to properly apply mechanical pressure to a patient's body allowing the stomach to return to its correct position and closing the esophageal sphincter and inducing reduction in heartburn/reflux.
It is, therefore, another object of the present invention to provide an anti-reflux/heartburn device including a planar base section provided with first and second ends. First and second protrusions are provided on the planar base section. The first and second protrusions are separated from one another. A position changing device is provided on the planar base section for laterally altering the position of the first and second protrusions relative to one another on the planar base section. When the device is applied to a patient's abdomen, the first and second protrusions are positioned to relieve heartburn and reflux.
It is, therefore, an object of the invention to provide relief for heartburn, gastroesophageal reflux disorder possibly caused by a hiatal hernia, poor diet, pregnancy or obesity.
It is another object of the invention to provide a low cost treatment for heartburn and/or gastroesophageal reflux disorder.
It is another object of the present invention to provide a non-invasive device for the treatment of heartburn and/or gastroesophageal reflux disorder.
It is a further object of the present invention to provide a device that assists in closing the cardiac sphincter.
It is another object of the present invention to treat heartburn and/or gastroesophageal reflux disorder in a non-chemical, non-surgical manner.
It is a further object of the present invention to provide a treatment for heartburn and/or gastroesophageal reflux disorder that is both simple to use and inexpensive.
It is yet a further object of the present invention to provide a treatment of heartburn and/or gastroesophageal reflux disorder in which the placement of a protrusion (or protrusions) of the device with respect to a particular point on a patient's body can be easily changed without completely removing the device from around the patient's torso.
It is a further object of the present invention to provide a device to properly apply mechanical pressure to the appropriate portion of a patient's body using a bladder system for inflating and deflating the first and second protrusions provided on the planar base section to change the amount of pressure applied without adjusting the lateral position of the first and second protrusions.
Other objects and advantages of the present invention will become apparent from the following detailed description when viewed in conjunction with the accompanying drawings, which set forth certain embodiments of the invention.
The detailed embodiments of the present invention are disclosed herein. It should be understood, however, that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, the details disclosed herein are not to be interpreted as limiting, but merely as a basis for teaching one skilled in the art how to make and/or use the invention.
The invention can be better understood with reference to the drawings.
More particularly, the device 10 includes the base section 15 upon which are mounted the first and second protrusions 16, 18. A front layer 12 covers the front side 13 of the base section 15 and the protrusions 16, 18, while a back layer 14 covers the back side 17 of the base section 15. As such, the protrusions 16, 18 and the base section 15 are positioned between the front layer 12 and the back layer 14. Additionally, it is noted that the position changing devices shown in
The protrusions 16, 18 are positioned on the planar base section 15 such that the first protrusion 16 is located closer to the first end 19 of the base section 15 and second protrusion 18 is located closer to the second end 21 shown in
The protrusions 16, 18 are angled with respect to one another. In particular, each of the protrusions 16, 18 is elongated and therefore includes a long axis (substantially parallel to the plane in which the base section 15 lies and defining the length of the protrusion) and a short axis (substantially parallel to the plane in which the base section 15 lies and defining the width of the protrusion). As such, and in accordance with a preferred embodiment of the present invention, the protrusions are oriented such that the long axes of the respectively protrusions 16, 18 are oriented between 20° and 80° with respect to each other. However, it is appreciated lesser or greater angles can be employed. Alternatively, the protrusions can be constructed in many shapes, such as spherical in configuration.
As discussed above, the base section 15 upon which the protrusions 16, 18 are secured is positioned between the front layer 12 and the back layer 14 of the device 10 as illustrated in
A band or belt 40 is constructed from soft material which is adjustable in length allowing the device to encircle a patient's torso. A first loop 30 of the belt 40 extends through an aperture 24 provided at one end of the device 10 and extends completely through the front and back layers 12, 14. A second loop 34 extends through an aperture 26 also extending completely through the front and back layers 12, 14. Loops 30, 34 are used to increase or decrease the length of the belt 40. A device such as a buckle 36 is preferably used for increasing or decreasing the length of the loop 30. Movement of the buckle 36 toward the base 15 section decreases the length of the loop 30, effectively increasing the length of the belt 40. Movement of the buckle 36 away from the base 15 increases the length of the loop 30, effectively decreasing the length of the belt 40. A device such as a buckle 38 is used for increasing or decreasing the length of the loop 34. Movement of the buckle 38 toward the base 15 decreases the length of the loop 34, effectively increasing the length of the belt 40. Movement of the buckle 38 away from the base 15 increases the length of the loop 34, effectively decreasing the length of the belt 40. The purpose of the belt and loop combination is to allow adjustability of the belt 40 when applied to the patient's torso, due to different sizes of the patients.
As with the device shown with reference to
As shown in
Referring now to
Similarly, the protrusion 48 is secured within the second channel arrangement 57 through the utilization of a retained ball 61 and a connector 55 attaching the protrusion 18 to the ball 61. The ball 61 is retained in place friction and the slight flexibility of the material of the portion 44 of base section 15. In particular, the ball 61 is sized such that it is retained within the second channel arrangement 57 while the member 55 connects the ball 61, and ultimately the second channel arrangement to the protrusion 18. In this way, the ball 61 and protrusion 18 are moved in controlled manner relative to the second channel arrangement 57. That is, the ball 61 moves between the center slot 52, the left slot 66 and the right slot 68 through passageways 58 or 60 to thereby move the protrusion 18 to various positions along the base section 15 adjacent the respective center slot 52, the left slot 66 and the right slot 68. It is appreciated that although the protrusions 16, 18 are connected to one of the balls 59, 61 by its respective connector 53, 55, the protrusions themselves are not physically situated in the slots or passageways. The diameter of the opening for each of the slots is less than the diameter of each of the balls 59, 61, allowing the balls 59, 61 to move between the slots, but yet preventing the balls 59, 61 from being removed from the respective first and second channel arrangements 51, 57.
Each of the protrusions 16, 18 moves in the lateral direction shown by arrows 63, 65, 67, 69 by physically pushing or pulling the protrusions 16, 18 in the proper direction shown by one of the arrows 63, 65, 67, 69. Movement of the balls 59, 61 into the proper slots 50, 62, 64, 52, 66, 68 is confirmed by hearing a sound when the balls 59, 61 are properly in place. The sound is produced by the ball 59 or 61 hitting the exterior portion of one of the slots 50, 62, 64, 52, 66, 68. Alternatively, movement from a narrow passageway to a larger slot can be felt by the user. In either situation, the user will be able to determine that the ball has come to rest in one of the slots. It is noted that each of the protrusions 16,18 can move independently of one another. Typically, the length of each of the passageways 54, 56, 58, 60 can range from 1/16 inch to ¼ of an inch, or any length to achieve the proper arrangement. The lateral movement of one of the protrusions 16, 18 is independent of the movement of the other protrusion.
The device 74 as shown in
The first channel arrangement 77 includes a center slot 82, a left slot 84 and a right slot 86. A passageway 94 is provided between the center slot 82 and the left slot 84. A passageway 96 is provided between the center slot 82 and the right slot 86. Similarly, the second channel arrangement 79 includes a center slot 88, a left slot 92 and a right slot 90. A passageway 98 is provided between the center slot 88 and the left slot 92. A passageway 100 is provided between the center slot 88 and the right slot 90. The protrusion 78 and disc 111 are retained within the first channel arrangement 77 and is therefore moveable under the control of a user between the center slot 82, the left slot 84 and the right slot 86 which are also included on the base section 74. The first protrusion 78 and disc 111 move within the passageway 94 as it moves between the center slot 82 and the left slot 84 under the control of the user. The first protrusion 78 and disc 111 moves within the passageway 96 as it moves between the center slot 82 and the right slot 86 under the control of the user. Similarly, the second protrusion 80 and disc 113 are retained within the second channel arrangement 79 and is therefore moveable under the control of a user between the center slot 88 and a left slot 92, as well as between the center slot 88 and the right slot 90. The second protrusion 80 and disc 113 moves within the passageway 98 as it moves between the center slot 88 and the left slot 92 under the control of the user. The second protrusion 80 and disc 113 moves within the passageway 100 as it moves between the center slot 88 and the right slot 90 under the control of the user.
Similar to the embodiment shown in
A gear 104 is provided with a plurality of teeth 106 on its periphery. Alternatively, the periphery of the gear 104 could be smooth. The gear 104 is situated on the base section 76 between slots 86 and 92. A relatively rigid connecting band 108 is connected to the periphery of the gear 104 and disc 111, which in turn is connected to the protrusion 78. Another relatively rigid connecting band 110 is connected to the periphery of the gear 104 and disc 113, which in turn is connected to the protrusion 80. While both of the connecting bands 108 and 110 are relatively rigid, each of the connecting bands 108 and 110 would exhibit some give or play. Additionally, while the gear 104 is circular in shape, other types of gearing arrangements could be employed to move the protrusions 78 and 80 in a lateral direction.
Assuming the protrusion 78 is in slot 84 and the gear 104 is rotated in the clockwise direction, band 108 moves to the right, forcing the disc 111 and protrusion 78 to move to the right, thereby moving the protrusion 78 from slot 84 through passageway 94 to rest in slot 82. Additionally, movement of the gear 104 in the clockwise direction would result in the disc 111 and the protrusion 78 moving from slot 82 through passageway 96 to rest in slot 86. Simultaneously, band 110 would move to the left forcing the disc 113 and the protrusion 80 to move from slot 90 through passageway 100 to come to rest in slot 88. Additional movement of the gear 104 in the clockwise direction would result in disc 113 and the protrusion 80 moving from slot 88 through passageway 98 and come to rest in slot 92. Therefore, as can be appreciated, movement of the gear 104 in the clockwise direction would result in narrowing the distance between the protrusions 78, 80. For example, if protrusion 78 was initially situated in slot 82 and protrusion 80 was initially situated in slot 88, clockwise movement of the gear 104 would result in protrusion 78 moving from slot 82 to slot 86 and protrusion 80 moving from slot 88 to slot 92. Each of the slots 82, 84 and 86 are provided in a straight line with respect to one another, allowing the protrusion 78 to easily move into these slots along passageways 94 and 96. Similarly, slots 88, 90 and 92 are provided in a straight line with respect to one another, allowing the protrusion 80 to move into these slots along passageways 98 and 100.
When gear 104 is rotated in the counter-clockwise direction, the band 108 moves to the left, causing disc 111 and protrusion 78 to move to the left, thereby forcing protrusion 78 to move from slot 86 through passageway 96 to slot 82 and then through passageway 94 to come to rest in slot 84. Rotation of the gear in the counter-clockwise direction results in the band 110 moving to the right, thereby forcing the disc 113 and the protrusion 80 to move to the right, such that protrusion 80 moves from slot 92 through passageway 98 to slot 88. Additional rotation of the gear in the counter-clockwise direction forces the disc 113 and the protrusion 80 to move from slot 88 through passageway 100 to slot 90. Therefore, as can be appreciated, movement of gear 104 in the counter-clockwise direction results in increasing the distance between the protrusions 78, 80. For example, if protrusion 78 was initially situated in slot 82 and protrusion 80 was initially situated in slot 88, counter-clockwise movement of gear 104 would result in protrusion 78 moving from slot 82 to slot 84 and protrusion 80 moving from slot 88 to slot 90. Apertures 70, 72 would allow the device 74 to be connected to a belt similar to that shown in
Although
Similar to the embodiment shown in
A strap 142 is connected to one side of the center section 122 and a second strap 140 is attached to the second side of the center section 122. The strap 142 is adjustable utilizing the buckles 144, 146. Both of the buckles 144, 146 are connected to a belt 148 for encircling a portion of the patient's torso while situating the center section 122 at the proper location to apply pressure to the appropriate position of the patient's stomach or abdomen as shown in
The base section is constructed from materials such as foam rubber, silicon or other similar material safe to be used on a patient's skin, as long as the material is fairly rigid. Similar to the previously described protrusions, the protrusions 124, 126 illustrated in
In another embodiment, proper pressure can be applied to the correct position on a patient's abdomen utilizing a pair of protrusions which are inflated using a device such as a pump. The pump would be employed inflate the protrusions, as well as the base section, thereby effectively increasing or decreasing the pressure applied to the patient's abdomen in a manner to deliver the proper mechanical pressure comfortable to the patient. This embodiment achieves the desired result of reducing the patient's heartburn symptoms without the necessity of laterally moving the protrusions within the endoskeleton to which the protrusions are provided.
Referring to
Air is forced between the top layer 160 and the bottom layer 166 by repeatedly squeezing the exterior surface of a pump 150, thereby forcing air to enter an intake nozzle 152, flow through the pump 150 to a hollow passageway 158, and then to a connector 174 provided between the hollow passageway 158 and the anti-reflux/anti-heartburn device 161. A first channel 170 is provided between the connector 174 and the bottom of the protrusion 164, and is situated between the top layer 160 and the bottom layer 166. A second channel 172 is provided between the first channel 170 and the bottom of the protrusion 162, and is also situated between the top layer 160 and the bottom layer 166. Both of the channels 170 and 172 are provided with small perforations on their outer surface, resulting in both protrusions 162 and 164 being inflated, as well as inflating at least a portion of the area between the top layer 160 and the bottom layer 166. The area between the top layer 160 and the bottom layer is inflated in the range of between one and four millimeters.
An end of the intake nozzle 152 is provided with a one-way valve. An air release valve 154 is attached to an air release hose 156 extending from the end of a passageway included within an ordinary bulb-type the pump 150, such as a blood pressure pump, used to prevent air from exiting the pump 150 during the inflation of the device 161.
When the device 161 is to be inflated, the air release valve 154 is provided with a closure, such as rotating a cap to close off the air release hose 156. Similarly, the cap can be pushed into the air release hose 156 to prevent air from exiting the pump 150. Once the air release valve 154 is closed, the pump 150 is squeezed several times to force air into the intake nozzle 152 and through the one way valve into the interior of the pump 150. The air then moves through the hollow passageway 158 into the device 161, between the top layer 160 and the bottom layer 166, as well as into the protrusions 162, 164, resulting in the inflation of the anti-reflux/anti heartburn device 161. The use of the one way valve prevents air from flowing out from end of the pump 150. During treatment, the hollow passageway 158 is disconnected from the device 161. A sealing device such as a cap 175 or similar closure device is used to close the connector 174 of the anti-reflux/anti-heartburn device 161 to ensure that the anti-reflux/anti-heartburn device remains inflated. The anti-reflux/heartburn device 161 is then attached to the belt 148 shown in
After use, the protrusions 162, 164 are deflated by removing the cap 175 or similar closure device from the connector 174, allowing the air to be drained from the protrusions 162, 164 as well as between top layer 160 and the bottom layer 166 of the anti-reflux/heartburn device 161. When the device is to be re-inflated, the connector 174 is reconnected to the hollow passageway 158 attached to the pump 150 and the process of inflating the protrusions 162, 164 as well as the area between the top layer 160 and the bottom layer 166 of the anti-reflux/heartburn device 161 is repeated. This particular configuration allows the protrusions 162, 164 to be inflated to a first level for one patient and to a second level, different than the first level, for another patient based upon the amount of air pumped into the anti-reflux/heartburn device 161. Some patients would require that the protrusions 162, 164 and the area between the bottom layer 160 and the top layer 166 be inflated to a maximum size to obtain relief. Other patients would require that the protrusions 162, 164 and the area between the top layer 160 and the bottom layer 166 need not be inflated to a maximum level to obtain relief.
Additionally, although the pump 150 has been described as inflating two protrusions, the pump 150 could operate to inflate only a single protrusion provided between the top layer of material 160 and the bottom layer of material 166 of the anti-reflux/heartburn device 161, as well as inflate three or more protrusions.
Each of the protrusions could include a vibratory circuit provided with a source of power, such as a small rechargeable battery and an on/off switch. When the switch is in the on position, a circuit would be completed and the material would vibrate, thereby producing a therapeutic sensation at the pressure point(s).
Since the anatomical point in which the device is placed overlaps a series of acupuncture points along meridians which affect gastro function, pressure and/or “needling” along these points have been known to calm and/or reduce gastric symptoms including, but not limited to, gastroesophageal reflux or heartburn. Therefore, it is believed that the affects of the pressure delivered by the present invention would elicit a similar response as achieved by acupuncture or acupressure.
Since it is important to properly place the protrusion(s) on the appropriate points of a patient's abdomen it is important to provide a device which can be easily adjusted when the device is initially placed around a patient's torso prior to securing the device around the torso to apply the proper pressure at a particular point on the patient's abdomen. The present invention is provided with two protrusions for the purpose of applying pressure to the appropriate points on the patient's body. The protrusions are generally provided on a base section of the device which is attached on both ends to a strap for encircling the patient's torso. The base section may be a planar rigid material having first and second ends provided with a device for changing the position of the protrusions on the planar rigid material prior to the device encircling the patient's torso. The position of the protrusions can also be adjusted after the device encircles the patient's torso.
The protrusions would be preferably constructed from a semi-dense foam, silicon material or a viscoelastic material, or any other semi-rigid material that would serve the same purpose. Viscoelastic materials provide a relationship between stress and strain dependent upon time. These materials have a unique equilibrium configuration which can ultimately recover fully after the removal of a transient load. Each of the protrusions can be provided with an interior endoskeleton allowing for more rigidity. Alternatively, the endoskeleton need not be provided in the interior of the protrusion. The protrusions can also be constructed from a plastic or rubber-like material, allowing the protrusions to expand and contract when a fluid such as air flows into and out of the protrusions.
While the preferred embodiments have been shown and described, it will be understood that there is no intent to limit the invention by such disclosure, but rather, is intended to cover all modifications and alternate constructions falling within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2547727 | Zaras | Apr 1951 | A |
2645221 | Carter | Jul 1953 | A |
3578773 | Schultz | May 1971 | A |
4592342 | Salmasian | Jun 1986 | A |
4787379 | Yeh | Nov 1988 | A |
4944289 | Matthews | Jul 1990 | A |
5010902 | Rambo et al. | Apr 1991 | A |
5115769 | Fiorini | May 1992 | A |
5127422 | Colon | Jul 1992 | A |
5275284 | Onotsky | Jan 1994 | A |
5310402 | Rollband | May 1994 | A |
5404623 | Smiedt | Apr 1995 | A |
5643315 | Daneshvar | Jul 1997 | A |
5695520 | Bruckner | Dec 1997 | A |
5728120 | Shani | Mar 1998 | A |
5848981 | Herbranson | Dec 1998 | A |
6193740 | Rodriguez | Feb 2001 | B1 |
6274786 | Heller | Aug 2001 | B1 |
6497641 | Hinds | Dec 2002 | B1 |
8100841 | Rousso | Jan 2012 | B2 |
20010041851 | Peyton | Nov 2001 | A1 |
20030004446 | Taylor | Jan 2003 | A1 |
20040077982 | Reinecke | Apr 2004 | A1 |
20060021202 | English | Feb 2006 | A1 |
20060142675 | Sargent | Jun 2006 | A1 |
20070299368 | McCarthy | Dec 2007 | A1 |
20080200853 | Tielve | Aug 2008 | A1 |
20090326427 | Kawahara | Dec 2009 | A1 |
20100016768 | Liu | Jan 2010 | A1 |
20100279830 | Snagg | Nov 2010 | A1 |
20100312158 | Lin | Dec 2010 | A1 |
20130150221 | Sibley | Jun 2013 | A1 |
20140031861 | Teeslink | Jan 2014 | A1 |
20140088352 | Maurette | Mar 2014 | A1 |
20140128788 | Marshall | May 2014 | A1 |
20150012037 | Goldman | Jan 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150112380 A1 | Apr 2015 | US |