ANTI-RESPIRATORY SYNCYTIAL VIRUS ANTIBODIES, AND METHODS OF THEIR GENERATION AND USE

Information

  • Patent Application
  • 20230192822
  • Publication Number
    20230192822
  • Date Filed
    September 20, 2022
    2 years ago
  • Date Published
    June 22, 2023
    a year ago
Abstract
Anti-RSV antibodies with neutralizing potency against RSV subtype A and RSV subtype B are provided, as well as methods for their identification, isolation, generation, and methods for their preparation and use are provided.
Description
SEQUENCE LISTING

The contents of the electronic sequence listing (1160430o004202.xml; Size: 3,081,456 bytes; and Date of Creation: Oct. 31, 2022) is herein incorporated by reference in its entirety.


FIELD OF THE INVENTION

The invention relates, inter alia, to anti-Respiratory Syncytial Virus (RSV) antibodies and functional fragments thereof, and methods and reagents for their preparation and use.


BACKGROUND OF THE INVENTION

All references cited herein, including without limitation patents, patent applications, and non-patent references and publications referenced throughout are hereby expressly incorporated by reference in their entireties for all purposes.


Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in young children and the elderly, is the leading cause of infant hospitalization in the United States and accounts for an estimated 64 million infections and 160,000 deaths world-wide each year. However, despite decades of research, the development of a safe and effective vaccines or therapeutic and/or prophylactic antibodies against RSV has remained elusive, highlighting the need for novel strategies that induce or provide protective immune responses. (1-3). Indeed, to date there are currently no approved RSV vaccines, and passive prophylaxis with the monoclonal antibody palivizumab (marketed as Synagis®) is restricted to high-risk infants in part due to its modest efficacy.


Certain populations of children are at risk for developing an RSV infection and these include preterm infants (Hall et al., 1979, New Engl. J. Med. 300:393-396), children with congenital malformations of the airway, children with bronchopulmonary dysplasia (Groothuis et al., 1988, Pediatrics 82:199-203), children with congenital heart disease (MacDonald et al., New Engl. J. Med. 307:397-400), and children with congenital or acquired immunodeficiency (Ogra et al., 1988, Pediatr. Infect. Dis. J. 7:246-249; and Pohl et al., 1992, J. Infect. Dis. 165:166-169), and cystic fibrosis (Abman et al., 1988, J. Pediatr. 1 13:826-830).


RSV can infect the adult population as well. In this population, RSV causes primarily an upper respiratory tract disease, although elderly patients may be at greater risk for a serious infection and pneumonia (Evans, A. S., eds., 1989, Viral Infections of Humans. Epidemiology and Control, 3rd ed., Plenum Medical Book, New York at pages 525-544), as well as adults who are immunosuppressed, particularly bone marrow transplant patients (Hertz et al., 1989, Medicine 68:269-281). Other at risk patients include those suffering from congestive heart failure and those suffering from chronic obstructive pulmonary disease (ie. COPD). There have also been reports of epidemics among nursing home patients and institutionalized young adults (Falsey, A. R., 1991, Infect. Control Hosp. Epidemiol. 12:602-608; and Garvie et al., 1980, Br. Med. J. 281:1253-1254).


While treatment options for established RSV disease are limited, more severe forms of the disease of the lower respiratory tract often require considerable supportive care, including administration of humidified oxygen and respiratory assistance (Fields et al., eds, 1990, Fields Virology, 2nd ed., Vol. 1, Raven Press, New York at pages 1045-1072).


Similar to other pneumoviruses, RSV expresses two major surface glycoproteins: the fusion protein (F) and the attachment protein (G). Although both have been shown to induce protective neutralizing antibody responses, F is less genetically variable than G, is absolutely required for infection, and is the target for the majority of neutralizing activity in human serum (4-8). RSV F is also the target of the monoclonal antibody palivizumab, which is used to passively protect high-risk infants from severe disease (9). Consequently, the RSV F protein is considered to be a highly attractive target for vaccines and antibody-based therapies.


The mature RSV F glycoprotein initially exists in a metastable prefusion conformation (10), before undergoing a conformational change that leads to insertion of the hydrophobic fusion peptide into the host-cell membrane. Subsequent refolding of F into a stable, elongated postfusion conformation (postF) (11, 12) results in fusion of the viral and host-cell membranes. Due to its inherent instability, the preF protein has the propensity to prematurely trigger into postF, both in solution and on the viral surface (13). Recently, stabilization of preF has been achieved by protein engineering (14, 15), and stabilized preF has been shown to induce higher titers of neutralizing antibodies than postF in animal models (15).


Despite the importance of neutralizing antibodies in protection against severe RSV disease, our understanding of the human antibody response to RSV has been limited to studies of human sera and a small number of RSV-specific human monoclonal antibodies (16-19). The epitopes recognized by these human antibodies, as well as several murine antibodies, have defined at least four ‘antigenic sites’ on RSV F (1, 10, 16, 18-20) (see also, e.g, Table 1). Three of these sites—I, II, and IV—are present on both pre- and postF, whereas antigenic site Ø exists exclusively on preF. Additional preF-specific epitopes have been defined by antibodies MPE8 (17) and AM14 (21). Although serum mapping studies have shown that site 0-directed antibodies are responsible for a large proportion of the neutralizing antibody response in most individuals (8), there are additional antibody specificities that contribute to serum neutralizing activity that remain to be defined. In addition, it was heretofore unknown whether certain antibody sequence features are required for recognition of certain neutralizing sites, as observed for other viral targets (22-25). Accordingly, understanding the relationship between neutralization potency and epitope specificity would be advantageous in the selection and/or design of vaccine antigens, as well as therapeutic and/or prophylactic antibodies, which induce potent neutralizing responses to RSV.


While treatment options for established RSV disease are limited, more severe forms of the disease of the lower respiratory tract often require considerable supportive care, including administration of humidified oxygen and respiratory assistance (Fields et al., eds, 1990, Fields Virology, 2nd ed., Vol. 1, Raven Press, New York at pages 1045-1072).


Ribavirin, which is the only drug approved for treatment of infection, has been shown to be effective in the treatment of pneumonia and bronchiolitis associated with RSV infection, and has been shown to modify the course of severe RSV disease in immunocompetent children (Smith et ai., 1991, New Engl. J. Med. 325:24-29). The use of ribavirin is limited due to concerns surrounding its potential risk to pregnant women who may be exposed to the aerosolized drug while it is being administered in a hospital environment.


Similarly, while a vaccine may be useful, no commercially available vaccine has been developed to date. Several vaccine candidates have been abandoned and others are under development (Murphy et al., 1994, Virus Res. 32: 13-36). The development of a vaccine has proven to be problematic. In particular, immunization would be required in the immediate neonatal period since the peak incidence of lower respiratory tract disease occurs at 2-5 months of age. However, it is known that the neonatal immune response is immature at that time. Plus, the infant at that point in time still has high titers of maternally acquired RSV antibody, which might reduce vaccine immunogenicity (Murphy et al., 1988, J. Virol. 62:3907-3910; and Murphy et ai, 1991, Vaccine 9:185-189).


Currently, the only approved approach to prophylaxis of RSV disease is passive immunization. For example, the humanized antibody, palivizumab (SYNAGIS®), which is specific for an epitope on the F protein, is approved for intramuscular administration to pediatric patients for prevention of serious lower respiratory tract disease caused by RSV at recommended monthly doses of 15 mg/kg of body weight throughout the RSV season (November through April in the northern hemisphere). SYNAGIS® is a composite of human (95%) and murine (5%) antibody sequences. (Johnson et ai, (1997), J. Infect. Diseases 176:1215-1224 and U.S. Pat. No. 5,824,307).


Although SYNAGIS® has been successfully used for the prevention of RSV infection in pediatric patients, multiple intramuscular doses of 15 mg/kg of SYNAGIS® are required to achieve a prophylactic effect. The necessity for the administration of multiple intramuscular doses of antibody requires repeated visits to the doctor's office, which is not only inconvenient for the patient but can also result in missed doses.


Efforts were made to improve on the therapeutic profile of an anti-RSV-F antibody, and this lead to the identification and development of motavizumab, also referred to as NUMAX™ However, clinical testing revealed that certain of the patients being administered motavizumab were having severe hypersensitivity reactions. Further development of this humanized anti-RSV-F antibody was then discontinued.


Other antibodies to RSV-F protein have been described and can be found in U.S. Pat. Nos. 6,656,467; 5,824,307, 7,786,273; 7,670,600; 7,083,784; 6,818,216; 7,700,735; 7,553,489; 7,323,172; 7,229,619; 7,425,618; 7,740,851; 7,658,921; 7,704,505; 7,635,568; 6,855,493; 6,565,849; 7,582,297; 7,208,162; 7,700,720; 6,413,771; 5,811,524; 6,537,809; 5,762,905; 7,070,786; 7,364,742; 7,879,329; 7,488,477; 7,867,497; 5,534,411; 6,835,372; 7,482,024; 7,691,603; 8,562,996; 8,568,726; US20100015596; WO2009088159A1; and WO2014159822. To date, none other than SYNAGIS® has been approved by a regulatory agency for use in preventing an RSV infection.


There remains a need for the provision of highly specific, high affinity, and highly potent neutralizing anti-RSV antibodies and antigen-binding fragments thereof with neutralize at least one, but preferably both, of subtype A and subtype B RSV viral strains, and which preferentially recognize PreF relative to Post F conformations of the F protein. There also remains a need for the provision of anti-RSV and anti-HMPV cross-neutralizing antibodies and antigen-binding fragments thereof.


SUMMARY OF THE INVENTION

Applicants have now discovered, isolated, and characterized, inter alia, an extensive panel of RSV F-specific monoclonal antibodies from the memory B cells of a healthy adult human donor and used these antibodies to comprehensively map the antigenic topology of RSV F. A large proportion of the RSV F-specific human antibody repertoire was advantageously comprised of antibodies with greatly enhanced specificity for the PreF conformation of the F protein (relative to the PostF form), many if not most of which exhibited remarkable potency in neutralization assays against one or both of RSV subtype A and RSV subtype B strains. Indeed, a large number of these antibodies display neutralization potencies that are multiple-fold greater—some 5- to 100-fold greater or more—to previous anti-RSV therapeutic antibodies, such as D25 and pavlizumamab thus serve as attractive therapeutic and/or prophylactic candidates for treating and/or preventing RSV infection and disease.


The most potent antibodies were found to target two distinct antigenic sites that are located near the apex of the preF trimer, providing strong support for the development of therapeutic and/or prophylactic antibodies targeting these antigenic sites, as well as preF-based vaccine candidates that preserve these antigenic sites. Furthermore, the neutralizing antibodies described and disclosed herein represent new opportunities for the prevention of severe RSV disease using passive immunoprophylaxis.


Given the role that the F protein plays in fusion of the virus with the cell and in cell to cell transmission of the virus, the antibodies described herein provide a method of inhibiting that process and as such, may be used for preventing infection of a patient exposed to, or at risk for acquiring an infection with RSV, or for treating and/or ameliorating one or more symptoms associated with RSV infection in a patient exposed to, or at risk for acquiring an infection with RSV, or suffering from infection with RSV. The antibodies described herein may also be used to prevent or to treat an RSV infection in a patient who may experience a more severe form of the RSV infection due to an underlying or pre-existing medical condition. A patient who may benefit from treatment with an antibody of the invention may be a pre-term infant, a full-term infant born during RSV season (approximately late fall (November) through early spring (April)) that is at risk because of other pre-existing or underlying medical conditions including congenital heart disease or chronic lung disease, a child greater than one year of age with or without an underlying medical condition, an institutionalized or hospitalized patient, or an elderly adult (>65 years of age) with or without an underlying medical condition, such as congestive heart failure (CHF), or chronic obstructive pulmonary disease (COPD). A patient who may benefit from such therapy may suffer from a medical condition resulting from a compromised pulmonary, cardiovascular, neuromuscular, or immune system. For example, the patient may suffer from an abnormality of the airway, or an airway malfunction, a chronic lung disease, a chronic or congenital heart disease, a neuromuscular disease that compromises the handling of respiratory secretions, or the patient may be immunosuppressed due to severe combined immunodeficiency disease or severe acquired immunodeficiency disease, or from any other underlying infectious disease or cancerous condition that results in immunosuppression, or the patient may be immunosuppressed due to treatment with an immunosuppressive drug (e.g. any drug used for treating a transplant patient) or radiation therapy. A patient who may benefit from the antibodies of the invention may be a patient that suffers from chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), bronchopulmonary dysplasia, congestive heart failure (CHF), or congenital heart disease.


Because the inventive antibodies and antigen-binding fragments thereof are more effective at neutralization of RSV compared to known antibodies, lower doses of the antibodies or antibody fragments could be used to achieve a greater level of protection against infection with RSV, and more effective treatment and/or amelioration of symptoms associated with an RSV infection. Accordingly, the use of lower doses of antibodies or fragments thereof which immunospecifically bind to RSV-F antigen may result in fewer or less severe adverse events. Likewise, the use of more effective neutralizing antibodies may result in a diminished need for frequent administration of the antibodies or antibody fragments than previously envisioned as necessary for the prevention of infection, or for virus neutralization, or for treatment or amelioration of one or more symptoms associated with an RSV infection. Symptoms of RSV infection may include a bluish skin color due to lack of oxygen (hypoxia), breathing difficulty (rapid breathing or shortness of breath), cough, croupy cough (“seal bark” cough), fever, nasal flaring, nasal congestion (stuffy nose), apnea, decreased appetite, dehydration, poor feeding, altered mental status, or wheezing.


Such antibodies may be useful when administered prophylactically (prior to exposure to the virus and infection with the virus) to lessen the severity, or duration of a primary infection with RSV, or ameliorate at least one symptom associated with the infection. The antibodies may be used alone or in conjunction with a second agent useful for treating an RSV infection. In certain embodiments, the antibodies may be given therapeutically (after exposure to and infection with the virus) either alone, or in conjunction with a second agent to lessen the severity or duration of the primary infection, or to ameliorate at least one symptom associated with the infection. In certain embodiments, the antibodies may be used prophylactically as stand-alone therapy to protect patients who are at risk for acquiring an infection with RSV, such as those described above. Any of these patient populations may benefit from treatment with the antibodies of the invention, when given alone or in conjunction with a second agent, including for example, an anti-viral therapy, such as ribavirin, or other anti-viral vaccines.


The antibodies of the invention can be full-length (for example, an lgG1 or lgG4 antibody) or may comprise only an antigen-binding portion (for example, a Fab, F(ab′)2 or scFv fragment), and may be modified to affect functionality, e.g., to eliminate residual effector functions (Reddy et al., (2000), J. Immunol. 164:1925-1933).


Accordingly, in certain embodiments are provided isolated antibodies or antigen-binding fragments thereof that specifically bind to Respiratory Syncytial Virus (RSV) F protein (F), wherein at least one of the CDRH1, a CDRH2, a CDRH3, a CDRL1, a CDRL2, and CDRL3 amino acid sequence such antibodies or the antigen-binding fragments thereof are at least 70% identical; at least 75% identical; 80% identical; at least 85% identical; at least 90% identical; at least 95% identical; at least 96% identical; at least 97% identical; at least 98% identical; at least 99%; and/or all percentages of identity in between; to at least one the CDRH1, a CDRH2, a CDRH3, a CDRL1, a CDRL2, and/or a CDRL3 amino acid sequences as disclosed in Table 6 of an antibody selected from Antibody Number 232 through Antibody Number 372 as disclosed in Table 6; and wherein said antibody or the antigen-binding fragment thereof also has one or more of the following characteristics: a) the antibodies or antigen-binding fragments thereof cross-compete with said antibodies or antigen-binding fragments thereof for binding to RSV-F; b) the antibodies or antigen-binding fragments thereof display better binding affinity for the PreF form of RSV-F relative to the PostF form; c) the antibodies or antigen-binding fragments thereof display a clean or low polyreactivity profile; d) the antibodies or antigen-binding fragments thereof display neutralization activity toward RSV subtype A and RSV subtype B in vitro; e) the antibodies or antigen-binding fragments thereof display antigenic site specificity for RSV-F at Site Ø, Site I, Site II, Site III, Site IV, or Site V f) the antibodies or antigen-binding fragments thereof display antigenic site specificity for RSV-F Site Ø, Site V, or Site III relative to RSV-F Site I, Site II, or Site IV; g) at least a portion of the epitope with which the antibodies or antigen-binding fragments thereof interact comprises the α3 helix and β3/β4 hairpin of PreF; h) the antibodies or antigen-binding fragments thereof display an in vitro neutralization potency (IC50) of between about 0.5 microgram/milliliter (ug/ml) to about 5 ug/ml; between about 0.05 ug/ml to about 0.5 ug/ml; or less than about 0.05 mg/ml; i) the binding affinities and/or epitopic specificities of the antibodies or antigen-binding fragments thereof for any one of the RSV-F variants designated as 1, 2, 3, 4, 5, 6, 7, 8, 9, and DG in FIG. 7A is reduced or eliminated relative to the binding affinities and/or epitopic specificities of said antibodies or antigen-binding fragments thereof for the RSV-F or RSV-F DS-Cav1; j) the antibodies or antigen-binding fragments thereof display a cross-neutralization potency (IC50) against human metapneumovirus (HMPV); k) the antibodies or antigen-binding fragments thereof do not complete with D25, MPE8, palivizumab, or motavizumab; or 1) the antibodies or antigen-binding fragments thereof display at least about 2-fold; at least about 3-fold; at least about 4-fold; at least about 5-fold; at least about 6-fold; at least about 7-fold; at least about 8-fold; at least about 9-fold; at least about 10-fold; at least about 15-fold; at least about 20-fold; at least about 25-fold; at least about 30-fold; at least about 35-fold; at least about 40-fold; at least about 50-fold; at least about 55-fold; at least about 60-fold; at least about 70-fold; at least about 80-fold; at least about 90-fold; at least about 100-fold; greater than about 100-fold; and folds in between any of the foregoing; greater neutralization potency (IC50) than D25 and/or palivizumab.


In certain other embodiments, the isolated antibodies or antigen-binding fragments thereof comprise: at least two; at least three; at least 4; at least 5; at least 6; at least 7; at least 8; at least 9; at least 10; at least 11; or at least 12; of characteristics a) through 1) above.


In certain other embodiments, the isolated antibodies or antigen-binding fragments thereof comprise: a) the CDRH3 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6; b) the CDRH2 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6; c) the CDRH1 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6; d) the CDRL3 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6; e) the CDRL2 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372a s disclosed in Table 6; f) the CDRL1 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6; or g) any combination of two or more of a), b), c), d), e), and f).


In certain other embodiments, the isolated antibodies or antigen-binding fragments thereof comprise: a) a heavy chain (HC) amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6; and/or b) a light chain (LC) amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In certain other embodiments, the isolated antibodies or antigen-binding fragments thereof are selected from the group consisting of antibodies that are at least 70% identical; at least 75% identical; 80% identical; at least 85% identical; at least 90% identical; at least 95% identical; at least 96% identical; at least 97% identical; at least 98% identical; at least 99%; and/or all percentages of identity in between; to any one of the antibodies designated as Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In certain other embodiments, the isolated antibodies or antigen-binding fragments thereof are selected from the group consisting of the antibodies designated as Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In other embodiments are provided isolated nucleic acid sequences encoding antibodies or antigen-binding fragments thereof according to any of the other embodiments disclosed herein.


In other embodiments are provided expression vectors comprising isolated nucleic acid sequences according to other embodiments disclosed herein.


In other embodiments are provided host cells transfected, transformed, or transduced with nucleic acid sequences or expression vectors according to other embodiments disclosed herein.


In other embodiments are provided pharmaceutical compositions comprising: one or more of the isolated antibodies or antigen-binding fragments thereof according to other embodiments disclosed herein; and a pharmaceutically acceptable carrier and/or excipient.


In other embodiments are provided pharmaceutical compositions: one or more nucleic acid sequences according other embodiments disclosed herein; or one or more the expression vectors according to other embodiments disclosed herein; and a pharmaceutically acceptable carrier and/or excipient.


In other embodiments are provided transgenic organisms comprising nucleic acid sequences according to other embodiments disclosed herein; or expression vectors according to other embodiments disclosed herein.


In other embodiments are provided methods of treating or preventing a Respiratory Syncytial Virus (RSV) infection, ar at least one symptom associated with RSV infection, comprising administering to a patient in need there of or suspected of being in need thereof: a) one or more antibodies or antigen-binding fragments thereof according to other embodiments disclosed herein; b) nucleic acid sequences according to other embodiments disclosed herein; an expression vector according to other embodiments disclosed herein; a host cell according to other embodiments disclosed herein; or e) a pharmaceutical composition according to other embodiments disclosed herein; such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity.


In other embodiments are provided methods of treating or preventing either a Respiratory Syncytial Virus (RSV) infection or a human metapneumovirus (HMPV) infection, ar at least one symptom associated with said RSV infection or said HMPV infection, comprising administering to a patient in need thereof or suspected of being in need thereof: a) one or more antibodies or antigen-binding fragments thereof according to other embodiments disclosed herein; b) a nucleic acid sequences according to other embodiments disclosed herein; c) an expression vector according to other embodiments disclosed herein; d) a host cell according to other embodiments disclosed herein; or e) a pharmaceutical composition according to other embodiments disclosed herein; such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity. In other embodiments are provided methods according to other embodiments wherein the one or more antibodies or antigen-binding fragments thereof of a) is selected from the group consisting of the antibodies designated as Antibody Number 340 as disclosed in Table 6.


In other embodiments are provided methods according to other embodiments wherein the method further comprises administering to the patient a second therapeutic agent.


In other embodiments are provided methods according to other embodiments, wherein the second therapeutic agent is selected group consisting of: an antiviral agent; a vaccine specific for RSV, a vaccine specific for influenza virus, or a vaccine specific for metapneumovirus (MPV); an siRNA specific for an RSV antigen or a metapneumovirus (MPV) antigen; a second antibody specific for an RSV antigen or a metapneumovirus (MPV) antigen; an anti-IL4R antibody, an antibody specific for an influenza virus antigen, an anti-RSV-G antibody and a NSAID.


In certain embodiments are provided pharmaceutical compositions comprising any one or more of the isolated antibodies or antigen-binding fragments thereof and a pharmaceutically acceptable carrier and/or excipient.


In certain embodiments are provided pharmaceutical compositions according to other embodiments for use in preventing a respiratory syncytial virus (RSV) infection in a patient in need thereof or suspected of being in need thereof, or for treating a patient suffering from an RSV infection, or for ameliorating at least one symptom or complication associated with the infection, wherein the infection is either prevented, or at least one symptom or complication associated with the infection is prevented, ameliorated, or lessened in severity and/or duration as a result of such use.


In certain embodiments are provided pharmaceutical compositions according to other embodiments for use in treating or preventing either a Respiratory Syncytial Virus (RSV) infection or a human metapneumovirus (HMPV) infection, ar at least one symptom associated with said RSV infection or said HMPV infection, in a patient in need thereof or suspected of being in need thereof, wherein the infection is either prevented, or at least one symptom or complication associated with the infection is prevented, ameliorated, or lessened in severity and/or duration as a result of such use.


In certain other embodiments are provided uses of the pharmaceutical compositions according to other embodiments in the manufacture of a medicament for preventing a respiratory syncytial virus (RSV) infection in a patient in need thereof, or for treating a patient suffering from an RSV infection, or for ameliorating at least one symptom or complication associated with the infection, wherein the infection is either prevented, or at least one symptom or complication associated with the infection is prevented, ameliorated, or lessened in severity and/or duration.


In certain other embodiments are provided uses of the pharmaceutical compositions according to other embodiments in the manufacture of a medicament for preventing either a Respiratory Syncytial Virus (RSV) infection or a human metapneumovirus (HMPV) infection, ar at least one symptom associated with said RSV infection or said HMPV infection, in a patient in need thereof or suspected of being in need thereof, wherein the infection is either prevented, or at least one symptom or complication associated with the infection is prevented, ameliorated, or lessened in severity and/or duration as a result of such use.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A through FIG. 1F illustrates the anti-RSV repertoire cloning and sequence analysis of the identified and isolated antibodies. FIG. 1A: RSV F-specific B cell sorting. FACS plots show RSV F reactivity of IgG+ and IgA+ B cells from the healthy adult donor. B cells in quadrant 2 (Q2) were single cell sorted. FIG. 1B: Isotype analysis. Index sort plots show the percentage of RSV F-specific B cells that express IgG or IgA. FIG. 1C: Clonal lineage analysis. Each slice represents one clonal lineage; the size of the slice is proportional to the number of clones in the lineage. The total number of clones is shown in the center of the pie. Clonal lineages were assigned based on the following criteria: 1) matching of variable and joining gene segments; 2) identical CDR3 loop lengths; and 3) >80% homology in CDR3 nucleotide sequences. FIG. 1D: VH repertoire analysis. VH germline genes were considered to be enriched in the RSV repertoire if the a given gene was found to be enriched by greater than 3-fold over non-RSV-specific repertoires (33). FIG. 1E: CDRH3 length distribution. FIG. 1F: Somatic hypermutation in VH (excluding CDRH3). Red bars indicate the average number of nucleotide substitutions. Each clonal lineage is only represented once in (D) and (E). Data for non-RSV reactive IgGs were derived from published sequences obtained by high-throughput sequencing of re-arranged antibody variable gene repertoires from healthy individuals (33).



FIG. 2A through 2D illustrates the similar antibody preferences observed for conformational state and subtype of RSV F in the repertoire. FIG. 2A: IgG affinities for preF and postF are plotted as shown. FIG. 2B: Percentage of antibodies within the donor repertoire that recognized both conformations of F (green) or bind only to preF (blue) or postF (orange). FIG. 2C: Percentage of antibodies within the donor repertoire that bind specifically to subtype A (green), subtype B (blue), or both subtypes A and B (red). N.B., non-binder. IgG KDs were calculated for antibodies with BLI responses >0.1 nm. Antibodies with BLI responses <0.05 nm were designated as N.B. FIG. 2D: Polyreactivity analysis of anti-RSV antibodies. The polyreactivity of the isolated anti-RSV F antibodies was measured using a previously described assay (42, 43). Three panels of control antibodies were included for comparison: a group of 138 antibodies currently in clinical trials, 39 antibodies that have been approved for clinical use and 14 broadly neutralizing HIV antibodies.



FIG. 3A through FIG. 3G illustrate mapping and specificities of anti-RSV antibodies for antigenic sites spanning the surface of PreF and PostF. FIG. 3A: The previously determined structure of preF with one protomer shown as ribbons and with six antigenic sites rainbow colored from red to purple. FIG. 3B: The percentage of antibodies targeting each antigenic site is shown. FIG. 3C: Percentage of preF-specific antibodies targeting each antigenic site. FIG. 3D: Apparent antibody binding affinities for subtype A PreF antigenic sites. FIG. 3E: Apparent binding affinities for subtype A postF antigenic sites. FIG. 3F: Apparent antibody binding affinities for subtype B PreF antigenic sites. FIG. 3G. Apparent binding affinities for subtype B postF. Only antibodies with apparent binding affinities greater than 2 nM were included in this analysis, since antibodies with lower affinity could not be reliably mapped. Red bars show the median and the dotted grey line is at 2 nM. N.B., non-binder.



FIG. 4A through FIG. 4G illustrate neutralizing potencies of anti-RSV antibodies and correlation between potency and Pref vs. PostF specifity for each of RSV subtypes A and B. FIG. 4A: Neutralization IC50s for the antibodies isolated from the donor repertoire. Data points are colored based on neutralization potency, according to the legend on the right. Red and blue dotted lines depict motavizumab and D25 IC50s, respectively. FIG. 4B: Percentage of neutralizing antibodies in the donor repertoire against RSV subtype A or subtype B, stratified by potency as indicated in the legend in the right portion of the figure. FIG. 4C: Percentage of antibodies within the donor repertoire that neutralized both RSV subtypes A and B (red) or neutralized only RSV subtype A (green) or subtype B (blue). FIG. 4D: Apparent binding affinities for subtype A, preF and postF, plotted for each antibody (IgG KDs were calculated for antibodies with BLI responses >0.1 nm. Antibodies with BLI responses <0.05 nm were designated as N.B.) FIG. 4E: Neutralization IC50s plotted for RSV subtype A preF-specific, postF-specific, and cross-reactive antibodies. (Red and blue dotted lines depict motavizumab and D25 IC50s, respectively. Red bars depict median. N.B., non-binder; N.N., non-neutralizing). FIG. 4F: Apparent antibody binding affinities for subtype B, preF and postF. FIG. 4G: IC50s plotted for RSV subtype B preF-specific, postF-specific and cross-reactive antibodies. (Black bar depicts median. N.B., non-binder; N.N., non-neutralizing.)



FIG. 5A through FIG. 5C illustrate that the most potent neutralizing antibodies bind with high affinity to preF and recognize antigenic sites Ø and V. FIG. 5A: apparent preF KD plotted against neutralization IC50 and colored according to antigenic site, as shown in the legend at right of FIG. 5C. FIG. 5B: apparent postF KD plotted against neutralization IC50 and colored as in FIG. 5A. FIG. 5C: antibodies grouped according to neutralization potency and colored by antigenic site as in legend at right. N.B., non-binder; N.N., non-neutralizing. IgG KDs were calculated for antibodies with BLI responses >0.1 nm. Antibodies with BLI responses <0.05 nm were designated as N.B. Statistical significance was determined using an unpaired two-tailed t test. The Pearson's correlation coefficient, r, was calculated using Prism software version 7.0. Antibodies that failed to bind or neutralize were excluded from the statistical analysis due to the inability to accurately calculate midpoint concentrations.



FIG. 6A through FIG. 6C illustrate the nature and purification of pre- and postF sorting probes. FIG. 6A: Schematic of fluorescent prefusion RSV F probe shows one PE-conjugated streptavidin molecule bound by four avi-tagged trimeric prefusion F molecules. FIG. 6B: Coomassie-stained SDS-PAGE gel demonstrating the isolation of RSV F with a single AviTag per trimer using sequential Ni-NTA and Strep-Tactin purifications, as described in the Methods. FIG. 6C: Fluorescence size-exclusion chromatography (FSEC) trace of the tetrameric probes on a Superose 6 column. Positions of molecular weight standards are indicated with arrows.



FIG. 7A through FIG. 7C illustrates the generation and validation of preF patch panel mutants. FIG. 7A: Panel of RSV F variants used for epitope mapping. FIG. 7B: Prefusion RSV F shown as molecular surface with one protomer colored in white. The nine variants, each containing a patch of mutations, are uniquely colored according to the table in FIG. 7A. FIG. 7C: Binding of each IgG to fluorescently labeled beads coupled to each of the variants listed in FIG. 7A was measured using PE-conjugated anti-human Fc antibody on a FLEXMAP 3D flow cytometer (Luminex). Reduced binding of D25 and motavizumab to patches 1 and 5, respectively, is consistent with their structurally defined epitopes (10, 11). AM14 binding was reduced for both patch 3 and patch 9, due to its unique protomer-spanning epitope (21). This characteristic binding profile was used to assist in the classification of other possible quaternary-specific antibodies in the panel.



FIG. 8 illustrates the antigenic site V resides between the epitopes recognized by D25, MPE8 and motavizumab. Prefusion F is shown with one promoter as a cartoon colored according to antigenic site location and the other two protomers colored grey. D25 and motavizumab Fabs are shown in blue and pink, respectively. The MPE8 binding site is circled in black. Antigenic site V is located between the binding sites of D25 and MPE8 within one protomer, explaining the competition between site-V directed antibodies and these controls. Competition with motavizumab may occur across two adjacent protomers (left) or within one protomer (right), depending on the angle-of-approach of these site-V directed antibodies.



FIG. 9 illustrates percentage of anti-RSV antibodies demonstrating the indicated neutralizing activities of preF-specific, postF-specific, and cross-reactive antibodies. Antibodies were stratified according to neutralization potency and the percentage of antibodies in each group that were preF-specific (pink), postF-specific (white) or cross-reactive (orange) were plotted for subtype A (left panel) and subtype B (right panel).



FIG. 10A through FIG. 10C illustrates the relationship between subtype B neutralization and antigenic site specificity for anti-RSV antibodies. FIG. 10A: Subtype B preF affinity plotted against neutralization IC50 for all antibodies and colored by antigenic site according to the colore scheme depicted in FIG. 10C, right portion. FIG. 10B: PostF affinity plotted against IC50 and colored as in FIG. 10A. FIG. 10C: Antibodies with preF affinities higher than 2 nM grouped according to neutralization potency and colored by antigenic site (right portion).



FIG. 11 illustrates in vitro neutralization of RSV A2 for specific anti-RSV antibodies. Inhibition of RSV-replication was measured in an ELISA based neutralization Assay using Hep-2 cells. Cells, mAbs and viruses were co-incubated for 4 days at 37° C., followed by quantification of viral proteins in infected cells using a polyclonal anti-RSV antibody. % inhibition was calculated relative to control cells infected with virus in absence of neutralizing antibody. Data are expressed as half-maximal inhibitory concentration that resulted in 50% reduction in virus replication (IC50) and represent the mean+/−SEM of two independent experiments. An isotype matched control mAb (*) was included in every experiment and did not exhibit virus neutralization.





DETAILED DESCRIPTION OF THE INVENTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. As used herein, the term “about,” when used in reference to a particular recited numerical value, means that the value may vary from the recited value by no more than 1%. For example, as used herein, the expression “about 100” includes 99 and 101 and all values in between (e.g., 99.1, 99.2, 99.3, 99.4, etc.).


Definitions

“Respiratory Syncytial Virus-F protein”, also referred to as “RSV-F” is a type I transmembrane surface protein, which has an N terminal cleaved signal peptide and a membrane anchor near the C terminus (Collins, P. L. et al., (1984), PNAS (USA) 81:7683-7687). The RSV-F protein is synthesized as an inactive 67 KDa precursor denoted as F0 (Calder, L. J.; et al., Virology (2000), 277,122-131. The F0 protein is activated proteolytically in the Golgi complex by a furin-like protease at two sites, yielding two disulfide linked polypeptides, F2 and F1, from the N and C terminal, respectively. There is a 27 amino acid peptide released called “pep27”. There are furin cleavage sites (FCS) on either side of the pep27 (Collins, P. L.; Mottet, G. (1991), J. Gen. Virol., 72: 3095-3101; Sugrue, R. J, et al. (2001), J. Gen. Virol., 82,1375-1386). The F2 subunit consists of the Heptad repeat C (HRC), while the F1 contains the fusion polypeptide (FP), heptad repeat A (HRA), domain I, domain II, heptad repeat B (HRB), transmembrane (TM) and cytoplasmic domain (CP) (See Sun, Z. et al. Viruses (2013), 5:21 1-225). The RSV-F protein plays a role in fusion of the virus particle to the cell membrane, and is expressed on the surface of infected cells, thus playing a role in cell to cell transmission of the virus and syncytia formation. The amino acid sequence of the RSV-F protein is provided in GenBank as accession number AAX23994.


A stabilized variant of the PreF trimeric conformation of RSV-F, termed “RSV-DS-Cav1”, or “DS-Cav1” disclosed in, inter alia, Stewart-Jones et al., PLos One, Vol. 10(6)):e0128779. doi: 10.1371/journal.pone.0128779 and WO 2011/050168. was used in the identification, isolation, and characterization of the antibodies disclosed herein.


The term “laboratory strain” as used herein refers to a strain of RSV (subtype A or B) that has been passaged extensively in in vitro cell culture. A “laboratory strain” can acquire adaptive mutations that may affect their biological properties. A “clinical strain” as used herein refers to an RSV isolate (subtype A or B), which is obtained from an infected individual and which has been isolated and grown in tissue culture at low passage.


The term “effective dose 99” or “ED99” refers to the dosage of an agent that produces a desired effect of 99% reduction of viral forming plaques relative to the isotype (negative) control. In the present invention, the ED99 refers to the dosage of the anti-RSV-F antibodies that will neutralize the virus infection (e.g. reduce 99% of viral load) in vivo, as described in Example 5.


The term “IC50” refers to the “half maximal inhibitory concentration”, which value measures the effectiveness of compound (e.g. anti-RSV-F antibody) inhibition towards a biological or biochemical utility. This quantitative measure indicates the quantity required for a particular inhibitor to inhibit a given biological process by half. In certain embodiments, RSV virus neutralization potencies for anti-RSV and/or anti-RSV/anti-HMPV cross-neutralizing antibodies disclosed herein are expressed as neutralization IC50 values.


“Palivizumab”, also referred to as “SYNAGIS®”, is a humanized anti-RSV-F antibody with heavy and light chain variable domains having the amino acid sequences as set forth in U.S. Pat. Nos. 7,635,568 and 5,824,307. This antibody, which immunospecifically binds to the RSV-F protein, is currently FDA-approved for the passive immunoprophylaxis of serious RSV disease in high-risk children and is administered intramuscularly at recommended monthly doses of 15 mg/kg of body weight throughout the RSV season (November through April in the northern hemisphere). SYNAGIS® is composed of 95% human and 5% murine antibody sequences. See also Johnson et al., (1997), J. Infect. Diseases 176:1215-1224.


“Motavizumab”, also referred to as “NUMAX™”, is an enhanced potency RSV-F-specific humanized monoclonal antibody derived by in vitro affinity maturation of the complementarity-determining regions of the heavy and light chains of palivizumab. For reference purposes, the amino acid sequence of the NUMAX™ antibody is disclosed in U.S. Patent Publication 2003/0091584 and in U.S. Pat. No. 6,818,216 and in Wu et al., (2005) J. Mol. Bio. 350(1):126-144 and in Wu, et al. (2007) J. Mol. Biol. 368:652-665. It is also shown herein as SEQ ID NO: 359 for the heavy chain and as SEQ ID NO: 360 for the light chain of the antibody.


As used herein, the terms “treat,” “treatment” and “treating” refer to the reduction or amelioration of the progression, severity, and/or duration of an upper and/or lower respiratory tract RSV infection and/or human metapneumovirus (HMPV), otitis media, or a symptom or respiratory condition related thereto (such as asthma, wheezing, or a combination thereof) resulting from the administration of one or more therapies (including, but not limited to, the administration of one or more prophylactic or therapeutic agents). In certain embodiments, such terms refer to the reduction or inhibition of the replication of RSV and/or HMPV, the inhibition or reduction in the spread of RSV and/or HMPV to other tissues or subjects (e.g., the spread to the lower respiratory tract), the inhibition or reduction of infection of a cell with a RSV and/or HMPV, or the amelioration of one or more symptoms associated with an upper and/or lower respiratory tract RSV infection or otitis media.


As used herein, the terms “prevent,” “preventing,” and “prevention” refer to the prevention or inhibition of the development or onset of an upper and/or lower respiratory tract RSV and/or HMPV infection, otitis media or a respiratory condition related thereto in a subject, the prevention or inhibition of the progression of an upper respiratory tract RSV and/or HMPV infection to a lower respiratory tract RSV and/or HMPV infection, otitis media or a respiratory condition related thereto resulting from the administration of a therapy (e.g., a prophylactic or therapeutic agent), the prevention of a symptom of an upper and/or lower tract RSV and/or HMPV infection, otitis media or a respiratory condition related thereto, or the administration of a combination of therapies (e.g., a combination of prophylactic or therapeutic agents). As used herein, the terms “ameleliorate” and “alleviate” refer to a reduction or diminishment in the severity a condition or any symptoms thereof.


The term “antibody”, as used herein, is intended to refer to immunoglobulin molecules comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains interconnected by disulfide bonds (i.e., “full antibody molecules”), as well as multimers thereof (e.g. IgM) or antigen-binding fragments thereof. Each heavy chain is comprised of a heavy chain variable region (“HCVR” or “VH”) and a heavy chain constant region (comprised of domains CH1, CH2 and CH3). Each light chain is comprised of a light chain variable region (“LCVR or “VL”) and a light chain constant region (CL). The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. In certain embodiments of the invention, the FRs of the antibody (or antigen binding fragment thereof) may be identical to the human germline sequences, or may be naturally or artificially modified. An amino acid consensus sequence may be defined based on a side-by-side analysis of two or more CDRs. Accordingly, the CDRs in a heavy chain are designated “CHRH1”, “CDRH2”, and “CDRH3”, respectively, and the CDRs in a light chain are designated “CDRL1”, “CDRL2”, and “CDRL3”.


Substitution of one or more CDR residues or omission of one or more CDRs is also possible. Antibodies have been described in the scientific literature in which one or two CDRs can be dispensed with for binding. Padlan et al. (1995 FASEB J. 9:133-139) analyzed the contact regions between antibodies and their antigens, based on published crystal structures, and concluded that only about one fifth to one third of CDR residues actually contact the antigen. Padlan also found many antibodies in which one or two CDRs had no amino acids in contact with an antigen (see also, Vajdos et al. 2002 J Mol Biol 320:415-428).


CDR residues not contacting antigen can be identified based on previous studies (for example residues H60-H65 in CDRH2 are often not required), from regions of Kabat CDRs lying outside Chothia CDRs, by molecular modeling and/or empirically. If a CDR or residue(s) thereof is omitted, it is usually substituted with an amino acid occupying the corresponding position in another human antibody sequence or a consensus of such sequences. Positions for substitution within CDRs and amino acids to substitute can also be selected empirically.


The fully human monoclonal antibodies disclosed herein may comprise one or more amino acid substitutions, insertions and/or deletions in the framework and/or CDR regions of the heavy and light chain variable domains as compared to the corresponding germline sequences. Such mutations can be readily ascertained by comparing the amino acid sequences disclosed herein to germline sequences available from, for example, public antibody sequence databases. The present invention includes antibodies, and antigen-binding fragments thereof, which are derived from any of the amino acid sequences disclosed herein, wherein one or more amino acids within one or more framework and/or CDR regions are mutated to the corresponding residue(s) of the germline sequence from which the antibody was derived, or to the corresponding residue(s) of another human germline sequence, or to a conservative amino acid substitution of the corresponding germline residue(s) (such sequence changes are referred to herein collectively as “germline mutations”). A person of ordinary skill in the art, starting with the heavy and light chain variable region sequences disclosed herein, can easily produce numerous antibodies and antigen-binding fragments which comprise one or more individual germline mutations or combinations thereof. In certain embodiments, all of the framework and/or CDR residues within the VH and/or VL domains are mutated back to the residues found in the original germline sequence from which the antibody was derived. In other embodiments, only certain residues are mutated back to the original germline sequence, e.g., only the mutated residues found within the first 8 amino acids of FR1 or within the last 8 amino acids of FR4, or only the mutated residues found within CDR1, CDR2 or CDR3. In other embodiments, one or more of the framework and/or CDR residue(s) are mutated to the corresponding residue(s) of a different germline sequence (i.e., a germline sequence that is different from the germline sequence from which the antibody was originally derived). Furthermore, the antibodies of the present invention may contain any combination of two or more germline mutations within the framework and/or CDR regions, e.g., wherein certain individual residues are mutated to the corresponding residue of a particular germline sequence while certain other residues that differ from the original germline sequence are maintained or are mutated to the corresponding residue of a different germline sequence. Once obtained, antibodies and antigen-binding fragments that contain one or more germline mutations can be easily tested for one or more desired property such as, improved binding specificity, increased binding affinity, improved or enhanced antagonistic or agonistic biological properties (as the case may be), reduced immunogenicity, etc. Antibodies and antigen-binding fragments obtained in this general manner are encompassed within the present invention.


The present invention also includes fully monoclonal antibodies comprising variants of any of the CDR amino acid sequences disclosed herein having one or more conservative substitutions. For example, the present invention includes antibodies having CDR amino acid sequences with, e.g., 10 or fewer, 8 or fewer, 6 or fewer, 4 or fewer, etc. conservative amino acid substitutions relative to any of the CDR amino acid sequences disclosed herein.


The term “human antibody”, as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human mAbs of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences {e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3.


However, the term “human antibody”, as used herein, is not intended to include mAbs in which CDR sequences derived from the germline of another mammalian species (e.g., mouse), have been grafted onto human FR sequences.


The term “humanized antibody” refers to human antibody in which one or more CDRs of such antibody have been replaced with one or more corresponding CDRs obtained a non-human derived (e.g., mouse, rat, rabbit, primate) antibody. Humanized antibodies may also include certain non-CDR sequences or residues derived from such non-human antibodies as well as the one or more non-human CDR sequence. Such antibodies may also be referred to as “chimeric” antibodies.


The term “recombinant” generally refers to any protein, polypeptide, or cell expressing a gene of interest that is produced by genetic engineering methods. The term “recombinant” as used with respect to a protein or polypeptide, means a polypeptide produced by expression of a recombinant polynucleotide. The proteins used in the immunogenic compositions of the invention may be isolated from a natural source or produced by genetic engineering methods.


The antibodies of the invention may, in some embodiments, be recombinant human antibodies. The term “recombinant human antibody”, as used herein, is intended to include all antibodies, including human or humanized antibodies, that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell (described further below), antibodies isolated from a recombinant, combinatorial human antibody library (described further below), antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes (see e.g., Taylor et al. (1992) Nucl. Acids Res. 20:6287-6295) or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies have variable and constant regions derived from human germline immunoglobulin sequences. In certain embodiments, however, such recombinant human antibodies are subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo.


The term “specifically binds,” or “binds specifically to”, or the like, means that an antibody or antigen-binding fragment thereof forms a complex with an antigen that is relatively stable under physiologic conditions. Specific binding can be characterized by an equilibrium dissociation constant of at least about 1×10−6 M or less (e.g., a smaller KD denotes a tighter binding). Methods for determining whether two molecules specifically bind are well known in the art and include, for example, equilibrium dialysis, surface plasmon resonance, and the like. As described herein, antibodies have been identified by surface plasmon resonance, e.g., BIACORE™, biolayer interferometry measurements using, e.g., a ForteBio Octet HTX instrument (Pall Life Sciences), which bind specifically to RSV-F. Moreover, multi-specific antibodies that bind to RSV-F protein and one or more additional antigens, such as an antigen expressed by HMPV, or a bi-specific that binds to two different regions of RSV-F are nonetheless considered antibodies that “specifically bind”, as used herein. In certain embodiments, the antibodies disclosed herein display equilibrium dissociation constants (and hence specificities) of about 1×10-6 M; about 1×10-7 M; about 1×10-8 M; about 1×10-9 M; about 1×10-10 M; between about 1×10−6 M and about 1×10-7 M; between about 1×10-7M and about 1×10-8 M; between about 1×10-8 M and about 1×10-9 M; or between about 1×10-9 M and about 1×10-10 M.


The term “high affinity” antibody refers to those mAbs having a binding affinity to RSV-F and/or HMPV, expressed as KD, of at least 10-9 M; more preferably 10-10M, more preferably 10−11M, more preferably 10−12M as measured by surface plasmon resonance, e.g., BIACORE™ biolayer interferometry measurements using, e.g., a ForteBio Octet HTX instrument (Pall Life Sciences), or solution-affinity ELISA.


By the term “slow off rate”, “Koff” or “kd” is meant an antibody that dissociates from RSV-F, with a rate constant of 1×10−3 s″1 or less, preferably 1×10−4 s″1 or less, as determined by surface plasmon resonance, e.g., BIACORE™ or a ForteBio Octet HTX instrument (Pall Life Sciences).


The terms “antigen-binding portion” of an antibody, “antigen-binding fragment” of an antibody, and the like, as used herein, include any naturally occurring, enzymatically obtainable, synthetic, or genetically engineered polypeptide or glycoprotein that specifically binds an antigen to form a complex. In certain embodiments, the terms “antigen-binding portion” of an antibody, or “antibody fragment”, as used herein, refers to one or more fragments of an antibody that retains the ability to bind to RSV-F and/or HMPV.


An antibody fragment may include a Fab fragment, a F(ab′)2 fragment, a Fv fragment, a dAb fragment, a fragment containing a CDR, or an isolated CDR. Antigen-binding fragments of an antibody may be derived, e.g., from full antibody molecules using any suitable standard techniques such as proteolytic digestion or recombinant genetic engineering techniques involving the manipulation and expression of DNA encoding antibody variable and (optionally) constant domains. Such DNA is known and/or is readily available from, e.g., commercial sources, DNA libraries (including, e.g., phage-antibody libraries), or can be synthesized. The DNA may be sequenced and manipulated chemically or by using molecular biology techniques, for example, to arrange one or more variable and/or constant domains into a suitable configuration, or to introduce codons, create cysteine residues, modify, add or delete amino acids, etc.


Non-limiting examples of antigen-binding fragments include: (i) Fab fragments; (ii) F(ab′)2 fragments; (iii) Fd fragments; (iv) Fv fragments; (v) single-chain Fv (scFv) molecules; (vi) dAb fragments; and (vii) minimal recognition units consisting of the amino acid residues that mimic the hypervariable region of an antibody (e.g., an isolated complementarity determining region (CDR) such as a CDR3 peptide), or a constrained FR3-CDR3-FR4 peptide. Other engineered molecules, such as domain-specific antibodies, single domain antibodies, domain-deleted antibodies, chimeric antibodies, CDR-grafted antibodies, diabodies, triabodies, tetrabodies, minibodies, nanobodies (e.g. monovalent nanobodies, bivalent nanobodies, etc.), small modular immunopharmaceuticals (SMIPs), and shark variable IgNAR domains, are also encompassed within the expression “antigen-binding fragment,” as used herein.


An antigen-binding fragment of an antibody will typically comprise at least one variable domain. The variable domain may be of any size or amino acid composition and will generally comprise at least one CDR, which is adjacent to or in frame with one or more framework sequences. In antigen-binding fragments having a VH domain associated with a VL domain, the VH and V|_ domains may be situated relative to one another in any suitable arrangement. For example, the variable region may be dimeric and contain VH-VH, VH-VL or VL-VL dimers. Alternatively, the antigen-binding fragment of an antibody may contain a monomeric VH or VL domain.


In certain embodiments, an antigen-binding fragment of an antibody may contain at least one variable domain covalently linked to at least one constant domain. Non-limiting, exemplary configurations of variable and constant domains that may be found within an antigen-binding fragment of an antibody of the present invention include: (i) VH-CH1; (ii) VH-CH2; (iii) VH-CH3; (iv) VH-Ch1-Ch2; (V) VH-Ch1-Ch2-Ch3; (vi) VH-CH2-CH3; (vii) VH-CL; (viii) VL-CH1; (ix) VL-CH2; (x) VL-CH3; (xi) VL-CH1-CH2; (xii) VL-CH1-CH2-CH3; (xiii) VL-CH2-CH3; and (Xiv) VL-CL. In any configuration of variable and constant domains, including any of the exemplary configurations listed above, the variable and constant domains may be either directly linked to one another or may be linked by a full or partial hinge or linker region. A hinge region may consist of at least 2 (e.g., 5, 10, 15, 20, 40, 60 or more) amino acids, which result in a flexible or semi-flexible linkage between adjacent variable and/or constant domains in a single polypeptide molecule. Moreover, an antigen-binding fragment of an antibody of the present invention may comprise a homo-dimer or hetero-dimer (or other multimer) of any of the variable and constant domain configurations listed above in non-covalent association with one another and/or with one or more monomeric VH or VL domain (e.g., by disulfide bond(s)).


As with full antibody molecules, antigen-binding fragments may be mono-specific or multi-specific (e.g., bi-specific). A multi-specific antigen-binding fragment of an antibody will typically comprise at least two different variable domains, wherein each variable domain is capable of specifically binding to a separate antigen or to a different epitope on the same antigen. Any multi-specific antibody format, including the exemplary bi-specific antibody formats disclosed herein, may be adapted for use in the context of an antigen-binding fragment of an antibody of the present invention using routine techniques available in the art.


The specific embodiments, antibody or antibody fragments of the invention may be conjugated to a therapeutic moiety (“immunoconjugate”), such as an antibiotic, a second anti-RSV-F antibody, an anti-HMPV antibody, a vaccine, or a toxoid, or any other therapeutic moiety useful for treating an RSV infection and/or an HMPV infection.


An “isolated antibody”, as used herein, is intended to refer to an antibody that is substantially free of other antibodies (Abs) having different antigenic specificities (e.g., an isolated antibody that specifically binds RSV-F and/or HMPV, or a fragment thereof, is substantially free of Abs that specifically bind antigens other than RSV-F and/or HMPV.


A “blocking antibody” or a “neutralizing antibody”, as used herein (or an “antibody that neutralizes RSV-F and/or HMPVactivity”), is intended to refer to an antibody whose binding to RSV-F or to an HMPV antigen, as the case may be as disclosed herein, results in inhibition of at least one biological activity of RSV-F and/or HMPV. For example, an antibody of the invention may aid in blocking the fusion of RSV and/or HMPV to a host cell, or prevent syncytia formation, or prevent the primary disease caused by RSV and/or HMPV. Alternatively, an antibody of the invention may demonstrate the ability to ameliorate at least one symptom of the RSV infection and or HMPV infection. This inhibition of the biological activity of RSV-F and/or HMPV can be assessed by measuring one or more indicators of RSV-F and/or HMPV biological activity by one or more of several standard in vitro assays (such as a neutralization assay, as described herein) or in vivo assays known in the art (for example, animal models to look at protection from challenge with RSV and/or HMPV following administration of one or more of the antibodies described herein).


The term “surface plasmon resonance”, as used herein, refers to an optical phenomenon that allows for the analysis of real-time biomolecular interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACORE™ system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.).


The term “KD”, as used herein, is intended to refer to the equilibrium dissociation constant of a particular antibody-antigen interaction.


The term “epitope” refers to an antigenic determinant that interacts with a specific antigen binding site in the variable region of an antibody molecule known as a paratope. A single antigen may have more than one epitope. Thus, different antibodies may bind to different areas on an antigen and may have different biological effects. The term “epitope” also refers to a site on an antigen to which B and/or T cells respond. It also refers to a region of an antigen that is bound by an antibody. Epitopes may be defined as structural or functional. Functional epitopes are generally a subset of the structural epitopes and have those residues that directly contribute to the affinity of the interaction. Epitopes may also be conformational, that is, composed of non-linear amino acids. In certain embodiments, epitopes may include determinants that are chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl groups, or sulfonyl groups, and, in certain embodiments, may have specific three-dimensional structural characteristics, and/or specific charge characteristics.


The term “substantial identity”, or “substantially identical,” when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or GAP, as discussed below. Accordingly, nucleic acid sequences that display a certain percentage “identity” share that percentage identity, and/or are that percentage “identical” to one another. A nucleic acid molecule having substantial identity to a reference nucleic acid molecule may, in certain instances, encode a polypeptide having the same or substantially similar amino acid sequence as the polypeptide encoded by the reference nucleic acid molecule.


In certain embodiments, the disclosed antibody nucleic acid sequences are, e.g.: at least 70% identical; at least 75% identical; 80% identical; at least 85% identical; at least 90% identical; at least 95% identical; at least 96% identical; at least 97% identical; at least 98% identical; at least 99%; and/or all percentages of identity in between; to other sequences and/or share such percentage identities with one another (or with certain subsets of the herein-disclosed antibody sequences).


As applied to polypeptides, the term “substantial identity” or “substantially identical” means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 90% sequence identity, even more preferably at least 95%, 98% or 99% sequence identity. Accordingly, amino acid sequences that display a certain percentage “identity” share that percentage identity, and/or are that percentage “identical” to one another. Accordingly, amino acid sequences that display a certain percentage “identity” share that percentage identity, and/or are that percentage “identical” to one another.


In certain embodiments, the disclosed antibody amino acid sequences are, e.g.: at least 70% identical; at least 75% identical; 80% identical; at least 85% identical; at least 90% identical; at least 95% identical; at least 96% identical; at least 97% identical; at least 98% identical; at least 99%; and/or all percentages of identity in between; to other sequences and/or share such percentage identities with one another (or with certain subsets of the herein-disclosed antibody sequences).


Preferably, residue positions, which are not identical, differ by conservative amino acid substitutions. A “conservative amino acid substitution” is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. (See, e.g., Pearson (1994) Methods Mol. Biol. 24: 307-331). Examples of groups of amino acids that have side chains with similar chemical properties include 1) aliphatic side chains: glycine, alanine, valine, leucine and isoleucine; 2) aliphatic-hydroxyl side chains: serine and threonine; 3) amide-containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; 6) acidic side chains: aspartate and glutamate, and 7) sulfur-containing side chains: cysteine and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine-glutamine. Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al. (1992) Science 256: 1443 45. A “moderately conservative” replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.


Sequence similarity for polypeptides is typically measured using sequence analysis software. Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG software contains programs such as GAP and BESTFIT which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Polypeptide sequences also can be compared using FASTA with default or recommended parameters; a program in GCG Version 6.1. FASTA {e.g., FASTA2 and FASTA3) provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson (2000) supra). Another preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially BLASTP or TBLASTN, using default parameters. (See, e.g., Altschul et al. (1990) J. Mol. Biol. 215: 403 410 and (1997) Nucleic Acids Res. 25:3389 402).


In certain embodiments, the antibody or antibody fragment for use in the method of the invention may be mono-specific, bi-specific, or multi-specific. Multi-specific antibodies may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for epitopes of more than one target polypeptide. An exemplary bi-specific antibody format that can be used in the context of the present invention involves the use of a first immunoglobulin (Ig) CH3 domain and a second Ig CH3 domain, wherein the first and second Ig CH3 domains differ from one another by at least one amino acid, and wherein at least one amino acid difference reduces binding of the bi-specific antibody to Protein A as compared to a bi-specific antibody lacking the amino acid difference. In one embodiment, the first Ig CH3 domain binds Protein A and the second Ig CH3 domain contains a mutation that reduces or abolishes Protein A binding such as an H95R modification (by IMGT exon numbering; H435R by EU numbering). The second CH3 may further comprise an Y96F modification (by IMGT; Y436F by EU). Further modifications that may be found within the second CH3 include: D16E, L18M, N44S, K52N, V57M, and V82I (by IMGT; D356E, L358M, N384S, K392N, V397M, and V422I by EU) in the case of lgG1 mAbs; N44S, K52N, and V82I (IMGT; N384S, K392N, and V422I by EU) in the case of lgG2 mAbs; and Q15R, N44S, K52N, V57M, R69K, E79Q, and V82I (by IMGT; Q355R, N384S, K392N, V397M, R409K, E419Q, and V422I by EU) in the case of lgG4 mAbs. Variations on the bi-specific antibody format described above are contemplated within the scope of the present invention.


By the phrase “therapeutically effective amount” is meant an amount that produces the desired effect for which it is administered. The exact amount will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, for example, Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding).


An “immunogenic composition” relates to a composition containing an antigen/immunogen, e.g. a microorganism, such as a virus or a bacterium, or a component thereof, a protein, a polypeptide, a fragment of a protein or polypeptide, a whole cell inactivated, subunit or attenuated virus, or a polysaccharide, or combination thereof, administered to stimulate the recipient's humoral and/or cellular immune systems to one or more of the antigens/immunogens present in the immunogenic composition. The immunogenic compositions of the present invention can be used to treat a human susceptible to RSV and/or HMPV infection or suspected of having or being susceptible to RSV and/or HMPV infection, by means of administering the immunogenic compositions via a systemic route. These administrations can include injection via the intramuscular (i.m.), intradermal (i.d.), intranasal or inhalation route, or subcutaneous (s.c.) routes; application by a patch or other transdermal delivery device. In one embodiment, the immunogenic composition may be used in the manufacture of a vaccine or in the elicitation of polyclonal or monoclonal antibodies that could be used to passively protect or treat a mammal.


The terms “vaccine” or “vaccine composition”, which are used interchangeably, refer to a composition comprising at least one immunogenic composition that induces an immune response in an animal.


In certain embodiments, a protein of interest comprises an antigen. The terms “antigen,” “immunogen,” “antigenic,” “immunogenic,” “antigenically active,” and “immunologically active” when made in reference to a molecule, refer to any substance that is capable of inducing a specific humoral and/or cell-mediated immune response. In one embodiment, the antigen comprises an epitope, as defined above.


“Immunologically protective amount”, as used herein, is an amount of an antigen effective to induce an immunogenic response in the recipient that is adequate to prevent or ameliorate signs or symptoms of disease, including adverse health effects or complications thereof. Either humoral immunity or cell-mediated immunity or both can be induced. The immunogenic response of an animal to a composition can be evaluated, e.g., indirectly through measurement of antibody titers, lymphocyte proliferation assays, or directly through monitoring signs and symptoms after challenge with the microorganism. The protective immunity conferred by an immunogenic composition or vaccine can be evaluated by measuring, e.g., reduction of shed of challenge organisms, reduction in clinical signs such as mortality, morbidity, temperature, and overall physical condition, health and performance of the subject. The immune response can comprise, without limitation, induction of cellular and/or humoral immunity. The amount of a composition or vaccine that is therapeutically effective can vary, depending on the particular organism used, or the condition of the animal being treated or vaccinated.


An “immune response”, or “immunological response” as used herein, in a subject refers to the development of a humoral immune response, a cellular-immune response, or a humoral and a cellular immune response to an antigen/immunogen. A “humoral immune response” refers to one that is at least in part mediated by antibodies. A “cellular immune response” is one mediated by T-lymphocytes or other white blood ceils or both, and includes the production of cytokines, chemokines and similar molecules produced by activated T-cells, white blood ceils, or both. Immune responses can be determined using standard immunoassays and neutralization assays, which are known in the art.


“Immunogenicity”, as used herein, refers to the capability of a protein or polypeptide to elicit an immune response directed specifically against a bacteria or virus that causes the identified disease.


Unless specifically indicated otherwise, the term “antibody,” as used herein, shall be understood to encompass antibody molecules comprising two immunoglobulin heavy chains and two immunoglobulin light chains (i.e., “full antibody molecules”) as well as antigen-binding fragments thereof. The terms “antigen-binding portion” of an antibody, “antigen-binding fragment” of an antibody, and the like, as used herein, include any naturally occurring, enzymatically obtainable, synthetic, or genetically engineered polypeptide or glycoprotein that specifically binds an antigen to form a complex.


Preparation of Human Antibodies

As disclosed herein, anti-RSV and or anti-RSV/anti-HMPF cross neutralizing antibodies by be obtained through B cell sorting techniques available to the artisan, and, for example, as described in the EXAMPLES below. Methods for generating human antibodies in transgenic mice are also known in the art and may be employed in order to derive antibodies in accordance with the present disclosure. Any such known methods can be used in the context of the present invention to make human antibodies that specifically bind to RSV-F (see, for example, U.S. Pat. No. 6,596,541).


In certain embodiments, the antibodies of the instant invention possess affinities (KD) ranging from about 1.0×10-7M to about 1.0×10−12M, when measured by binding to antigen either immobilized on solid phase or in solution phase. In certain embodiments, the antibodies of the invention possess affinities (KD) ranging from about 1×10−7 M to about 6×10−10M, when measured by binding to antigen either immobilized on solid phase or in solution phase. In certain embodiments, the antibodies of the invention possess affinities (KD) ranging from about 1×10−7 M to about 9×10−10M, when measured by binding to antigen either immobilized on solid phase or in solution phase.


The anti-RSV-F and/or anti-HMPV antibodies and antibody fragments disclosed herein encompass proteins having amino acid sequences that vary from those of the described antibodies, but that retain the ability to bind RSV-F. Such variant antibodies and antibody fragments comprise one or more additions, deletions, or substitutions of amino acids when compared to parent sequence, but exhibit biological activity that is essentially equivalent to that of the described antibodies. Likewise, the antibody-encoding DNA sequences of the present invention encompass sequences that comprise one or more additions, deletions, or substitutions of nucleotides when compared to the disclosed sequence, but that encode an antibody or antibody fragment that is essentially bioequivalent to an antibody or antibody fragment of the invention.


Two antigen-binding proteins, or antibodies, are considered bioequivalent if, for example, they are pharmaceutical equivalents or pharmaceutical alternatives whose rate and extent of absorption do not show a significant difference when administered at the same molar dose under similar experimental conditions, either single does or multiple dose. Some antibodies will be considered equivalents or pharmaceutical alternatives if they are equivalent in the extent of their absorption but not in their rate of absorption and yet may be considered bioequivalent because such differences in the rate of absorption are intentional and are reflected in the labeling, are not essential to the attainment of effective body drug concentrations on, e.g., chronic use, and are considered medically insignificant for the particular drug product studied.


In one embodiment, two antigen-binding proteins are bioequivalent if there are no clinically meaningful differences in their safety, purity, and potency.


In one embodiment, two antigen-binding proteins are bioequivalent if a patient can be switched one or more times between the reference product and the biological product without an expected increase in the risk of adverse effects, including a clinically significant change in immunogenicity, or diminished effectiveness, as compared to continued therapy without such switching.


In one embodiment, two antigen-binding proteins are bioequivalent if they both act by a common mechanism or mechanisms of action for the condition or conditions of use, to the extent that such mechanisms are known.


Bioequivalence may be demonstrated by in vivo and/or in vitro methods. Bioequivalence measures include, e.g., (a) an in vivo test in humans or other mammals, in which the concentration of the antibody or its metabolites is measured in blood, plasma, serum, or other biological fluid as a function of time; (b) an in vitro test that has been correlated with and is reasonably predictive of human in vivo bioavailability data; (c) an in vivo test in humans or other mammals in which the appropriate acute pharmacological effect of the antibody (or its target) is measured as a function of time; and (d) in a well-controlled clinical trial that establishes safety, efficacy, or bioavailability or bioequivalence of an antibody.


Bioequivalent variants of the antibodies of the invention may be constructed by, for example, making various substitutions of residues or sequences or deleting terminal or internal residues or sequences not needed for biological activity. For example, cysteine residues not essential for biological activity can be deleted or replaced with other amino acids to prevent formation of unnecessary or incorrect intramolecular disulfide bridges upon renaturation. In other contexts, bioequivalent antibodies may include antibody variants comprising amino acid changes, which modify the glycosylation characteristics of the antibodies, e.g., mutations that eliminate or remove glycosylation.


Biological and Biophysical Characteristics of the Antibodies

In certain embodiments, the inventive antibodies and antigen-binding fragments thereof specifically bind to Respiratory Syncytial Virus (RSV) F protein (F), wherein at least one of the CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and/or CDRL3 amino acid sequences of such antibody or the antigen-binding fragment thereof is at least 70% identical; at least 75% identical; 80% identical; at least 85% identical; at least 90% identical; at least 95% identical; at least 96% identical; at least 97% identical; at least 98% identical; at least 99%; and/or all percentages of identity in between; to at least one of the CDRH1, a CDRH2, a CDRH3, a CDRL1, a CDRL2, and/or a CDRL3 amino acid sequences as disclosed in Table 6 of an antibody selected from Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, such antibodies also possess at least one, two, three, four, five, six, seven, eight, nine, ten, or more characteristics disclosed in the immediately following eleven paragraphs.


Without wishing to be bound by any theory, it is believed that the inventive antibodies and antigen-binding fragments thereof may function by binding to RSV-F, preferably in the PreF conformation, and in so doing act to block the fusion of the viral membrane with the host cell membrane. The antibodies of the present invention may also function by binding to RSV-F and in so doing block the cell to cell spread of the virus and block syncytia formation associated with RSV infection of cells. Advantageously, both RSV subtype A and RSV subtype B are effectively blocked, or neutralized, by the majority of the anti-RSV antibodies disclosed herein.


In certain embodiments, the inventive antibodies and antigen-binding fragment thereof display better binding affinity for the PreF form of RSV-F relative to the PostF form of RSV-F.


In certain other embodiments, the inventive antibodies and antigen-binding fragments thereof advantageously display a clean or low polyreactivity profile (see, e.g., WO 2014/179363 and Xu et al., Protein Eng Des Sel, October; 26(10):663-70. doi: 10.1093/protein/gzt047), and are thus particularly amenable to development as safe, efficacious, and developable therapeutic and/or prophylactic anti-RSV and/or HMPV treatments.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof, without wishing to be bound by any theory, may function by blocking or inhibiting RSV fusion to the cell membrane by binding to any one or more of, e.g., antigenic Sites Ø, I, II, III, IV, or Site V of the PreF conformation of the F protein. In certain embodiments, the inventive antibodies display antigenic site specificity for Site Ø, Site V, or Site III of PreF relative to RSV-F Site I, Site II, or Site IV.


In certain embodiments, at least a portion of the epitope with which the inventive antibodies and antigen-binding fragments thereof interacts comprises a portion of the α3 helix and β3/β4 hairpin of PreF. In certain embodiments, substantially all of the epitope of such antibodies comprises the α3 helix and β3/β4 hairpin of PreF. In still further embodiments, the inventive antibodies corss-copmpete with antibodies that recognize a portion or substantially all of the α3 helix and β3/β4 hairpin of PreF.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof display an in vitro neutralization potency (IC50) of between about 0.5 microgram/milliliter (ug/ml) to about 5 ug/ml; between about 0.05 ug/ml to about 0.5 ug/ml; or less than about 0.05 mg/ml.


In certain embodiments, the binding affinity and/or epitopic specificity of the inventive antibodies and antigen-binding fragments thereof for any one of the RSV-F variants designated as 1, 2, 3, 4, 5, 6, 7, 8, 9, and DG in FIG. 7A is reduced or eliminated relative to the binding affinity and/or epitopic specificity of said antibody or antigen-binding fragment thereof for the RSV-F or RSV-F DS-Cav1.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof display a cross-neutralization potency (IC50) against human metapneumovirus (HMPV) as well as RSV. In certain such embodiments, the inventive antibodies and antigen-binding fragments thereof comprise at least one of the CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and/or CDRL3 amino acid sequences of such antibody or the antigen-binding fragment thereof is at least 70% identical; at least 75% identical; 80% identical; at least 85% identical; at least 90% identical; at least 95% identical; at least 96% identical; at least 97% identical; at least 98% identical; at least 99%; and/or all percentages of identity in between; to at least one of the CDRH1, a CDRH2, a CDRH3, a CDRL1, a CDRL2, and/or a CDRL3 amino acid sequences as disclosed in Table 6 of Antibody Number 340 as disclosed in Table 6.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof do not complete with D25, MPE8, palivisumab, motavizumab, or AM-14. In certain embodiments, the inventive antibodies and antigen-binding fragments thereof do not complete with D25, MPE8, palivisumab, or motavizumab. In certain embodiments, the inventive antibodies and antigen-binding fragments thereof do not complete with MPE8, palivisumab, or motavizumab. In certain embodiments, the inventive antibodies and antigen-binding fragments thereof do not complete with D25, palivisumab, or motavizumab. In certain embodiments, the inventive antibodies and antigen-binding fragments thereof do not complete with D25. In certain embodiments, the inventive antibodies and antigen-binding fragments thereof do not complete with MPE8. In certain embodiments, the inventive antibodies and antigen-binding fragments thereof do not complete with palivisumab. In certain embodiments, the inventive antibodies and antigen-binding fragments thereof do not complete with motavizumab.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof complete with one or more of D25, MPE8, palivisumab, motavizumab, and/or AM-14.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof display at least about 2-fold; at least about 3-fold; at least about 4-fold; at least about 5-fold; at least about 6-fold; at least about 7-fold; at least about 8-fold; at least about 9-fold; at least about 10-fold; at least about 15-fold; at least about 20-fold; at least about 25-fold; at least about 30-fold; at least about 35-fold; at least about 40-fold; at least about 50-fold; at least about 55-fold; at least about 60-fold; at least about 70-fold; at least about 80-fold; at least about 90-fold; at least about 100-fold; greater than about 100-fold; and folds in between any of the foregoing; greater neutralization potency (IC50) than D25 and/or palivizumab.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof comprise the CDRH3 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof comprise the CDRH2 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof comprise the CDRH1 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof comprise the CDRL3 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof comprise the CDRL2 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof comprise the CDRL1 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof comprise any combination of two, three, four, five, or six characteristics disclosed in the immediately preceeding six paragraphs.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof comprise a heavy chain (HC) amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, the inventive antibodies and antigen-binding fragments thereof comprise a light chain (LC) amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, the inventive antibodies and antigen-binding fragments thereof comprise a heavy chain (HC) amino acid sequence and a light chain (LC) amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof are each selected from the group consisting antibodies that are at least 70% identical; at least 75% identical; 80% identical; at least 85% identical; at least 90% identical; at least 95% identical; at least 96% identical; at least 97% identical; at least 98% identical; at least 99%; and/or all percentages of identity in between; to any one of the antibodies designated as Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In certain embodiments, the inventive antibodies and antigen-binding fragments thereof comprise are each selected from the group consisting of the antibodies designated as Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


In certain embodiments, isolated nucleic acid sequences are provided that encode antibodies that specifically bind to Respiratory Syncytial Virus (RSV) F protein and antigen-binding fragments thereof, wherein at least one of the CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and/or CDRL3 amino acid sequences of the antibody or the antigen-binding fragment thereof is at least 70% identical; at least 75% identical; 80% identical; at least 85% identical; at least 90% identical; at least 95% identical; at least 96% identical; at least 97% identical; at least 98% identical; at least 99%; and/or all percentages of identity in between; to at least one the CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and/or CDRL3 amino acid sequences as disclosed in Table 6 of an antibody selected from Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, such nucleic acid sequences are selected from those nucleic acid sequences that are disclosed in Table 6, and compliments thereof.


In certain embodiments, isolated nucleic acid sequences are provided that encode the inventive antibodies and antigen-binding fragments thereof, wherein such nucleic acid sequences comprise sequences that encode the CDRH3 amino acid sequence of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, such nucleic acid sequences are selected from those nucleic acid sequences that are disclosed in Table 6, and compliments thereof.


In certain embodiments, isolated nucleic acid sequences are provided that encode the inventive antibodies and antigen-binding fragments thereof, wherein such nucleic acid sequences comprise sequences that encode the CDRH2 amino acid sequences of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, such nucleic acid sequences are selected from those nucleic acid sequences that are disclosed in Table 6, and compliments thereof.


In certain embodiments, isolated nucleic acid sequences are provided that encode the inventive antibodies and antigen-binding fragments thereof, wherein such nucleic acid sequences comprise sequences that encode the CDRH1 amino acid sequences of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, such nucleic acid sequences are selected from those nucleic acid sequences that are disclosed in Table 6, and compliments thereof.


In certain embodiments, isolated nucleic acid sequences are provided that encode the inventive antibodies and antigen-binding fragments thereof, wherein such nucleic acid sequences comprise sequences that encode the CDRL3 amino acid sequences of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, such nucleic acid sequences are selected from those nucleic acid sequences that are disclosed in Table 6, and compliments thereof.


In certain embodiments, isolated nucleic acid sequences are provided that encode the inventive antibodies and antigen-binding fragments thereof, wherein such nucleic acid sequences comprise sequences that encode the CDRL2 amino acid sequences of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, such nucleic acid sequences are selected from those nucleic acid sequences that are disclosed in Table 6, and compliments thereof.


In certain embodiments, isolated nucleic acid sequences are provided that encode the inventive antibodies and antigen-binding fragments thereof, wherein such nucleic acid sequences comprise sequences that encode the CDRL1 amino acid sequences of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, such nucleic acid sequences are selected from those nucleic acid sequences that are disclosed in Table 6, and compliments thereof.


In certain embodiments, isolated nucleic acid sequences are provided that encode the inventive antibodies and antigen-binding fragments thereof, wherein such nucleic acid sequences comprise sequences that encode the heavy chain (HC) amino acid sequences of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, such nucleic acid sequences are selected from those nucleic acid sequences that are disclosed in Table 6, and compliments thereof.


In certain embodiments, isolated nucleic acid sequences are provided that encode the inventive antibodies and antigen-binding fragments thereof, wherein such nucleic acid sequences comprise sequences that encode the heavy chain (LC) amino acid sequences of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6. In certain embodiments, such nucleic acid sequences are selected from those nucleic acid sequences that are disclosed in Table 6, and compliments thereof.


In certain embodiments, isolated nucleic acid sequences are provided that encode the inventive antibodies and antigen-binding fragments thereof, wherein such nucleic acid sequences comprise sequences are each selected from the group consisting of sequences that are at least 70% identical; at least 75% identical; 80% identical; at least 85% identical; at least 90% identical; at least 95% identical; at least 96% identical; at least 97% identical; at least 98% identical; at least 99%; and/or all percentages of identity in between; to any one of the nucleic acid sequences that are disclosed in Table 6, and compliments thereof.


In certain embodiments, expression vectors are provided comprising the isolated nucleic acid sequences disclose herein and throughout, and in particular in the immediately preceeding ten paragraphs.


In certain embodiments, host cells transfected, transformed, or transduced with the nucleic acid sequences and/or the expression vectors disclosed immediately above are provided.


Epitope Mapping and Related Technologies

As described above and as demonstrated in the EXAMPLES, Applicants have characterized the epitopic specificities, bin assignments, and antigenic site assignments of the inventive antibodies and antigen-binding fragments thereof. In addition to the methods for conducting such characterization, various other techniques are available to the artisan that can be used to carry out such characterization or to otherwise ascertain whether an antibody “interacts with one or more amino acids” within a polypeptide or protein. Exemplary techniques include, for example, a routine cross-blocking assay such as that described Antibodies, Harlow and Lane (Cold Spring Harbor Press, Cold Spring Harb., NY) can be performed. Other methods include alanine scanning mutational analysis, peptide blot analysis (Reineke (2004) Methods Mol Biol 248:443-63), peptide cleavage analysis crystallographic studies and NMR analysis. In addition, methods such as epitope excision, epitope extraction and chemical modification of antigens can be employed (Tomer (2000) Protein Science 9: 487-496). Another method that can be used to identify the amino acids within a polypeptide with which an antibody interacts is hydrogen/deuterium exchange detected by mass spectrometry. In general terms, the hydrogen/deuterium exchange method involves deuterium-labeling the protein of interest, followed by binding the antibody to the deuterium-labeled protein. Next, the protein/antibody complex is transferred to water and exchangeable protons within amino acids that are protected by the antibody complex undergo deuterium-to-hydrogen back-exchange at a slower rate than exchangeable protons within amino acids that are not part of the interface. As a result, amino acids that form part of the protein/antibody interface may retain deuterium and therefore exhibit relatively higher mass compared to amino acids not included in the interface. After dissociation of the antibody, the target protein is subjected to protease cleavage and mass spectrometry analysis, thereby revealing the deuterium-labeled residues that correspond to the specific amino acids with which the antibody interacts. See, e.g., Ehring (1999) Analytical Biochemistry 267 {2):252-259; Engen and Smith (2001) Anal. Chem. 73:256A-265A.


As the artisan will understand, an epitope can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents, whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation.


Modification-Assisted Profiling (MAP), also known as Antigen Structure-based Antibody Profiling (ASAP) is a method that categorizes large numbers of monoclonal antibodies (mAbs) directed against the same antigen according to the similarities of the binding profile of each antibody to chemically or enzymatically modified antigen surfaces (US 2004/0101920). Each category may reflect a unique epitope either distinctly different from or partially overlapping with epitope represented by another category. This technology allows rapid filtering of genetically identical antibodies, such that characterization can be focused on genetically distinct antibodies. When applied to hybridoma screening, MAP may facilitate identification of rare hybridoma clones that produce mAbs having the desired characteristics. MAP may be used to sort the antibodies of the invention into groups of antibodies binding different epitopes.


In certain embodiments, the inventive antibodies and/or antigen-binding fragments thereof interact with an amino acid sequence comprising the amino acid residues that are altered in one or more of the F protein patch variants disclosed, e.g., in the EXAMPLES and which are depicted in, e.g., FIG. 7A and which are designated as RSV F Variants 1, 2, 3, 4, 5, 6, 7, 8, 9, and DG. In certain embodiments, such inventive antibodies and antigen-binding fragments thereof interact with an amino acid sequence comprising the amino acid residues that are altered in RSV F Variant 2. In certain embodiments, the inventive antibodies and/or antigen-binding fragments thereof interact with amino acid residues that extend beyond the region(s) identified above by about 5 to 10 amino acid residues, or by about 10 to 15 amino acid residues, or by about 15 to 20 amino acid residues towards either the amino terminal or the carboxy terminal of the RSV-F protein.


In certain embodiments, the antibodies of the present invention do not bind to the same epitope on RSV-F protein as palivizumab, motavizumab, MPE8, or AM-14.


As the artisan understands, one can easily determine whether an antibody binds to the same epitope as, or competes for binding with, a reference anti-RSV-F antibody by using routine methods available in the art. For example, to determine if a test antibody binds to the same epitope as a reference RSV-F antibody of the invention, the reference antibody is allowed to bind to a RSV-F protein or peptide under saturating conditions. Next, the ability of a test antibody to bind to the RSV-F molecule is assessed. If the test antibody is able to bind to RSV-F following saturation binding with the reference anti-RSV-F antibody, it can be concluded that the test antibody binds to a different epitope than the reference anti-RSV-F antibody. On the other hand, if the test antibody is not able to bind to the RSV-F molecule following saturation binding with the reference anti-RSV-F antibody, then the test antibody may bind to the same epitope as the epitope bound by the reference anti-RSV-F antibody of the invention.


To determine if an antibody competes for binding with a reference anti-RSV-F antibody, the above-described binding methodology is performed in two orientations: In a first orientation, the reference antibody is allowed to bind to a RSV-F molecule under saturating conditions followed by assessment of binding of the test antibody to the RSV-F molecule. In a second orientation, the test antibody is allowed to bind to a RSV-F molecule under saturating conditions followed by assessment of binding of the reference antibody to the RSV-F molecule. If, in both orientations, only the first (saturating) antibody is capable of binding to the RSV-F molecule, then it is concluded that the test antibody and the reference antibody compete for binding to RSV-F. As will be appreciated by a person of ordinary skill in the art, an antibody that competes for binding with a reference antibody may not necessarily bind to the identical epitope as the reference antibody, but may sterically block binding of the reference antibody by binding an overlapping or adjacent epitope.


Two antibodies bind to the same or overlapping epitope if each competitively inhibits (blocks) binding of the other to the antigen. That is, a 1-, 5-, 10-, 20- or 100-fold excess of one antibody inhibits binding of the other by at least 50% but preferably 75%, 90% or even 99% as measured in a competitive binding assay (see, e.g., Junghans et al., Cancer Res. (1990) 50:1495-1502). Alternatively, two antibodies have the same epitope if essentially all amino acid mutations in the antigen that reduce or eliminate binding of one antibody reduce or eliminate binding of the other. Two antibodies have overlapping epitopes if some amino acid mutations that reduce or eliminate binding of one antibody reduce or eliminate binding of the other.


Additional routine experimentation (e.g., peptide mutation and binding analyses) can then be carried out to confirm whether the observed lack of binding of the test antibody is in fact due to binding to the same epitope as the reference antibody or if steric blocking (or another phenomenon) is responsible for the lack of observed binding. Experiments of this sort can be performed using ELISA, RIA, surface plasmon resonance, flow cytometry or any other quantitative or qualitative antibody-binding assay available in the art.


Immunoconjugates

The invention encompasses a human RSV-F monoclonal antibody conjugated to a therapeutic moiety (“immunoconjugate”), such as an agent that is capable of reducing the severity of primary infection with RSV and/or HMPV, or to ameliorate at least one symptom associated with RSV infection and/or HMPV infection, including coughing, fever, pneumonia, or the severity thereof. Such an agent may be a second different antibody to RSV-F and/or HMPV, or a vaccine. The type of therapeutic moiety that may be conjugated to the anti-RSV-F antibody and/or anti-HMPV antibody and will take into account the condition to be treated and the desired therapeutic effect to be achieved. Alternatively, if the desired therapeutic effect is to treat the sequelae or symptoms associated with RSV and/or HMPV infection, or any other condition resulting from such infection, such as, but not limited to, pneumonia, it may be advantageous to conjugate an agent appropriate to treat the sequelae or symptoms of the condition, or to alleviate any side effects of the antibodies of the invention. Examples of suitable agents for forming immunoconjugates are known in the art, see for example, WO 05/103081.


Multi-Specific Antibodies

The antibodies of the present invention may be mono-specific, bi-specific, or multi-specific. Multi-specific antibodies may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for more than one target polypeptide. See, e.g., Tutt et al., 1991, J. Immunol. 147:60-69; Kufer et al., 2004, Trends Biotechnol. 22:238-244. The antibodies of the present invention can be linked to or co-expressed with another functional molecule, e.g., another peptide or protein. For example, an antibody or fragment thereof can be functionally linked {e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody or antibody fragment to produce a bi-specific or a multi-specific antibody with a second binding specificity.


An exemplary bi-specific antibody format that can be used in the context of the present invention involves the use of a first immunoglobulin (Ig) CH3 domain and a second Ig CH3 domain, wherein the first and second Ig CH3 domains differ from one another by at least one amino acid, and wherein at least one amino acid difference reduces binding of the bi-specific antibody to Protein A as compared to a bi-specific antibody lacking the amino acid difference. In one embodiment, the first Ig CH3 domain binds Protein A and the second Ig CH3 domain contains a mutation that reduces or abolishes Protein A binding such as an H95R modification (by IMGT exon numbering; H435R by EU numbering). The second CH3 may further comprise a Y96F modification (by IMGT; Y436F by EU). Further modifications that may be found within the second CH3 include: D16E, L18M, N44S, K52N, V57M, and V82I (by IMGT; D356E, L358M, N384S, K392N, V397M, and V422I by EU) in the case of lgG1 antibodies; N44S, K52N, and V82I (IMGT; N384S, K392N, and V422I by EU) in the case of lgG2 antibodies; and Q15R, N44S, K52N, V57M, R69K, E79Q, and V82I (by IMGT; Q355R, N384S, K392N, V397M, R409K, E419Q, and V422I by EU) in the case of lgG4 antibodies. Variations on the bi-specific antibody format described above are contemplated within the scope of the present invention.


Therapeutic Administration and Formulations

The invention provides therapeutic compositions comprising the inventive anti-RSV-F antibodies or antigen-binding fragments thereof. The administration of therapeutic compositions in accordance with the invention will be administered with suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like. A multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. These formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LIPOFECTIN™), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. See also Powell et al. “Compendium of excipients for parenteral formulations” PDA (1998) J Pharm Sci Technol 52:238-31 1.


The dose of each of the antibodies of the invention may vary depending upon the age and the size of a subject to be administered, target disease, conditions, route of administration, and the like. When the antibodies of the present invention are used for treating a RSV infection and/or HMPV infection in a patient, or for treating one or more symptoms associated with a RSV infection and/or HMPV infection, such as the cough or pneumonia associated with a RSV infection and/or HMPV in a patient, or for lessening the severity of the disease, it is advantageous to administer each of the antibodies of the present invention intravenously or subcutaneously normally at a single dose of about 0.01 to about 30 mg/kg body weight, more preferably about 0.1 to about 20 mg/kg body weight, or about 0.1 to about 15 mg/kg body weight, or about 0.02 to about 7 mg/kg body weight, about 0.03 to about 5 mg/kg body weight, or about 0.05 to about 3 mg/kg body weight, or about 1 mg/kg body weight, or about 3.0 mg/kg body weight, or about 10 mg/kg body weight, or about 20 mg/kg body weight. Multiple doses may be administered as necessary. Depending on the severity of the condition, the frequency and the duration of the treatment can be adjusted. In certain embodiments, the antibodies or antigen-binding fragments thereof of the invention can be administered as an initial dose of at least about 0.1 mg to about 800 mg, about 1 to about 600 mg, about 5 to about 300 mg, or about 10 to about 150 mg, to about 100 mg, or to about 50 mg. In certain embodiments, the initial dose may be followed by administration of a second or a plurality of subsequent doses of the antibodies or antigen-binding fragments thereof in an amount that can be approximately the same or less than that of the initial dose, wherein the subsequent doses are separated by at least 1 day to 3 days; at least one week, at least 2 weeks; at least 3 weeks; at least 4 weeks; at least 5 weeks; at least 6 weeks; at least 7 weeks; at least 8 weeks; at least 9 weeks; at least 10 weeks; at least 12 weeks; or at least 14 weeks.


Various delivery systems are known and can be used to administer the pharmaceutical composition of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the mutant viruses, receptor mediated endocytosis (see, e.g., Wu et al. (1987) J. Biol. Chem. 262:4429-4432). Methods of introduction include, but are not limited to, intradermal, transdermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural and oral routes. The composition may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings {e.g., oral mucosa, nasal mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. It may be delivered as an aerosolized formulation (See US2011/0311515 and US2012/0128669). The delivery of agents useful for treating respiratory diseases by inhalation is becoming more widely accepted (See A. J. Bitonti and J. A. Dumont, (2006), Adv. Drug Deliv. Rev, 58:1 106-1 1 18). In addition to being effective at treating local pulmonary disease, such a delivery mechanism may also be useful for systemic delivery of antibodies (See Maillet et al. (2008), Pharmaceutical Research, Vol. 25, No. 6, 2008).


The pharmaceutical composition can be also delivered in a vesicle, in particular a liposome (see, for example, Langer (1990) Science 249:1527-1533).


In certain situations, the pharmaceutical composition can be delivered in a controlled release system. In one embodiment, a pump may be used. In another embodiment, polymeric materials can be used. In yet another embodiment, a controlled release system can be placed in proximity of the composition's target, thus requiring only a fraction of the systemic dose.


The injectable preparations may include dosage forms for intravenous, subcutaneous, intracutaneous and intramuscular injections, drip infusions, etc. These injectable preparations may be prepared by methods publicly known. For example, the injectable preparations may be prepared, e.g., by dissolving, suspending or emulsifying the antibody or its salt described above in a sterile aqueous medium or an oily medium conventionally used for injections. As the aqueous medium for injections, there are, for example, physiological saline, an isotonic solution containing glucose and other auxiliary agents, etc., which may be used in combination with an appropriate solubilizing agent such as an alcohol (e.g., ethanol), a polyalcohol (e.g., propylene glycol, polyethylene glycol), a nonionic surfactant [e.g., polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc. As the oily medium, there are employed, e.g., sesame oil, soybean oil, etc., which may be used in combination with a solubilizing agent such as benzyl benzoate, benzyl alcohol, etc. The injection thus prepared is preferably filled in an appropriate ampoule.


A pharmaceutical composition of the present invention can be delivered subcutaneously or intravenously with a standard needle and syringe. In addition, with respect to subcutaneous delivery, a pen delivery device readily has applications in delivering a pharmaceutical composition of the present invention. Such a pen delivery device can be reusable or disposable. A reusable pen delivery device generally utilizes a replaceable cartridge that contains a pharmaceutical composition. Once all of the pharmaceutical composition within the cartridge has been administered and the cartridge is empty, the empty cartridge can readily be discarded and replaced with a new cartridge that contains the pharmaceutical composition. The pen delivery device can then be reused. In a disposable pen delivery device, there is no replaceable cartridge. Rather, the disposable pen delivery device comes prefilled with the pharmaceutical composition held in a reservoir within the device. Once the reservoir is emptied of the pharmaceutical composition, the entire device is discarded.


Numerous reusable pen and autoinjector delivery devices have applications in the subcutaneous delivery of a pharmaceutical composition of the present invention. Examples include, but certainly are not limited to AUTOPEN™ (Owen Mumford, Inc., Woodstock, UK), DISETRONIC™ pen (Disetronic Medical Systems, Burghdorf, Switzerland), HUMALOG MIX 75/25™ pen, HUMALOG™ pen, HUMALIN 70/30™ pen (Eli Lilly and Co., Indianapolis, Ind.), NOVOPEN™ I, II and III (Novo Nordisk, Copenhagen, Denmark), NOVOPEN JUNIOR™ (Novo Nordisk, Copenhagen, Denmark), BD™ pen (Becton Dickinson, Franklin Lakes, N.J.), OPTIPEN™, OPTIPEN PRO™ OPTIPEN STARLET™, and OPTICLIK™ (sanofi-aventis, Frankfurt, Germany), to name only a few. Examples of disposable pen delivery devices having applications in subcutaneous delivery of a pharmaceutical composition of the present invention include, but certainly are not limited to the SOLOSTAR™ pen (sanofi-aventis), the FLEXPEN™ (Novo Nordisk), and the KWIKPEN™ (Eli Lilly), the SURECLICK™ Autoinjector (Amgen, Thousands Oaks, Calif.), the PENLET™ (Haselmeier, Stuttgart, Germany), the EPIPEN (Dey, L.P.) and the HUMIRA™ Pen (Abbott Labs, Abbott Park, Ill.), to name only a few.


Advantageously, the pharmaceutical compositions for oral or parenteral use described above are prepared into dosage forms in a unit dose suited to fit a dose of the active ingredients. Such dosage forms in a unit dose include, for example, tablets, pills, capsules, injections (ampoules), suppositories, etc. The amount of the aforesaid antibody contained is generally about 5 to about 500 mg per dosage form in a unit dose; especially in the form of injection, it is preferred that the aforesaid antibody is contained in about 5 to about 100 mg and in about 10 to about 250 mg for the other dosage forms.


Administration Regimens

According to certain embodiments, multiple doses of an antibody to RSV-F and/or HMPV may be administered to a subject over a defined time course. The methods according to this aspect of the invention comprise sequentially administering to a subject multiple doses of an antibody to RSV-F and/or HMPV. As used herein, “sequentially administering” means that each dose of antibody to RSV-F and/or HMPV is administered to the subject at a different point in time, e.g., on different days separated by a predetermined interval (e.g., hours, days, weeks or months). The present invention includes methods which comprise sequentially administering to the patient a single initial dose of an antibody to RSV-F and/or HMPV, followed by one or more secondary doses of the antibody to RSV-F and/or HMPV and optionally followed by one or more tertiary doses of the antibody to RSV-F and/or HMPV.


The terms “initial dose,” “secondary doses,” and “tertiary doses,” refer to the temporal sequence of administration of the antibody to RSV-F and/or HMPV. Thus, the “initial dose” is the dose which is administered at the beginning of the treatment regimen (also referred to as the “baseline dose”); the “secondary doses” are the doses which are administered after the initial dose; and the “tertiary doses” are the doses which are administered after the secondary doses. The initial, secondary, and tertiary doses may all contain the same amount of antibody to RSV-F and/or HMPV, but generally may differ from one another in terms of frequency of administration. In certain embodiments, however, the amount of antibody to RSV-F and/or HMPV contained in the initial, secondary and/or tertiary doses vary from one another (e.g., adjusted up or down as appropriate) during the course of treatment. In certain embodiments, two or more (e.g., 2, 3, 4, or 5) doses are administered at the beginning of the treatment regimen as “loading doses” followed by subsequent doses that are administered on a less frequent basis (e.g., “maintenance doses”).


In one exemplary embodiment of the present invention, each secondary and/or tertiary dose is administered 1 to 26 (e.g., 1, 1½, 2, 2½, 3, 3½, 4, 4½, 5, 5½, 6, 6½, 7, 7½, 8, 8½, 9, 9½, 10, 10½, 11, 11½, 12½, 13, 13½, 14, 14½, 15, 15½, 16, 16½, 17, 17½, 18, 18½, 19, 19½, 20, 20½, 21, 21½, 22, 22½, 23, 23½, 24, 24½, 25, 25½, 26, 26½, or more) weeks after the immediately preceding dose. The phrase “the immediately preceding dose,” as used herein, means, in a sequence of multiple administrations, the dose of antibody to RSV-F and/or HMPV which is administered to a patient prior to the administration of the very next dose in the sequence with no intervening doses.


The methods according to this aspect of the invention may comprise administering to a patient any number of secondary and/or tertiary doses of an antibody to RSV-F and/or HIMPV. For example, in certain embodiments, only a single secondary dose is administered to the patient. In other embodiments, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or more) secondary doses are administered to the patient. Likewise, in certain embodiments, only a single tertiary dose is administered to the patient. In other embodiments, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or more) tertiary doses are administered to the patient.


In embodiments involving multiple secondary doses, each secondary dose may be administered at the same frequency as the other secondary doses. For example, each secondary dose may be administered to the patient 1 to 2 weeks after the immediately preceding dose. Similarly, in embodiments involving multiple tertiary doses, each tertiary dose may be administered at the same frequency as the other tertiary doses. For example, each tertiary dose may be administered to the patient 2 to 4 weeks after the immediately preceding dose. Alternatively, the frequency at which the secondary and/or tertiary doses are administered to a patient can vary over the course of the treatment regimen. The frequency of administration may also be adjusted during the course of treatment by a physician depending on the needs of the individual patient following clinical examination.


Accordingly, in certain embodiments are provided pharmaceutical compositions comprising: one or more of the inventive antibodies or antigen-binding fragments thereof disclosed herein and throughout and a pharmaceutically acceptable carrier and/or one or more excipients. In certain other embodiments are provided pharmaceutical compositions comprising: one or more nucleic acid sequences encoding one or more inventive antibodies or antigen-binding fragments thereof, or one or more the expression vectors harbouring such nucleic acid sequences; and a pharmaceutically acceptable carrier and/or one or more excipients.


Therapeutic Uses of the Antibodies

Due to their binding to and interaction with the RSV fusion protein (RSV-F), it is believe that the inventive antibodies and antigen-binding fragments thereof are useful—without wishing to be bound to any theory—for preventing fusion of the virus with the host cell membrane, for preventing cell to cell virus spread, and for inhibition of syncytia formation. Additionally, as Applicants have demonstrated herein that, surprisingly, a subset of the inventive anti-RSV antibodies and antigen-binding fragment thereof display crass-neutralizing potency against HMPV, the inventive antibodies and antigen-binding fragments thereof are advantageous for preventing an infection of a subject with RSV and/or HMPV when administered prophylactically. Alternatively, the antibodies of the present invention may be useful for ameliorating at least one symptom associated with the infection, such as coughing, fever, pneumonia, or for lessening the severity, duration, and/or frequency of the infection. The antibodies of the invention are also contemplated for prophylactic use in patients at risk for developing or acquiring an RSV infection and/or HMPV infection. These patients include pre-term infants, full term infants born during RSV season (late fall to early spring), the elderly (for example, in anyone 65 years of age or older) and/or HMPV season, or patients immunocompromised due to illness or treatment with immunosuppressive therapeutics, or patients who may have an underlying medical condition that predisposes them to an RSV infection (for example, cystic fibrosis patients, patients with congestive heart failure or other cardiac conditions, patients with airway impairment, patients with COPD) and/or HMPV infection. It is contemplated that the antibodies of the invention may be used alone, or in conjunction with a second agent, or third agent for treating RSV infection and/or HMPV infection, or for alleviating at least one symptom or complication associated with the RSV infection and/or HMPV infection, such as the fever, coughing, bronchiolitis, or pneumonia associated with, or resulting from such an infection. The second or third agents may be delivered concurrently with the antibodies of the invention, or they may be administered separately, either before or after the antibodies of the invention. The second or third agent may be an anti-viral such as ribavirin, an NSAID or other agents to reduce fever or pain, another second but different antibody that specifically binds RSV-F, an agent (e.g. an antibody) that binds to another RSV antigen, such as RSV-G, a vaccine against RSV, an siRNA specific for an RSV antigen.


In yet a further embodiment of the invention the present antibodies are used for the preparation of a pharmaceutical composition for treating patients suffering from a RSV infection and/or HMPV infection. In yet another embodiment of the invention the present antibodies are used for the preparation of a pharmaceutical composition for reducing the severity of a primary infection with RSV and/or HMPV, or for reducing the duration of the infection, or for reducing at least one symptom associated with the RSV infection and/or the HMPV infection. In a further embodiment of the invention the present antibodies are used as adjunct therapy with any other agent useful for treating an RSV infection and/or and HMPV infectin, including an antiviral, a toxoid, a vaccine, a second RSV-F antibody, or any other antibody specific for an RSV antigen, including an RSV-G antibody, or any other palliative therapy known to those skilled in the art.


Accordingly, in certain embodiments are provided methods of treating or preventing a Respiratory Syncytial Virus (RSV) infection, ar at least one symptom associated with RSV infection, comprising administering to a patient in need thereof or suspected of being in need thereof one or more of the inventive antibodies or antigen-binding fragments thereof disclosed herein and throughout, such as, e.g., one or more of the anti-RSV antibodies disclosed in Table 6, such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity.


In certain other embodiments are provided methods of treating or preventing a Respiratory Syncytial Virus (RSV) infection, ar at least one symptom associated with RSV infection, comprising administering to a patient in need thereof or suspected of being in need thereof a nucleic acid sequence encoding one or more of the inventive antibodies or antigen-binding fragments thereof, such nucleic acid sequenced disclosed in Table 6 and compliments thereof, such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity.


In additional embodiments are provided methods of treating or preventing a Respiratory Syncytial Virus (RSV) infection, ar at least one symptom associated with RSV infection, comprising administering to a patient in need thereof or suspected of being in need thereof a host cell harboring a nucleic acid sequence or an expression vector comprising such a nucleic acid sequence, wherein such nucleic acid sequences is selected from the group consisting of sequences disclosed in Table 6 and compliments thereof, such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity.


In additional embodiments are provided methods of treating or preventing a Respiratory Syncytial Virus (RSV) infection, ar at least one symptom associated with RSV infection, comprising administering to a patient in need thereof or suspected of being in need thereof a pharmaceutical composition comprising either: one or more of the inventive antibodies or antigen-binding fragments thereof as disclosed in Table 6; one or more nucleic acid sequences or an expression vectors comprising such a nucleic acid sequence, wherein such nucleic acid sequences are selected from the group consisting of sequences disclosed in Table 6 and compliments thereof; one or more host cells harboring one or more nucleic acid sequences or an expression vectors comprising such one or more nucleic acid sequences, wherein such nucleic acid sequences are selected from the group consisting of sequences disclosed in Table 6 and compliments thereof; and a pharmaceutically acceptable carrier and/or one or more excipients, such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity.


In certain embodiments as provided methods of treating or preventing either a Respiratory Syncytial Virus (RSV) infection or a human metapneumovirus (HMPV) infection, ar at least one symptom associated with said RSV infection or said HMPV infection, comprising administering to a patient in need thereof or suspected of being in need thereof one or more of the inventive antibodies or antigen-binding fragments thereof disclosed herein and throughout, such as, e.g., one or more of the anti-RSV antibodies disclosed in Table 6, such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity. In certain embodiments, the one or more antibodies or antigen-binding fragments thereof comprises Antibody Number 340 as disclosed in Table 6.


In certain other embodiments are provided methods of treating or preventing either a Respiratory Syncytial Virus (RSV) infection or a human metapneumovirus (HMPV) infection, ar at least one symptom associated with said RSV infection or said HMPV infection, comprising administering to a patient in need thereof or suspected of being in need thereof a nucleic acid sequence encoding one or more of the inventive antibodies or antigen-binding fragments thereof, such nucleic acid sequenced disclosed in Table 6 and compliments thereof, such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity. In certain embodiments, the one or more antibodies or antigen-binding fragments thereof comprises Antibody Number 340 as disclosed in Table 6.


In additional embodiments are provided methods of treating or preventing either a Respiratory Syncytial Virus (RSV) infection or a human metapneumovirus (HMPV) infection, ar at least one symptom associated with said RSV infection or said HMPV infection, comprising administering to a patient in need thereof or suspected of being in need thereof a host cell harboring a nucleic acid sequence or an expression vector comprising such a nucleic acid sequence, wherein such nucleic acid sequences is selected from the group consisting of sequences disclosed in Table 6 and compliments thereof, such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity. In certain embodiments, the one or more antibodies or antigen-binding fragments thereof comprises Antibody Number 340 as disclosed in Table 6.


In additional embodiments are provided methods of treating or preventing either a Respiratory Syncytial Virus (RSV) infection or a human metapneumovirus (HMPV) infection, ar at least one symptom associated with said RSV infection or said HMPV infection, comprising administering to a patient in need thereof or suspected of being in need thereof a pharmaceutical composition comprising either: one or more of the inventive antibodies or antigen-binding fragments thereof as disclosed in Table 6; one or more nucleic acid sequences or an expression vectors comprising such a nucleic acid sequence, wherein such nucleic acid sequences are selected from the group consisting of sequences disclosed in Table 6 and compliments thereof; one or more host cells harboring one or more nucleic acid sequences or an expression vectors comprising such one or more nucleic acid sequences, wherein such nucleic acid sequences are selected from the group consisting of sequences disclosed in Table 6 and compliments thereof; and a pharmaceutically acceptable carrier and/or one or more excipients, such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity. In certain embodiments, the one or more antibodies or antigen-binding fragments thereof comprises Antibody Number 340 as disclosed in Table 6.


Combination Therapies

As noted above, according to certain embodiments, the disclosed methods comprise administering to the subject one or more additional therapeutic agents in combination with an antibody to RSV-F and or HMPV. As used herein, the expression “in combination with” means that the additional therapeutic agents are administered before, after, or concurrent with the pharmaceutical composition comprising the anti-RSV-F antibody. The term “in combination with” also includes sequential or concomitant administration of the anti-RSV-F antibody and a second therapeutic agent.


For example, when administered “before” the pharmaceutical composition comprising the anti-RSV-F antibody, the additional therapeutic agent may be administered about 72 hours, about 60 hours, about 48 hours, about 36 hours, about 24 hours, about 12 hours, about 10 hours, about 8 hours, about 6 hours, about 4 hours, about 2 hours, about 1 hour, about 30 minutes, about 15 minutes or about 10 minutes prior to the administration of the pharmaceutical composition comprising the anti-RSV-F antibody. When administered “after” the pharmaceutical composition comprising the anti-RSV-F antibody, the additional therapeutic agent may be administered about 10 minutes, about 15 minutes, about 30 minutes, about 1 hour, about 2 hours, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about 12 hours, about 24 hours, about 36 hours, about 48 hours, about 60 hours or about 72 hours after the administration of the pharmaceutical composition comprising the anti-RSV-F antibodies. Administration “concurrent” or with the pharmaceutical composition comprising the anti-RSV-F antibody means that the additional therapeutic agent is administered to the subject in a separate dosage form within less than 5 minutes (before, after, or at the same time) of administration of the pharmaceutical composition comprising the anti-RSV-F antibody, or administered to the subject as a single combined dosage formulation comprising both the additional therapeutic agent and the anti-RSV-F antibody.


Combination therapies may include an anti-RSV-F antibody of the invention and any additional therapeutic agent that may be advantageously combined with an antibody of the invention, or with a biologically active fragment of an antibody of the invention.


For example, a second or third therapeutic agent may be employed to aid in reducing the viral load in the lungs, such as an antiviral, for example, ribavirin. The antibodies may also be used in conjunction with other therapies, as noted above, including a toxoid, a vaccine specific for RSV, a second antibody specific for RSV-F, or an antibody specific for another RSV antigen, such as RSV-G.


Diagnostic Uses of the Antibodies

The inventive anti-RSV antibodies and antigen-binding fragments thereof may also be used to detect and/or measure RSV and/or HMPV in a sample, e.g., for diagnostic purposes. It is envisioned that confirmation of an infection thought to be caused by RSV and/or HMPV may be made by measuring the presence of the virus through use of any one or more of the antibodies of the invention. Exemplary diagnostic assays for RSV and/or HMPV may comprise, e.g., contacting a sample, obtained from a patient, with an anti-RSV-F and/or HMPV antibody of the invention, wherein the anti-RSV-F and/or HMPV antibody is labeled with a detectable label or reporter molecule or used as a capture ligand to selectively isolate the virus containing the F protein from patient samples. Alternatively, an unlabeled anti-RSV-F and/or HMPV antibody can be used in diagnostic applications in combination with a secondary antibody which is itself detectably labeled. The detectable label or reporter molecule can be a radioisotope, such as 3H, 14C, 32P, 35S, or 125I; a fluorescent or chemiluminescent moiety such as fluorescein isothiocyanate, or rhodamine; or an enzyme such as alkaline phosphatase, β-galactosidase, horseradish peroxidase, or luciferase. Specific exemplary assays that can be used to detect or measure RSV containing the F protein and/or HMPV in a sample include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence-activated cell sorting (FACS).


Samples that can be used in RSV and/or HMPV diagnostic assays according to the present invention include any tissue or fluid sample obtainable from a patient, which contains detectable quantities of RSV-F protein and/or HMPV, or fragments thereof, under normal or pathological conditions. Generally, levels of RSV-F and/or HMPV in a particular sample obtained from a healthy patient (e.g., a patient not afflicted with a disease or condition associated with the presence of RSV-F and/or HMPV) will be measured to initially establish a baseline, or standard, level of the F protein from RSV and/or HMPV. This baseline level of RSV-F and/or HMPV can then be compared against the levels of RSV-F and/or HMPV measured in samples obtained from individuals suspected of having an RSV and/or HMPV infection, or symptoms associated with such infection.


EXAMPLES

Applicants have comprehensively profiled the human antibody response to RSV fusion protein (F) by isolating and characterizing 133 RSV F-specific monoclonal antibodies from the memory B cells of a healthy adult donor, and used these antibodies to comprehensively map the antigenic topology of RSV F. The antibody response to RSV F was determined to be comprised of a broad diversity of clones that target several antigenic sites. Nearly half of the most potent antibodies target a previously undefined site of vulnerability near the apex of the prefusion conformation of RSV F (preF), providing strong support for the development of RSV antibodies that target this region, as well as vaccine candidates that preserve the membrane-distal hemisphere of the preF protein. Additionally, this class of antibodies displayed convergent sequence features, thus providing a future means to rapidly detect these types of antibodies in human samples. Many of the antibodies that bound preF-specific surfaces from this donor were over 100 times more potent than palivizumab, and one antibody cross-neutralized human metapneumovirus (HMPV). Taken together, the results have implications for the design and evaluation of RSV vaccine and antibody-based therapeutic candidates, and offer new options for passive prophylaxis.


Large-Scale Isolation of RSV F-Specific Monoclonal Antibodies from Healthy Adult Human Donors


In order to comprehensively profile the human antibody response to RSV F, Applicants isolated and characterized 133 monoclonal antibodies from the memory B cells of a healthy adult donor (“donor 006”). Although this donors did not have a documented history of RSV infection, healthy adults are expected to have had multiple RSV infections throughout life (26).


The magnitude of the memory B cell response in this donor to RSV F was assessed by staining peripheral B cells with a mixture of fluorescently labeled pre- and postfusion RSV F sorting probes (FIG. 6A through 6B) (11, 15). Both proteins were dual-labeled in order to eliminate background due to non-specific fluorochrome binding (27). Flow cytometric analysis revealed that 0.04-0.18% of class-switched (IgG+ and IgA+) peripheral B cells were specific for RSV F (FIG. 1A and Figure B), which is significantly lower than the percentage of RSV F-specific cells observed after experimental RSV infection and suggests that this donor was probably not recently exposed to RSV (28). Notably, index sorting showed that 17-38% of circulating RSV F-specific B cells express IgA, indicating that IgA memory B cells to RSV F are present in peripheral blood (FIG. 1B).


Approximately 200 RSV F-specific B cells were single-cell sorted from the donor sample, and antibody variable heavy (VH) and variable light (VL) chain genes were rescued by single-cell PCR (29). One hundred thirty-three (133) cognate heavy and light chain pairs were subsequently cloned and expressed as full-length IgGs in an engineered strain of Saccharomyces cerevisiae for further characterization (30). Preliminary binding studies showed that approximately 80% of antibodies cloned from RSV F glycoprotein (F)-specific B cells bound to recombinant RSV F proteins.


Sequence Analysis of RSV F-Specific Antibody Repertoires

Sequence analysis of the isolated monoclonal antibodies revealed that the RSV-F specific repertoire was highly diverse, containing over 70 unique lineages (FIG. 1C and Table 2). This result is in stark contrast to the relatively restricted repertoires observed in HIV-infected patients (31), or in healthy donors after influenza vaccination (32). Compared to non-RSV-reactive antibodies (33), the RSV F-specific repertoires were skewed, generally, toward certain VH germline genes (VH1-18, VH1-2, VH1-69, VH2-70, VH4-304, and VH5-51) (FIG. 1D and Table 2) and longer heavy chain third complementarity-determining region (CDRH3) lengths (generally, approximately 14-18 amino acids in length; FIG. 1E and Table 2). Interestingly, a bias toward VH1-69 has also been observed in anti-HIV-1, anti-influenza, and anti-HCV repertoires (34-36), and recent studies have shown that there is a significant increase in the relative usage of VH1-18, VH1-2, and VH1-69 during acute dengue infection (37). Hence, it appears that these particular germline gene segments may have inherent properties that facilitate recognition of viral envelope proteins.


The average level of somatic hypermutation (SHM) ranged generally between 16 and 30 nucleotide substitutions per VH gene (excluding CDRH3) (FIG. 1F and Table 2), which is comparable to the average level of SHM observed in anti-influenza antibody repertoires (32, 38) and consistent with the recurrent nature of RSV infection (26). Interestingly, several antibodies contained 40 or greater VH gene nucleotide substitutions, suggesting that multiple rounds of RSV infection can result in antibodies with very high levels of somatic hypermutation (SHM).


A Large Proportion of Antibodies Bind Exclusively to preF


We next measured the apparent binding affinities of the IgGs to furin-cleaved RSV F ectodomains stabilized in the prefusion (DS-Cav1) or postfusion (F ΔFP) conformation using biolayer interferometry (11, 15). A relatively large proportion of the antibodies (36-67%) bound exclusively to preF (FIG. 2A and Figure B; Table 3). The vast majority of remaining antibodies bound to both pre- and postF, with only 5-7% of antibodies showing exclusive postF specificity (FIG. 2A and Figure B; Table 3). The low prevalence of postF-specific antibodies in these donor repertoires is consistent with the observation that less than 10% of anti-RSV F serum-binding activity specifically targets postF (8). Interestingly, however, the majority of cross-reactive antibodies bound with higher apparent affinity to postF (FIG. 2A; Table 3), suggesting that these antibodies were probably elicited by and/or affinity matured against postF in vivo. Hence, the significantly higher proportion of preF- versus postF-specific antibodies is likely due to the higher immunogenicity of the unique surfaces on preF compared to postF, rather than an increased abundance of preF in vivo. Finally, as expected based on the relatively high degree of sequence conservation between RSV subtypes, most of the antibodies showed binding reactivity to F proteins derived from both subtypes A and B (FIG. 2C; Table 3).


Since certain antiviral antibody specificities have been associated with poly- and autoreactivity (39-41), we also tested the RSV antibodies for polyreactivity using a previously described high-throughput assay that correlates with down-stream behaviors such as serum clearance (42, 43). One hundred and seventy-seven clinical antibodies, as well as several broadly neutralizing HIV antibodies, were also included for comparison. Interestingly, in contrast to many previously described HIV broadly neutralizing antibodies, the vast majority of RSV F-specific antibodies lacked significant polyreactivity in this assay (FIG. 2D).


RSV F-Specific Antibodies Target Six Major Antigenic Sites

To map the antigenic specificities of the RSV F-specific antibodies, Applicants first performed competitive binding experiments using a previously described yeast-based assay (44). Antibodies were initially tested for competition with D25, AM14 and MPE8-three previously described preF-specific antibodies (10, 17, 21)—and motavizumab, an affinity-matured variant of palivizumab that binds to both pre- and postF (10, 11, 45). Non-competing antibodies were then tested for competition with a site IV-directed mAb (101F) (46), a site I-directed antibody (Site I Ab), and two high affinity antibodies (High Affinity Ab I and High Affinity Ab 2, respectively) that did not strongly compete with each other or any of the control antibodies. Each antibody was assigned a bin based on the results of this competition assay (see, e.g., Table 4).


In order to confirm and increase the resolution of our epitope assignments, the binding of each antibody to a panel of preF variants was measured using a luminex-based assay. Each variant contained 2-4 mutations clustered together to form a patch on the surface of preF. A total of nine patches that uniformly covered the surface of preF were generated (FIG. 7A through FIG. 7C). Deglycosylated preF was also included to identify antibodies targeting glycan-dependent epitopes. Binding of each antibody to the 10 preF variants was compared to that of wild-type preF and used to assign a patch (see, e.g., Table 4). Previously characterized antibodies D25, AM14 and motavizumab were used to validate the assay (se, e.g., FIG. 7C and Table 4). The combined bin and patch data were then used to assign each antibody to a single antigenic site (FIG. 3A through FIG. 3G), which were defined based on previously determined structures, resistance mutations, and secondary structure elements of the F protein. Overall, these data show that the large majority of isolated antibodies target six dominant antigenic sites on prefusion RSV F (0, I, II, III, IV, and V). Interestingly, only a small proportion of the isolated antibodies had binding profiles similar to that of AM14, suggesting that antibodies targeting this quaternary epitope are not commonly elicited during natural infection. None of the antibodies were sensitive to deglycosylation of F, demonstrating that glycan-dependent antibodies are also rarely elicited by natural RSV infection.


Analysis of the preF- and postF-binding activities of the antibodies targeting each antigenic site (see, e.g., FIG. 3C through FIG. 3G; Table 4) revealed that three sites are primarily found on preF (0, III, and V). Antibodies targeting site Ø and site III have been previously described (10, 17), and these sites are located on the top and side of the preF spike, respectively. Approximately 18% of the antibodies from this donor recognized site Ø and approximately 20% recognized site III. A relatively large proportion of antibodies from this donor (approximately 26%) recognized the third preF-specific site, which has not been previously described and therefore has been designated herein as region site V (See, e.g., FIG. 3C through FIG. 3G; Table 4). The majority of site V antibodies competed with D25, MPE8 and motavizumab, which was unexpected given the distance between the epitopes recognized by these three antibodies. The patch mutant analysis revealed that these antibodies interact with the α3 helix and β3/β4 hairpin of preF. This region is located between the epitopes recognized by D25, MPE8, and motavizumab, explaining the unusual competition profile observed for this class of antibodies (See, e.g., FIG. 8). In addition to the three primarily preF-specific sites, a large number of the antibodies that recognized antigenic site IV were preF-specific, likely due to contacts with β22, which dramatically rearranges during the transition from pre- to postF. In summary, the epitope mapping data show that the large majority of isolated antibodies target six dominant antigenic sites, approximately half of which are exclusively expressed on preF.


Highly Potent Neutralizing Antibodies Target preF-Specific Epitopes


The antibodies were next tested for neutralizing activity against RSV subtypes A and B using a previously described high-throughput neutralization assay (15). Greater than 70% of the isolated antibodies showed neutralizing activity, and approximately 35%-40% neutralized with high potency (IC50≤0.05 μg/ml) (see, e.g., FIG. 4A and FIG. 4B; Table 3). Notably, several clonally unrelated antibodies were ≥5.0-fold more potent than D25 and ≥100-fold more potent than palivizumab (see, e.g., FIG. 4A; Table 3). Interestingly, there was no correlation between neutralization potency and level of SHM, suggesting that extensive SHM is not required for potent neutralization of RSV. Consistent with the binding cross-reactivity data, the majority of neutralizing antibodies showed activity against both subtype A and B (FIG. 4A through FIG. 4C; Table 3).


The relationship between preF- and postF-binding affinity and neutralization potency was next investigated, which clearly demonstrated that the majority of highly potent antibodies bound preferentially or exclusively to preF (see, e.g., FIG. 4D through FIG. 4G; Table 3). Quantifying this difference revealed that more than 80% of highly potent antibodies (IC50<0.05 μg/ml) were specific for preF (See, e.g., FIG. 9; Table 3) and that the median IC50 for preF-specific antibodies was more than 8-fold lower than for pre- and postF cross-reactive antibodies and 80-fold lower than antibodies that specifically recognized postF (see, e.g., FIG. 4E; Table 3). Importantly, there was a positive correlation between preF binding and neutralization (P<0.001, r=0.24), and the apparent preF KDs generally corresponded well with the neutralization IC50s (see, e.g., FIG. 5A; Table 3). In contrast, there was no correlation between neutralization potency and postF affinity (P=0.44, r=−0.07) (see, e.g., FIG. 5B; Table 3). This result is compatible with the occupancy model of antibody-mediated neutralization (47), and suggests that DS-Cav1 is a faithful antigenic mimic of the native preF trimer. Notably, very few antibodies neutralized with IC50s lower than 100 pM, which is consistent with the previously proposed ceiling to affinity maturation (48, 49).


The relationship between neutralization potency and antigenic site was next analyzed. The results, provided in, e.g., FIG. 5C, Table 3, and Table 4, collectively, indicated that over 60% of the highly potent neutralizing antibodies targeted antigenic sites Ø and V, which are two of the three prefusion-F specific sites. In contrast, antibodies targeting sites III and IV showed a wide range of neutralization potencies, and antibodies targeting sites I and II were generally moderate to non-neutralizing. Similar results were obtained using binding affinities and neutralization potencies measured for subtype B (See, e.g., FIG. 10A through FIG. 10C; Table 3 and Table 4). Interestingly, a subset of site IV-directed antibodies neutralized with substantially lower potency than would be expected based on preF binding affinity (see, e.g., FIG. 5A; Table 3). This result may suggest that certain epitopes within site IV are less exposed in the context of the native envelope spike expressed on the crowded surface of the virion than on recombinant preF.


Several Antibodies Cross-Neutralize RSV and HMPV

Given that the RSV and human metapneumovirus (HMPV) F proteins share 33% amino acid identity, and certain RSV F-specific antibodies cross-neutralize HMPV (17, 50), the antibodies from this donor were tested for neutralizing activity against HMPV. Of the 133 antibodies tested, one neutralized HMPV (see, e.g., Table 5). Sequence analysis revealed that this antibody represents the VH1-46 germline gene and contains a significant degree of somatic hypermutation (See, e.g., Table 2 and sequence listing). This cross-neutralizing antibody bound to both the preF and PostF and competed with MPE8 (See, e.g., Table 5), in agreement with previous studies indicating that MPE8 cross-neutralizes four pneumoviruses, including RSV and HMPV (17). This result suggests, inter alia, that highly conserved epitopes are relatively immunogenic in the context of natural RSV and/or HMPV infection.


Affinity Maturation of RSV F-Specific Antibodies:

Some embodiments refer to affinity matured antibodies of any of the antibodies listed in Table 6 (each understood as a “parent” antibody” for producing an affinity matured variant). Affinity matured antibodies may be produced by mutagenesis of any one or more of the CDRs of the parent antibody. According to a specific embodiment, the invention provides for affinity matured variants comprising one or more point mutations e.g., 0, 1, 2, or 3 point mutations in each of the CDR sequences, of any of the antibodies listed in Table 6, or of an antibody comprising the six CDR sequences of any of the antibodies listed in Table 6. Affinity matured variants can be produced by any affinity maturation method employing standard mutagenesis techniques, e.g., for optimizing the binding characteristics, such as increasing affinity of binding, or increasing Kon, or decreasing Koff, and can be characterized by a KD difference of at least 2 fold, 5 fold, 1 log, or 2 logs, or 3 logs, as compared to the parent antibody. Such affinity matured antibodies still have the same binding specificity as the parent antibody and e.g., an optimized affinity of binding the target epitope.


Selected anti RSV antibodies were identified for affinity maturation. Oligos were ordered which comprised CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and CDRL3 sequences that were variegated via NNK diversity. The NNK oligos were incorporated into the parent HC or LC via DNA shuffling, as described previously (Stemmer W P et al., DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc Natl Acad Sci USA. 1994 Oct. 25; 91(22):10747-51). The library was then created by transforming the VH and VL PCR products into yeast already containing either the light chain or heavy chain plasmid of the parent. The diversified libraries were then selected using flow cytometry. For each FACS round, the libraries were affinity pressured using decreasing amounts of antigen and clones with improved binding affinities were sorted and propagated. Once improved binding populations were observed by flow cytometry (typically two rounds of selection), single yeast clones were be picked for sequencing and characterization (Table 6).


A specific embodiment refers to affinity matured variants of the antibody 267 in Table 6. Notably, each of the antibodies numbered 365-372 is an affinity matured variant of the antibody numbered 267 in Table 6.


Antibody Production and Purification of Affinity Matured Antibodies

Yeast clones were grown to saturation and then induced for 48 h at 30° C. with shaking. After induction, yeast cells were pelleted and the supernatants were harvested for purification. IgGs were purified using a Protein A column and eluted with acetic acid, pH 2.0. Fab fragments were generated by papain digestion and purified over KappaSelect (GE Healthcare LifeSciences).


RSV In Vitro Neutralization in ELISA Based Microneutralization Assays

In vitro RSV neutralization was tested in ELISA based Microneutralization Assays using RSV-A strain A2 (ATCC, VR1540P). Virus (at a final multiplicity of infection of approximately 0.25) was added to 96-well plates containing serially diluted mAbs in serum-free MEM and pre-incubated for 30 min at 4° C. Freshly trypsinized Hep-2 cells (1.5×10E4 cells/well) were then added to each well in MEM supplemented with 5% FCS. Following incubation for 4 days at 37° C. and 5% CO2, medium was aspirated and cells were washed twice with 200 μl PBS/well, air-dried and fixed with 100 μl Acetone (80%). RSV replication was measured by quantification of expressed viral proteins by ELISA. For this purpose, fixed cells were washed 2×times with PBS-0.1% Tween-20, blocked with 1% skimmed milk in PBS for 1 hour at RT and then stained with a polyclonal goat-anti RSV antibody preparation (BioRad, #7950-0004) for 1 hour at RT in blocking buffer. A donkey anti-goat IgG HRP conjugate was used as detection reagent and 1 step-Ultra TMB (Thermo Fisher Scientific, #34209) as substrate. % inhibition of virus replication was calculated relative to control cells infected with virus in absence of neutralizing antibodies. An isotype matched control mAb was included in all experiments. mAb potency is expressed as half-maximal inhibitory concentration that resulted in 50% reduction in virus replication (IC50). Results are provided in FIG. 11 and demonstrate that all mAbs were able to neutralize RSV-A2 in this setting, with a broad range of IC50 values.


DISCUSSION

An in-depth understanding of the human antibody response to RSV infection will aid the development and evaluation of RSV vaccine and therapeutic and/or prophylactic antibody candidates for the treatment and/or prevention of RSV infection. Although previous studies have coarsely mapped the epitopes targeted by RSV-specific neutralizing antibodies in human sera (4, 8), the specificities and functional properties of antibodies induced by natural RSV infection have remained largely undefined. As disclosed herein, preF- and postF-stabilized proteins (11, 15), a high-throughput antibody isolation platform, and a structure-guided collection of prefusion F mutants, were used to clonally dissect the human memory B cell response to RSV F in a naturally infected adult donor, and highly potent and selective RSV-neutralizing—as well as highly potent anti-RSV/anti-HMPV cross-selective and cross-neutralizing—were isolated and characterized.


In the repertoire analyzed, the ratio of preF-specific antibodies to those that recognize both pre- and postF was slightly greater than 1:1 (See, e.g., FIG. 2B). These values are somewhat lower than those reported for human sera, which showed approximately 70% of anti-F serum binding is specific for preF (8). This discrepancy may be the result of differences between the levels of individual antibodies in serum, differences in the B cell phenotypes achieved for a particular specificity, or variation between donors. Despite these minor differences, the results of both studies suggest that preF-specific epitopes and epitopes shared by pre- and postF are immunogenic during natural RSV infection, whereas the unique surfaces on postF are significantly less immunogenic.


The repertoire analysis disclosed herein revealed that the large majority of RSV F-specific antibodies target six dominant antigenic sites on prefusion RSV F: Ø, I, II, III, IV, and V. These sites were defined based on previously determined structures, epitope binning/competition assays, resistance mutations, and secondary structure elements of the preF protein. It is important to note that the nomenclature for describing RSV F antigenic sites has evolved over time (6, 51-57), and previous mapping efforts were based on the postfusion conformation of F and did not include surfaces present exclusively on preF. The crystal structure of preF has provided critical information about F structure and function as well as new reagents to map antibody binding sites on the unique surfaces of preF and surfaces shared with postF. To a first approximation, each antibody can be assigned primarily to one of these sites. However, it is likely that antibody epitopes cover the entire surface of F and that there are antibodies that bind two or more adjacent antigenic sites within a protomer and quaternary antibodies that bind across protomers.


Importantly, the results disclosed herein show that the most potently neutralizing antibodies target antigenic sites Ø and V, both of which are located near the apex of the preF trimer. These findings are consistent with results obtained from human sera mapping, which determined that the majority of neutralizing activity can be removed by pre-incubation with preF (4, 8) and that preF-specific sites other than site Ø make up a considerable fraction of preF-specific neutralizing antibodies (8). Although antigenic site Ø has been shown to be a target of potently neutralizing antibodies (8, 10), the interaction of antibodies with site V is less well understood. Interestingly, it was found that the majority of site V-directed antibodies share several convergent sequence features, suggesting that it may be possible to rapidly detect these types of antibodies in human samples using high-throughput sequencing technology (58). Applicants anticipate this finding to be particularly advantageous in profiling antibody responses to RSV vaccine candidates that aim to preserve the apex of the preF trimer.


The extensive panel of antibodies described here provides new opportunities for passive prophylaxis, as well as for treatment of RSV infection. A large number of these antibodies neutralize RSV more potently than D25, which serves as the basis for MEDI8897—a monoclonal antibody that is currently in clinical trials for the prevention of RSV in young, at risk children (59). Additionally, a subset of these antibodies were demonstrated to cross-neutralize HMPV.


The development of an effective RSV vaccine has presented a number of unique challenges, and selection of the optimal vaccination strategy will be of the utmost importance. The in-depth analysis of the human antibody response to natural RSV infection presented here provides insights for the development of such a vaccine. Importantly, the results suggest that immunization of pre-immune donors with preF immunogens would be expected to boost neutralizing responses, whereas the use of postF immunogens would likely expand B cell clones with moderate or weak neutralizing activity. Similarly, immunization of RSV naïve infants with preF immunogens would be expected to activate naïve B cells targeting epitopes associated with substantially more potent neutralizing activity compared to postF immunogens. In addition, the ideal RSV vaccine should preserve antigenic sites Ø and V, since these sites are targeted by the most highly potent antibodies elicited in response to natural RSV infection.


Accordingly, disclosed herein are highly selective and potent anti-RSV antibodies, as well as highly potent cross-neutralizing anti-RSV and anti-HMPV antibodies, as well as vaccine candidates, for the treatment and or prophylaxis of RSV and/or HMPV infection. Additionally, the reagents disclosed here provide a useful set of tools for the evaluation of clinical trials, which will be critical for selecting the optimal RSV vaccination or antibody-based therapeutic strategy from the many currently under investigation (60).









TABLE 1







Antigenic sites targeted by prototypic RSV antibodies










Antigenic site
Prototypic antibodies







Ø
D25, 5C4, AM22 (10, 16)



I
131-2a, 2F



II
1129, palivizumab, motavisumab (6)



III
MPE8 (17)



IV
101F (57), mAb 19 (19)

















TABLE 2







Germline usage and sequence information of anti-RSV antibodies

















VH
LC



Number of
Number of



Antibody
germline
germline



nucleotide
nucleotide



number
gene
gene
CDR H3
CDR L3
Lineage
substitutions
substitutions


Name
(Ab #)
usage
usage
Sequence
Sequence
number
in VH
in VL


















ADI-
232
VH4-
VK1-
AGTNY
QQSYSTPL
4
10
8


18875

34
39
GEVNT
T









SNQYFF










GMDV






ADI-
233
VH4-
VK3-
ARDVG
QQYGSSP
44
12
4


18876

304
20
TLVLPT
LVT









VAYYY










GMDV






ADI-
234
VH1-
VK2-
ARESG
MQAIHWP
52
9
8


18877

18
30
ATAAA
RT









MFDY






ADI-
235
VH4-
VK3-
ARDGG
QQYGASP
23
12
6


18878

304
20
YDHVW
WT









GTHRY










FDK






ADI-
236
VH1-
VK2-
ARD VP
MQGTHW
46
9
12


18879

18
30
GHGAA
PPA









FMDV






ADI-
237
VH1-
VK2-
ARDPP
MQGTHW
36
8
7


18880

18
30
AYAAT
PPT









LMDV






ADI-
238
VH1-
VK3-
ARDAY
QQYGSSF
21
19
9


18882

69
20
EVWTG
LT









SYLPPF










DY






ADI-
239
VH1-
VK1-
ARVPES
QQGTSFPF
79
30
6


18883

69
12
LVASN
T









AYAV






ADI-
240
VH1-3
VK2-
ARGQIV
MQTLQTPI
57
8
1


18884


28
VIPRAN
T









FWFDP






ADI-
241
VH4-
VK3-
ARDGG
QQYGTSP
22
13
8


18885

304
20
YDHIW
WT









GTHRY










FAL






ADI-
242
VH1-
VK1-9
ARVFF
QQLHSDF
76
20
8


18887

69

GTCGG
QT









ASCFPS










DL






ADI-
243
VH3-
VK3-
ARDHA
QQYGSFP
24
8
10


18888

33
20
STPYY
WT









MDV






ADI-
244
VH4-
VK1-
AGTNV
QQSYSVP
3
25
12


18889

34
39
GFVNT
LT









HYYFG










MDV






ADI-
245
VH1-
VK3-
ARDAY
QQYGSSF
21
27
10


18890

69
20
EVWTG
LT









SYLPPF










DY






ADI-
246
VH1-
VK3-
ARDAY
QQYGSSF
21
22
10


18891

69
20
EVWTG
LT









SYLPPF










DY






ADI-
247
VH1-
VK2-
ARDSFS
MQATQW
39
7
1


18892

18
30
LTGAG
PRT









FPDY






ADI-
248
VH3-
VL1-
ARLGY
QSYDLSLS
61
8
3


18893

21
40
GGNPE
SSRV









LDY






ADI-
249
VH3-
VL1-
ARGAS
QSYDSLS
54
11
5


18894

30
40
YYYVS
ASWV









SDLGY






ADI-
250
VH5-
VK1-
ASVML
QPYDNLP
84
12
1


18895

51
33
RGIM
PPLT





ADI-
251
VH3-
VK3-
ARAPY
QQYSIWP
16
10
6


18896

30
15
DIWSG
QT









YCLDY






ADI-
252
VH3-7
VK4-1
ARDTP
QQYYSSP
42
11
8


18897



DVLRH
QT









LEWPP










VGAFDI






ADI-
253
VH1-
VK2-
ARESG
MQAIHWP
52
9
8


18898

18
30
ATAAA
RT









MFDY






ADI-
254
VH3-
VK3-
ARAPY
QQYSIWP
16
10
6


18899

30
15
DIWSG
QT









YCLDY






ADI-
255
VH3-
VK1-5
ARDQE
QQYYTYY
38
22
7


18900

23

VELIDD
S









AFDF






ADI-
256
VH1-2
VL1-
ARSSLV
GTWDASL
72
18
8


18901


51
GASPNF
SAAMV









DF






ADI-
257
VH4-
VL3-
ARSTW
QVWDSSP
73
8
7


18902

59
21
DYGDH
DHPYV









FPFDY






ADI-
258
VH1-
VK2-
ARD VP
MQGTHW
46
9
12


18903

18
30
GHGAA
PPA









FMDV






ADI-
259
VH1-
VK2-
ARDPP
MQGTHW
36
8
7


18904

18
30
AYAAT
PPT









LMDV






ADI-
260
VH4-
VK1-5
ACKRA
QQYHVYF
1
29
2


18905

39

DADDV
PLT









DYVAG










LTGFP










WYFDV






ADI-
261
VH3-
VK3-
ARDHA
QQYGSFP
24
8
10


18906

33
20
STPYY
WT









MDV






ADI-
262
VH1-
VK3-
ARGCC
QQRTTGV
55
21
7


18907

69
11
GAVAG
T









FQH






ADI-
263
VH3-
VL1-
VRGVL
QSYDYSL
98
16
7


18908

21
40
PGGTG
NWV









GGWFD










s






ADI-
264
VH4-
VK3-
ARDLG
QVYSSSPP
27
13
9


18909

304
20
KPLWD
IT









GHYYY










GVDV






ADI-
265
VH1-
VK2-
ARTAA
MQTLQTP
74
8
3


18910

69
28
LGPPGT
WT









IVGYM










DV






ADI-
266
VH5-
VK1-
ARLGIG
LQFDNLPP
60
12
7


18911

51
33
AAARN
T









Y






ADI-
267
VH3-
VL1-
ARDLLP
QSYDSRL
31
6
3


18912

21
40
VERGP
GGSV









AFDI






ADI-
268
VH5-
VK1-
ARQIGG
QQSDTTPF
67
13
6


18913

51
39
LVCSSE
T









SCYFY










GMDV






ADI-
269
VH3-
VL1-
ATDSR
QSYDDSL
86
4
3


18915

15
40
RLYDS
TGWV









RGFYSS










AFDV






ADI-
270
VH5-
VK1-
ARQIGG
QQSDTTPF
67
13
6


18916

51
39
LVCSSE
T









SCYFY










GMDV






ADI-
271
VH3-
VL1-
VRGVL
QSYDYSL
98
16
7


18917

21
40
PGDTG
NWV









GGWFD










S






ADI-
272
VH5-
VK3-
ARLPV
QQYNNW
62
8
13


18918

51
15
GSYYY
LSWT









FNL






ADI-
273
VH4-
VK2-
ARTSY
MQGLQIP
75
22
4


18919

31
28
AGRML
WT









DR






ADI-
274
VH3-
VL1-
AKVRN
GTWDTSL
12
10
14


18920

30
51
EAWEL
RAGV









LGDAL










DV






ADI-
275
VH1-
VK1-
ATPTPV
QQSYIIPY
88
15
2


18921

24
39
GATDY
T





ADI-
276
VH4-b
VK3-
ASRRGS
QQYNNWP
83
22
8


18922


15
GWFFD
PGGT









S






ADI-
277
VH3-
VL1-
ARDWP
QSYDSSLS
48
0
0


18923

21
40
NSSSSP
GFYV









NWFDP






ADI-
278
VH5-
VL1-
ARCSLS
QSYDSSLS
18
9
11


18924

51
40
CDYYG
GFYV









VNL






ADI-
279
VH3-
VK3-
AKPIVG
QQRSNWY
9
8
0


18925

30
11
PTTGYF
T









DY






ADI-
280
VH1-
VK2-
ARDPP
MQGTHGR
36
19
8


18926

18
30
ASAAA
GIS









MLDY






ADI-
281
VH1-2
VK1-
ASQSSP
QQSFTPQF
82
21
21


18927


13
YTPGA
T









LDV






ADI-
282
VH1-
VL7-
ARDIE
LLSYSGA
25
15
8


18928

69
46
WFVLM
RPV









DPITSY










YPMDV






ADI-
283
VH3-
VL1-
ARDAVI
AAWDDSL
19
9
6


18929

11
44
WGPV
NGPV









AVHYQ










YYADV






ADI-
284
VH1-
VK3-
ARDAY
QQYGSSF
21
14
8


18930

69
20
EVWTG
LT









SYLPPF










DY






ADI-
285
VH3-
VK3-
TRDDIL
QQYDNWP
92
6
6


18931

49
15
TGFYD
PYT









RSYYY










GIHV






ADI-
286
VH4-
VK3-
ARDLG
QQRSTWP
29
25
10


18932

304
11
TLAFDP
T









YYYYG










IDV






ADI-
287
VH1-
VKl-
ARRGY
QQSYIRPI
69
26
10


18933

46
39
PDSGSY
T









PLDY






ADI-
288
VH4-
VK3-
ARDLG
QQRSNGV
30
19
6


18935

304
11
YSSSSP
LT









AFYYGI










DF






ADI-
289
VH1-8
VK1-
ASQSSP
QLNSGAL
82
26
12


18936


39
YTPGA
FT









MGV






ADI-
290
VH4-
VK3-
ARDVG
QQYGGSP
45
25
10


18937

304
20
VYSGY
PVT









DVFHY










YGMDV






ADI-
291
VH3-
VK1-5
ARDLW
QQYNSWA
32
15
10


18938

74

TTSPYF










DL






ADI-
292
VH4-
VK1-
AGTNY
QQSYSAP
4
3
7


18939

34
39
GEVNT
LT









SNQYFF










GMDV






ADI-
293
VH1-8
VK1-
ASQSSP
QLNSGAL
82
33
14


18940


39
YTPGA
FT









MDV






ADI-
294
VH5-
VK3-
GQAVA
QHYNNWP
90
7
5


18941

51
15
GGEYF
RG









HH






ADI-
295
VH4-
VK3-
ARDLG
QQRSNWP
28
19
6


18942

304
11
TANNY
PYT









YFGMD










V






ADI-
296
VH4-b
VK3-
AGAFW
QQYSSSPL
2
38
7


18943


20
EVWTG
T









LYSPPF










DF






ADI-
297
VH1-
VK2-
ARDPA
MQGTHW
34
20
8


18944

18
30
VDAIP
PLT









MLDY






ADI-
298
VH3-
VL2-
AKEEW
SSYSTNSA
7
8
3


18946

30
14
LVPAY
P





ADI-
299
VH3-
VK3-
ARAPY
QQYSIWP
16
16
7


18947

30
15
DIWSG
QT









YCLDY






ADI-
300
VH3-
VK3-
ARAPY
QQYSIWP
16
13
7


18948

30
15
DIWSG
QT









YCLDY






ADI-
301
VH1-
VK2-
ARDPA
MQGTHW
34
20
8


18949

18
30
VDAIP
PLT









MLDY






ADI-
302
VH4-
VK3-
ATAWT
QLRGHWP
85
13
2


18950

39
11
FDH
PTIT





ADI-
303
VH3-
VL2-
AKDGL
SSYRNGN
5
19
16


18951

23
14
RDVSR
ALGV









VYYID










V






ADI-
304
VH3-
VL2-
AKDGL
SSYRNGN
5
18
11


18952

23
14
RDLSR
TLGV









VYYID










V






ADI-
305
VH1-
VK3-
ARDAY
QQYGSSF
21
12
11


18953

69
20
EVWTG
LT









SYLPPF










DY






ADI-
306
VH3-
VK3-
ARAPY
QQYSIWP
16
11
6


18955

30
15
DIWSG
QT









YCLDY






ADI-
307
VH1-
VL2-
ATRLY
CSYAGRYI
89
23
10


18956

69
11
TLGSPF
YV









DN






ADI-
308
VH3-
VL1-
ARVHV
QSYDSSLS
78
12
3


18957

21
40
DLVTTI
GAI









FGVDF










DF






ADI-
309
VH1-
VK2-
AREPPS
MQGTQW
51
18
3


18958

18
30
DDAAR
PVT









LFDY






ADI-
310
VH1-
VK1-
ATPTPV
QQTYIIPY
88
18
4


18959

24
39
GATDF
T





ADI-
311
VH4-
VL3-
AREGP
QVWDTSS
50
15
5


18960

39
21
NWELL
DHVV









NAFDI






ADI-
312
VH3-
VL1-
ARVSTE
QSYDSSLS
80
1
0


18962

21
40
LGYYY
W









MDV






ADI-
313
VH1-3
VK4-1
GRDWD
QQYYGNF
91
14
9


18965



GAIRVL
PT









DY






ADI-
314
VH3-
VK2-
ARDPG
MQGTHW
35
13
3


18966

30
30
VGSYY
PPT









NWGM










DV






ADI-
315
VH1-
VK1-
ATPLPA
QQTYIIPY
88
23
12


18967

24
39
GALDK
T





ADI-
316
VH4-
VK3-
TRDLG
QQRTNWP
93
17
8


18968

304
11
YSTSSP
IT









SFYYG










MDV






ADI-
317
VHl-
VK2-
ARDVF
MQATDW
43
15
4


18969

18
30
SKTAA
PVT









RIFDY






ADI-
318
VH4-
VK3-
ARDIGY
QQRTNWI
26
6
9


18970

304
11
GDHGT
T









GSYYY










GIED






ADI-
319
VH3-
VL3-
AKDRV
QVWDSRS
6
17
12


18971

23
21
GWFGE
EHVI









FDAFDF






ADI-
320
VH1-
VK2-
ARDPA
MQGTHW
34
20
8


18972

18
30
VDAIP
PLT









MLDY






ADI-
321
VH2-
VK3-
ALMRP
QLYHRSP
13
18
14


18973

70
20
FWSRD
GSASQTV









DYYYSI
WT









AV






ADI-
322
VH1-
VK2-
ARDTP
MQGIFRP
41
22
5


18974

18
30
ATAAP
GT









LLDY






ADI-
323
VH1-
VK2-
ARDSG
MQATEFP
40
11
3


18975

18
24
CCSGST
PMYT









SDV






ADI-
324
VH4-
VK1-
ARDNK
QQSYTTR
33
5
9


18976

31
39
HHDSG
LT









NYYAY










FDH






ADI-
325
VH1-3
VK1-
ARQVS
QQYDNLP
68
17
6


18977


33
TSGWH
LT









ATSHRF










AP






ADI-
326
VH3-
VK1-5
AKSSSS
QQYYNW
11
9
11


18978

30

HVNSR
WT









QDK






ADI-
327
VH1-
VK2-
ARDSFS
MQATHRP
39
11
1


18979

18
30
ETGTGF
RT









PDF






ADI-
328
VH5-
VK3-
AKSNV
QEVRNWP
10
8
9


18980

51
11
GNTGW
PCT









NY






ADI-
329
VH4-
VK3-
ARCGN
QQYGSSP
17
27
9


18981

30
20
EYGEV
WT









HPFDI






ADI-
330
VH1-
VK2-
ARDSFS
MQATHRP
39
7
1


18982

18
30
ETGTGF
RT









PDF






ADI-
331
VH3-
VK1-
AREAY
LQHNRYP
49
14
5


18983

30
17
EEWEL
FT









TMGNL










DH






ADI-
332
VH4-
VK1-
ARGEH
QQANSFP
56
29
5


18984

61
12
FAYWW
RT









GN






ADI-
333
VH1-2
VK1-
TSQTSP
QQTYNGL
95
22
16


18985


39
YTPGA
IA









MGV






ADI-
334
VH3-
VL1-
ARGAS
QSYDSLS
54
12
5


18986

30
40
YYYVS
ASWV









SDLGY






ADI-
335
VH1-
VK3-
ARDAY
QQYGSSF
20
12
8


18987

69
20
EVWTG
LT









SYLPPF










DD






ADI-
336
VH3-
VL1-
VREAY
QSYDSSLS
97
22
6


18988

21
40
ASSSAL
GWV









YWFDP






ADI-
337
VH3-
VK2-
ARSLGS
MQALQTP
71
14
6


18989

48
28
GNYDN
YT









EDQTF










YYYYG










MDV






ADI-
338
VH4-
VK3-
ARDLG
QQRSNWP
28
19
6


18990

304
11
TANNY
PYT









YFGMD










V






ADI-
339
VH4-
VL3-
ASGPV
QVWDSST
81
22
14


18991

304
21
GMATS
DYHVV









NWFDP






ADI-
340
VH1-
VL1-
ARAPS
QSYDSSLS
15
14
7


18992

46
40
HDEWV
AWV









AISRNV










VGFDA






ADI-
341
VH3-
VL1-
AREVLP
QSYDISLS
53
10
7


18993

21
40
ATAIGG
ASYV









AWLDP






ADI-
342
VH1-
VL2-
ARIGHV
CSYVAGS
58
13
7


18994

18
23
TAVAG
TSV









APPDY






ADI-
343
VH4-
VL3-
ASGPV
QVWDSGT
81
18
12


18995

304
21
GMATS
DYHVV









NWFDP






ADI-
344
VH1-2
VL1-
ARSSLV
GTWDASL
72
17
10


18996


51
GASPNF
SAAMV









DF






ADI-
345
VH4-
VK3-
ARVHP
QQYAYWP
77
16
9


18997

34
15
SYDFG
PYT









WRFFD










F






ADI-
346
VH4-
VL3-
ASGPV
QVWDSST
81
15
15


18998

304
21
GMATS
DHHVV









NWFDP






ADI-
347
VH1-
VL2-
ARPNY
CSYAGGL
65
13
3


18999

69
11
DILTGY
YV









AFDI






ADI-
348
VH1-8
VL1-
VQMDH
AAWDDSL
96
10
6


19000


36
CRSTSC
NVWV









SEGNW










FDT






ADI-
349
VH3-
VL2-8
TRQDD
SSYAGSN
94
10
7


19001

49

FWSGH
DLGV









PYYFEY






ADI-
350
VH4-
VK1-
ARQFG
QQSYSIPW
66
17
8


19002

59
39
YDKNT
T









LSRLDF










DY






ADI-
351
VH4-
VL3-
AREGP
QVWDTSS
50
15
4


19003

39
21
NWELL
DHVV









NAFDI






ADI-
352
VH1-
VK2-
ARDPP
MQGTHGR
36
19
7


19004

18
30
ASAAA
GIS









MLDY






ADI-
353
VH1-
VK1-
ASQSSP
QLNSGAL
82
21
9


19005

18
39
YTPGA
FT









MGV






ADI-
354
VH3-
VK3-
ARAKT
QRYGNSW
14
30
12


19006

11
20
SYYFY
P









ALDV






ADI-
355
VH3-
VK4-1
AKESL
HQYYDTH
8
18
5


19007

23

DFGSGS
T









YNWFD










T






ADI-
356
VH3-
VK3-
ARDPSL
QQRSNWP
37
15
6


19008

30
11
GYNNH
PMYS









YFDY






ADI-
357
VH1-
VK3-
ARDAY
QQYGSSF
21
19
6


19009

69
20
EVWTG
LT









SYLPPF










DY






ADI-
358
VH3-
VL1-
ARDVQ
QSYDSSLS
47
0
0


19010

21
40
YSGYD
ALYV









SGYYF










DY






ADI-
359
VH3-
VL4-
ATIRGI
EAWDFNT
87
19
9


19011

30
60
VAGLC
GGV









DN






ADI-
360
VH4-4
VK1-
ARLSG
QQSYNTV
63
12
10


19012


39
NCSGG
YT









SCYSPF










DH






ADI-
361
VH5-
VK1-
ARPMT
QQTNSFLP
64
4
2


19013

51
12
TQEGF
LT









DL






ADI-
362
VH4-
VK3-
ARSADI
QQYGTSP
70
21
10


19014

304
20
DIVWG
WT









SSLYMP










L






ADI-
363
VH3-
VL1-
ARIGYS
QSYDKSL
59
13
5


19016

21
40
SAHHY
SGGYV









QYYMD










V






ADI-
364
VH1-
VL3-
ASQSSP
QSADSSG
82
22
0


19017

18
25
YTPGA
TYPW









MGV
















TABLE 3







Affinity and Neutralization data for anti-RSV antibodies




















Neat
Neat








IC50
IC50



Antibody
Prefusion
Postfusion
Prefusion
Postfusion
(ug/ml)
(ug/ml)



number
subtype A KD
subtype A KD
subtype B
subtype B
subtype
subtype


Name
(Ab #)
(M)*
(M)*
KD (M)*
KD (M)*
A*
B*

















ADI-
232
7.36E−10
NB
7.64E−10
NB
0.040
0.035


18875









ADI-
233
7.07E−10
1.71E−09
3.16E−10
1.79E−10
0.037
0.179


18876









ADI-
234
3.03E−10
NB
3.83E−10
NB
0.410
0.130


18877









ADI-
235
4.53E−09
4.83E−10
5.82E−09
3.88E−10
>10
8.308


18878









ADI-
236
3.12E−10
NB
3.58E−10
NB
0.041
0.103


18879









ADI-
237
2.55E−10
NB
3.04E−10
NB
0.041
0.055


18880









ADI-
238
4.27E−10
NB
4.76E−10
NB
0.041
0.057


18882









ADI-
239
4.31E−10
NB
5.66E−10
NB
0.041
0.050


18883









ADI-
240
3.38E−10
NB
2.04E−10
NB
0.073
0.239


18884









ADI-
241
2.18E−09
3.84E−10
3.89E−09
3.07E−10
0.376
8.635


18885









ADI-
242
NB
7.43E−10
1.22E−08
5.49E−10
1.110
>10


18887









ADI-
243
NB
2.54E−08
NB
1.16E−09
>10
>10


18888









ADI-
244
5.54E−10
NB
5.87E−10
NB
0.040
0.019


18889









ADI-
245
4.89E−10
NB
4.58E−10
NB
0.041
0.041


18890









ADI-
246
5.34E−10
NB
5.13E−10
NB
0.012
0.026


18891









ADI-
247
2.17E−10
NB
2.53E−10
NB
0.018
0.117


18892









ADI-
248
2.45E−10
NB
2.78E−10
NB
0.123
0.182


18893









ADI-
249
2.54E−09
NB
3.27E−10
NB
0.345
0.123


18894









ADI-
250
NB
2.37E−09
NB
4.86E−10
2.303
>10


18895









ADI-
251
2.27E−09
2.79E−10
1.81E−09
2.70E−10
1.100
4.722


18896









ADI-
252
1.47E−09
2.19E−10
1.53E−09
1.85E−10
0.288
0.762


18897









ADI-
253
3.05E−10
NB
3.25E−10
NB
0.030
0.097


18898









ADI-
254
1.92E−09
2.66E−10
1.59E−09
2.51E−10
0.742
2.700


18899









ADI-
255
1.19E−09
NB
3.31E−10
NB
0.035
0.059


18900









ADI-
256
2.17E−09
NB
NB
NB
5.646
5.762


18901









ADI-
257
1.07E−10
NB
1.01E−10
NB
0.024
0.150


18902









ADI-
258
3.24E−10
NB
2.72E−10
NB
0.036
0.118


18903









ADI-
259
2.51E−10
NB
2.37E−10
NB
0.018
0.089


18904









ADI-
260
3.38E−09
NB
NB
NB
0.685
3.676


18905









ADI-
261
NB
2.33E−08
NB
1.10E−09
>10
>10


18906









ADI-
262
1.74E−10
NB
2.04E−10
NB
3.300
>10


18907









ADI-
263
3.02E−10
NB
3.52E−10
NB
0.018
0.095


18908









ADI-
264
5.08E−10
5.81E−10
2.88E−10
2.25E−10
0.110
0.169


18909









ADI-
265
4.67E−09
NB
1.06E−08
NB
>10
0.767


18910









ADI-
266
NB
3.53E−10
NB
2.80E−10
0.301
4.853


18911









ADI-
267
2.58E−10
NB
2.86E−10
NB
0.024
0.061


18912









ADI-
268
5.68E−10
NB
4.71E−10
NB
<0.01
<0.01


18913









ADI-
269
2.81E−08
NB
4.21E−10
NB
1.199
0.021


18915









ADI-
270
5.85E−10
NB
4.65E−10
NB
<0.01
<0.01


18916









ADI-
271
3.56E−10
NB
3.32E−10
NB
0.024
0.091


18917









ADI-
272
NB
5.67E−10
NB
4.09E−10
0.377
4.590


18918









ADI-
273
2.02E−10
NB
1.63E−10
NB
0.123
0.261


18919









ADI-
274
6.78E−10
NB
9.77E−11
NB
0.041
0.049


18920









ADI-
275
5.75E−09
NB
NB
NB
1.703
1.172


18921









ADI-
276
3.47E−09
3.22E−10
5.27E−09
2.87E−10
>10
5.051


18922









ADI-
277
5.17E−10
NB
1.79E−09
NB
0.078
0.147


18923









ADI-
278
6.48E−09
4.11E−10
NB
3.21E−10
0.572
1.073


18924









ADI-
279
4.99E−09
NB
NB
NB
>10
>10


18925









ADI-
280
2.52E−10
NB
2.50E−10
NB
0.023
0.092


18926









ADI-
281
3.58E−09
NB
2.99E−09
NB
0.022
0.067


18927









ADI-
282
4.49E−10
NB
5.15E−10
NB
0.034
0.062


18928









ADI-
283
1.61E−09
NB
NB
NB
0.261
0.369


18929









ADI-
284
3.87E−10
NB
3.72E−10
NB
0.013
0.051


18930









ADI-
285
5.65E−10
NB
4.88E−10
NB
>10
>10


18931









ADI-
286
9.17E−10
NB
1.39E−09
NB
0.184
0.351


18932









ADI-
287
NB
2.00E−08
NB
6.16E−10
0.075
0.137


18933









ADI-
288
6.60E−10
NB
5.82E−10
NB
0.779
0.355


18935









ADI-
289
3.03E−10
NB
2.98E−10
NB
0.032
0.035


18936









ADI-
290
2.89E−10
NB
2.73E−10
NB
0.084
0.508


18937









ADI-
291
1.65E−10
2.16E−10
1.50E−10
1.68E−10
0.837
4.255


18938









ADI-
292
5.74E−10
NB
5.60E−10
NB
0.018
0.038


18939









ADI-
293
1.12E−09
NB
1.56E−09
NB
0.023
0.063


18940









ADI-
294
NB
1.91E−08
NB
6.45E−10
>10
>10


18941









ADI-
295
8.65E−10
2.81E−10
5.12E−10
2.58E−10
0.374
0.614


18942









ADI-
296
6.46E−10
NB
7.25E−10
NB
0.027
0.043


18943









ADI-
297
3.09E−10
NB
3.37E−10
NB
0.026
0.074


18944









ADI-
298
1.58E−10
2.06E−10
1.57E−10
1.66E−10
0.093
0.227


18946









ADI-
299
2.45E−09
2.96E−10
2.20E−09
2.82E−10
1.299
3.602


18947









ADI-
300
4.55E−09
2.57E−10
2.10E−09
2.47E−10
1.123
4.346


18948









ADI-
301
3.07E−10
NB
3.08E−10
NB
0.040
0.076


18949









ADI-
302
1.13E−09
3.93E−10
4.18E−09
3.85E−10
>10
>10


18950









ADI-
303
7.52E−10
1.29E−09
5.35E−09
1.13E−09
3.398
>10


18951









ADI-
304
7.15E−10
7.29E−10
1.01E−09
6.33E−10
1.589
2.745


18952









ADI-
305
5.13E−10
NB
4.21E−10
NB
0.034
0.022


18953









ADI-
306
5.99E−10
2.56E−10
2.37E−09
2.50E−10
1.933
3.116


18955









ADI-
307
1.82E−10
NB
2.24E−10
NB
>10
>10


18956









ADI-
308
4.69E−10
NB
3.24E−10
NB
1.339
6.084


18957









ADI-
309
2.86E−10
NB
3.02E−10
NB
0.587
3.364


18958









ADI-
310
4.68E−09
NB
NB
NB
7.214
2.258


18959









ADI-
311
1.78E−10
NB
1.83E−10
NB
0.034
0.107


18960









ADI-
312
8.83E−09
NB
2.28E−08
NB
4.439
>10


18962









ADI-
313

NB
NB
NB
3.023
6.892


18965









ADI-
314
5.78E−10
NB
5.62E−10
NB
0.044
0.130


18966









ADI-
315
8.09E−10
NB
NB
NB
6.737
3.651


18967









ADI-
316
1.98E−09
4.38E−10
6.02E−10
3.05E−10
0.909
0.541


18968









ADI-
317
3.03E−10
NB
2.97E−10
NB
0.035
0.187


18969









ADI-
318
1.04E−08
6.84E−09
4.45E−10
4.12E−10
>10
0.333


18970









ADI-
319
1.57E−10
NB
1.68E−10
NB
0.039
0.114


18971









ADI-
320
2.98E−10
NB
3.68E−10
NB
0.016
0.107


18972









ADI-
321
3.78E−09
4.95E−10
2.63E−09
3.94E−10
9.605
6.273


18973









ADI-
322
2.53E−10
NB
2.90E−10
NB
0.030
0.105


18974









ADI-
323
2.67E−10
NB
2.98E−10
NB
0.037
0.174


18975









ADI-
324
4.03E−09
2.36E−09
1.24E−09
2.09E−10
6.290
10.600


18976









ADI-
325
7.86E−10
NB
9.66E−10
NB
0.108
0.117


18977









ADI-
326
3.00E−09
NB
NB
NB
>10
>10


18978









ADI-
327
1.89E−10
NB
1.84E−10
NB
0.012
0.031


18979









ADI-
328
NB
5.33E−10
NB
3.50E−10
3.599
>10


18980









ADI-
329
1.53E−09
3.53E−10
1.15E−09
2.80E−10
>10
>10


18981









ADI-
330
1.92E−10
7.65E−10
1.95E−10
7.47E−10
0.018
0.053


18982









ADI-
331
1.71E−09
NB
5.81E−10
NB
0.028
0.075


18983









ADI-
332
1.29E−08
8.03E−10
6.08E−09
6.59E−10
>10
>10


18984









ADI-
333
5.66E−10
NB
1.70E−09
NB
0.034
0.090


18985









ADI-
334
2.68E−09
NB
2.38E−10
NB
0.464
0.123


18986









ADI-
335
4.49E−10
NB
5.24E−10
NB
0.015
0.027


18987









ADI-
336
2.93E−10
NB
3.70E−10
NB
0.089
0.370


18988









ADI-
337
3.51E−09
3.56E−10
3.92E−09
3.77E−10
>10
>10


18989









ADI-
338
8.90E−10
2.94E−10
4.91E−10
2.52E−10
0.580
0.845


18990









ADI-
339
1.35E−10

1.52E−10

0.028
0.228


18991









ADI-
340
7.66E−10
1.53E−09
9.69E−10
9.07E−10
2.546
5.692


18992









ADI-
341
2.55E−10
NB
2.77E−10
NB
0.078
0.128


18993









ADI-
342
3.10E−10
NB
3.31E−10
NB
0.047
0.108


18994









ADI-
343
1.20E−10
1.23E−08
1.27E−10

0.043
0.125


18995









ADI-
344
2.52E−09
NB
3.60E−09
NB
>10
>10


18996









ADI-
345
5.01E−09
NB
5.32E−09
NB
>10
>10


18997









ADI-
346
1.57E−10
1.24E−08
1.72E−10
NB
0.055
0.458


18998









ADI-
347
5.92E−10
1.67E−10
1.02E−09
1.41E−10
1.805
6.465


18999









ADI-
348
1.10E−10
1.75E−10
1.04E−10
1.28E−10
0.037
0.129


19000









ADI-
349
1.07E−09
1.93E−10
1.06E−09
1.49E−10
>10
3.259


19001









ADI-
350
1.63E−09
NB
NB
NB
2.886
4.507


19002









ADI-
351
1.61E−10
NB
1.68E−10
NB
0.047
0.125


19003









ADI-
352
2.28E−10
NB
2.73E−10
NB
0.020
0.128


19004









ADI-
353
9.63E−10
NB
9.64E−10
NB
0.041
0.110


19005









ADI-
354
1.75E−09
NB
NB
NB
4.891
5.059


19006









ADI-
355
6.18E−10
9.69E−10
6.08E−10
4.57E−10
0.208
0.370


19007









ADI-
356
3.63E−09
NB
NB
NB
8.293
>10


19008









ADI-
357
4.42E−10
NB
4.66E−10
NB
0.062
0.066


19009









ADI-
358
6.04E−09
NB
2.84E−09
NB
>10
0.650


19010









ADI-
359
2.15E−09
NB
NB
NB
>10
6.237


19011









ADI-
360
2.89E−09
3.04E−10
1.14E−09
3.14E−10
>10
>10


19012









ADI-
361
NB
1.61E−08
NB
5.83E−10
9.504
>10


19013









ADI-
362
2.82E−09
3.59E−10
2.21E−09
2.77E−10
1.745
>10


19014









ADI-
363
NB
NB
NB
NB
0.052
0.092


19016









ADI-
364
1.10E−08
NB
7.20E−09
NB
1.562
0.795


19017





*NN; non-neutralizing, NB; non-binding, ND; not determined. IgG KDs were calculated for antibodies with BLI binding responses >0.1 nm. Antibodies with BLI binding responses <0.05 nm were designated as NB.













TABLE 4







Bin, patch, and antigenic site assignments for anti-RSV antibodies












Antibody


Antigenic



number
Bin
Patch
Site


Name
(Ab #)
Assignment
Assignment
Assignment





ADI-18875
232
D25
1, 2
Ø


ADI-18876
233
Mota
5
II


ADI-18877
234
D25/mota/MPE8
4
V


ADI-18878
235
101F/13390


ADI-18879
236
D25/mota/MPE8
4
V


ADI-18880
237
D25/mota/MPE8
4
V


ADI-18882
238
D25
1, 2
Ø


ADI-18883
239
D25
4
V


ADI-18884
240
14469

I


ADI-18885
241
101F/13390


ADI-18887
242
Mota/13390


ADI-18888
243
Mota/101F/13390


ADI-18889
244
D25
1, 2
Ø


ADI-18890
245
D25
2
Ø


ADI-18891
246
D25
2, 1
Ø


ADI-18892
247
Mota/MPE8
4
V


ADI-18893
248
Mota/MPE8

III


ADI-18894
249
D25


ADI-18895
250
Unknown


ADI-18896
251
101F/13390


ADI-18897
252
Mota/101F/13390

III


ADI-18898
253
D25/mota/MPE8
4
V


ADI-18899
254
101F/13390

I


ADI-18900
255
D25
1
Ø


ADI-18901
256
Unknown


ADI-18902
257
14443
9
IV


ADI-18903
258
D25/mota/MPE8
4, 3
V


ADI-18904
259
D25/mota/MPE8
4
V


ADI-18905
260
MPE8


ADI-18906
261
Mota/101F/13390


ADI-18907
262


UK


ADI-18908
263
Mota/MPE8

III


ADI-18909
264
Mota
5
II


ADI-18910
265
Unknown


ADI-18911
266
Mota


ADI-18912
267
Mota/MPE8

III


ADI-18913
268
D25
1
Ø


ADI-18915
269
D25/mota


ADI-18916
270
D25
1
Ø


ADI-18917
271
Mota/MPE8

III


ADI-18918
272
Mota


ADI-18919
273


UK


ADI-18920
274
101F
9
IV


ADI-18921
275
101F


ADI-18922
276
Mota


ADI-18923
277
Mota/MPE8/101F

III


ADI-18924
278
Unknown


ADI-18925
279
101F


ADI-18926
280
D25/mota/MPE8
4
V


ADI-18927
281
D25/mota


ADI-18928
282
D25
1, 2
Ø


ADI-18929
283
101F
1
UK


ADI-18930
284
D25
1, 2
Ø


ADI-18931
285
101F

IV


ADI-18932
286
Mota
5
II


ADI-18933
287
Unknown


ADI-18935
288
Mota
6, 5
III


ADI-18936
289
D25/mota
4
V


ADI-18937
290
Mota
5
II


ADI-18938
291
Mota/101F

III


ADI-18939
292
D25
9
Ø


ADI-18940
293
D25/mota
1, 2
V


ADI-18941
294
Mota


ADI-18942
295
Mota

II


ADI-18943
296
D25
5
UK


ADI-18944
297
D25/mota/MPE8
1, 2
V


ADI-18946
298
101F
4
IV


ADI-18947
299
101F/13390


ADI-18948
300
101F/13390


ADI-18949
301
D25/mota/MPE8
4
V


ADI-18950
302
13390

I


ADI-18951
303
Mota/13390

III


ADI-18952
304
Mota/13390

III


ADI-18953
305
D25
2
Ø


ADI-18955
306
101F/13390

I


ADI-18956
307
14469

I


ADI-18957
308
Mota/MPE8

III


ADI-18958
309
Mota
4
V


ADI-18959
310
14443


ADI-18960
311
14469
9
IV


ADI-18962
312
Mota/MPE8


ADI-18965
313
Unknown


ADI-18966
314
D25/mota/MPE8
4
V


ADI-18967
315
101F
9
IV


ADI-18968
316
Mota
5
II


ADI-18969
317
D25/mota/MPE8
4
V


ADI-18970
318
Mota/MPE8


ADI-18971
319
14469
9
IV


ADI-18972
320
D25/mota/MPE8
4
V


ADI-18973
321
13390


ADI-18974
322
D25/mota/MPE8
4
V


ADI-18975
323
D25/mota/MPE8
4
V


ADI-18976
324
13390


ADI-18977
325
D25/mota
4
V


ADI-18978
326
14469


ADI-18979
327
Mota/MPE8
4
V


ADI-18980
328
Mota


ADI-18981
329
101F/13390

I


ADI-18982
330
Mota/MPE8
4
V


ADI-18983
331
101F
3, 9
Q


ADI-18984
332
13390


ADI-18985
333
D25/mota
4
V


ADI-18986
334
D25


ADI-18987
335
D25

Ø


ADI-18988
336
Mota/MPE8

III


ADI-18989
337
101F/13390


ADI-18990
338
Mota
5
II


ADI-18991
339
14443
9
IV


ADI-18992
340
101F

IV


ADI-18993
341
Mota/MPE8

III


ADI-18994
342
Mota/MPE8

III


ADI-18995
343
14443

IV


ADI-18996
344
Unknown


ADI-18997
345
D25/mota


ADI-18998
346
14443
9
IV


ADI-18999
347
101F
9
IV


ADI-19000
348
14443
9
IV


ADI-19001
349
101F/13390

I


ADI-19002
350
Unknown

UK


ADI-19003
351
14469
9
IV


ADI-19004
352
D25/mota/MPE8
4
V


ADI-19005
353
D25/mota

V


ADI-19006
354
Unknown

UK


ADI-19007
355
Mota/MPE8
5
II


ADI-19008
356
Unknown


ADI-19009
357
D25
1
Ø


ADI-19010
358
Mota/MPE8


ADI-19011
359
Unknown


ADI-19012
360
13390


ADI-19013
361
Unknown


ADI-19014
362
101F/13390


ADI-19016
363
Mota/MPE8


ADI-19017
364
D25/mota
















TABLE 5







A subset of anti-RSV F antibodies cross-neutralize human metapneumovirus.














Antibody


Prefusion
Postfusion
RSV F



number
HMPV-A1
RSV-A2 IC50
RSV F KD
RSV F KD
Binding


Name
(Ab#)
IC50 (μg/ml)
(μg/ml)
(M)
(M)
Site
















ADI-

6.1
2.5
7.6 × 10−10
1.5 × 10−9
IV*


18992








MPE8
N/A
0.07
0.04





Control











N/A, not applicable


*Binding site assignment based on competition only.






Materials and Methods
Study Design

To profile the antibody response to RSV F, peripheral blood mononuclear cells were obtained from a adult donor approximately between 20-35 years of age, and monoclonal antibodies from RSV F-reactive B cells were isolated therefrom. The antibodies were characterized by sequencing, binding, epitope mapping, and neutralization assays. All samples for this study were collected with informed consent of volunteers. This study was unblinded and not randomized. At least two independent experiments were performed for each assay.


Generation of RSV F Sorting Probes

The soluble prefusion and postfusion probes were based on the RSV F ΔFP and DS-Cav1 constructs that we previously crystallized and determined to be in the pre- and postfusion conformations, respectively (11, 15). To increase the avidity of the probes and to uniformly orient the RSV F proteins, the trimeric RSV F proteins were coupled to tetrameric streptavidin through biotinylation of a C-terminal AviTag. For each probe, both a C-terminal His-Avi tagged version and a C-terminal StrepTagII version were co-transfected into FreeStyle 293-F cells. The secreted proteins were purified first over Ni-NTA resin to remove trimers lacking the His-Avi tag. The elution from the Ni-NTA purification was then purified over Strep-Tactin resin. Due to the low avidity of a single StrepTagII for the Strep-Tactin resin, additional washing steps were able to remove singly StrepTagged trimers. This resulted in the purification of trimers containing two StrepTagII tagged monomers and therefore only one His-Avi tagged monomer. This purification scheme results in a single AviTag per trimer which greatly reduces the aggregation or ‘daisy-chaining’ that occurs when trimeric proteins containing three AviTags are incubated with tetrameric streptavidin. RSV F trimers were biotinylated using biotin ligase BirA according to the manufacturer's instructions (Avidity, LLC). Biotinylated proteins were separated from excess biotin by size-exclusion chromotography on a Superdex 200 column (GE Healthcare). Quantification of the number of biotin moieties per RSV F trimer was performed using the Quant*Tag Biotin Kit per the manufacturer's instructions (Vector Laboratories).


Single B-Cell Sorting

Peripheral blood mononuclear cells were stained using anti-human IgG (BV605), IgA (FITC), CD27 (BV421), CD8 (PerCP-Cy5.5), CD14 (PerCP-Cy5.5), CD19 (PECy7), CD20 (PECy7) and a mixture of dual-labeled DS-Cav1 and F ΔFP tetramers (50 nM each). Dual-labeled RSV F tetramers were generated by incubating the individual AviTagged RSV F proteins with premium-grade phycoerythrin-labeled streptavidin (Molecular Probes) or premium-grade allophycocyanin-labeled streptavidin for at least 20 minutes on ice at a molar ratio of 4:1. Tetramers were prepared fresh for each experiment. Single cells were sorted on a BD fluorescence-activated cell sorter Aria II into 96-well PCR plates (BioRad) containing 20 μL/well of lysis buffer [5 μL of 5×first strand cDNA buffer (Invitrogen), 0.25 μL RNaseOUT (Invitrogen), 1.25 μL dithiothreitol (Invitrogen), 0.625 μL NP-40 (New England Biolabs), and 12.6 μL dH2O]. Plates were immediately frozen on dry ice before storage at −80° C.


Amplification and Cloning of Antibody Variable Genes

Single B cell PCR was performed as described previously (22). Briefly, IgH, Igλ and Igκ variable genes were amplified by RT-PCR and nested PCR reactions using cocktails of IgG and IgA-specific primers (22). The primers used in the second round of PCR contained 40 base pairs of 5′ and 3′ homology to the cut expression vectors to allow for cloning by homologous recombination into Saccharomyces cerevisiae (40). PCR products were cloned into S. cerevisiae using the lithium acetate method for chemical transformation (41). Each transformation reaction contained 20 μL of unpurified heavy chain and light chain PCR product and 200 ng of cut heavy and light chain plasmids. Following transformation, individual yeast colonies were picked for sequencing and characterization.


Expression and Purification of IgGs and Fab Fragments

Anti-RSV F IgGs were expressed in S. cerevisiae cultures grown in 24-well plates, as described previously (23). Fab fragments used for competition assays were generated by digesting the IgGs with papain for 2 h at 30° C. The digestion was terminated by the addition of iodoacetamide, and the Fab and Fc mixtures were passed over Protein A agarose to remove Fc fragments and undigested IgG. The flowthrough of the Protein A resin was then passed over CaptureSelect™ IgG-CH1 affinity resin (ThermoFischer Scientific), and eluted with 200 mM acetic acid/50 mM NaCl pH 3.5 into ⅛th volume 2M Hepes pH 8.0. Fab fragments then were buffer-exchanged into PBS pH 7.0.


Biolayer Interferometry Binding Analysis

IgG binding to DS-Cav1 and FΔ FP was determined by BLI measurements using a ForteBio Octet HTX instrument (Pall Life Sciences). For high-throughput KD screening, IgGs were immobilized on AHQ sensors (Pall Life Sciences) and exposed to 100 nM antigen in PBS containing 0.1% BSA (PBSF) for an association step, followed by a dissociation step in PBSF buffer. Data was analyzed using the FortéBio Data Analysis Software 7. The data was fit to a 1:1 binding model to calculate an association and dissociation rate, and KD was calculated using the ratio kd/ka.


Antibody Competition Assays

Antibody competition assays were performed as previously described (23). Antibody competition was measured by the ability of a control anti-RSV F Fab to inhibit binding of yeast surface-expressed anti-RSV F IgGs to either DS-Cav1 or FΔ FP. 50 nM biotinylated DS-Cav1 or FΔ FP was pre-incubated with 1 μM competitor Fab for 30 min at room temperature and then added to a suspension of yeast expressing anti-RSV F IgG. Unbound antigen was removed by washing with PBS containing 0.1% BSA (PBSF). After washing, bound antigen was detected using streptavidin Alexa Fluor 633 at a 1:500 dilution (Life Technologies) and analyzed by flow cytometry using a FACSCanto II (BD Biosciences). The level of competition was assessed by measuring the fold reduction in antigen binding in the presence of competitor Fab relative to an antigen-only control. Antibodies were considered competitors when a greater than five-fold reduction was observed in the presence of control Fab relative to an antigen-only control.


Expression, Purification and Biotinylation of preF Patch Variants


A panel of 9 patches of 2-4 mutations uniformly covering the surface of the preF molecule was designed based on the structure of prefusion RSV F (10). For known antigenic sites, including those recognized by motavizumab, 101F, D25, AM14 and MPE8, patches incorporated residues associated with viral escape or known to be critical for antibody binding. Residues with high conservation across 184 subtype A, subtype B and bovine RSV F sequences were avoided where possible to minimize the likelihood of disrupting protein structure. The mutations present in each patch variant are shown in FIG. 7A. Mutations for each patch variant were cloned into the prefusion stabilized RSV F (DS-Cav1) construct with a C-terminal AviTag for site specific biotinylation. Proteins were secreted from FreeStyle 293-F cells, purified over Ni-NTA resin and biotinylated using biotin ligase BirA according to the manufacturer's instructions (Avidity, LLC). Biotinylated proteins were separated from excess biotin by size-exclusion chromotography on a Superdex 200 column (GE Healthcare). A deglycosylated version of DS-Cav1 was produced by expressing DS-Cav1 in the presence of 1 μM kifunensine and digesting with 10% (wt/wt) EndoH before biotinylation.


Luminex Assay for Patch Variant Binding

Binding of isolated antibodies to the patch variants was determined using a high-throughput Luminex assay. Each biotinylated variant and a DS-Cav1 control were coupled to avidin coated MagPlex beads (Bio-Rad), each with a bead identification number reflecting a unique ratio of red and infrared dyes embedded within the bead. The coupled beads were then mixed with a six-fold serial dilution of each antibody, ranging from 400 nM to 1.4 μM, in a 384-well plate. Beads were washed using a magnetic microplate washer (BioTek) before incubation with a PE conjugated mouse anti-human IgG Fc secondary antibody (Southern Biotech). Beads were classified and binding of PE was measured using a FLEXMAP 3D flow cytometer (Luminex).


RSV Neutralization Assays

Viral stocks were prepared and maintained as previously described (61). Recombinant mKate-RSV expressing prototypic subtype A (strain A2) and subtype B (18537) F genes and the Katushka fluorescent protein were constructed as reported by Hotard et al. (62). HEp-2 cells were maintained in Eagle's minimal essential medium containing 10% fetal bovine serum supplemented with glutamine, penicillin and streptomycin. Antibody neutralization was measured by a fluorescence plate reader neutralization assay (15). A 30 μL solution of culture media containing 2.4×104 HEp-2 cells was seeded in 384-well black optical bottom plate (Nunc, Thermo Scientific). IgG samples were serially diluted four-fold from 1:10 to 1:163840 and an equal volume of recombinant mKate-RSV A2 was added. Samples were mixed and incubated at 37° C. for one hour. After incubation, 50 μL mixture of sample and virus was added to cells in 384-well plate, and incubated at 37° C. for 22-24 hours. The assay plate was then measured for fluorescence intensity in a microplate reader at Ex 588 nm and Em 635 nm (SpectraMax Paradigm, molecular devices). IC50 of neutralization for each sample was calculated by curve fitting using Prism (GraphPad Software Inc.).


Human Metapneumovirus Neutralization Assays

Predetermined amounts of GFP-expressing hMPV recombinant virus (NL/1/00, A1 sublineage, a kind gift of Bernadette van den Hoogen and Ron Fouchier, Rotterdam, the Netherlands) were mixed with serial dilutions of monoclonal antibodies before being added to cultures of Vero-118 cells growing in 96-well plates with Dulbecco's Modified Eagle's medium supplemented with 10% fetal calf serum. Thirty-six hours later, the medium was removed, PBS was added and the amount of GFP per well was measured with a Tecan microplate reader M200. Fluorescence values were represented as percent of a virus control without antibody.


Polyreactivity Assay

Antibody polyreactivity was assessed using a previously described high-throughput assay that measures binding to solubilized CHO cell membrane preparations (SMPs) (43). Briefly, two million IgG-presenting yeast were transferred into a 96-well assay plate and pelleted to remove the supernatant. The pellet was resuspended in 50 μL of 1:10 diluted stock b-SMPs and incubated on ice for 20 minutes. Cells were then washed twice with ice-cold PBSF and the cell pellet was re-suspended in 50 μL of secondary labeling mix (Extravidin-R-PE, anti-human LCFITC, and propidium iodide). The mix was incubated on ice for 20 minutes followed by two washes with ice-cold PBSF. Cells were then re-suspended in 100 μL of ice-cold PBSF, and the plate was run on a FACSCanto II (BD Biosciences) using a HTS sample injector. Flow cytometry data was analyzed for mean fluorescence intensity in the R-PE channel and normalized to proper controls in order to assess non-specific binding.


REFERENCES AND NOTES



  • 1. A. L. Rogovik, B. Carleton, A. Solimano, R. D. Goldman, Palivizumab for the prevention of respiratory syncytial virus infection. Can Fam Physician 56, 769-772 (2010).

  • 2. B. S. Graham, Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol Rev 239, 149-166 (2011).

  • 3. J. R. Groothuis, E. A. Simoes, V. G. Hemming, Respiratory syncytial virus (RSV) infection in preterm infants and the protective effects of RSV immune globulin (RSVIG). Respiratory Syncytial Virus Immune Globulin Study Group. Pediatrics 95, 463-467 (1995).

  • 4. M. Magro, V. Mas, K. Chappell, M. Vazquez, O. Cano, D. Luque, M. C. Terron, J. A. Melero, C. Palomo, Neutralizing antibodies against the preactive form of respiratory syncytial virus fusion protein offer unique possibilities for clinical intervention. Proc Natl Acad Sci USA 109, 3089-3094 (2012).

  • 5. S. Johnson, C. Oliver, G. A. Prince, V. G. Hemming, D. S. Pfarr, S. C. Wang, M. Dormitzer, J. O'Grady, S. Koenig, J. K. Tamura, R. Woods, G. Bansal, D. Couchenour, E. Tsao, W. C. Hall, J. F. Young, Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J Infect Dis 176, 1215-1224 (1997).

  • 6. J. A. Beeler, K. van Wyke Coelingh, Neutralization epitopes of the F glycoprotein of respiratory syncytial virus: effect of mutation upon fusion function. J Virol 63, 2941-2950 (1989).

  • 7. R. A. Karron, D. A. Buonagurio, A. F. Georgiu, S. S. Whitehead, J. E. Adamus, M. L. Clements-Mann, D. O. Harris, V. B. Randolph, S. A. Udem, B. R. Murphy, M. S. Sidhu, Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proc Natl Acad Sci USA 94, 13961-13966 (1997).

  • 8. J. O. Ngwuta, M. Chen, K. Modjarrad, M. G. Joyce, M. Kanekiyo, A. Kumar, H. M. Yassine, S. M. Moin, A. M. Killikelly, G. Y. Chuang, A. Druz, I. S. Georgiev, E. J. Rundlet, M. Sastry, G. B. Stewart-Jones, Y. Yang, B. Zhang, M. C. Nason, C. Capella, M. E. Peeples, J. E. Ledgerwood, J. S. McLellan, P. D. Kwong, B. S. Graham, Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera. Sci Transl Med 7, 309ra162 (2015).

  • 9. T. I.-R. S. Group, Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 102, 531-537 (1998).

  • 10. J. S. McLellan, M. Chen, S. Leung, K. W. Graepel, X. Du, Y. Yang, T. Zhou, U. Baxa, E. Yasuda, T. Beaumont, A. Kumar, K. Modjarrad, Z. Zheng, M. Zhao, N. Xia, P. D. Kwong, B. S. Graham, Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 340, 1113-1117 (2013).

  • 11. J. S. McLellan, Y. Yang, B. S. Graham, P. D. Kwong, Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes. J Virol 85, 7788-7796 (2011).

  • 12. K. A. Swanson, E. C. Settembre, C. A. Shaw, A. K. Dey, R. Rappuoli, C. W. Mandl, P. R. Dormitzer, A. Carfi, Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers. Proc Natl Acad Sci USA 108, 9619-9624 (2011).

  • 13. L. Liljeroos, M. A. Krzyzaniak, A. Helenius, S. J. Butcher, Architecture of respiratory syncytial virus revealed by electron cryotomography. Proc Natl Acad Sci USA 110, 11133-11138 (2013).

  • 14. A. Krarup, D. Truan, P. Furmanova-Hollenstein, L. Bogaert, P. Bouchier, I. J. Bisschop, M. N. Widjojoatmodjo, R. Zahn, H. Schuitemaker, J. S. McLellan, J. P. Langedijk, A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat Commun 6, 8143 (2015).

  • 15. J. S. McLellan, M. Chen, M. G. Joyce, M. Sastry, G. B. Stewart-Jones, Y. Yang, B. Zhang, L. Chen, S. Srivatsan, A. Zheng, T. Zhou, K. W. Graepel, A. Kumar, S. Moin, J. C. Boyington, G. Y. Chuang, C. Soto, U. Baxa, A. Q. Bakker, H. Spits, T. Beaumont, Z. Zheng, N. Xia, S. Y. Ko, J. P. Todd, S. Rao, B. S. Graham, P. D. Kwong, Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342, 592-598 (2013).

  • 16. M. J. Kwakkenbos, S. A. Diehl, E. Yasuda, A. Q. Bakker, C. M. van Geelen, M. V. Lukens, G. M. van Bleek, M. N. Widjojoatmodjo, W. M. Bogers, H. Mei, A. Radbruch, F. A. Scheeren, H. Spits, T. Beaumont, Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat Med 16, 123-128 (2010).

  • 17. D. Corti, S. Bianchi, F. Vanzetta, A. Minola, L. Perez, G. Agatic, B. Guarino, C. Silacci, J. Marcandalli, B. J. Marsland, A. Piralla, E. Percivalle, F. Sallusto, F. Baldanti, A. Lanzavecchia, Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. Nature 501, 439-443 (2013).

  • 18. M. Magro, D. Andreu, P. Gomez-Puertas, J. A. Melero, C. Palomo, Neutralization of human respiratory syncytial virus infectivity by antibodies and low-molecular-weight compounds targeted against the fusion glycoprotein. J Virol 84, 7970-7982 (2010).

  • 19. G. Taylor, E. J. Stott, J. Furze, J. Ford, P. Sopp, Protective epitopes on the fusion protein of respiratory syncytial virus recognized by murine and bovine monoclonal antibodies. J Gen Virol 73 (Pt 9), 2217-2223 (1992).

  • 20. L. J. Calder, L. Gonzalez-Reyes, B. Garcia-Barreno, S. A. Wharton, J. J. Skehel, D. C. Wiley, J. A. Melero, Electron microscopy of the human respiratory syncytial virus fusion protein and complexes that it forms with monoclonal antibodies. Virology 271, 122-131 (2000).

  • 21. M. S. Gilman, S. M. Moin, V. Mas, M. Chen, N. K. Patel, K. Kramer, Q. Zhu, S. C. Kabeche, A. Kumar, C. Palomo, T. Beaumont, U. Baxa, N. D. Ulbrandt, J. A. Melero, B. S. Graham, J. S. McLellan, Characterization of a Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent Epitope on the RSV Fusion Glycoprotein. PLoS Pathog 11, e1005035 (2015).

  • 22. M. G. Joyce, A. K. Wheatley, P. V. Thomas, G. Y. Chuang, C. Soto, R. T. Bailer, A. Druz, I. S. Georgiev, R. A. Gillespie, M. Kanekiyo, W. P. Kong, K. Leung, S. N. Narpala, M. S. Prabhakaran, E. S. Yang, B. Zhang, Y. Zhang, M. Asokan, J. C. Boyington, T. Bylund, S. Darko, C. R. Lees, A. Ransier, C. H. Shen, L. Wang, J. R. Whittle, X. Wu, H. M. Yassine, C. Santos, Y. Matsuoka, Y. Tsybovsky, U. Baxa, J. C. Mullikin, K. Subbarao, D. C. Douek, B. S. Graham, R. A. Koup, J. E. Ledgerwood, M. Roederer, L. Shapiro, P. D. Kwong, J. R. Mascola, A. B. McDermott, Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses. Cell 166, 609-623 (2016).

  • 23. J. Truck, M. N. Ramasamy, J. D. Galson, R. Rance, J. Parkhill, G. Lunter, A. J. Pollard, D. F. Kelly, Identification of antigen-specific B cell receptor sequences using public repertoire analysis. J Immunol 194, 252-261 (2015).

  • 24. P. Parameswaran, Y. Liu, K. M. Roskin, K. K. Jackson, V. P. Dixit, J. Y. Lee, K. L. Artiles, S. Zompi, M. J. Vargas, B. B. Simen, B. Hanczaruk, K. R. McGowan, M. A. Tariq, N. Pourmand, D. Koller, A. Balmaseda, S. D. Boyd, E. Harris, A. Z. Fire, Convergent antibody signatures in human dengue. Cell host & microbe 13, 691-700 (2013).

  • 25. K. J. Jackson, Y. Liu, K. M. Roskin, J. Glanville, R. A. Hoh, K. Seo, E. L. Marshall, T. C. Gurley, M. A. Moody, B. F. Haynes, E. B. Walter, H. X. Liao, R. A. Albrecht, A. Garcia-Sastre, J. Chaparro-Riggers, A. Rajpal, J. Pons, B. B. Simen, B. Hanczaruk, C. L. Dekker, J. Laserson, D. Koller, M. M. Davis, A. Z. Fire, S. D. Boyd, Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements. Cell host & microbe 16, 105-114 (2014).

  • 26. F. W. Henderson, A. M. Collier, W. A. Clyde, Jr., F. W. Denny, Respiratory-syncytial-virus infections, reinfections and immunity. A prospective, longitudinal study in young children. The New England journal of medicine 300, 530-534 (1979).

  • 27. M. A. Moody, B. F. Haynes, Antigen-specific B cell detection reagents: use and quality control. Cytometry A 73, 1086-1092 (2008).

  • 28. M. S. Habibi, A. Jozwik, S. Makris, J. Dunning, A. Paras, J. P. DeVincenzo, C. A. de Haan, J. Wrammert, P. J. Openshaw, C. Chiu, I. Mechanisms of Severe Acute Influenza Consortium, Impaired Antibody-mediated Protection and Defective IgA B-Cell Memory in Experimental Infection of Adults with Respiratory Syncytial Virus. Am J Respir Crit Care Med 191, 1040-1049 (2015).

  • 29. T. Tiller, E. Meffre, S. Yurasov, M. Tsuiji, M. C. Nussenzweig, H. Wardemann, Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods 329, 112-124 (2008).

  • 30. Z. A. Bornholdt, H. L. Turner, C. D. Murin, W. Li, D. Sok, C. A. Souders, A. E. Piper, A. Goff, J. D. Shamblin, S. E. Wollen, T. R. Sprague, M. L. Fusco, K. B. Pommert, L. A. Cavacini, H. L. Smith, M. Klempner, K. A. Reimann, E. Krauland, T. U. Gerngross, K. D. Wittrup, E. O. Saphire, D. R. Burton, P. J. Glass, A. B. Ward, L. M. Walker, Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science 351, 1078-1083 (2016).

  • 31. J. F. Scheid, H. Mouquet, N. Feldhahn, M. S. Seaman, K. Velinzon, J. Pietzsch, R. G. Ott, R. M. Anthony, H. Zebroski, A. Hurley, A. Phogat, B. Chakrabarti, Y. Li, M. Connors, F. Pereyra, B. D. Walker, H. Wardemann, D. Ho, R. T. Wyatt, J. R. Mascola, J. V. Ravetch, M. C. Nussenzweig, Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636-640 (2009).

  • 32. J. Wrammert, K. Smith, J. Miller, W. A. Langley, K. Kokko, C. Larsen, N. Y. Zheng, I. Mays, L. Garman, C. Helms, J. James, G. M. Air, J. D. Capra, R. Ahmed, P. C. Wilson, Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667-671 (2008).

  • 33. S. D. Boyd, B. A. Gaeta, K. J. Jackson, A. Z. Fire, E. L. Marshall, J. D. Merker, J. M. Maniar, L. N. Zhang, B. Sahaf, C. D. Jones, B. B. Simen, B. Hanczaruk, K. D. Nguyen, K. C. Nadeau, M. Egholm, D. B. Miklos, J. L. Zehnder, A. M. Collins, Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol 184, 6986-6992 (2010).

  • 34. J. Sui, W. C. Hwang, S. Perez, G. Wei, D. Aird, L. M. Chen, E. Santelli, B. Stec, G. Cadwell, M. Ali, H. Wan, A. Murakami, A. Yammanuru, T. Han, N. J. Cox, L. A. Bankston, R. O. Donis, R. C. Liddington, W. A. Marasco, Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 16, 265-273 (2009).

  • 35. C. C. Huang, M. Venturi, S. Majeed, M. J. Moore, S. Phogat, M. Y. Zhang, D. S. Dimitrov, W. A. Hendrickson, J. Robinson, J. Sodroski, R. Wyatt, H. Choe, M. Farzan, P. D. Kwong, Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc Natl Acad Sci USA 101, 2706-2711 (2004).

  • 36. C. H. Chan, K. G. Hadlock, S. K. Foung, S. Levy, V(H)1-69 gene is preferentially used by hepatitis C virus-associated B cell lymphomas and by normal B cells responding to the E2 viral antigen. Blood 97, 1023-1026 (2001).

  • 37. E. E. Godoy-Lozano, J. Tellez-Sosa, G. Sanchez-Gonzalez, H. Samano-Sanchez, A. Aguilar-Salgado, A. Salinas-Rodriguez, B. Cortina-Ceballos, H. Vivanco-Cid, K. Hernandez-Flores, J. M. Pfaff, K. M. Kahle, B. J. Doranz, R. E. Gomez-Barreto, H. Valdovinos-Torres, I. Lopez-Martinez, M. H. Rodriguez, J. Martinez-Barnetche, Lower IgG somatic hypermutation rates during acute dengue virus infection is compatible with a germinal center-independent B cell response. Genome Med 8, 23 (2016).

  • 38. J. Wrammert, D. Koutsonanos, G. M. Li, S. Edupuganti, J. Sui, M. Morrissey, M. McCausland, I. Skountzou, M. Hornig, W. I. Lipkin, A. Mehta, B. Razavi, C. Del Rio, N. Y. Zheng, J. H. Lee, M. Huang, Z. Ali, K. Kaur, S. Andrews, R. R. Amara, Y. Wang, S. R. Das, C. D. O'Donnell, J. W. Yewdell, K. Subbarao, W. A. Marasco, M. J. Mulligan, R. Compans, R. Ahmed, P. C. Wilson, Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med 208, 181-193 (2011).

  • 39. S. F. Andrews, Y. Huang, K. Kaur, L. I Popova, I Y. Ho, N. T. Pauli, C. J. Henry Dunand, W. M. Taylor, S. Lim, M. Huang, X. Qu, J. H. Lee, M. Salgado-Ferrer, F. Krammer, P. Palese, J. Wrammert, R. Ahmed, P. C. Wilson, Immune history profoundly affects broadly protective B cell responses to influenza. Sci Transl Med 7, 316ra192 (2015).

  • 40. M. Liu, G. Yang, K. Wiehe, N. I. Nicely, N. A. Vandergrift, W. Rountree, M. Bonsignori, S. M. Alam, J. Gao, B. F. Haynes, G. Kelsoe, Polyreactivity and autoreactivity among HIV-1 antibodies. J Virol 89, 784-798 (2015).

  • 41. H. Mouquet, J. F. Scheid, M. J. Zoller, M. Krogsgaard, R. G. Ott, S. Shukair, M. N. Artyomov, J. Pietzsch, M. Connors, F. Pereyra, B. D. Walker, D. D. Ho, P. C. Wilson, M. S. Seaman, H. N. Eisen, A. K. Chakraborty, T. J. Hope, J. V. Ravetch, H. Wardemann, M. C. Nussenzweig, Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467, 591-595 (2010).

  • 42. R. L. Kelly, T. Sun, T. Jain, I. Caffry, Y. Yu, Y. Cao, H. Lynaugh, M. Brown, M. Vasquez, K. D. Wittrup, Y. Xu, High throughput cross-interaction measures for human IgG1 antibodies correlate with clearance rates in mice. MAbs, 0 (2015).

  • 43. Y. Xu, W. Roach, T. Sun, T. Jain, B. Prinz, T. Y. Yu, J. Torrey, J. Thomas, P. Bobrowicz, M. Vasquez, K. D. Wittrup, E. Krauland, Addressing polyspecificity of antibodies selected from an in vitro yeast presentation system: a FACS-based, high-throughput selection and analytical tool. Protein Eng Des Sel 26, 663-670 (2013).

  • 44. D. R. Bowley, A. F. Labrijn, M. B. Zwick, D. R. Burton, Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20, 81-90 (2007).

  • 45. H. Wu, D. S. Pfarr, S. Johnson, Y. A. Brewah, R. M. Woods, N. K. Patel, W. I. White, J. F. Young, P. A. Kiener, Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. Journal of molecular biology 368, 652-665 (2007).

  • 46. J. S. McLellan, M. Chen, J. S. Chang, Y. Yang, A. Kim, B. S. Graham, P. D. Kwong, Structure of a major antigenic site on the respiratory syncytial virus fusion glycoprotein in complex with neutralizing antibody 101F. J Virol 84, 12236-12244 (2010).

  • 47. P. W. Parren, D. R. Burton, The antiviral activity of antibodies in vitro and in vivo. Advances in immunology 77, 195-262 (2001).

  • 48. J. Foote, H. N. Eisen, Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci USA 92, 1254-1256 (1995).

  • 49. F. D. Batista, M. S. Neuberger, Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8, 751-759 (1998).

  • 50. J. E. Schuster, R. G. Cox, A. K. Hastings, K. L. Boyd, J. Wadia, Z. Chen, D. R. Burton, R. A. Williamson, J. V. Williams, A broadly neutralizing human monoclonal antibody exhibits in vivo efficacy against both human metapneumovirus and respiratory syncytial virus. J Infect Dis 211, 216-225 (2015).

  • 51. B. F. Fernie, P. J. Cote, Jr., J. L. Gerin, Classification of hybridomas to respiratory syncytial virus glycoproteins. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.) 171, 266-271 (1982).

  • 52. P. J. Cote, Jr., B. F. Fernie, E. C. Ford, J. W. Shih, J. L. Gerin, Monoclonal antibodies to respiratory syncytial virus: detection of virus neutralization and other antigen-antibody systems using infected human and murine cells. Journal of virological methods 3, 137-147 (1981).

  • 53. E. E. Walsh, J. Hruska, Monoclonal antibodies to respiratory syncytial virus proteins: identification of the fusion protein. J Virol 47, 171-177 (1983).

  • 54. L. J. Anderson, P. Bingham, J. C. Hierholzer, Neutralization of respiratory syncytial virus by individual and mixtures of F and G protein monoclonal antibodies. J Virol 62, 4232-4238 (1988).

  • 55. G. E. Scopes, P. J. Watt, P. R. Lambden, Identification of a linear epitope on the fusion glycoprotein of respiratory syncytial virus. J Gen Virol 71 (Pt 1), 53-59 (1990).

  • 56. J. Arbiza, G. Taylor, J. A. Lopez, J. Furze, S. Wyld, P. Whyte, E. J. Stott, G. Wertz, W. Sullender, M. Trudel, et al., Characterization of two antigenic sites recognized by neutralizing monoclonal antibodies directed against the fusion glycoprotein of human respiratory syncytial virus. J Gen Virol 73 (Pt 9), 2225-2234 (1992).

  • 57. J. A. Lopez, R. Bustos, C. Orvell, M. Berois, J. Arbiza, B. Garcia-Barreno, J. A. Melero, Antigenic structure of human respiratory syncytial virus fusion glycoprotein. J Virol 72, 6922-6928 (1998).

  • 58. B. J. DeKosky, T. Kojima, A. Rodin, W. Charab, G. C. Ippolito, A. D. Ellington, G. Georgiou, In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat Med 21, 86-91 (2015).

  • 59. U.S. National Library of Medicine, (NCT02290340, https://clinicaltrials.gov/).

  • 60. PATH, RSV Vaccine Snapshot (2016 https://sites.path.org/vaccinedevelopment/files/2016/07/RSV-snapshot-July_13_2016.pdf)

  • 61. B. S. Graham, M. D. Perkins, P. F. Wright, D. T. Karzon, Primary respiratory syncytial virus infection in mice. Journal of medical virology 26, 153-162 (1988).

  • 62. A. L. Hotard, F. Y. Shaikh, S. Lee, D. Yan, M. N. Teng, R. K. Plemper, J. E. Crowe, Jr., M. L. Moore, A stabilized respiratory syncytial virus reverse genetics system amenable to recombination-mediated mutagenesis. Virology 434, 129-136 (2012).


    An informal sequence listing is provided in Table 6, below. The informal sequence listing provides the following sixteen (16) sequence elements contained in each of the 133 antibodies, identified as described above and designated as Antibody Numbers (Ab #) 232 through 364, in the following order:



Heavy chain variable region (“HC”) nucleic acid sequence


Heavy chain variable region (“HC”) amino acid sequence


Heavy chain variable region CDR H1 (“H1”) amino acid sequence


Heavy chain variable region CDR H1 (“H1”) nucleic acid sequence


Heavy chain variable region CDR H2 (“H2”) amino acid sequence


Heavy chain variable region CDR H2 (“H2”) nucleic acid sequence


Heavy chain variable region CDR H3 (“H3”) amino acid sequence


Heavy chain variable region CDR H3 (“H3”) nucleic acid sequence


Light chain variable region (“LC”) nucleic acid sequence


Light chain variable region (“LC”) amino acid sequence


Light chain variable region CDR L1 (“L1”) amino acid sequence


Light chain variable region CDR Li (“Li”) nucleic acid sequence


Light chain variable region CDR L2 (“L2”) amino acid sequence


Light chain variable region CDR L2 (“L2”) nucleic acid sequence


Light chain variable region CDR L3 (“L3”) amino acid sequence


Light chain variable region CDR L3 (“L3”) nucleic acid sequence


The informal sequence listing for antibodies 365-372 provides the following ten (10) sequence elements contained in each of the 8 antibodies, identified as described above and designated as Antibody Numbers (Ab #) 365 through 372, in the following order:


Heavy chain variable region (“HC”) nucleic acid sequence


Heavy chain variable region (“HC”) amino acid sequence


Heavy chain variable region CDR H1 (“H1”) amino acid sequence


Heavy chain variable region CDR H2 (“H2”) amino acid sequence


Heavy chain variable region CDR H3 (“H3”) amino acid sequence


Light chain variable region (“LC”) nucleic acid sequence


Light chain variable region (“LC”) amino acid sequence


Light chain variable region CDR L1 (“L1”) amino acid sequence


Light chain variable region CDR L2 (“L2”) amino acid sequence


Light chain variable region CDR L3 (“L3”) amino acid sequence









TABLE 6







Informal Sequence Listing











Seq.




Antibody 
Ref.
SEQ ID



No.
No.
NO.
Sequence













232
3697
1
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTGTTGAAGCCTTCGGA





GACCCTGTCCCTCACCTGCGCTGTCTATGGTGGGTCCTTCAGTGGTTA





TTCCTGGAGCTGGATCCGCCAGACCCCAGGGAAGGGGCTGGAGTGGA





TTGGGGAAATCAATCATAGAGGAAGCACCAACTACAACCCGTCCCTC





AAGAGTCGAGTCACCATGTCAGTGGACACGTCCCAGAACCAGATCTC





CCTGAGGGTGACCTCTGTGACCGCCGCGGACACGGCTGTATATTTCTG





TGCGGGGACCAATTATGGAGAGGTTAATACGAGTAACCAGTACTTCT





TCGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA





232
3698
2
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYSWSWIRQTPGKGLEWIG





EINHRGSTNYNPSLKSRVTMSVDTSQNQISLRVTSVTAADTAVYFCAGTN





YGEVNTSNQYFFGMDVWGQGTTVTVSS





232
3699
3
GSFSGYSWS





232
3700
4
GGGTCCTTCAGTGGTTATTCCTGGAGC





232
3701
5
EINHRGSTNYNPSLKS





232
3702
6
GAAATCAATCATAGAGGAAGCACCAACTACAACCCGTCCCTCAAGAG





T





232
3703
7
AGTNYGEVNTSNQYFFGMDV





232
3704
8
GCGGGGACCAATTATGGAGAGGTTAATACGAGTAACCAGTACTTCTT





CGGTATGGACGTC





232
3705
9
GACATCCAGGTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTGGCACCTA





TTTAAATTGGTATCAGCAGAAACCAGGGAAACCCCCTAAACTCCTGA





TCTATGCTGCATCCAATTTGGAAAGTGGGGTCCCATCAAGTTTCAGTG





GCAGTGGATCTGGGACACATTTCACTCTCACCATCAGCAGTCTGCAAC





CTGAACATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCGC





TCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAA





232
3706
10
DIQVTQSPSSLSASVGDRVTITCRASQSIGTYLNWYQQKPGKPPKLLIYAA





SNLESGVPSSFSGSGSGTHFTLTISSLQPEHFATYYCQQSYSTPLTFGGGTK





VEIK





232
3707
11
RASQSIGTYLN





232
3708
12
CGGGCAAGTCAGAGCATTGGCACCTATTTAAAT





232
3709
13
AASNLES





232
3710
14
GCTGCATCCAATTTGGAAAGT





232
3711
15
QQSYSTPLT





232
3712
16
CAACAGAGTTACAGTACCCCGCTCACT





233
3713
17
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACA





GACCCTGTCCCTCACCTGCACTGTCTCTGGTCCCTCCATCAGCAGTGG





TGATTACTACTGGACTTGGATCCGCCAGCCCCCAGGGAAGGGCCTGG





AGTGGATTGGCTACATCTATAACAGTGGGAGCACCGACTACAACCCG





TCCCTCAAGAGTCGTATCACCATGTCACTAGACAGGTCCAAGAACCA





GTTCTCCCTGAATCTGAGCTCTGTGACTGCCGCAGACACGGCCGTGTA





TTTCTGTGCCAGGGATGTGGGTACTCTGGTACTACCAACTGTTGCTTA





CTACTACGGCATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCT





CCTCA





233
3714
18
QVQLQESGPGLVKPSQTLSLTCTVSGPSISSGDYYWTWIRQPPGKGLEWI





GYIYNSGSTDYNPSLKSRITMSLDRSKNQFSLNLSSVTAADTAVYFCARD





VGTLVLPTVAYYYGMDVWGQGTTVTVSS





233
3715
19
PSISSGDYYWT





233
3716
20
CCCTCCATCAGCAGTGGTGATTACTACTGGACT





233
3717
21
YIYNSGSTDYNPSLKS





233
3718
22
TACATCTATAACAGTGGGAGCACCGACTACAACCCGTCCCTCAAGAG





T





233
3719
23
ARDVGTLVLPTVAYYYGMDV





233
3720
24
GCCAGGGATGTGGGTACTCTGGTACTACCAACTGTTGCTTACTACTAC





GGCATGGACGTC





233
3721
25
GAAATTGTATTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCGGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTGAGAGTATTAGCAGCAG





CTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGACTCCT





CATCTATGATGCGTCCAGCAGGGCCACTGGCATCCCAGACAGGTTCA





GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGTCTG





GAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCA





CCCCTGGTCACTTTCGGCCCTGGGACCAAAGTGGATATCAAA





233
3722
26
EIVLTQSPGTLSLSPGERATLSCRASESISSSYLAWYQQKPGQAPRLLIYD





ASSRATGIPDRFSGSGSGTDFTLTISSLEPEDFAVYYCQQYGSSPLVTFGPG





TKVDIK





233
3723
27
RASESISSSYLA





233
3724
28
AGGGCCAGTGAGAGTATTAGCAGCAGCTACTTAGCC





233
3725
29
DASSRAT





233
3726
30
GATGCGTCCAGCAGGGCCACT





233
3727
31
QQYGSSPLVT





233
3728
32
CAGCAGTATGGTAGCTCACCCCTGGTCACT





234
3729
33
CAGGTCCAGCTGGTGCAGTCTGGAACTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCCTGTAAGGCTGCTGGTTACACCTTTAGCAACTA





CGGTGTCAGTTGGGTGCGACAGGCCCCTGGACAGGGGCTTGAGTGGA





TGGGATGGATCAGCGCTTATAATGGTAACACAAAATTTGCACAGAAG





GTCCAGGGCAGACTCACCATGACCACAGACACATCTACCAGCACAGC





CTACATGGAATTGAGGAACCTCAGATCTGACGACACGGCCGTGTATT





ATTGTGCGAGAGAATCAGGGGCAACAGCGGCTGCTATGTTTGACTAC





TGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





234
3730
34
QVQLVQSGTEVKKPGASVKVSCKAAGYTFSNYGVSWVRQAPGQGLEW





MGWISAYNGNTKFAQKVQGRLTMTTDTSTSTAYMELRNLRSDDTAVYY





CARESGATAAAMFDYWGQGTLVTVSS





234
3731
35
YTFSNYGVS





234
3732
36
TACACCTTTAGCAACTACGGTGTCAGT





234
3733
37
WISAYNGNTKFAQKVQG





234
3734
38
TGGATCAGCGCTTATAATGGTAACACAAAATTTGCACAGAAGGTCCA





GGGC





234
3735
39
ARESGATAAAMFDY





234
3736
40
GCGAGAGAATCAGGGGCAACAGCGGCTGCTATGTTTGACTAC





234
3737
41
GAAACGACACTCACGCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGAATACAGT





GATGGAAACATCTACTTGAGTTGGTTTCAACAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAAGGTTTCTCACCGGGACTCTGGGGTCCC





AGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAAAA





TCGCCAGGGTGGAGGCTGAGGATGTTGCAGTTTATTACTGCATGCAA





GCTATACACTGGCCTCGAACTTTTGGCCAGGGGACCAAAGTGGATAT





CAAA





234
3738
42
ETTLTQSPLSLPVTLGQPASISCRSSQSLEYSDGNIYLSWFQQRPGQSPRRL





IYKVSHRDSGVPDRFSGSGSGTDFTLKIARVEAEDVAVYYCMQAIHWPR





TFGQGTKVDIK





234
3739
43
RSSQSLEYSDGNIYLS





234
3740
44
AGGTCTAGTCAAAGCCTCGAATACAGTGATGGAAACATCTACTTGAG





T





234
3741
45
KVSHRDS





234
3742
46
AAGGTTTCTCACCGGGACTCT





234
3743
47
MQAIHWPRT





234
3744
48
ATGCAAGCTATACACTGGCCTCGAACT





235
3745
49
CAGGTGCAGCTGCAGGAGTCGGGCCCAAGACTGGTGAAGCCTTCACA





GACCCTGTCCCTCATCTGCGATGTCTCTGGTGGCTCCATCGGCAGTGG





TGACCACTACTGGAGTTGGATCCGCCAGCCCCCCGGGAAGGGCCTCG





AGTGGATTGGGTACATCTATTACAGTGGGACCACTTACTACAACCCGT





CCCTCAAGAGTCGAGTGACCATTTCAGCAGACACGTCCAAGAACCAG





TTGTCCCTGAAATTGAGTTCTGTGACTGCCGCAGACACGGCCATTTAT





TTCTGTGCCAGAGATGGGGGTTATGATCACGTCTGGGGGACTCATCGT





TATTTCGACAAGTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





235
3746
50
QVQLQESGPRLVKPSQTLSLICDVSGGSIGSGDHYWSWIRQPPGKGLEWI





GYIYYSGTTYYNPSLKSRVTISADTSKNQLSLKLSSVTAADTAIYFCARD





GGYDHVWGTHRYFDKWGQGTLVTVSS





235
3747
51
GSIGSGDHYWS





235
3748
52
GGCTCCATCGGCAGTGGTGACCACTACTGGAGT





235
3749
53
YIYYSGTTYYNPSLKS





235
3750
54
TACATCTATTACAGTGGGACCACTTACTACAACCCGTCCCTCAAGAGT





235
3751
55
ARDGGYDHVWGTHRYFDK





235
3752
56
GCCAGAGATGGGGGTTATGATCACGTCTGGGGGACTCATCGTTATTTC





GACAAG





235
3753
57
GAAATTGTATTGACACAGTCTCCAGGCACCCTGTCTTTGTCTCCCGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAACAG





TTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT





CATCTATGGTGTTTCCACCAGGGCCACTGGCATCCCAGACCGGTTCAG





TGGCAGCGGGTCTGGGACAGACTTCACCCTCACCATCAGCAGACTGG





AACCTGAAGATTTTGCAATGTATCACTGTCAGCAGTATGGTGCCTCAC





CTTGGACGTTCGGCCAAGGGACCAAAGTGGATATCAAA





235
3754
58
EIVLTQSPGTLSLSPGERATLSCRASQSVSNSYLAWYQQKPGQAPRLLIY





GVSTRATGIPDRFSGSGSGTDFTLTISRLEPEDFAMYHCQQYGASPWTFG





QGTKVDIK





235
3755
59
RASQSVSNSYLA





235
3756
60
AGGGCCAGTCAGAGTGTTAGCAACAGTTACTTAGCC





235
3757
61
GVSTRAT





235
3758
62
GGTGTTTCCACCAGGGCCACT





235
3759
63
QQYGASPWT





235
3760
64
CAGCAGTATGGTGCCTCACCTTGGACG





236
3761
65
GAGGTGCAGCTGTTGGAGTCTGGAGGTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCCTGCAGGGCCTCTGGTTACACCTTTAGAAACTA





TGGCCTCACCTGGGTGCGGCAGGCCCCCGGACAAGGGCTTGAGTGGA





TGGGATGGATCAGCGCTTACAATGGAAACACAAACTATGCACAGAAG





TTCCAGGGCAGAGTCACACTGACCACGGACACATCCACGAGCACAGC





CTACATGGAACTGAGGAGCCTAAGATCTGACGACACGGCCGTGTATT





TCTGTGCGAGAGACGTCCCCGGCCACGGCGCTGCCTTCATGGACGTCT





GGGGCACAGGGACCACGGTCACCGTCTCCTCA





236
3762
66
EVQLLESGGEVKKPGASVKVSCRASGYTFRNYGLTWVRQAPGQGLEW





MGWISAYNGNTNYAQKFQGRVTLTTDTSTSTAYMELRSLRSDDTAVYF





CARDVPGHGAAFMDVWGTGTTVTVSS





236
3763
67
YTFRNYGLT





236
3764
68
TACACCTTTAGAAACTATGGCCTCACC





236
3765
69
WISAYNGNTNYAQKFQG





236
3766
70
TGGATCAGCGCTTACAATGGAAACACAAACTATGCACAGAAGTTCCA





GGGC





236
3767
71
ARDVPGHGAAFMDV





236
3768
72
GCGAGAGACGTCCCCGGCCACGGCGCTGCCTTCATGGACGTC





236
3769
73
GACATCCAGTTGACCCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGG





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGAAGCCAGT





GATACAAATATCTACTTGAGTTGGTTTCAGCAGAGGCCAGGCCAATCT





CCAAGGCGCCTAATTTATAAGATTTCTAACCGAGACTCTGGGGTCCCA





GACAGATTCAGCGGCAGTGGGTCAGGCACTCATTTCACACTGAGAAT





CAGCAGGGTGGAGGCTGACGATGTTGCGGTTTATTACTGCATGCAGG





GTACACACTGGCCTCCGGCGTTCGGCCAGGGGACCAAAGTGGATATC





AAA





236
3770
74
DIQLTQSPLSLPVTLGQPASISCRSSQSLEASDTNIYLSWFQQRPGQSPRRL





IYKISNRDSGVPDRFSGSGSGTHFTLRISRVEADDVAVYYCMQGTHWPPA





FGQGTKVDIK





236
3771
75
RSSQSLEASDTNIYLS





236
3772
76
AGGTCTAGTCAAAGCCTCGAAGCCAGTGATACAAATATCTACTTGAG





T





236
3773
77
KISNRDS





236
3774
78
AAGATTTCTAACCGAGACTCT





236
3775
79
MQGTHWPPA





236
3776
80
ATGCAGGGTACACACTGGCCTCCGGCG





237
3777
81
CAGGTCCAGCTGGTACAGTCTGGATCTGAGGTGAAGAAGCCTGGGGC





CGCAGTGAAGGTCTCCTGCAAGGCTTCTGGTTACATCTTTGCCAACTT





TGGTGTCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGGATGGATCAGCGCTTACAATGGTAACACAAACTATGCACAGAAG





TTCCAGGGCAGAGTCATCATGACCACAGACACATCCACGAGCACAGC





CTACATGGAGCTGAGGAGCCTGAGATCTGACGACACGGCCGTGTATT





ATTGTGCGAGAGACCCCCCCGCCTACGCCGCTACATTGATGGACGTCT





GGGGCAAAGGGACCACGGTCACTGTCTCCTCA





237
3778
82
QVQLVQSGSEVKKPGAAVKVSCKASGYIFANFGVSWVRQAPGQGLEW





MGWISAYNGNTNYAQKFQGRVIMTTDTSTSTAYMELRSLRSDDTAVYY





CARDPPAYAATLMDVWGKGTTVTVSS





237
3779
83
YIFANFGVS





237
3780
84
TACATCTTTGCCAACTTTGGTGTCAGC





237
3781
85
WISAYNGNTNYAQKFQG





237
3782
86
TGGATCAGCGCTTACAATGGTAACACAAACTATGCACAGAAGTTCCA





GGGC





237
3783
87
ARDPPAYAATLMDV





237
3784
88
GCGAGAGACCCCCCCGCCTACGCCGCTACATTGATGGACGTC





237
3785
89
GAAATTGTATTGACGCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGTCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGAACACAGT





GATACAAACACCTACTTGACTTGGTATCAGCAGAGGCCAGGCCAATC





TCCAAGGCGGCTACTTTATAAGGTTTCTAACCGGGACTCTGGGGTCCC





AGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAAAA





TCAGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





GGTACACACTGGCCTCCGACGTTCGGCCAAGGGACCAAAGTGGATAT





CAAA





237
3786
90
EIVLTQSPLSLPVTLGQSASISCRSSQSLEHSDTNTYLTWYQQRPGQSPRR





LLYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWP





PTFGQGTKVDIK





237
3787
91
RSSQSLEHSDTNTYLT





237
3788
92
AGGTCTAGTCAAAGCCTCGAACACAGTGATACAAACACCTACTTGAC





T





237
3789
93
KVSNRDS





237
3790
94
AAGGTTTCTAACCGGGACTCT





237
3791
95
MQGTHWPPT





237
3792
96
ATGCAAGGTACACACTGGCCTCCGACG





238
3793
97
CAGGTCCAGCTTGTACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTC





CTCGGTGAGGGTCTCCTGCAAGGCCTCTGGAGGCACCTTCAGGGGCT





ATGGTCTCAGCTGGGTGCGACAGGCCCCTGGACAGGGACTCGAGTGG





ATGGGAGGGATCACCCATCTTTTTGGGACAGTCAGCTACGCTCCGAA





GTTCCAGGGCAGACTCACGATCACCGCGGACGCATCCACGGGCACAG





CCTACATGGAGCTGAGCAGCCTGATATCTGAGGACACGGCCGTATAT





TTTTGTGCGAGAGATGCTTACGAAGTGTGGACCGGCTCTTATCTCCCC





CCTTTTGACTACTGGGGCCAGGGAACAATGGTCACCGTCTCTTCA





238
3794
98
QVQLVQSGAEVKKPGSSVRVSCKASGGTFRGYGLSWVRQAPGQGLEW





MGGITHLFGTVSYAPKFQGRLTITADASTGTAYMELSSLISEDTAVYFCA





RDAYEVWTGSYLPPFDYWGQGTMVTVSS





238
3795
99
GTFRGYGLS





238
3796
100
GGCACCTTCAGGGGCTATGGTCTCAGC





238
3797
101
GITHLFGTVSYAPKFQG





238
3798
102
GGGATCACCCATCTTTTTGGGACAGTCAGCTACGCTCCGAAGTTCCAG





GGC





238
3799
103
ARDAYEVWTGSYLPPFDY





238
3800
104
GCGAGAGATGCTTACGAAGTGTGGACCGGCTCTTATCTCCCCCCTTTT





GACTAC





238
3801
105
GATATTGTGATGACTCAGTCTCCAGGCACCCTGTCTTTGTCTCCCGGG





GAAAGAGTCACCCTCTCCTGCAGGGCCAGTCAGATTATTCCAAGCAG





TTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT





CATCTATGGTGCATTCACCAGGGCCACTGACATCCCAGACAGGTTCA





GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTG





GAGCCTGAAGATTTTGCAGTATATTATTGTCAGCAGTATGGTAGTTCA





TTTCTCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAA





238
3802
106
DIVMTQSPGTLSLSPGERVTLSCRASQIIPSSYLAWYQQKPGQAPRLLIYG





AFTRATDIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSFLTFGGG





TKVEIK





238
3803
107
RASQIIPSSYLA





238
3804
108
AGGGCCAGTCAGATTATTCCAAGCAGTTACTTAGCC





238
3805
109
GAFTRAT





238
3806
110
GGTGCATTCACCAGGGCCACT





238
3807
111
QQYGSSFLT





238
3808
112
CAGCAGTATGGTAGTTCATTTCTCACT





239
3809
113
CAGGTCCAGCTTGTGCAGTCTGGGCCTGAGGTAAAGAAGCCTGGGTC





CTCAGTGACGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGCAACTA





TGGTATTGCTTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGGATCAACAATCCCTATCCTTGGAACAGCAAGCTACAGACAGAGC





TTAAAGGACAGAGTCACAATTACCGCGGACGCTTCCACGACCACAGT





CTACATGGAAATGACTCGCCTCAGAACTGAGGACACGGCCGTCTATT





TTTGTGCGAGAGTTCCGGAGAGTCTTGTGGCATCAAACGCTTATGCTG





TTTGGGGCCAAGGGACGGTGGTCACTGTCTCCTCA





239
3810
114
QVQLVQSGPEVKKPGSSVTVSCKASGGTFSNYGIAWVRQAPGQGLEWM





GSTIPILGTASYRQSLKDRVTITADASTTTVYMEMTRLRTEDTAVYFCAR





VPESLVASNAYAVWGQGTVVTVSS





239
3811
115
GTFSNYGIA





239
3812
116
GGCACCTTCAGCAACTATGGTATTGCT





239
3813
117
STIPILGTASYRQSLKD





239
3814
118
TCAACAATCCCTATCCTTGGAACAGCAAGCTACAGACAGAGCTTAAA





GGAC





239
3815
119
ARVPESLVASNAYAV





239
3816
120
GCGAGAGTTCCGGAGAGTCTTGTGGCATCAAACGCTTATGCTGTT





239
3817
121
GACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGTCGGGCGAGCCAGGACATTAGCACCTG





GTTAGCCTGGTATCAGCAGAGACCAGGGAAAGCCCCAAAACTCCTGA





TCTACACTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG





GCAGTGGATCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAG





CCTGAAGATTTTGCAACTTACTATTGTCAACAGGGTACCAGTTTCCCA





TTCACTTTCGGCCCTGGGACCAAGCTGGAGATCAAA





239
3818
122
DIQMTQSPSSVSASVGDRVTITCRASQDISTWLAWYQQRPGKAPKLLIYT





ASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQGTSFPFTFGPGT





KLEIK





239
3819
123
RASQDISTWLA





239
3820
124
CGGGCGAGCCAGGACATTAGCACCTGGTTAGCC





239
3821
125
TASSLQS





239
3822
126
ACTGCATCCAGTTTGCAAAGT





239
3823
127
QQGTSFPFT





239
3824
128
CAACAGGGTACCAGTTTCCCATTCACT





240
3825
129
GAGGTGCAGCTGGTGGAGTCTGGGGCTGAGATGAAGAAGCCTGGGGC





CTCAGTGAAGGTTTCCTGCAAGGCTTCTGGATACACCTTCACTAACTA





TGCTATACATTGGGTGCGCCAGGCCCCCGGCCAAAGCCTTGAGTGGA





TGGGATGGATCAACGCTGGCAATGGTAACACACAATATTCACAGAAG





TTCCAGGGCAGAGTCACCTTTACCAGGGACACATCCGCGAGCACGGT





CTACATGGACCTGAGCAGCCTGAGATCTGAAGACACGGCTGTCTATT





ACTGTGCGAGAGGCCAAATTGTTGTTATACCACGTGCTAATTTCTGGT





TCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





240
3826
130
EVQLVESGAEMKKPGASVKVSCKASGYTFTNYAIHWVRQAPGQSLEW





MGWINAGNGNTQYSQKFQGRVTFTRDTSASTVYMDLSSLRSEDTAVYY





CARGQIVVIPRANFWFDPWGQGTLVTVSS





240
3827
131
YTFTNYAIH





240
3828
132
TACACCTTCACTAACTATGCTATACAT





240
3829
133
WINAGNGNTQYSQKFQG





240
3830
134
TGGATCAACGCTGGCAATGGTAACACACAATATTCACAGAAGTTCCA





GGGC





240
3831
135
ARGQIVVIPRANFWFDP





240
3832
136
GCGAGAGGCCAAATTGTTGTTATACCACGTGCTAATTTCTGGTTCGAC





CCC





240
3833
137
GATATTGTGCTGACCCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGA





GAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGT





CATGGATACAACTATTTGGATTGGTACTTGCAGAAGCCAGGGCAGTC





TCCACAGCTCCTGATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCC





TGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAAA





TCAGCAGAGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





ACTCTACAAACTCCGATCACCTTCGGCCAAGGGACACGAATGGAGAT





TAAA





240
3834
138
DIVLTQSPLSLPVTPGEPASISCRSSQSLLHSHGYNYLDWYLQKPGQSPQL





LIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQTLQTPI





TFGQGTRMEIK





240
3835
139
RSSQSLLHSHGYNYLD





240
3836
140
AGGTCTAGTCAGAGCCTCCTGCATAGTCATGGATACAACTATTTGGAT





240
3837
141
LGSNRAS





240
3838
142
TTGGGTTCTAATCGGGCCTCC





240
3839
143
MQTLQTPIT





240
3840
144
ATGCAAACTCTACAAACTCCGATCACC





241
3841
145
GAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTTACA





GACCCTGTCCGTCACCTGCAGTGTCTCTGGTGGCTCCATCAGCAGTGG





TGATAACTACTGGAGCTGGATCCGCCAGCGCCCAGGGAAGGGCCTGG





AGTGGATTGGGTACATCTATTACAGTGGGACCACCTACTACAATCCGT





CCCTCAAGAGTCGAGTTACCATATCAGCAGACAGGTCTAAGAATCAG





TTTTCTCTGAAGATGAATTCTCTGAGTGCCGCGGACACGGCCGTGTAT





TACTGTGCGAGAGATGGCGGATATGATCACATCTGGGGGACTCATCG





TTATTTCGCCCTCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





241
3842
146
EVQLQESGPGLVKPLQTLSVTCSVSGGSISSGDNYWSWIRQRPGKGLEWI





GYIYYSGTTYYNPSLKSRVTISADRSKNQFSLKMNSLSAADTAVYYCAR





DGGYDHIWGTHRYFALWGQGTLVTVSS





241
3843
147
GSISSGDNYWS





241
3844
148
GGCTCCATCAGCAGTGGTGATAACTACTGGAGC





241
3845
149
YIYYSGTTYYNPSLKS





241
3846
150
TACATCTATTACAGTGGGACCACCTACTACAATCCGTCCCTCAAGAGT





241
3847
151
ARDGGYDHIWGTHRYFAL





241
3848
152
GCGAGAGATGGCGGATATGATCACATCTGGGGGACTCATCGTTATTT





CGCCCTC





241
3849
153
GAAACGACACTCACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAACAGCGA





CTACTTGGCCTGGTACCAGCAGAAACTTGGCCAGGCTCCCAGGCTCCT





CATTTATGGTGTATCCAACAGGGCCACTGGCATCCCAGACAGGTTTAC





TGGGAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGG





AGCCTGAAGATTTTGCAGTCTATCACTGTCAGCAGTATGGTACCTCAC





CGTGGACGTTCGGCCAAGGGACCAAGGTGGAGATCAAA





241
3850
154
ETTLTQSPGTLSLSPGERATLSCRASQSVNSDYLAWYQQKLGQAPRLLIY





GVSNRATGIPDRFTGSGSGTDFTLTISRLEPEDFAVYHCQQYGTSPWTFG





QGTKVEIK





241
3851
155
RASQSVNSDYLA





241
3852
156
AGGGCCAGTCAGAGTGTTAACAGCGACTACTTGGCC





241
3853
157
GVSNRAT





241
3854
158
GGTGTATCCAACAGGGCCACT





241
3855
159
QQYGTSPWT





241
3856
160
CAGCAGTATGGTACCTCACCGTGGACG





242
3857
161
CAGGTCCAGCTTGTACAGTCTGGGGCTGAGGTGAAGAGGCCTGGGTC





CTCGGTGAAAGTCTCCTGTAAGGCCTCTGGAGGCACCTTCAGTAGTTA





TGCTCTCTCCTGGGTACGGCAGGCCCCTGGACAAGGACTTGAGTGGA





TAGGGGGGATCATCCCTATGCATCGTGTAACAAATTACGCACAGAAA





TTTCGGGGCAGAGTCACAATTTCCGCGGACACATCCACGAGTACGGC





CTACTTGGAGGTGAACAGCCTGAGAGTTGAGGACACGGCCATGTATT





ACTGTGCGAGAGTGTTTTTCGGAACTTGTGGCGGTGCTTCGTGCTTCC





CCTCTGACCTCTGGGGCCAGGGAACCCTGGTCACTGTCTCCTCA





242
3858
162
QVQLVQSGAEVKRPGSSVKVSCKASGGTFSSYALSWVRQAPGQGLEWI





GGIIPMHRVTNYAQKFRGRVTISADTSTSTAYLEVNSLRVEDTAMYYCA





RVFFGTCGGASCFPSDLWGQGTLVTVSS





242
3859
163
GTFSSYALS





242
3860
164
GGCACCTTCAGTAGTTATGCTCTCTCC





242
3861
165
GIIPMHRVTNYAQKFRG





242
3862
166
GGGATCATCCCTATGCATCGTGTAACAAATTACGCACAGAAATTTCG





GGGC





242
3863
167
ARVFFGTCGGASCFPSDL





242
3864
168
GCGAGAGTGTTTTTCGGAACTTGTGGCGGTGCTTCGTGCTTCCCCTCT





GACCTC





242
3865
169
GAAATTGTGTTGACACAGTCTCCATCCTTCGTGTCTGCTTCTGTCGGA





GACGGGGTCACCATCACTTGCCGGGCCAGTCAGGCCATTAGCAGTTA





TTTAGCCTGGTATCAGCAAAAACCAGGGCAAGCCCCTAAACTCCTGA





TCTATGCTGCATCCACTTTGCAAGGTGGTGTCCCATCAAGGTTCAGCG





GCAGTGGATCTGGGACACATTTCACTCTCACCATCAGCAGCCTGCAGC





CTGAAGATTTTGCAACTTATTACTGTCAGCAACTTCATAGTGATTTTC





AGACTTTCGGCCCTGGGACCAAGGTGGAAATCAAA





242
3866
170
EIVLTQSPSFVSASVGDGVTITCRASQAISSYLAWYQQKPGQAPKLLIYAA





STLQGGVPSRFSGSGSGTHFTLTISSLQPEDFATYYCQQLHSDFQTFGPGT





KVEIK





242
3867
171
RASQAISSYLA





242
3868
172
CGGGCCAGTCAGGCCATTAGCAGTTATTTAGCC





242
3869
173
AASTLQG





242
3870
174
GCTGCATCCACTTTGCAAGGT





242
3871
175
QQLHSDFQT





242
3872
176
CAGCAACTTCATAGTGATTTTCAGACT





243
3873
177
CAGGTGCAGCTGGTGGAATCTGGGGGAGGCGTGGTCCAGCCTGGGAG





GTCCCTGAGACTCTCCTGTGTAGCGTCTGGATTCAGCTTCAGTATGCA





TGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGG





TGACAGCTATATGGTATGATGGAAGTAATAAATATTATGCAGACTCC





GTGAAGGGCCGATTCACGATCTCCAGAGACAATTCTAGGAACACGCT





GTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATT





ACTGTGCGAGAGATCATGCCTCAACTCCATACTACATGGACGTCTGG





GGCAAAGGGACCACGGTCACCGTCTCCTCA





243
3874
178
QVQLVESGGGVVQPGRSLRLSCVASGFSFSMHGMHWVRQAPGKGLEW





VTAIWYDGSNKYYADSVKGRFTISRDNSRNTLYLQMNSLRAEDTAVYY





CARDHASTPYYMDVWGKGTTVTVSS





243
3875
179
FSFSMHGMH





243
3876
180
TTCAGCTTCAGTATGCATGGCATGCAC





243
3877
181
AIWYDGSNKYYADSVKG





243
3878
182
GCTATATGGTATGATGGAAGTAATAAATATTATGCAGACTCCGTGAA





GGGC





243
3879
183
ARDHASTPYYMDV





243
3880
184
GCGAGAGATCATGCCTCAACTCCATACTACATGGACGTC





243
3881
185
GAAACGACACTCACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGG





GAAAGCGCCACCCTCTCCTGCAGGACCAGTCAGAGGATTAGCAGCAC





CTACTTAGCCTGGTACCGGCAGAAACCTGGCCAGGCTCCCAGGCTCCT





CATGTATGGTGCATCCAGCAGGGCCACTGGCATCCCGGACAGGTTCA





GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGTCTG





GAGCCTGAAGATTTTGCACTATATTACTGTCAGCAGTATGGTAGCTTT





CCGTGGACGTTCGGCCAAGGGACCAAGCTGGAGATCAAA





243
3882
186
ETTLTQSPGTLSLSPGESATLSCRTSQRISSTYLAWYRQKPGQAPRLLMY





GASSRATGIPDRFSGSGSGTDFTLTISSLEPEDFALYYCQQYGSFPWTFGQ





GTKLEIK





243
3883
187
RTSQRISSTYLA





243
3884
188
AGGACCAGTCAGAGGATTAGCAGCACCTACTTAGCC





243
3885
189
GASSRAT





243
3886
190
GGTGCATCCAGCAGGGCCACT





243
3887
191
QQYGSFPWT





243
3888
192
CAGCAGTATGGTAGCTTTCCGTGGACG





244
3889
193
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTGTGGAAGCCTTCGCA





GACCCTGTCCCTCACCTGCGCTGTCCATGGTGGATCCCTCAGTGGCTA





CTCTTGGAGTTGGATCCGCCAGTCCCCAGGGAGGGGACTGGAGTGGA





TCGGCGAAGTCAATCGTAGGGGAACCACCAACTACAACCCCTCCCTC





AAGGGTCGAGTCTCCATATCCTGGGACACGTCCAAGAACCAGGTCTC





CCTGTCCCTGAGGTCTGTGACCGCCGCGGACACGGCTACATATTACTG





TGCGGGGACCAATGTTGGATTCGTTAATACCCATAACGACTACTACTT





CGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA





244
3890
194
QVQLQQWGAGLWKPSQTLSLTCAVHGGSLSGYSWSWIRQSPGRGLEWI





GEVNRRGTTNYNPSLKGRVSISWDTSKNQVSLSLRSVTAADTATYYCAG





TNVGFVNTHNDYYFGMDVWGQGTTVTVSS





244
3891
195
GSLSGYSWS





244
3892
196
GGATCCCTCAGTGGCTACTCTTGGAGT





244
3893
197
EVNRRGTTNYNPSLKG





244
3894
198
GAAGTCAATCGTAGGGGAACCACCAACTACAACCCCTCCCTCAAGGG





T





244
3895
199
AGTNVGFVNTHNDYYFGMDV





244
3896
200
GCGGGGACCAATGTTGGATTCGTTAATACCCATAACGACTACTACTTC





GGTATGGACGTC





244
3897
201
GATATTGTGATGACTCAGTCTCCATCCTCCCTGTCTGCATCGGTTGGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATAAGCAATTA





TGTAAATTGGTATCAGAAAAAAACAGGTCAAGTCCCTAAACTCCTGA





TCTATGGTGCATCCAATTTGGAAAGTGGGGTCCCATCAAGGTTCAGTG





GCGGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC





CTGAAGATTTTGCAACTTATTACTGTCAACAGAGTTACAGTGTCCCGC





TCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAA





244
3898
202
DIVMTQSPSSLSASVGDRVTITCRASQSISNYVNWYQKKTGQVPKLLIYG





ASNLESGVPSRFSGGGSGTDFTLTISSLQPEDFATYYCQQSYSVPLTFGGG





TKVEIK





244
3899
203
RASQSISNYVN





244
3900
204
CGGGCAAGTCAGAGCATAAGCAATTATGTAAAT





244
3901
205
GASNLES





244
3902
206
GGTGCATCCAATTTGGAAAGT





244
3903
207
QQSYSVPLT





244
3904
208
CAACAGAGTTACAGTGTCCCGCTCACT





245
3905
209
CAGGTCCAGCTTGTACAGTCTGGGGCTGAGGTGAAGAGGCCTGGATC





CTCGGTGAAGGTCTCCTGCAAGGCGTCTGGAGGCACCTTCCGCGGCT





ACCATATCAGCTGGCTGCGCCAGGCCCCTGGACAGGGCCTCGAGTGG





CTGGGAGGGATCACCCATTTGTTTGGGACAGTTAGTTACGCTCCGAAG





TTCCAGGGCAGAGTCACCATCACCGCGGACGCATCCACGGGCACACT





TTACATGGTGTTGAACAGCCTGAAACCTGAGGACACGGCCATTTATTA





TTGTGCGAGAGATGCTTACGAGGTGTGGACTGGTTCTTATCTCCCCCC





TTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





245
3906
210
QVQLVQSGAEVKRPGSSVKVSCKASGGTFRGYHISWLRQAPGQGLEWL





GGITHLFGTVSYAPKFQGRVTITADASTGTLYMVLNSLKPEDTAIYYCAR





DAYEVWTGSYLPPFDYWGQGTLVTVSS





245
3907
211
GTFRGYHIS





245
3908
212
GGCACCTTCCGCGGCTACCATATCAGC





245
3909
213
GITHLFGTVSYAPKFQG





245
3910
214
GGGATCACCCATTTGTTTGGGACAGTTAGTTACGCTCCGAAGTTCCAG





GGC





245
3911
215
ARDAYEVWTGSYLPPFDY





245
3912
216
GCGAGAGATGCTTACGAGGTGTGGACTGGTTCTTATCTCCCCCCTTTT





GACTAC





245
3913
217
GAAACGACACTCACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCCGGG





GAAAGAGCCACCCTCTCTTGCAGGGCCAGTCAGACTGTTACAAGCAA





CTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT





CATCTATGATGCACTCACCAGGGCCACTGGCATCCCAGACAGGTTCA





GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTG





GAGCCTGAAGATTTTGCACTTTATTATTGTCAGCAGTATGGTAGTTCA





TTCCTCACTTTCGGCGGAGGGACCAAAGTGGATATCAAA





245
3914
218
ETTLTQSPGTLSLSPGERATLSCRASQTVTSNYLAWYQQKPGQAPRLLIY





DALTRATGIPDRFSGSGSGTDFTLTISRLEPEDFALYYCQQYGSSFLTFGG





GTKVDIK





245
3915
219
RASQTVTSNYLA





245
3916
220
AGGGCCAGTCAGACTGTTACAAGCAACTACTTAGCC





245
3917
221
DALTRAT





245
3918
222
GATGCACTCACCAGGGCCACT





245
3919
223
QQYGSSFLT





245
3920
224
CAGCAGTATGGTAGTTCATTCCTCACT





246
3921
225
CAGGTGCAGCTGCAGGAGTCCGGGGCTGAGGTGAAGAAGCCTGGGTC





CTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCGCCTTCAGCAGCTA





TGCTATCAGCTGGGTGCGACAGGCCCCTGGACAGGGCCTCGAGTGGC





TGGGAGGGATCACCCATTTGTTTGGGACAGTTAGTTACGCTCCGAAGT





TCCAGGGCAGAGTCACCATCACCGCGGACGCATCCACGGGCACACTT





TACATGGTGTTGAACAGCCTGAAACCTGAGGACACGGCCATTTATTAT





TGTGCGAGAGATGCTTACGAGGTGTGGACTGGTTCTTATCTCCCCCCT





TTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





246
3922
226
QVQLQESGAEVKKPGSSVKVSCKASGGAFSSYAISWVRQAPGQGLEWL





GGITHLFGTVSYAPKFQGRVTITADASTGTLYMVLNSLKPEDTAIYYCAR





DAYEVWTGSYLPPFDYWGQGTLVTVSS





246
3923
227
GAFSSYAIS





246
3924
228
GGCGCCTTCAGCAGCTATGCTATCAGC





246
3925
229
GITHLFGTVSYAPKFQG





246
3926
230
GGGATCACCCATTTGTTTGGGACAGTTAGTTACGCTCCGAAGTTCCAG





GGC





246
3927
231
ARDAYEVWTGSYLPPFDY





246
3928
232
GCGAGAGATGCTTACGAGGTGTGGACTGGTTCTTATCTCCCCCCTTTT





GACTAC





246
3929
233
GAAATTGTATTGACACAGTCTCCAGGCACCCTGTCTTTGTCTCCCGGG





GAAAGAGCCACCCTCTCTTGCAGGGCCAGTCAGACTGTTACAAGCAA





CTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT





CATCTATGATGCACTCACCAGGGCCACTGGCATCCCAGACAGGTTCA





GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTG





GAGCCTGAAGATTTTGCACTTTATTATTGTCAGCAGTATGGTAGTTCA





TTCCTCACTTTCGGCGGAGGGACCAAGCTGGAGATCAAA





246
3930
234
EIVLTQSPGTLSLSPGERATLSCRASQTVTSNYLAWYQQKPGQAPRLLIY





DALTRATGIPDRFSGSGSGTDFTLTISRLEPEDFALYYCQQYGSSFLTFGG





GTKLEIK





246
3931
235
RASQTVTSNYLA





246
3932
236
AGGGCCAGTCAGACTGTTACAAGCAACTACTTAGCC





246
3933
237
DALTRAT





246
3934
238
GATGCACTCACCAGGGCCACT





246
3935
239
QQYGSSFLT





246
3936
240
CAGCAGTATGGTAGTTCATTCCTCACT





247
3937
241
CAGGTCCAGCTGGTACAGTCTGGAGCTGAGGTGAAGGAGCCTGGGGC





CTCAGTGAGGGTCTCCTGCAAGGCTTCTGGTTACACCTTTACCAGCTA





TGGTATCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGGATGGATCAGCGCTTACAATGGTAACACAAACTATGCACAGAAG





TTCCAGGGCAGAGTCACCGTGACCACAGACACATCCACGAGCGCAGC





CTACATGGAGCTGAGGAGCCTGAGATCTGACGACACGGCCATTTATT





ACTGTGCGAGAGATTCATTTTCACTGACTGGTGCTGGATTTCCTGACT





ACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





247
3938
242
QVQLVQSGAEVKEPGASVRVSCKASGYTFTSYGISWVRQAPGQGLEWM





GWISAYNGNTNYAQKFQGRVTVTTDTSTSAAYMELRSLRSDDTAIYYCA





RDSFSLTGAGFPDYWGQGTLVTVSS





247
3939
243
YTFTSYGIS





247
3940
244
TACACCTTTACCAGCTATGGTATCAGC





247
3941
245
WISAYNGNTNYAQKFQG





247
3942
246
TGGATCAGCGCTTACAATGGTAACACAAACTATGCACAGAAGTTCCA





GGGC





247
3943
247
ARDSFSLTGAGFPDY





247
3944
248
GCGAGAGATTCATTTTCACTGACTGGTGCTGGATTTCCTGACTAC





247
3945
249
GAAATTGTAATGACGCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGT





GATGGAAACACCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCC





AGACAGATTCAGCGGCAGTGGGTCAGACACTGATTTCACACTGAAAA





TCAGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





GCTACACAGTGGCCTCGCACGTTCGGCCAAGGGACCAAGGTGGAAAT





CAAA





247
3946
250
EIVMTQSPLSLPVTLGQPASISCRSSQSLVYSDGNTYLNWFQQRPGQSPRR





LIYKVSNRDSGVPDRFSGSGSDTDFTLKISRVEAEDVGVYYCMQATQWP





RTFGQGTKVEIK





247
3947
251
RSSQSLVYSDGNTYLN





247
3948
252
AGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACACCTACTTGAA





T





247
3949
253
KVSNRDS





247
3950
254
AAGGTTTCTAACCGGGACTCT





247
3951
255
MQATQWPRT





247
3952
256
ATGCAAGCTACACAGTGGCCTCGCACG





248
3953
257
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG





GTCCCTGAGACTCTCCTGTGTAGCCTCTGGATTCACCTTCAGTAGCTA





TAACATCAACTGGGTCCGCCAGGCTCCAGGGAAGGGACTGGAGTGGG





TCTCATCCATTAGTGGTGGTAGTAATTACATAGACTACGCAGACTCAG





TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTG





TATTTGCAAATGAACAACCTGCGAGCCGAAGACACGGCTGTGTATTA





CTGTGCGAGACTTGGCTATGGTGGTAACCCGGAGCTTGACTATTGGG





GCCAGGGAACCCTGGTCACTGTCTCCTCA





248
3954
258
EVQLLESGGGLVKPGGSLRLSCVASGFTFSSYNINWVRQAPGKGLEWVS





SISGGSNYIDYADSVKGRFTISRDNAKNSLYLQMNNLRAEDTAVYYCAR





LGYGGNPELDYWGQGTLVTVSS





248
3955
259
FTFSSYNIN





248
3956
260
TTCACCTTCAGTAGCTATAACATCAAC





248
3957
261
SISGGSNYIDYADSVKG





248
3958
262
TCCATTAGTGGTGGTAGTAATTACATAGACTACGCAGACTCAGTGAA





GGGC





248
3959
263
ARLGYGGNPELDY





248
3960
264
GCGAGACTTGGCTATGGTGGTAACCCGGAGCTTGACTAT





248
3961
265
CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGACA





GAGGGTCACCATCTCCTGCACCGGGAGCAGCTCCAACATCGGGGCAG





GTTATGATGTACACTGGTACCAGCAACGTCCAGGAACAGCCCCCAAA





CTCCTCATCTATGCTAATAACAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACCTC





AGTCTGAGTAGTTCGAGGGTATTCGGCGGAGGGACCAAGCTGACCGT





CCTC





248
3962
266
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQRPGTAPKLLI





YANNNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDLSLSSS





RVFGGGTKLTVL





248
3963
267
TGSSSNIGAGYDVH





248
3964
268
ACCGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGTACAC





248
3965
269
ANNNRPS





248
3966
270
GCTAATAACAATCGGCCCTCA





248
3967
271
QSYDLSLSSSRV





248
3968
272
CAGTCCTATGACCTCAGTCTGAGTAGTTCGAGGGTA





249
3969
273
CAGGTCCAGCTGGTGCAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG





GTCCCTGAAACACTCATGTGCAGCCTCTGGATTCACCTTCAATAACTA





TGCTATACACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTGGAGTGGG





TGGCAGCTATCTCATATGATGGAAGCAATGAATACTACTCAAACTCC





GTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGTACACGCT





GTATCTGCAAATGAACAGCCTGAGACCTGAGGACACGGCTGTGTATT





ACTGTGCGAGAGGCGCCTCCTATTACTATGTGAGTAGTGACCTTGGCT





ACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





249
3970
274
QVQLVQSGGGVVQPGRSLKHSCAASGFTFNNYAIHWVRQAPGKGLEWV





AAISYDGSNEYYSNSVKGRFTISRDNSKYTLYLQMNSLRPEDTAVYYCA





RGASYYYVSSDLGYWGQGTLVTVSS





249
3971
275
FTFNNYAIH





249
3972
276
TTCACCTTCAATAACTATGCTATACAC





249
3973
277
AISYDGSNEYYSNSVKG





249
3974
278
GCTATCTCATATGATGGAAGCAATGAATACTACTCAAACTCCGTGAA





GGGC





249
3975
279
ARGASYYYVSSDLGY





249
3976
280
GCGAGAGGCGCCTCCTATTACTATGTGAGTAGTGACCTTGGCTAC





249
3977
281
CAGCCTGTGCTGACTCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGTCAG





GTTATGATGTGCACTGGTATCAGCAGCTTCCAGGAACAGCCCCCAAA





GTCGTCATCTATGGTAACATCAATCGGCCCTCAGGGGTCCCTGAGCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





CTGAGTGCCTCTTGGGTGTTCGGCGGAGGGACCAAGCTCACCGTCCTA





249
3978
282
QPVLTQPPSVSGAPGQRVTISCTGSSSNIGSGYDVHWYQQLPGTAPKVVI





YGNINRPSGVPERFSGSKSGTSASLAITGLQAEDEADYYCQSYDSLSASW





VFGGGTKLTVL





249
3979
283
TGSSSNIGSGYDVH





249
3980
284
ACTGGGAGCAGCTCCAACATCGGGTCAGGTTATGATGTGCAC





249
3981
285
GNINRPS





249
3982
286
GGTAACATCAATCGGCCCTCA





249
3983
287
QSYDSLSASWV





249
3984
288
CAGTCCTATGACAGCCTGAGTGCCTCTTGGGTG





250
3985
289
CAGGTCCAGCTTGTGCAGTCTGGACCAGAGGTGAAAAAGACCAGAGA





GTCTCTGAAGATCTACTGTAAGGGTTCTGGATACAGCTTTATCAGCCA





CTGGATCGGCTGGGTGCGCCAGAAACCCGGGAAAGGCCTGGAGTGGA





TGGGGATCATCTATCCGGGTGACTCTGACACCAGATACAGCCCGTCCT





TCCAAGGCCAGGTCGCCATCTCAGCCGACAAGTCCATCAACACCGCC





TACCTGCAGTGGAGCAGCCTGAAGTCCTCGGACACCGCCATATATTA





CTGTGCGAGTGTAATGCTTCGGGGGATTATGTGGGGCCAGGGAACCC





TGGTCACCGTCTCCTCA





250
3986
290
QVQLVQSGPEVKKTRESLKIYCKGSGYSFISHWIGWVRQKPGKGLEWM





GIIYPGDSDTRYSPSFQGQVAISADKSINTAYLQWSSLKSSDTAIYYCASV





MLRGIMWGQGTLVTVSS





250
3987
291
YSFISHWIG





250
3988
292
TACAGCTTTATCAGCCACTGGATCGGC





250
3989
293
IIYPGDSDTRYSPSFQG





250
3990
294
ATCATCTATCCGGGTGACTCTGACACCAGATACAGCCCGTCCTTCCAA





GGC





250
3991
295
ASVMLRGIM





250
3992
296
GCGAGTGTAATGCTTCGGGGGATTATG





250
3993
297
GACATCCGGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCAAGTA





TCTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGA





TCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGATTCAGT





GGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCA





GCCTGAAGATATTGCAACATATTACTGTCAGCCGTATGATAATCTCCC





TCCGCCGCTCACTTTCGGCGGAGGGACCAAGCTGGAGATCAAA





250
3994
298
DIRLTQSPSSLSASVGDRVTITCQASQDISKYLNWYQQKPGKAPKLLIYD





ASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQPYDNLPPPLTFGG





GTKLEIK





250
3995
299
QASQDISKYLN





250
3996
300
CAGGCGAGTCAGGACATTAGCAAGTATCTAAAT





250
3997
301
DASNLET





250
3998
302
GATGCATCCAATTTGGAAACA





250
3999
303
QPYDNLPPPLT





250
4000
304
CAGCCGTATGATAATCTCCCTCCGCCGCTCACT





251
4001
305
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCGTGGTCCAGTCTGGGAG





GTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTGACAA





TGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGG





TGGCAGGTATATTTTATGATGGAAGTAATAAACAATATGCAGACTCC





GTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAGCACGCT





GTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATT





ACTGTGCGAGAGCCCCTTACGATATTTGGAGTGGTTATTGTCTTGACT





ACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





251
4002
306
EVQLLESGGGVVQSGRSLRLSCAASGFTFSDNGMHWVRQAPGKGLEWV





AGIFYDGSNKQYADSVKGRFTISRDNSKSTLYLQMNSLRAEDTAVYYCA





RAPYDIWSGYCLDYWGQGTLVTVSS





251
4003
307
FTFSDNGMH





251
4004
308
TTCACCTTCAGTGACAATGGCATGCAC





251
4005
309
GIFYDGSNKQYADSVKG





251
4006
310
GGTATATTTTATGATGGAAGTAATAAACAATATGCAGACTCCGTGAA





GGGC





251
4007
311
ARAPYDIWSGYCLDY





251
4008
312
GCGAGAGCCCCTTACGATATTTGGAGTGGTTATTGTCTTGACTAC





251
4009
313
GACATCCAGATGACTCAGACTCCAGCCACCCTGTCTATGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAACAACAA





CTTAGCCTGGTACCAGCAGAGACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGGTGCATCTACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTGG





CAGTGGGTCTGAGACAGAGTTCACTCTCACTATCAGCAGCCTGCAGTC





TGAAGATTTTGCGGTTTATCACTGTCAGCAGTATAGTATCTGGCCTCA





GACTTTTGGCCAGGGGACCAAGCTGGAGATCAAA





251
4010
314
DIQMTQTPATLSMSPGERATLSCRASQSVNNNLAWYQQRPGQAPRLLIY





GASTRATGIPARFSGSGSETEFTLTISSLQSEDFAVYHCQQYSIWPQTFGQ





GTKLEIK





251
4011
315
RASQSVNNNLA





251
4012
316
AGGGCCAGTCAGAGTGTTAACAACAACTTAGCC





251
4013
317
GASTRAT





251
4014
318
GGTGCATCTACCAGGGCCACT





251
4015
319
QQYSIWPQT





251
4016
320
CAGCAGTATAGTATCTGGCCTCAGACT





252
4017
321
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACTATTGGAACGTA





CTGGATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TGGCCAACATAAAACCAGATGGAAGTGAGCAATATTATGGGGACTCG





GTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAATTCCCT





GTATCTGCAAATGCACAGCCTGAGAGCCGAGGACGCGGCTGTCTTTT





ACTGTGCGAGGGATACTCCCGACGTATTACGACATTTGGAGTGGCCC





CCTGTAGGTGCTTTTGATATCTGGGGCCAAGGGACCACGGTCACCGTC





TCCTCA





252
4018
322
EVQLVESGGGLVQPGGSLRLSCAASGFTIGTYWMSWVRQAPGKGLEWV





ANIKPDGSEQYYGDSVKGRFTISRDNAKNSLYLQMHSLRAEDAAVFYCA





RDTPDVLRHLEWPPVGAFDIWGQGTTVTVSS





252
4019
323
FTIGTYWMS





252
4020
324
TTCACTATTGGAACGTACTGGATGAGC





252
4021
325
NIKPDGSEQYYGDSVKG





252
4022
326
AACATAAAACCAGATGGAAGTGAGCAATATTATGGGGACTCGGTGAA





GGGC





252
4023
327
ARDTPDVLRHLEWPPVGAFDI





252
4024
328
GCGAGGGATACTCCCGACGTATTACGACATTTGGAGTGGCCCCCTGT





AGGTGCTTTTGATATC





252
4025
329
GAAATTGTAATGACGCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGC





GAGAGGGCCACCATCAACTGCAAGTCCAGCCAGAGTCTTTTCTACAG





CTCCACCAATCAGCACTACTTGGCTTGGTACCAGCAGAAACCAGGAC





AGCCTCCTGAGCTGCTCATTTACTGGGCATCTATCCGGGAATCCGGGG





TCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCA





CCATCAGCAGCCTGCAGGCCGCAGATGTGGCAGTTTATTACTGTCAGC





AGTATTATAGTAGTCCTCAAACTTTTGGCCAGGGGACCAAGGTGGAA





ATCAAA





252
4026
330
EIVMTQSPDSLAVSLGERATINCKSSQSLFYSSTNQHYLAWYQQKPGQPP





ELLIYWASIRESGVPDRFSGSGSGTDFTLTISSLQAADVAVYYCQQYYSSP





QTFGQGTKVEIK





252
4027
331
KSSQSLFYSSTNQHYLA





252
4028
332
AAGTCCAGCCAGAGTCTTTTCTACAGCTCCACCAATCAGCACTACTTG





GCT





252
4029
333
WASIRES





252
4030
334
TGGGCATCTATCCGGGAATCC





252
4031
335
QQYYSSPQT





252
4032
336
CAGCAGTATTATAGTAGTCCTCAAACT





253
4033
337
CAGGTCCAGCTTGTGCAGTCTGGAACTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCCTGTAAGGCTGCTGGTTACACCTTTAGCAACTA





CGGTGTCAGTTGGGTGCGACAGGCCCCTGGACAGGGGCTTGAGTGGA





TGGGATGGATCAGCGCTTATAATGGTAACACAAAATTTGCACAGAAG





GTCCAGGGCAGACTCACCATGACCACAGACACATCTACCAGCACAGC





CTACATGGAATTGAGGAACCTCAGATCTGACGACACGGCCGTGTATT





ATTGTGCGAGAGAATCAGGGGCAACAGCGGCTGCTATGTTTGACTAC





TGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





253
4034
338
QVQLVQSGTEVKKPGASVKVSCKAAGYTFSNYGVSWVRQAPGQGLEW





MGWISAYNGNTKFAQKVQGRLTMTTDTSTSTAYMELRNLRSDDTAVYY





CARESGATAAAMFDYWGQGTLVTVSS





253
4035
339
YTFSNYGVS





253
4036
340
TACACCTTTAGCAACTACGGTGTCAGT





253
4037
341
WISAYNGNTKFAQKVQG





253
4038
342
TGGATCAGCGCTTATAATGGTAACACAAAATTTGCACAGAAGGTCCA





GGGC





253
4039
343
ARESGATAAAMFDY





253
4040
344
GCGAGAGAATCAGGGGCAACAGCGGCTGCTATGTTTGACTAC





253
4041
345
GAAATTGTATTGACGCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGAATACAGT





GATGGAAACATCTACTTGAGTTGGTTTCAACAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAAGGTTTCTCACCGGGACTCTGGGGTCCC





AGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAAAA





TCGCCAGGGTGGAGGCTGAGGATGTTGCAGTTTATTACTGCATGCAA





GCTATACACTGGCCTCGAACTTTTGGCCAGGGGACCAAGGTGGAGAT





CAAA





253
4042
346
EIVLTQSPLSLPVTLGQPASISCRSSQSLEYSDGNIYLSWFQQRPGQSPRRL





IYKVSHRDSGVPDRFSGSGSGTDFTLKIARVEAEDVAVYYCMQAIHWPR





TFGQGTKVEIK





253
4043
347
RSSQSLEYSDGNIYLS





253
4044
348
AGGTCTAGTCAAAGCCTCGAATACAGTGATGGAAACATCTACTTGAG





T





253
4045
349
KVSHRDS





253
4046
350
AAGGTTTCTCACCGGGACTCT





253
4047
351
MQAIHWPRT





253
4048
352
ATGCAAGCTATACACTGGCCTCGAACT





254
4049
353
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGTCTGGGAG





GTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTGACAA





TGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGG





TGGCAGGTATATTTTATGATGGAAGTAATAAACAATATGCAGACTCC





GTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAGCACGCT





GTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATT





ACTGTGCGAGAGCCCCTTACGATATTTGGAGTGGTTATTGTCTTGACT





ACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





254
4050
354
EVQLVESGGGVVQSGRSLRLSCAASGFTFSDNGMHWVRQAPGKGLEWV





AGIFYDGSNKQYADSVKGRFTISRDNSKSTLYLQMNSLRAEDTAVYYCA





RAPYDIWSGYCLDYWGQGTLVTVSS





254
4051
355
FTFSDNGMH





254
4052
356
TTCACCTTCAGTGACAATGGCATGCAC





254
4053
357
GIFYDGSNKQYADSVKG





254
4054
358
GGTATATTTTATGATGGAAGTAATAAACAATATGCAGACTCCGTGAA





GGGC





254
4055
359
ARAPYDIWSGYCLDY





254
4056
360
GCGAGAGCCCCTTACGATATTTGGAGTGGTTATTGTCTTGACTAC





254
4057
361
GACATCCGGTTGACCCAGTCTCCAGCCACCCTGTCTATGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAACAACAA





CTTAGCCTGGTACCAGCAGAGACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGGTGCATCTACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTGG





CAGTGGGTCTGAGACAGAGTTCACTCTCACTATCAGCAGCCTGCAGTC





TGAAGATTTTGCGGTTTATCACTGTCAGCAGTATAGTATCTGGCCTCA





GACTTTTGGCCAGGGGACCAAAGTGGATATCAAA





254
4058
362
DIRLTQSPATLSMSPGERATLSCRASQSVNNNLAWYQQRPGQAPRLLIYG





ASTRATGIPARFSGSGSETEFTLTISSLQSEDFAVYHCQQYSIWPQTFGQG





TKVDIK





254
4059
363
RASQSVNNNLA





254
4060
364
AGGGCCAGTCAGAGTGTTAACAACAACTTAGCC





254
4061
365
GASTRAT





254
4062
366
GGTGCATCTACCAGGGCCACT





254
4063
367
QQYSIWPQT





254
4064
368
CAGCAGTATAGTATCTGGCCTCAGACT





255
4065
369
GAGGTGCAGCTGTTGGAGTCTGGGGGAGCCTTGGTCGAGCCTGGGGG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTTAACACGTA





TTCCATGAACTGGGTCCGCCAGGGTCCAGGGAAGGGACTGGAGTGGG





TCGCAACGATAAGTACGAGTACTGCTGGCTCATACTACGCAGACTCC





GTGAGGGGCCGGTTCACCATCTCTAGAGACAATTCCAAGAACACGTT





ATATCTGCAAATGAACAGTCTGAGAGTCGAAGACACGGCCGTATATT





ACTGTGCGAGAGATCAGGAAGTGGAACTGATCGATGATGCTTTTGAT





TTCTGGGGCCGGGGGACAATGGTCACCGTCTCTTCA





255
4066
370
EVQLLESGGALVEPGGSLRLSCAASGFSFNTYSMNWVRQGPGKGLEWV





ATISTSTAGSYYADSVRGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCA





RDQEVELIDDAFDFWGRGTMVTVSS





255
4067
371
FSFNTYSMN





255
4068
372
TTCTCCTTTAACACGTATTCCATGAAC





255
4069
373
TISTSTAGSYYADSVRG





255
4070
374
ACGATAAGTACGAGTACTGCTGGCTCATACTACGCAGACTCCGTGAG





GGGC





255
4071
375
ARDQEVELIDDAFDF





255
4072
376
GCGAGAGATCAGGAAGTGGAACTGATCGATGATGCTTTTGATTTC





255
4073
377
GATATTGTGATGACTCAGACACATTCCTCCCTGTCTGCATCTGTGGGA





GACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTATCTG





GGTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAACCTCCTGA





TCTATAAGGCGTCTAGTTTACAAAGTGGGGTCCCATCAAGGTTCAGCG





GCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAG





CCTGATGACTCTGCAACTTATTACTGCCAACAGTATTACACCTATTAC





AGTTTTGGCCAGGGGACCAAGCTGGAGATCAAA





255
4074
378
DIVMTQTHSSLSASVGDRVTITCRASQSISIWVAWYQQKPGKAPNLLIYK





ASSLQSGVPSRFSGSGSGTEFTLTISSLQPDDSATYYCQQYYTYYSFGQGT





KLEIK





255
4075
379
RASQSISIWVA





255
4076
380
CGGGCCAGTCAGAGTATTAGTATCTGGGTGGCC





255
4077
381
KASSLQS





255
4078
382
AAGGCGTCTAGTTTACAAAGT





255
4079
383
QQYYTYYS





255
4080
384
CAACAGTATTACACCTATTACAGT





256
4081
385
GAGGTGCAGCTGGTGGAGTCTGGGGCTGAGGTGAAGAGGCCTGGGGC





CTCAGTGAAAATCTCCTGCAAGGCTTCTGAATACGCCTTCACCGCCCA





CTATCTTCACTGGGTGCGACAGGCCCCTGATCAAGGACTTGAGTGGAT





GGGATGGATCAGCCCTAAAAGTGGTGGCACCAACTATGCACAGAAGT





TTCACGGCAGGGTCAGCATGACCAGTGACACGTCCATCAGTACAGTC





TATATGGAACTGAGCAGCCTGACATCTGACGACACGGCCGTCTATTA





CTGTGCGAGAAGCAGTCTGGTGGGAGCAAGCCCCAACTTTGACTTCT





GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





256
4082
386
EVQLVESGAEVKRPGASVKISCKASEYAFTAHYLHWVRQAPDQGLEWM





GWISPKSGGTNYAQKFHGRVSMTSDTSISTVYMELSSLTSDDTAVYYCA





RSSLVGASPNFDFWGQGTLVTVSS





256
4083
387
YAFTAHYLH





256
4084
388
TACGCCTTCACCGCCCACTATCTTCAC





256
4085
389
WISPKSGGTNYAQKFHG





256
4086
390
TGGATCAGCCCTAAAAGTGGTGGCACCAACTATGCACAGAAGTTTCA





CGGC





256
4087
391
ARSSLVGASPNFDF





256
4088
392
GCGAGAAGCAGTCTGGTGGGAGCAAGCCCCAACTTTGACTTC





256
4089
393
CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACA





GAGGGTCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATA





ATTATGTATCCTGGTACCAGCAACTCCCAGGAACTACCCCCAAAGTCC





TCATTTACGACAATAATCAGCGACCCTCAGGGATTCCTGACCGTTTCT





CTGGCTCCAAGTCTGGCACGTCAGCCACCCTGGCCATCAGCGGACTCC





AGACTGGCGACGAGGCCGTCTATTATTGCGGAACATGGGATGCCAGC





CTGAGTGCTGCTATGGTTTTCGGCGGGGGGACCAAGCTCACCGTCCTA





256
4090
394
QSVLTQPPSVSAAPGQRVTISCSGSSSNIGNNYVSWYQQLPGTTPKVLIYD





NNQRPSGIPDRFSGSKSGTSATLAISGLQTGDEAVYYCGTWDASLSAAM





VFGGGTKLTVL





256
4091
395
SGSSSNIGNNYVS





256
4092
396
TCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCC





256
4093
397
DNNQRPS





256
4094
398
GACAATAATCAGCGACCCTCA





256
4095
399
GTWDASLSAAMV





256
4096
400
GGAACATGGGATGCCAGCCTGAGTGCTGCTATGGTT





257
4097
401
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGA





GACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGCGGATA





TTACTGGAGCTGGATCCGGCAGCCCCCAGGGAGGGGACTGGAGTGGA





TTGGGTTTATTTATTATAGTGGGAGTACCAGCTACGACTCCTCCCTCA





AGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCC





CTAAACCTGAGCTCTGTGACCGCTGCGGACACGGCCGTATATTACTGT





GCGAGAAGTACATGGGACTACGGTGACCACTTTCCGTTTGACTACTG





GGGCCAGGGAACCCTGGTCACCGTCTCCTCA





257
4098
402
QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGRGLEWIGFI





YYSGSTSYDSSLKSRVTISVDTSKNQFSLNLSSVTAADTAVYYCARSTWD





YGDHFPFDYWGQGTLVTVSS





257
4099
403
GSISGYYWS





257
4100
404
GGCTCCATCAGCGGATATTACTGGAGC





257
4101
405
FIYYSGSTSYDSSLKS





257
4102
406
TTTATTTATTATAGTGGGAGTACCAGCTACGACTCCTCCCTCAAGAGT





257
4103
407
ARSTWDYGDHFPFDY





257
4104
408
GCGAGAAGTACATGGGACTACGGTGACCACTTTCCGTTTGACTAC





257
4105
409
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAAA





GACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAATTAAAGATG





TGCACTGGTACCAACTGAGGCCAGGCCAGGCCCCTGTGTTGGTCATCT





CTTATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCT





CCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCC





GGGGATGAGGCCGACTATTTCTGTCAGGTGTGGGATAGTAGTCCTGA





TCATCCTTATGTCTTCGGAACTGGGACCAAGCTCACCGTCCTA





257
4106
410
SYELTQPPSVSVAPGKTARITCGGNNIGIKDVHWYQLRPGQAPVLVISYD





SDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYFCQVWDSSPDHPYVF





GTGTKLTVL





257
4107
411
GGNNIGIKDVH





257
4108
412
GGGGGAAACAACATTGGAATTAAAGATGTGCAC





257
4109
413
YDSDRPS





257
4110
414
TATGATAGCGACCGGCCCTCA





257
4111
415
QVWDSSPDHPYV





257
4112
416
CAGGTGTGGGATAGTAGTCCTGATCATCCTTATGTC





258
4113
417
GAGGTGCAGCTGGTGGAGTCTGGAGGTGAGGTGAAGAAGCCTGGGG





CCTCAGTGAAGGTCTCCTGCAGGGCCTCTGGTTACACCTTTAGAAACT





ATGGCCTCACCTGGGTGCGGCAGGCCCCCGGACAAGGGCTTGAGTGG





ATGGGATGGATCAGCGCTTACAATGGAAACACAAACTATGCACAGAA





GTTCCAGGGCAGAGTCACACTGACCACGGACACATCCACGAGCACAG





CCTACATGGAACTGAGGAGCCTAAGATCTGACGACACGGCCGTGTAT





TTCTGTGCGAGAGACGTCCCCGGCCACGGCGCTGCCTTCATGGACGTC





TGGGGCACAGGGACCACGGTCACCGTCTCCTCA





258
4114
418
EVQLVESGGEVKKPGASVKVSCRASGYTFRNYGLTWVRQAPGQGLEW





MGWISAYNGNTNYAQKFQGRVTLTTDTSTSTAYMELRSLRSDDTAVYF





CARDVPGHGAAFMDVWGTGTTVTVSS





258
4115
419
YTFRNYGLT





258
4116
420
TACACCTTTAGAAACTATGGCCTCACC





258
4117
421
WISAYNGNTNYAQKFQG





258
4118
422
TGGATCAGCGCTTACAATGGAAACACAAACTATGCACAGAAGTTCCA





GGGC





258
4119
423
ARDVPGHGAAFMDV





258
4120
424
GCGAGAGACGTCCCCGGCCACGGCGCTGCCTTCATGGACGTC





258
4121
425
GAAACGACACTCACGCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGG





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGAAGCCAGT





GATACAAATATCTACTTGAGTTGGTTTCAGCAGAGGCCAGGCCAATCT





CCAAGGCGCCTAATTTATAAGATTTCTAACCGAGACTCTGGGGTCCCA





GACAGATTCAGCGGCAGTGGGTCAGGCACTCATTTCACACTGAGAAT





CAGCAGGGTGGAGGCTGACGATGTTGCGGTTTATTACTGCATGCAGG





GTACACACTGGCCTCCGGCGTTCGGCCAGGGGACCAAGCTGGAGATC





AAA





258
4122
426
ETTLTQSPLSLPVTLGQPASISCRSSQSLEASDTNIYLSWFQQRPGQSPRRL





IYKISNRDSGVPDRFSGSGSGTHFTLRISRVEADDVAVYYCMQGTHWPPA





FGQGTKLEIK





258
4123
427
RSSQSLEASDTNIYLS





258
4124
428
AGGTCTAGTCAAAGCCTCGAAGCCAGTGATACAAATATCTACTTGAG





T





258
4125
429
KISNRDS





258
4126
430
AAGATTTCTAACCGAGACTCT





258
4127
431
MQGTHWPPA





258
4128
432
ATGCAGGGTACACACTGGCCTCCGGCG





259
4129
433
GAGGTGCAGCTGGTGGAGTCTGGATCTGAGGTGAAGAAGCCTGGGGC





CGCAGTGAAGGTATCCTGCAAGGCTTCTGGTTACATCTTTGCCAACTT





TGGTGTCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGGATGGATCAGCGCTTACAATGGTAACACAAACTATGCACAGAAG





TTCCAGGGCAGAGTCATCATGACCACAGACACATCCACGAGCACAGC





CTACATGGAGCTGAGGAGCCTGAGATCTGACGACACGGCCGTGTATT





ATTGTGCGAGAGACCCCCCCGCCTACGCCGCTACATTGATGGACGTCT





GGGGCAAAGGGACCACGGTCACCGTCTCCTCA





259
4130
434
EVQLVESGSEVKKPGAAVKVSCKASGYIFANFGVSWVRQAPGQGLEWM





GWISAYNGNTNYAQKFQGRVIMTTDTSTSTAYMELRSLRSDDTAVYYC





ARDPPAYAATLMDVWGKGTTVTVSS





259
4131
435
YIFANFGVS





259
4132
436
TACATCTTTGCCAACTTTGGTGTCAGC





259
4133
437
WISAYNGNTNYAQKFQG





259
4134
438
TGGATCAGCGCTTACAATGGTAACACAAACTATGCACAGAAGTTCCA





GGGC





259
4135
439
ARDPPAYAATLMDV





259
4136
440
GCGAGAGACCCCCCCGCCTACGCCGCTACATTGATGGACGTC





259
4137
441
GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGTCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGAACACAGT





GATACAAACACCTACTTGACTTGGTATCAGCAGAGGCCAGGCCAATC





TCCAAGGCGGCTACTTTATAAGGTTTCTAACCGGGACTCTGGGGTCCC





AGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAAAA





TCAGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





GGTACACACTGGCCTCCGACGTTCGGCCAAGGGACCAAGCTGGAGAT





CAAA





259
4138
442
DIVMTQSPLSLPVTLGQSASISCRSSQSLEHSDTNTYLTWYQQRPGQSPRR





LLYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWP





PTFGQGTKLEIK





259
4139
443
RSSQSLEHSDTNTYLT





259
4140
444
AGGTCTAGTCAAAGCCTCGAACACAGTGATACAAACACCTACTTGAC





T





259
4141
445
KVSNRDS





259
4142
446
AAGGTTTCTAACCGGGACTCT





259
4143
447
MQGTHWPPT





259
4144
448
ATGCAAGGTACACACTGGCCTCCGACG





260
4145
449
GAGGTGCAGCTGGTGGAGTCTGGCCCAACACTGGTGAAGCCTTCGGA





GACCCTGTCCCTCACCTGCGTTGTCTCTGGTGGCTCCGTCTACAGGAG





TAGTAACTACTGGGCCTGGATCCGCCAGCCCCCAGGGAAGGGGCTGG





AGTGGATCGGGAGTGTCTATCATAGTGGGAACCCCTACTCCAACCCG





TCCCTTCAGAGTCGAGTCTCCGTCTCCATTGACACGTCCAAGAACCAG





TTCTCCCTGAAGCTGTACTCTGTGACCGCCGCAGACTCGGCTATTTAT





TATTGTGCGTGTAAAAGAGCGGACGCTGACGACGTAGATTACGTGGC





GGGCCTCACCGGTTTCCCCTGGTACTTCGATGTCTGGGGCCGTGGCAC





CCTGGTCACCGTCTCCTCA





260
4146
450
EVQLVESGPTLVKPSETLSLTCVVSGGSVYRSSNYWAWIRQPPGKGLEWI





GSVYHSGNPYSNPSLQSRVSVSIDTSKNQFSLKLYSVTAADSAIYYCACK





RADADDVDYVAGLTGFPWYFDVWGRGTLVTVSS





260
4147
451
GSVYRSSNYWA





260
4148
452
GGCTCCGTCTACAGGAGTAGTAACTACTGGGCC





260
4149
453
SVYHSGNPYSNPSLQS





260
4150
454
AGTGTCTATCATAGTGGGAACCCCTACTCCAACCCGTCCCTTCAGAGT





260
4151
455
ACKRADADDVDYVAGLTGFPWYFDV





260
4152
456
GCGTGTAAAAGAGCGGACGCTGACGACGTAGATTACGTGGCGGGCCT





CACCGGTTTCCCCTGGTACTTCGATGTC





260
4153
457
GAAATTGTGTTGACGCAGTCTCCGTCCACCCTGTCTGCATCTGTGGGA





GACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAGTTG





GTTGGCCTGGTATCAGCAGAAACCAGGGAAAACCCCTAAGTTGCTCA





TCTATAAGGCGTCTACTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCG





GCAGCGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAG





CCTGATGATTTCGCAACCTACTACTGCCAACAGTATCATGTTTATTTC





CCGCTCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAA





260
4154
458
EIVLTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKTPKLLIYKA





STLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYHVYFPLTFGGG





TKVEIK





260
4155
459
RASQSISSWLA





260
4156
460
CGGGCCAGTCAGAGTATTAGTAGTTGGTTGGCC





260
4157
461
KASTLES





260
4158
462
AAGGCGTCTACTTTAGAAAGT





260
4159
463
QQYHVYFPLT





260
4160
464
CAACAGTATCATGTTTATTTCCCGCTCACT





261
4161
465
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG





GTCCCTGAGACTCTCCTGTGTAGCGTCTGGATTCAGCTTCAGTATGCA





TGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGG





TGACAGCTATATGGTATGATGGAAGTAATAAATATTATGCAGACTCC





GTGAAGGGCCGATTCACGATCTCCAGAGACAATTCTAGGAACACGCT





GTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATT





ACTGTGCGAGAGATCATGCCTCAACTCCATACTACATGGACGTCTGG





GGCAAAGGGACCACGGTCACCGTCTCTTCA





261
4162
466
EVQLVESGGGVVQPGRSLRLSCVASGFSFSMHGMHWVRQAPGKGLEW





VTAIWYDGSNKYYADSVKGRFTISRDNSRNTLYLQMNSLRAEDTAVYY





CARDHASTPYYMDVWGKGTTVTVSS





261
4163
467
FSFSMHGMH





261
4164
468
TTCAGCTTCAGTATGCATGGCATGCAC





261
4165
469
AIWYDGSNKYYADSVKG





261
4166
470
GCTATATGGTATGATGGAAGTAATAAATATTATGCAGACTCCGTGAA





GGGC





261
4167
471
ARDHASTPYYMDV





261
4168
472
GCGAGAGATCATGCCTCAACTCCATACTACATGGACGTC





261
4169
473
GAAACGACACTCACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGG





GAAAGCGCCACCCTCTCCTGCAGGACCAGTCAGAGGATTAGCAGCAC





CTACTTAGCCTGGTACCGGCAGAAACCTGGCCAGGCTCCCAGGCTCCT





CATGTATGGTGCATCCAGCAGGGCCACTGGCATCCCGGACAGGTTCA





GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGTCTG





GAGCCTGAAGATTTTGCACTATATTACTGTCAGCAGTATGGTAGCTTT





CCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAA





261
4170
474
ETTLTQSPGTLSLSPGESATLSCRTSQRISSTYLAWYRQKPGQAPRLLMY





GASSRATGIPDRFSGSGSGTDFTLTISSLEPEDFALYYCQQYGSFPWTFGQ





GTKVEIK





261
4171
475
RTSQRISSTYLA





261
4172
476
AGGACCAGTCAGAGGATTAGCAGCACCTACTTAGCC





261
4173
477
GASSRAT





261
4174
478
GGTGCATCCAGCAGGGCCACT





261
4175
479
QQYGSFPWT





261
4176
480
CAGCAGTATGGTAGCTTTCCGTGGACG





262
4177
481
CAGGTCCAGCTGGTGCAGTCTGGGCCTGAGGTGAAGAAGCCTGGGTC





CTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGCAGTTA





TGCTATCACGTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGGGGGGATCATCCCTTCCTTTGATAGAGTGGACTATTCACGGAACT





TCAAGGGGAGAGTCACCTTTACCGCGGACAAATCCGCGAACACGGCC





TACATGGAACTGACCAATGTGAGATCCGACGACACGGCCGTGTATTA





CTGTGCGAGAGGCTGTTGTGGGGCTGTGGCTGGATTCCAGCACTGGG





GCCAGGGCACCGGGGTCACCGTCTCCTCA





262
4178
482
QVQLVQSGPEVKKPGSSVKVSCKASGGTFSSYAITWVRQAPGQGLEWM





GGIIPSFDRVDYSRNFKGRVTFTADKSANTAYMELTNVRSDDTAVYYCA





RGCCGAVAGFQHWGQGTGVTVSS





262
4179
483
GTFSSYAIT





262
4180
484
GGCACCTTCAGCAGTTATGCTATCACG





262
4181
485
GIIPSFDRVDYSRNFKG





262
4182
486
GGGATCATCCCTTCCTTTGATAGAGTGGACTATTCACGGAACTTCAAG





GGG





262
4183
487
ARGCCGAVAGFQH





262
4184
488
GCGAGAGGCTGTTGTGGGGCTGTGGCTGGATTCCAGCAC





262
4185
489
GATATTGTGCTGACGCAGACTCCAGCCACCCTGTCTTTATCTCCAGGG





GAAACAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTACCACCTA





CTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGATGCATCCAACAGGGCCACTGGCGTCCCAACCAGGTTCAGTG





GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGGAG





CCTGAAGATTATGCGATTTATTACTGTCAGCAACGTACTACCGGGGTC





ACTTTCGGCGGGGGGACCAAGGTGGAAATCAAA





262
4186
490
DIVLTQTPATLSLSPGETATLSCRASQSVTTYLAWYQQKPGQAPRLLIYD





ASNRATGVPTRFSGSGSGTDFTLTISSLEPEDYAIYYCQQRTTGVTFGGGT





KVEIK





262
4187
491
RASQSVTTYLA





262
4188
492
AGGGCCAGTCAGAGTGTTACCACCTACTTAGCC





262
4189
493
DASNRAT





262
4190
494
GATGCATCCAACAGGGCCACT





262
4191
495
QQRTTGVT





262
4192
496
CAGCAACGTACTACCGGGGTCACT





263
4193
497
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG





GTCCCTGAGACTCTCTTGTGCAGCCTCTGGATTCACCTTCAGTAGTTTT





GGCATGCATTGGGTCCGCCAGGCTCCAGGGCAGGGACTGGAGTGGGT





CGCATCCATTACTGGTGGCAGCAGTTACATAAACTACGCAGACTCAG





TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAAGTCACTG





TCTCTGCAAATGAAGAACCTGAGAGCCGAGGACACGGCTGAGTATTA





CTGTGTGCGAGGAGTCCTACCAGGTGGTACTGGGGGGGGCTGGTTCG





ACTCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





263
4194
498
QVQLVESGGGLVKPGGSLRLSCAASGFTFSSFGMHWVRQAPGQGLEWV





ASITGGSSYINYADSVKGRFTISRDNAKKSLSLQMKNLRAEDTAEYYCVR





GVLPGGTGGGWFDSWGQGTLVTVSS





263
4195
499
FTFSSFGMH





263
4196
500
TTCACCTTCAGTAGTTTTGGCATGCAT





263
4197
501
SITGGSSYINYADSVKG





263
4198
502
TCCATTACTGGTGGCAGCAGTTACATAAACTACGCAGACTCAGTGAA





GGGC





263
4199
503
VRGVLPGGTGGGWFDS





263
4200
504
GTGCGAGGAGTCCTACCAGGTGGTACTGGGGGGGGCTGGTTCGACTC





C





263
4201
505
CAGTCTGTCCTGACTCAGCCGCCCTCAATGTCTGGGGCCCCAGGGCAG





AGGGTCACCATCTCCTGCACTGGGACCAGCTCCAACATCGGGGCGGG





TTATGATGTACAGTGGTATCAGCAGTTTCCAGGAACAGCCCCCAAACT





CCTCATCTCTGGTAACAACAATCGGCCCTCAGGGGTCCCTGACCGATT





CTCTGGCTCCAAGTCTGGCGCCTCAGCCTCCCTGGCCATCACTGGGCT





CCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACTACA





GCCTGAATTGGGTGTTCGGCGGAGGGACCAAGCTCACCGTCCTA





263
4202
506
QSVLTQPPSMSGAPGQRVTISCTGTSSNIGAGYDVQWYQQFPGTAPKLLI





SGNNNRPSGVPDRFSGSKSGASASLAITGLQAEDEADYYCQSYDYSLNW





VFGGGTKLTVL





263
4203
507
TGTSSNIGAGYDVQ





263
4204
508
ACTGGGACCAGCTCCAACATCGGGGCGGGTTATGATGTACAG





263
4205
509
GNNNRPS





263
4206
510
GGTAACAACAATCGGCCCTCA





263
4207
511
QSYDYSLNWV





263
4208
512
CAGTCCTATGACTACAGCCTGAATTGGGTG





264
4209
513
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACA





GACCCTGTCGCTCACCTGCACTGTCTCTGGTCGCTTCCTCAATAGTGG





TGATTACTACTGGAGTTGGATCCGCCAGTCCCCAGGGAAGGGCCTGG





AGTGGCTTGGTTACATCCATCACAGTGGGAACACCTACTACAACCCGT





CCCTCAAGAGTCGACTTACCATATCACTAGACATGTCCAAGAACCAG





TTCTCCCTGAAGTTGAGCTCTGTGACAGCCGCAGACACGGCCGTCTAT





TACTGTGCCAGAGATTTGGGAAAGCCGCTTTGGGACGGCCACTATTA





CTACGGAGTGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCT





CA





264
4210
514
QVQLQESGPGLVKPSQTLSLTCTVSGRFLNSGDYYWSWIRQSPGKGLEW





LGYIHHSGNTYYNPSLKSRLTISLDMSKNQFSLKLSSVTAADTAVYYCAR





DLGKPLWDGHYYYGVDVWGQGTTVTVSS





264
4211
515
RFLNSGDYYWS





264
4212
516
CGCTTCCTCAATAGTGGTGATTACTACTGGAGT





264
4213
517
YIHHSGNTYYNPSLKS





264
4214
518
TACATCCATCACAGTGGGAACACCTACTACAACCCGTCCCTCAAGAG





T





264
4215
519
ARDLGKPLWDGHYYYGVDV





264
4216
520
GCCAGAGATTTGGGAAAGCCGCTTTGGGACGGCCACTATTACTACGG





AGTGGACGTC





264
4217
521
GATATTGTGATGACTCAGTCTCCAGGCACTCTGTCTTTGTCTCCAGGA





GAAAGAGCCACCCTCTCCTGCAGGACCAGTCAGAATGTTAACAGCAA





CTACTTAGCCTGGTACCAGCATAAACCTGGGCAGGCTCCCAGGCTCCT





CATCTATGGTGCATCCAGCAGGGTCACTGGCATCCCAGACAGGTTCA





GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCACCAGAGTG





GAGTCTGAAGATTTTGCAGTGTATTACTGTCAGGTGTATAGTAGTTCA





CCTCCGATCACCTTCGGCCAGGGGACCAAGGTGGAGATCAAA





264
4218
522
DIVMTQSPGTLSLSPGERATLSCRTSQNVNSNYLAWYQHKPGQAPRLLIY





GASSRVTGIPDRFSGSGSGTDFTLTITRVESEDFAVYYCQVYSSSPPITFGQ





GTKVEIK





264
4219
523
RTSQNVNSNYLA





264
4220
524
AGGACCAGTCAGAATGTTAACAGCAACTACTTAGCC





264
4221
525
GASSRVT





264
4222
526
GGTGCATCCAGCAGGGTCACT





264
4223
527
QVYSSSPPIT





264
4224
528
CAGGTGTATAGTAGTTCACCTCCGATCACC





265
4225
529
CAGGTCCAGCTTGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTC





CTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGCAGTTA





TGCTATCAGCTGGGTGCGTCAGGCCCCAGGACAAGGGCTTGAGTGGA





TGGGAGGAATCATCCCTATGTTTGATATAGTCGACTACGCACAGAAG





TTCCAGGGCAGAGTCACGATTACCGCGGACGAATCCACGAACACAGC





CTACATGGAGCTGACCAGCCTGAGATCTGAGGACACGGCCGTGTATT





ACTGTGCGAGAACTGCGGCTTTAGGACCACCTGGGACTATAGTGGGG





TACATGGACGTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCA





265
4226
530
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWM





GGIIPMFDIVDYAQKFQGRVTITADESTNTAYMELTSLRSEDTAVYYCAR





TAALGPPGTIVGYMDVWGKGTTVTVSS





265
4227
531
GTFSSYAIS





265
4228
532
GGCACCTTCAGCAGTTATGCTATCAGC





265
4229
533
GIIPMFDIVDYAQKFQG





265
4230
534
GGAATCATCCCTATGTTTGATATAGTCGACTACGCACAGAAGTTCCAG





GGC





265
4231
535
ARTAALGPPGTIVGYMDV





265
4232
536
GCGAGAACTGCGGCTTTAGGACCACCTGGGACTATAGTGGGGTACAT





GGACGTC





265
4233
537
GATATTGTGATGACGCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGA





GAGCCGGCCTCCATCTCCTGCCGGTCTAGTCAGAGCCTCCTGCAAAGT





AATGGATACAACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGGC





TCCACAGCTCCTGATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCC





TGACAAGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAAA





TCAGCAGAGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





ACTCTACAAACTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAAT





CAAA





265
4234
538
DIVMTQSPLSLPVTPGEPASISCRSSQSLLQSNGYNYLDWYLQKPGQAPQ





LLIYLGSNRASGVPDKFSGSGSGTDFTLKISRVEAEDVGVYYCMQTLQTP





WTFGQGTKVEIK





265
4235
539
RSSQSLLQSNGYNYLD





265
4236
540
CGGTCTAGTCAGAGCCTCCTGCAAAGTAATGGATACAACTATTTGGAT





265
4237
541
LGSNRAS





265
4238
542
TTGGGTTCTAATCGGGCCTCC





265
4239
543
MQTLQTPWT





265
4240
544
ATGCAAACTCTACAAACTCCGTGGACG





266
4241
545
CAGGTGCAGCTGGTGGAGTCTGGAGCAGAGGCGAGAAAGCCCGGGG





AGTCTCTGAAGATCTCCTGTAAGGCTTCTGGATACAGCTTTACCAATT





ATTGGATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGG





ATGGGGGTCATCTATCCTGCTGACTCCGATACCAGATATAGCCCGTCC





TTCAAAGGCCAGGTCACCATCTCAGCCGACAAATCCATCAGCACCGC





CTACCTCCAGTGGACCAGACTGAAGGCCTCGGACACCGCCGTGTATTT





CTGTGCGAGACTTGGAATAGGAGCTGCTGCCCGGAACTACTGGGGCC





AGGGAACCCTGGTCACCGTCTCTTCA





266
4242
546
QVQLVESGAEARKPGESLKISCKASGYSFTNYWIGWVRQMPGKGLEWM





GVIYPADSDTRYSPSFKGQVTISADKSISTAYLQWTRLKASDTAVYFCAR





LGIGAAARNYWGQGTLVTVSS





266
4243
547
YSFTNYWIG





266
4244
548
TACAGCTTTACCAATTATTGGATCGGC





266
4245
549
VIYPADSDTRYSPSFKG





266
4246
550
GTCATCTATCCTGCTGACTCCGATACCAGATATAGCCCGTCCTTCAAA





GGC





266
4247
551
ARLGIGAAARNY





266
4248
552
GCGAGACTTGGAATAGGAGCTGCTGCCCGGAACTAC





266
4249
553
GACATCCAGGTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCGACAG





TTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAACCTCCTGA





TCTACGATGCATCCAAGTCGGAAACAGGGGTCCCATCAAGATTCAGT





GGAAGCGGATCTGGGACAGATTTCACTTTCACCATCAGTAGCCTGCA





GCCTGAAGATCTTGCAACATATTACTGTCTACAGTTTGATAATCTCCC





TCCGACCTTCGGCCAAGGGACACGACTGGAGATTAAA





266
4250
554
DIQVTQSPSSLSASVGDRVTITCQASQDISDSLNWYQQKPGKAPNLLIYD





ASKSETGVPSRFSGSGSGTDFTFTISSLQPEDLATYYCLQFDNLPPTFGQG





TRLEIK





266
4251
555
QASQDISDSLN





266
4252
556
CAGGCGAGTCAGGACATTAGCGACAGTTTAAAT





266
4253
557
DASKSET





266
4254
558
GATGCATCCAAGTCGGAAACA





266
4255
559
LQFDNLPPT





266
4256
560
CTACAGTTTGATAATCTCCCTCCGACC





267
4257
561
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG





GGCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGGAGCTA





TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTAGTAGTAGTAATTACATAAACTACGCAGACTCAG





TGAAGGGCCGATTCAGCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTA





CTGTGCGAGAGATTTGTTACCCGTCGAGCGGGGTCCCGCTTTTGATAT





CTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA





267
4258
562
EVQLVESGGGLVKPGGALRLSCAASGFSFRSYSMNWVRQAPGKGLEWV





SSISSSSNYINYADSVKGRFSISRDNAKNSLYLQMNSLRAEDTAVYYCAR





DLLPVERGPAFDIWGQGTMVTVSS





267
4259
563
FSFRSYSMN





267
4260
564
TTCAGCTTCAGGAGCTATAGCATGAAC





267
4261
565
SISSSSNYINYADSVKG





267
4262
566
TCCATTAGTAGTAGTAGTAATTACATAAACTACGCAGACTCAGTGAA





GGGC





267
4263
567
ARDLLPVERGPAFDI





267
4264
568
GCGAGAGATTTGTTACCCGTCGAGCGGGGTCCCGCTTTTGATATC





267
4265
569
TCCTATGAGCTGACACAGCCACCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAG





GTTATGATGTACACTGGTTCCAGCAGCTTCCAGGAGCAGCCCCCAAA





CTCCTCATCTATGCTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGACTGGGTGGTTCGGTATTCGGCGGAGGGACCAAGGTGACCGTCCT





A





267
4266
570
SYELTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWFQQLPGAAPKLLI





YANSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSRLGGS





VFGGGTKVTVL





267
4267
571
TGSSSNIGAGYDVH





267
4268
572
ACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGTACAC





267
4269
573
ANSNRPS





267
4270
574
GCTAACAGCAATCGGCCCTCA





267
4271
575
QSYDSRLGGSV





267
4272
576
CAGTCCTATGACAGCAGACTGGGTGGTTCGGTA





268
4273
577
CAGGTCCAGCTTGTGCAGTCTGGACCAGAGGTGAAAAAGCCCGGGGA





GTCTCTGACGATCTCCTGTAAGGGTTCTGGATACGACTTTTCCAATAA





CTGGATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGGA





TGGGAATCATCTATCCTGGTGACTCTGATACCAGATACAGCCCGTCGT





TCCAAGGCCAGGTCACCCTCTCAGTCGACAAGTCCATTAGTACCGCCT





ACCTACAGTGGAGGAGCCTGAAGGCCTCGGACAGCGGCATCTACTAC





TGTGCGAGACAAATTGGCGGTTTGGTTTGTAGCAGTGAGAGCTGCTA





CTTCTACGGCATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCT





CCTCA





268
4274
578
QVQLVQSGPEVKKPGESLTISCKGSGYDFSNNWIGWVRQMPGKGLEWM





GIIYPGDSDTRYSPSFQGQVTLSVDKSISTAYLQWRSLKASDSGIYYCARQ





IGGLVCSSESCYFYGMDVWGQGTTVTVSS





268
4275
579
YDFSNNWIG





268
4276
580
TACGACTTTTCCAATAACTGGATCGGC





268
4277
581
IIYPGDSDTRYSPSFQG





268
4278
582
ATCATCTATCCTGGTGACTCTGATACCAGATACAGCCCGTCGTTCCAA





GGC





268
4279
583
ARQIGGLVCSSESCYFYGMDV





268
4280
584
GCGAGACAAATTGGCGGTTTGGTTTGTAGCAGTGAGAGCTGCTACTTC





TACGGCATGGACGTC





268
4281
585
GACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTGGGA





GGCAGAGTGACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAACTA





TTTAAATTGGTATCAACACAAACCGGGGAAAGCCCCTGAACTCCTGA





TCTATGGTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG





GCAGTGGATCTGGGACAGACTTCACTCTCACCATCAGCAGTCTGCAA





CCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTGACACTACCCCG





TTCACTTTCGGCCAGGGGACCAAAGTGGATATCAAA





268
4282
586
DIQLTQSPSSLSASVGGRVTITCRASQSISNYLNWYQHKPGKAPELLIYGA





SSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSDTTPFTFGQGT





KVDIK





268
4283
587
RASQSISNYLN





268
4284
588
CGGGCAAGTCAGAGCATTAGCAACTATTTAAAT





268
4285
589
GASSLQS





268
4286
590
GGTGCATCCAGTTTGCAAAGT





268
4287
591
QQSDTTPFT





268
4288
592
CAACAGAGTGACACTACCCCGTTCACT





269
4289
593
CAGGTCCAGCTGGTGCAGTCTGGGGGAGGCTTGGTAAAGCCGGGGGG





GTCCCTTAGACTCTCCTGTGCAGCCTCTGGATTCACTTTCAGTAAGGC





CTGGATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TTGGCCGTATTAGAAGCAAAACTGATGGTGGGACAGCAGACTACGCG





GCACCCGTGAAAGGCAGATTCACCATGTCAAGAGATGATTCAAAAAA





CACGCTGTATTTGCAAATGAACAGCCTGAAAACCGAGGACACAGCCG





TGTATTACTGTGCCACAGATTCTCGCCGACTCTATGATAGTCGTGGTT





TTTATTCAAGTGCTTTTGATGTCTGGGGCCAAGGGACCACGGTCACCG





TCTCCTCA





269
4290
594
QVQLVQSGGGLVKPGGSLRLSCAASGFTFSKAWMNWVRQAPGKGLEW





VGRIRSKTDGGTADYAAPVKGRFTMSRDDSKNTLYLQMNSLKTEDTAV





YYCATDSRRLYDSRGFYSSAFDVWGQGTTVTVSS





269
4291
595
FTFSKAWMN





269
4292
596
TTCACTTTCAGTAAGGCCTGGATGAAC





269
4293
597
RIRSKTDGGTADYAAPVKG





269
4294
598
CGTATTAGAAGCAAAACTGATGGTGGGACAGCAGACTACGCGGCACC





CGTGAAAGGC





269
4295
599
ATDSRRLYDSRGFYSSAFDV





269
4296
600
GCCACAGATTCTCGCCGACTCTATGATAGTCGTGGTTTTTATTCAAGT





GCTTTTGATGTC





269
4297
601
CAGTCTGTCCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCGG





GTTATGATGTACACTGGTACCAACACCTTCCAGGAACAGCCCCCAAA





GTCCTCATCTATGGTAACAACAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACGAC





AGCCTGACTGGTTGGGTGTTCGGCGGAGGGACCAAGGTCACCGTCCT





A





269
4298
602
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQHLPGTAPKVLI





YGNNNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDDSLTG





WVFGGGTKVTVL





269
4299
603
TGSSSNIGAGYDVH





269
4300
604
ACTGGGAGCAGCTCCAACATCGGGGCGGGTTATGATGTACAC





269
4301
605
GNNNRPS





269
4302
606
GGTAACAACAATCGGCCCTCA





269
4303
607
QSYDDSLTGWV





269
4304
608
CAGTCCTATGACGACAGCCTGACTGGTTGGGTG





270
4305
609
CAGGTGCAGCTGGTGCAATCTGGACCAGAGGTGAAAAAGCCCGGGG





AGTCTCTGACGATCTCCTGTAAGGGTTCTGGATACGACTTTTCCAATA





ACTGGATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGG





ATGGGAATCATCTATCCTGGTGACTCTGATACCAGATACAGCCCGTCG





TTCCAAGGCCAGGTCACCCTCTCAGTCGACAAGTCCATTAGTACCGCC





TACCTACAGTGGAGGAGCCTGAAGGCCTCGGACAGCGGCATCTACTA





CTGTGCGAGACAAATTGGCGGTTTGGTTTGTAGCAGTGAGAGCTGCT





ACTTCTACGGCATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTC





TCCTCA





270
4306
610
QVQLVQSGPEVKKPGESLTISCKGSGYDFSNNWIGWVRQMPGKGLEWM





GIIYPGDSDTRYSPSFQGQVTLSVDKSISTAYLQWRSLKASDSGIYYCARQ





IGGLVCSSESCYFYGMDVWGQGTTVTVSS





270
4307
611
YDFSNNWIG





270
4308
612
TACGACTTTTCCAATAACTGGATCGGC





270
4309
613
IIYPGDSDTRYSPSFQG





270
4310
614
ATCATCTATCCTGGTGACTCTGATACCAGATACAGCCCGTCGTTCCAA





GGC





270
4311
615
ARQIGGLVCSSESCYFYGMDV





270
4312
616
GCGAGACAAATTGGCGGTTTGGTTTGTAGCAGTGAGAGCTGCTACTTC





TACGGCATGGACGTC





270
4313
617
GACATCCGGGTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTGGGA





GGCAGAGTGACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAACTA





TTTAAATTGGTATCAACACAAACCGGGGAAAGCCCCTGAACTCCTGA





TCTATGGTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTG





GCAGTGGATCTGGGACAGACTTCACTCTCACCATCAGCAGTCTGCAA





CCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTGACACTACCCCG





TTCACTTTCGGCCAGGGGACCAAGCTGGAGATCAAA





270
4314
618
DIRVTQSPSSLSASVGGRVTITCRASQSISNYLNWYQHKPGKAPELLIYGA





SSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSDTTPFTFGQGT





KLEIK





270
4315
619
RASQSISNYLN





270
4316
620
CGGGCAAGTCAGAGCATTAGCAACTATTTAAAT





270
4317
621
GASSLQS





270
4318
622
GGTGCATCCAGTTTGCAAAGT





270
4319
623
QQSDTTPFT





270
4320
624
CAACAGAGTGACACTACCCCGTTCACT





271
4321
625
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG





GTCCCTGAGACTCTCTTGTGCAGCCTCTGGATTCACCTTCAGTAGTTTT





GGCATGCATTGGGTCCGCCAGGCTCCAGGGCAGGGACTGGAGTGGGT





CGCATCCATTACTGGTGGCAGCAGTTACATAAACTACGCAGACTCAG





TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAAGTCACTG





TCTCTGCAAATGAAGAACCTGAGAGCCGAGGACACGGCTGAGTATTA





CTGTGTGCGAGGAGTCCTACCAGGTGATACTGGGGGGGGCTGGTTCG





ACTCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





271
4322
626
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSFGMHWVRQAPGQGLEWV





ASITGGSSYINYADSVKGRFTISRDNAKKSLSLQMKNLRAEDTAEYYCVR





GVLPGDTGGGWFDSWGQGTLVTVSS





271
4323
627
FTFSSFGMH





271
4324
628
TTCACCTTCAGTAGTTTTGGCATGCAT





271
4325
629
SITGGSSYINYADSVKG





271
4326
630
TCCATTACTGGTGGCAGCAGTTACATAAACTACGCAGACTCAGTGAA





GGGC





271
4327
631
VRGVLPGDTGGGWFDS





271
4328
632
GTGCGAGGAGTCCTACCAGGTGATACTGGGGGGGGCTGGTTCGACTC





C





271
4329
633
CAGTCTGTGCTGACGCAGCCGCCCTCAATGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGACCAGCTCCAACATCGGGGCGG





GTTATGATGTACAGTGGTATCAGCAGTTTCCAGGAACAGCCCCCAAA





CTCCTCATCTCTGGTAACAACAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCGCCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACTAC





AGCCTGAATTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA





271
4330
634
QSVLTQPPSMSGAPGQRVTISCTGTSSNIGAGYDVQWYQQFPGTAPKLLI





SGNNNRPSGVPDRFSGSKSGASASLAITGLQAEDEADYYCQSYDYSLNW





VFGGGTKLTVL





271
4331
635
TGTSSNIGAGYDVQ





271
4332
636
ACTGGGACCAGCTCCAACATCGGGGCGGGTTATGATGTACAG





271
4333
637
GNNNRPS





271
4334
638
GGTAACAACAATCGGCCCTCA





271
4335
639
QSYDYSLNWV





271
4336
640
CAGTCCTATGACTACAGCCTGAATTGGGTG





272
4337
641
CAGGTCCAGCTTGTACAGTCTGGAGCAGAGGTGAAAAAGCCCGGGGA





GTCTCTGAAGATCTCCTGTAAGGGTTCTGGATACAGCTTTAGCAGTTT





CTGGATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGGA





TGGGCATCATATATCCTGGTGACTCTGATACCAGATATAGCCCGTCTT





TCCAAGGCCAGGTCACCATGTCAGCCGACACGTCCATAAACACCGCC





TACCTGCAGTGGAACAGCGTGAAGGCCTCGGACACCGCCATTTATTA





CTGTGCGAGACTTCCAGTTGGTAGTTATTATTACTTCAATCTCTGGGG





CCGTGGCACCCTGGTCACCGTCTCCTCA





272
4338
642
QVQLVQSGAEVKKPGESLKISCKGSGYSFSSFWIGWVRQMPGKGLEWM





GIIYPGDSDTRYSPSFQGQVTMSADTSINTAYLQWNSVKASDTAIYYCAR





LPVGSYYYFNLWGRGTLVTVSS





272
4339
643
YSFSSFWIG





272
4340
644
TACAGCTTTAGCAGTTTCTGGATCGGC





272
4341
645
IIYPGDSDTRYSPSFQG





272
4342
646
ATCATATATCCTGGTGACTCTGATACCAGATATAGCCCGTCTTTCCAA





GGC





272
4343
647
ARLPVGSYYYFNL





272
4344
648
GCGAGACTTCCAGTTGGTAGTTATTATTACTTCAATCTC





272
4345
649
GAAATTGTGATGACACAGTCTCCAGCCACCCTGTCTGTGTCTCCAGGG





GAAAGCGCCACCCTATTTTGCAGGGCCAGTCAGAGTATTAGTAGCGA





CTTAGCCTGGTACCAGCAGAGACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGATGCATCCACCAGGGCCACTGGTGTCCCTGCCAGGTTCAGTGC





CACTGGGTCTGAGGCAGAGTTCACTCTCACCATCAGCGGCCTGCAGTC





TGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGGCTTTC





GTGGACGTTCGGCCAAGGGACCAAGCTGGAGATCAAA





272
4346
650
EIVMTQSPATLSVSPGESATLFCRASQSISSDLAWYQQRPGQAPRLLIYDA





STRATGVPARFSATGSEAEFTLTISGLQSEDFAVYYCQQYNNWLSWTFG





QGTKLEIK





272
4347
651
RASQSISSDLA





272
4348
652
AGGGCCAGTCAGAGTATTAGTAGCGACTTAGCC





272
4349
653
DASTRAT





272
4350
654
GATGCATCCACCAGGGCCACT





272
4351
655
QQYNNWLSWT





272
4352
656
CAGCAGTATAATAACTGGCTTTCGTGGACG





273
4353
657
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGAGAAGCCTTCACA





GACCCTGTCCCTCACCTGCACTGTCTCTCGTGGCTCCATCAGAATTGG





TGGTTACTTCTGGAGTTGGATCCGCCAGCACCCAGGGAAGGGTCTGG





AGTGGCTTGGATACATCTCTAACGATGGGGCCACCGACTACAACCCG





TCCCTCAGGAGTCGACTTGCCATATCAGCAGACACATCTAAGAACCA





GTTTTCCCTGACCCTGAGGTCTGTGACTGCCGCGGACACGGCCATCTA





TTACTGTGCGAGAACTTCTTATGCAGGGCGCATGCTCGACCGCTGGGG





CCAGGGAATCCTGGTCACCGTCTCCTCA





273
4354
658
QVQLQESGPGLEKPSQTLSLTCTVSRGSIRIGGYFWSWIRQHPGKGLEWL





GYISNDGATDYNPSLRSRLAISADTSKNQFSLTLRSVTAADTAIYYCARTS





YAGRMLDRWGQGILVTVSS





273
4355
659
GSIRIGGYFWS





273
4356
660
GGCTCCATCAGAATTGGTGGTTACTTCTGGAGT





273
4357
661
YISNDGATDYNPSLRS





273
4358
662
TACATCTCTAACGATGGGGCCACCGACTACAACCCGTCCCTCAGGAG





T





273
4359
663
ARTSYAGRMLDR





273
4360
664
GCGAGAACTTCTTATGCAGGGCGCATGCTCGACCGC





273
4361
665
GACATCCGGGTGACCCAGTCTCCAGTCTCCCTGCCCGTCACCCCTGGA





GAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAGAGTCTCCTGCATAGT





AATGGAAACAACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTC





TCCACAACTCCTGATCTATATGGGTTCTTATCGGGCCTCCGGGGTCCC





TGACAGGTTCAGCGGCAGTGGATCAGGCACAGATTTTACACTGAAAA





TCAGCAGAGTGGAGGCTGAGGATGTTGGTGTTTATTACTGCATGCAA





GGTCTACAAATTCCTTGGACGTTCGGCCAAGGGACCAAGCTGGAGAT





CAAA





273
4362
666
DIRVTQSPVSLPVTPGEPASISCRSSQSLLHSNGNNYLDWYLQKPGQSPQL





LIYMGSYRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGLQIP





WTFGQGTKLEIK





273
4363
667
RSSQSLLHSNGNNYLD





273
4364
668
AGGTCTAGTCAGAGTCTCCTGCATAGTAATGGAAACAACTATTTGGAT





273
4365
669
MGSYRAS





273
4366
670
ATGGGTTCTTATCGGGCCTCC





273
4367
671
MQGLQIPWT





273
4368
672
ATGCAAGGTCTACAAATTCCTTGGACG





274
4369
673
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG





GTCCCTCAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTA





TGCCATGCACTGGGTCCGCCAGACTCCAGACAAGGGGCTGGAGTGGG





TGGCACTTATATCCGATGATGGAAGAAATGAATATTATGCAGATTCC





GTGCAGGGCCGATTCACCATCTCCAGAGACAAATCCAAGAACACGCT





GCATCTGGAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTTTATT





ACTGTGCGAAAGTACGAAATGAGGCGTGGGAGCTCCTGGGTAATGAT





GATGCTCTTGATGTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA





274
4370
674
EVQLLESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQTPDKGLEWV





ALISDDGRNEYYADSVQGRFTISRDKSKNTLHLEMNSLRAEDTAVYYCA





KVRNEAWELLGNDDALDVWGQGTMVTVSS





274
4371
675
FTFSSYAMH





274
4372
676
TTCACCTTCAGTAGCTATGCCATGCAC





274
4373
677
LISDDGRNEYYADSVQG





274
4374
678
CTTATATCCGATGATGGAAGAAATGAATATTATGCAGATTCCGTGCA





GGGC





274
4375
679
AKVRNEAWELLGNDDALDV





274
4376
680
GCGAAAGTACGAAATGAGGCGTGGGAGCTCCTGGGTAATGATGATGC





TCTTGATGTC





274
4377
681
CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACA





GAAAGTCACCATCTCCTGCTCTGGAACTAGCTTCAACATTGGCAGTAA





TTACGTATCCTGGTACCAGCTACTCCCAGGAACAGCCCCCAAACTCCT





CATTTTTGACAATTATAAGCGACCCTCAGGGATTCCTGACCGATTCTC





TGGCTCCTGGTCTGGCACGTCAGCCACCCTGGCCATCAGCGGACTCCA





GACTGGGGACGAGGCCGAATACTTCTGCGGAACTTGGGACACCAGCC





TGAGAGCTGGAGTGTTCGGCGGAGGGACCAAGCTCACCGTCCTA





274
4378
682
QSVLTQPPSVSAAPGQKVTISCSGTSFNIGSNYVSWYQLLPGTAPKLLIFD





NYKRPSGIPDRFSGSWSGTSATLAISGLQTGDEAEYFCGTWDTSLRAGVF





GGGTKLTVL





274
4379
683
SGTSFNIGSNYVS





274
4380
684
TCTGGAACTAGCTTCAACATTGGCAGTAATTACGTATCC





274
4381
685
DNYKRPS





274
4382
686
GACAATTATAAGCGACCCTCA





274
4383
687
GTWDTSLRAGV





274
4384
688
GGAACTTGGGACACCAGCCTGAGAGCTGGAGTG





275
4385
689
CAGGTCCAGCTGGTGCAGTCTGGGTCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAGGCTCTCCTGCAAGGTTGCCGGTTACAGCCTCAGTGAGTT





ATCCATGCACTGGGTGCGACAGTCTCCTGGAAAAGGGCTTGAGTGGT





TGGGAGCTTTTGACCATGAAGATGCTGAAGCAATCTATGCACCGAGG





TTCCAGGGCAGAATCACCATGACCGCGGACACATCTACGGACACAGC





CTACATGGAACTGAGCAGCCTGAGATCTGAGGACACGGCCGTTTATT





ACTGTGCAACACCGACCCCAGTTGGAGCTACGGACTACTGGGGCCAG





GGAACCCTGGTCACCGTCTCCTCA





275
4386
690
QVQLVQSGSEVKKPGASVRLSCKVAGYSLSELSMHWVRQSPGKGLEWL





GAFDHEDAEAIYAPRFQGRITMTADTSTDTAYMELSSLRSEDTAVYYCA





TPTPVGATDYWGQGTLVTVSS





275
4387
691
YSLSELSMH





275
4388
692
TACAGCCTCAGTGAGTTATCCATGCAC





275
4389
693
AFDHEDAEAIYAPRFQG





275
4390
694
GCTTTTGACCATGAAGATGCTGAAGCAATCTATGCACCGAGGTTCCA





GGGC





275
4391
695
ATPTPVGATDY





275
4392
696
GCAACACCGACCCCAGTTGGAGCTACGGACTAC





275
4393
697
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGTATTAGTAGTTA





TTTAAATTGGTATCAACAAAAACCAGGAAAAGCCCCTAAGCTCCTGA





TCTATGCTGCATCCAGTTTGCAAAGGGGGGGCCCATCAAGATTCAGT





GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCA





ACCTGAAGATTTTGCAACTTACTATTGTCAACAGAGTTACATTATTCC





GTACACTTTTGGCCAGGGGACCAAAGTGGATATCAAA





275
4394
698
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYA





ASSLQRGGPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYIIPYTFGQGT





KVDIK





275
4395
699
RASQSISSYLN





275
4396
700
CGGGCAAGTCAGAGTATTAGTAGTTATTTAAAT





275
4397
701
AASSLQR





275
4398
702
GCTGCATCCAGTTTGCAAAGG





275
4399
703
QQSYIIPYT





275
4400
704
CAACAGAGTTACATTATTCCGTACACT





276
4401
705
CAGGTGCAGCTGCAGGAGTCCGGCCCAGGACGGGTGAAGCCTTCGGA





GACCCTGTCCCTCACCTGCAGTGTCGCTGATGGCTCAATCAGTAGTGG





TCATTACTACTGGGGCTGGGTCCGCCAGCCCCCAGGGAAGGGGCTGG





AGTGGATTGCGACAATCCATGATAGTGGGGCCACGTACTACAACCCG





TCCCTCCAGAGTCGAGTCACCATATCCGTAGACACGTCCAAGAACCA





GTTCTCCCTGAAAGTGAATTCTGTGACCGCCGCAGACACGGCTGTCTA





TTACTGTGCGAGTCGAAGGGGCAGTGGCTGGTTTTTCGACTCCTGGGG





CCAGGGAACCCTGGTCACCGTCTCCTCA





276
4402
706
QVQLQESGPGRVKPSETLSLTCSVADGSISSGHYYWGWVRQPPGKGLEW





IATIHDSGATYYNPSLQSRVTISVDTSKNQFSLKVNSVTAADTAVYYCAS





RRGSGWFFDSWGQGTLVTVSS





276
4403
707
GSISSGHYYWG





276
4404
708
GGCTCAATCAGTAGTGGTCATTACTACTGGGGC





276
4405
709
TIHDSGATYYNPSLQS





276
4406
710
ACAATCCATGATAGTGGGGCCACGTACTACAACCCGTCCCTCCAGAG





T





276
4407
711
ASRRGSGWFFDS





276
4408
712
GCGAGTCGAAGGGGCAGTGGCTGGTTTTTCGACTCC





276
4409
713
GATATTGTGCTGACTCAGTCTCCAGCCACCCTGTCTGTGTCTCCAGGG





GAAAGAGTCACCCTCTCCTGCAGGGCCAGTCACAGTGTTAACTACAA





TTTAGCCTGGTACCAGCAGAAACCTGGTCAGGCTCCCAGGCTCCTCAT





CTATGGTTCATCTACCAGGGCCACTGGTCTCCCAGCCAGGTTCAGTGG





CAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT





CTGAAGATTTTGCAATTTATTACTGTCAGCAGTATAATAACTGGCCTC





CGGGAGGCACTTTTGGCCAGGGGACCAAGGTGGAAATCAAA





276
4410
714
DIVLTQSPATLSVSPGERVTLSCRASHSVNYNLAWYQQKPGQAPRLLIYG





SSTRATGLPARFSGSGSGTEFTLTISSLQSEDFAIYYCQQYNNWPPGGTFG





QGTKVEIK





276
4411
715
RASHSVNYNLA





276
4412
716
AGGGCCAGTCACAGTGTTAACTACAATTTAGCC





276
4413
717
GSSTRAT





276
4414
718
GGTTCATCTACCAGGGCCACT





276
4415
719
QQYNNWPPGGT





276
4416
720
CAGCAGTATAATAACTGGCCTCCGGGAGGCACT





277
4417
721
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTA





TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTAGTAGTAGTAGTTACATATACTACGCAGACTCAG





TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTA





CTGTGCGAGAGATTGGCCGAATAGCAGCTCGTCGCCGAACTGGTTCG





ACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





277
4418
722
EVQLLESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWV





SSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR





DWPNSSSSPNWFDPWGQGTLVTVSS





277
4419
723
FTFSSYSMN





277
4420
724
TTCACCTTCAGTAGCTATAGCATGAAC





277
4421
725
SISSSSSYIYYADSVKG





277
4422
726
TCCATTAGTAGTAGTAGTAGTTACATATACTACGCAGACTCAGTGAAG





GGC





277
4423
727
ARDWPNSSSSPNWFDP





277
4424
728
GCGAGAGATTGGCCGAATAGCAGCTCGTCGCCGAACTGGTTCGACCC





C





277
4425
729
CAGTCTGTCCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAG





GTTATGATGTACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAA





CTCCTCATCTATGGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGCCTGAGTGGTTTTTATGTCTTCGGAACTGGGACCAAGCTCACCGTC





CTA





277
4426
730
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLI





YGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGF





YVFGTGTKLTVL





277
4427
731
TGSSSNIGAGYDVH





277
4428
732
ACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGTACAC





277
4429
733
GNSNRPS





277
4430
734
GGTAACAGCAATCGGCCCTCA





277
4431
735
QSYDSSLSGFYV





277
4432
736
CAGTCCTATGACAGCAGCCTGAGTGGTTTTTATGTC





278
4433
737
CAGGTCCAGCTGGTACAGTCTGGGGCAGAGGTGAAAAAGCCCGGGG





AGTCTCTGAAGATCTCCTGTCAGGGTTCTGGATACAGCTTTAGCAGTT





TCTGGATCGTCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGG





ATGGGGAGCATCTATCCTGGTGACTCTGACACCAGATACACCCCGTCC





TTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCACCAGCACCGC





CTATTTGCAGTGGAACAGCCTGAAGCCCTCGGACACCGCCATGTATTA





CTGTGCGAGGTGTAGTCTCAGCTGCGACTACTACGGAGTGAACCTCTG





GGGCCAAGGGACCACGGTCACCGTCTCCTCA





278
4434
738
QVQLVQSGAEVKKPGESLKISCQGSGYSFSSFWIVWVRQMPGKGLEWM





GSIYPGDSDTRYTPSFQGQVTISADKSTSTAYLQWNSLKPSDTAMYYCAR





CSLSCDYYGVNLWGQGTTVTVSS





278
4435
739
YSFSSFWIV





278
4436
740
TACAGCTTTAGCAGTTTCTGGATCGTC





278
4437
741
SIYPGDSDTRYTPSFQG





278
4438
742
AGCATCTATCCTGGTGACTCTGACACCAGATACACCCCGTCCTTCCAA





GGC





278
4439
743
ARCSLSCDYYGVNL





278
4440
744
GCGAGGTGTAGTCTCAGCTGCGACTACTACGGAGTGAACCTC





278
4441
745
CAGTCTGTGGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGACA





GAGGGTCACCATCTCCTGCTCTGGGAGCAGCTCCAACATCGGGGCAC





GTTCTGATGTACACTGGTACCAGCAGCTTCCAGGAAAAGCCCCCAAA





CTCCTCATCTATGGTAACACCAATCGGCCCTTAGGGGTCCCTGACCGA





TTCTCTGGCTCCACGTCTGGCACCTCAGCCTCCCTGGCCATCTCTGGG





CTCCAGGCTGAGGATGAGGGATATTATTACTGTCAGTCCTATGACAGC





AGCCTGAGTGGTTTTTATGTCTTCGGAACTGGGACCAAGCTCACCGTC





CTA





278
4442
746
QSVVTQPPSVSGAPGQRVTISCSGSSSNIGARSDVHWYQQLPGKAPKLLI





YGNTNRPLGVPDRFSGSTSGTSASLAISGLQAEDEGYYYCQSYDSSLSGF





YVFGTGTKLTVL





278
4443
747
SGSSSNIGARSDVH





278
4444
748
TCTGGGAGCAGCTCCAACATCGGGGCACGTTCTGATGTACAC





278
4445
749
GNTNRPL





278
4446
750
GGTAACACCAATCGGCCCTTA





278
4447
751
QSYDSSLSGFYV





278
4448
752
CAGTCCTATGACAGCAGCCTGAGTGGTTTTTATGTC





279
4449
753
CAGGTGCAGCTGGTGGAATCTGGGGGAGGCGTGGTCCAGCCTGGGAG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCCCCTTCAGTCTCTAT





GCCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGT





GGCATTTATATCATATGATGGAAGTAATAAATACTATGCAGACTCCGT





GAAGGGCCGATTCACCATCTCCAGAGACAGTTCCAAGAACACGCTGT





ATCTGCAAATGGACAGCCTGACACCTGAAGACACGGCTGTGTATTAC





TGTGCGAAACCTATAGTGGGGCCTACAACGGGTTACTTTGACTACTGG





GGCCCGGGAACCCTGGTCACCGTCTCCTCA





279
4450
754
QVQLVESGGGVVQPGRSLRLSCAASGFPFSLYAMHWVRQAPGKGLEWV





AFISYDGSNKYYADSVKGRFTISRDSSKNTLYLQMDSLTPEDTAVYYCA





KPIVGPTTGYFDYWGPGTLVTVSS





279
4451
755
FPFSLYAMH





279
4452
756
TTCCCCTTCAGTCTCTATGCCATGCAC





279
4453
757
FISYDGSNKYYADSVKG





279
4454
758
TTTATATCATATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAG





GGC





279
4455
759
AKPIVGPTTGYFDY





279
4456
760
GCGAAACCTATAGTGGGGCCTACAACGGGTTACTTTGACTAC





279
4457
761
GAAATTGTGTTGACTCAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTA





CTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG





GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAG





CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGTAC





ACTTTTGGCCAGGGGACCAAGGTGGAAATCAAA





279
4458
762
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYD





ASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWYTFGQG





TKVEIK





279
4459
763
RASQSVSSYLA





279
4460
764
AGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCC





279
4461
765
DASNRAT





279
4462
766
GATGCATCCAACAGGGCCACT





279
4463
767
QQRSNWYT





279
4464
768
CAGCAGCGTAGCAACTGGTACACT





280
4465
769
GAGGTGCAGCTGGTGGAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCCTGCCAGACTTCTGGTTACACCTTTAGTCATTT





CGGTGTCACCTGGATACGACAGGCCCCAGGACAAGGGCTTGAGTGGC





TGGGATGGATCAGCGCTTACAATGGTAACACAGACTATGCAGACAAA





CTGCAGGGCAGACTCACCATGACCACAGACACATCCACGAACACCGC





CTACATGGAATTGAGGAGCCTCAGATCTGACGACACGGCCGTCTATT





ACTGTGCGAGAGATCCCCCCGCATCAGCTGCTGCGATGCTTGACTACT





GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





280
4466
770
EVQLVESGAEVKKPGASVKVSCQTSGYTFSHFGVTWIRQAPGQGLEWL





GWISAYNGNTDYADKLQGRLTMTTDTSTNTAYMELRSLRSDDTAVYYC





ARDPPASAAAMLDYWGQGTLVTVSS





280
4467
771
YTFSHFGVT





280
4468
772
TACACCTTTAGTCATTTCGGTGTCACC





280
4469
773
WISAYNGNTDYADKLQG





280
4470
774
TGGATCAGCGCTTACAATGGTAACACAGACTATGCAGACAAACTGCA





GGGC





280
4471
775
ARDPPASAAAMLDY





280
4472
776
GCGAGAGATCCCCCCGCATCAGCTGCTGCGATGCTTGACTAC





280
4473
777
GATATTGTGATGACTCAGTCTCCACTCTCCCTGGCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAAGTCTAGTCAAGGCCTCGAATACACT





GATGGAAACACCTACTTGAGTTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTCATTTATAAGATTTCTAACCGGGACTCTGGGGTTCC





AGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAGAA





TCAGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





GGTACACACGGGCGGGGAATCTCTTTCGGTCCTGGGACCAAAGTGGA





TATCAAA





280
4474
778
DIVMTQSPLSLAVTLGQPASISCKSSQGLEYTDGNTYLSWFQQRPGQSPR





RLIYKISNRDSGVPDRFSGSGSGTDFTLRISRVEAEDVGVYYCMQGTHGR





GISFGPGTKVDIK





280
4475
779
KSSQGLEYTDGNTYLS





280
4476
780
AAGTCTAGTCAAGGCCTCGAATACACTGATGGAAACACCTACTTGAG





T





280
4477
781
KISNRDS





280
4478
782
AAGATTTCTAACCGGGACTCT





280
4479
783
MQGTHGRGIS





280
4480
784
ATGCAAGGTACACACGGGCGGGGAATCTCT





281
4481
785
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAAGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCCTGCAAGGCTTCTGGATACACCTTCACCGACTA





CTTTATACACTGGGTGCGCCAGGCCCCTGGAGAAGGGCTTGAGTGGA





TGGGTTGGGTCAACCCTCTCAGTGACAACACAAAATATTCACAGAAG





TTTCAGGGCAGGGTCACCATGAGCACGGACACGTCCATCACCACGGC





CTACATGTACCTGAGCAGGCTGCGATTTGACGACACGGCCGTGTATTT





TTGTGCGAGCCAATCTTCCCCCTATACCCCGGGCGCTCTGGACGTCTG





GGGCCAAGGGACCACGGTCACCGTCTCCTCA





281
4482
786
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYFIHWVRQAPGEGLEWM





GWVNPLSDNTKYSQKFQGRVTMSTDTSITTAYMYLSRLRFDDTAVYFC





ASQSSPYTPGALDVWGQGTTVTVSS





281
4483
787
YTFTDYFIH





281
4484
788
TACACCTTCACCGACTACTTTATACAC





281
4485
789
WVNPLSDNTKYSQKFQG





281
4486
790
TGGGTCAACCCTCTCAGTGACAACACAAAATATTCACAGAAGTTTCA





GGGC





281
4487
791
ASQSSPYTPGALDV





281
4488
792
GCGAGCCAATCTTCCCCCTATACCCCGGGCGCTCTGGACGTC





281
4489
793
GACATCCAGTTGACCCAGTCTCCATCCTCCCTGCCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCAGAACATTGGGAACAA





TTTAGCTTGGTATCAGCAGAAAGCAGGAAGAGCCCCCAAACTCCTGA





TCTATAGTGCGTCTAATTTCCATAGTGGGGTCCCATCAAGATTCATTG





GCAGTGGATCTGGGACAGTTTTCACTCTCACCATCAGCAGTCTGCAAC





CTGAAGATTTTGCAACCTACTTCTGTCAACAGAGTTTCACTCCCCAAT





TCACTTTCGGCCCTGGGACCAAGGTGGAAATCAAA





281
4490
794
DIQLTQSPSSLPASVGDRVTITCRASQNIGNNLAWYQQKAGRAPKLLIYS





ASNFHSGVPSRFIGSGSGTVFTLTISSLQPEDFATYFCQQSFTPQFTFGPGT





KVEIK





281
4491
795
RASQNIGNNLA





281
4492
796
CGGGCAAGTCAGAACATTGGGAACAATTTAGCT





281
4493
797
SASNFHS





281
4494
798
AGTGCGTCTAATTTCCATAGT





281
4495
799
QQSFTPQFT





281
4496
800
CAACAGAGTTTCACTCCCCAATTCACT





282
4497
801
CAGGTCCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAGGCCTGGGTC





CTCGGTGAGGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGGAAGT





ATGCTATCAGTTGGGTGCGACAGGCCCGTGGACAAGGGCTTGAGTGG





ATGGGAGGCATCATCCCTATGTCCGGACCACCAAGCTACGCACAGAA





GTTTCAGGGCAGAGTCACGATTACCGCGGACGAATCCACGAGCACAG





TCTACATGGAGCTGAGCAGCCTGAGATTTGAGGACACGGCCGTGTAT





TTCTGTGCGAGGGATATCGAGTGGTTCGTACTCATGGACCCTATCACA





TCCTACTACCCTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGT





CTCCTCA





282
4498
802
QVQLVQSGAEVKRPGSSVRVSCKASGGTFRKYAISWVRQARGQGLEWM





GGIIPMSGPPSYAQKFQGRVTITADESTSTVYMELSSLRFEDTAVYFCARD





IEWFVLMDPITSYYPMDVWGQGTTVTVSS





282
4499
803
GTFRKYAIS





282
4500
804
GGCACCTTCAGGAAGTATGCTATCAGT





282
4501
805
GIIPMSGPPSYAQKFQG





282
4502
806
GGCATCATCCCTATGTCCGGACCACCAAGCTACGCACAGAAGTTTCA





GGGC





282
4503
807
ARDIEWFVLMDPITSYYPMDV





282
4504
808
GCGAGGGATATCGAGTGGTTCGTACTCATGGACCCTATCACATCCTAC





TACCCTATGGACGTC





282
4505
809
CAGTCTGTGGTGACCCAGGAGCCCTCACTGACTGTGTCCCCAGGAGG





GACAGTCACTCTCACCTGTGGCTCCAGCACTGGAGGTGTCACCAGTG





GTCATCATACATACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGG





ACACTGATCTATGATACGACCAACACACACTCCTGGACACCAGCCCG





GTTCGCAGGCTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTCGGG





TGCGCAGCCTGAGGATGAGGCTGACTATTACTGCCTCCTCTCCTATAG





TGGTGCGCGGCCGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA





282
4506
810
QSVVTQEPSLTVSPGGTVTLTCGSSTGGVTSGHHTYWFQQKPGQAPRTLI





YDTTNTHSWTPARFAGSLLGGKAALTLSGAQPEDEADYYCLLSYSGARP





VFGGGTKLTVL





282
4507
811
GSSTGGVTSGHHTY





282
4508
812
GGCTCCAGCACTGGAGGTGTCACCAGTGGTCATCATACATAC





282
4509
813
DTTNTHS





282
4510
814
GATACGACCAACACACACTCC





282
4511
815
LLSYSGARPV





282
4512
816
CTCCTCTCCTATAGTGGTGCGCGGCCGGTG





283
4513
817
CAGGTGCAGCTGGTGCAGTCTGGGGGAGGCTTGGTCAAGCCTGGAGG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAATGATTA





CTACATGAATTGGATCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGG





TTTCATACATTAGTAGTAGTGGTGAGACCAAATACTACGCAGACTCTG





TGAAGGGCCGATTCACCATCTCCAGGGACAACGCCAAGAACTCACTG





TATCTGGAAATGAACAGCCTGAGAGTCGAGGACACGGCCGTCTACTA





CTGTGCGAGAGACGCGGTCATTGTAGTAGGACCGGTTGCTGTTCACTA





CCAATACTACGCGGACGTCTGGGGCAAAGGGACCACGGTCACCGTCT





CTTCA





283
4514
818
QVQLVQSGGGLVKPGGSLRLSCAASGFTFNDYYMNWIRQAPGKGLEWV





SYISSSGETKYYADSVKGRFTISRDNAKNSLYLEMNSLRVEDTAVYYCA





RDAVIVVGPVAVHYQYYADVWGKGTTVTVSS





283
4515
819
FTFNDYYMN





283
4516
820
TTCACCTTCAATGATTACTACATGAAT





283
4517
821
YISSSGETKYYADSVKG





283
4518
822
TACATTAGTAGTAGTGGTGAGACCAAATACTACGCAGACTCTGTGAA





GGGC





283
4519
823
ARDAVIVVGPVAVHYQYYADV





283
4520
824
GCGAGAGACGCGGTCATTGTAGTAGGACCGGTTGCTGTTCACTACCA





ATACTACGCGGACGTC





283
4521
825
CAGCCAGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCA





GAGGGTCACCATCTCTTGTTCTGGAAGCACCTCCAACATCGGAAGTA





ACACTGTACACTGGTACCAGCAACTCCCAGGAACGGCCCCCAGACTC





CTCATCTATGTTATTAATCAGCGGCCCTCAGGGGTCCCAGACCGATTC





TCCGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTC





CAGTCTGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAG





CCTGAATGGTCCGGTGTTCGGCGGAGGGACCAAGCTCACCGTCCTA





283
4522
826
QPVLTQPPSASGTPGQRVTISCSGSTSNIGSNTVHWYQQLPGTAPRLLIYV





INQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSLNGPVF





GGGTKLTVL





283
4523
827
SGSTSNIGSNTVH





283
4524
828
TCTGGAAGCACCTCCAACATCGGAAGTAACACTGTACAC





283
4525
829
VINQRPS





283
4526
830
GTTATTAATCAGCGGCCCTCA





283
4527
831
AAWDDSLNGPV





283
4528
832
GCAGCATGGGATGACAGCCTGAATGGTCCGGTG





284
4529
833
CAGGTCCAGCTTGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTC





CTCGGTGAAGGTCTCCTGCAAGGCCTCTGGAGGCACCTTCAGCGGCT





ACCATATCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTCGAGTGG





ATGGGAGGGATCATCCATCTATTTGGGACAGTTAACTACGCTCCGAA





GTTCCAGGGCAGAGTCACGATCACCGCGGACGCATCCACGGGCACAG





CCTACATGGAGTTAAACAGCCTGATGTCTGAAGACACGGCCGTTTATT





ATTGTGCGAGAGATGCCTACGAAGTGTGGACTGGTTCTTATCTCCCCC





CTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





284
4530
834
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSGYHISWVRQAPGQGLEWM





GGIIHLFGTVNYAPKFQGRVTITADASTGTAYMELNSLMSEDTAVYYCA





RDAYEVWTGSYLPPFDYWGQGTLVTVSS





284
4531
835
GTFSGYHIS





284
4532
836
GGCACCTTCAGCGGCTACCATATCAGC





284
4533
837
GIIHLFGTVNYAPKFQG





284
4534
838
GGGATCATCCATCTATTTGGGACAGTTAACTACGCTCCGAAGTTCCAG





GGC





284
4535
839
ARDAYEVWTGSYLPPFDY





284
4536
840
GCGAGAGATGCCTACGAAGTGTGGACTGGTTCTTATCTCCCCCCTTTT





GACTAC





284
4537
841
GAAATTGTGTTGACACAGTCTCCAGGCACCCTGTCTTTGTCTCCCGGG





GAAAGAGTCACCCTCTCCTGCAGGGCCAGTCAGACTGTTACAAGCAG





CTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT





CATCTATGGTGCATTCACCAGGGCCACTGACATCCCAGACAGGTTCA





GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTG





GAGCCTGAAGATTCTGCAGTATATTATTGTCAGCAGTATGGTAGCTCA





TTCCTCACTTTCGGCGGAGGGACCAAAGTGGATATCAAA





284
4538
842
EIVLTQSPGTLSLSPGERVTLSCRASQTVTSSYLAWYQQKPGQAPRLLIYG





AFTRATDIPDRFSGSGSGTDFTLTISRLEPEDSAVYYCQQYGSSFLTFGGG





TKVDIK





284
4539
843
RASQTVTSSYLA





284
4540
844
AGGGCCAGTCAGACTGTTACAAGCAGCTACTTAGCC





284
4541
845
GAFTRAT





284
4542
846
GGTGCATTCACCAGGGCCACT





284
4543
847
QQYGSSFLT





284
4544
848
CAGCAGTATGGTAGCTCATTCCTCACT





285
4545
849
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGCAAAAGCCCGGGCG





GTCCCTGCGACTCTCATGTTCAGCTTCTGGATTCACCTTTGGTGATTAT





GCTATGAGCTGGTTCCGCCAGGCTCCAGGGAAGGGCCTGGAGTGGGT





TGGTTTCATTAGAAGTAAAGCTTATGTTGGGACCGCAGAATACGCCG





CGTCTGTGAAAGGCAGATTCACCATCTCAAGAGATGATTCCAAAAGC





ATCGCCTATCTGCACATGAACAGCCTGAAGACCGAGGACACAGCCGT





GTATTACTGTACTAGAGATGATATTTTGACTGGTTTTTATGACCGCTCT





TACTATTACGGTATACACGTCTGGGGCCAAGGGACCACGGTCACCGT





CTCCTCA





285
4546
850
EVQLVESGGGLQKPGRSLRLSCSASGFTFGDYAMSWFRQAPGKGLEWV





GFIRSKAYVGTAEYAASVKGRFTISRDDSKSIAYLHMNSLKTEDTAVYYC





TRDDILTGFYDRSYYYGIHVWGQGTTVTVSS





285
4547
851
FTFGDYAMS





285
4548
852
TTCACCTTTGGTGATTATGCTATGAGC





285
4549
853
FIRSKAYVGTAEYAASVKG





285
4550
854
TTCATTAGAAGTAAAGCTTATGTTGGGACCGCAGAATACGCCGCGTCT





GTGAAAGGC





285
4551
855
TRDDILTGFYDRSYYYGIHV





285
4552
856
ACTAGAGATGATATTTTGACTGGTTTTTATGACCGCTCTTACTATTAC





GGTATACACGTC





285
4553
857
GAAATTGTAATGACGCAGTCTCCAGTCACCCTGTCTGTGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAACAGCAA





CTTAGCCTGGTACCAGAAGAAACCTGGCCAGGCTCCCAGGCTCCTCA





TCTATAGTGCATCCACCAGGGCCACTGGTGTCCCAGCCAGGTTCAGTG





GCAGTGGGTCTGGGACAGAGTTCACTCTCACCGTCAGCAGCCTTCAGT





CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATGATAACTGGCCTC





CGTACACTTTTGGCCAGGGGACCAAGGTGGAAATCAAA





285
4554
858
EIVMTQSPVTLSVSPGERATLSCRASQSVNSNLAWYQKKPGQAPRLLIYS





ASTRATGVPARFSGSGSGTEFTLTVSSLQSEDFAVYYCQQYDNWPPYTF





GQGTKVEIK





285
4555
859
RASQSVNSNLA





285
4556
860
AGGGCCAGTCAGAGTGTTAACAGCAACTTAGCC





285
4557
861
SASTRAT





285
4558
862
AGTGCATCCACCAGGGCCACT





285
4559
863
QQYDNWPPYT





285
4560
864
CAGCAGTATGATAACTGGCCTCCGTACACT





286
4561
865
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAGGCCTTCACA





GACCCTGTCCCTCACCTGCTCCGCCTCTGGTGCAGCCATCAATAGTGG





TGATTATTACTGGAGTTGGATCCGCCAGGCCCCTGGGAGGGGCCTAG





AGTGGATTGGGTCCATTTCCAACCGTGGGGTCACCGACTACAACCCGT





CCCTCAAGAGTCGAGTTATCATATCAGCGGACACGTCCAAGAATCAG





TTCTCCCTGAGGCTGACCTCTGTGACTGCCACAGACACGGCCGTGTAT





TATTGTGCCAGAGATTTGGGTACTTTGGCCTTTGATCCCTACTACTATT





ACGGTATTGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA





286
4562
866
QVQLQESGPGLVRPSQTLSLTCSASGAAINSGDYYWSWIRQAPGRGLEW





IGSISNRGVTDYNPSLKSRVIISADTSKNQFSLRLTSVTATDTAVYYCARD





LGTLAFDPYYYYGIDVWGQGTTVTVSS





286
4563
867
AAINSGDYYWS





286
4564
868
GCAGCCATCAATAGTGGTGATTATTACTGGAGT





286
4565
869
SISNRGVTDYNPSLKS





286
4566
870
TCCATTTCCAACCGTGGGGTCACCGACTACAACCCGTCCCTCAAGAGT





286
4567
871
ARDLGTLAFDPYYYYGIDV





286
4568
872
GCCAGAGATTTGGGTACTTTGGCCTTTGATCCCTACTACTATTACGGT





ATTGACGTC





286
4569
873
GACATCCGGATGACCCAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGGCA





TTTAGCCTGGTACCAACAAAAACCTGGCCAGGCTCCCCGGCTCCTCAT





CTATGATGCATCATACAGGGTCACTGGCGTCCCAGACAGGTTCAGTG





GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGGAG





TCTGAAGATTTTGCAATTTATTTCTGTCAGCAGCGTAGCACCTGGCCG





ACGTTCGGCCAAGGGACCAAGGTGGAAATCAAA





286
4570
874
DIRMTQSPATLSLSPGERATLSCRASQSVSRHLAWYQQKPGQAPRLLIYD





ASYRVTGVPDRFSGSGSGTDFTLTISSLESEDFAIYFCQQRSTWPTFGQGT





KVEIK





286
4571
875
RASQSVSRHLA





286
4572
876
AGGGCCAGTCAGAGTGTTAGCAGGCATTTAGCC





286
4573
877
DASYRVT





286
4574
878
GATGCATCATACAGGGTCACT





286
4575
879
QQRSTWPT





286
4576
880
CAGCAGCGTAGCACCTGGCCGACG





287
4577
881
CAGGTGCAGCTGGTGGAATCTGGGGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTTGCCTGCACGGCGTCTGGATACGCCTTCACCAATTA





CAACATCCACTGGGTGCGACTGGCCCCTGGACAGGGACTTGAGTGGA





TGGCAATTATCAACCCCGGTAGTGGTGGCACAGACTACTCAGAGAAG





TTCCAGGGCAGGCTCACCTTGACCAGTGACACGTCCACGAGCACGGT





GTACATGACGCTGGGCAGCCTGAGATATGAAGACACGGCCTTTTATT





ACTGTGCGAGAAGGGGTTACCCTGATTCGGGGAGTTACCCCCTTGACT





ACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





287
4578
882
QVQLVESGAEVKKPGASVKVACTASGYAFTNYNIHWVRLAPGQGLEW





MAIINPGSGGTDYSEKFQGRLTLTSDTSTSTVYMTLGSLRYEDTAFYYCA





RRGYPDSGSYPLDYWGQGTLVTVSS





287
4579
883
YAFTNYNIH





287
4580
884
TACGCCTTCACCAATTACAACATCCAC





287
4581
885
IINPGSGGTDYSEKFQG





287
4582
886
ATTATCAACCCCGGTAGTGGTGGCACAGACTACTCAGAGAAGTTCCA





GGGC





287
4583
887
ARRGYPDSGSYPLDY





287
4584
888
GCGAGAAGGGGTTACCCTGATTCGGGGAGTTACCCCCTTGACTAC





287
4585
889
GATATTGTGATGACGCAGTCTCCATCCTCCCTGTCTGCATCTCTGGGA





GACAGAGTCACCATCACTTGCCGGGCAGGTCGGAGCATTGCCACTTA





CTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGA





TCTATGGTGCATCCAGTTTGCAAAGTGGCGTCCCATCAAGGTTCAGTG





GCAGTGGCTCTGGGACACATTTCACTCTCACCATCAGCAGTCTGCAAC





CTGAGGATTTTGCAACTTACTACTGTCAACAGAGTTACATCCGCCCTA





TCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAA





287
4586
890
DIVMTQSPSSLSASLGDRVTITCRAGRSIATYLNWYQQKPGKAPKLLIYG





ASSLQSGVPSRFSGSGSGTHFTLTISSLQPEDFATYYCQQSYIRPITFGGGT





KVEIK





287
4587
891
RAGRSIATYLN





287
4588
892
CGGGCAGGTCGGAGCATTGCCACTTACTTAAAT





287
4589
893
GASSLQS





287
4590
894
GGTGCATCCAGTTTGCAAAGT





287
4591
895
QQSYIRPIT





287
4592
896
CAACAGAGTTACATCCGCCCTATCACT





288
4593
897
CAGGTGCAGCTGCAGGAGTCCGGCCCAGGACTGGTGAAGCCTTCACA





GACCCTGTCCCTCACCTGCACTGTCTCTGGTCGTCTCCTCAGCAGTGG





TGATTACTACTGGAGTTGGATCCGCCAGTCCCCAGGGAGGGGCCTGG





AGTGGATTGGCTACGTCTATCACAGTGGGACCACCTCGTACAACCCGT





CCCTCAAGAGTCGAATTACCATGACAGTGGACACGTCCAAGAACCAG





TTCAACCTGAGGTTGACCTCTGTAACGGCCGCAGACACGGCCGTGTAT





TACTGTGCCAGAGATCTCGGATATAGCAGTTCCTCTCCCGCCTTTTAT





TACGGTATAGACTTCTGGGGCCCAGGGACCATGGTCACCGTCTCTTCA





288
4594
898
QVQLQESGPGLVKPSQTLSLTCTVSGRLLSSGDYYWSWIRQSPGRGLEWI





GYVYHSGTTSYNPSLKSRITMTVDTSKNQFNLRLTSVTAADTAVYYCAR





DLGYSSSSPAFYYGIDFWGPGTMVTVSS





288
4595
899
RLLSSGDYYWS





288
4596
900
CGTCTCCTCAGCAGTGGTGATTACTACTGGAGT





288
4597
901
YVYHSGTTSYNPSLKS





288
4598
902
TACGTCTATCACAGTGGGACCACCTCGTACAACCCGTCCCTCAAGAGT





288
4599
903
ARDLGYSSSSPAFYYGIDF





288
4600
904
GCCAGAGATCTCGGATATAGCAGTTCCTCTCCCGCCTTTTATTACGGT





ATAGACTTC





288
4601
905
GAAATTGTATTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGG





CAAAGAGCGACCCTCTCCTGCAGGGCCAGTCAGAGTGTTGGCAACTA





CTTAGCCTGGTACCAACAAAAACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGATGCATCCAACAGGGTCACTGGCATCCCAGCCAGGTTCAGTG





GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGGCTAGAG





TCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACGGGGTC





CTCACTTTCGGCGGAGGGACCAAAGTGGATATCAAA





288
4602
906
EIVLTQSPATLSLSPGQRATLSCRASQSVGNYLAWYQQKPGQAPRLLIYD





ASNRVTGIPARFSGSGSGTDFTLTISRLESEDFAVYYCQQRSNGVLTFGGG





TKVDIK





288
4603
907
RASQSVGNYLA





288
4604
908
AGGGCCAGTCAGAGTGTTGGCAACTACTTAGCC





288
4605
909
DASNRVT





288
4606
910
GATGCATCCAACAGGGTCACT





288
4607
911
QQRSNGVLT





288
4608
912
CAGCAGCGTAGCAACGGGGTCCTCACT





289
4609
913
GAGGTGCAGCTGTTGGAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAGGGTCTCCTGCAAGGCTTCTGGATACACCTTCACCGACTA





CTTTATGAACTGGGTGCGACAGGCCCCTGGAGGGGGCCTTGAGTGGA





TGGGGTGGGTCAATCCTCTCAGTGGAGCCACAAAATATGCACAGAAG





TTTCAGGGCAGGGTCACCATGACCACGGACACGTCCATCACCACAGG





GTACCTGGACTTGAGGAGCCTGAGAGTTGACGACACGGCCATCTATT





TTTGTGCGAGCCAGTCTTCCCCTTACACCCCGGGCGCTATGGGCGTCT





GGGGCCAAGGGACCACGGTCACCGTCTCTTCA





289
4610
914
EVQLLESGAEVKKPGASVRVSCKASGYTFTDYFMNWVRQAPGGGLEW





MGWVNPLSGATKYAQKFQGRVTMTTDTSITTGYLDLRSLRVDDTAIYFC





ASQSSPYTPGAMGVWGQGTTVTVSS





289
4611
915
YTFTDYFMN





289
4612
916
TACACCTTCACCGACTACTTTATGAAC





289
4613
917
WVNPLSGATKYAQKFQG





289
4614
918
TGGGTCAATCCTCTCAGTGGAGCCACAAAATATGCACAGAAGTTTCA





GGGC





289
4615
919
ASQSSPYTPGAMGV





289
4616
920
GCGAGCCAGTCTTCCCCTTACACCCCGGGCGCTATGGGCGTC





289
4617
921
GACATCCAGGTGACCCAGTCTCCATCCTCCCTGTCTGCCTCTGTAGGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCGGCTA





TTTAAGTTGGTATCAGCAGAAACCAGGGAAAGCCCCTAACCTCCTGA





TCTATGCTACATCCAATTTATACAGTGGGGTCCCATCAAGGTTCAGTG





GCCGTGATTCTGGGACAGATTTCACTCTCACCATCACCAGTCTGCAAC





CTGAAGATTTTGCAACTTACTTCTGTCAACTGAATTCCGGTGCCCTAT





TCACTTTCGGCCCTGGGACCAAGGTGGAGATCAAA





289
4618
922
DIQVTQSPSSLSASVGDRVTITCRASQSISGYLSWYQQKPGKAPNLLIYAT





SNLYSGVPSRFSGRDSGTDFTLTITSLQPEDFATYFCQLNSGALFTFGPGT





KVEIK





289
4619
923
RASQSISGYLS





289
4620
924
CGGGCAAGTCAGAGCATTAGCGGCTATTTAAGT





289
4621
925
ATSNLYS





289
4622
926
GCTACATCCAATTTATACAGT





289
4623
927
QLNSGALFT





289
4624
928
CAACTGAATTCCGGTGCCCTATTCACT





290
4625
929
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACA





GACCCTGTCCCTCACCTGCACTGTCTCTGGTCCCTCCATCAGCGCTGG





AGATTACAACTGGAATTGGATCCGCCAGGCCCCAGGGAAGGGCCTGG





AGTGGGTTGGATACATCGATTACAGGGGCCTCACCCACTACAACCCG





TCCCTCAAGGGTCGACTTTCCATATTAATGGACAGGTCGGCGAACCA





GTTCTCCCTGGAGCTGAATTCTGTGACTGCCGCAGACACGGCCGTCTA





CTACTGTGCCAGGGACGTGGGGGTCTATAGTGGCTACGATGTCTTTCA





CTACTACGGCATGGACGTCTGGGGCCAGGGGACCACGGTCACCGTCT





CCTCA





290
4626
930
QVQLQESGPGLVKPSQTLSLTCTVSGPSISAGDYNWNWIRQAPGKGLEW





VGYIDYRGLTHYNPSLKGRLSILMDRSANQFSLELNSVTAADTAVYYCA





RDVGVYSGYDVFHYYGMDVWGQGTTVTVSS





290
4627
931
PSISAGDYNWN





290
4628
932
CCCTCCATCAGCGCTGGAGATTACAACTGGAAT





290
4629
933
YIDYRGLTHYNPSLKG





290
4630
934
TACATCGATTACAGGGGCCTCACCCACTACAACCCGTCCCTCAAGGGT





290
4631
935
ARDVGVYSGYDVFHYYGMDV





290
4632
936
GCCAGGGACGTGGGGGTCTATAGTGGCTACGATGTCTTTCACTACTAC





GGCATGGACGTC





290
4633
937
GAAACGACACTCACGCAGTCTCCAGTCACCCTGTCTTTGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGTATGTTAGGAACAA





CTACTTAGCCTGGTACCAACACAAACCTGGCCAGGCTCCCAGGCTCCT





CATCTATAGTGCTTCCAGCAGGGTCACTGGCACCCCAGACAGGTTCA





GTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTG





GAGCCTGAAGACTTTGCAGTGTATTACTGTCAGCAGTATGGTGGCTCA





CCTCCGGTCACTTTCGGCCCTGGGACCAAAGTGGATATCAAA





290
4634
938
ETTLTQSPVTLSLSPGERATLSCRASQYVRNNYLAWYQHKPGQAPRLLIY





SASSRVTGTPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGGSPPVTFG





PGTKVDIK





290
4635
939
RASQYVRNNYLA





290
4636
940
AGGGCCAGTCAGTATGTTAGGAACAACTACTTAGCC





290
4637
941
SASSRVT





290
4638
942
AGTGCTTCCAGCAGGGTCACT





290
4639
943
QQYGGSPPVT





290
4640
944
CAGCAGTATGGTGGCTCACCTCCGGTCACT





291
4641
945
GAGGTGCAGCTGTTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGGGG





GTCCCTGAGACTATCCTGTGCAGCCTCTGGATTCACCTTCAGTAATTA





CTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTGTGGG





TCTCACGTATTAGCGGTGATGGAAGTGACACAACCTACGCGGACTCC





GTGGAGGGCCGATTCACCATCTCCAGAGACAACGCCAGGAGTACACT





GTATCTTCAACTGAATAGTCTCACAGGCGACGACACGGCTGTGTATTA





TTGTGCAAGAGATTTGTGGACCACCTCGCCCTACTTTGACCTCTGGGG





CCAGGGAACCCTGGTCACCGTCTCCTCA





291
4642
946
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYWMHWVRQAPGKGLVW





VSRISGDGSDTTYADSVEGRFTISRDNARSTLYLQLNSLTGDDTAVYYCA





RDLWTTSPYFDLWGQGTLVTVSS





291
4643
947
FTFSNYWMH





291
4644
948
TTCACCTTCAGTAATTACTGGATGCAC





291
4645
949
RISGDGSDTTYADSVEG





291
4646
950
CGTATTAGCGGTGATGGAAGTGACACAACCTACGCGGACTCCGTGGA





GGGC





291
4647
951
ARDLWTTSPYFDL





291
4648
952
GCAAGAGATTTGTGGACCACCTCGCCCTACTTTGACCTC





291
4649
953
GAAATTGTATTGACACAGTCTCCTGGCACCCTGTCTGCATCTATTGGA





GACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTCTTAATGGCTG





GTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAGGCTCCTCA





TCTATAAGTCGTCTAGTTTAGAAAGCGGGGTCCCATCAAGGTTCAGCG





GCAGTGCATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAG





CCTGACGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGGGCG





TTCGGCCAAGGGACCAAGGTGGACGTCAAA





291
4650
954
EIVLTQSPGTLSASIGDRVTITCRASQSLNGWLAWYQQKPGKAPRLLIYK





SSSLESGVPSRFSGSASGTEFTLTISSLQPDDFATYYCQQYNSWAFGQGTK





VDVK





291
4651
955
RASQSLNGWLA





291
4652
956
CGGGCCAGTCAGAGTCTTAATGGCTGGTTGGCC





291
4653
957
KSSSLES





291
4654
958
AAGTCGTCTAGTTTAGAAAGC





291
4655
959
QQYNSWA





291
4656
960
CAACAGTATAATAGTTGGGCG





292
4657
961
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTGTTGAAGCCTTCGGA





GACCCTGTCCCTCACCTGCGCTGTCTATGGTGGGTCCTTCAGTGGTTA





CTCCTGGAGCTGGATCCGCCAGTCCCCAGGGAAGGGGCTGGAGTGGA





TTGGAGAAATCAATCATAGAGGAAGCACCAACTACAACCCGTCCCTC





AAGAGTCGAGTCACCATATCAGTAGACACGTCGAAGAACCAGTTCTC





CCTGAAGCTGAGCTCTGTGACCGCCGCGGACACGGCTGTGTACTACT





GTGCGGGGACCAATTATGGAGAGGTTAATACGAGTAACCAATACTTC





TTCGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTC





A





292
4658
962
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYSWSWIRQSPGKGLEWIG





EINHRGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAGTN





YGEVNTSNQYFFGMDVWGQGTTVTVSS





292
4659
963
GSFSGYSWS





292
4660
964
GGGTCCTTCAGTGGTTACTCCTGGAGC





292
4661
965
EINHRGSTNYNPSLKS





292
4662
966
GAAATCAATCATAGAGGAAGCACCAACTACAACCCGTCCCTCAAGAG





T





292
4663
967
AGTNYGEVNTSNQYFFGMDV





292
4664
968
GCGGGGACCAATTATGGAGAGGTTAATACGAGTAACCAATACTTCTT





CGGTATGGACGTC





292
4665
969
GACATCCGGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTACCACCTA





TTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAACTCCTGA





TCTATGCTGCATCCAATTTGGAAAGTGGGGTCCCATCAAGTTTCAGTG





GCAGTGGATTTGGGACAGACTTCACTCTCACCATCAGCAGTCTGCAAC





CTGACGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTGCCCCGC





TCACCTTCGGCGGAGGGACCAAAGTGGATATCAAA





292
4666
970
DIRLTQSPSSLSASVGDRVTITCRASQSITTYLNWYQQKPGKAPKLLIYAA





SNLESGVPSSFSGSGFGTDFTLTISSLQPDDFATYYCQQSYSAPLTFGGGT





KVDIK





292
4667
971
RASQSITTYLN





292
4668
972
CGGGCAAGTCAGAGCATTACCACCTATTTAAAT





292
4669
973
AASNLES





292
4670
974
GCTGCATCCAATTTGGAAAGT





292
4671
975
QQSYSAPLT





292
4672
976
CAACAGAGTTACAGTGCCCCGCTCACC





293
4673
977
CAGGTCCAGCTGGTACAGTCTGGGGCTGGGGTGAAGAAGCCTGGGGC





CTCAGTGAGGGTCTCATGCACGGCCTCTGGATACACCTTCACCGACTA





CTTTATAAACTGGGTGCGACAGGCCCCTGGAGGGGGCCTTGAGTGGA





TGGGGTGGGTCAATCCTCTCAGTGGAGCCACAAGATACGCCCAGAAC





TTTGCGGGCAGGGTCACCATGACCACGGACACGTCCATCACCACAGG





ATATCTGGACTTACGGAACCTGCGACTTGACGACACGGCCGTCTATTT





TTGTGCGAGCCAGTCTTCACCTTACACGCCGGGCGCTATGGACGTCTG





GGGCCAAGGGACCACGGTCACCGTCTCCTCA





293
4674
978
QVQLVQSGAGVKKPGASVRVSCTASGYTFTDYFINWVRQAPGGGLEW





MGWVNPLSGATRYAQNFAGRVTMTTDTSITTGYLDLRNLRLDDTAVYF





CASQSSPYTPGAMDVWGQGTTVTVSS





293
4675
979
YTFTDYFIN





293
4676
980
TACACCTTCACCGACTACTTTATAAAC





293
4677
981
WVNPLSGATRYAQNFAG





293
4678
982
TGGGTCAATCCTCTCAGTGGAGCCACAAGATACGCCCAGAACTTTGC





GGGC





293
4679
983
ASQSSPYTPGAMDV





293
4680
984
GCGAGCCAGTCTTCACCTTACACGCCGGGCGCTATGGACGTC





293
4681
985
GATATTGTGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGA





GACAGAGTCTCCATCACTTGCCGGACAAGTCAGACCATTAGTGGCTA





TATAAGTTGGTATCAGAAGAAACCAGGAAAAGCCCCTAAACTCCTGA





TCTATGCTGCATCAAATATGTACAGTGGGGTCCCATCAAGGTTCAGTG





GCAGTGAATCTGGGACAGATTTCACTCTCACCATCACCAGTCTGCAAC





CTGAAGATTTTGCAACTTACTTCTGTCAACTGAATTCCGGTGCCCTAT





TCACTTTCGGCCCTGGGACCAAAGTGGATATCAAA





293
4682
986
DIVMTQSPSSLSASVGDRVSITCRTSQTISGYISWYQKKPGKAPKLLIYAA





SNMYSGVPSRFSGSESGTDFTLTITSLQPEDFATYFCQLNSGALFTFGPGT





KVDIK





293
4683
987
RTSQTISGYIS





293
4684
988
CGGACAAGTCAGACCATTAGTGGCTATATAAGT





293
4685
989
AASNMYS





293
4686
990
GCTGCATCAAATATGTACAGT





293
4687
991
QLNSGALFT





293
4688
992
CAACTGAATTCCGGTGCCCTATTCACT





294
4689
993
GAGGTGCAGCTGGTGGAGTCTGCAGCAGAGGTGAAAAAGCCCGGGG





AGTCTCTGAAGATCTCCTGTAAGGGTTCTGGATACAGTTTTGCCAGCC





ACTGGATCGGTTGGGTCCGCCAAATGCCCGGGAAAGGCCTGGAGTTG





ATGGGATTCATCTATCCTGGTGACTCTGATACCAGATACAACCCGTCC





TTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATCAGCACCGC





CTACCTGCAGTGGACCAGGCTGAAGGCCTCGGACACCGCCATGTACT





ACTGTGGCCAGGCAGTGGCGGGGGGTGAATATTTCCACCACTGGGGC





CAGGGCACCCTGGTCACCGTCTCCTCA





294
4690
994
EVQLVESAAEVKKPGESLKISCKGSGYSFASHWIGWVRQMPGKGLELM





GFIYPGDSDTRYNPSFQGQVTISADKSISTAYLQWTRLKASDTAMYYCG





QAVAGGEYFHHWGQGTLVTVSS





294
4691
995
YSFASHWIG





294
4692
996
TACAGTTTTGCCAGCCACTGGATCGGT





294
4693
997
FIYPGDSDTRYNPSFQG





294
4694
998
TTCATCTATCCTGGTGACTCTGATACCAGATACAACCCGTCCTTCCAA





GGC





294
4695
999
GQAVAGGEYFHH





294
4696
1000
GGCCAGGCAGTGGCGGGGGGTGAATATTTCCACCAC





294
4697
1001
GATATTGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTCTTGGCAGCGA





CTTAGCCTGGTACCAGCAGAAACCTGGCCAGACTCCCAGGCTCCTCAT





CTATGATGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTG





GCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAG





TCTGAAGATTTTGCAGTTTATTACTGTCAGCACTATAATAATTGGCCC





CGGGGGTTCGGCCAAGGGACCAAGGTGGAAATCAAA





294
4698
1002
DIVMTQSPATLSVSPGERATLSCRASQSLGSDLAWYQQKPGQTPRLLIYD





ASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQHYNNWPRGFGQ





GTKVEIK





294
4699
1003
RASQSLGSDLA





294
4700
1004
AGGGCCAGTCAGAGTCTTGGCAGCGACTTAGCC





294
4701
1005
DASTRAT





294
4702
1006
GATGCATCCACCAGGGCCACT





294
4703
1007
QHYNNWPRG





294
4704
1008
CAGCACTATAATAATTGGCCCCGGGGG





295
4705
1009
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACGGGTGAAGCCTTCACA





GACCCTGTCCCTCACCTGCACTGTCTCTGGTGTCTCCGTCACCATTAAT





GATTACTACTGGACTTGGCTCCGCCAGTCCCCAGGGAAAGGCCTGGA





GTGGATTGGAAACATCTATAACAGTGGGAGCACCTACCAGAACCCGT





CCCTCCAGAGTCGAGTTACCATGTCAGTGGACACGGCCAAGAACCAC





TTCTCCCTGAAGCTGACCTCTGTCACTGCCGCAGATACGGCCGTCTAT





TACTGTGCCAGAGATTTAGGCACTGCCAACAACTACTACTTCGGTATG





GACGTCTGGGGCCTAGGGACCACGGTCACCGTCTCCTCA





295
4706
1010
QVQLQESGPGRVKPSQTLSLTCTVSGVSVTINDYYWTWLRQSPGKGLEW





IGNIYNSGSTYQNPSLQSRVTMSVDTAKNHFSLKLTSVTAADTAVYYCA





RDLGTANNYYFGMDVWGLGTTVTVSS





295
4707
1011
VSVTINDYYWT





295
4708
1012
GTCTCCGTCACCATTAATGATTACTACTGGACT





295
4709
1013
NIYNSGSTYQNPSLQS





295
4710
1014
AACATCTATAACAGTGGGAGCACCTACCAGAACCCGTCCCTCCAGAG





T





295
4711
1015
ARDLGTANNYYFGMDV





295
4712
1016
GCCAGAGATTTAGGCACTGCCAACAACTACTACTTCGGTATGGACGT





C





295
4713
1017
GAAATTGTGATGACGCAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGG





GAAAGAGCCACTCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCACCTA





CTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATAATGGATCCAACAGGGTCACTGGCACCCCAGCCAGGTTCAGTG





GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCGTAGAG





CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGCCT





CCGTACACTTTTGGCCAGGGGACCAAGGTGGAGATCAAA





295
4714
1018
EIVMTQSPATLSLSPGERATLSCRASQSVSTYLAWYQQKPGQAPRLLIYN





GSNRVTGTPARFSGSGSGTDFTLTISSVEPEDFAVYYCQQRSNWPPYTFG





QGTKVEIK





295
4715
1019
RASQSVSTYLA





295
4716
1020
AGGGCCAGTCAGAGTGTTAGCACCTACTTAGCC





295
4717
1021
NGSNRVT





295
4718
1022
AATGGATCCAACAGGGTCACT





295
4719
1023
QQRSNWPPYT





295
4720
1024
CAGCAGCGTAGCAACTGGCCTCCGTACACT





296
4721
1025
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGA





GACCCTGTCCCTCACCTGCTCGGTCTCTGGTGCCTCCGTCACCAGTAG





GGAATACTACTGGGGCTGGATCCGCCAGGCCCCCGGGAAGGGTCTGC





AGTGGATTGCCAGCATTCATCACAGTCCTTTTCAAAGTGACGGCAACC





CGTCCCTGACGAGTCGCGTCTCCAGTTCCGTAGTCACGTCCAAGAACC





AGTTGGCCCTGAGGCTGAGCTCTGTGACCGCCGCAGACACGGCTGTA





TATTACTGTGCGGGCGCGTTTTGGGAGGTTTGGACTGGCCTTTATTCA





CCGCCGTTTGACTTTTGGGGCCAGGGAATCCTGGTCACCGTCTCCTCA





296
4722
1026
QVQLQESGPGLVKPSETLSLTCSVSGASVTSREYYWGWIRQAPGKGLQW





IASIHHSPFQSDGNPSLTSRVSSSVVTSKNQLALRLSSVTAADTAVYYCAG





AFWEVWTGLYSPPFDFWGQGILVTVSS





296
4723
1027
ASVTSREYYWG





296
4724
1028
GCCTCCGTCACCAGTAGGGAATACTACTGGGGC





296
4725
1029
SIHHSPFQSDGNPSLTS





296
4726
1030
AGCATTCATCACAGTCCTTTTCAAAGTGACGGCAACCCGTCCCTGACG





AGT





296
4727
1031
AGAFWEVWTGLYSPPFDF





296
4728
1032
GCGGGCGCGTTTTGGGAGGTTTGGACTGGCCTTTATTCACCGCCGTTT





GACTTT





296
4729
1033
GAAATTGTAATGACACAGTCTCCAGGGACCCTGTCTTTGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCTGGGCCAGTCAGACTGTTAGCAGCGG





CTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT





CATCTATGGTGCATCTACCAGGGCCACTGACATCCCAGACAGGTTCA





GTGGCAGTGGGTCTGGGACAGGCTTCACTCTCACCATCAGCAGACTG





GAGCCTGAAGATCTTGCAGTCTATTACTGTCAGCAGTATAGCAGTTCA





CCACTCACTTTCGGCGGCGGGACCAAGGTGGAAATCAAA





296
4730
1034
EIVMTQSPGTLSLSPGERATLSCWASQTVSSGYLAWYQQKPGQAPRLLIY





GASTRATDIPDRFSGSGSGTGFTLTISRLEPEDLAVYYCQQYSSSPLTFGG





GTKVEIK





296
4731
1035
WASQTVSSGYLA





296
4732
1036
TGGGCCAGTCAGACTGTTAGCAGCGGCTACTTAGCC





296
4733
1037
GASTRAT





296
4734
1038
GGTGCATCTACCAGGGCCACT





296
4735
1039
QQYSSSPLT





296
4736
1040
CAGCAGTATAGCAGTTCACCACTCACT





297
4737
1041
CAGGTGCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCGTGCAAGACTTCTGGTTACACCTTTTCCAACTA





CGGTATCAGCTGGCTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGCATGGATCAGCCCTTATAATGGGAACACAAAGTCTGCACAGAGG





TTTCAGGGCAGAGTCATCATGACCACAGACACATCCACGAGGACAGC





CCACATGGAGGTGAAGAGCCTGAGAACTGACGACACGGCCACATATT





ACTGTGCGAGAGATCCAGCAGTCGATGCAATACCGATGCTTGACTAC





TGGGGCCAGGGAACCACGGTCACCGTCTCCTCA





297
4738
1042
QVQLVQSGAEVKKPGASVKVSCKTSGYTFSNYGISWLRQAPGQGLEWM





AWISPYNGNTKSAQRFQGRVIMTTDTSTRTAHMEVKSLRTDDTATYYCA





RDPAVDAIPMLDYWGQGTTVTVSS





297
4739
1043
YTFSNYGIS





297
4740
1044
TACACCTTTTCCAACTACGGTATCAGC





297
4741
1045
WISPYNGNTKSAQRFQG





297
4742
1046
TGGATCAGCCCTTATAATGGGAACACAAAGTCTGCACAGAGGTTTCA





GGGC





297
4743
1047
ARDPAVDAIPMLDY





297
4744
1048
GCGAGAGATCCAGCAGTCGATGCAATACCGATGCTTGACTAC





297
4745
1049
GACATCCAGGTGACCCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTGTACACT





GATGGAAACACCTACTTGAGCTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAGGGTTTCTCACCGGGACTCTGGGGTCCC





AGACAGATTCACCGGCAGTGGGTCAGGCACTGATTTCACACTGATAA





TCCGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





GGTACACACTGGCCTCTCACTTTCGGCGGAGGGACCAAGGTGGAAAT





CAAA





297
4746
1050
DIQVTQSPLSLPVTLGQPASISCRSSQSLVYTDGNTYLSWFQQRPGQSPRR





LIYRVSHRDSGVPDRFTGSGSGTDFTLIIRRVEAEDVGVYYCMQGTHWPL





TFGGGTKVEIK





297
4747
1051
RSSQSLVYTDGNTYLS





297
4748
1052
AGGTCTAGTCAAAGCCTCGTGTACACTGATGGAAACACCTACTTGAG





C





297
4749
1053
RVSHRDS





297
4750
1054
AGGGTTTCTCACCGGGACTCT





297
4751
1055
MQGTHWPLT





297
4752
1056
ATGCAAGGTACACACTGGCCTCTCACT





298
4753
1057
CAGGTCCAGCTGGTGCAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACGTTCAGTGACTA





TGCCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGG





TGGCAATCATATCATATGATGCAAATAATAAATATTATGCAGACTCCG





TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGGTG





TATCTGCAAATGAACAGCCTGAGACCTGAGGACACGGCTGTATATTA





CTGTGCGAAAGAAGAGTGGCTGGTGCCAGCCTACTGGGGCCAGGGAA





TCCTGGTCACCGTCTCCTCA





298
4754
1058
QVQLVQSGGGVVQPGRSLRLSCAASGFTFSDYAMHWVRQAPGKGLEW





VAIISYDANNKYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYC





AKEEWLVPAYWGQGILVTVSS





298
4755
1059
FTFSDYAMH





298
4756
1060
TTCACGTTCAGTGACTATGCCATGCAC





298
4757
1061
IISYDANNKYYADSVKG





298
4758
1062
ATCATATCATATGATGCAAATAATAAATATTATGCAGACTCCGTGAA





GGGC





298
4759
1063
AKEEWLVPAY





298
4760
1064
GCGAAAGAAGAGTGGCTGGTGCCAGCCTAC





298
4761
1065
CAGTCTGTGCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAG





TCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGATAT





AATTACGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACT





CTTAATTTATGAGGTCTCTAATCGGCCCTCAGGGGTTTCTAATCGCTT





CTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCT





CCAGCCTGAGGACGAGGCTGATTATTACTGCAGCTCATATTCAACCA





ATAGTGCCCCCTTTGGAACTGGGACCAAGCTCACCGTCCTA





298
4762
1066
QSVLTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLLI





YEVSNRPSGVSNRFSGSKSGNTASLTISGLQPEDEADYYCSSYSTNSAPFG





TGTKLTVL





298
4763
1067
TGTSSDVGGYNYVS





298
4764
1068
ACTGGAACCAGCAGTGACGTTGGTGGATATAATTACGTCTCC





298
4765
1069
EVSNRPS





298
4766
1070
GAGGTCTCTAATCGGCCCTCA





298
4767
1071
SSYSTNSAP





298
4768
1072
AGCTCATATTCAACCAATAGTGCCCCC





299
4769
1073
CAGGTCCAGCTTGTGCAGTCTGGGGGAGGCGTGGTCCAGTCTGGGAG





GTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTGACAA





TGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGG





TGGCAGGAATCTTTCATGATGGGAGTAATAAACAATATGCAGAATCC





GTGAAGGGCCGATTCATCATCTCCAGAGACAATTCCAAGAACACTCT





CTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTCTATATT





TCTGTGCGAGAGCCCCTTACGATATTTGGAGCGGATATTGTCTTGACT





ACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





299
4770
1074
QVQLVQSGGGVVQSGRSLRLSCAASGFTFSDNGMHWVRQAPGKGLEW





VAGIFHDGSNKQYAESVKGRFIISRDNSKNTLYLQMNSLRAEDTALYFCA





RAPYDIWSGYCLDYWGQGTLVTVSS





299
4771
1075
FTFSDNGMH





299
4772
1076
TTCACCTTCAGTGACAATGGCATGCAC





299
4773
1077
GIFHDGSNKQYAESVKG





299
4774
1078
GGAATCTTTCATGATGGGAGTAATAAACAATATGCAGAATCCGTGAA





GGGC





299
4775
1079
ARAPYDIWSGYCLDY





299
4776
1080
GCGAGAGCCCCTTACGATATTTGGAGCGGATATTGTCTTGACTAC





299
4777
1081
GACATCCGGATGACCCAGTCTCCAGCCACCCTGTCTCTGTCTCCAGGG





GAAAGCGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTATCAACAA





CTTAGCCTGGTACCAGCAGAGACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGGTGCATCTACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTGG





CAGTGGGTCTGAGACAGAGTTCACTCTCACTATCAGCAGCCTGCAGTC





TGAAGATTTCGCGGTTTATCACTGTCAGCAGTATAGTATCTGGCCTCA





GACTTTTGGCCAGGGGACCAAGCTGGAGATCAAA





299
4778
1082
DIRMTQSPATLSLSPGESATLSCRASQSVINNLAWYQQRPGQAPRLLIYG





ASTRATGIPARFSGSGSETEFTLTISSLQSEDFAVYHCQQYSIWPQTFGQG





TKLEIK





299
4779
1083
RASQSVINNLA





299
4780
1084
AGGGCCAGTCAGAGTGTTATCAACAACTTAGCC





299
4781
1085
GASTRAT





299
4782
1086
GGTGCATCTACCAGGGCCACT





299
4783
1087
QQYSIWPQT





299
4784
1088
CAGCAGTATAGTATCTGGCCTCAGACT





300
4785
1089
GAGGTGCAGCTGTTGGAGTCCGGGGGAGGCGTGGTCCAGTCTGGGAG





GTCCCTGAGACTCTCCTGTGTAGCGTCTGGATTCACCTTCAGTGACAG





TGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGG





TGGCAGGTTTATTTTATGATGGAAGTAATAAACAATATGCAGACTCCG





TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAGCACACTG





TATCTGCAGATGAACAGCCTGAGGGCCGAGGACACGGCTGTTTATTA





CTGTGCGAGAGCCCCTTACGATATTTGGAGTGGTTATTGTCTTGACTA





CTGGGGCCAGGGAACCCTGGTCACTGTCTCCTCA





300
4786
1090
EVQLLESGGGVVQSGRSLRLSCVASGFTFSDSGMHWVRQAPGKGLEWV





AGLFYDGSNKQYADSVKGRFTISRDNSKSTLYLQMNSLRAEDTAVYYC





ARAPYDIWSGYCLDYWGQGTLVTVSS





300
4787
1091
FTFSDSGMH





300
4788
1092
TTCACCTTCAGTGACAGTGGCATGCAC





300
4789
1093
GLFYDGSNKQYADSVKG





300
4790
1094
GGTTTATTTTATGATGGAAGTAATAAACAATATGCAGACTCCGTGAA





GGGC





300
4791
1095
ARAPYDIWSGYCLDY





300
4792
1096
GCGAGAGCCCCTTACGATATTTGGAGTGGTTATTGTCTTGACTAC





300
4793
1097
GAAATTGTATTGACACAGTCTCCAGCCACCCTGTATATGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAACAACAA





CTTAGCCTGGTACCAGCAGAGACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGGTGCATCTACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTGG





CAGTGGGTCTGAGACAGAGTTCACTCTCACTATCAGCAGCCTGCAGTC





TGAAGATTTTGCGGTTTATCACTGTCAGCAGTATAGTATCTGGCCTCA





GACTTTTGGCCAGGGGACCAAGCTGGAGATCAAA





300
4794
1098
EIVLTQSPATLYMSPGERATLSCRASQSVNNNLAWYQQRPGQAPRLLIY





GASTRATGIPARFSGSGSETEFTLTISSLQSEDFAVYHCQQYSIWPQTFGQ





GTKLEIK





300
4795
1099
RASQSVNNNLA





300
4796
1100
AGGGCCAGTCAGAGTGTTAACAACAACTTAGCC





300
4797
1101
GASTRAT





300
4798
1102
GGTGCATCTACCAGGGCCACT





300
4799
1103
QQYSIWPQT





300
4800
1104
CAGCAGTATAGTATCTGGCCTCAGACT





301
4801
1105
CAGGTCCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCGTGCAAGACTTCTGGTTACACCTTTTCCAACTA





CGGTATCAGCTGGCTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGCATGGATCAGCCCTTATAATGGGAACACAAAGTCTGCACAGAGG





TTTCAGGGCAGAGTCATCATGACCACAGACACATCCACGAGGACAGC





CCACATGGAGGTGAAGAGCCTGAGAACTGACGACACGGCCACATATT





ACTGTGCGAGAGATCCAGCAGTCGATGCAATACCGATGCTTGACTAC





TGGGGCCAGGGAACCATGGTCACCGTCTCCTCA





301
4802
1106
QVQLVQSGAEVKKPGASVKVSCKTSGYTFSNYGISWLRQAPGQGLEWM





AWISPYNGNTKSAQRFQGRVIMTTDTSTRTAHMEVKSLRTDDTATYYCA





RDPAVDAIPMLDYWGQGTMVTVSS





301
4803
1107
YTFSNYGIS





301
4804
1108
TACACCTTTTCCAACTACGGTATCAGC





301
4805
1109
WISPYNGNTKSAQRFQG





301
4806
1110
TGGATCAGCCCTTATAATGGGAACACAAAGTCTGCACAGAGGTTTCA





GGGC





301
4807
1111
ARDPAVDAIPMLDY





301
4808
1112
GCGAGAGATCCAGCAGTCGATGCAATACCGATGCTTGACTAC





301
4809
1113
GAAATTGTGTTGACACAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTGTACACT





GATGGAAACACCTACTTGAGCTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAGGGTTTCTCACCGGGACTCTGGGGTCCC





AGACAGATTCACCGGCAGTGGGTCAGGCACTGATTTCACACTGATAA





TCCGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





GGTACACACTGGCCTCTCACTTTCGGCGGAGGGACCAAGGTGGAAAT





CAAA





301
4810
1114
EIVLTQSPLSLPVTLGQPASISCRSSQSLVYTDGNTYLSWFQQRPGQSPRR





LIYRVSHRDSGVPDRFTGSGSGTDFTLIIRRVEAEDVGVYYCMQGTHWPL





TFGGGTKVEIK





301
4811
1115
RSSQSLVYTDGNTYLS





301
4812
1116
AGGTCTAGTCAAAGCCTCGTGTACACTGATGGAAACACCTACTTGAG





C





301
4813
1117
RVSHRDS





301
4814
1118
AGGGTTTCTCACCGGGACTCT





301
4815
1119
MQGTHWPLT





301
4816
1120
ATGCAAGGTACACACTGGCCTCTCACT





302
4817
1121
GAGGTGCAGCTGGTGGAGTCGGGCCCAAGACTGGTGAGGCCTTCGGA





GACCCTGTCCCTCACCTGCACTGTCTCTGGAGGCTTCATCAAAACTAG





TAGTTACTACTGGGGCTGGATCCGTCAGCCCCCAGGGAAGGGGCTAG





AGTGGATTGGGAGTATCTATTATGCTGGGACCACCTACTACAACCCGT





CCCTCCAGAGTCGAGTCACCATGTCCGTTGACACGTCGAACAACCAG





TTCTCCCTGAAGCTGAACTCTGTGACCGCCGCAGACACGGCTGTATAT





TACTGTGCGACCGCCTGGACTTTTGACCACTGGGGCCAGGGAACCCT





GGTCACTGTCTCCTCA





302
4818
1122
EVQLVESGPRLVRPSETLSLTCTVSGGFIKTSSYYWGWIRQPPGKGLEWI





GSIYYAGTTYYNPSLQSRVTMSVDTSNNQFSLKLNSVTAADTAVYYCAT





AWTFDHWGQGTLVTVSS





302
4819
1123
GFIKTSSYYWG





302
4820
1124
GGCTTCATCAAAACTAGTAGTTACTACTGGGGC





302
4821
1125
SIYYAGTTYYNPSLQS





302
4822
1126
AGTATCTATTATGCTGGGACCACCTACTACAACCCGTCCCTCCAGAGT





302
4823
1127
ATAWTFDH





302
4824
1128
GCGACCGCCTGGACTTTTGACCAC





302
4825
1129
GAAATTGTATTGACACAGTCTCCAGCCACCCTGTCCTTGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTCTTAGCAACTA





CTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG





GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAG





CCTGAAGATTTTGCAGTTTATTACTGTCAGCTGCGTGGCCACTGGCCC





CCCACGATCACCTTCGGCCAAGGGACACGACTGGAGATTAAA





302
4826
1130
EIVLTQSPATLSLSPGERATLSCRASQSLSNYLAWYQQKPGQAPRLLIYD





ASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQLRGHWPPTITFG





QGTRLEIK





302
4827
1131
RASQSLSNYLA





302
4828
1132
AGGGCCAGTCAGAGTCTTAGCAACTACTTAGCC





302
4829
1133
DASNRAT





302
4830
1134
GATGCATCCAACAGGGCCACT





302
4831
1135
QLRGHWPPTIT





302
4832
1136
CAGCTGCGTGGCCACTGGCCCCCCACGATCACC





303
4833
1137
CAGGTCCAGCTTGTACAGTCTGGGGGAGGCTTGGTTCAGCCGGGGGG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCGCCTTTAGCGACTA





TACCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCAAGTGTTAGTGGCACGGGTGGTACCTCATACTACGCAGACTCCG





TGAATGGCCGGTTCGCCATCTCCAGAGAGAATTCCAAGAACACGCTG





TTTCTGCAAATGGACAGCCTGAGAGCCGAGGACACGGCCACTTACTA





CTGTGCCAAAGATGGGTTGAGGGACGTATCGAGGGTTTATTACATCG





ACGTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCA





303
4834
1138
QVQLVQSGGGLVQPGGSLRLSCAASGFAFSDYTMSWVRQAPGKGLEWV





SSVSGTGGTSYYADSVNGRFAISRENSKNTLFLQMDSLRAEDTATYYCA





KDGLRDVSRVYYIDVWGKGTTVTVSS





303
4835
1139
FAFSDYTMS





303
4836
1140
TTCGCCTTTAGCGACTATACCATGAGC





303
4837
1141
SVSGTGGTSYYADSVNG





303
4838
1142
AGTGTTAGTGGCACGGGTGGTACCTCATACTACGCAGACTCCGTGAA





TGGC





303
4839
1143
AKDGLRDVSRVYYIDV





303
4840
1144
GCCAAAGATGGGTTGAGGGACGTATCGAGGGTTTATTACATCGACGT





C





303
4841
1145
CAGCCTGTGCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAG





TCGATCACCATCTCCTGCACTGGAACCAGCCGTGACATTGGTTCTCAT





GACTCTGTCTCCTGGTACCAACAAAAGCCAGGCAAAGCCCCCAAACT





CATCATTTATGCAGTCAGAAATCGGCCCTCAGGGCTTTCTAATCGCTT





CTCTGGTTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCT





CCAGACTGAAGACGAAGGTGACTATTACTGCAGCTCATATAGAAACG





GCAACGCTCTGGGGGTCTTCGGAACTGGGACCAAGGTCACCGTCCTC





303
4842
1146
QPVLTQPASVSGSPGQSITISCTGTSRDIGSHDSVSWYQQKPGKAPKLIIY





AVRNRPSGLSNRFSGSKSGNTASLTISGLQTEDEGDYYCSSYRNGNALGV





FGTGTKVTVL





303
4843
1147
TGTSRDIGSHDSVS





303
4844
1148
ACTGGAACCAGCCGTGACATTGGTTCTCATGACTCTGTCTCC





303
4845
1149
AVRNRPS





303
4846
1150
GCAGTCAGAAATCGGCCCTCA





303
4847
1151
SSYRNGNALGV





303
4848
1152
AGCTCATATAGAAACGGCAACGCTCTGGGGGTC





304
4849
1153
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTTCAGCCGGGGGG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCGCCTTTAGCAACTA





TGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGCCTGGAGTGGG





TCTCAAGTGTTAGTGGCACGGGTGGTACCACATACTACGCAGACTCC





GTGAACGGGCGGTTCGCCATCTCCAGAGAGAATTCCAGGAACACCCT





CTATCTGCAAATGGATAGCCTGAGAGTCGAGGACACGGCCACTTATT





ACTGTGCCAAAGATGGGTTGAGGGACTTATCGAGGGTCTATTACATC





GACGTCTGGGGCAAAGGGGCCACGGTCACCGTCTCTTCA





304
4850
1154
QVQLVESGGGLVQPGGSLRLSCAASGFAFSNYAMSWVRQAPGKGLEWV





SSVSGTGGTTYYADSVNGRFAISRENSRNTLYLQMDSLRVEDTATYYCA





KDGLRDLSRVYYIDVWGKGATVTVSS





304
4851
1155
FAFSNYAMS





304
4852
1156
TTCGCCTTTAGCAACTATGCCATGAGC





304
4853
1157
SVSGTGGTTYYADSVNG





304
4854
1158
AGTGTTAGTGGCACGGGTGGTACCACATACTACGCAGACTCCGTGAA





CGGG





304
4855
1159
AKDGLRDLSRVYYIDV





304
4856
1160
GCCAAAGATGGGTTGAGGGACTTATCGAGGGTCTATTACATCGACGT





C





304
4857
1161
CAGTCTGTCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAG





TCGATCACCATCTCCTGCACTGGAACCAGCCGTGACATTGGTAGTCAT





GACTATGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACT





CATCATTTATGGGGTCAATAATCGGCCCTCAGGACTTTCTAATCGCTT





CTCTGGTTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCT





CCAGACTGAAGACGAAGGTGACTATTACTGCAGCTCATATAGAAACG





GCAACACTCTGGGGGTCTTCGGAACTGGGACCAAGCTCACCGTCCTA





304
4858
1162
QSVLTQPASVSGSPGQSITISCTGTSRDIGSHDYVSWYQQHPGKAPKLIIY





GVNNRPSGLSNRFSGSKSGNTASLTISGLQTEDEGDYYCSSYRNGNTLGV





FGTGTKLTVL





304
4859
1163
TGTSRDIGSHDYVS





304
4860
1164
ACTGGAACCAGCCGTGACATTGGTAGTCATGACTATGTCTCC





304
4861
1165
GVNNRPS





304
4862
1166
GGGGTCAATAATCGGCCCTCA





304
4863
1167
SSYRNGNTLGV





304
4864
1168
AGCTCATATAGAAACGGCAACACTCTGGGGGTC





305
4865
1169
CAGGTCCAGCTGGTACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTC





CTCGGTGAAGGTCTCCTGCAAGGCCTCTGGAGGCACCTTCAGCGGCT





ACGCTATCAACTGGGTGCGACAGGCCCCTGGACAAGGGCTCGAGTGG





ATGGGAGGGATCATCCATATATTTGGGACAGTAAACTACGCTCCGAA





GTTCCAGGGCAGACTCACGATAACCGCGGACGCATCCACGGGCACAG





CCTACATGGAATTGAGCAGCCTGATGTCTGAGGACACGGCCCTATATT





ATTGTGCGAGAGATGCTTACGAAGTGTGGACCGGTTCTTATCTCCCCC





CTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





305
4866
1170
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSGYAINWVRQAPGQGLEW





MGGIIHIFGTVNYAPKFQGRLTITADASTGTAYMELSSLMSEDTALYYCA





RDAYEVWTGSYLPPFDYWGQGTLVTVSS





305
4867
1171
GTFSGYAIN





305
4868
1172
GGCACCTTCAGCGGCTACGCTATCAAC





305
4869
1173
GIIHIFGTVNYAPKFQG





305
4870
1174
GGGATCATCCATATATTTGGGACAGTAAACTACGCTCCGAAGTTCCA





GGGC





305
4871
1175
ARDAYEVWTGSYLPPFDY





305
4872
1176
GCGAGAGATGCTTACGAAGTGTGGACCGGTTCTTATCTCCCCCCTTTT





GACTAC





305
4873
1177
GAAACGACACTCACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCCGGG





GAAAGAGTCACCCTCTCCTGCAGGGCCAGTCAGACTGTTACAAGCAA





CTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT





CATCTATGATGCATTCACCAGGGCCACTGGCGTCCCAGCCAGGTTCAG





TGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGG





AGCCTGAAGATTTTGCAGTTTACTATTGTCAGCAGTATGGTAGCTCAT





TCCTCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAA





305
4874
1178
ETTLTQSPGTLSLSPGERVTLSCRASQTVTSNYLAWYQQKPGQAPRLLIY





DAFTRATGVPARFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSFLTFGG





GTKVEIK





305
4875
1179
RASQTVTSNYLA





305
4876
1180
AGGGCCAGTCAGACTGTTACAAGCAACTACTTAGCC





305
4877
1181
DAFTRAT





305
4878
1182
GATGCATTCACCAGGGCCACT





305
4879
1183
QQYGSSFLT





305
4880
1184
CAGCAGTATGGTAGCTCATTCCTCACT





306
4881
1185
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGTCTGGGAG





GTCCCTGAGACTCTCCTGTGCAGCATCTGGATTCATCTTCAGTGACAA





TGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGG





TGGCAGGTATTTTTTATGATGGAAGTAATAAACAATATGCAGACTCCG





TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACACTG





TATCTGCAAATGAAGAGCCTGAGAGCCGAGGACACGGCTGTGTATTA





CTGTGCGAGAGCCCCTTACGATATCTGGAGTGGTTATTGTCTTGACTA





CTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





306
4882
1186
EVQLVESGGGVVQSGRSLRLSCAASGFIFSDNGMHWVRQAPGKGLEWV





AGIFYDGSNKQYADSVKGRFTISRDNSKNTLYLQMKSLRAEDTAVYYCA





RAPYDIWSGYCLDYWGQGTLVTVSS





306
4883
1187
FIFSDNGMH





306
4884
1188
TTCATCTTCAGTGACAATGGCATGCAC





306
4885
1189
GIFYDGSNKQYADSVKG





306
4886
1190
GGTATTTTTTATGATGGAAGTAATAAACAATATGCAGACTCCGTGAA





GGGC





306
4887
1191
ARAPYDIWSGYCLDY





306
4888
1192
GCGAGAGCCCCTTACGATATCTGGAGTGGTTATTGTCTTGACTAC





306
4889
1193
GACATCCAGGTGACCCAGTCTCCAGCCACCCTGTCTATGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAACAACAA





CTTAGCCTGGTACCAGCAGAGACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGGTGCATCTACGAGGGCCACTGGTATCCCAGCCAGGTTCAGTG





GCAGTGGGTCTGAGACAGAGTTCACTCTCACTATCAGCAGCCTGCAG





TCTGAAGATTTTGCGGTTTATCACTGTCAGCAGTATAGTATCTGGCCT





CAGACTTTTGGCCAGGGGACCAAGGTGGAAATCAAA





306
4890
1194
DIQVTQSPATLSMSPGERATLSCRASQSVNNNLAWYQQRPGQAPRLLIY





GASTRATGIPARFSGSGSETEFTLTISSLQSEDFAVYHCQQYSIWPQTFGQ





GTKVEIK





306
4891
1195
RASQSVNNNLA





306
4892
1196
AGGGCCAGTCAGAGTGTTAACAACAACTTAGCC





306
4893
1197
GASTRAT





306
4894
1198
GGTGCATCTACGAGGGCCACT





306
4895
1199
QQYSIWPQT





306
4896
1200
CAGCAGTATAGTATCTGGCCTCAGACT





307
4897
1201
CAGGTCCAGCTTGTACAGTCTGGGGCTGAACTAAAGAAGCCTGGCTC





CTCGGTGAAAGTCTCCTGCAAGGCTTCTGCAGACACCTTCAAAAGTTA





TGCTATCAACTGGGTGCGGCAGGCCCCTGGACAAGGACTTGAGTGGA





TGGGAGAGTTCATCCCAATCTTTGGTGTCTCACCCTCCGCACAGAAGT





TCCAGGGCAGAGTCACCATTACCGCGGACAGATCCACGTCCACAGCC





TACATGGAGTTGAGCAGCCTGAAATCTGATGACTCGGCCATTTATTAC





TGTGCGACACGTCTGTATACGTTGGGGTCCCCTTTTGACAATTGGGGC





CAGGGGACCACGGTCACCGTCTCCTCA





307
4898
1202
QVQLVQSGAELKKPGSSVKVSCKASADTFKSYAINWVRQAPGQGLEWM





GEFIPIFGVSPSAQKFQGRVTITADRSTSTAYMELSSLKSDDSAIYYCATRL





YTLGSPFDNWGQGTTVTVSS





307
4899
1203
DTFKSYAIN





307
4900
1204
GACACCTTCAAAAGTTATGCTATCAAC





307
4901
1205
EFIPIFGVSPSAQKFQG





307
4902
1206
GAGTTCATCCCAATCTTTGGTGTCTCACCCTCCGCACAGAAGTTCCAG





GGC





307
4903
1207
ATRLYTLGSPFDN





307
4904
1208
GCGACACGTCTGTATACGTTGGGGTCCCCTTTTGACAAT





307
4905
1209
CAGCCTGTGCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAG





TCAGTCACCATCTCCTGCACTGGAACCAGTAGTGATGTTGGTGATTAT





GACTATGTCTCCTGGTACCAACACCTCCCAGGCGAAGTCCCCAAACTC





ATAGTTTATAATGTCATTAAGCGGCCCTCTGGGGTCCCTGATCGCTTC





TCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTC





CAGGCTGAGGATGAGGCTGACTATTACTGCTGCTCATATGCAGGCAG





GTATATTTATGTCTTCGGCAGTGGGACCAAGCTCACCGTCCTA





307
4906
1210
QPVLTQPRSVSGSPGQSVTISCTGTSSDVGDYDYVSWYQHLPGEVPKLIV





YNVIKRPSGVPDRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGRYIYV





FGSGTKLTVL





307
4907
1211
TGTSSDVGDYDYVS





307
4908
1212
ACTGGAACCAGTAGTGATGTTGGTGATTATGACTATGTCTCC





307
4909
1213
NVIKRPS





307
4910
1214
AATGTCATTAAGCGGCCCTCT





307
4911
1215
CSYAGRYIYV





307
4912
1216
TGCTCATATGCAGGCAGGTATATTTATGTC





308
4913
1217
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGA





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCCTTAGTGGCTA





CTACATGAATTGGGTCCGCCAGGCTCCAGGGAGGGGGCTGGAGTGGG





TCTCCTCCATTAGTGGTGGTAGTAATTACATAAACTACGCCGACTCAG





TGAAGGGCCGGTTCACCATCTCCAGAGACAACGCCAAGAACTCACTC





TATCTGCAAATGAACAGCCTGAGAGTCGAGGACACGGCTGTCTATTA





CTGTGCGAGGGTCCACGTGGATTTAGTGACTACGATTTTTGGGGTTGA





CTTTGACTTCTGGGGCCAGGGAACCCTGGTCACTGTCTCCTCA





308
4914
1218
EVQLLESGGGLVKPGESLRLSCAASGFTLSGYYMNWVRQAPGRGLEWV





SSISGGSNYINYADSVKGRFTISRDNAKNSLYLQMNSLRVEDTAVYYCAR





VHVDLVTTIFGVDFDFWGQGTLVTVSS





308
4915
1219
FTLSGYYMN





308
4916
1220
TTCACCCTTAGTGGCTACTACATGAAT





308
4917
1221
SISGGSNYINYADSVKG





308
4918
1222
TCCATTAGTGGTGGTAGTAATTACATAAACTACGCCGACTCAGTGAA





GGGC





308
4919
1223
ARVHVDLVTTIFGVDFDF





308
4920
1224
GCGAGGGTCCACGTGGATTTAGTGACTACGATTTTTGGGGTTGACTTT





GACTTC





308
4921
1225
CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAG





GGTATGATGTACACTGGTACCAGCAACTTCCAGGAACAGCCCCCAAA





CTCCTCATCTATGGTAACACCAATCGGCCCGCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCTCCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCGTATGACAG





CAGCCTGAGTGGTGCGATCTTCGGCGGAGGGACCAAGCTCACCGTCC





TA





308
4922
1226
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLI





YGNTNRPAGVPDRFSGSKSGSSASLAITGLQAEDEADYYCQSYDSSLSGA





IFGGGTKLTVL





308
4923
1227
TGSSSNIGAGYDVH





308
4924
1228
ACTGGGAGCAGCTCCAACATCGGGGCAGGGTATGATGTACAC





308
4925
1229
GNTNRPA





308
4926
1230
GGTAACACCAATCGGCCCGCA





308
4927
1231
QSYDSSLSGAI





308
4928
1232
CAGTCGTATGACAGCAGCCTGAGTGGTGCGATC





309
4929
1233
CAGGTGCAGCTGCAGGAGTCCGGAGCTGAGGTGAAGATGCGTGGGGC





CTCAGTGAAGGTCTCCTGCAAGGCTTCTGGTTACACCTTTAGTCACTA





TGGTATCAGTTGGGTGCGACAGGCCCCTGGACAAGGGCTCGAGTGGA





TGGGATTTATCAGCGCTTACAATCATAACACAAAGTATGCACAGACC





GTCCAGGGCAGAGTCACCTTGAGCACAGACACATCCACGAGCACAGC





CTACATGGAGCTGAGGAGCCTGAGACCTGACGACACGGCCATGTATT





ACTGTGCGAGAGAACCCCCGAGTGACGATGCTGCAAGGCTCTTTGAC





TACTGGGGCCAGGGAACCCTGGTCACTGTCTCCTCA





309
4930
1234
QVQLQESGAEVKMRGASVKVSCKASGYTFSHYGISWVRQAPGQGLEW





MGFISAYNHNTKYAQTVQGRVTLSTDTSTSTAYMELRSLRPDDTAMYY





CAREPPSDDAARLFDYWGQGTLVTVSS





309
4931
1235
YTFSHYGIS





309
4932
1236
TACACCTTTAGTCACTATGGTATCAGT





309
4933
1237
FISAYNHNTKYAQTVQG





309
4934
1238
TTTATCAGCGCTTACAATCATAACACAAAGTATGCACAGACCGTCCA





GGGC





309
4935
1239
AREPPSDDAARLFDY





309
4936
1240
GCGAGAGAACCCCCGAGTGACGATGCTGCAAGGCTCTTTGACTAC





309
4937
1241
GAAACGACACTCACGCAGTCTCCACGCTCCCTGCCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTGTACAGT





GAAGGAAACACCTACTTGAGTTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCC





AGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAAAA





TCAGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTATTGCATGCAA





GGTACACAGTGGCCTGTGACATTCGGCCAAGGGACCAAGGTGGAAAT





CAAA





309
4938
1242
ETTLTQSPRSLPVTLGQPASISCRSSQSLVYSEGNTYLSWFQQRPGQSPRR





LIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTQWP





VTFGQGTKVEIK





309
4939
1243
RSSQSLVYSEGNTYLS





309
4940
1244
AGGTCTAGTCAAAGCCTCGTGTACAGTGAAGGAAACACCTACTTGAG





T





309
4941
1245
KVSNRDS





309
4942
1246
AAGGTTTCTAACCGGGACTCT





309
4943
1247
MQGTQWPVT





309
4944
1248
ATGCAAGGTACACAGTGGCCTGTGACA





310
4945
1249
CAGGTCCAGCTGGTACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAGGGTCTCCTGCAAGGTTTACGGTCACACCCTCAGTGAATT





ATCCATGCACTGGGTGCGACAGGGTCCTGAAGGAGGCCTTGAGTGGA





TGGGAGCTTTTGATCATGAAGATGGTGAAGGAATCTACCCACAGAAG





TTCCAGGGCAGAATCACCATGACCGCGGACATATCGACAGACACAGC





CCACATGGAACTGAGGAGCCTCAGATCTGAGGACACGGCCGTTTATT





ACTGTGCAACACCGACCCCGGTTGGAGCAACGGACTTCTGGGGCCAG





GGAACCCTGGTCACCGTCTCCTCA





310
4946
1250
QVQLVQSGAEVKKPGASVRVSCKVYGHTLSELSMHWVRQGPEGGLEW





MGAFDHEDGEGIYPQKFQGRITMTADISTDTAHMELRSLRSEDTAVYYC





ATPTPVGATDFWGQGTLVTVSS





310
4947
1251
HTLSELSMH





310
4948
1252
CACACCCTCAGTGAATTATCCATGCAC





310
4949
1253
AFDHEDGEGIYPQKFQG





310
4950
1254
GCTTTTGATCATGAAGATGGTGAAGGAATCTACCCACAGAAGTTCCA





GGGC





310
4951
1255
ATPTPVGATDF





310
4952
1256
GCAACACCGACCCCGGTTGGAGCAACGGACTTC





310
4953
1257
GACATCCGGGTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTA





CTTAAATTGGTATCAACAGAAACCAGGAAAAGCCCCTAAGCTCCTGA





TCTATGCTGCATCCACTTTGCAGAGGGGGGGCCCATCAAGATTCAGTG





GCAGTGGATCTGGGACAGATTTCACTCTCAGCATCAGCAGTCTGCAA





CCTGAAGATTTTGCAACTTACTATTGTCAACAGACTTACATTATTCCA





TACACTTTTGGCCAGGGGACCAAGCTGGAGATCAAA





310
4954
1258
DIRVTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAA





STLQRGGPSRFSGSGSGTDFTLSISSLQPEDFATYYCQQTYIIPYTFGQGTK





LEIK





310
4955
1259
RASQSISSYLN





310
4956
1260
CGGGCAAGTCAGAGCATTAGCAGCTACTTAAAT





310
4957
1261
AASTLQR





310
4958
1262
GCTGCATCCACTTTGCAGAGG





310
4959
1263
QQTYIIPYT





310
4960
1264
CAACAGACTTACATTATTCCATACACT





311
4961
1265
CAGGTGCAGCTGCAGGAGTCGGGCCCGGGACTGGTGAAGCCTTCGGA





GACCCTGTCCCTCACCTGCAGTGTCTCTGGTGGCTCCATCACCAATGT





TAATTACTACTGGGGCTGGATCCGCCAGCCCCCCGGGAAGGGCCTGG





AGTGGATTGGGAGTATCTATTATAATGGAAACACCTACTACAACCCG





TCCCTCCAGAGTCGAGTCACCATGTCCGTGGACACGTCCAAGAACCA





CTTCTCCCTGAGGCTGACGTCTGTGACCGCCGCAGACACGGCTGTATA





TTTTTGTGCGAGAGAGGGGCCTAATTGGGAATTGTTGAATGCTTTCGA





TATCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA





311
4962
1266
QVQLQESGPGLVKPSETLSLTCSVSGGSITNVNYYWGWIRQPPGKGLEWI





GSIYYNGNTYYNPSLQSRVTMSVDTSKNHFSLRLTSVTAADTAVYFCAR





EGPNWELLNAFDIWGQGTTVTVSS





311
4963
1267
GSITNVNYYWG





311
4964
1268
GGCTCCATCACCAATGTTAATTACTACTGGGGC





311
4965
1269
SIYYNGNTYYNPSLQS





311
4966
1270
AGTATCTATTATAATGGAAACACCTACTACAACCCGTCCCTCCAGAGT





311
4967
1271
AREGPNWELLNAFDI





311
4968
1272
GCGAGAGAGGGGCCTAATTGGGAATTGTTGAATGCTTTCGATATC





311
4969
1273
GACATCCAGGTGACCCAGCCACCCTCGGTGTCAGTGGCCCCAGGACA





GACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAATG





TGCACTGGTACCAGCAGAAGCCAGGCCGGGCCCCTGTCTTGGTCGTCT





ATGAGGATACCCACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCT





CCAACTCTGGGAACACGGCCACCCTGACCATCAGTAGGGTCGAAGCC





GGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATACTAGTAGTGA





TCATGTGGTATTCGGCGGAGGGACCAAGCTCACCGTCCTA





311
4970
1274
DIQVTQPPSVSVAPGQTARITCGGNNIGSKNVHWYQQKPGRAPVLVVYE





DTHRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDTSSDHVVF





GGGTKLTVL





311
4971
1275
GGNNIGSKNVH





311
4972
1276
GGGGGAAACAACATTGGAAGTAAAAATGTGCAC





311
4973
1277
EDTHRPS





311
4974
1278
GAGGATACCCACCGGCCCTCA





311
4975
1279
QVWDTSSDHVV





311
4976
1280
CAGGTGTGGGATACTAGTAGTGATCATGTGGTA





312
4977
1281
CAGGTCCAGCTGGTGCAGTCTGGGGGAGGCCTGGTCAAGCCTGAGGG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTA





TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTAGTAGTAGTAGTTACATATACTACGCAGACTCAG





TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTA





CTGTGCGAGAGTCTCAACAGAATTGGGCTACTACTACATGGACGTCT





GGGGCAAAGGGACCACGGTCACTGTCTCCTCA





312
4978
1282
QVQLVQSGGGLVKPEGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWV





SSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR





VSTELGYYYMDVWGKGTTVTVSS





312
4979
1283
FTFSSYSMN





312
4980
1284
TTCACCTTCAGTAGCTATAGCATGAAC





312
4981
1285
SISSSSSYIYYADSVKG





312
4982
1286
TCCATTAGTAGTAGTAGTAGTTACATATACTACGCAGACTCAGTGAAG





GGC





312
4983
1287
ARVSTELGYYYMDV





312
4984
1288
GCGAGAGTCTCAACAGAATTGGGCTACTACTACATGGACGTC





312
4985
1289
CAGTCTGTCCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAG





GTTATGATGTACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAA





CTCCTCATCTATGGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGCCTGAGTGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTA





312
4986
1290
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLI





YGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSVV





FGGGTKLTVL





312
4987
1291
TGSSSNIGAGYDVH





312
4988
1292
ACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGTACAC





312
4989
1293
GNSNRPS





312
4990
1294
GGTAACAGCAATCGGCCCTCA





312
4991
1295
QSYDSSLSVV





312
4992
1296
CAGTCCTATGACAGCAGCCTGAGTGTGGTA





313
4993
1297
CAGGTCCAGCTTGTACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGATTTCCTGCAAGGCTTCGGGATACCCCTTCAGTTCCTA





TCCTATGCATTGGGTGCGCCAGGCCCCCGGACAAAGGCTTGAGTGGA





TGGGATGGATCAACGTTGACAATGAGAACACAAAATATTCATGGAAG





TTCCGGGGCAGAGTCACCATTACCAGGGACACATCCGCGAGCACAGT





TTACATGGAGCTGAGCAGTCTGATATCTGAAGACACGGCTGTGTATTA





CTGTGGGAGAGACTGGGACGGGGCGATCCGTGTCTTGGACTACTGGG





GCCAGGGAACCCTGGTCACCGTCTCCTCA





313
4994
1298
QVQLVQSGAEVKKPGASVKISCKASGYPFSSYPMHWVRQAPGQRLEWM





GWINVDNENTKYSWKFRGRVTITRDTSASTVYMELSSLISEDTAVYYCG





RDWDGAIRVLDYWGQGTLVTVSS





313
4995
1299
YPFSSYPMH





313
4996
1300
TACCCCTTCAGTTCCTATCCTATGCAT





313
4997
1301
WINVDNENTKYSWKFRG





313
4998
1302
TGGATCAACGTTGACAATGAGAACACAAAATATTCATGGAAGTTCCG





GGGC





313
4999
1303
GRDWDGAIRVLDY





313
5000
1304
GGGAGAGACTGGGACGGGGCGATCCGTGTCTTGGACTAC





313
5001
1305
GATATTGTGATGACTCAGACTCCAGACTCCCTGGCTGTGTCTCTGGGC





GAGAGGGCCACCATCACCTGCAAGTCCAGCCAGAGTGTTTTATTCAG





CTCCGACAATAAGAACTACTTAGCTTGGTACCAGCAGAAACCGGGAC





AGCCTCCTAAATTGCTCATTTACTGGGCATCTATCCGGGAATCCGGGG





TCCCTGACCGATTCGGTGGCAGCGGGTCTGGGACACATTTCACTCTCA





CCATCACCAGCGTGCAGGCTGCAGATGTGGCAGTTTATTACTGTCAGC





AATATTATGGTAATTTCCCCACCTTCGGCCAAGGGACACGACTGGAG





ATTAAA





313
5002
1306
DIVMTQTPDSLAVSLGERATITCKSSQSVLFSSDNKNYLAWYQQKPGQPP





KLLIYWASIRESGVPDRFGGSGSGTHFTLTITSVQAADVAVYYCQQYYG





NFPTFGQGTRLEIK





313
5003
1307
KSSQSVLFSSDNKNYLA





313
5004
1308
AAGTCCAGCCAGAGTGTTTTATTCAGCTCCGACAATAAGAACTACTTA





GCT





313
5005
1309
WASIRES





313
5006
1310
TGGGCATCTATCCGGGAATCC





313
5007
1311
QQYYGNFPT





313
5008
1312
CAGCAATATTATGGTAATTTCCCCACC





314
5009
1313
CAGGTCCAGCTGGTGCAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG





GTCCCTGAGACTTTCCTGTGCAGCCTCTGGATTCACCTTCAGAAACTA





TGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGG





TAGCGGCTGCATCGTATGATGGGAGTAGTAAGTACTTTGCAGACGCC





GTGAAGGGCCGATTCAGCATCTCCAGAGACAATACCAAGAACACGCT





GTCTCTGCAAATGACCAGCCTGAGAGCTGAGGACACGGCTGTGTATT





ACTGTGCAAGAGACCCCGGAGTGGGAAGTTATTATAACGTGGTGGGT





ATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA





314
5010
1314
QVQLVQSGGGVVQPGRSLRLSCAASGFTFRNYGMHWVRQAPGKGLEW





VAAASYDGSSKYFADAVKGRFSISRDNTKNTLSLQMTSLRAEDTAVYYC





ARDPGVGSYYNVVGMDVWGQGTTVTVSS





314
5011
1315
FTFRNYGMH





314
5012
1316
TTCACCTTCAGAAACTATGGCATGCAC





314
5013
1317
AASYDGSSKYFADAVKG





314
5014
1318
GCTGCATCGTATGATGGGAGTAGTAAGTACTTTGCAGACGCCGTGAA





GGGC





314
5015
1319
ARDPGVGSYYNVVGMDV





314
5016
1320
GCAAGAGACCCCGGAGTGGGAAGTTATTATAACGTGGTGGGTATGGA





CGTC





314
5017
1321
GACATCCGGTTGACCCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGT





GATGGAAACACCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAGGGTTTCTCACCGGGACTCTGGGGTCCC





AGACAGATTCAGCGGCAGTGAGTCAGGCACTGATTTCACACTGAAAA





TCAGCAGGGTGGAGGCTGAGGATGTTGGCGTTTATTACTGCATGCAA





GGTACACACTGGCCTCCTACGTTCGGCCAAGGGACCAAGGTGGAGAT





CAAA





314
5018
1322
DIRLTQSPLSLPVTLGQPASISCRSSQSLVYSDGNTYLNWFQQRPGQSPRR





LIYRVSHRDSGVPDRFSGSESGTDFTLKISRVEAEDVGVYYCMQGTHWP





PTFGQGTKVEIK





314
5019
1323
RSSQSLVYSDGNTYLN





314
5020
1324
AGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACACCTACTTGAA





T





314
5021
1325
RVSHRDS





314
5022
1326
AGGGTTTCTCACCGGGACTCT





314
5023
1327
MQGTHWPPT





314
5024
1328
ATGCAAGGTACACACTGGCCTCCTACG





315
5025
1329
CAGGTCCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCGCCTGCAAGGTTTCCGGATCCAGCCTCACTGAATT





GTCCATTCAATGGGTGCGCTTGCCTCCTGGCAAACGCCTTGAGTGGCT





GGGAGCTTTTGATGCTGAAGATGGTGCACCAATCTACTCACCGAAATT





CCAGGGCAGAGTCACCATGACCGAGGACAGATCGACAGAGACAGCC





TACATGGAGGTGACCAGCCTGAGATCTGAGGACACGGCCCTCTATTA





CTGTGCGACTCCCCTTCCCGCGGGAGCCCTTGACAAGTGGGGCCAGG





GAACCCTGGTCACCGTCTCCTCA





315
5026
1330
QVQLVQSGAEVKKPGASVKVACKVSGSSLTELSIQWVRLPPGKRLEWLG





AFDAEDGAPIYSPKFQGRVTMTEDRSTETAYMEVTSLRSEDTALYYCAT





PLPAGALDKWGQGTLVTVSS





315
5027
1331
SSLTELSIQ





315
5028
1332
TCCAGCCTCACTGAATTGTCCATTCAA





315
5029
1333
AFDAEDGAPIYSPKFQG





315
5030
1334
GCTTTTGATGCTGAAGATGGTGCACCAATCTACTCACCGAAATTCCAG





GGC





315
5031
1335
ATPLPAGALDK





315
5032
1336
GCGACTCCCCTTCCCGCGGGAGCCCTTGACAAG





315
5033
1337
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCTTCCGTAGGA





GACAGAGTCACCATCTCTTGCCGGGCAAGTCAGACTATAAGCAGATA





TTTAAATTGGTATCAGGTCAAGCCAGGGACAGCCCCTAAGCTCCTAAT





CTACGCTGCATCCAGTTTGCAAACTGGGGTCCCATCAAGATTCAGTGC





CAGTGGATCTGGGGCAGATTTCACTCTCACCATCAGCAGTCTGCAACC





TGAAGATTTTGCGACTTACCACTGTCAACAAACTTACATTATTCCGTA





CACTTTTGGCCAGGGGACCAAAGTGGATATCAAA





315
5034
1338
DIQMTQSPSSLSASVGDRVTISCRASQTISRYLNWYQVKPGTAPKLLIYA





ASSLQTGVPSRFSASGSGADFTLTISSLQPEDFATYHCQQTYIIPYTFGQGT





KVDIK





315
5035
1339
RASQTISRYLN





315
5036
1340
CGGGCAAGTCAGACTATAAGCAGATATTTAAAT





315
5037
1341
AASSLQT





315
5038
1342
GCTGCATCCAGTTTGCAAACT





315
5039
1343
QQTYIIPYT





315
5040
1344
CAACAAACTTACATTATTCCGTACACT





316
5041
1345
GAGGTGCAGCTGGTGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACA





GACCCTGTCCCTCACCTGCACTGTCTCTGATGTCCTCATCAGCAGTGG





TGATTACTACTGGAGTTGGATCCGCCAGTCCCCAGGGAAGGGCCTGG





AGTGGCTTGGGTACATCTATTATACCGGGAAGACCAAATATAATCCG





TCCCTCGAGAGTCGAATTACCATGTCAGTAGACACGTCCAAGAACCA





GTTCTCCCTGAGGTTGAGCTCTGTTACTGCCGCAGACACGGCCGTATA





TTTCTGTACCAGAGATCTGGGATATAGCACCTCGTCCCCCTCCTTTTA





CTATGGGATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCT





CA





316
5042
1346
EVQLVESGPGLVKPSQTLSLTCTVSDVLISSGDYYWSWIRQSPGKGLEWL





GYIYYTGKTKYNPSLESRITMSVDTSKNQFSLRLSSVTAADTAVYFCTRD





LGYSTSSPSFYYGMDVWGQGTTVTVSS





316
5043
1347
VLISSGDYYWS





316
5044
1348
GTCCTCATCAGCAGTGGTGATTACTACTGGAGT





316
5045
1349
YIYYTGKTKYNPSLES





316
5046
1350
TACATCTATTATACCGGGAAGACCAAATATAATCCGTCCCTCGAGAGT





316
5047
1351
TRDLGYSTSSPSFYYGMDV





316
5048
1352
ACCAGAGATCTGGGATATAGCACCTCGTCCCCCTCCTTTTACTATGGG





ATGGACGTC





316
5049
1353
GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTGGGACCTA





CTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGATGCATCTTACAGGGTCACTGGCATCCCAGCCAGGTTCAGTGC





CAGTGGGTCTGCGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC





CTGAAGATTTTGCAGTTTATTTCTGTCAGCAGCGTACCAACTGGCCGA





TCACCTTCGGCCAGGGGACACGACTGGAGATTAAA





316
5050
1354
EIVLTQSPATLSLSPGERATLSCRASQSVGTYLAWYQQKPGQAPRLLIYD





ASYRVTGIPARFSASGSATDFTLTISSLEPEDFAVYFCQQRTNWPITFGQG





TRLEIK





316
5051
1355
RASQSVGTYLA





316
5052
1356
AGGGCCAGTCAGAGTGTTGGGACCTACTTAGCC





316
5053
1357
DASYRVT





316
5054
1358
GATGCATCTTACAGGGTCACT





316
5055
1359
QQRTNWPIT





316
5056
1360
CAGCAGCGTACCAACTGGCCGATCACC





317
5057
1361
CAGGTCCAGCTTGTGCAGTCTGGACCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGACGGTCTCCTGCAAGGCTTCCGGTTACACCTTTAGCCATTA





CGGTATTAGTTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGGGTGGATCAGCGCGTACCATGGTCAGACAAACTATGCACAGAAC





TTCCAGGGCAGAGTCACCATGACCACAGACACATCCTCGAACACAGC





CTACATGGAGGTCAGGAGCCTGAGATCTGACGACACGGCCGTTTATT





TCTGTGCGAGAGATGTCTTTTCGAAAACAGCAGCTCGAATCTTTGACT





ACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





317
5058
1362
QVQLVQSGPEVKKPGASVTVSCKASGYTFSHYGISWVRQAPGQGLEWM





GWISAYHGQTNYAQNFQGRVTMTTDTSSNTAYMEVRSLRSDDTAVYFC





ARDVFSKTAARIFDYWGQGTLVTVSS





317
5059
1363
YTFSHYGIS





317
5060
1364
TACACCTTTAGCCATTACGGTATTAGT





317
5061
1365
WISAYHGQTNYAQNFQG





317
5062
1366
TGGATCAGCGCGTACCATGGTCAGACAAACTATGCACAGAACTTCCA





GGGC





317
5063
1367
ARDVFSKTAARIFDY





317
5064
1368
GCGAGAGATGTCTTTTCGAAAACAGCAGCTCGAATCTTTGACTAC





317
5065
1369
GAAATTGTATTGACGCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGAATATAGT





GACGGAAACACCTACTTGAGTTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCC





AGACAGATTCAGCGGCAGTCAGTCAGGCACTGATTTCACACTGAAAA





TCAGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





GCTACAGACTGGCCGGTCACGTTCGGCCAAGGGACCAAGCTGGAGAT





CAAA





317
5066
1370
EIVLTQSPLSLPVTLGQPASISCRSSQSLEYSDGNTYLSWFQQRPGQSPRR





LIYKVSNRDSGVPDRFSGSQSGTDFTLKISRVEAEDVGVYYCMQATDWP





VTFGQGTKLEIK





317
5067
1371
RSSQSLEYSDGNTYLS





317
5068
1372
AGGTCTAGTCAAAGCCTCGAATATAGTGACGGAAACACCTACTTGAG





T





317
5069
1373
KVSNRDS





317
5070
1374
AAGGTTTCTAACCGGGACTCT





317
5071
1375
MQATDWPVT





317
5072
1376
ATGCAAGCTACAGACTGGCCGGTCACG





318
5073
1377
CAGGTGCAGCTGCAGGAGTCGGGCCCAAGACTGGTGAAGCCTTCGCA





GACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGCAGTGG





TGATTATTACTGGAGTTGGATCCGCCAGCCCCCAGGGAAGGGCCTGG





AGTGGATTGGGTACATCTATTACAGTGGGAGCACCCACTACAACCCG





TCCCTCAAGAGTCGAGTTAGCATGTCAGTAGACACGGCCAAGAACCA





GTTCTCCCTGAAGCTGACCTCTGTGACTGCCGCAGACACGGCCGTCTA





TTACTGTGCCAGAGATATCGGCTACGGTGACCACGGGACTGGGTCTT





ATTACTACGGAATAGAAGACTGGGGCCAAGGGACCACGGTCACCGTC





TCCTCA





318
5074
1378
QVQLQESGPRLVKPSQTLSLTCTVSGGSISSGDYYWSWIRQPPGKGLEWI





GYIYYSGSTHYNPSLKSRVSMSVDTAKNQFSLKLTSVTAADTAVYYCAR





DIGYGDHGTGSYYYGIEDWGQGTTVTVSS





318
5075
1379
GSISSGDYYWS





318
5076
1380
GGCTCCATCAGCAGTGGTGATTATTACTGGAGT





318
5077
1381
YIYYSGSTHYNPSLKS





318
5078
1382
TACATCTATTACAGTGGGAGCACCCACTACAACCCGTCCCTCAAGAGT





318
5079
1383
ARDIGYGDHGTGSYYYGIED





318
5080
1384
GCCAGAGATATCGGCTACGGTGACCACGGGACTGGGTCTTATTACTA





CGGAATAGAAGAC





318
5081
1385
GATATTGTGATGACTCAGACTCCAGCCACCCTGTCTTTGTCTCCAGGG





GACAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAATATTATGAGCTA





CTTAGCCTGGTACCAACACAAACCTGGCCAGCCTCCCAGGCTCCTCAT





CTATGATGCATCCTACAGGGCCGCTGGCATCCCAGCCAGGTTCAGTG





GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAG





CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGAACCAACTGGATC





ACCTTCGGCCAAGGGACACGACTGGAGATTAAA





318
5082
1386
DIVMTQTPATLSLSPGDRATLSCRASQNIMSYLAWYQHKPGQPPRLLIYD





ASYRAAGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRTNWITFGQGT





RLEIK





318
5083
1387
RASQNIMSYLA





318
5084
1388
AGGGCCAGTCAGAATATTATGAGCTACTTAGCC





318
5085
1389
DASYRAA





318
5086
1390
GATGCATCCTACAGGGCCGCT





318
5087
1391
QQRTNWIT





318
5088
1392
CAGCAGCGAACCAACTGGATCACC





319
5089
1393
GAGGTGCAGCTGGTGGAGTCAGGGGGAGGCTTGGTGCAGCGGGGGG





GGTCCCTGAGACTCTCGTGTGCGGCCTCTGGATTCACCTTTAGTGGTA





ATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGG





GTCGCATCTATTGGTGAAAGTGCTACTAGCGCATACTACGCAGACTCC





GTGAAGGGCCGGTTCACCATCTCCAGAGATGATTCGAAGAACACTCT





GTATCTCCAAATGAACAGCCTGAGACCCGAGGACACGGCCGTATATT





TCTGTGCGAAAGATCGCGTAGGATGGTTCGGGGAGTTCGACGCTTTTG





ATTTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA





319
5090
1394
EVQLVESGGGLVQRGGSLRLSCAASGFTFSGNAMSWVRQAPGKGLEWV





ASIGESATSAYYADSVKGRFTISRDDSKNTLYLQMNSLRPEDTAVYFCAK





DRVGWFGEFDAFDFWGQGTMVTVSS





319
5091
1395
FTFSGNAMS





319
5092
1396
TTCACCTTTAGTGGTAATGCCATGAGC





319
5093
1397
SIGESATSAYYADSVKG





319
5094
1398
TCTATTGGTGAAAGTGCTACTAGCGCATACTACGCAGACTCCGTGAA





GGGC





319
5095
1399
AKDRVGWFGEFDAFDF





319
5096
1400
GCGAAAGATCGCGTAGGATGGTTCGGGGAGTTCGACGCTTTTGATTTC





319
5097
1401
TCCTATGAGCTGACGCAGCCACCCTCAGTGTCAGTGGCCCCAGGAAA





GACGGCCACCATTTCCTGTGGGGGAAACAACATTGGAGGTCACAAAG





TGCACTGGTACCAGCAGAGGCCAGGCCAGGCCCCTGTCTTGGTCATCT





ATTATGATAACGTCCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCT





CCAACTCTGGAAACACGGCCACCCTGACCATCAGCAGGGTCGAGGCC





GGGGATGAGGCCGACTTTTACTGTCAGGTGTGGGATAGTCGTTCTGA





ACATGTCATATTCGGCGGGGGGACCAAGGTCACCGTCCTA





319
5098
1402
SYELTQPPSVSVAPGKTATISCGGNNIGGHKVHWYQQRPGQAPVLVIYY





DNVRPSGIPERFSGSNSGNTATLTISRVEAGDEADFYCQVWDSRSEHVIF





GGGTKVTVL





319
5099
1403
GGNNIGGHKVH





319
5100
1404
GGGGGAAACAACATTGGAGGTCACAAAGTGCAC





319
5101
1405
YDNVRPS





319
5102
1406
TATGATAACGTCCGGCCCTCA





319
5103
1407
QVWDSRSEHVI





319
5104
1408
CAGGTGTGGGATAGTCGTTCTGAACATGTCATA





320
5105
1409
CAGGTCCAGCTTGTACAGTCTGGAGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCGTGCAAGACTTCTGGTTACACCTTTTCCAACTA





CGGTATCAGCTGGCTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGCATGGATCAGCCCTTATAATGGGAACACAAAGTCTGCACAGAGG





TTTCAGGGCAGAGTCATCATGACCACAGACACATCCACGAGGACAGC





CCACATGGAGGTGAAGAGCCTGAGAACTGACGACACGGCCACATATT





ACTGTGCGAGAGATCCAGCAGTCGATGCAATACCGATGCTTGACTAC





TGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





320
5106
1410
QVQLVQSGAEVKKPGASVKVSCKTSGYTFSNYGISWLRQAPGQGLEWM





AWISPYNGNTKSAQRFQGRVIMTTDTSTRTAHMEVKSLRTDDTATYYCA





RDPAVDAIPMLDYWGQGTLVTVSS





320
5107
1411
YTFSNYGIS





320
5108
1412
TACACCTTTTCCAACTACGGTATCAGC





320
5109
1413
WISPYNGNTKSAQRFQG





320
5110
1414
TGGATCAGCCCTTATAATGGGAACACAAAGTCTGCACAGAGGTTTCA





GGGC





320
5111
1415
ARDPAVDAIPMLDY





320
5112
1416
GCGAGAGATCCAGCAGTCGATGCAATACCGATGCTTGACTAC





320
5113
1417
GACATCCAGATGACCCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTGTACACT





GATGGAAACACCTACTTGAGCTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAGGGTTTCTCACCGGGACTCTGGGGTCCC





AGACAGATTCACCGGCAGTGGGTCAGGCACTGATTTCACACTGATAA





TCCGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





GGTACACACTGGCCTCTCACTTTCGGCGGAGGGACCAAGCTGGAGAT





CAAA





320
5114
1418
DIQMTQSPLSLPVTLGQPASISCRSSQSLVYTDGNTYLSWFQQRPGQSPRR





LIYRVSHRDSGVPDRFTGSGSGTDFTLIIRRVEAEDVGVYYCMQGTHWPL





TFGGGTKLEIK





320
5115
1419
RSSQSLVYTDGNTYLS





320
5116
1420
AGGTCTAGTCAAAGCCTCGTGTACACTGATGGAAACACCTACTTGAG





C





320
5117
1421
RVSHRDS





320
5118
1422
AGGGTTTCTCACCGGGACTCT





320
5119
1423
MQGTHWPLT





320
5120
1424
ATGCAAGGTACACACTGGCCTCTCACT





321
5121
1425
CAGGTCCAGCTGGTACAGTCTGGTCCTGCGCTGGTGAAACCCACACA





GACCCTCACACTGACCTGCACCTTCGGTGGATTCTCACTCAGCAGACA





TGGAATGCGTGTGACCTGGATCCGTCAGGCCCCCGGGAAGGCCCTGG





AGTGGCTTGGTCACATTGATTGGGATGATGATAAATTCTACAGGACAT





CTCTGAAGACCAGGCTCACCATCTCCAAGGACCCCTCTAACAATGAG





GTGGTCCTGAAAATGACCAACATGGACCACGTGGACACAGCCACGTA





TTACTGTGCACTGATGAGGCCCTTTTGGAGTCGTGACGACTACTACTA





TTCCATCGCCGTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCA





321
5122
1426
QVQLVQSGPALVKPTQTLTLTCTFGGFSLSRHGMRVTWIRQAPGKALEW





LGHIDWDDDKFYRTSLKTRLTISKDPSNNEVVLKMTNMDHVDTATYYC





ALMRPFWSRDDYYYSIAVWGKGTTVTVSS





321
5123
1427
FSLSRHGMRVT





321
5124
1428
TTCTCACTCAGCAGACATGGAATGCGTGTGACC





321
5125
1429
HIDWDDDKFYRTSLKT





321
5126
1430
CACATTGATTGGGATGATGATAAATTCTACAGGACATCTCTGAAGAC





C





321
5127
1431
ALMRPFWSRDDYYYSIAV





321
5128
1432
GCACTGATGAGGCCCTTTTGGAGTCGTGACGACTACTACTATTCCATC





GCCGTC





321
5129
1433
GATATTGTGCTGACCCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGG





GACAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTCGGCAGCGG





CTACGTAACCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCC





TCATTTATGGTGCATCAAACAGGGCCGAAGGCATCCCAGACAGGTTC





AGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCGGACT





GGAGTCTGAAGATTTTGTAATTTATTACTGTCAGCTATATCATAGGTC





ACCTGGCTCTGCGAGTCAAACCGTTTGGACGTTCGGCCAAGGGACCA





AGGTGGAAATCAAA





321
5130
1434
DIVLTQSPGTLSLSPGDRATLSCRASQSVGSGYVTWYQQKPGQAPRLLIY





GASNRAEGIPDRFSGSGSGTDFTLTISGLESEDFVIYYCQLYHRSPGSASQ





TVWTFGQGTKVEIK





321
5131
1435
RASQSVGSGYVT





321
5132
1436
AGGGCCAGTCAGAGTGTCGGCAGCGGCTACGTAACC





321
5133
1437
GASNRAE





321
5134
1438
GGTGCATCAAACAGGGCCGAA





321
5135
1439
QLYHRSPGSASQTVWT





321
5136
1440
CAGCTATATCATAGGTCACCTGGCTCTGCGAGTCAAACCGTTTGGACG





322
5137
1441
CAGGTCCAGCTTGTACAGTCTGGACCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAGGGTCTCCTGCGAGGCTTCTGGTTACCCCTTTAGCAATTA





CGGCATCACCTGGGTGCGCCAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGGATGGATCAGCGCTTACAACGGAAACAGAGACTATCTGCAGAAG





TTTCAGGGCAGACTCACCATGACCATAGACACATCCACGAGAACAGC





CCACATGGAATTGAGGCGCCTGACATCTGACGACACGGCCGTATATT





GGTGTGCGAGAGACACACCCGCCACTGCTGCCCCTCTGCTTGACTACT





GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





322
5138
1442
QVQLVQSGPEVKKPGASVRVSCEASGYPFSNYGITWVRQAPGQGLEWM





GWISAYNGNRDYLQKFQGRLTMTIDTSTRTAHMELRRLTSDDTAVYWC





ARDTPATAAPLLDYWGQGTLVTVSS





322
5139
1443
YPFSNYGIT





322
5140
1444
TACCCCTTTAGCAATTACGGCATCACC





322
5141
1445
WISAYNGNRDYLQKFQG





322
5142
1446
TGGATCAGCGCTTACAACGGAAACAGAGACTATCTGCAGAAGTTTCA





GGGC





322
5143
1447
ARDTPATAAPLLDY





322
5144
1448
GCGAGAGACACACCCGCCACTGCTGCCCCTCTGCTTGACTAC





322
5145
1449
GATATTGTGATGACTCAGTCTCCACTCTCCCTGGCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGAATTCACT





GATGGAAACACCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCC





AGACAGATTCAGCGGCAGTGGGTCAGGCACTGGTTTCACACTGAAAA





TCAGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





GGTATTTTCCGGCCGGGGACGTTCGGCCAAGGGACCAAGGTGGAAAT





CAAA





322
5146
1450
DIVMTQSPLSLAVTLGQPASISCRSSQSLEFTDGNTYLNWFQQRPGQSPR





RLIYKVSNRDSGVPDRFSGSGSGTGFTLKISRVEAEDVGVYYCMQGIFRP





GTFGQGTKVEIK





322
5147
1451
RSSQSLEFTDGNTYLN





322
5148
1452
AGGTCTAGTCAAAGCCTCGAATTCACTGATGGAAACACCTACTTGAA





T





322
5149
1453
KVSNRDS





322
5150
1454
AAGGTTTCTAACCGGGACTCT





322
5151
1455
MQGIFRPGT





322
5152
1456
ATGCAAGGTATTTTCCGGCCGGGGACG





323
5153
1457
CAGGTCCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCCTGCAAGGCTTCTGGTTACACCTTTGTCCACTA





TGGTATCAGTTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGGATGGATCAGCGCATACAATGGTAATACAAACTCTGCACTGAAG





TTCCAGGACAGAGTCACCATGACCACAGACCCATCCACGAGCACAGC





CTACATGGAGCTGAGGAGCCTGAGATCTGACGACACGGCCATTTATT





ACTGTGCGAGAGACTCAGGTTGTTGTAGTGGTTCCACCTCAGACGTCT





GGGGCAAAGGGACCACGGTCACCGTCTCCTCA





323
5154
1458
QVQLVQSGAEVKKPGASVKVSCKASGYTFVHYGISWVRQAPGQGLEW





MGWISAYNGNTNSALKFQDRVTMTTDPSTSTAYMELRSLRSDDTAIYYC





ARDSGCCSGSTSDVWGKGTTVTVSS





323
5155
1459
YTFVHYGIS





323
5156
1460
TACACCTTTGTCCACTATGGTATCAGT





323
5157
1461
WISAYNGNTNSALKFQD





323
5158
1462
TGGATCAGCGCATACAATGGTAATACAAACTCTGCACTGAAGTTCCA





GGAC





323
5159
1463
ARDSGCCSGSTSDV





323
5160
1464
GCGAGAGACTCAGGTTGTTGTAGTGGTTCCACCTCAGACGTC





323
5161
1465
GATATTGTGATGACTCAGTCTCCACTCTCTTCACCTGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTGCACAGT





GATGGAAACACCTACTTGAGTTGGCTTCACCAGAGGCCAGGCCAGCC





TCCAAGACTCCTAATTTATAAGATTTCCCACCGGTTCTCTGGGGTCCC





AGACAGATTCACTGGCAGTGGGGCAGGGACAGATTTCACACTGAAAA





TCAGCAGGGTGGAGGCTGAGGATGTCGGGGTTTATTACTGCATGCAA





GCTACAGAATTTCCTCCGATGTACACTTTTGGCCAGGGGACCAAGGTG





GAGATCAAA





323
5162
1466
DIVMTQSPLSSPVTLGQPASISCRSSQSLVHSDGNTYLSWLHQRPGQPPRL





LIYKISHRFSGVPDRFTGSGAGTDFTLKISRVEAEDVGVYYCMQATEFPP





MYTFGQGTKVEIK





323
5163
1467
RSSQSLVHSDGNTYLS





323
5164
1468
AGGTCTAGTCAAAGCCTCGTGCACAGTGATGGAAACACCTACTTGAG





T





323
5165
1469
KISHRFS





323
5166
1470
AAGATTTCCCACCGGTTCTCT





323
5167
1471
MQATEFPPMYT





323
5168
1472
ATGCAAGCTACAGAATTTCCTCCGATGTACACT





324
5169
1473
GAGGTGCAGCTGGTGGAGACGGGCCCAGGACTGGTGAAGCCTTCGGA





GACCCTGTCCCTCACCTGCACTGTCTCTGGTGACTCCATCAGTGGTTA





CTACTGGAGCTGGATCCGGCAGTCCCCAGGGAAGGGACTGGAGTGGA





TTGGCTATATCTATTACAGGGGGAGCACCGACTACAACCCCTCCCTCA





AGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCC





CTGAAACTGAGCTCTGTGACCGCTGCGGACACGGCCGTGTATTACTGT





GCGAGAGATAATAAACACCATGATTCGGGAAATTATTACGCATACTT





TGACCATTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





324
5170
1474
EVQLVETGPGLVKPSETLSLTCTVSGDSISGYYWSWIRQSPGKGLEWIGY





IYYRGSTDYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDNK





HHDSGNYYAYFDHWGQGTLVTVSS





324
5171
1475
DSISGYYWS





324
5172
1476
GACTCCATCAGTGGTTACTACTGGAGC





324
5173
1477
YIYYRGSTDYNPSLKS





324
5174
1478
TATATCTATTACAGGGGGAGCACCGACTACAACCCCTCCCTCAAGAG





T





324
5175
1479
ARDNKHHDSGNYYAYFDH





324
5176
1480
GCGAGAGATAATAAACACCATGATTCGGGAAATTATTACGCATACTT





TGACCAT





324
5177
1481
GATATTGTGATGACTCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCAGAACATTAACACCTT





TTTAAATTGGTATCAGCACAAACCAGGGAAAGCCCCTAAACTCCTGA





TCTATGGTGCATCCCGTTTGCAGAGTGGGGTCCCATCAAGGTTCACTG





GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC





CTGAAGATTTTGCAACTTACTCCTGTCAACAGAGTTACACTACCCGGC





TCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAA





324
5178
1482
DIVMTQSPSSLSASVGDRVTITCRASQNINTFLNWYQHKPGKAPKLLIYG





ASRLQSGVPSRFTGSGSGTDFTLTISSLQPEDFATYSCQQSYTTRLTFGGG





TKVEIK





324
5179
1483
RASQNINTFLN





324
5180
1484
CGGGCAAGTCAGAACATTAACACCTTTTTAAAT





324
5181
1485
GASRLQS





324
5182
1486
GGTGCATCCCGTTTGCAGAGT





324
5183
1487
QQSYTTRLT





324
5184
1488
CAACAGAGTTACACTACCCGGCTCACT





325
5185
1489
CAGGTCCAGCTGGTGCAGTCTGGGACTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGATTTCCTGCAAGACTTCTGGATACACCTTCACTAATAA





TGTAATTCAATGGGTGCGCCAGGCCCCCGGACAAAGGCTTGAGTGGA





TGGGATGGATCAGCGCTGGCAATGGTTACACAAAATATTCAGACAAG





TTCCAGGACAGAGTCACCATTACCAGGGACACATCCGCGAGCACAGC





CTACATGGAGGTGAGCAGCCTGACATCTGAAGACACGGCTATGTATT





ACTGTGCGAGACAAGTCTCGACTAGTGGCTGGCACGCAACGTCACAC





CGGTTCGCCCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





325
5186
1490
QVQLVQSGTEVKKPGASVKISCKTSGYTFTNNVIQWVRQAPGQRLEWM





GWISAGNGYTKYSDKFQDRVTITRDTSASTAYMEVSSLTSEDTAMYYCA





RQVSTSGWHATSHRFAPWGQGTLVTVSS





325
5187
1491
YTFTNNVIQ





325
5188
1492
TACACCTTCACTAATAATGTAATTCAA





325
5189
1493
WISAGNGYTKYSDKFQD





325
5190
1494
TGGATCAGCGCTGGCAATGGTTACACAAAATATTCAGACAAGTTCCA





GGAC





325
5191
1495
ARQVSTSGWHATSHRFAP





325
5192
1496
GCGAGACAAGTCTCGACTAGTGGCTGGCACGCAACGTCACACCGGTT





CGCCCCC





325
5193
1497
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCAGGCGAGTCAGGGCATTAGTAGATA





TTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAACCTCCTGA





TCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGT





GGAAGTGGATCTGGGACACATTTTACTTTAACCATCAGCAGCCTGCA





GCCTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATCTCCC





GCTCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAA





325
5194
1498
DIQMTQSPSSLSASVGDRVTITCQASQGISRYLNWYQQKPGKAPNLLIYD





ASNLETGVPSRFSGSGSGTHFTLTISSLQPEDIATYYCQQYDNLPLTFGGG





TKVEIK





325
5195
1499
QASQGISRYLN





325
5196
1500
CAGGCGAGTCAGGGCATTAGTAGATATTTAAAT





325
5197
1501
DASNLET





325
5198
1502
GATGCATCCAATTTGGAAACA





325
5199
1503
QQYDNLPLT





325
5200
1504
CAACAGTATGATAATCTCCCGCTCACT





326
5201
1505
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG





GTCCCTGAGACTCTCCTGTGAAGCCTCTGGATTCACCTTCAGTAGTTT





TAGCATGCACTGGGTCCGCCAGGCTCCGGGCAAGGGGCTGGAGTGGG





TGGCAGTGATTTTATATGATGGGAGTAATCAATACTATGCAGACTCCG





TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTT





TATCTGCAAATGAACACCCTGAGAGCTGAGGACACGGCTATGTATTA





CTGTGCGAAATCATCATCGTCCCATGTTAACTCTCGACAAGACAAATG





GGGCCAGGGCACCCTGGTCACCGTCTCCTCA





326
5202
1506
EVQLVESGGGVVQPGRSLRLSCEASGFTFSSFSMHWVRQAPGKGLEWV





AVILYDGSNQYYADSVKGRFTISRDNSKNTLYLQMNTLRAEDTAMYYC





AKSSSSHVNSRQDKWGQGTLVTVSS





326
5203
1507
FTFSSFSMH





326
5204
1508
TTCACCTTCAGTAGTTTTAGCATGCAC





326
5205
1509
VILYDGSNQYYADSVKG





326
5206
1510
GTGATTTTATATGATGGGAGTAATCAATACTATGCAGACTCCGTGAAG





GGC





326
5207
1511
AKSSSSHVNSRQDK





326
5208
1512
GCGAAATCATCATCGTCCCATGTTAACTCTCGACAAGACAAA





326
5209
1513
GAAATTGTATTGACACAGTCTCCTTCCACCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAGGTG





GTTGGCCTGGTATCAGCAGAAACCAGGGGAAGCCCCTAAACTCCTGA





TCCACACGGCGTCTACATTAGAAAGTGGGGTCCCATCAAGGTTCAGC





GGCAGTGGCTCTGGGACAGAATTCACTCTCACCATCAACAGCCTGCA





GCCTGATGATCTTGCAACTTATTACTGCCAACAGTATTATAATTGGTG





GACGTTCGGCCAAGGGACCAAGGTGGAGATCAAA





326
5210
1514
EIVLTQSPSTLSASVGDRVTITCRASQSISRWLAWYQQKPGEAPKLLIHTA





STLESGVPSRFSGSGSGTEFTLTINSLQPDDLATYYCQQYYNWWTFGQGT





KVEIK





326
5211
1515
RASQSISRWLA





326
5212
1516
CGGGCCAGTCAGAGTATTAGTAGGTGGTTGGCC





326
5213
1517
TASTLES





326
5214
1518
ACGGCGTCTACATTAGAAAGT





326
5215
1519
QQYYNWWT





326
5216
1520
CAACAGTATTATAATTGGTGGACG





327
5217
1521
GAGGTGCAGCTGTTGGAGTCCGGAGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGATCTCCTGCAAGGCCTCTGGTTACATCTTTACCAGTTA





TGGTGTCAGTTGGGTGCGACAGGCCCCTGGACAAGGGCTTAAGTGGA





TGGGATGGATCAGCGGTTACAATGGTAACACATACTATGACCAGAAA





TTCCAGGGCAGAGTCACCATGACCACAGACACATCCACGAACACAGC





CTACATGGAGTTGAGGAGCCTGACATCTGACGACACGGCCGTATATT





ACTGTGCGAGAGATTCCTTTTCAGAGACTGGGACTGGATTTCCTGACT





TCTGGGGCCAGGGCACCCTGGTCACCGTCTCTTCA





327
5218
1522
EVQLLESGAEVKKPGASVKISCKASGYIFTSYGVSWVRQAPGQGLKWM





GWISGYNGNTYYDQKFQGRVTMTTDTSTNTAYMELRSLTSDDTAVYYC





ARDSFSETGTGFPDFWGQGTLVTVSS





327
5219
1523
YIFTSYGVS





327
5220
1524
TACATCTTTACCAGTTATGGTGTCAGT





327
5221
1525
WISGYNGNTYYDQKFQG





327
5222
1526
TGGATCAGCGGTTACAATGGTAACACATACTATGACCAGAAATTCCA





GGGC





327
5223
1527
ARDSFSETGTGFPDF





327
5224
1528
GCGAGAGATTCCTTTTCAGAGACTGGGACTGGATTTCCTGACTTC





327
5225
1529
GAAATTGTGTTGACGCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGAATACAGT





GATGGAAACACCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCC





CGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAAAA





TCAGCAGGGTGGAGGCTGAGGATGTTGGAGTTTATTACTGCATGCAA





GCCACACACCGGCCTCGCACGTTCGGCCAAGGGACCAAAGTGGATAT





CAAA





327
5226
1530
EIVLTQSPLSLPVTLGQPASISCRSSQSLEYSDGNTYLNWFQQRPGQSPRR





LIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQATHRP





RTFGQGTKVDIK





327
5227
1531
RSSQSLEYSDGNTYLN





327
5228
1532
AGGTCTAGTCAAAGCCTCGAATACAGTGATGGAAACACCTACTTGAA





T





327
5229
1533
KVSNRDS





327
5230
1534
AAGGTTTCTAACCGGGACTCT





327
5231
1535
MQATHRPRT





327
5232
1536
ATGCAAGCCACACACCGGCCTCGCACG





328
5233
1537
CAGGTCCAGCTGGTGCAGTCTGGAGCAGAGGTGAAAAAGCCCGGGG





AGTCTCTGAAGATCTCCTGTAAGGGTTTTGGATACAGCTTTAACAGTT





ACTGGATCGCCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGC





ATGGGCATCATCTATCCTGGCGACTCTGATACCAGATACAGCCCGTCC





TTCCAAGGGCAGGTCACCATCTCAGTCGACAAGTCCATCACTACCGCC





TACCTGCAGTGGAGCAGCCTGAAGGTCTCGGACACCGCCATGTATTA





CTGTGCGAAAAGTAATGTGGGGAATACAGGTTGGAACTACTGGGGCC





AGGGAACCCTGGTCACCGTCTCCTCA





328
5234
1538
QVQLVQSGAEVKKPGESLKISCKGFGYSFNSYWIAWVRQMPGKGLECM





GIIYPGDSDTRYSPSFQGQVTISVDKSITTAYLQWSSLKVSDTAMYYCAK





SNVGNTGWNYWGQGTLVTVSS





328
5235
1539
YSFNSYWIA





328
5236
1540
TACAGCTTTAACAGTTACTGGATCGCC





328
5237
1541
IIYPGDSDTRYSPSFQG





328
5238
1542
ATCATCTATCCTGGCGACTCTGATACCAGATACAGCCCGTCCTTCCAA





GGG





328
5239
1543
AKSNVGNTGWNY





328
5240
1544
GCGAAAAGTAATGTGGGGAATACAGGTTGGAACTAC





328
5241
1545
GAAATTGTATTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCACAGTGTTGCCACCGA





CCTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCA





TCTATGATGCATCCAAGAGGGCCACTGACGTCCCAGCCAGGTTCAGT





GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGA





GCCTGAAGATGTTGCAGTTTATTACTGTCAGGAAGTTAGGAACTGGCC





TCCGTGCACTTTTGGCCAGGGGACCAAAGTGGATATCAAA





328
5242
1546
EIVLTQSPATLSLSPGERATLSCRASHSVATDLAWYQQKPGQAPRLLIYD





ASKRATDVPARFSGSGSGTDFTLTISSLEPEDVAVYYCQEVRNWPPCTFG





QGTKVDIK





328
5243
1547
RASHSVATDLA





328
5244
1548
AGGGCCAGTCACAGTGTTGCCACCGACCTAGCC





328
5245
1549
DASKRAT





328
5246
1550
GATGCATCCAAGAGGGCCACT





328
5247
1551
QEVRNWPPCT





328
5248
1552
CAGGAAGTTAGGAACTGGCCTCCGTGCACT





329
5249
1553
GAGGTGCAGCTGCAGGAGTCCGGCTCTCGACTGGTGAAGCCTTCACA





GACCCTGTCCCTCACCTGCTCTGTCTCTGGTGGCTCCCTCAACGCAGG





CGGTTACCTGTGGAGCTGGATCCGTCAGCCACCAGGGAAGGGCCTGG





AGTGGGTTGGGTACATCTATCCTAGTGGGACTACCTACTACAACCCGT





CCCTGCAGAGTCGAATCAGCATTTCACAAGACAGGTCCAGGAACCAG





TTCTCCCTGAGCGTAGCGTCTGTGACCGCCGCGGACACGGCCGTCTAT





TACTGTGCCAGATGTGGGAATGAGTACGGTGAGGTCCATCCTTTTGAT





ATTTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA





329
5250
1554
EVQLQESGSRLVKPSQTLSLTCSVSGGSLNAGGYLWSWIRQPPGKGLEW





VGYIYPSGTTYYNPSLQSRISISQDRSRNQFSLSVASVTAADTAVYYCARC





GNEYGEVHPFDIWGQGTTVTVSS





329
5251
1555
GSLNAGGYLWS





329
5252
1556
GGCTCCCTCAACGCAGGCGGTTACCTGTGGAGC





329
5253
1557
YIYPSGTTYYNPSLQS





329
5254
1558
TACATCTATCCTAGTGGGACTACCTACTACAACCCGTCCCTGCAGAGT





329
5255
1559
ARCGNEYGEVHPFDI





329
5256
1560
GCCAGATGTGGGAATGAGTACGGTGAGGTCCATCCTTTTGATATT





329
5257
1561
GAAATTGTATTGACACAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGG





GAAAGAGCCACCCTCTCCTGCCGGGGCAGTCCTATTGTTGGCAACAA





CTACTTAGCCTGGTACCAGCAGAAGCCTGGCCAGGCTCCCAGGCTCCT





CATCTATGCTGCATCCATCAGGGCCACTGGCATCCCAGACAGGTTCAG





TGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTAG





AGCCTGAAGATTTTGCAGTCTATTACTGTCAGCAATATGGCAGCTCAC





CGTGGACGTTCGGCCAAGGGACCAAAGTGGATATCAAA





329
5258
1562
EIVLTQSPGTLSLSPGERATLSCRGSPIVGNNYLAWYQQKPGQAPRLLIYA





ASIRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQG





TKVDIK





329
5259
1563
RGSPIVGNNYLA





329
5260
1564
CGGGGCAGTCCTATTGTTGGCAACAACTACTTAGCC





329
5261
1565
AASIRAT





329
5262
1566
GCTGCATCCATCAGGGCCACT





329
5263
1567
QQYGSSPWT





329
5264
1568
CAGCAATATGGCAGCTCACCGTGGACG





330
5265
1569
CAGGTGCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCCTGCAAGGCTTCTGGTTACATCTTTACCAGTTA





TGGTGTCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTAAGTGGA





TGGGATGGATCAGCGGTTACAATGGTAACACAAACTATGACCAGAAA





CTCCAGGGCAGAGTCACCATGACCACAGACACATCCACGAGCACAGC





CTACATGGAGCTGAGGAGCCTGACATCTGACGACACGGCCGTTTATT





ACTGTGCGAGAGATTCATTTTCAGAGACTGGGACTGGGTTTCCTGACT





TCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





330
5266
1570
QVQLVQSGAEVKKPGASVKVSCKASGYIFTSYGVSWVRQAPGQGLKW





MGWISGYNGNTNYDQKLQGRVTMTTDTSTSTAYMELRSLTSDDTAVYY





CARDSFSETGTGFPDFWGQGTLVTVSS





330
5267
1571
YIFTSYGVS





330
5268
1572
TACATCTTTACCAGTTATGGTGTCAGC





330
5269
1573
WISGYNGNTNYDQKLQG





330
5270
1574
TGGATCAGCGGTTACAATGGTAACACAAACTATGACCAGAAACTCCA





GGGC





330
5271
1575
ARDSFSETGTGFPDF





330
5272
1576
GCGAGAGATTCATTTTCAGAGACTGGGACTGGGTTTCCTGACTTC





330
5273
1577
GACATCCAGATGACCCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCTCGAATACAGT





GATGGAAACACCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTAATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCC





AGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAAAA





TCAGCAGGGTGGAGGCTGAGGATGTTGGAGTTTATTACTGCATGCAA





GCCACACACCGGCCTCGCACGTTCGGCCAAGGGACCAAGCTGGAGAT





CAAA





330
5274
1578
DIQMTQSPLSLPVTLGQPASISCRSSQSLEYSDGNTYLNWFQQRPGQSPRR





LIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQATHRP





RTFGQGTKLEIK





330
5275
1579
RSSQSLEYSDGNTYLN





330
5276
1580
AGGTCTAGTCAAAGCCTCGAATACAGTGATGGAAACACCTACTTGAA





T





330
5277
1581
KVSNRDS





330
5278
1582
AAGGTTTCTAACCGGGACTCT





330
5279
1583
MQATHRPRT





330
5280
1584
ATGCAAGCCACACACCGGCCTCGCACG





331
5281
1585
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG





GTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAGTTT





TTCTATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGG





TGGCACTTATATCATCTGACGAGAGGAATTCATACTACGCAGACTCCG





TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTG





TATCTGCAAATAAGCAGGCTGAAAGTCGAGGACACGGCTGTGTATTA





TTGTGCGAGAGAGGCATACGAAGAGTGGGAGCTAACGATGGGGAAC





CTTGACCACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





331
5282
1586
EVQLVESGGGVVQPGRSLRLSCAASGFTFSSFSMHWVRQAPGKGLEWV





ALISSDERNSYYADSVKGRFTISRDNSKNTLYLQISRLKVEDTAVYYCAR





EAYEEWELTMGNLDHWGQGTLVTVSS





331
5283
1587
FTFSSFSMH





331
5284
1588
TTCACCTTCAGTAGTTTTTCTATGCAC





331
5285
1589
LISSDERNSYYADSVKG





331
5286
1590
CTTATATCATCTGACGAGAGGAATTCATACTACGCAGACTCCGTGAA





GGGC





331
5287
1591
AREAYEEWELTMGNLDH





331
5288
1592
GCGAGAGAGGCATACGAAGAGTGGGAGCTAACGATGGGGAACCTTG





ACCAC





331
5289
1593
GACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTGGAAATGA





TTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCTGA





TCTATAGTACATACAGCTTGCAAAGTGGGGTCCCATCAAGGTTCAGC





GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCA





GCCTGAAGATTTTGCAACTTATTACTGTCTACAGCATAATCGTTACCC





CTTCACTTTCGGCCCTGGGACCAAGCTGGAGATCAAA





331
5290
1594
DIQLTQSPSSLSASVGDRVTITCRASQGIGNDLGWYQQKPGKAPKRLIYS





TYSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNRYPFTFGPG





TKLEIK





331
5291
1595
RASQGIGNDLG





331
5292
1596
CGGGCAAGTCAGGGCATTGGAAATGATTTAGGC





331
5293
1597
STYSLQS





331
5294
1598
AGTACATACAGCTTGCAAAGT





331
5295
1599
LQHNRYPFT





331
5296
1600
CTACAGCATAATCGTTACCCCTTCACT





332
5297
1601
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGA





GACCCTGTCCCTCACCTGCACTGTCTCTGGTGCCTCCGTCACCACTAA





TACTTACTACTGGACCTGGATCCGGCAGCCCCCAGGGAAGGAACTGG





AGTGGATTGGATATATCCATCACACTGGGAACACCCACTACAACCCC





TCCCTCGAGAGTCGACTCACCATGTCACTAGACACGTCCAGGAACCA





GTTCTCTCTGAACCTTAGGTCTGCCACCACTGCGGACACGGCCGTTTA





TTACTGTGCGAGAGGCGAACATTTTGCGTACTGGTGGGGAAACTGGG





GCCAGGGAGCCCTGGTCACCGTCTCCTCA





332
5298
1602
QVQLQESGPGLVKPSETLSLTCTVSGASVTTNTYYWTWIRQPPGKELEWI





GYIHHTGNTHYNPSLESRLTMSLDTSRNQFSLNLRSATTADTAVYYCAR





GEHFAYWWGNWGQGALVTVSS





332
5299
1603
ASVTTNTYYWT





332
5300
1604
GCCTCCGTCACCACTAATACTTACTACTGGACC





332
5301
1605
YIHHTGNTHYNPSLES





332
5302
1606
TATATCCATCACACTGGGAACACCCACTACAACCCCTCCCTCGAGAGT





332
5303
1607
ARGEHFAYWWGN





332
5304
1608
GCGAGAGGCGAACATTTTGCGTACTGGTGGGGAAAC





332
5305
1609
GACATCCGGGTGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTGCCAGATG





GTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAACTCCTGA





TCTATGCTGCATCCAGTTTGCAAGGTGGGGTCCCATCAAGGTTCAGCG





GCAGTGGATATGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAG





CCTGAAGATTTTGCAACTTACTACTGTCAACAGGCTAACAGTTTTCCT





CGAACGTTCGGCCAAGGGACCAAGGTGGAGATCAAA





332
5306
1610
DIRVTQSPSSVSASVGDRVTITCRASQGIARWLAWYQQKPGKAPKLLIYA





ASSLQGGVPSRFSGSGYGTDFTLTISSLQPEDFATYYCQQANSFPRTFGQG





TKVEIK





332
5307
1611
RASQGIARWLA





332
5308
1612
CGGGCGAGTCAGGGTATTGCCAGATGGTTAGCC





332
5309
1613
AASSLQG





332
5310
1614
GCTGCATCCAGTTTGCAAGGT





332
5311
1615
QQANSFPRT





332
5312
1616
CAACAGGCTAACAGTTTTCCTCGAACG





333
5313
1617
CAGGTCCAGCTTGTACAGTCTGGGCCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCCTGCGAGGCTTCTGGATACACCTTCACCGACTT





CTTTGTGCACTGGGTGCGACAGGCCCCTGGTGAGGGGCTTGTGTGGTT





GGGATGGGTCAACCCTCTCAGTGGCGCCACAAAGTATGCACAGAACT





TTCAGGGCAGGGTCACCATGACCAGTGACACGTCCATCACCACAGCC





TACATGGCACTGAGCAGCCTGAGACATGACGACACGGCCGTCTATTA





CTGTACGAGCCAGACTTCACCTTATACCCCGGGCGCTATGGGCGTTTG





GGGCCAAGGGACCACGGTCACCGTCTCCTCA





333
5314
1618
QVQLVQSGPEVKKPGASVKVSCEASGYTFTDFFVHWVRQAPGEGLVWL





GWVNPLSGATKYAQNFQGRVTMTSDTSITTAYMALSSLRHDDTAVYYC





TSQTSPYTPGAMGVWGQGTTVTVSS





333
5315
1619
YTFTDFFVH





333
5316
1620
TACACCTTCACCGACTTCTTTGTGCAC





333
5317
1621
WVNPLSGATKYAQNFQG





333
5318
1622
TGGGTCAACCCTCTCAGTGGCGCCACAAAGTATGCACAGAACTTTCA





GGGC





333
5319
1623
TSQTSPYTPGAMGV





333
5320
1624
ACGAGCCAGACTTCACCTTATACCCCGGGCGCTATGGGCGTT





333
5321
1625
GACATCCGGGTGACCCAGTCTCCAGCCTCCCTGTCTGCATTTGTTGGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCCGGCCATTAGCGGCTA





TTTAAGTTGGTATCAGCAGAAGGCAGGCAAAGCCCCTAAGATCCTGA





TCTATGATGCATCTAATTTGTATAGTGGGGCCCCATCACGGTTCAGTG





GCAGTAGATCTGGGACAGATTTCACTCTCACCATCACCAGTCTGCAAC





CTGAAGATTTTGCAACTTACTACTGTCAACAGACTTACAATGGCCTAA





TCGCTTTCGGCCCTGGGACCAAGGTGGAAATCAAA





333
5322
1626
DIRVTQSPASLSAFVGDRVTITCRASPAISGYLSWYQQKAGKAPKILIYDA





SNLYSGAPSRFSGSRSGTDFTLTITSLQPEDFATYYCQQTYNGLIAFGPGT





KVEIK





333
5323
1627
RASPAISGYLS





333
5324
1628
CGGGCAAGTCCGGCCATTAGCGGCTATTTAAGT





333
5325
1629
DASNLYS





333
5326
1630
GATGCATCTAATTTGTATAGT





333
5327
1631
QQTYNGLIA





333
5328
1632
CAACAGACTTACAATGGCCTAATCGCT





334
5329
1633
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAA





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAATACCTA





TGCTATACACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTGGAGTGGG





TGGCAGCTATATCATATGATGGAAGCAATGAATACTACTCAAACTCC





GTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGTACACGCT





GGAGCTGCAAATGAACAGCCTGAGACCTGAGGACACGGCTGTGTATT





ACTGTGCGAGAGGCGCCTCCTACTACTATGTGAGTAGTGACCTTGGCT





ACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





334
5330
1634
EVQLLESGGGVVQPGKSLRLSCAASGFTFNTYAIHWVRQAPGKGLEWV





AAISYDGSNEYYSNSVKGRFTISRDNSKYTLELQMNSLRPEDTAVYYCA





RGASYYYVSSDLGYWGQGTLVTVSS





334
5331
1635
FTFNTYAIH





334
5332
1636
TTCACCTTCAATACCTATGCTATACAC





334
5333
1637
AISYDGSNEYYSNSVKG





334
5334
1638
GCTATATCATATGATGGAAGCAATGAATACTACTCAAACTCCGTGAA





GGGC





334
5335
1639
ARGASYYYVSSDLGY





334
5336
1640
GCGAGAGGCGCCTCCTACTACTATGTGAGTAGTGACCTTGGCTAC





334
5337
1641
CAGTCTGTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGTCAG





GTTATGATGTGCACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAA





GTCGTCATCTATGGTAACATCAATCGGCCCTCAGGGGTCCCTGAGCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





CTGAGTGCCTCTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCT





A





334
5338
1642
QSVVTQPPSVSGAPGQRVTISCTGSSSNIGSGYDVHWYQQLPGTAPKVVI





YGNINRPSGVPERFSGSKSGTSASLAITGLQAEDEADYYCQSYDSLSASW





VFGGGTKLTVL





334
5339
1643
TGSSSNIGSGYDVH





334
5340
1644
ACTGGGAGCAGCTCCAACATCGGGTCAGGTTATGATGTGCAC





334
5341
1645
GNINRPS





334
5342
1646
GGTAACATCAATCGGCCCTCA





334
5343
1647
QSYDSLSASWV





334
5344
1648
CAGTCCTATGACAGCCTGAGTGCCTCTTGGGTG





335
5345
1649
CAGGTCCAGCTTGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTC





CTCGGTGAAGGTCTCCTGCAAGGCCTCTGGAGGCACCTTCAGCGGCC





ACGCTATCAACTGGGTGCGACAGGCCCCTGGACAAGGGCTCGAATGG





ATGGGAGGGATCATCCATATATTTGGGACAGTAAACTACGCTCCGAA





GTTCCAGGGCAGAGTCACGATCACCGCGGACGCATCCACGGGCACAG





TTTACATGGAGTTGAGCAGCCTGATATCTGAGGACACGGCCGTATATT





ATTGTGCGAGAGATGCTTACGAAGTGTGGACTGGTTCTTATCTCCCCC





CTTTTGACGACTGGGGCCAGGGAACCCTGGTCACTGTCTCCTCA





335
5346
1650
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSGHAINWVRQAPGQGLEW





MGGIIHIFGTVNYAPKFQGRVTITADASTGTVYMELSSLISEDTAVYYCA





RDAYEVWTGSYLPPFDDWGQGTLVTVSS





335
5347
1651
GTFSGHAIN





335
5348
1652
GGCACCTTCAGCGGCCACGCTATCAAC





335
5349
1653
GIIHIFGTVNYAPKFQG





335
5350
1654
GGGATCATCCATATATTTGGGACAGTAAACTACGCTCCGAAGTTCCA





GGGC





335
5351
1655
ARDAYEVWTGSYLPPFDD





335
5352
1656
GCGAGAGATGCTTACGAAGTGTGGACTGGTTCTTATCTCCCCCCTTTT





GACGAC





335
5353
1657
GATATTGTGATGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCCGGG





GACAGAGTCACCCTCTCCTGCAGGGCCAGTCAGACTGTTACAAGCAG





CTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT





CATCTATGGTGCATTCACCAGGGCCACTGGCATCCCAGACAGGTTCA





GTGGCAGTGGGTCTGGGACAGACTTCACTCTCAGCATCAGCAGACTG





GAGCCTGAAGATTTTGCAGTATATTATTGTCAGCAGTATGGTAGCTCA





TTCCTCACTTTCGGCGGAGGGACCAAAGTGGATATCAAA





335
5354
1658
DIVMTQSPGTLSLSPGDRVTLSCRASQTVTSSYLAWYQQKPGQAPRLLIY





GAFTRATGIPDRFSGSGSGTDFTLSISRLEPEDFAVYYCQQYGSSFLTFGG





GTKVDIK





335
5355
1659
RASQTVTSSYLA





335
5356
1660
AGGGCCAGTCAGACTGTTACAAGCAGCTACTTAGCC





335
5357
1661
GAFTRAT





335
5358
1662
GGTGCATTCACCAGGGCCACT





335
5359
1663
QQYGSSFLT





335
5360
1664
CAGCAGTATGGTAGCTCATTCCTCACT





336
5361
1665
GAGGTGCAGCTGGTGGAATCTGGGGGAGGCCTGGTCAGGCCTGGGGG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGTCTCAGTAGTTA





CGGCATGAGTTGGGTCCGCCAGGCTCCAGGGAAGGGTCTGGAGTGGG





TCTCATCCATTACTGCCGGCAGTAGTTACATAAATTACGCTGACTCAG





TGAAGGGCCGGTTCACCATCTCCAGAGACAACGCCAAGAGTTCACTG





TTCCTGCAAATGACCAGCCTGAGAGTCGAGGACACGGCTGTTTATTTC





TGTGTGAGAGAGGCGTATGCCAGCTCGTCGGCCCTTTACTGGTTCGAC





CCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





336
5362
1666
EVQLVESGGGLVRPGGSLRLSCAASGFSLSSYGMSWVRQAPGKGLEWV





SSITAGSSYINYADSVKGRFTISRDNAKSSLFLQMTSLRVEDTAVYFCVRE





AYASSSALYWFDPWGQGTLVTVSS





336
5363
1667
FSLSSYGMS





336
5364
1668
TTCAGTCTCAGTAGTTACGGCATGAGT





336
5365
1669
SITAGSSYINYADSVKG





336
5366
1670
TCCATTACTGCCGGCAGTAGTTACATAAATTACGCTGACTCAGTGAAG





GGC





336
5367
1671
VREAYASSSALYWFDP





336
5368
1672
GTGAGAGAGGCGTATGCCAGCTCGTCGGCCCTTTACTGGTTCGACCCC





336
5369
1673
CAGTCTGTCCTGACGCAGCCGCCCTCAGTCTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAATCTCGGGGCGG





GTTATGTTGTTCACTGGTACCAGCAACTTCCAGGAACATCCCCCAAAC





TCCTCATCTATGGTAACACCGATCGGCCCTCAGGGGTCCCCGACCGAT





TCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGC





TCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGTA





GCCTGAGTGGCTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA





336
5370
1674
QSVLTQPPSVSGAPGQRVTISCTGSSSNLGAGYVVHWYQQLPGTSPKLLI





YGNTDRPSGVPDRFSGSKSGTSASLAISGLQAEDEADYYCQSYDSSLSGW





VFGGGTKLTVL





336
5371
1675
TGSSSNLGAGYVVH





336
5372
1676
ACTGGGAGCAGCTCCAATCTCGGGGCGGGTTATGTTGTTCAC





336
5373
1677
GNTDRPS





336
5374
1678
GGTAACACCGATCGGCCCTCA





336
5375
1679
QSYDSSLSGWV





336
5376
1680
CAGTCCTATGACAGTAGCCTGAGTGGCTGGGTG





337
5377
1681
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTAGTACAGCCTGGGGG





GTCCCTGCGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAATACCTA





TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGATTGGAGTGGC





TTTCATTCATTAGTAGTAGTAGTCATACCCTATACTACGCAGACTCTG





TGAAGGGCCGATTCACCGTCTTCAGAGACAATGCCAAGCACTCGCTC





TTTCTGCAAATGAACGGCCTGAGAGACGAGGACACGGCTGTTTATTTC





TGTGCGAGATCCCTTGGTTCGGGGAATTATGATAACGAAGATCAGAC





ATTTTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGG





TCACCGTCTCCTCA





337
5378
1682
EVQLVESGGGLVQPGGSLRLSCAASGFSFNTYSMNWVRQAPGKGLEWL





SFISSSSHTLYYADSVKGRFTVFRDNAKHSLFLQMNGLRDEDTAVYFCA





RSLGSGNYDNEDQTFYYYYGMDVWGQGTTVTVSS





337
5379
1683
FSFNTYSMN





337
5380
1684
TTCAGCTTCAATACCTATAGCATGAAC





337
5381
1685
FISSSSHTLYYADSVKG





337
5382
1686
TTCATTAGTAGTAGTAGTCATACCCTATACTACGCAGACTCTGTGAAG





GGC





337
5383
1687
ARSLGSGNYDNEDQTFYYYYGMDV





337
5384
1688
GCGAGATCCCTTGGTTCGGGGAATTATGATAACGAAGATCAGACATT





TTACTACTACTACGGTATGGACGTC





337
5385
1689
GAAACGACACTCACGCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGA





GAGCCGGCCTCCATATCCTGCCGGTCTAGTCAGAGCCTCCTGTTTCAT





AGTAATGGACACAATTATTTGGATTGGTACCTGCAGAAGCCAGGGCA





GTCTCCACAACTCCTGATCCATTTGGGTTCTAATCGGGCCTCCGGAGT





CCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGA





AAATCAGCAGAGTGGAGCCTGAGGATGTTGGGGTTTATTACTGTATG





CAAGCTCTACAAACTCCGTACACTTTTGGCCAGGGGACCAAGGTGGA





GATCAAA





337
5386
1690
ETTLTQSPLSLPVTPGEPASISCRSSQSLLFHSNGHNYLDWYLQKPGQSPQ





LLIHLGSNRASGVPDRFSGSGSGTDFTLKISRVEPEDVGVYYCMQALQTP





YTFGQGTKVEIK





337
5387
1691
RSSQSLLFHSNGHNYLD





337
5388
1692
CGGTCTAGTCAGAGCCTCCTGTTTCATAGTAATGGACACAATTATTTG





GAT





337
5389
1693
LGSNRAS





337
5390
1694
TTGGGTTCTAATCGGGCCTCC





337
5391
1695
MQALQTPYT





337
5392
1696
ATGCAAGCTCTACAAACTCCGTACACT





338
5393
1697
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACGGGTGAAGCCTTCACA





GACCCTGTCCCTCACCTGCACTGTCTCTGGTGTCTCCGTCACCATTAAT





GATTACTACTGGACTTGGCTCCGCCAGTCCCCAGGGAAAGGCCTGGA





GTGGATTGGAAACATCTATAACAGTGGGAGCACCTACCAGAACCCGT





CCCTCCAGAGTCGAGTTACCATGTCAGTGGACACGGCCAAGAACCAC





TTCTCCCTGAAGCTGACCTCTGTCACTGCCGCAGATACGGCCGTCTAT





TACTGTGCCAGAGATTTAGGCACTGCCAACAACTACTACTTCGGTATG





GACGTCTGGGGCCTAGGGACCACGGTCACCGTCTCCTCA





338
5394
1698
QVQLQESGPGRVKPSQTLSLTCTVSGVSVTINDYYWTWLRQSPGKGLEW





IGNIYNSGSTYQNPSLQSRVTMSVDTAKNHFSLKLTSVTAADTAVYYCA





RDLGTANNYYFGMDVWGLGTTVTVSS





338
5395
1699
VSVTINDYYWT





338
5396
1700
GTCTCCGTCACCATTAATGATTACTACTGGACT





338
5397
1701
NIYNSGSTYQNPSLQS





338
5398
1702
AACATCTATAACAGTGGGAGCACCTACCAGAACCCGTCCCTCCAGAG





T





338
5399
1703
ARDLGTANNYYFGMDV





338
5400
1704
GCCAGAGATTTAGGCACTGCCAACAACTACTACTTCGGTATGGACGT





C





338
5401
1705
GATATTGTGCTGACGCAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGG





GAAAGAGCCACTCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCACCTA





CTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATAATGGATCCAACAGGGTCACTGGCACCCCAGCCAGGTTCAGTG





GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCGTAGAG





CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGCCT





CCGTACACTTTTGGCCAGGGGACCAAGGTGGAGATCAAA





338
5402
1706
DIVLTQSPATLSLSPGERATLSCRASQSVSTYLAWYQQKPGQAPRLLIYN





GSNRVTGTPARFSGSGSGTDFTLTISSVEPEDFAVYYCQQRSNWPPYTFG





QGTKVEIK





338
5403
1707
RASQSVSTYLA





338
5404
1708
AGGGCCAGTCAGAGTGTTAGCACCTACTTAGCC





338
5405
1709
NGSNRVT





338
5406
1710
AATGGATCCAACAGGGTCACT





338
5407
1711
QQRSNWPPYT





338
5408
1712
CAGCAGCGTAGCAACTGGCCTCCGTACACT





339
5409
1713
GAGGTGCAGCTGGTGGAGTCGGGCCCTGGACTGGTGAAGCCTTCAGA





GACCCTGTCCCTCAGTTGCATTGTCTCTGGTGACTCCATCACCAGTAA





TGATTACTACTGGAGTTGGATCCGCCAGTCCCCAGGGAAGGGCCTGG





AGTGGATTGGGTACATCTATCACAGCGGGGCCACCTTCTACACTCCGT





CCCTACGGAGTCGAGTGACCATATCGACAGACAGGTCCAAGAACCAG





TTCTCCCTGAGACTGTCGTCTGTGACCGCCGCAGACACGGCCGTATAT





TATTGTGCCAGTGGACCTGTGGGGATGGCTACAAGCAACTGGTTCGA





CCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCA





339
5410
1714
EVQLVESGPGLVKPSETLSLSCIVSGDSITSNDYYWSWIRQSPGKGLEWIG





YIYHSGATFYTPSLRSRVTISTDRSKNQFSLRLSSVTAADTAVYYCASGPV





GMATSNWFDPWGQGTLVTVSS





339
5411
1715
DSITSNDYYWS





339
5412
1716
GACTCCATCACCAGTAATGATTACTACTGGAGT





339
5413
1717
YIYHSGATFYTPSLRS





339
5414
1718
TACATCTATCACAGCGGGGCCACCTTCTACACTCCGTCCCTACGGAGT





339
5415
1719
ASGPVGMATSNWFDP





339
5416
1720
GCCAGTGGACCTGTGGGGATGGCTACAAGCAACTGGTTCGACCCC





339
5417
1721
CAGCCTGTGCTGACTCAGCCACCCTCAGTGTCAGTCGCCCCGGGAAA





GACGGCCACTCTTACGTGTGGGGGAGACATCATTAGAACTAACAGTG





TGAACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTATTGATCATA





TATTATGATAGCGACCGGCCCTCAGGGATCCCTGGGCGATTCTCTGCC





TCCAACTCTGGGAGCGCGGCCACCCTGACCATCAGCAGGGTCGAAGC





CGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGACAGCAGTACTG





ATTATCACGTGGTTTTCGGCGGAGGGACCAAGCTCACCGTCCTA





339
5418
1722
QPVLTQPPSVSVAPGKTATLTCGGDIIRTNSVNWYQQKPGQAPVLIIYYD





SDRPSGIPGRFSASNSGSAATLTISRVEAGDEADYYCQVWDSSTDYHVVF





GGGTKLTVL





339
5419
1723
GGDIIRTNSVN





339
5420
1724
GGGGGAGACATCATTAGAACTAACAGTGTGAAC





339
5421
1725
YDSDRPS





339
5422
1726
TATGATAGCGACCGGCCCTCA





339
5423
1727
QVWDSSTDYHVV





339
5424
1728
CAGGTGTGGGACAGCAGTACTGATTATCACGTGGTT





340
5425
1729
CAGGTCCAGCTGGTACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACATCTTCACCGGTTA





TTTTATACACTGGGTGCGACAGGCCCCCGGACAAGGGCTTGAGTGGA





TGGGAGTAATCAATCCCAGAGGTGGAAGCACAAGCTACGCACAAAA





GTTCCAGGGCAGAGTCGCTGTGTCCAGGGACACGTCCACGACTACAG





TCTACATGGAGCTGAACAGCCTGAGATCTGAGGACACGGCCGTATAT





TACTGTGCGAGAGCCCCGAGCCACGATGAGTGGGTCGCAATTTCCCG





AAATAACGATGTTGTGGGGTTCGACGCCTGGGGCCAGGGAACCCTGG





TCACCGTCTCCTCA





340
5426
1730
QVQLVQSGAEVKKPGASVKVSCKASGYIFTGYFIHWVRQAPGQGLEWM





GVINPRGGSTSYAQKFQGRVAVSRDTSTTTVYMELNSLRSEDTAVYYCA





RAPSHDEWVAISRNNDVVGFDAWGQGTLVTVSS





340
5427
1731
YIFTGYFIH





340
5428
1732
TACATCTTCACCGGTTATTTTATACAC





340
5429
1733
VINPRGGSTSYAQKFQG





340
5430
1734
GTAATCAATCCCAGAGGTGGAAGCACAAGCTACGCACAAAAGTTCCA





GGGC





340
5431
1735
ARAPSHDEWVAISRNNDVVGFDA





340
5432
1736
GCGAGAGCCCCGAGCCACGATGAGTGGGTCGCAATTTCCCGAAATAA





CGATGTTGTGGGGTTCGACGCC





340
5433
1737
CAGTCTGTCCTGACTCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAG





AGGGTCACCATCTCCTGCACTGGGGGCAGCTCCAACATCGGGGCAGA





TTATGACGTACACTGGTACCAGCAGCCTCCAGGAACAGCCCCCAAAC





TCCTCATATTTGCTAACAACAATCGACCCTCAGGGGTCCCTGGCCGAT





TCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGC





TCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGCCTGAGTGCTTGGGTGTTCGGCGGGGGGACCAAGCTGACCGTCCT





A





340
5434
1738
QSVLTQPPSVSGAPGQRVTISCTGGSSNIGADYDVHWYQQPPGTAPKLLI





FANNNRPSGVPGRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSAW





VFGGGTKLTVL





340
5435
1739
TGGSSNIGADYDVH





340
5436
1740
ACTGGGGGCAGCTCCAACATCGGGGCAGATTATGACGTACAC





340
5437
1741
ANNNRPS





340
5438
1742
GCTAACAACAATCGACCCTCA





340
5439
1743
QSYDSSLSAWV





340
5440
1744
CAGTCCTATGACAGCAGCCTGAGTGCTTGGGTG





341
5441
1745
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCCTCAGTAGTTA





TGCCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGTCTGGAGTGGG





TCTCATCCATTAGTGCTGGAAGTAGTTACATCGACTACGCAGACTCAG





TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCTCTG





TATCTGCAAATGAACAACCTGAGAGCCGAGGACACGGCTCTGTATTA





CTGTGCGAGAGAAGTTTTACCAGCAACCGCTATAGGAGGCGCCTGGC





TCGACCCCTGGGGCCAGGGAACCCTGGTCACTGTCTCCTCA





341
5442
1746
EVQLVESGGGLVKPGGSLRLSCAASGFTLSSYAMNWVRQAPGKGLEWV





SSISAGSSYIDYADSVKGRFTISRDNAKNSLYLQMNNLRAEDTALYYCAR





EVLPATAIGGAWLDPWGQGTLVTVSS





341
5443
1747
FTLSSYAMN





341
5444
1748
TTCACCCTCAGTAGTTATGCCATGAAC





341
5445
1749
SISAGSSYIDYADSVKG





341
5446
1750
TCCATTAGTGCTGGAAGTAGTTACATCGACTACGCAGACTCAGTGAA





GGGC





341
5447
1751
AREVLPATAIGGAWLDP





341
5448
1752
GCGAGAGAAGTTTTACCAGCAACCGCTATAGGAGGCGCCTGGCTCGA





CCCC





341
5449
1753
CAGTCTGTCCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCA





GACGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCTG





GATATGATGTCCACTGGTACCGGCAGCTTCCAGGAACAGCCCCCAAA





CTCCTCATCTATTCTAACAACAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGACACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGGGGATGAGGCTGATTATTACTGCCAGTCCTATGACATC





AGCCTGAGTGCCTCTTATGTCTTCGGAACTGGGACCAAGGTCACCGTC





CTA





341
5450
1754
QSVLTQPPSVSGAPGQTVTISCTGSSSNIGAGYDVHWYRQLPGTAPKLLI





YSNNNRPSGVPDRFSGSKSDTSASLAITGLQAGDEADYYCQSYDISLSAS





YVFGTGTKVTVL





341
5451
1755
TGSSSNIGAGYDVH





341
5452
1756
ACTGGGAGCAGCTCCAACATCGGGGCTGGATATGATGTCCAC





341
5453
1757
SNNNRPS





341
5454
1758
TCTAACAACAATCGGCCCTCA





341
5455
1759
QSYDISLSASYV





341
5456
1760
CAGTCCTATGACATCAGCCTGAGTGCCTCTTATGTC





342
5457
1761
CAGGTCCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCCTGCAAGGCTTCTGGTTACACCTTTACCAACTA





TGGTTTCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGA





TGGGATGGATCCTCACTCACAATGGTTACACAAACTATGCACAGAAG





TTCCAGGACAGAGTCACCATGAAGACAGACACATCCACGAGCACAGT





CTACATGGAGCTGAGGAGCCTGAGATCTGTCGACACGGCCGTGTATT





ACTGTGCGAGAATTGGCCATGTTACAGCCGTGGCTGGTGCCCCTCCTG





ACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





342
5458
1762
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGFSWVRQAPGQGLEW





MGWILTHNGYTNYAQKFQDRVTMKTDTSTSTVYMELRSLRSVDTAVYY





CARIGHVTAVAGAPPDYWGQGTLVTVSS





342
5459
1763
YTFTNYGFS





342
5460
1764
TACACCTTTACCAACTATGGTTTCAGC





342
5461
1765
WILTHNGYTNYAQKFQD





342
5462
1766
TGGATCCTCACTCACAATGGTTACACAAACTATGCACAGAAGTTCCA





GGAC





342
5463
1767
ARIGHVTAVAGAPPDY





342
5464
1768
GCGAGAATTGGCCATGTTACAGCCGTGGCTGGTGCCCCTCCTGACTAC





342
5465
1769
CAGCCTGTGCTGACTCAGCCTGCCTCCGTGTCTGGGTATCAAGGACAG





TCGATCACCATCTCCTGCAGTGGAACCAGCAGTGATGTTGGGACTTAT





AACCTTGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCGAACT





CATGATTTATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTGATCGCTT





CTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCT





CCAGGCTGAGGACGAGGCTGATTATTACTGCTGCTCATATGTAGCTGG





TAGTACTTCAGTATTCGGCGGAGGGACCAAGCTCACCGTCCTA





342
5466
1770
QPVLTQPASVSGYQGQSITISCSGTSSDVGTYNLVSWYQQHPGKAPELMI





YEGSKRPSGVSDRFSGSKSGNTASLTISGLQAEDEADYYCCSYVAGSTSV





FGGGTKLTVL





342
5467
1771
SGTSSDVGTYNLVS





342
5468
1772
AGTGGAACCAGCAGTGATGTTGGGACTTATAACCTTGTCTCC





342
5469
1773
EGSKRPS





342
5470
1774
GAGGGCAGTAAGCGGCCCTCA





342
5471
1775
CSYVAGSTSV





342
5472
1776
TGCTCATATGTAGCTGGTAGTACTTCAGTA





343
5473
1777
GAGGTGCAGCTGGTGGAGTCGGGCCCTGGACTGGTGAAGCCTTCAGA





GACCCTGTCCCTCAGTTGCATTGTCTCTGGTGGCTCCATCACCAGTGG





TGATTACTACTGGAGTTGGCTCCGCCAGTCCCCAGGGAAGGGCCTGG





AGTGGATTGGGTACATATATCACAGCGGGGCCACCTTCTACACCCCGT





CCCTACGGAGTCGAGTGACCATTTCGACAGACACCTCCAAGAACCAA





TTCTCCCTGAGACTGTCGTCTGTGACCGCCGCAGACACGGCCGTTTAT





TATTGTGCCAGTGGACCTGTCGGGATGGCTACAAGCAACTGGTTCGA





CCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





343
5474
1778
EVQLVESGPGLVKPSETLSLSCIVSGGSITSGDYYWSWLRQSPGKGLEWI





GYIYHSGATFYTPSLRSRVTISTDTSKNQFSLRLSSVTAADTAVYYCASGP





VGMATSNWFDPWGQGTLVTVSS





343
5475
1779
GSITSGDYYWS





343
5476
1780
GGCTCCATCACCAGTGGTGATTACTACTGGAGT





343
5477
1781
YIYHSGATFYTPSLRS





343
5478
1782
TACATATATCACAGCGGGGCCACCTTCTACACCCCGTCCCTACGGAGT





343
5479
1783
ASGPVGMATSNWFDP





343
5480
1784
GCCAGTGGACCTGTCGGGATGGCTACAAGCAACTGGTTCGACCCC





343
5481
1785
TCCTATGAGCTGACACAGCCACCCTCAGTATCAGTCGCCCCGGGAAA





GACGGCCACCATTACGTGTGGGGGAGACATCATTAGAACTAACAGTG





TGAACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTCTATTGCTCATCT





ATTATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGCCT





CCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAGGCC





GGGGATGAGGCCGACTATTACTGTCAGGTGTGGGACAGTGGTACTGA





TTATCACGTGGTTTTCGGCGGAGGGACCAAGCTGACCGTCCAA





343
5482
1786
SYELTQPPSVSVAPGKTATITCGGDIIRTNSVNWYQQKPGQAPLLLIYYDS





DRPSGIPERFSASNSGNTATLTISRVEAGDEADYYCQVWDSGTDYHVVF





GGGTKLTVQ





343
5483
1787
GGDIIRTNSVN





343
5484
1788
GGGGGAGACATCATTAGAACTAACAGTGTGAAC





343
5485
1789
YDSDRPS





343
5486
1790
TATGATAGCGACCGGCCCTCA





343
5487
1791
QVWDSGTDYHVV





343
5488
1792
CAGGTGTGGGACAGTGGTACTGATTATCACGTGGTT





344
5489
1793
CAGGTCCAGCTGGTACAGTCTGGGGCTGAGGTGAAGAGGCCTGGGGC





CTCAGTGAAAGTCTCCTGCAAGGCTTCTGAATACGCCTTCACCGCCCA





CTATCTTCACTGGGTGCGACAGGCCCCTGATCAAGGACTTGAGTGGAT





GGGATGGATCAGCCCTAAAAGTGGTGGCACCAACTATGCACAGAAGT





TTCACGGCAGGGTCAGCATGACCAGTGACACGTCCATCAGTACAGTC





TATATGGAACTGAGCAGCCTGACATCTGACGACACGGCCGTCTATTA





CTGTGCGAGAAGCAGTCTGGTGGGAGCAAGCCCCAACTTTGACTTCT





GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





344
5490
1794
QVQLVQSGAEVKRPGASVKVSCKASEYAFTAHYLHWVRQAPDQGLEW





MGWISPKSGGTNYAQKFHGRVSMTSDTSISTVYMELSSLTSDDTAVYYC





ARSSLVGASPNFDFWGQGTLVTVSS





344
5491
1795
YAFTAHYLH





344
5492
1796
TACGCCTTCACCGCCCACTATCTTCAC





344
5493
1797
WISPKSGGTNYAQKFHG





344
5494
1798
TGGATCAGCCCTAAAAGTGGTGGCACCAACTATGCACAGAAGTTTCA





CGGC





344
5495
1799
ARSSLVGASPNFDF





344
5496
1800
GCGAGAAGCAGTCTGGTGGGAGCAAGCCCCAACTTTGACTTC





344
5497
1801
CAGTCTGTGGTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACA





GAGGGTCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATA





ATTATGTATCCTGGTACCAGCAACTCCCAGGATCTACCCCCAAAGTCC





TCATTTACGACAATAATCAGCGACCCTCAGGGATTCCTGACCGTTTCT





CTGGCTCCAAGTCTGGCACGTCAGCCACCCTGGCCATCAGCGGACTCC





AGACTGGCGACGAGGCCGTCTATTATTGCGGAACATGGGATGCCAGC





CTGAGTGCTGCAATGGTTTTCGGCGGGGGGACCAAGCTCACCGTCCT





A





344
5498
1802
QSVVTQPPSVSAAPGQRVTISCSGSSSNIGNNYVSWYQQLPGSTPKVLIY





DNNQRPSGIPDRFSGSKSGTSATLAISGLQTGDEAVYYCGTWDASLSAA





MVFGGGTKLTVL





344
5499
1803
SGSSSNIGNNYVS





344
5500
1804
TCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCC





344
5501
1805
DNNQRPS





344
5502
1806
GACAATAATCAGCGACCCTCA





344
5503
1807
GTWDASLSAAMV





344
5504
1808
GGAACATGGGATGCCAGCCTGAGTGCTGCAATGGTT





345
5505
1809
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTGTTGAAGCCTTCGGA





GACCCTGTCCCTAACCTGCGCTGTCTCTGGTGGGTACTTCATTAATGA





CAACTGGAGCTGGATCCGCCAGTCCCCAGGGAAGGGGCTGGAGTGGA





TTGGAGAAATTAGTCATAGTGGAAGCACCAACTACAATCCGTCCCTC





AAGAGTCGACTCACCATATCAGTTGACACGTCCAGGCAGCAGTTTTCC





CTGAAATTGAGCTCTGTGACCGCCGCGGACAGTGGTGTTTACTACTGT





GCGCGAGTCCACCCGTCGTATGACTTTGGCTGGCGCTTCTTTGACTTC





TGGGGCCAGGGAACCCTGGTCACCGTCTCTTCA








345
5506
1810
QVQLQQWGAGLLKPSETLSLTCAVSGGYFINDNWSWIRQSPGKGLEWIG





EISHSGSTNYNPSLKSRLTISVDTSRQQFSLKLSSVTAADSGVYYCARVHP





SYDFGWRFFDFWGQGTLVTVSS





345
5507
1811
GYFINDNWS





345
5508
1812
GGGTACTTCATTAATGACAACTGGAGC





345
5509
1813
EISHSGSTNYNPSLKS





345
5510
1814
GAAATTAGTCATAGTGGAAGCACCAACTACAATCCGTCCCTCAAGAG





T





345
5511
1815
ARVHPSYDFGWRFFDF





345
5512
1816
GCGCGAGTCCACCCGTCGTATGACTTTGGCTGGCGCTTCTTTGACTTC





345
5513
1817
GAAACGACACTCACGCAGTCTCCAGCCACCCTGTCTGTGTCTCCAGGG





GATACAGCCACCCTCTCCTGCAGGGCCAGTCAGACTATTAGTTCCAAC





TTAGCCTGGTACCAGCAGAAACCTGGCCAGCCTCCCAGTCTCCTCATC





TATGGAGCATCCAACAGGGCCACTGGTATCCCAGACAGGTTTCGTGG





CAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT





CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATGCATACTGGCCTC





CGTACACTTTTGGCCAGGGGACCAAGGTGGAGATCAAA





345
5514
1818
ETTLTQSPATLSVSPGDTATLSCRASQTISSNLAWYQQKPGQPPSLLIYGA





SNRATGIPDRFRGSGSGTEFTLTISSLQSEDFAVYYCQQYAYWPPYTFGQ





GTKVEIK





345
5515
1819
RASQTISSNLA





345
5516
1820
AGGGCCAGTCAGACTATTAGTTCCAACTTAGCC





345
5517
1821
GASNRAT





345
5518
1822
GGAGCATCCAACAGGGCCACT





345
5519
1823
QQYAYWPPYT





345
5520
1824
CAGCAGTATGCATACTGGCCTCCGTACACT





346
5521
1825
GAGGTGCAGCTGTTGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACA





GACCCTGTCCCTCACCTGCACTGTCTCGGGTGGCTCCATCAACAGTAT





TGATTATTATTGGAGCTGGATCCGCCAGCCCCCAGGGAAGGGCCTGG





AGTGGATTGGCTACATTTATCACAGTGGGAGCACCCACTACAGACCA





TCCCTCAAGAGTCGAGTAACGATATCATTAGACAAGGCCAAGAACGA





GTTCTCGCTGAGTCTGACCTCTGTGACTGCCGCAGACACGGCCGTGTA





TTTCTGTGCCAGTGGCCCCGTCGGGATGGCAACAAGCAACTGGTTCG





ACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





346
5522
1826
EVQLLESGPGLVKPSQTLSLTCTVSGGSINSIDYYWSWIRQPPGKGLEWIG





YIYHSGSTHYRPSLKSRVTISLDKAKNEFSLSLTSVTAADTAVYFCASGPV





GMATSNWFDPWGQGTLVTVSS





346
5523
1827
GSINSIDYYWS





346
5524
1828
GGCTCCATCAACAGTATTGATTATTATTGGAGC





346
5525
1829
YIYHSGSTHYRPSLKS





346
5526
1830
TACATTTATCACAGTGGGAGCACCCACTACAGACCATCCCTCAAGAG





T





346
5527
1831
ASGPVGMATSNWFDP





346
5528
1832
GCCAGTGGCCCCGTCGGGATGGCAACAAGCAACTGGTTCGACCCC





346
5529
1833
CAGCCTGTGCTGACTCAGCCACCCTCAGTGTCAGTGACCCCAGGAGA





GACGGCCAGGCTTCCCTGTGAGGGAGACATCGTTGTCACTAACAGTG





TCCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTTTTGGTCGTCT





ATTATGATAGCGACCGGGCCTCAGGGATCCCTGAGCGATTCTCTGGCT





CCAATTCTGGGAACACGGCCACCCTGAGCATCAGCAGGGTCGAAGCC





GGGGATGAGGCCGACTACTATTGTCAGGTGTGGGATAGTAGTACTGA





TCATCATGTGGTGTTCGGCGGTGGGACCAAGCTCACCGTCCTA





346
5530
1834
QPVLTQPPSVSVTPGETARLPCEGDIVVTNSVHWYQQKPGQAPVLVVYY





DSDRASGIPERFSGSNSGNTATLSISRVEAGDEADYYCQVWDSSTDHHV





VFGGGTKLTVL





346
5531
1835
EGDIVVTNSVH





346
5532
1836
GAGGGAGACATCGTTGTCACTAACAGTGTCCAC





346
5533
1837
YDSDRAS





346
5534
1838
TATGATAGCGACCGGGCCTCA





346
5535
1839
QVWDSSTDHHVV





346
5536
1840
CAGGTGTGGGATAGTAGTACTGATCATCATGTGGTG





347
5537
1841
CAGGTCCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTC





CTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCAGATTCAGCAGCG





ACGCTATCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGG





ATGGGAGGAATCATCCCTATCCGTGGGACACCAACCTACGCACAGAA





GTTCCAGGGCAGAGTCACGATTATCGCGGACGAATCCACGACTACAT





CCTACATGGAGATGAGCAGCCTGAGATCTGAGGACACGGCCGTGTAT





TACTGTGCGAGACCGAATTACGATATTTTGACTGGTTATAATGATGCT





TTTGATATTTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA





347
5538
1842
QVQLVQSGAEVKKPGSSVKVSCKASGGRFSSDAISWVRQAPGQGLEWM





GGIIPIRGTPTYAQKFQGRVTIIADESTTTSYMEMSSLRSEDTAVYYCARP





NYDILTGYNDAFDIWGQGTMVTVSS





347
5539
1843
GRFSSDAIS





347
5540
1844
GGCAGATTCAGCAGCGACGCTATCAGC





347
5541
1845
GIIPIRGTPTYAQKFQG





347
5542
1846
GGAATCATCCCTATCCGTGGGACACCAACCTACGCACAGAAGTTCCA





GGGC





347
5543
1847
ARPNYDILTGYNDAFDI





347
5544
1848
GCGAGACCGAATTACGATATTTTGACTGGTTATAATGATGCTTTTGAT





ATT





347
5545
1849
CAGTCTGTGTTGACGCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAG





TCAGTCACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTAT





AACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGTCCCCAGACT





CATGATTTACGATGTCAGTAAGCGGCCCTCAGGGGCCCCTGATCGCTT





CTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCT





CCAGGCTGAGGATGAGGCTGATTATTACTGCTGCTCATATGCAGGCG





GCCTTTATGTCTTCGGAACTGGGACCAAGCTCACCGTCCTA





347
5546
1850
QSVLTQPRSVSGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKVPRLM





IYDVSKRPSGAPDRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGGLYV





FGTGTKLTVL





347
5547
1851
TGTSSDVGGYNYVS





347
5548
1852
ACTGGAACCAGCAGTGATGTTGGTGGTTATAACTATGTCTCC





347
5549
1853
DVSKRPS





347
5550
1854
GATGTCAGTAAGCGGCCCTCA





347
5551
1855
CSYAGGLYV





347
5552
1856
TGCTCATATGCAGGCGGCCTTTATGTC





348
5553
1857
GAGGTGCAGCTGGTGGAGTCCGGGGCTGAGGTGAAGAAGCCTGGGG





CCTCAGTGAAGGTCTCCTGCAAGGCTTCTGGATACACCTTCACCACTT





ATGATATCAACTGGGTGCGACAGGCCACTGGACGGGGGCTTGAGTGG





ATGGGATGGATGACCCCTGATAGTGGTAGCACAGGCTATCCACAGAA





CTTCCAGGGCAGAGTCACCATGACCAGGAACACCTCCATAAGCACAG





CCTACATGGAGTTGAGCAACCTGAGATCTGAGGACACGGCCGTATAT





TACTGTGTGCAAATGGACCATTGTAGAAGTACCAGCTGCTCTGAGGG





GAACTGGTTCGACACCTGGGGCCAGGGAACCCTGGTCACCGTCTCCT





CA





348
5554
1858
EVQLVESGAEVKKPGASVKVSCKASGYTFTTYDINWVRQATGRGLEWM





GWMTPDSGSTGYPQNFQGRVTMTRNTSISTAYMELSNLRSEDTAVYYC





VQMDHCRSTSCSEGNWFDTWGQGTLVTVSS





348
5555
1859
YTFTTYDIN





348
5556
1860
TACACCTTCACCACTTATGATATCAAC





348
5557
1861
WMTPDSGSTGYPQNFQG





348
5558
1862
TGGATGACCCCTGATAGTGGTAGCACAGGCTATCCACAGAACTTCCA





GGGC





348
5559
1863
VQMDHCRSTSCSEGNWFDT





348
5560
1864
GTGCAAATGGACCATTGTAGAAGTACCAGCTGCTCTGAGGGGAACTG





GTTCGACACC





348
5561
1865
CAGCCTGGGCTGACTCAGCCACCCTCGGTGTCTGCAGCCCCCAGGCA





GAGGGTCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAACTA





ATGCTGTAAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTC





CTCATCTATTCTGATAATCTGATGCCCTCAGGGGTCTCTGCCCGATTCT





CTGGCTCCAAGTCTGGCACCTCGGCCTCCCTGGCCATCAGTGGGCTCC





AGTCTGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGC





CTGAATGTTTGGGTGTTCGGCGGGGGGACCAAGCTCACCGTCCTA





348
5562
1866
QPGLTQPPSVSAAPRQRVTISCSGSSSNIGTNAVNWYQQLPGKAPKLLIYS





DNLMPSGVSARFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSLNVW





VFGGGTKLTVL





348
5563
1867
SGSSSNIGTNAVN





348
5564
1868
TCTGGAAGCAGCTCCAACATCGGAACTAATGCTGTAAAC





348
5565
1869
SDNLMPS





348
5566
1870
TCTGATAATCTGATGCCCTCA





348
5567
1871
AAWDDSLNVWV





348
5568
1872
GCAGCATGGGATGACAGCCTGAATGTTTGGGTG





349
5569
1873
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTGAAGCCAGGGCG





GTCCCTGAGACTCTCCTGTACAGCCTCTGGATTCAACTTCGGTGATTA





TGCTATGAGCTGGTTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TAGGTTTCATTAGAAGCAAAACTTATCGTGAGACAAGAGAATACGCC





GCGTCTGTGAAAGGCAGATTCACCATGTCAAGAGATGATTTCAACAG





GATCGCCTATCTGCAAATGAACAGCCTGAAAACCGAGGACACAGCCA





TGTATTATTGTACGAGACAAGACGATTTTTGGAGTGGTCATCCCTACT





ACTTTGAGTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





349
5570
1874
EVQLVESGGGLVKPGRSLRLSCTASGFNFGDYAMSWFRQAPGKGLEWV





GFIRSKTYRETREYAASVKGRFTMSRDDFNRIAYLQMNSLKTEDTAMYY





CTRQDDFWSGHPYYFEYWGQGTLVTVSS





349
5571
1875
FNFGDYAMS





349
5572
1876
TTCAACTTCGGTGATTATGCTATGAGC





349
5573
1877
FIRSKTYRETREYAASVKG





349
5574
1878
TTCATTAGAAGCAAAACTTATCGTGAGACAAGAGAATACGCCGCGTC





TGTGAAAGGC





349
5575
1879
TRQDDFWSGHPYYFEY





349
5576
1880
ACGAGACAAGACGATTTTTGGAGTGGTCATCCCTACTACTTTGAGTAC





349
5577
1881
CAGCCTGTGCTGACTCAGCCCCCCTCCGCGTCCGGGTCTCCTGGACAG





TCAGTCACCATCTCCTGCACTGGAACCAACAGTGACGTGGGTAGTTAT





AACTATGTCTCCTGGTACCAACATCACCCAGGCAAAGCCCCCAAACT





CATCATTTATGACGTCGCTAAGCGGCCCTCAGGGGTCCCTGATCGCTT





CTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCT





CCAGGCTGAGGATGAGGCTGATTATTACTGCAGCTCATATGCAGGCA





GTAACGATTTGGGGGTCTTCGGAACTGGGACCAAGCTCACCGTCCTA





349
5578
1882
QPVLTQPPSASGSPGQSVTISCTGTNSDVGSYNYVSWYQHHPGKAPKLII





YDVAKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYAGSNDL





GVFGTGTKLTVL





349
5579
1883
TGTNSDVGSYNYVS





349
5580
1884
ACTGGAACCAACAGTGACGTGGGTAGTTATAACTATGTCTCC





349
5581
1885
DVAKRPS





349
5582
1886
GACGTCGCTAAGCGGCCCTCA





349
5583
1887
SSYAGSNDLGV





349
5584
1888
AGCTCATATGCAGGCAGTAACGATTTGGGGGTC





350
5585
1889
GAGGTGCAGCTGGTGGAGTCCGGCCCAGGACTGGTGAAGCCTTCGGA





GACCCTGTCCCTCACCTGCACTGTGTCTGGTGGCTCCGTCAGTGGTCA





CTACTGGAGCTGGATTCGGCAGTTCCCAGGGAAGGAACTGGAATGGA





TTGGTCATATCTATTATATTGGGACGACCAACTACAACCCCTCCCTCA





AGAGTCGAGTCATCATATCGCTAGACACGTCCAAGAATCAGCTCTCC





CTGAAGCTGAGTTCTGTGACCGCTGCGGACACTGCCGTTTATTATTGT





GCCAGACAGTTCGGCTATGATAAAAATACTTTAAGTCGGCTTGACTTT





GACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





350
5586
1890
EVQLVESGPGLVKPSETLSLTCTVSGGSVSGHYWSWIRQFPGKELEWIGH





IYYIGTTNYNPSLKSRVIISLDTSKNQLSLKLSSVTAADTAVYYCARQFGY





DKNTLSRLDFDYWGQGTLVTVSS





350
5587
1891
GSVSGHYWS





350
5588
1892
GGCTCCGTCAGTGGTCACTACTGGAGC





350
5589
1893
HIYYIGTTNYNPSLKS





350
5590
1894
CATATCTATTATATTGGGACGACCAACTACAACCCCTCCCTCAAGAGT





350
5591
1895
ARQFGYDKNTLSRLDFDY





350
5592
1896
GCCAGACAGTTCGGCTATGATAAAAATACTTTAAGTCGGCTTGACTTT





GACTAC





350
5593
1897
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAAGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTA





TTTAAATTGGTATCAACAGAGACCAGGGAAAGCCCCTAAGCTCCTGA





TCTATTCTGCATTCAGTTTACATAGTGGTGTCCCATCAAGGTTCAGTG





GCAGTGGATCTGAGACAGAGTTCACTCTCACCATCAGCAGTCTGCAA





CCTGACGATTTTGCAACTTATTACTGTCAACAGAGTTACAGTATTCCC





TGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAA





350
5594
1898
DIQMTQSPSSLSASVRDRVTITCRASQSISSYLNWYQQRPGKAPKLLIYSA





FSLHSGVPSRFSGSGSETEFTLTISSLQPDDFATYYCQQSYSIPWTFGQGTK





VEIK





350
5595
1899
RASQSISSYLN





350
5596
1900
CGGGCAAGTCAGAGCATTAGCAGCTATTTAAAT





350
5597
1901
SAFSLHS





350
5598
1902
TCTGCATTCAGTTTACATAGT





350
5599
1903
QQSYSIPWT





350
5600
1904
CAACAGAGTTACAGTATTCCCTGGACG





351
5601
1905
CAGGTGCAGCTGCAGGAGTCCGGCCCGGGACTGGTGAAGCCTTCGGA





GACCCTGTCCCTCACCTGCAGTGTCTCTGGTGGCTCCATCACCAATGT





TAATTACTACTGGGGCTGGATCCGCCAGCCCCCCGGGAAGGGCCTGG





AGTGGATTGGGAGTATCTATTATAATGGAAACACCTACTACAACCCG





TCCCTCCAGAGTCGAGTCACCATGTCCGTGGACACGTCCAAGAACCA





CTTCTCCCTGAGGCTGACGTCTGTGACCGCCGCAGACACGGCTGTATA





TTTTTGTGCGAGAGAGGGGCCTAATTGGGAATTGTTGAATGCTTTCGA





TATCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA





351
5602
1906
QVQLQESGPGLVKPSETLSLTCSVSGGSITNVNYYWGWIRQPPGKGLEWI





GSIYYNGNTYYNPSLQSRVTMSVDTSKNHFSLRLTSVTAADTAVYFCAR





EGPNWELLNAFDIWGQGTTVTVSS





351
5603
1907
GSITNVNYYWG





351
5604
1908
GGCTCCATCACCAATGTTAATTACTACTGGGGC





351
5605
1909
SIYYNGNTYYNPSLQS





351
5606
1910
AGTATCTATTATAATGGAAACACCTACTACAACCCGTCCCTCCAGAGT





351
5607
1911
AREGPNWELLNAFDI





351
5608
1912
GCGAGAGAGGGGCCTAATTGGGAATTGTTGAATGCTTTCGATATC





351
5609
1913
TCCTATGAGCTGACTCAGCCACCCTCGGTGTCAGTGGCCCCAGGACA





GACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAATG





TGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTCTTGGTCGTCT





ATGAGGATACCCACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCT





CCAACTCTGGGAACACGGCCACCCTGACCATCAGTAGGGTCGAAGCC





GGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATACTAGTAGTGA





TCATGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTC





351
5610
1914
SYELTQPPSVSVAPGQTARITCGGNNIGSKNVHWYQQKPGQAPVLVVYE





DTHRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDTSSDHVVF





GGGTKLTVL





351
5611
1915
GGNNIGSKNVH





351
5612
1916
GGGGGAAACAACATTGGAAGTAAAAATGTGCAC





351
5613
1917
EDTHRPS





351
5614
1918
GAGGATACCCACCGGCCCTCA





351
5615
1919
QVWDTSSDHVV





351
5616
1920
CAGGTGTGGGATACTAGTAGTGATCATGTGGTA





352
5617
1921
CAGGTCCAGCTTGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAAGGTCTCCTGCAAGACTTCTGGTTACACCTTTAGTCATTT





CGGTGTCACCTGGATACGACAGGCCCCAGGACAAGGGCTTGAGTGGC





TGGGATGGATCAGCGCTTACAATGGTAACACAGACTCTGCAGACAAA





CTGCAGGGCAGACTCACCATGACGACAGACACATCCACGAACACCGC





CTACATGGAGTTGAGGAGCCTCAGATCTGACGACACGGCCGTCTATT





ACTGTGCGAGAGATCCCCCCGCATCAGCTGCTGCCATGCTTGACTACT





GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





352
5618
1922
QVQLVQSGAEVKKPGASVKVSCKTSGYTFSHFGVTWIRQAPGQGLEWL





GWISAYNGNTDSADKLQGRLTMTTDTSTNTAYMELRSLRSDDTAVYYC





ARDPPASAAAMLDYWGQGTLVTVSS





352
5619
1923
YTFSHFGVT





352
5620
1924
TACACCTTTAGTCATTTCGGTGTCACC





352
5621
1925
WISAYNGNTDSADKLQG





352
5622
1926
TGGATCAGCGCTTACAATGGTAACACAGACTCTGCAGACAAACTGCA





GGGC





352
5623
1927
ARDPPASAAAMLDY





352
5624
1928
GCGAGAGATCCCCCCGCATCAGCTGCTGCCATGCTTGACTAC





352
5625
1929
GACATCCAGATGACCCAGTCTCCACTCTCCCTGGCCGTCACCCTTGGA





CAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAGGCCTCGAATACACT





GATGGAAACACCTACTTGAGTTGGTTTCAGCAGAGGCCAGGCCAATC





TCCAAGGCGCCTCATTTATAAGGTTTCTAATCGGGACTCTGGGGTCCC





AGACAGATTCAGCGGCAGCGGGGCAGGCACTGATTTCACACTGAGAA





TCAGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAA





GGTACACACGGGCGGGGAATCTCTTTCGGTCCTGGGACCAAAGTGGA





TATCAAA





352
5626
1930
DIQMTQSPLSLAVTLGQPASISCRSSQGLEYTDGNTYLSWFQQRPGQSPR





RLIYKVSNRDSGVPDRFSGSGAGTDFTLRISRVEAEDVGVYYCMQGTHG





RGISFGPGTKVDIK





352
5627
1931
RSSQGLEYTDGNTYLS





352
5628
1932
AGGTCTAGTCAAGGCCTCGAATACACTGATGGAAACACCTACTTGAG





T





352
5629
1933
KVSNRDS





352
5630
1934
AAGGTTTCTAATCGGGACTCT





352
5631
1935
MQGTHGRGIS





352
5632
1936
ATGCAAGGTACACACGGGCGGGGAATCTCT





353
5633
1937
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAGGGTCTCCTGCAAGGCCTCTGGATACACCTTCACCGACTA





CTTTATGAACTGGGTGCGACAGGCCCCTGGAGGGGGCCTTGAGTGGA





TGGGGTGGATCAATCCTCTCAGTGGAGTCACAAAATATGCACAGCAG





TTTCAGGGCAGTGTCACCATGACCACTGACACGTCCATCACCACAGG





CTACATGGAGCTGAGGAGCCTGAGAGTTGACGACACGGCCGTCTATT





ATTGTGCGAGCCAGTCTTCCCCTTACACCCCGGGCGCCATGGGCGTCT





GGGGCCAAGGGACCACGGTCACCGTCTCCTCA





353
5634
1938
QVQLVQSGAEVKKPGASVRVSCKASGYTFTDYFMNWVRQAPGGGLEW





MGWINPLSGVTKYAQQFQGSVTMTTDTSITTGYMELRSLRVDDTAVYY





CASQSSPYTPGAMGVWGQGTTVTVSS





353
5635
1939
YTFTDYFMN





353
5636
1940
TACACCTTCACCGACTACTTTATGAAC





353
5637
1941
WINPLSGVTKYAQQFQG





353
5638
1942
TGGATCAATCCTCTCAGTGGAGTCACAAAATATGCACAGCAGTTTCA





GGGC





353
5639
1943
ASQSSPYTPGAMGV





353
5640
1944
GCGAGCCAGTCTTCCCCTTACACCCCGGGCGCCATGGGCGTC





353
5641
1945
GACATCCGGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGCCGGACAAGTCAGAGCGTTAGCGGCTA





TTTAAGTTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGA





TCTATGCGGCATCCAATTTGTACAGTGGGGTCCCATCAAGGTTCAGTG





GCAGTGGATCTGGGACAGATTTCACTCTCACCATCACCAGTCTGCAAC





CTGAAGATTTTGCAACTTACTTCTGTCAACTGAATTCCGGTGCCCTAT





TCACTTTCGGCCCTGGGACCAAGGTGGAAATCAAA





353
5642
1946
DIRMTQSPSSLSASVGDRVTITCRTSQSVSGYLSWYQQKPGKAPKLLIYA





ASNLYSGVPSRFSGSGSGTDFTLTITSLQPEDFATYFCQLNSGALFTFGPG





TKVEIK





353
5643
1947
RTSQSVSGYLS





353
5644
1948
CGGACAAGTCAGAGCGTTAGCGGCTATTTAAGT





353
5645
1949
AASNLYS





353
5646
1950
GCGGCATCCAATTTGTACAGT





353
5647
1951
QLNSGALFT





353
5648
1952
CAACTGAATTCCGGTGCCCTATTCACT





354
5649
1953
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCAAGCCTGGAGA





GTCCGTGAAACTCTCCTGCGCAGCGTCTGGATTCACCATCACTGACTC





CTACATGGCCTGGATCCGCCAGTCTCCAGGGAAGGGGCTGGAGTGGC





TTGCTTACATTAGTAGTACTAGTCTTTTCACAGACTACACAGACTCTG





TGAAGGGCCGATTCATCATCACCAGAGACAATGCCGAGAACTCACTC





TATCTGCAAATGACCAGCCTGACACCGGCAGACACGGGTGTCTATTTC





TGTGCGAGGGCCAAAACATCCTACTACTTCTACGCTCTGGACGTCTGG





GGCCCAGGCACCCTGGTCACCGTCTCCTCA





354
5650
1954
EVQLVESGGGLVKPGESVKLSCAASGFTITDSYMAWIRQSPGKGLEWLA





YISSTSLFTDYTDSVKGRFIITRDNAENSLYLQMTSLTPADTGVYFCARAK





TSYYFYALDVWGPGTLVTVSS





354
5651
1955
FTITDSYMA





354
5652
1956
TTCACCATCACTGACTCCTACATGGCC





354
5653
1957
YISSTSLFTDYTDSVKG





354
5654
1958
TACATTAGTAGTACTAGTCTTTTCACAGACTACACAGACTCTGTGAAG





GGC





354
5655
1959
ARAKTSYYFYALDV





354
5656
1960
GCGAGGGCCAAAACATCCTACTACTTCTACGCTCTGGACGTC





354
5657
1961
GAAACGACACTCACGCAGTCTCCAGGCACGCTGTCTTTGTCTCCGGGG





GAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAACAACAA





CTATCTAGCCTGGTTCCAGCACAAACCTGGCCAGGCTCCCAGACTCCT





CATCTATAATGCATCCAACAGGGCCGCTGGCATCCCAGACAGGTTCA





GTGGTAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAAACTG





GAGCCTGGAGATTCTGCAGTGTATTACTGTCAGCGATATGGGAACTCT





TGGCCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA





354
5658
1962
ETTLTQSPGTLSLSPGERATLSCRASQSVNNNYLAWFQHKPGQAPRLLIY





NASNRAAGIPDRFSGSGSGTDFTLTISKLEPGDSAVYYCQRYGNSWPFGQ





GTKVEIK





354
5659
1963
RASQSVNNNYLA





354
5660
1964
AGGGCCAGTCAGAGTGTTAACAACAACTATCTAGCC





354
5661
1965
NASNRAA





354
5662
1966
AATGCATCCAACAGGGCCGCT





354
5663
1967
QRYGNSWP





354
5664
1968
CAGCGATATGGGAACTCTTGGCCG





355
5665
1969
CAGGTCCAGCTGGTGCAGTCTGGGGGAGGCTTGGTACAGCCTGGGGG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTCAGTC





TCCCATGAGCTGGGTCCGCCAGGCTCCTGGGAAGGGGCTGGAGTGGG





TCTCCGGTATTAGTACTGGAGGGACCAATACATACTACGCAGACTCC





GTGAAGGGCCGCTTCACCATCTCCAGAGACAATTCCAAGAACACGTT





GTATCTGCAAATGACCAGCCTGAGAGTCGGGGACACGGCCGTGTATT





ACTGTGCGAAAGAGAGTTTAGACTTTGGTTCAGGGAGCTACAACTGG





TTCGACACCTGGGGCCAGGGAACCCTGGTCACTGTCTCCTCA





355
5666
1970
QVQLVQSGGGLVQPGGSLRLSCAASGFTFSQSPMSWVRQAPGKGLEWV





SGISTGGTNTYYADSVKGRFTISRDNSKNTLYLQMTSLRVGDTAVYYCA





KESLDFGSGSYNWFDTWGQGTLVTVSS





355
5667
1971
FTFSQSPMS





355
5668
1972
TTCACCTTTAGTCAGTCTCCCATGAGC





355
5669
1973
GISTGGTNTYYADSVKG





355
5670
1974
GGTATTAGTACTGGAGGGACCAATACATACTACGCAGACTCCGTGAA





GGGC





355
5671
1975
AKESLDFGSGSYNWFDT





355
5672
1976
GCGAAAGAGAGTTTAGACTTTGGTTCAGGGAGCTACAACTGGTTCGA





CACC





355
5673
1977
GAAATTGTATTGACGCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGC





GAGAGGGCCACCATCAACTGCAAGTCCAGCCAGAGTGTTTTATACAG





GTCCAACAATAAGAACTACTTAGCTTGGTACCAGCAGAGACCAGGAC





AGCCTCCTAGGCTGCTCATTTCCTGGGCATCTACCCGGGAATCCGGGG





TCCCTGACCGATTCACTGGCAGCGGGTCTGGGACAGATTTCACTCTCA





CCATCAGCAGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCACC





AATATTATGATACCCACACTTTTGGCCAGGGGACCAAAGTGGATATC





AAA





355
5674
1978
EIVLTQSPDSLAVSLGERATINCKSSQSVLYRSNNKNYLAWYQQRPGQPP





RLLISWASTRESGVPDRFTGSGSGTDFTLTISSLQAEDVAVYYCHQYYDT





HTFGQGTKVDIK





355
5675
1979
KSSQSVLYRSNNKNYLA





355
5676
1980
AAGTCCAGCCAGAGTGTTTTATACAGGTCCAACAATAAGAACTACTT





AGCT





355
5677
1981
WASTRES





355
5678
1982
TGGGCATCTACCCGGGAATCC





355
5679
1983
HQYYDTHT





355
5680
1984
CACCAATATTATGATACCCACACT





356
5681
1985
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG





GTCCCTGAGACTCTCCTGTGTAGCCTCTGGATTCAGCTTCAGTGCCTA





TGGCATGCACTGGGTTCGCCAGGTTCCAACCAAGGGGCTGGAGTGGG





TGGCTGTTATATCATATGATGGAAGAGATATATACTATACAGACTCCG





TGAAGGGCCGATTCACCATTTCCAGAGACAATTCCAAGAACATGTTG





TATCTGCAAATGAACAGCCTGAGACCTGAGGACAGGGCTGTCTATTA





CTGTGCGAGAGATCCGTCCCTCGGTTATAATAATCACTACTTTGACTA





TTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCA





356
5682
1986
EVQLVESGGGVVQPGRSLRLSCVASGFSFSAYGMHWVRQVPTKGLEWV





AVISYDGRDIYYTDSVKGRFTISRDNSKNMLYLQMNSLRPEDRAVYYCA





RDPSLGYNNHYFDYWGQGTLVTVSS





356
5683
1987
FSFSAYGMH





356
5684
1988
TTCAGCTTCAGTGCCTATGGCATGCAC





356
5685
1989
VISYDGRDIYYTDSVKG





356
5686
1990
GTTATATCATATGATGGAAGAGATATATACTATACAGACTCCGTGAA





GGGC





356
5687
1991
ARDPSLGYNNHYFDY





356
5688
1992
GCGAGAGATCCGTCCCTCGGTTATAATAATCACTACTTTGACTAT





356
5689
1993
GAAATTGTGTTGACGCAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGG





GAAACAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTACCGGCAA





CTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGCTGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTG





GCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAG





CCTGAAGATTTTGCAGTTTATTTCTGTCAGCAGCGTAGCAACTGGCCT





CCTATGTACAGTTTTGGCCAGGGGACCAAGCTGGAGATCAAA





356
5690
1994
EIVLTQSPATLSLSPGETATLSCRASQSVTGNLAWYQQKPGQAPRLLIYA





ASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQRSNWPPMYSFG





QGTKLEIK





356
5691
1995
RASQSVTGNLA





356
5692
1996
AGGGCCAGTCAGAGTGTTACCGGCAACTTAGCC





356
5693
1997
AASNRAT





356
5694
1998
GCTGCATCCAACAGGGCCACT





356
5695
1999
QQRSNWPPMYS





356
5696
2000
CAGCAGCGTAGCAACTGGCCTCCTATGTACAGT





357
5697
2001
CAGGTCCAGCTTGTACAGTCTGGGGCTGAGGTGAAGAGGCCTGGGTC





CTCGGTGAAGGTCTCCTGCAAGGCCTCTGGAGGCACCTTCAGAGGCT





ACCATATCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTCGAGTGG





ATGGGAGGGATCATCCATCTATTTGGGACAGTAAGCTACGCTCCGAA





GTTCCAGGGCAGAGTCACGATCACCGCGGACGCATCCACGGGCACAG





CCCATATGGAGTTGAGCAGCCTGACATCTGACGACACGGCCATATAC





TATTGTGCGAGAGATGCTTACGAAGTCTGGACGGGTTCTTATCTCCCC





CCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





357
5698
2002
QVQLVQSGAEVKRPGSSVKVSCKASGGTFRGYHISWVRQAPGQGLEWM





GGIIHLFGTVSYAPKFQGRVTITADASTGTAHMELSSLTSDDTAIYYCAR





DAYEVWTGSYLPPFDYWGQGTLVTVSS





357
5699
2003
GTFRGYHIS





357
5700
2004
GGCACCTTCAGAGGCTACCATATCAGC





357
5701
2005
GIIHLFGTVSYAPKFQG





357
5702
2006
GGGATCATCCATCTATTTGGGACAGTAAGCTACGCTCCGAAGTTCCAG





GGC





357
5703
2007
ARDAYEVWTGSYLPPFDY





357
5704
2008
GCGAGAGATGCTTACGAAGTCTGGACGGGTTCTTATCTCCCCCCTTTT





GACTAC





357
5705
2009
GATATTGTGATGACTCAGACTCCAGGCACCCTGTCTTTGTCTCCCGGG





GAAAGAGTCACCCTCTCCTGCAGGGCCAGTCAGACTGTTACAAGCAG





CTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGACTCCT





CATCTATGGTGCATTCACCAGGGCCACTGGCATCCCAGACAGGTTCA





GTGGTAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTG





GAGCCTGAAGATTTTGCAGTATATTACTGTCAGCAGTATGGTAGCTCA





TTCCTCACTTTCGGCGGAGGGACCAAGCTGGAGATCAAA





357
5706
2010
DIVMTQTPGTLSLSPGERVTLSCRASQTVTSSYLAWYQQKPGQAPRLLIY





GAFTRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSFLTFGG





GTKLEIK





357
5707
2011
RASQTVTSSYLA





357
5708
2012
AGGGCCAGTCAGACTGTTACAAGCAGCTACTTAGCC





357
5709
2013
GAFTRAT





357
5710
2014
GGTGCATTCACCAGGGCCACT





357
5711
2015
QQYGSSFLT





357
5712
2016
CAGCAGTATGGTAGCTCATTCCTCACT





358
5713
2017
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG





GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTA





TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTAGTAGTAGTAGTTACATATACTACGCAGACTCAG





TGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTA





CTGTGCGAGAGATGTGCAATATAGTGGCTACGATTCTGGGTACTACTT





TGACTACTGGGGCCAGGGAACCCTGGTCACTGTCTCCTCA





358
5714
2018
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWV





SSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR





DVQYSGYDSGYYFDYWGQGTLVTVSS





358
5715
2019
FTFSSYSMN





358
5716
2020
TTCACCTTCAGTAGCTATAGCATGAAC





358
5717
2021
SISSSSSYIYYADSVKG





358
5718
2022
TCCATTAGTAGTAGTAGTAGTTACATATACTACGCAGACTCAGTGAAG





GGC





358
5719
2023
ARDVQYSGYDSGYYFDY





358
5720
2024
GCGAGAGATGTGCAATATAGTGGCTACGATTCTGGGTACTACTTTGAC





TAC





358
5721
2025
CAGCCTGTGCTGACTCAGCCACCCTCAGTGTCTGGGGCCCCAGGACA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAG





GTTATGATGTACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAA





CTCCTCATCTATGGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGCCTGAGTGCCCTTTATGTCTTCGGAACTGGGACCAAGGTGACCGTC





CTA





358
5722
2026
QPVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLI





YGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSAL





YVFGTGTKVTVL





358
5723
2027
TGSSSNIGAGYDVH





358
5724
2028
ACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGTACAC





358
5725
2029
GNSNRPS





358
5726
2030
GGTAACAGCAATCGGCCCTCA





358
5727
2031
QSYDSSLSALYV





358
5728
2032
CAGTCCTATGACAGCAGCCTGAGTGCCCTTTATGTC





359
5729
2033
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCGGGGG





GGTCCCTGAGACTCTCCTGTGCAGGCTCTGGATTCGCCTTCGGTAGCT





TCGCGATGCACTGGGTCCGTCAGGCTCCAGGCAAGGGGCTGGAGTGG





GTGGCTGTTATTTCATTTGACGGAAAGAATACAAAATATGCTGACTCC





GTGAAGGGCCGATTCACCACCTCCAGAGACAATTCCAGGAACACGCT





CTATCTCCAAATGGACAGCCTGAGAGGTGACGACACGGCTATATATT





ACTGCGCGACAATTAGGGGAATTGTGGCTGGCCTTTGTGACAACTGG





GGCCAGGGAACCCTGGTCACCGTCTCCTCA





359
5730
2034
EVQLVESGGGVVQPGGSLRLSCAGSGFAFGSFAMHWVRQAPGKGLEWV





AVISFDGKNTKYADSVKGRFTTSRDNSRNTLYLQMDSLRGDDTAIYYCA





TIRGIVAGLCDNWGQGTLVTVSS





359
5731
2035
FAFGSFAMH





359
5732
2036
TTCGCCTTCGGTAGCTTCGCGATGCAC





359
5733
2037
VISFDGKNTKYADSVKG





359
5734
2038
GTTATTTCATTTGACGGAAAGAATACAAAATATGCTGACTCCGTGAA





GGGC





359
5735
2039
ATIRGIVAGLCDN





359
5736
2040
GCGACAATTAGGGGAATTGTGGCTGGCCTTTGTGACAAC





359
5737
2041
CAGCCTGTGCTGACTCAATCATCGTCTGACTCTGCTTCCCTGGGAGCC





TCGGTCAAGCTCACCTGTACTCTGAGCAGTGGCCACAGAAACTACAT





CATCGCATGGCATCAACAACAACCAGGGAAGGCCCCTCGGTTCCTGA





TGAAGGTTGAAGGTAGTGGAAGCTTCACCATGGGGAGCGGAGTTCCT





GATCGCTTCTCGGGCTCCAGCTCTGGGGCTGACCGCTACCTCACCATC





TCCAACCTCCAGTCTGAGGATGAGGCTGATTATTACTGTGAGGCCTGG





GACTTTAACACGGGGGGGGTCTTCGGCGGAGGCACCCAGCTGACCGT





CCTC





359
5738
2042
QPVLTQSSSDSASLGASVKLTCTLSSGHRNYIIAWHQQQPGKAPRFLMKV





EGSGSFTMGSGVPDRFSGSSSGADRYLTISNLQSEDEADYYCEAWDFNT





GGVFGGGTQLTVL





359
5739
2043
TLSSGHRNYIIA





359
5740
2044
ACTCTGAGCAGTGGCCACAGAAACTACATCATCGCA





359
5741
2045
VEGSGSFTMGS





359
5742
2046
GTTGAAGGTAGTGGAAGCTTCACCATGGGGAGC





359
5743
2047
EAWDFNTGGV





359
5744
2048
GAGGCCTGGGACTTTAACACGGGGGGGGTC





360
5745
2049
GAGGTGCAGCTGGTGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGG





GACCCTGTCCCTCACCTGCGCTGTCTCTGGTGACTCCATCGTCGGTAG





TGACTGGTGGAGTTGGATCCGCCAGCCCCCCGGGAAGGGGCTGGAGT





GGATTGGAGATATCTATCATGGTGGGACCACCAGCTACAACCCGTCC





CTTAAGAGTCGAGTCACCATGTCAGTAGACAAGTCCAAGAACCAATT





CTCCCTGAAGCTGACCTCTGTCACCGCCGCGGACACAGCCGTGTATTA





CTGTGCGAGACTCTCGGGAAATTGTAGTGGTGGTAGCTGTTACTCGCC





CTTTGACCACTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCA





360
5746
2050
EVQLVESGPGLVKPSGTLSLTCAVSGDSIVGSDWWSWIRQPPGKGLEWI





GDIYHGGTTSYNPSLKSRVTMSVDKSKNQFSLKLTSVTAADTAVYYCAR





LSGNCSGGSCYSPFDHWGQGTLVTVSS





360
5747
2051
DSIVGSDWWS





360
5748
2052
GACTCCATCGTCGGTAGTGACTGGTGGAGT





360
5749
2053
DIYHGGTTSYNPSLKS





360
5750
2054
GATATCTATCATGGTGGGACCACCAGCTACAACCCGTCCCTTAAGAGT





360
5751
2055
ARLSGNCSGGSCYSPFDH





360
5752
2056
GCGAGACTCTCGGGAAATTGTAGTGGTGGTAGCTGTTACTCGCCCTTT





GACCAC





360
5753
2057
GACATCCAGATGACCCAGTCTCCATCCTCCTTGTCTGCATCTGTGGGA





GACAGAGTCACCATCACTTGCCGGGCAAGTCAGACCATTAATGGTTA





TTTAAATTGGTATCAACAAAGACCAGGGAAAGCCCCTAAACTCCTGA





TCTCTGCTGCATCCAGTTTGCAGAGTGGGGTCCCATCAAGGTTCCGTG





GCAGTGGATATGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAA





CCTGAAGATTTTGCAACTTATTTCTGTCAACAGAGTTACAATACTGTG





TACACTTTTGGGCAGGGGACCAAAGTGGATATCAAA





360
5754
2058
DIQMTQSPSSLSASVGDRVTITCRASQTINGYLNWYQQRPGKAPKLLISA





ASSLQSGVPSRFRGSGYGTDFTLTISSLQPEDFATYFCQQSYNTVYTFGQG





TKVDIK





360
5755
2059
RASQTINGYLN





360
5756
2060
CGGGCAAGTCAGACCATTAATGGTTATTTAAAT





360
5757
2061
AASSLQS





360
5758
2062
GCTGCATCCAGTTTGCAGAGT





360
5759
2063
QQSYNTVYT





360
5760
2064
CAACAGAGTTACAATACTGTGTACACT





361
5761
2065
CAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTGAAAAAGCCCGGGG





AGTCTCTGAAGATCTCCTGTAAGGGTTCTGGATACAGCTTTAGCAGCT





ACTGGATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGG





ATGGGGATCATCTATCCTGGTGACTCTGATACCAGATACAGCCCGTCG





CTCCAAGGCCAGGTCACCATCTCAGGCGACAAGTCCATCAGTACCGC





CTTCCTGCAGTGGAGCAGCCTGAAGGCCTCGGACACCGCCATGTATT





ACTGTGCGAGACCCATGACTACCCAAGAAGGTTTTGATTTGTGGGGC





CAAGGGACAATGGTCACCGTCTCTTCA





361
5762
2066
QVQLVQSGAEVKKPGESLKISCKGSGYSFSSYWIGWVRQMPGKGLEWM





GIIYPGDSDTRYSPSLQGQVTISGDKSISTAFLQWSSLKASDTAMYYCARP





MTTQEGFDLWGQGTMVTVSS





361
5763
2067
YSFSSYWIG





361
5764
2068
TACAGCTTTAGCAGCTACTGGATCGGC





361
5765
2069
IIYPGDSDTRYSPSLQG





361
5766
2070
ATCATCTATCCTGGTGACTCTGATACCAGATACAGCCCGTCGCTCCAA





GGC





361
5767
2071
ARPMTTQEGFDL





361
5768
2072
GCGAGACCCATGACTACCCAAGAAGGTTTTGATTTG





361
5769
2073
GACATCCGGTTGACCCAGTCTCCATCTTCTGTGTCTGCATCTGTAGGA





GACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCGACTG





GTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAACTCCTGA





TCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCG





GCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGC





CTGAAGATTTTGCAACTTACTATTGTCAACAGACTAACAGTTTCCTCC





CGCTCACTTTCGGCGGAGGGACCAAAGTGGATATCAAA





361
5770
2074
DIRLTQSPSSVSASVGDRVTITCRASQGISDWLAWYQQKPGKAPKLLIYA





ASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTNSFLPLTFGG





GTKVDIK





361
5771
2075
RASQGISDWLA





361
5772
2076
CGGGCGAGTCAGGGTATTAGCGACTGGTTAGCC





361
5773
2077
AASSLQS





361
5774
2078
GCTGCATCCAGTTTGCAAAGT





361
5775
2079
QQTNSFLPLT





361
5776
2080
CAACAGACTAACAGTTTCCTCCCGCTCACT





362
5777
2081
GAGGTGCAGCTGGTGGAGTCGGGCCCCCGACTGGTGAAGCCTTCACA





GACCCTGTCCCTCACCTGCACCGTCTATGGTGGCTCCATCAGCGGTGG





TCAAAACTACTACAGTTGGGTCCGCCAGCCCCCAGGGAAGGGCCTGG





AGTGGATTGGGTACATCTTTTCCAGTGGGACCACCTACTACAAGCCGT





CCCTCAAGAGTCGAATTTCCATTTCATTTGACACGTCCAAGAACCAGT





TCTCCCTGAACCTGGCCTCTGTGACGGCCGCAGACACGGCCGTATATT





TCTGTGCCAGATCCGCTGACATTGATATCGTTTGGGGGAGTTCTCTCT





ACATGCCTCTCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





362
5778
2082
EVQLVESGPRLVKPSQTLSLTCTVYGGSISGGQNYYSWVRQPPGKGLEW





IGYIFSSGTTYYKPSLKSRISISFDTSKNQFSLNLASVTAADTAVYFCARSA





DIDIVWGSSLYMPLWGQGTLVTVSS





362
5779
2083
GSISGGQNYYS





362
5780
2084
GGCTCCATCAGCGGTGGTCAAAACTACTACAGT





362
5781
2085
YIFSSGTTYYKPSLKS





362
5782
2086
TACATCTTTTCCAGTGGGACCACCTACTACAAGCCGTCCCTCAAGAGT





362
5783
2087
ARSADIDIVWGSSLYMPL





362
5784
2088
GCCAGATCCGCTGACATTGATATCGTTTGGGGGAGTTCTCTCTACATG





CCTCTC





362
5785
2089
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGA





CAAAGAGCCACCCTCTCCTGCAGGGCCACTCACATTGTCAGTAACAG





CTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT





CATCCATGGTGTTTCCATCAGGGCCACTGGCATCCCAGACAGGTTCTC





TGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGG





AGCCTGAAGATTTTGCAGTGTATTTCTGTCAGCAGTATGGTACCTCAC





CGTGGACGTTCGGCCAAGGGACCAAGCTGGAGATCAAA





362
5786
2090
EIVLTQSPGTLSLSPGQRATLSCRATHIVSNSYLAWYQQKPGQAPRLLIHG





VSIRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGTSPWTFGQG





TKLEIK





362
5787
2091
RATHIVSNSYLA





362
5788
2092
AGGGCCACTCACATTGTCAGTAACAGCTACTTAGCC





362
5789
2093
GVSIRAT





362
5790
2094
GGTGTTTCCATCAGGGCCACT





362
5791
2095
QQYGTSPWT





362
5792
2096
CAGCAGTATGGTACCTCACCGTGGACG





363
5793
2097
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCGGGGGG





GTCCCTGAGACTCTCCTGTGTAGCCTCTGGATTTACCTTCAGCAGTTA





TGCCATGAATTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGACTGGG





TCTCCTCTATCAGTGCTGGTAGCAATTTCATAGACGACGCAGACTCAG





TGAAGGGCCGCTTCACCATCTCCAGAGACAACGCCAGGAACTCACTG





TTTCTGCAGATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTA





CTGTGCGAGAATTGGGTACAGTAGCGCGCACCACTACCAGTACTACA





TGGACGTCTGGGGCACGGGGACCACGGTCACCGTCTCCTCA





363
5794
2098
QVQLVESGGGLVKPGGSLRLSCVASGFTFSSYAMNWVRQAPGKGLDWV





SSISAGSNFIDDADSVKGRFTISRDNARNSLFLQMNSLRAEDTAVYYCARI





GYSSAHHYQYYMDVWGTGTTVTVSS





363
5795
2099
FTFSSYAMN





363
5796
2100
TTTACCTTCAGCAGTTATGCCATGAAT





363
5797
2101
SISAGSNFIDDADSVKG





363
5798
2102
TCTATCAGTGCTGGTAGCAATTTCATAGACGACGCAGACTCAGTGAA





GGGC





363
5799
2103
ARIGYSSAHHYQYYMDV





363
5800
2104
GCGAGAATTGGGTACAGTAGCGCGCACCACTACCAGTACTACATGGA





CGTC





363
5801
2105
CAGTCTGTCCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGCAGCAGCTCCAACATCGGGGCAG





GTTATGATGTCCACTGGTACCAGGATCTTCCAGGAACTGCCCCCAAAC





TCCTCATCTATGGTAACACCAATCGGCCCTCAGGGGTCCCTGACCGAT





TCTCTGGCTCCAAGTCTGGCGCCTCAGCCTCCCTGGTCATCACTGGGC





TCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAAG





AGCCTGAGTGGTGGGTATGTCTTCGGAACTGGGACCAAGGTCACCGT





CCTA





363
5802
2106
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQDLPGTAPKLLI





YGNTNRPSGVPDRFSGSKSGASASLVITGLQAEDEADYYCQSYDKSLSG





GYVFGTGTKVTVL





363
5803
2107
TGSSSNIGAGYDVH





363
5804
2108
ACTGGCAGCAGCTCCAACATCGGGGCAGGTTATGATGTCCAC





363
5805
2109
GNTNRPS





363
5806
2110
GGTAACACCAATCGGCCCTCA





363
5807
2111
QSYDKSLSGGYV





363
5808
2112
CAGTCCTATGACAAGAGCCTGAGTGGTGGGTATGTC





364
5809
2113
CAGGTCCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGC





CTCAGTGAGGGTCACCTGCAAGGCCTCTGGATACACCTTCACCGACTA





CTTTATGAACTGGGTGCGACAGGCCCCTGGAGGGGGCCTTGAGTGGA





TGGGGTGGATCAATCCTCTCAGTGGAGTCACAAAATATGCACAGCAG





TTTCAGGGCAGTGTCACCATGACCACTGACACGTCCATCACCACAGG





CTACATGGAGCTGAGGAGCCTGAGAGTTGACGACACGGCCGTCTATT





ATTGTGCGAGCCAGTCTTCCCCTTACACCCCGGGCGCCATGGGCGTCT





GGGGCCAAGGGACCACGGTCACCGTCTCTTCA





364
5810
2114
QVQLVQSGAEVKKPGASVRVTCKASGYTFTDYFMNWVRQAPGGGLEW





MGWINPLSGVTKYAQQFQGSVTMTTDTSITTGYMELRSLRVDDTAVYY





CASQSSPYTPGAMGVWGQGTTVTVSS





364
5811
2115
YTFTDYFMN





364
5812
2116
TACACCTTCACCGACTACTTTATGAAC





364
5813
2117
WINPLSGVTKYAQQFQG





364
5814
2118
TGGATCAATCCTCTCAGTGGAGTCACAAAATATGCACAGCAGTTTCA





GGGC





364
5815
2119
ASQSSPYTPGAMGV





364
5816
2120
GCGAGCCAGTCTTCCCCTTACACCCCGGGCGCCATGGGCGTC





364
5817
2121
TCCTATGAGCTGATACAGCTACCCTCGGTGTCAGTGTCCCCAGGACAG





ACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC





TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATAT





ATAAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGC





TCCAGCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGC





AGAAGACGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTA





CTTATCCGGTGGTGTTCGGCGGAGGGACCAAGCTCACCGTCCTA





364
5818
2122
SYELIQLPSVSVSPGQTARITCSGDALPKQYAYWYQQKPGQAPVLVIYKD





SERPSGIPERFSGSSSGTTVTLTISGVQAEDEADYYCQSADSSGTYPVVFG





GGTKLTVL





364
5819
2123
SGDALPKQYAY





364
5820
2124
TCTGGAGATGCATTGCCAAAGCAATATGCTTAT





364
5821
2125
KDSERPS





364
5822
2126
AAAGACAGTGAGAGGCCCTCA





364
5823
2127
QSADSSGTYPVV





364
5824
2128
CAATCAGCAGACAGCAGTGGTACTTATCCGGTGGTG





365
5825
2129
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG


(ADI-


GGCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGGAGCTA


31382)


TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTAGTAGTAGTAATTACATAAACTACGCAGACTCAG





TGAAGGGCCGATTCAGCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTA





CTGTGCGAGAGATTTGTTACCCGTCGAGCGGGGTCCCGCTTTTGATAT





CTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA






5826
2130
EVQLVESGGGLVKPGGALRLSCAASGFSFRSYSMNWVRQAPGKGLEWV





SSISSSSNYINYADSVKGRFSISRDNAKNSLYLQMNSLRAEDTAVYYCAR





DLLPVERGPAFDIWGQGTMVTVSS






5827
2131
FSFRSYSMN






5828
2132
SISSSSNYINYADSVKG






5829
2133
ARDLLPVERGPAFDI






5830
2134
TCCTACGAGCTGACACAGCCACCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACTATCTCCTGCACTGGGAGCAGCTCCAACATCGGGAGGG





GTTATGATGTACACTGGTTCCAGCAGCTTCCAGGAGCAGCCCCCAAA





CTCCTCATCTATGCTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGACTGGGTGGTTCGGTATTCGGCGGAGGGACCAAGGTGACCGTCCT





A






5831
2135
SYELTQPPSVSGAPGQRVTISCTGSSSNIGRGYDVHWFQQLPGAAPKLLIY





ANSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSRLGGSV





FGGGTKVTVL






5832
2136
TGSSSNIGRGYDVH






5833
2137
ANSNRPS






5834
2138
QSYDSRLGGSV





366
5835
2139
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG


(ADI-


GGCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGGAGCTA


31383)


TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTAGTAGTAGTAATTACATAAACTACGCAGACTCAG





TGAAGGGCCGATTCAGCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTA





CTGTGCGAGAGATTTGTTACCCGTCGAGCGGGGTCCCGCTTTTGATAT





CTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA






5836
2140
EVQLVESGGGLVKPGGALRLSCAASGFSFRSYSMNWVRQAPGKGLEWV





SSISSSSNYINYADSVKGRFSISRDNAKNSLYLQMNSLRAEDTAVYYCAR





DLLPVERGPAFDIWGQGTMVTVSS






5837
2141
FSFRSYSMN






5838
2142
SISSSSNYINYADSVKG






5839
2143
ARDLLPVERGPAFDI






5840
2144
TCCTATGAGCTGACACAGCCACCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAG





GTTATGATGTACACTGGTTCCAGCAGCTTCCAGGAGCAGCCCCCAAA





CTCCTCATCTATCGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGACTGGGTGGTTCGAATTTCGGCGGAGGGACCAAGGTGACCGTCCT





A






5841
2145
SYELTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWFQQLPGAAPKLLI





YRNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSRLGGS





NFGGGTKVTVL






5842
2146
TGSSSNIGAGYDVH






5843
2147
RNSNRPS






5844
2148
QSYDSRLGGSN





367
5845
2149
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG


(ADI-


GGCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGGAGCTA


31384)


TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTGCTAGTAGTAATTACATAAACTACGCAGACTCAG





TGAAGGGCCGATTCAGCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTA





CTGTGCGAGAGATTTGTTACCCGTCGAGCGGGGTCCCGCTTTTGATAT





CTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA






5846
2150
EVQLVESGGGLVKPGGALRLSCAASGFSFRSYSMNWVRQAPGKGLEWV





SSISASSNYINYADSVKGRFSISRDNAKNSLYLQMNSLRAEDTAVYYCAR





DLLPVERGPAFDIWGQGTMVTVSS






5847
2151
FSFRSYSMN






5848
2152
SISASSNYINYADSVKG






5849
2153
ARDLLPVERGPAFDI






5850
2154
TCCTATGAGCTGACACAGCCACCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAG





GTTATGATGTACACTGGTTCCAGCAGCTTCCAGGAGCAGCCCCCAAA





CTCCTCATCTATGCTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGACTGGGTGGTTCGGTATTCGGCGGAGGGACCAAGGTGACCGTCCT





A






5851
2155
SYELTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWFQQLPGAAPKLLI





YANSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSRLGGS





VFGGGTKVTVL






5852
2156
TGSSSNIGAGYDVH






5853
2157
ANSNRPS






5854
2158
QSYDSRLGGSV





368
5855
2159
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG


(ADI-


GGCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGGAGCTA


31385)


TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTAGTAGTAGTACTTACATAAACTACGCAGACTCAG





TGAAGGGCCGATTCAGCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTA





CTGTGCGAGAGATTTGAGTCCCGTCGAGCGGGGTCCCGCTTTTGATAT





CTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA






5856
2160
EVQLVESGGGLVKPGGALRLSCAASGFSFRSYSMNWVRQAPGKGLEWV





SSISSSSTYINYADSVKGRFSISRDNAKNSLYLQMNSLRAEDTAVYYCAR





DLSPVERGPAFDIWGQGTMVTVSS






5857
2161
FSFRSYSMN






5858
2162
SISSSSTYINYADSVKG






5859
2163
ARDLSPVERGPAFDI






5860
2164
TCCTATGAGCTGACACAGCCACCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAG





GTTATGATGTACACTGGTTCCAGCAGCTTCCAGGAGCAGCCCCCAAA





CTCCTCATCTATGCTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGACTGGGTGGTTCGGTATTCGGCGGAGGGACCAAGGTGACCGTCCT





A






5861
2165
SYELTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWFQQLPGAAPKLLI





YANSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSRLGGS





VFGGGTKVTVL






5862
2166
TGSSSNIGAGYDVH






5863
2167
ANSNRPS






5864
2168
QSYDSRLGGSV





369
5865
2169
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG


(ADI-


GGCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGGAGCTA


31345)


TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTGCTAGTAGTAATTACATAAACTACGCAGACTCAG





TGAAGGGCCGATTCAGCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTA





CTGTGCGAGAGATTTGTTACCCGTCGAGCGGGGTCCCGCTTTTGATAT





CTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA






5866
2170
EVQLVESGGGLVKPGGALRLSCAASGFSFRSYSMNWVRQAPGKGLEWV





SSISASSNYINYADSVKGRFSISRDNAKNSLYLQMNSLRAEDTAVYYCAR





DLLPVERGPAFDIWGQGTMVTVSS






5867
2171
FSFRSYSMN






5868
2172
SISASSNYINYADSVKG






5869
2173
ARDLLPVERGPAFDI






5870
2174
TCCTACGAGCTGACACAGCCACCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACTATCTCCTGCACTGGGAGCAGCTCCAACATCGGGAGGG





GTTATGATGTACACTGGTTCCAGCAGCTTCCAGGAGCAGCCCCCAAA





CTCCTCATCTATGCTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGACTGGGTGGTTCGGTATTCGGCGGAGGGACCAAGGTGACCGTCCT





A






5871
2175
SYELTQPPSVSGAPGQRVTISCTGSSSNIGRGYDVHWFQQLPGAAPKLLIY





ANSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSRLGGSV





FGGGTKVTVL






5872
2176
TGSSSNIGRGYDVH






5873
2177
ANSNRPS






5874
2178
QSYDSRLGGSV





370
5875
2179
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG


(ADI-


GGCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGGAGCTA


31346)


TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTGCTAGTAGTAATTACATAAACTACGCAGACTCAG





TGAAGGGCCGATTCAGCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTA





CTGTGCGAGAGATTTGTTACCCGTCGAGCGGGGTCCCGCTTTTGATAT





CTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA






5876
2180
EVQLVESGGGLVKPGGALRLSCAASGFSFRSYSMNWVRQAPGKGLEWV





SSISASSNYINYADSVKGRFSISRDNAKNSLYLQMNSLRAEDTAVYYCAR





DLLPVERGPAFDIWGQGTMVTVSS






5877
2181
FSFRSYSMN






5878
2182
SISASSNYINYADSVKG






5879
2183
ARDLLPVERGPAFDI






5880
2184
TCCTATGAGCTGACACAGCCACCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAG





GTTATGATGTACACTGGTTCCAGCAGCTTCCAGGAGCAGCCCCCAAA





CTCCTCATCTATCGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGACTGGGTGGTTCGAATTTCGGCGGAGGGACCAAGGTGACCGTCCT





A






5881
2185
SYELTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWFQQLPGAAPKLLI





YRNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSRLGGS





NFGGGTKVTVL






5882
2186
TGSSSNIGAGYDVH






5883
2187
RNSNRPS






5884
2188
QSYDSRLGGSN





371
5885
2189
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG


(ADI-


GGCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGGAGCTA


31354)


TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTAGTAGTAGTACTTACATAAACTACGCAGACTCAG





TGAAGGGCCGATTCAGCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTA





CTGTGCGAGAGATTTGAGTCCCGTCGAGCGGGGTCCCGCTTTTGATAT





CTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA






5886
2190
EVQLVESGGGLVKPGGALRLSCAASGFSFRSYSMNWVRQAPGKGLEWV





SSISSSSTYINYADSVKGRFSISRDNAKNSLYLQMNSLRAEDTAVYYCAR





DLSPVERGPAFDIWGQGTMVTVSS






5887
2191
FSFRSYSMN






5888
2192
SISSSSTYINYADSVKG






5889
2193
ARDLSPVERGPAFDI






5890
2194
TCCTACGAGCTGACACAGCCACCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACTATCTCCTGCACTGGGAGCAGCTCCAACATCGGGAGGG





GTTATGATGTACACTGGTTCCAGCAGCTTCCAGGAGCAGCCCCCAAA





CTCCTCATCTATGCTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGACTGGGTGGTTCGGTATTCGGCGGAGGGACCAAGGTGACCGTCCT





A






5891
2195
SYELTQPPSVSGAPGQRVTISCTGSSSNIGRGYDVHWFQQLPGAAPKLLIY





ANSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSRLGGSV





FGGGTKVTVL






5892
2196
TGSSSNIGRGYDVH






5893
2197
ANSNRPS






5894
2198
QSYDSRLGGSV





372
5895
2199
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGG


(ADI-


GGCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGGAGCTA


31362)


TAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCTCATCCATTAGTAGTAGTAGTACTTACATAAACTACGCAGACTCAG





TGAAGGGCCGATTCAGCATCTCCAGAGACAACGCCAAGAACTCACTG





TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTCTATTA





CTGTGCGAGAGATTTGAGTCCCGTCGAGCGGGGTCCCGCTTTTGATAT





CTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA






5896
2200
EVQLVESGGGLVKPGGALRLSCAASGFSFRSYSMNWVRQAPGKGLEWV





SSISSSSTYINYADSVKGRFSISRDNAKNSLYLQMNSLRAEDTAVYYCAR





DLSPVERGPAFDIWGQGTMVTVSS






5897
2201
FSFRSYSMN






5898
2202
SISSSSTYINYADSVKG






5899
2203
ARDLSPVERGPAFDI






5900
2204
TCCTATGAGCTGACACAGCCACCCTCAGTGTCTGGGGCCCCAGGGCA





GAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAG





GTTATGATGTACACTGGTTCCAGCAGCTTCCAGGAGCAGCCCCCAAA





CTCCTCATCTATCGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGA





TTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGG





CTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGC





AGACTGGGTGGTTCGAATTTCGGCGGAGGGACCAAGGTGACCGTCCT





A






5901
2205
SYELTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWFQQLPGAAPKLLI





YRNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSRLGGS





NFGGGTKVTVL






5902
2206
TGSSSNIGAGYDVH






5903
2207
RNSNRPS






5904
2208
QSYDSRLGGSN









Additional Embodiments

Embodiment 1. An isolated antibody or an antigen-binding fragment thereof that specifically binds to Respiratory Syncytial Virus (RSV) F protein (F), wherein at least one of the CDRH1, a CDRH2, a CDRH3, a CDRL1, a CDRL2, and CDRL3 amino acid sequence of the antibody or the antigen-binding fragment thereof is at least 70% o identical; at least 7500 identical; 80% o identical; at least 8500 identical; at least 90% o identical; at least 9500 identical; at least 96% o identical; at least 970% identical; at least 98% o identical; at least 990%; and/or all percentages of identity in between; to at least one the CDRH1, a CDRH2, a CDRH3, a CDRL1, a CDRL2, and/or a CDRL3 amino acid sequences as disclosed in Table 6 of an antibody selected from Antibody Number 232 through Antibody Number 372 as disclosed in Table 6; and wherein said antibody or the antigen-binding fragment thereof also has one or more of the following characteristics:


a) the antibody or antigen-binding fragment thereof cross-competes with said antibody ar antigen-binding fragment thereof for binding to RSV-F;


b) the antibody or antigen-binding fragment thereof displays better binding affinity for the PreF form of RSV-F relative to the PostF form;


c) the antibody or antigen-binding fragment thereof displays a clean or low polyreactivity profile;


d) the antibody or antigen-binding fragment thereof displays neutralization activity toward RSV subtype A and RSV subtype B in vitro;


e) the antibody or antigen-binding fragment thereof displays antigenic site specificity for RSV-F at Site Ø, Site I, Site II, Site III, Site IV, or Site V;


f) the antibody or antigen-binding fragment thereof displays antigenic site specificity for RSV-F Site Ø, Site V, or Site III relative to RSV-F Site I, Site II, or Site IV;


g) at least a portion of the epitope with which the antibody or antigen-binding fragment thereof interacts comprises the α3 helix and β3/β4 hairpin of PreF;


h) the antibody or antigen-binding fragment thereof displays an in vitro neutralization potency (IC50) of between about 0.5 microgram/milliliter (ug/ml) to about 5 ug/ml; between about 0.05 ug/ml to about 0.5 ug/ml; or less than about 0.05 mg/ml;


i) the binding affinity and/or epitopic specificity of the antibody or antigen-binding fragment thereof for any one of the RSV-F variants designated as 1, 2, 3, 4, 5, 6, 7, 8, 9, and DG in FIG. 7A is reduced or eliminated relative to the binding affinity and/or epitopic specificity of said antibody or antigen-binding fragment thereof for the RSV-F or RSV-F DS-Cav1;


j) the antibody or antigen-binding fragment thereof of displays a cross-neutralization potency (IC50) against human metapneumovirus (HMPV);


k) the antibody or antigen-binding fragment thereof does not complete with D25, MPE8, palivisumab, motavizumab, or AM-14; or


l) the antibody or antigen-binding fragment thereof displays at least about 2-fold; at least about 3-fold; at least about 4-fold; at least about 5-fold; at least about 6-fold; at least about 7-fold; at least about 8-fold; at least about 9-fold; at least about 10-fold; at least about 15-fold; at least about 20-fold; at least about 25-fold; at least about 30-fold; at least about 35-fold; at least about 40-fold; at least about 50-fold; at least about 55-fold; at least about 60-fold; at least about 70-fold; at least about 80-fold; at least about 90-fold; at least about 100-fold; greater than about 100-fold; and folds in between any of the foregoing; greater neutralization potency (IC50) than D25 and/or palivizumab.


Embodiment 2. The isolated antibody or antigen-binding fragment thereof of Embodiment 1, wherein the antibody or antigen-binding fragment thereof comprises: at least two; at least three; at least 4; at least 5; at least 6; at least 7; at least 8; at least 9; at least 10; at least 11; or at least 12; of characteristics a) through 1).


Embodiment 3. The isolated antibody or antigen-binding fragment thereof of Embodiment 1 or 2, wherein the antibody or antigen-binding fragment thereof comprises:


a) the CDRH3 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6;


b) the CDRH2 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6;


c) the CDRH1 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6;


d) the CDRL3 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6;


e) the CDRL2 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6;


f) the CDRL1 amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6; or


g) any combination of two or more of a), b), c), d), e), and f).


Embodiment 4. The isolated antibody or antigen-binding fragment thereof of any one of Embodiments 1 through 3, wherein the antibody or antigen-binding fragment thereof comprises:


a) a heavy chain (HC) amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6; and/or


b) a light chain (LC) amino acid sequence of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


Embodiment 5. The isolated antibody or antigen-binding fragment thereof of any one of Embodiments 1 through 4, wherein the antibody is selected from the group consisting antibodies that are at least 70% identical; at least 75% identical; 80% identical; at least 85% identical; at least 90% identical; at least 95% identical; at least 96% identical; at least 97% identical; at least 98% identical; at least 99%; and/or all percentages of identity in between; to any one of the antibodies designated as Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.


Embodiment 6. The isolated antibody or antigen-binding fragment thereof of any one of Embodiments 1 through 5, wherein the antibody is selected from the group consisting of the antibodies designated as Antibody 232 through Antibody Number 372 as disclosed in Table 6.


Embodiment 7. An isolated nucleic acid sequence encoding an antibody or antigen-binding fragment thereof according to any one of Embodiments 1 through 6.


Embodiment 8. An expression vector comprising the isolated nucleic acid sequence according to Embodiment 7.


Embodiment 9. A host cell transfected, transformed, or transduced with the nucleic acid sequence according to Embodiment 7 or the expression vector according to Embodiment 8.


Embodiment 10. A pharmaceutical composition comprising: one or more of the isolated antibodies or antigen-binding fragments thereof according to any one of Embodiments 1 through 6; and a pharmaceutically acceptable carrier and/or excipient.


Embodiment 11. A pharmaceutical composition comprising: one or more nucleic acid sequences according to Embodiment 7; or one or more the expression vectors according to Embodiment 8; and a pharmaceutically acceptable carrier and/or excipient.


Embodiment 12. A transgenic organism comprising the nucleic acid sequence according to Embodiment 7; or the expression vector according to Embodiment 8.


Embodiment 13. A method of treating or preventing a Respiratory Syncytial Virus (RSV) infection, ar at least one symptom associated with RSV infection, comprising administering to a patient in need thereof or suspected of being in need thereof:


a) one or more antibodies or antigen-binding fragments thereof according to any of Embodiments 1 through 6;


b) a nucleic acid sequences according to Embodiment 7;


c) an expression vector according to Embodiment 8;


d) a host cell according to Embodiment 9; or


e) a pharmaceutical composition according Embodiment 10 or Embodiment 11; such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity.


Embodiment 14. A method of treating or preventing either a Respiratory Syncytial Virus (RSV) infection or a human metapneumovirus (HMPV) infection, ar at least one symptom associated with said RSV infection or said HMPV infection, comprising administering to a patient in need thereof or suspected of being in need thereof:


a) one or more antibodies or antigen-binding fragments thereof according to any of Embodiments 1 through 6;


b) a nucleic acid sequences according to Embodiment 7;


c) an expression vector according to Embodiment 8;


d) a host cell according to Embodiment 9; or


e) a pharmaceutical composition according Embodiment 10 or Embodiment 11; such that the RSV infection is treated or prevented, or the at least on symptom associated with RSV infection is treated, alleviated, or reduced in severity.


Embodiment 15. The method according to Embodiment 14, wherein the one or more antibodies or antigen-binding fragments thereof comprises Antibody Number 340.


Embodiment 16. The method according to any one of Embodiments 13 through 15, wherein the method further comprises administering to the patient a second therapeutic agent.


Embodiment 17. The method according to Embodiment 16, wherein the second therapeutic agent is selected group consisting of: an antiviral agent; a vaccine specific for RSV, a vaccine specific for


influenza virus, or a vaccine specific for metapneumovirus (MPV); an siRNA specific for an RSV antigen or a metapneumovirus (MPV) antigen; a second antibody specific for an RSV antigen or a metapneumovirus (MPV) antigen; an anti-IL4R antibody, an antibody specific for an influenza virus antigen, an anti-RSV-G antibody and a NSAID.


Embodiment 18. A pharmaceutical composition comprising any one or more of the isolated antibodies or antigen-binding fragments thereof of any one of Embodiments 1 through 7 and a pharmaceutically acceptable carrier and/or excipient.


Embodiment 19. The pharmaceutical composition according to Embodiment 18 for use in preventing a respiratory syncytial virus (RSV) infection in a patient in need thereof or suspected of being in need thereof, or for treating a patient suffering from an RSV infection, or for ameliorating at least one symptom or complication associated with the infection, wherein the infection is either prevented, or at least one symptom or complication associated with the infection is prevented, ameliorated, or lessened in severity and/or duration as a result of such use.


Embodiment 20. The pharmaceutical composition according to Embodiment 18 for us in treating or preventing either a Respiratory Syncytial Virus (RSV) infection or a human metapneumovirus (HMPV) infection, or at least one symptom associated with said RSV infection or said HMPV infection, in a patient in need thereof or suspected of being in need thereof, wherein the infection is either prevented, or at least one symptom or complication associated with the infection is prevented, ameliorated, or lessened in severity and/or duration as a result of such use.


Embodiment 21. Use of the pharmaceutical composition of Embodiment 18 in the manufacture of a medicament for preventing a respiratory syncytial virus (RSV) infection in a patient in need thereof, or for treating a patient suffering from an RSV infection, or for ameliorating at least one symptom or complication associated with the infection, wherein the infection is either prevented, or at least one symptom or complication associated with the infection is prevented, ameliorated, or lessened in severity and/or duration.


Embodiment 22. Use of the pharmaceutical composition of Embodiment 18 in the manufacture of a medicament for preventing either a Respiratory Syncytial Virus (RSV) infection or a human metapneumovirus (HMPV) infection, or at least one symptom associated with said RSV infection or said HMPV infection, in a patient in need thereof or suspected of being in need thereof, wherein the infection is either prevented, or at least one symptom or complication associated with the infection is prevented, ameliorated, or lessened in severity and/or duration as a result of such use.

Claims
  • 1-22. (canceled)
  • 23. An isolated antibody or an antigen-binding fragment thereof that specifically binds to Respiratory Syncytial Virus (RSV) F protein (F), wherein the antibody or antigen-binding fragment thereof comprises a variable light chain (VL) polypeptide and a variable heavy chain (VH) polypeptide comprising the same CDRH1, a CDRH2, a CDRH3, a CDRL1, a CDRL2, and a CDRL3 amino acid sequences as an antibody selected from Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.
  • 24. The isolated antibody or antigen-binding fragment thereof of claim 23, wherein the antibody or antigen-binding fragment thereof comprises: at least two; at least three; at least 4; at least 5; at least 6; at least 7; at least 8; at least 9; at least 10; at least 11; or at least 12; of characteristics a) through 1) set forth below: a) the antibody or antigen-binding fragment thereof cross-competes with said antibody ar antigen-binding fragment thereof for binding to RSV-F;b) the antibody or antigen-binding fragment thereof displays better binding affinity for the PreF form of RSV-F relative to the PostF form;c) the antibody or antigen-binding fragment thereof displays a clean or low polyreactivity profile;d) the antibody or antigen-binding fragment thereof displays neutralization activity toward RSV subtype A and RSV subtype B in vitro;e) the antibody or antigen-binding fragment thereof displays antigenic site specificity for RSV-F at Site Ø, Site I, Site II, Site III, Site IV, or Site V;f) the antibody or antigen-binding fragment thereof displays antigenic site specificity for RSV-F Site Ø, Site V, or Site III relative to RSV-F Site I, Site II, or Site IV;g) at least a portion of the epitope with which the antibody or antigen-binding fragment thereof interacts comprises the α3 helix and β3/β4 hairpin of PreF;h) the antibody or antigen-binding fragment thereof displays an in vitro neutralization potency (IC50) of between about 0.5 microgram/milliliter (ug/ml) to about 5 ug/ml; between about 0.05 ug/ml to about 0.5 ug/ml; or less than about 0.05 mg/ml;i) the binding affinity and/or epitopic specificity of the antibody or antigen-binding fragment thereof for any one of the RSV-F variants designated as 1, 2, 3, 4, 5, 6, 7, 8, 9, and DG in FIG. 7A is reduced or eliminated relative to the binding affinity and/or epitopic specificity of said antibody or antigen-binding fragment thereof for the RSV-F or RSV-F DS-Cav1;j) the antibody or antigen-binding fragment thereof of displays a cross-neutralization potency (IC50) against human metapneumovirus (HMPV);k) the antibody or antigen-binding fragment thereof does not complete with D25, MPE8, palivisumab, motavizumab, or AM-14; orl) the antibody or antigen-binding fragment thereof displays at least about 2-fold; at least about 3-fold; at least about 4-fold; at least about 5-fold; at least about 6-fold; at least about 7-fold; at least about 8-fold; at least about 9-fold; at least about 10-fold; at least about 15-fold; at least about 20-fold; at least about 25-fold; at least about 30-fold; at least about 35-fold; at least about 40-fold; at least about 50-fold; at least about 55-fold; at least about 60-fold; at least about 70-fold; at least about 80-fold; at least about 90-fold; at least about 100-fold; greater than about 100-fold; and folds in between any of the foregoing; greater neutralization potency (IC50) than D25 and/or palivizumab.
  • 25. The isolated antibody or antigen-binding fragment thereof of claim 23, wherein the antibody or antigen-binding fragment thereof comprises a VL polypeptide amino acid sequence and/or a VH polypeptide amino acid sequence according to any one of the antibodies designated Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.
  • 26. The isolated antibody or antigen-binding fragment thereof of claim 25, wherein the antibody or antigen-binding fragment thereof comprises the same VH and VL polypeptides of any one of the antibodies designated Antibody Number 232 through Antibody Number 372 in Table 6.
  • 27. The isolated antibody or antigen-binding fragment thereof of claim 23, wherein the antibody is selected from Antibody Number 232 through Antibody Number 372 as disclosed in Table 6.
  • 28. An isolated nucleic acid sequence encoding an antibody or antigen-binding fragment thereof according to claim 23.
  • 29. An expression vector comprising the isolated nucleic acid sequence according to claim 28.
  • 30. A host cell transfected, transformed, or transduced with the nucleic acid sequence according to claim 28 or an expression vector comprising the nucleic acid sequence.
  • 31. A pharmaceutical composition comprising: one or more of the isolated antibodies or antigen-binding fragments thereof according to claim 23; and a pharmaceutically acceptable carrier and/or excipient.
  • 32. A method of treating or preventing a Respiratory Syncytial Virus (RSV) infection, or at least one symptom associated with RSV infection, comprising administering to a patient in need thereof or suspected of being in need thereof: a) one or more antibodies or antigen-binding fragments thereof according to claim 23;b) nucleic acid sequences encoding the one or more antibodies or antigen-binding fragments of a);c) an expression vector comprising nucleic acid sequences according to b);d) a host cell transfected, transformed, or transduced with the nucleic acid sequences or vector according to b) or c); ore) a pharmaceutical composition comprising any of a) to d);
  • 33. A method of treating or preventing either a Respiratory Syncytial Virus (RSV) infection or a human metapneumovirus (HMPV) infection, or at least one symptom associated with said RSV infection or said HMPV infection, comprising administering to a patient in need thereof or suspected of being in need thereof: a) one or more antibodies or antigen-binding fragments thereof according to claim 23;b) nucleic acid sequences encoding the one or more antibodies or antigen-binding fragments of a);c) an expression vector comprising nucleic acid sequences according to b);d) a host cell transfected, transformed, or transduced with the nucleic acid sequences or vector according to b) or c); ore) a pharmaceutical composition comprising any of a) to d);
  • 34. The method according to claim 32, wherein the method further comprises administering to the patient a second therapeutic agent.
  • 35. The method according to claim 34, wherein the second therapeutic agent is selected group consisting of: another antiviral agent; a vaccine specific for RSV, a vaccine specific for influenza virus, or a vaccine specific for metapneumovirus (MPV); an siRNA specific for an RSV antigen or a metapneumovirus (MPV) antigen; a second antibody specific for an RSV antigen or a metapneumovirus (MPV) antigen; an anti-IL4R antibody, an antibody specific for an influenza virus antigen, an anti-RSV-G antibody and a NSAID.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. application Ser. No. 16/343,311, filed Apr. 18, 2019, which is a 371(c) U.S. Nat'l Phase application of Int'l Appl. No. PCT/US2017/057737, filed Oct. 20, 2017, which claims the benefit of U.S. Provisional Patent Application No. 62/411,508, filed Oct. 21, 2016, the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
62411508 Oct 2016 US
Divisions (1)
Number Date Country
Parent 16343311 Apr 2019 US
Child 17933725 US