The present invention generally relates to a way of connecting flexible ducts to each other. Such ducts may be connected by securing a set of cable restraints to a flange at an end of each duct. The ducts may be disconnected by decoupling the set of cable restraints from the flanges.
The cable restraints may typically include a metal shaft or wire rope that includes a fitting with wrench flats at the interior end and an external screw thread at the exterior end of the fitting. The interior wrench flats and exterior thread with nut may then be used to secure the cable restraint to each flange. The wrench flats refers to the flats on the surface of the flange facing the other duct, while the “exterior” nut refers to the nut on the surface of the flange facing away from the other duct. The interior wrench flats must be positioned such that the spacing between the two cables is maintained at an appropriate distance. The exterior nut must then be tightened while the interior wrench flats is prevented from rotating. When de-coupling the cables, the interior wrench flats must be prevented from rotating while the exterior nut is loosened.
A technician may typically complete the task of connecting or disconnecting the ducts using two hands and at least two tools (e.g., one hand to hold a wrench and secure the interior wrench flats and another hand to hold a wrench and tighten the exterior nut). In addition, the technician may need to measure the gap between the two duct flanges and/or use a “jig” or other such device to maintain the appropriate spacing between the duct flanges.
As can be seen, there is a need for a cable restraint that may be installed or removed with one hand and one tool, allowing easier access in confined spaces in which the ducts may be connected. In addition, there is a need for a cable restraint that automatically sets the proper gap between connected duct flanges without the need for any measurement, gage, and/or jig.
In one aspect of the present invention, an anti-rotation cam adapted to prevent rotation of a cable restraint includes a body having a through-hole adapted to be coupled to a fitting of the cable restraint, a first leg extending out from the body and adapted to prevent the cam from rotating in a clockwise direction, and a second leg extending out from the body and adapted to prevent the cam from rotating in a counter-clockwise direction.
In another aspect of the present invention, an anti-rotation cable restraint for connecting ducts includes a flexible cable, a first threaded end coupled to the cable along an axis of the cable, and a first anti-rotation cam coupled to the first threaded end perpendicular to the axis of the cable, the cam being adapted to prevent rotation of the cable and the threaded end when a nut is secured to the first threaded end.
In yet another aspect of the present invention, a method of coupling a first flexible duct with a first flange to a second flexible duct with a second flange using an anti-rotation cable restraint includes: aligning the cable restraint with a through-hole of the first flange, securing the cable restraint to the first flange using a first lock nut, aligning the cable restraint with a through-hole of the second flange, and securing the cable restraint to the second flange using a second lock nut.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
The following detailed description is of the best currently contemplated modes of carrying out exemplary embodiments of the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
Various inventive features are described below that can each be used independently of one another or in combination with other features. Broadly, embodiments of the present invention generally provide a way to connect duct segments using one or more cable restraints. The cable restraints of the present invention may be configured to be anti-rotation such that the restraint does not rotate when coupled to a duct flange. In this manner, the cable restraints may be attached to (or detached from) the duct flange using a single tool (and/or a single hand or other manipulation apparatus).
As shown in
The cable 110 may be made of various materials (e.g., braided steel “rope” cables) and/or be formed in different lengths, as appropriate. The specific dimensions of the cable may be based at least partly on various factors such as the diameter, weight, operating tension, and/or flange characteristics of the ducts being connected. In addition, the intended use of the ducts may at least partly influence the dimensions of the cables. The ducts and duct flanges may include various materials, types, etc.
The threaded ends 120 may be any appropriate diameter and/or pitch. The diameter of the threaded ends may depend on various factors such as the size of any available through-holes in the flanges of the ducts being connected, the diameter of a securing nut used to couple each threaded end to a flange, etc. The pitch may depend on the type or pitch of the securing nut, and/or other appropriate factors. The securing nut attached to the threaded joint may be a lock nut (i.e., a nut that resists loosening under vibration and/or torque). The threaded ends may be attached to the cable in various appropriate ways (and/or may be formed in conjunction with the cable). For instance, the threaded ends may be swaged or welded to the cable, may be attached using adhesive, etc.
The anti-rotation cams 130 may be V-shaped pieces of metal of appropriate thickness, height, and width. The cams may be coupled to the threaded end 120. The cams may be attached to the threaded ends in various appropriate ways (e.g., welding the cams to the threaded ends, using a nut, forming the cams and threaded ends as a single casting, using adhesive, etc.). The thickness, height, and/or width of the anti-rotation cams 130 may be at least partially based on various appropriate factors such as the diameter, size, and/or type of cables, the characteristics of the flanges, intended use, etc.
Although the anti-rotation cable restraints 100 have been described with reference to various specific features, one of ordinary skill in the art will recognize that the restraints may be configured in various different ways without departing from the spirit of the invention. For instance, although the restraints have been described as being formed of metal components, the restraints may also be made at least partly from various other appropriate materials (e.g., plastic, rubber, etc.) and in various appropriate ways (e.g., welded, bonded, formed, injection-molded, etc.). As another example, although the cams have been described as V-shaped, the cams may be made in various other appropriate shapes (e.g., oval, rectangular, etc.). The materials, manufacturing processes, and/or shapes used may depend on various appropriate factors associated with various particular applications.
The anti-rotation cam 130 may be configured in various appropriate ways to match various flanges. For instance, the height or width of the “V” may be varied such that appropriate mounting clearance is provided by the cable restraint (i.e., the “V” may be sized such that the cable restraint allows some rotational movement without contacting the cable flange). In this manner, the restraint may be aligned with an associated attachment point on the flange (e.g., the position of the restraint may be varied as the threaded end of the restraint is positioned within a through-hole in the flange, without having the cam come in contact with the surface of the duct flange) in a way that allows some flexibility in the position of the cables as they are attached or detached. In addition, the edges of the contact sections may be shaped in various appropriate ways (e.g., rounded at various diameters, angular, etc.).
Different numbers and/or types of cable restraints may be used to secure various duct segments depending on various factors. For instance, the number of cable restraints used to connect ducts at one location may vary depending on the size of the ducts, the operating conditions of the ducts, the loads placed on the ducts, etc. In addition, a single connection may include different restraints (e.g., restraints of different physical dimensions, different material compositions, etc.), which may vary depending on the size of the ducts, the operating conditions of the ducts, the types of ducts, etc.
As shown in
The process then secures (at 520) the cable restraint to a first duct flange. When the cables are to be disconnected, the cable restraint may instead be released from the first duct flange. As described above in reference to
Next, the process secures (at 530) the cable restraint to a second duct flange. When the cables are to be disconnected, the cable restraint may instead be released from the second duct flange. As above, when the cable restraint is secured or released, the anti-rotation cam prevents the cable restraint from turning, allowing one-handed installation or removal of a securing nut coupled to the other threaded end of the cable restraint.
Process 500 (or portions thereof) may be performed multiple times (e.g., when installing more than one cable restraint at a connection) and/or may be partially performed (e.g., when disconnecting the cable restraint(s) from one flange but not the other).
It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.