The present invention relates generally to a closure that is configured to work with a container to form a package. More specifically, the present invention relates to an anti-rotational and removal polymeric closure.
Polymeric closures have been used in many applications over the years in conjunction with containers. Some containers contain product or contents that are not intended for certain individuals, such as children. These products may include over-the-counter (OTC) medication, vitamins, prescriptions, etc.
Some existing containers with over-the-counter (OTC) medication, vitamins and prescriptions use a threaded neck to mate with a threaded closure. Such containers use a sealed application to an opening of the container for product safety due to the lack of tamper-proof evidence incorporated with the mating assemblies. These sealed applications, which can include metallic or polymeric material, not only add additional expense, but necessitate additional manufacturing equipment and processing.
It would be desirable to provide a closure that overcomes these disadvantages of existing containers by eliminating the sealed application to the opening of the container, while still performing desirable properties of a closure including securely positioning the closure on a container and providing the possibility of tamper-proof evidence.
According to one embodiment, a closure for use with a container includes a polymeric top portion and a polymeric annular skirt portion. The polymeric annular skirt portion depends from the polymeric top portion. The polymeric annular skirt portion includes an exterior surface and an interior surface. The interior surface of the polymeric annular skirt portion includes a plurality of crushable ribs and a plurality of anti-rotational lugs. The plurality of crushable ribs is configured to be crushed when the closure is applied to the container so as to prevent or inhibit axial movement of the closure with respect to the container by forming an interference fit. At least one of the plurality of anti-rotational lugs prevents or inhibits rotational movement of the closure with respect to the container such that the closure remains on the container.
According to a further configuration of the above implementation, each of the plurality of crushable ribs has a tapered or chamfered end, the tampered or chamfered end being located opposite of the polymeric top portion.
In a further aspect of the above implementation, each of the plurality of crushable ribs has a height at a first end closer to the polymeric top portion that is greater than each of the heights of the plurality of crushable ribs at a second opposing end.
In a further aspect of the above implementation, each of the plurality of crushable ribs has a polygonal cross-sectional shape. For example, each of the plurality of crushable ribs may have a rectangular cross-sectional shape.
In yet a further aspect of the above implementation, the number of the plurality of crushable ribs is from about 3 to about 12 in one embodiment and from about 4 to about 8 in another embodiment.
According to a further configuration of the above implementation, the plurality of anti-rotational lugs includes an arrow-shaped portion.
In a further aspect of the above implementation, each of the plurality of anti-rotational lugs has a tapered or chamfered end, the tampered or chamfered end being located opposite of the polymeric top portion.
In a further aspect of the above implementation, each of the plurality of anti-rotational lugs has a height at a first end closer to the polymeric top portion that is greater than each of the heights of the plurality of anti-rotational lugs at a second opposing end.
In yet a further aspect of the above implementation, each of the plurality of anti-rotational lugs has an exterior side surface being tapered or chamfered at a section closest to the polymeric top portion.
In yet a further aspect of the above implementation, each of the plurality of anti-rotational lugs has an opposing exterior side surface being a substantially vertical wall at a section closest to the polymeric top portion.
In yet a further aspect of the above implementation, the number of the plurality of anti-rotational lugs is from about 3 to about 12. In another embodiment, the number of the plurality of anti-rotational lugs is from about 4 to about 8.
In yet a further aspect of the above implementation, the closure is a one-piece closure.
According to another aspect of the present disclosure, a package comprises a container and a closure. The container has a neck portion defining an opening. The neck portion has an exterior surface and an interior surface. The closure is configured for fitment to the neck portion of the container for closing the opening. The closure includes a polymeric top portion and a polymeric annular skirt portion. The polymeric annular skirt portion depends from the polymeric top portion. The polymeric annular skirt portion includes an exterior surface and an interior surface. The interior surface of the polymeric annular skirt portion includes a plurality of crushable ribs and a plurality of anti-rotational lugs. The plurality of crushable ribs is configured to be crushed when the closure is applied to the container so as to prevent or inhibit axial movement of the closure with respect to the container by forming an interference fit. At least one of the plurality of anti-rotational lugs prevents or inhibits rotational movement of the closure with respect to the container such that the closure remains on the container.
According to a configuration of the above implementation, the container has an external thread formation on the neck portion. For example, the external thread formation may be a continuous helical thread.
The above summary is not intended to represent each embodiment or every aspect of the present invention. Additional features and benefits of the present invention are apparent from the detailed description and figures set forth below.
Other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Referring to
The polymeric closure 10 is configured for fitment to a neck portion of a container for closing and opening the container. The polymeric closure 10 is configured to be used with a container 100 of
The polymeric closure of the present invention is advantageous because it saves costs associated with providing and locating a tamper-proof seal on the opening of the container, both from material, inventory and manufacturing process standpoints. The polymeric closure also eliminates potential frustration of an individual when attempting to remove the sealed application from the container, especially for those individuals who have reduced gripping strength, limited dexterity of their upper limbs (e.g., arms or hands), or other disabilities of their upper limbs that make removing the tamper-proof seal from the container difficult.
The polymeric closure 10 of
The polymeric annular skirt portion 30 includes the exterior surface 30a and an interior surface 30b. The interior surface 30b of the polymeric annular skirt portion 30 includes a plurality of crushable ribs 32 and a plurality of anti-rotational lugs 40. These are shown in
The combination of the plurality of crushable ribs 32 and the plurality of anti-rotational lugs 40 prevents or inhibits a user from removing the polymeric closure 10 without damaging the polymeric closure 10 or the container.
The plurality of crushable ribs 32 is configured to be crushed when the polymeric closure 10 is applied to the container so as to prevent or inhibit axial movement of the closure with respect to the container as will be discussed in detail below. The plurality of crushable ribs 32, when engaged to the container, applies a radial hoop load and interference fit to an outside diameter of the threaded neck portion of the container.
Referring to
The tapering or chamfering of the leading edges or ends 34b-34d of respective crushable ribs 32b-32d is best shown by comparing heights H1, H2 and H3 in different locations of the crushable rib 32b. The height H1 of the crushable rib 32b is less than the height H2, and the height H2 is less than the height H3. Thus, the height H3 at an opposing edge or end 36b (edge or end nearest the top portion 12 of the polymeric closure 10) has a greater height than the height H1 at the leading edge or end 34b.
The height H3 of the crushable rib 32b is at least half of the difference of the inner diameter of the polymeric closure 10 and the outer diameter of the container. The inner diameter D1 of the polymeric closure 10 is shown in
Thus, in summary, when the polymeric closure 10 is threaded onto the container, there is sufficient material from the crushable ribs 32 after being crushed to provide an interference fit that prevents or inhibits axial movement (movement of arrow B in
The shape of the crushable ribs 32b, 32d is shown in
The number of the plurality of crushable ribs 32 may vary. As the diameter of the polymeric closure is increased, the number of crushable ribs is typically increased. In one embodiment, the number of crushable ribs is from about 3 to about 12. In another embodiment, the number of crushable ribs is from about from 4 to about 10. In a further embodiment, the number of crushable ribs is from about from 4 to about 8.
The plurality of crushable ribs 32 is located in a generally vertical or vertical orientation from a bottom end 12b of the polymeric closure 10 and extending upwardly to the polymeric top portion 12. It is contemplated that other orientations may be used with the crushable ribs.
Each of the anti-rotational lugs 40 is configured to prevent or inhibit rotational movement of the polymeric closure 10 with respect to the container after the polymeric closure 10 has been applied onto the container. At least one of the anti-rotational lugs 40 will prevent or inhibit rotational movement of the polymeric closure 10 with respect to the container after the polymeric closure 10 has been applied onto the container. Referring to
The arrow-shaped portion 44 is shown as having two straight segments 46, 48 that are angled. The segment 46 is shown to be angled at angle A in
The second segment 48 has a first exterior side surface 48a and a second exterior side surface 48b. The first exterior side surfaces 46a, 48a meet in a blocking or retaining area 50. The blocking area 50 of the first and second segments 46, 48 of the anti-rotational lug 40b forms an area that prevents or inhibits a user from further unthreading of the polymeric closure 10 with respect to the container. More specifically, if a user attempts to unthread the polymeric closure 10 with respect to the container, a leading edge of the external threading of the container will contact and catch the blocking area 50 of at least one of the anti-rotational lugs, which prevents or inhibits further rotation of the polymeric closure 10 with respect to the container.
Thus, after the polymeric closure 10 is positioned on the container in manufacturing, the amount of unthreading depends on the distance between the leading edge of the external threading of the container and the blocking area. After the closure 10 is positioned on a container that uses a single continuous helical thread in manufacturing, only one of the blocking areas of the plurality of anti-rotational lugs will be used if a user attempts to unthread the closure 10 with respect to the container. This will be the anti-rotational lug closest to the leading edge of the external threading of the container in the direction of travel for unthreading. Having a greater number of anti-rotational lugs will also decrease, on average, the amount of rotation that can occur between the polymeric closure 10 before being blocked or retained.
The travel for unthreading is counter-clockwise for a user when the polymeric closure is placed onto the container in a clockwise manner during manufacturing. It is contemplated in another method that the unthreading is clockwise for a user when the polymeric closure is placed onto the container in a counter-clockwise manner during manufacturing.
The anti-rotational lug 40a of
The tapering or chamfering of the leading edge or end 56a of the anti-rotational lug 40a is best shown by comparing heights H4, H5 and H6 of
The anti-rotational lugs 40 (including anti-rotational lug 40b) also have side chamfering or tapering. Specifically, as shown in
As shown in
The number of the plurality of anti-rotational lugs 40 may vary. As the diameter of the closure is increased, the number of anti-rotational lugs is typically increased. In one embodiment, the number of anti-rotational lugs is from about 3 to about 12. In another embodiment, the number of anti-rotational lugs is from about from 4 to about 10. In a further embodiment, the number of anti-rotational lugs is from about from 4 to about 8.
Having the closure with anti-rotational lugs is advantageous when the product being stored with the container is not desirable for certain individuals (e.g., medicine for children). By having the plurality of crushable ribs and the plurality of anti-rotational lugs, it allows for a myriad of product-dispensing devices to be applied to existing containers. These containers may be, for example, child-resistant containers, tamper-proof containers, and over-the-counter containers.
It is contemplated that the anti-rotational lugs may be shaped different than depicted in
It is noted that if the threading direction is reversed, the anti-rotational lugs will be modified to have the blocking area on the proper side. In one embodiment, the anti-rotational lugs may include an arrow-shaped portion (“<”) in one embodiment. In another embodiment, the anti-rotational lugs include a half circle (“(”) or half oval shape that forms a blocking area. In a further embodiment, the anti-rotational lugs have a left bracket (“[”) shape that forms a blocking area.
To access the polymeric closure 10 (i.e., to open the closure), the polymeric closure 10 is configured to have an opening formed therein. The opening of the polymeric closure may be a slidable lid in one embodiment. The opening of the polymeric closure in another embodiment may be a rotatable, flipped or hinged lid.
The polymeric closure 10 may also include tamper-evident features. More specifically, the tamper-evident features show visual identification to a user that the closure may have been opened and the product potentially been accessed. For example, these features would prevent or inhibit the opening from being accessed. It is contemplated that other tamper-evident features may be added to the polymeric closure.
It is contemplated that the polymeric closure may also include a liner located on an interior surface of the top wall portion. The liner is typically made of compressible polymeric material and provides sealing for the closure. In one embodiment, the liner is a polymeric foam liner. In other embodiments, other sealing mechanisms can be used in conjunction with the polymeric closure. For example, in one embodiment, an interior surface of the top wall portion may include a polymeric continuous plug seal and/or an outer seal. The polymeric continuous plug seal and/or the outer seal depend from the polymeric top portion and provide a sealing mechanism. It is contemplated that other sealing mechanisms may be used in the polymeric closure.
The closure may include an oxygen-scavenger material. This oxygen-scavenger material may be distributed within the closure or may be a separate layer. The oxygen-scavenger material may be any material that assists in removing oxygen within the container, while having little or no effect on the contents within the container.
Alternatively, or in addition to, the closure may include an oxygen-barrier material. The oxygen-barrier material may be added as a separate layer or may be integrated within the closure itself. The oxygen-barrier materials assist in preventing or inhibiting oxygen from entering the container through the closure. These materials may include, but are not limited to, ethylene vinyl alcohol (EVOH). It is contemplated that other oxygen-barrier materials may be used in the closure.
Referring to
The external thread formation 110 is one continuous helical thread in this embodiment as shown in
It is also contemplated that the external thread formation of the container may differ from a helical thread formation. It is also contemplated that other external thread formations may be used in the container. For example, the external thread formation may include a triple-threaded structure having first, second and third closure leads.
It is contemplated that other features may be included on the neck portion 102. Some non-limiting examples include retention lugs, A-collar for banded applications, and splines.
The polymeric closure 10 may be assembled to the container 100 using existing manufacturing methods. More specifically, in one method, the closure 10 is grabbed by a clutch on its outer diameter and is continuously rotated as being placed on a container that is being held in place.
Referring to
In one embodiment, a package comprises a container with an opening and a polymeric closure. The polymeric closure is configured for fitment to a neck portion of the container for closing the opening. The closures are configured to be placed on a container or bottle that contain product. The product may be a liquid product, but typically is a solid product. In another embodiment, the product may be a combination of a liquid and solid product. Some products that may be especially desirable to use include dispensable tablets such as over-the-counter (OTC) medication, vitamins, prescriptions, etc.
One non-limiting example of a closure and a container forming a package is shown in
The closure is typically made of polymeric material, such as olefin (e.g., polyethylene (PE), polypropylene (PP)), polyethylene terephthalate (PET) or blends thereof. One example of a polyethylene that may be used is high density polyethylene (HDPE). It is contemplated that the closure may be made of other polymeric materials.
The closures are typically formed by processes such as injection or compression molding.
The container 100 is typically made of polymeric material. One non-limiting example of a material to be used in forming a polymeric container is polyethylene terephthalate (PET), polypropylene (PP) or blends using the same. It is contemplated that the container may be formed of other polymeric or copolymer materials. The container 100 is typically have an encapsulated oxygen-barrier layer or oxygen barrier material incorporated therein.
While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The invention should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2162880 | Brown | Jun 1939 | A |
2423582 | Coleman | Jul 1947 | A |
3147876 | Lepore | Sep 1964 | A |
3160327 | Porcelli | Dec 1964 | A |
3199702 | Fischbach | Aug 1965 | A |
3282477 | Henchert | Nov 1966 | A |
3295708 | Wathen | Jan 1967 | A |
3371813 | Owen | Mar 1968 | A |
3405831 | Hudson | Oct 1968 | A |
3415403 | Bardell | Dec 1968 | A |
3620400 | Brown | Nov 1971 | A |
3667638 | Cambio, Jr. | Jun 1972 | A |
3682345 | Baugh | Aug 1972 | A |
3741421 | Wittwer | Jun 1973 | A |
3904061 | Keeler | Sep 1975 | A |
3987921 | Aichinger | Oct 1976 | A |
4007848 | Snyder | Feb 1977 | A |
RE29850 | Labarre | Nov 1978 | E |
4171749 | Obrist | Oct 1979 | A |
4180175 | Virog | Dec 1979 | A |
4345690 | Hopley | Aug 1982 | A |
4345691 | Burke | Aug 1982 | A |
4382521 | Ostrowsky | May 1983 | A |
4418828 | Wilde | Dec 1983 | A |
4423820 | Vangor | Jan 1984 | A |
4427126 | Ostrowsky | Jan 1984 | A |
4456137 | Lyman | Jun 1984 | A |
4458822 | Ostrowsky | Jul 1984 | A |
4461394 | Sendel | Jul 1984 | A |
4470513 | Ostrowsky | Sep 1984 | A |
4497765 | Wilde | Feb 1985 | A |
4505401 | Berglund | Mar 1985 | A |
4506795 | Herr | Mar 1985 | A |
4533062 | Krautkramer | Aug 1985 | A |
4534480 | Santostasi | Aug 1985 | A |
4550844 | Lininger | Nov 1985 | A |
4562931 | Brach | Jan 1986 | A |
4573601 | Berglund | Mar 1986 | A |
4592476 | Yasada | Jun 1986 | A |
4609115 | Moore | Sep 1986 | A |
4630743 | Wright | Dec 1986 | A |
4635808 | Nolan | Jan 1987 | A |
4638917 | Persch | Jan 1987 | A |
4674643 | Wilde | Jun 1987 | A |
4682702 | Gach | Jul 1987 | A |
4697715 | Beruvides | Oct 1987 | A |
4717034 | Mumford | Jan 1988 | A |
4721219 | Dullabaun | Jan 1988 | A |
4738730 | Urmston | Apr 1988 | A |
4747502 | Luenser | May 1988 | A |
4813561 | Ochs | Mar 1989 | A |
4818828 | Curley | Apr 1989 | A |
4938370 | McBride | Jul 1990 | A |
4971212 | Kusz | Nov 1990 | A |
4978017 | McBride | Dec 1990 | A |
4993570 | Julian | Feb 1991 | A |
4997097 | Krautkramer | Mar 1991 | A |
5050753 | Trump | Sep 1991 | A |
5167335 | McBride | Dec 1992 | A |
5184741 | Chevassus | Feb 1993 | A |
5190177 | Collins | Mar 1993 | A |
5197620 | Gregory | Mar 1993 | A |
5205426 | McBride | Apr 1993 | A |
5292020 | Narin | Mar 1994 | A |
5301849 | Guglielmini | Apr 1994 | A |
5307946 | Molinaro | May 1994 | A |
5314085 | Bonet | May 1994 | A |
5328044 | Rohrs | Jul 1994 | A |
5346082 | Ochs | Sep 1994 | A |
5356021 | McBride | Oct 1994 | A |
5366774 | Pinto | Nov 1994 | A |
5450972 | Zemlo | Sep 1995 | A |
5480045 | Molinaro | Jan 1996 | A |
5501349 | McCandless | Mar 1996 | A |
5551582 | Robinson | Sep 1996 | A |
5564582 | Kamath | Oct 1996 | A |
5588545 | King | Dec 1996 | A |
5676270 | Roberts | Oct 1997 | A |
5692628 | Montgomery | Dec 1997 | A |
5715959 | Pfefferkorn | Feb 1998 | A |
5735426 | Babcock | Apr 1998 | A |
5755360 | Elliott | May 1998 | A |
5782369 | Tansey | Jul 1998 | A |
5785209 | Guglielmini | Jul 1998 | A |
5797506 | Lehmkuhl | Aug 1998 | A |
5800764 | Smeyak | Sep 1998 | A |
5810207 | Hayashida | Sep 1998 | A |
5829611 | Beck | Nov 1998 | A |
5845798 | Carrier | Dec 1998 | A |
5860542 | Takamatsu | Jan 1999 | A |
5875942 | Ohmi | Mar 1999 | A |
5884790 | Seidita | Mar 1999 | A |
5915574 | Adams | Jun 1999 | A |
5915579 | Przytulla | Jun 1999 | A |
5950850 | Takamatsu | Sep 1999 | A |
6006930 | Dreyer | Dec 1999 | A |
6016931 | Ohmi | Jan 2000 | A |
6044992 | Ma | Apr 2000 | A |
6056136 | Taber | May 2000 | A |
6085921 | Brown | Jul 2000 | A |
6089390 | Druitt | Jul 2000 | A |
6109465 | Henning | Aug 2000 | A |
6112923 | Ma | Sep 2000 | A |
6116445 | Ikemori | Sep 2000 | A |
6123212 | Russell | Sep 2000 | A |
6202872 | Smeyak | Mar 2001 | B1 |
6247605 | Fujie | Jun 2001 | B1 |
6276543 | German | Aug 2001 | B1 |
6325225 | Druitt | Dec 2001 | B1 |
6371317 | Krueger | Apr 2002 | B1 |
6484896 | Ma | Nov 2002 | B2 |
6527132 | Druitt | Mar 2003 | B1 |
6557714 | Babcock | May 2003 | B2 |
6574848 | Fujie | Jun 2003 | B2 |
6673298 | Krueger | Jan 2004 | B2 |
6705479 | Druitt | Mar 2004 | B2 |
6776314 | Odet | Aug 2004 | B2 |
6779672 | Kano | Aug 2004 | B2 |
6793101 | Shinozaki | Sep 2004 | B2 |
6889857 | Francois | May 2005 | B2 |
6913157 | Oh | Jul 2005 | B2 |
6991123 | Druitt | Jan 2006 | B2 |
7014055 | Kano | Mar 2006 | B2 |
D530603 | Lohrman | Oct 2006 | S |
D547184 | Kim | Jul 2007 | S |
7308988 | Yashima | Dec 2007 | B2 |
7344039 | Bixler | Mar 2008 | B2 |
7451898 | Seidita | Nov 2008 | B2 |
D588915 | Lohrman | Mar 2009 | S |
7503468 | Druitt | Mar 2009 | B2 |
7607547 | Kumata | Oct 2009 | B2 |
7637384 | Price | Dec 2009 | B2 |
D608199 | Gross | Jan 2010 | S |
D610454 | Lohrman | Feb 2010 | S |
7832579 | Lohrman | Nov 2010 | B2 |
7942287 | King | May 2011 | B2 |
7975864 | Druitt | Jul 2011 | B2 |
8453866 | Kamath | Jun 2013 | B2 |
8485374 | Gevers | Jul 2013 | B2 |
8763380 | Sata | Jul 2014 | B2 |
8807360 | Erspamer | Aug 2014 | B2 |
9085385 | Costanzo | Jul 2015 | B1 |
9126726 | Edie | Sep 2015 | B2 |
D847633 | Berge | May 2019 | S |
D871904 | Berge | Jan 2020 | S |
D871905 | Kim | Jan 2020 | S |
11021302 | Edie | Jun 2021 | B2 |
20010011649 | Fujie | Aug 2001 | A1 |
20010015355 | Adams | Aug 2001 | A1 |
20010027957 | Kano | Oct 2001 | A1 |
20020030031 | Druitt | Mar 2002 | A1 |
20020066713 | Ma | Jun 2002 | A1 |
20020134747 | Babcock | Sep 2002 | A1 |
20030116523 | Druitt | Jun 2003 | A1 |
20040060893 | Kano | Apr 2004 | A1 |
20040065665 | Mahdi | Apr 2004 | A1 |
20040155007 | Hearld | Aug 2004 | A1 |
20040238478 | Druitt | Dec 2004 | A1 |
20050189312 | Bixler | Sep 2005 | A1 |
20060163193 | Smeyak | Jul 2006 | A1 |
20060255003 | Fuchs | Nov 2006 | A1 |
20070125785 | Robinson | Jun 2007 | A1 |
20070131641 | Higgins | Jun 2007 | A1 |
20080087625 | Kumata | Apr 2008 | A1 |
20090045158 | Suriol | Feb 2009 | A1 |
20090159555 | Druitt | Jun 2009 | A1 |
20110011821 | Lohrman | Jan 2011 | A1 |
20170349336 | Sadiq | Dec 2017 | A1 |
20180009979 | Nishiyama | Jan 2018 | A1 |
20200331663 | Edie | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
0 008 190 | Feb 1980 | EP |
1 923 318 | May 2008 | EP |
1 052 734 | Dec 1966 | GB |
1 054 308 | Jan 1967 | GB |
2 068 912 | Aug 1980 | GB |
1 593 072 | Jul 1981 | GB |
2 311 060 | Sep 1997 | GB |
2011-114313 | Jun 2011 | JP |
WO 9850283 | Nov 1998 | WO |
WO 2002076839 | Oct 2002 | WO |
WO 2009073137 | Jun 2009 | WO |
Entry |
---|
International Search Report and Written Opinion in International Patent Application No. PCT/US2023/020179, dated Aug. 18, 2023, 11 pages |
Number | Date | Country | |
---|---|---|---|
20230365309 A1 | Nov 2023 | US |