The present invention relates to an anti-skid surgical instrument for use in preparing holes in bone tissue during an operation.
Spinal surgeries often require precision drilling and placement of screws or other implements in bone tissue. Catastrophic damage or death may result from improper drilling or maneuvering of the body during spinal surgery due to the proximity of the spinal cord and arteries. Further, accurate placement is typically necessary for a successful outcome. For example, spinal fusion is typically augmented by stabilizing the vertebrae with fixation devices, such as metallic screws, rods, and plates, to facilitate bone fusion. In spinal fusion, as well as other surgeries, the accuracy with which the screws are placed in the bone has a direct effect on the outcome of the procedure. The less motion there is between the two bones trying to heal, the higher the change the bones will successfully fuse. The use of fixation devices has increased the success rate of spinal fusion procedures considerably.
Such procedures rely strongly on the expertise of the surgeon, and there is significant variation in success rate among different surgeons. A number of navigational and verification approaches have been developed. However, screw misplacement is still a common problem in such surgical procedures. Screws may be misaligned due to inaccurate holes drilled prior to inserting the screw. The angle of the tip of the drill may cause the drill bit to skid as the tip contacts the bone tissue, thereby causing the hole to be drilled along an incorrect trajectory. Typically, unless a bone drill is driven at 90 degrees to the bone surface there is a tendency for the drill bit to skid over the bone surface thereby placing the hole inappropriately. Thus, there is a need for an anti-skid surgical instrument for preparing holes in a patient's bone while minimizing the risk of the instrument skidding upon contact of the surgical instrument with the bone.
Described herein is an anti-skid surgical instrument for use in preparing holes in bone tissue. The disclosed surgical instrument provides the ability to prepare a precise hole in bone tissue during surgery (e.g., spinal surgeries and pedicle screw placement, intramedullary screw placement). The disclosed surgical instrument accomplishes precise hole placement regardless of whether the angle between the drill axis and surface of the bone tissue is perpendicular. The disclosed technology includes a flat drilling surface which is perpendicular to the surface of the body of the surgical instrument. This reduces the likelihood of the surgical instrument skidding on the surface of the bone tissue and thereby increases the precision of the hole.
In one aspect, the disclosed technology includes a robotic surgical system for preparing a hole in bone tissue of a patient during surgery, including: a robotic arm having an end effector with a surgical instrument guide attached thereto, the surgical instrument guide arranged to hold and/or restrict movement of an anti-skid surgical instrument therethrough; and the anti-skid surgical instrument having an elongate structure comprising: a mill head at the end of the elongate structure for removing bone tissue with reduced skidding (e.g., unintentional lateral movement of the surgical instrument) of the surgical instrument upon contact of the anti-ski surgical instrument with the bone tissue, wherein the mill head has a flat end substantially perpendicular to a longitudinal axis of the elongate structure, and one or more side-cutting flutes about the longitudinal axis of the elongate structure for cutting into bone tissue; a spike extending from the mill head; a shank for connection to a drill; and a shaft between the mill head and the shank, the shaft having one or more drill flutes (e.g., non-cutting flutes) for evacuating removed bone tissue.
In certain embodiments, the mill head comprises a concave face from which the spike extends.
In certain embodiments, the instrument includes a compliant part that absorbs energy from the mill head.
In certain embodiments, the instrument includes a cannulation in the surgical instrument.
In certain embodiments, the cannulation comprises a hole in the end of the elongate structure (e.g., a tip of the surgical instrument).
In certain embodiments, the compliant part comprises at least one of an elastic material, rubber, a bellow, and a universal joint.
In certain embodiments, the compliant part connects a first portion of the anti-ski surgical instrument to a second portion of the anti-skid surgical instrument.
In certain embodiments, the first portion comprises the mill head and a portion of the shaft and the second portion comprises the shank and a portion of the shaft.
In certain embodiments, the compliant part covers at least a portion of the shank.
In certain embodiments, the compliant part covers at least part of the shaft.
In certain embodiments, the compliant part covers at least part of the shaft and the shank.
In certain embodiments, a depth control.
In certain embodiments, the depth control comprises at least one of one or more markings and one or more colors for depicting depth of insertion.
In certain embodiments, the depth control comprises a first portion indicating when to start rotation of the anti-skid surgical instrument and a second portion indicating when to at least one of stop rotation and stop depth penetration of the anti-ski surgical instrument.
In certain embodiments, the depth control comprises a depth stop that adjustably attached to the anti-skid surgical instrument such that the depth of penetration of the anti-skid surgical instrument changes as a position of the depth stop is changed.
In certain embodiments, the shaft comprises one or more notches and the depth control engages at least one of the one or more notches when attached to the anti-skid surgical instrument.
In certain embodiments, the system comprises a tool support located between the shaft and the shank, wherein: the tool support is shaped and sized to slide through the surgical instrument guide along the axis defined by the guide, and a diameter of the tool support is greater than a diameter of the shank.
In certain embodiments, the end of the mill head has one or more end cutting flutes for cutting axially into the bone tissue.
In certain embodiments, the one or more drill flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, one or more side cutting flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the mill head.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the shank.
In certain embodiments, the one or more drill flutes have a higher twist rate (i.e., larger flute angle) than the one or more side cutting flutes or the one or more drill flutes have a lower twist rate (i.e., smaller flute angle) than the one or more side cutting flutes.
In certain embodiments, the one or more drill flutes have a different twist rate (i.e., different flute angle) than the one or more side cutting flutes.
In certain embodiments, the surgery is spinal, orthopedic, dental, ear, nose, or throat surgery.
In certain embodiments, a manipulator is attached to the robotic arm or molded into the robotic arm.
In another aspect, the disclosed technology includes a robotic surgical system for preparing a hole in bone tissue of a patient during surgery, including: a robotic arm having an end effector with a surgical instrument guide attached thereto, the surgical instrument guide arranged to hold and/or restrict movement of an anti-skid surgical instrument therethrough; and the anti-skid surgical instrument having an elongate structure comprising: a mill head at the end of the elongate structure for removing bone tissue with reduced skidding (e.g., unintentional lateral movement of the surgical instrument) of the surgical instrument upon contact of the anti-ski surgical instrument with the bone tissue, wherein the mill head has a concave end substantially perpendicular to a longitudinal axis of the elongate structure, and one or more side-cutting flutes about the longitudinal axis of the elongate structure for cutting into bone tissue; a shank for connection to a drill; and a shaft between the mill head and the shank, the shaft having one or more drill flutes (e.g., non-cutting flutes) for evacuating removed bone tissue.
In certain embodiments, the instrument includes a spike extending from the concave end of the mill head.
In certain embodiments, the instrument includes a compliant part that absorbs energy from the mill head.
In certain embodiments, the instrument includes a cannulation in the surgical instrument.
In certain embodiments, the cannulation comprises a hole in the end of the elongate structure (e.g., a tip of the surgical instrument).
In certain embodiments, the compliant part comprises at least one of an elastic material, rubber, a bellow, and a universal joint.
In certain embodiments, the compliant part connects a first portion of the anti-ski surgical instrument to a second portion of the anti-skid surgical instrument.
In certain embodiments, the first portion comprises the mill head and a portion of the shaft and the second portion comprises the shank and a portion of the shaft.
In certain embodiments, the compliant part covers at least a portion of the shank.
In certain embodiments, the compliant part covers at least part of the shaft.
In certain embodiments, the compliant part covers at least part of the shaft and the shank.
In certain embodiments, a depth control.
In certain embodiments, the depth control comprises at least one of one or more markings and one or more colors for depicting depth of insertion.
In certain embodiments, the depth control comprises a first portion indicating when to start rotation of the anti-skid surgical instrument and a second portion indicating when to at least one of stop rotation and stop depth penetration of the anti-ski surgical instrument.
In certain embodiments, the depth control comprises a depth stop that adjustably attached to the anti-skid surgical instrument such that the depth of penetration of the anti-skid surgical instrument changes as a position of the depth stop is changed.
In certain embodiments, the shaft comprises one or more notches and the depth control engages at least one of the one or more notches when attached to the anti-skid surgical instrument.
In certain embodiments, the system comprises a tool support located between the shaft and the shank, wherein: the tool support is shaped and sized to slide through the surgical instrument guide along the axis defined by the guide, and a diameter of the tool support is greater than a diameter of the shank.
In certain embodiments, the end of the mill head has one or more end cutting flutes for cutting axially into the bone tissue.
In certain embodiments, the one or more drill flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, one or more side cutting flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the mill head.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the shank.
In certain embodiments, the one or more drill flutes have a higher twist rate (i.e., larger flute angle) than the one or more side cutting flutes or the one or more drill flutes have a lower twist rate (i.e., smaller flute angle) than the one or more side cutting flutes.
In certain embodiments, the one or more drill flutes have a different twist rate (i.e., different flute angle) than the one or more side cutting flutes.
In certain embodiments, the surgery is spinal, orthopedic, dental, ear, nose, or throat surgery.
In certain embodiments, a manipulator is attached to the robotic arm or molded into the robotic arm.
In another aspect, the disclosed technology includes a robotic surgical system for preparing a hole in bone tissue of a patient during surgery, including: a robotic arm having an end effector with a surgical instrument guide attached thereto, the surgical instrument guide arranged to hold and/or restrict movement of an anti-skid surgical instrument therethrough; and the anti-skid surgical instrument having an elongate structure comprising: a mill head at the end of the elongate structure for removing bone tissue with reduced skidding (e.g., unintentional lateral movement of the surgical instrument) of the surgical instrument upon contact of the anti-ski surgical instrument with the bone tissue, wherein the mill head has a flat end substantially perpendicular to a longitudinal axis of the elongate structure, and one or more side-cutting flutes about the longitudinal axis of the elongate structure for cutting into bone tissue; a shank for connection to a drill; a shaft between the mill head and the shank, the shaft having one or more drill flutes (e.g., non-cutting flutes) for evacuating removed bone tissue; and a cannulation in the surgical instrument.
In certain embodiments, the cannulation comprises a hole in the end of the elongate structure (e.g., a tip of the surgical instrument).
In certain embodiments, the instrument includes a compliant part that absorbs energy from the mill head.
In certain embodiments, the instrument includes a spike extending from the mill head.
In certain embodiments, the mill head includes a concave face (e.g., from which the spike extends).
In certain embodiments, the compliant part comprises at least one of an elastic material, rubber, a bellow, and a universal joint.
In certain embodiments, the compliant part connects a first portion of the anti-ski surgical instrument to a second portion of the anti-skid surgical instrument.
In certain embodiments, the first portion comprises the mill head and a portion of the shaft and the second portion comprises the shank and a portion of the shaft.
In certain embodiments, the compliant part covers at least a portion of the shank.
In certain embodiments, the compliant part covers at least part of the shaft.
In certain embodiments, the compliant part covers at least part of the shaft and the shank.
In certain embodiments, a depth control.
In certain embodiments, the depth control comprises at least one of one or more markings and one or more colors for depicting depth of insertion.
In certain embodiments, the depth control comprises a first portion indicating when to start rotation of the anti-skid surgical instrument and a second portion indicating when to at least one of stop rotation and stop depth penetration of the anti-ski surgical instrument.
In certain embodiments, the depth control comprises a depth stop that adjustably attached to the anti-skid surgical instrument such that the depth of penetration of the anti-skid surgical instrument changes as a position of the depth stop is changed.
In certain embodiments, the shaft comprises one or more notches and the depth control engages at least one of the one or more notches when attached to the anti-skid surgical instrument.
In certain embodiments, the system comprises a tool support located between the shaft and the shank, wherein: the tool support is shaped and sized to slide through the surgical instrument guide along the axis defined by the guide, and a diameter of the tool support is greater than a diameter of the shank.
In certain embodiments, the end of the mill head has one or more end cutting flutes for cutting axially into the bone tissue.
In certain embodiments, the one or more drill flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, one or more side cutting flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the mill head.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the shank.
In certain embodiments, the one or more drill flutes have a higher twist rate (i.e., larger flute angle) than the one or more side cutting flutes or the one or more drill flutes have a lower twist rate (i.e., smaller flute angle) than the one or more side cutting flutes.
In certain embodiments, the one or more drill flutes have a different twist rate (i.e., different flute angle) than the one or more side cutting flutes.
In certain embodiments, the surgery is spinal, orthopedic, dental, ear, nose, or throat surgery.
In certain embodiments, a manipulator is attached to the robotic arm or molded into the robotic arm.
In another aspect, the disclosed technology includes a robotic surgical system for preparing a hole in bone tissue of a patient during surgery, comprising:
a robotic arm having an end effector with a surgical instrument guide attached thereto, the surgical instrument guide arranged to hold and/or restrict movement of an anti-skid surgical instrument therethrough; and the anti-skid surgical instrument having an elongate structure comprising: a mill head at the end of the elongate structure for removing bone tissue with reduced skidding (e.g., unintentional lateral movement of the surgical instrument) of the surgical instrument upon contact of the anti-ski surgical instrument with the bone tissue, wherein the mill head has a flat end substantially perpendicular to a longitudinal axis of the elongate structure, and one or more side-cutting flutes about the longitudinal axis of the elongate structure for cutting into bone tissue; a shank for connection to a drill; a shaft between the mill head and the shank, the shaft having one or more drill flutes (e.g., non-cutting flutes) for evacuating removed bone tissue; and a compliant part that absorbs energy from the mill head.
In certain embodiments, the compliant part comprises at least one of an elastic material, rubber, a bellow, and a universal joint.
In certain embodiments, the compliant part connects a first portion of the anti-ski surgical instrument to a second portion of the anti-skid surgical instrument.
In certain embodiments, the first portion comprises the mill head and a portion of the shaft and the second portion comprises the shank and a portion of the shaft.
In certain embodiments, the compliant part covers at least a portion of the shank.
In certain embodiments, the compliant part covers at least part of the shaft.
In certain embodiments, the compliant part covers at least part of the shaft and the shank.
In certain embodiments, the instrument includes a cannulation in the surgical instrument.
In certain embodiments, the cannulation comprises a hole in the end of the elongate structure (e.g., a tip of the surgical instrument).
In certain embodiments, the instrument includes a spike extending from the mill head.
In certain embodiments, the mill head comprises a concave face (e.g., from which the spike extends).
In certain embodiments, the compliant part comprises at least one of an elastic material, rubber, a bellow, and a universal joint.
In certain embodiments, the compliant part connects a first portion of the anti-ski surgical instrument to a second portion of the anti-skid surgical instrument.
In certain embodiments, the first portion comprises the mill head and a portion of the shaft and the second portion comprises the shank and a portion of the shaft.
In certain embodiments, the compliant part covers at least a portion of the shank.
In certain embodiments, the compliant part covers at least part of the shaft.
In certain embodiments, the compliant part covers at least part of the shaft and the shank.
In certain embodiments, a depth control.
In certain embodiments, the depth control comprises at least one of one or more markings and one or more colors for depicting depth of insertion.
In certain embodiments, the depth control comprises a first portion indicating when to start rotation of the anti-skid surgical instrument and a second portion indicating when to at least one of stop rotation and stop depth penetration of the anti-ski surgical instrument.
In certain embodiments, the depth control comprises a depth stop that adjustably attached to the anti-skid surgical instrument such that the depth of penetration of the anti-skid surgical instrument changes as a position of the depth stop is changed.
In certain embodiments, the shaft comprises one or more notches and the depth control engages at least one of the one or more notches when attached to the anti-skid surgical instrument.
In certain embodiments, the system comprises a tool support located between the shaft and the shank, wherein: the tool support is shaped and sized to slide through the surgical instrument guide along the axis defined by the guide, and a diameter of the tool support is greater than a diameter of the shank.
In certain embodiments, the end of the mill head has one or more end cutting flutes for cutting axially into the bone tissue.
In certain embodiments, the one or more drill flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, one or more side cutting flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the mill head.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the shank.
In certain embodiments, the one or more drill flutes have a higher twist rate (i.e., larger flute angle) than the one or more side cutting flutes or the one or more drill flutes have a lower twist rate (i.e., smaller flute angle) than the one or more side cutting flutes.
In certain embodiments, the one or more drill flutes have a different twist rate (i.e., different flute angle) than the one or more side cutting flutes.
In certain embodiments, the surgery is spinal, orthopedic, dental, ear, nose, or throat surgery.
In certain embodiments, a manipulator is attached to the robotic arm or molded into the robotic arm.
In one aspect, the disclosed technology includes a robotic surgical system for preparing a hole in bone tissue of a patient during surgery, including: a robotic arm having an end effector with a surgical instrument guide attached thereto, the surgical instrument guide arranged to hold and/or restrict movement of an anti-skid surgical instrument therethrough; and the anti-skid surgical instrument having an elongate structure comprising: a mill head at the end of the elongate structure for removing bone tissue with reduced skidding (e.g., unintentional lateral movement of the surgical instrument) of the surgical instrument upon contact of the anti-ski surgical instrument with the bone tissue, wherein the mill head has a flat end substantially perpendicular to a longitudinal axis of the elongate structure, and one or more side-cutting flutes about the longitudinal axis of the elongate structure for cutting into bone tissue; a shank for connection to a drill; a shaft between the mill head and the shank, the shaft having one or more drill flutes (e.g., non-cutting flutes) for evacuating removed bone tissue; and a depth control.
In certain embodiments, the depth control comprises one or more markings.
In certain embodiments, the depth control comprises one or more colors for depicting depth of insertion.
In certain embodiments, the depth control comprises a first portion indicating when to start rotation of the anti-skid surgical instrument and a second portion indicating when to at least one of stop rotation and stop depth penetration of the anti-ski surgical instrument.
In certain embodiments, the depth control comprises a depth stop that adjustably attached to the anti-skid surgical instrument such that the depth of penetration of the anti-skid surgical instrument changes as a position of the depth stop is changed.
In certain embodiments, the shaft comprises one or more notches and the depth control engages at least one of the one or more notches when attached to the anti-skid surgical instrument.
In certain embodiments, the instrument includes a compliant part that absorbs energy from the mill head.
In certain embodiments, the instrument includes a cannulation in the surgical instrument.
In certain embodiments, the cannulation comprises a hole in the end of the elongate structure (e.g., a tip of the surgical instrument).
In certain embodiments, the instrument includes a spike extending from the mill head.
In certain embodiments, the mill head comprises a concave face (e.g., from which the spike extends).
In certain embodiments, the compliant part comprises at least one of an elastic material, rubber, a bellow, and a universal joint.
In certain embodiments, the compliant part connects a first portion of the anti-ski surgical instrument to a second portion of the anti-skid surgical instrument.
In certain embodiments, the first portion comprises the mill head and a portion of the shaft and the second portion comprises the shank and a portion of the shaft.
In certain embodiments, the compliant part covers at least a portion of the shank.
In certain embodiments, the compliant part covers at least part of the shaft.
In certain embodiments, the compliant part covers at least part of the shaft and the shank.
In certain embodiments, a depth control.
In certain embodiments, the depth control comprises at least one of one or more markings and one or more colors for depicting depth of insertion.
In certain embodiments, the depth control comprises a first portion indicating when to start rotation of the anti-skid surgical instrument and a second portion indicating when to at least one of stop rotation and stop depth penetration of the anti-ski surgical instrument.
In certain embodiments, the depth control comprises a depth stop that adjustably attached to the anti-skid surgical instrument such that the depth of penetration of the anti-skid surgical instrument changes as a position of the depth stop is changed.
In certain embodiments, the shaft comprises one or more notches and the depth control engages at least one of the one or more notches when attached to the anti-skid surgical instrument.
In certain embodiments, the system comprises a tool support located between the shaft and the shank, wherein: the tool support is shaped and sized to slide through the surgical instrument guide along the axis defined by the guide, and a diameter of the tool support is greater than a diameter of the shank.
In certain embodiments, the end of the mill head has one or more end cutting flutes for cutting axially into the bone tissue.
In certain embodiments, the one or more drill flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, one or more side cutting flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the mill head.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the shank.
In certain embodiments, the one or more drill flutes have a higher twist rate (i.e., larger flute angle) than the one or more side cutting flutes or the one or more drill flutes have a lower twist rate (i.e., smaller flute angle) than the one or more side cutting flutes.
In certain embodiments, the one or more drill flutes have a different twist rate (i.e., different flute angle) than the one or more side cutting flutes.
In certain embodiments, the surgery is spinal, orthopedic, dental, ear, nose, or throat surgery.
In certain embodiments, a manipulator is attached to the robotic arm or molded into the robotic arm.
In another aspect, the disclosed technology includes an anti-skid surgical instrument for preparing a hole in bone tissue of a patient during surgery, the anti-skid surgical instrument having an elongate structure comprising: a mill head at the end of the elongate structure for removing bone tissue with reduced skidding (e.g., unintentional lateral movement of the surgical instrument) of the surgical instrument upon contact of the anti-ski surgical instrument with the bone tissue, wherein the mill head has a flat end substantially perpendicular to a longitudinal axis of the elongate structure, and one or more side-cutting flutes about the longitudinal axis of the elongate structure for cutting into bone tissue; a spike extending from the mill head; a shank for connection to a drill; and a shaft between the mill head and the shank, the shaft having one or more drill flutes (e.g., non-cutting flutes) for evacuating removed bone tissue.
In certain embodiments, the mill head comprises a concave face from which the spike extends.
In certain embodiments, the instrument includes a cannulation in the surgical instrument.
In certain embodiments, the cannulation comprises a hole in the end of the elongate structure (e.g., a tip of the surgical instrument).
In certain embodiments, the instrument includes a compliant part that absorbs energy from the mill head.
In certain embodiments, the compliant part comprises at least one of an elastic material, rubber, a bellow, and a universal joint.
In certain embodiments, the compliant part connects a first portion of the anti-ski surgical instrument to a second portion of the anti-skid surgical instrument.
In certain embodiments, the first portion comprises the mill head and a portion of the shaft and the second portion comprises the shank and a portion of the shaft.
In certain embodiments, the compliant part covers at least a portion of the shank.
In certain embodiments, the compliant part covers at least part of the shaft.
In certain embodiments, the compliant part covers at least part of the shaft and the shank.
In certain embodiments, the instrument includes a depth control.
In certain embodiments, the depth control comprises at least one of one or more markings and one or more colors for depicting depth of insertion.
In certain embodiments, the depth control comprises a first portion indicating when to start rotation of the anti-skid surgical instrument and a second portion indicating when to at least one of stop rotation and stop depth penetration of the anti-ski surgical instrument.
In certain embodiments, the depth control comprises a depth stop that adjustably attached to the anti-skid surgical instrument such that the depth of penetration of the anti-skid surgical instrument changes as a position of the depth stop is changed.
In certain embodiments, the shaft comprises one or more notches and the depth control engages at least one of the one or more notches when attached to the anti-skid surgical instrument.
In certain embodiments, the instrument includes a tool support located between the shaft and the shank, wherein: the tool support is shaped and sized to slide through the surgical instrument guide along the axis defined by the guide, and a diameter of the tool support is greater than a diameter of the shank.
In certain embodiments, the end of the mill head has one or more end cutting flutes for cutting axially into the bone tissue.
In certain embodiments, the one or more drill flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, one or more side cutting flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the mill head.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the shank.
In certain embodiments, the one or more drill flutes have a higher twist rate (i.e., larger flute angle) than the one or more side cutting flutes or the one or more drill flutes have a lower twist rate (i.e., smaller flute angle) than the one or more side cutting flutes.
In certain embodiments, the one or more drill flutes have a different twist rate (i.e., different flute angle) than the one or more side cutting flutes.
In certain embodiments, the surgery is spinal, orthopedic, dental, ear, nose, or throat surgery.
In certain embodiments, a manipulator is attached to the robotic arm or molded into the robotic arm.
In certain embodiments, the disclosed technology includes an anti-skid surgical instrument for preparing a hole in bone tissue of a patient during surgery, the anti-skid surgical instrument having an elongate structure comprising: a mill head at the end of the elongate structure for removing bone tissue with reduced skidding (e.g., unintentional lateral movement of the surgical instrument) of the surgical instrument upon contact of the anti-ski surgical instrument with the bone tissue, wherein the mill head has a concave end substantially perpendicular to a longitudinal axis of the elongate structure, and one or more side-cutting flutes about the longitudinal axis of the elongate structure for cutting into bone tissue; a shank for connection to a drill; and a shaft between the mill head and the shank, the shaft having one or more drill flutes (e.g., non-cutting flutes) for evacuating removed bone tissue.
In certain embodiments, the instrument includes a spike extending from the concave end of the mill head.
In certain embodiments, the instrument includes a cannulation in the surgical instrument.
In certain embodiments, the cannulation comprises a hole in the end of the elongate structure (e.g., a tip of the surgical instrument).
In certain embodiments, the instrument includes a compliant part that absorbs energy from the mill head.
In certain embodiments, the compliant part comprises at least one of an elastic material, rubber, a bellow, and a universal joint.
In certain embodiments, the compliant part connects a first portion of the anti-ski surgical instrument to a second portion of the anti-skid surgical instrument.
In certain embodiments, the first portion comprises the mill head and a portion of the shaft and the second portion comprises the shank and a portion of the shaft.
In certain embodiments, the compliant part covers at least a portion of the shank.
In certain embodiments, the compliant part covers at least part of the shaft.
In certain embodiments, the compliant part covers at least part of the shaft and the shank.
In certain embodiments, the instrument includes a depth control.
In certain embodiments, the depth control comprises at least one of one or more markings and one or more colors for depicting depth of insertion.
In certain embodiments, the depth control comprises a first portion indicating when to start rotation of the anti-skid surgical instrument and a second portion indicating when to at least one of stop rotation and stop depth penetration of the anti-ski surgical instrument.
In certain embodiments, the depth control comprises a depth stop that adjustably attached to the anti-skid surgical instrument such that the depth of penetration of the anti-skid surgical instrument changes as a position of the depth stop is changed.
In certain embodiments, the shaft comprises one or more notches and the depth control engages at least one of the one or more notches when attached to the anti-skid surgical instrument.
In certain embodiments, the instrument includes a tool support located between the shaft and the shank, wherein: the tool support is shaped and sized to slide through the surgical instrument guide along the axis defined by the guide, and a diameter of the tool support is greater than a diameter of the shank.
In certain embodiments, the end of the mill head has one or more end cutting flutes for cutting axially into the bone tissue.
In certain embodiments, the one or more drill flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, one or more side cutting flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the mill head.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the shank.
In certain embodiments, the one or more drill flutes have a higher twist rate (i.e., larger flute angle) than the one or more side cutting flutes or the one or more drill flutes have a lower twist rate (i.e., smaller flute angle) than the one or more side cutting flutes.
In certain embodiments, the one or more drill flutes have a different twist rate (i.e., different flute angle) than the one or more side cutting flutes.
In certain embodiments, the surgery is spinal, orthopedic, dental, ear, nose, or throat surgery.
In certain embodiments, a manipulator is attached to the robotic arm or molded into the robotic arm.
In another aspect, the disclosed technology includes an anti-skid surgical instrument for preparing a hole in bone tissue of a patient during surgery, the anti-skid surgical instrument having an elongate structure comprising: a mill head at the end of the elongate structure for removing bone tissue with reduced skidding (e.g., unintentional lateral movement of the surgical instrument) of the surgical instrument upon contact of the anti-ski surgical instrument with the bone tissue, wherein the mill head has a flat end substantially perpendicular to a longitudinal axis of the elongate structure, and one or more side-cutting flutes about the longitudinal axis of the elongate structure for cutting into bone tissue; a shank for connection to a drill; a shaft between the mill head and the shank, the shaft having one or more drill flutes (e.g., non-cutting flutes) for evacuating removed bone tissue; and a cannulation in the surgical instrument.
In certain embodiments, the cannulation comprises a hole in the end of the elongate structure (e.g., a tip of the surgical instrument).
In certain embodiments, the instrument includes a spike extending from the mill head.
In certain embodiments, the mill head comprises a concave face (e.g., from which the spike extends).
In certain embodiments, the instrument includes a compliant part that absorbs energy from the mill head.
In certain embodiments, the compliant part comprises at least one of an elastic material, rubber, a bellow, and a universal joint.
In certain embodiments, the compliant part connects a first portion of the anti-ski surgical instrument to a second portion of the anti-skid surgical instrument.
In certain embodiments, the first portion comprises the mill head and a portion of the shaft and the second portion comprises the shank and a portion of the shaft.
In certain embodiments, the compliant part covers at least a portion of the shank.
In certain embodiments, the compliant part covers at least part of the shaft.
In certain embodiments, the compliant part covers at least part of the shaft and the shank.
In certain embodiments, the instrument includes a depth control.
In certain embodiments, the depth control comprises at least one of one or more markings and one or more colors for depicting depth of insertion.
In certain embodiments, the depth control comprises a first portion indicating when to start rotation of the anti-skid surgical instrument and a second portion indicating when to at least one of stop rotation and stop depth penetration of the anti-ski surgical instrument.
In certain embodiments, the depth control comprises a depth stop that adjustably attached to the anti-skid surgical instrument such that the depth of penetration of the anti-skid surgical instrument changes as a position of the depth stop is changed.
In certain embodiments, the shaft comprises one or more notches and the depth control engages at least one of the one or more notches when attached to the anti-skid surgical instrument.
In certain embodiments, the instrument includes a tool support located between the shaft and the shank, wherein: the tool support is shaped and sized to slide through the surgical instrument guide along the axis defined by the guide, and a diameter of the tool support is greater than a diameter of the shank.
In certain embodiments, the end of the mill head has one or more end cutting flutes for cutting axially into the bone tissue.
In certain embodiments, the one or more drill flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, one or more side cutting flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the mill head.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the shank.
In certain embodiments, the one or more drill flutes have a higher twist rate (i.e., larger flute angle) than the one or more side cutting flutes or the one or more drill flutes have a lower twist rate (i.e., smaller flute angle) than the one or more side cutting flutes.
In certain embodiments, the one or more drill flutes have a different twist rate (i.e., different flute angle) than the one or more side cutting flutes.
In certain embodiments, the surgery is spinal, orthopedic, dental, ear, nose, or throat surgery.
In certain embodiments, a manipulator is attached to the robotic arm or molded into the robotic arm.
In another aspect, the disclosed technology includes an anti-skid surgical instrument for preparing a hole in bone tissue of a patient during surgery, the anti-skid surgical instrument having an elongate structure comprising: a mill head at the end of the elongate structure for removing bone tissue with reduced skidding (e.g., unintentional lateral movement of the surgical instrument) of the surgical instrument upon contact of the anti-ski surgical instrument with the bone tissue, wherein the mill head has a flat end substantially perpendicular to a longitudinal axis of the elongate structure, and one or more side-cutting flutes about the longitudinal axis of the elongate structure for cutting into bone tissue; a shank for connection to a drill; a shaft between the mill head and the shank, the shaft having one or more drill flutes (e.g., non-cutting flutes) for evacuating removed bone tissue; and a compliant part that absorbs energy from the mill head.
In certain embodiments, the compliant part comprises at least one of an elastic material, rubber, a bellow, and a universal joint.
In certain embodiments, the compliant part connects a first portion of the anti-ski surgical instrument to a second portion of the anti-skid surgical instrument.
In certain embodiments, the first portion comprises the mill head and a portion of the shaft and the second portion comprises the shank and a portion of the shaft.
In certain embodiments, the compliant part covers at least a portion of the shank.
In certain embodiments, the compliant part covers at least part of the shaft.
In certain embodiments, the compliant part covers at least part of the shaft and the shank.
In certain embodiments, the instrument includes a spike extending from the mill head.
In certain embodiments, the mill head comprises a concave face (e.g., from which the spike extends).
In certain embodiments, the instrument includes a cannulation in the surgical instrument.
In certain embodiments, the cannulation comprises a hole in the end of the elongate structure (e.g., a tip of the surgical instrument).
In certain embodiments, the instrument includes a depth control.
In certain embodiments, the depth control comprises at least one of one or more markings and one or more colors for depicting depth of insertion.
In certain embodiments, the depth control comprises a first portion indicating when to start rotation of the anti-skid surgical instrument and a second portion indicating when to at least one of stop rotation and stop depth penetration of the anti-ski surgical instrument.
In certain embodiments, the depth control comprises a depth stop that adjustably attached to the anti-skid surgical instrument such that the depth of penetration of the anti-skid surgical instrument changes as a position of the depth stop is changed.
In certain embodiments, the shaft comprises one or more notches and the depth control engages at least one of the one or more notches when attached to the anti-skid surgical instrument.
In certain embodiments, the instrument includes a tool support located between the shaft and the shank, wherein: the tool support is shaped and sized to slide through the surgical instrument guide along the axis defined by the guide, and a diameter of the tool support is greater than a diameter of the shank.
In certain embodiments, the end of the mill head has one or more end cutting flutes for cutting axially into the bone tissue.
In certain embodiments, the one or more drill flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, one or more side cutting flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the mill head.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the shank.
In certain embodiments, the one or more drill flutes have a higher twist rate (i.e., larger flute angle) than the one or more side cutting flutes or the one or more drill flutes have a lower twist rate (i.e., smaller flute angle) than the one or more side cutting flutes.
In certain embodiments, the one or more drill flutes have a different twist rate (i.e., different flute angle) than the one or more side cutting flutes.
In certain embodiments, the surgery is spinal, orthopedic, dental, ear, nose, or throat surgery.
In certain embodiments, a manipulator is attached to the robotic arm or molded into the robotic arm.
In another aspect, the disclosed technology includes an anti-skid surgical instrument for preparing a hole in bone tissue of a patient during surgery, the anti-skid surgical instrument having an elongate structure comprising: a mill head at the end of the elongate structure for removing bone tissue with reduced skidding (e.g., unintentional lateral movement of the surgical instrument) of the surgical instrument upon contact of the anti-ski surgical instrument with the bone tissue, wherein the mill head has a flat end substantially perpendicular to a longitudinal axis of the elongate structure, and one or more side-cutting flutes about the longitudinal axis of the elongate structure for cutting into bone tissue; a shank for connection to a drill; a shaft between the mill head and the shank, the shaft having one or more drill flutes (e.g., non-cutting flutes) for evacuating removed bone tissue; and a depth control.
In certain embodiments, the depth control comprises one or more markings.
In certain embodiments, the depth control comprises one or more colors.
In certain embodiments, the depth control comprises a first portion indicating when to start rotation of the anti-skid surgical instrument and a second portion indicating when to at least one of stop rotation and stop depth penetration of the anti-ski surgical instrument.
In certain embodiments, the depth control comprises a depth stop that adjustably attached to the anti-skid surgical instrument such that the depth of penetration of the anti-skid surgical instrument changes as a position of the depth stop is changed.
In certain embodiments, the shaft comprises one or more notches and the depth control engages at least one of the one or more notches when attached to the anti-skid surgical instrument.
In certain embodiments, instrument includes a spike extending from the mill head.
In certain embodiments, the mill head comprises a concave face (e.g., from which the spike extends).
In certain embodiments, the instrument includes a cannulation in the surgical instrument.
In certain embodiments, the cannulation comprises a hole in the end of the elongate structure (e.g., a tip of the surgical instrument).
In certain embodiments, the instrument includes a compliant part that absorbs energy from the mill head.
In certain embodiments, the compliant part comprises at least one of an elastic material, rubber, a bellow, and a universal joint.
In certain embodiments, the compliant part connects a first portion of the anti-ski surgical instrument to a second portion of the anti-skid surgical instrument.
In certain embodiments, the first portion comprises the mill head and a portion of the shaft and the second portion comprises the shank and a portion of the shaft.
In certain embodiments, the compliant part covers at least a portion of the shank.
In certain embodiments, the compliant part covers at least part of the shaft.
In certain embodiments, the compliant part covers at least part of the shaft and the shank.
In certain embodiments, the instrument includes a tool support located between the shaft and the shank, wherein: the tool support is shaped and sized to slide through the surgical instrument guide along the axis defined by the guide, and a diameter of the tool support is greater than a diameter of the shank.
In certain embodiments, the end of the mill head has one or more end cutting flutes for cutting axially into the bone tissue.
In certain embodiments, the one or more drill flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, one or more side cutting flutes comprise at least two, three, four, six, eight, ten, or twenty flutes.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the mill head.
In certain embodiments, a longitudinal length of the shaft is greater than a longitudinal length of the shank.
In certain embodiments, the one or more drill flutes have a higher twist rate (i.e., larger flute angle) than the one or more side cutting flutes or the one or more drill flutes have a lower twist rate (i.e., smaller flute angle) than the one or more side cutting flutes.
In certain embodiments, the one or more drill flutes have a different twist rate (i.e., different flute angle) than the one or more side cutting flutes.
In certain embodiments, the surgery is spinal, orthopedic, dental, ear, nose, or throat surgery.
In certain embodiments, a manipulator is attached to the robotic arm or molded into the robotic arm.
The foregoing and other objects, aspects, features, and advantages of the present disclosure will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:
The features and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.
Described herein is an anti-skid surgical instrument for use in preparing holes in bone tissue. In certain types of surgeries it is necessary to prepare a precise hole in bone tissue (e.g. spinal surgeries and pedicle screw placement, intramedullary screw placement); however, in many instances, human anatomy is not well adapted for drilling in these regions because the angle between the drill axis and surface of the bone is not perpendicular. The disclosed technology provides the ability to precisely prepare a hole in bone tissue by minimizing the likelihood that the surgical instrument skids upon contact with bone tissue.
As used herein, the phrase “prepare a hole in bone tissue” encompasses milling, drilling, grinding, and/or cutting bone tissue and/or bone-like tissue. A “hole” encompasses any cavity, dent, or depression.
In some implementations, the anti-skid surgical instrument 206 has a mill head 210 at the end of the elongate structure for removing bone tissue with reduced skidding (e.g., unintentional lateral movement of the surgical instrument) of the surgical instrument upon contact of the anti-ski surgical instrument with the bone tissue 208. The mill head 210 has a flat end 218 substantially perpendicular to a longitudinal axis of the elongate structure. In some implementations, the mill head 210 has one or more side-cutting flutes 220 (e.g., sharpened) about the longitudinal axis of the elongate structure for cutting into bone tissue. The one or more side cutting flutes 220 can include two, three, four, six, eight, ten, or twenty flutes.
In some implementations, the anti-skid surgical instrument 206 has a shank (not shown) for connection to a drill. In some implementations, the anti-skid surgical instrument 206 has a shaft 212 between the mill head 210 and the shank, the shaft 212 having one or more drill flutes 224 (e.g., non-cutting flutes; e.g., unsharpened) for evacuating removed bone tissue. In some implementations, the one or more drill flutes 224 include two, three, four, six, eight, ten, or twenty flutes. The one or more drill flutes 224 are different than the one or more side cutting flutes 220. For example, the drill flutes 224 may have a different (e.g., larger or smaller) twist rate, (e.g., flute angle) than the side cutting flutes 220.
In some implementations, the flat end 218 of the mill head 210 has one or more end cutting flutes (not shown) for cutting axially into the bone tissue. In some implementations, the one or more end cutting flutes are cutting teeth. Additionally, a longitudinal length of the shaft, in some implementations, is greater than a longitudinal length of the mill head. The longitudinal length of the shaft, in some implementations, is less than a longitudinal length of the mill head.
As shown in
The mill end 210, in some implementations, utilizes rotary cutters to remove material. The mill end 210 can take the form of several shapes and sizes. For example, the mill end 210 can be an end mill, slab mill, or other types of milling devices.
The flutes 220 of the mill head 210, in some implementations, are deep helical grooves running up the cutter, while the sharp blade along the edge of the flute 220 is known as the tooth. The tooth cuts the material, and chips of this material are pulled up the flute 220 by the rotation of the cutter. In some implementations, there is one tooth per flute. In some implementations, there are two or more teeth per flute. For example, the cutter of each flute 220 may have 2, 3, 4, 5, or more teeth (e.g., 1-4, 5-10, or 10-20 teeth). Typically, the more teeth a cutter has, the more rapidly it can remove material. Thus, typically a 4-tooth cutter can remove material at twice the rate of a 2-tooth cutter. The mill head 210 may be an end mill with cutting teeth at one end (i.e., the flat end 218) and on the sides 220 of mill end 210. For example, the flat end 218 can be a flat bottom cutter.
In some implementations, the surgical instrument 206 is rigidly guided (e.g., by a robotic surgical system). The surgical instrument 206 may cause higher radial forces when entering bone tissue 208, thus a rigid guide ensures that the hole will be placed accurately. The drill used with the surgical instrument 206, in some implementations, is sufficiently rigid to avoid deflection of the drill itself. A high rotational velocity drill (e.g., power drill) may be used to reduce radial forces.
In certain embodiments, hole placement accuracy is achieved by the combination of the anti-skid drill bit and the robotic surgical system. The rigidity provided by the robotic surgical system along with the anti-skid drill bit allows precise drilling of holes, thereby minimizing (or eliminating) skiving along the bone upon contact between the bone and the anti-skid drill bit. The robotic surgical system provides rigidity from the floor of the operating room (and/or the surgical table) to the surgical instrument itself. This is achieved by each component within the “chain” providing rigidity. An example surgical system is described in U.S. Pat. No. 9,283,048, filed Apr. 30, 2014 and entitled “Apparatus, Systems, and Methods for Precise Guidance of Surgical Tools,” the contents of which are hereby incorporated by reference in its entirety. In this example, the mobile cart is designed to rest on legs during surgery such that the robot is fixed in place. Further, the robotic arm is rigidly attached to the base and is an active arm. Similarly, the notched guide and the surgical instrument holder are designed to provide rigidity. Examples of notched guides are provided in U.S. Pat. No. 9,241,771, filed Jan. 15, 2015, entitled “Notched Apparatus for Guidance of an Insertable Instrument along an Axis during Spinal Surgery,” which is hereby incorporated by reference in its entirety. Examples of surgical instrument holders are provided in U.S. Patent Application Publication No. 2015/0305817, filed Apr. 24, 2015, entitled “Surgical Instrument Holder for use with a Robotic Surgical System,” which is hereby incorporated by reference in its entirety. The combination of the notched guide or surgical instrument holder, active robotic arm, and robot (e.g., robot base), along with the anti-skid drill bit, reduces skidding (e.g., skiving) when the drill bit contacts the bone, thereby allowing accurate placement of holes for surgical screws.
In some implementations, the surgical instrument 206 is used in combination with a robotic surgical system, such as the robotic surgical system described in U.S. Pat. No. 9,283,048, filed Apr. 30, 2014 and entitled “Apparatus, Systems, and Methods for Precise Guidance of Surgical Tools,” the contents of which are hereby incorporated by reference in its entirety.
In some implementations, the surgical instrument 206 is used with a passive arm or any device that provides rigid fixation of the surgical instrument 206. The surgical instrument 206 may be insertable into a surgical instrument guide such that the surgical instrument 206 is constrained by the surgical instrument guide. The surgical instrument guide may include a rigid hollow tubular structure having a first open end and a second open end. The structure of the guide may define the axis along which movement of a surgical instrument sliding through the structure is restricted. The tubular structure may have an interior surface shaped and sized to accommodate the anti-skid surgical instrument 206 sliding through the guide such that movement of the surgical instrument 206 (e.g., fitted with a tool support) is constrained in all directions except along the axis defined by the guide. The surgical instrument 206 may be fitted with or have an integrated tool support such that the tool support engages the guide to provide accurate guidance of the surgical instrument 206. For example, the anti-skid surgical instrument 206 may be fitted with a tool support shaped and sized to slide through the surgical instrument guide along the axis defined by the guide.
In instances in which the surgical instrument 206 is guided by a robotic surgical system, the robotic surgical system may include a robotic arm. In some implementations, the robotic arm has an end effector including a surgical instrument guide attached thereto, the surgical instrument guide configured to hold and/or restrict movement of a surgical instrument therethrough. A navigation marker may be used to track the surgical instrument 206. The axis of the surgical instrument guide can be aligned with the desired trajectory in relation to the patient situation via the manipulator.
In contrast, situation on the right side of the image shows an arthritic vertebrae (e.g., of an older person). Due to additional hard bony tissue, facet joint increases its volume and interferes with the trajectory. It places ideal entry point EB on the angled surface and increases chances of skiving. If skiving occurs, it will likely displace entry point to EB1. Instead of the trajectory being trajectory B, it likely will be trajectory B1 and might lead to screw implant going out of the pedicle. This can result in serious clinical consequences (neurologic, vascular, etc.) for the patient. It should be noted that in most operated patients arthritis appears at various levels of advancement (e.g., healthy patients would have surgery principally as a result of trauma only).
In certain embodiments, as shown in
In certain embodiments, as shown in
In certain embodiments, as shown in
A surgical drill can have significant weight (e.g., a few kilograms even) which makes gravitation force G shown in
In view of the structure, functions and apparatus of the systems and methods described here, in some implementations, a system and method for performing surgery with a robotic surgical system are provided. Having described certain implementations of methods and apparatus for supporting a robotic surgical system, it will now become apparent to one of skill in the art that other implementations incorporating the concepts of the disclosure may be used. Therefore, the disclosure should not be limited to certain implementations, but rather should be limited only by the spirit and scope of the following claims.
Throughout the description, where apparatus and systems are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are apparatus, and systems of the disclosed technology that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the disclosed technology that consist essentially of, or consist of, the recited processing steps.
It should be understood that the order of steps or order for performing certain action is immaterial so long as the disclosed technology remains operable. Moreover, two or more steps or actions may be conducted simultaneously.
This application is a continuation application of U.S. patent application Ser. No. 15/405,743 filed on Jan. 13, 2017 (published as U.S. Pat. Pub. No. 2017-0224358), which claims priority to U.S. Provisional Patent Application No. 62/278,313, filed Jan. 13, 2016, entitled “Anti-Skid Surgical Instrument for use in Preparing Holes in Bone Tissue” (expired) and U.S. Provisional Patent Application No. 62/395,795, filed Sep. 16, 2016, entitled “Anti-Skid Surgical Instrument for use in Preparing Holes in Bone Tissue” (expired). U.S. patent application Ser. No. 15/405,743 is a Continuation-in-Part of U.S. patent application Ser. No. 14/799,170, filed Jul. 14, 2015, entitled “Anti-Skid Surgical Instrument for use in Preparing Holes in Bone Tissue,” (now U.S. Pat. No. 10,357,257), which claims priority to U.S. Provisional Patent Application No. 62/024,402, filed Jul. 14, 2014, entitled “Anti-Skid Surgical Instrument for use in Preparing Holes in Bone Tissue,” (expired), the contents of all of which which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4150293 | Franke | Apr 1979 | A |
4710075 | Davison | Dec 1987 | A |
5246010 | Gazzara et al. | Sep 1993 | A |
5269785 | Bonutti | Dec 1993 | A |
5598453 | Baba et al. | Jan 1997 | A |
5599145 | Reinauer | Feb 1997 | A |
5772594 | Barrick | Jun 1998 | A |
5941706 | Ura | Aug 1999 | A |
5987960 | Messner et al. | Nov 1999 | A |
6031888 | Ivan et al. | Feb 2000 | A |
6144875 | Schweikard et al. | Nov 2000 | A |
6203196 | Meyer et al. | Mar 2001 | B1 |
6306126 | Montezuma | Oct 2001 | B1 |
6314311 | Williams et al. | Nov 2001 | B1 |
6320929 | Von Der Haar | Nov 2001 | B1 |
6477400 | Barrick | Nov 2002 | B1 |
6484049 | Seeley et al. | Nov 2002 | B1 |
6487267 | Wolter | Nov 2002 | B1 |
6490475 | Seeley et al. | Dec 2002 | B1 |
6501981 | Schweikard et al. | Dec 2002 | B1 |
6535756 | Simon et al. | Mar 2003 | B1 |
6614453 | Suri et al. | Sep 2003 | B1 |
6614871 | Kobiki et al. | Sep 2003 | B1 |
6619840 | Rasche et al. | Sep 2003 | B2 |
6666579 | Jensen | Dec 2003 | B2 |
6757068 | Foxlin | Jun 2004 | B2 |
6782287 | Grzeszczuk et al. | Aug 2004 | B2 |
6856826 | Seeley et al. | Feb 2005 | B2 |
6856827 | Seeley et al. | Feb 2005 | B2 |
6920347 | Simon et al. | Jul 2005 | B2 |
6922632 | Foxlin | Jul 2005 | B2 |
6988009 | Grimm et al. | Jan 2006 | B2 |
6996487 | Jutras et al. | Feb 2006 | B2 |
7016457 | Senzig et al. | Mar 2006 | B1 |
7043961 | Pandey et al. | May 2006 | B2 |
7062006 | Pelc et al. | Jun 2006 | B1 |
7063705 | Young et al. | Jun 2006 | B2 |
7072707 | Galloway, Jr. et al. | Jul 2006 | B2 |
7099428 | Clinthorne et al. | Aug 2006 | B2 |
7108421 | Gregerson et al. | Sep 2006 | B2 |
7130676 | Barrick | Oct 2006 | B2 |
7139418 | Abovitz et al. | Nov 2006 | B2 |
7194120 | Wicker et al. | Mar 2007 | B2 |
7197107 | Arai et al. | Mar 2007 | B2 |
7231014 | Levy | Jun 2007 | B2 |
7231063 | Naimark et al. | Jun 2007 | B2 |
7301648 | Foxlin | Nov 2007 | B2 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7318805 | Schweikard et al. | Jan 2008 | B2 |
7324623 | Heuscher et al. | Jan 2008 | B2 |
7327865 | Fu et al. | Feb 2008 | B2 |
7460637 | Clinthorne et al. | Dec 2008 | B2 |
7493153 | Ahmed et al. | Feb 2009 | B2 |
7505617 | Fu et al. | Mar 2009 | B2 |
7623902 | Pacheco | Nov 2009 | B2 |
7643862 | Schoenefeld | Jan 2010 | B2 |
7661881 | Gregerson et al. | Feb 2010 | B2 |
7683331 | Chang | Mar 2010 | B2 |
7683332 | Chang | Mar 2010 | B2 |
7702379 | Avinash et al. | Apr 2010 | B2 |
7702477 | Tuemmler et al. | Apr 2010 | B2 |
7711083 | Heigl et al. | May 2010 | B2 |
7725253 | Foxlin | May 2010 | B2 |
7726171 | Langlotz et al. | Jun 2010 | B2 |
7760849 | Zhang | Jul 2010 | B2 |
7796728 | Bergfjord | Sep 2010 | B2 |
7813838 | Sommer | Oct 2010 | B2 |
7835778 | Foley et al. | Nov 2010 | B2 |
7835784 | Mire et al. | Nov 2010 | B2 |
7840256 | Lakin et al. | Nov 2010 | B2 |
7844320 | Shahidi | Nov 2010 | B2 |
7853305 | Simon et al. | Dec 2010 | B2 |
7853313 | Thompson | Dec 2010 | B2 |
7900524 | Calloway et al. | Mar 2011 | B2 |
7940999 | Liao et al. | May 2011 | B2 |
7945012 | Ye et al. | May 2011 | B2 |
7945021 | Shapiro et al. | May 2011 | B2 |
8019045 | Kato | Sep 2011 | B2 |
8021310 | Sanborn et al. | Sep 2011 | B2 |
8052688 | Wolf, II | Nov 2011 | B2 |
8086299 | Adler et al. | Dec 2011 | B2 |
8098914 | Liao et al. | Jan 2012 | B2 |
8100950 | St. Clair et al. | Jan 2012 | B2 |
8116430 | Shapiro et al. | Feb 2012 | B1 |
8121249 | Wang et al. | Feb 2012 | B2 |
8150494 | Simon et al. | Apr 2012 | B2 |
8208708 | Homan et al. | Jun 2012 | B2 |
8224024 | Foxlin et al. | Jul 2012 | B2 |
8311611 | Csavoy et al. | Nov 2012 | B2 |
8335557 | Maschke | Dec 2012 | B2 |
8358818 | Miga et al. | Jan 2013 | B2 |
8379791 | Forthmann et al. | Feb 2013 | B2 |
8386019 | Camus et al. | Feb 2013 | B2 |
8394099 | Patwardhan | Mar 2013 | B2 |
8462911 | Vesel et al. | Jun 2013 | B2 |
8526700 | Isaacs | Sep 2013 | B2 |
8541970 | Nowlin et al. | Sep 2013 | B2 |
8560118 | Green et al. | Oct 2013 | B2 |
8597198 | Sanborn et al. | Dec 2013 | B2 |
8611985 | Lavallee et al. | Dec 2013 | B2 |
8630389 | Kato | Jan 2014 | B2 |
8634897 | Simon et al. | Jan 2014 | B2 |
8660635 | Simon et al. | Feb 2014 | B2 |
8678647 | Gregerson et al. | Mar 2014 | B2 |
8696458 | Foxlin et al. | Apr 2014 | B2 |
8706185 | Foley et al. | Apr 2014 | B2 |
8709045 | Folsom | Apr 2014 | B1 |
8727618 | Maschke et al. | May 2014 | B2 |
8738115 | Amberg et al. | May 2014 | B2 |
8740882 | Jun et al. | Jun 2014 | B2 |
8781186 | Clements et al. | Jul 2014 | B2 |
8781630 | Banks et al. | Jul 2014 | B2 |
8787520 | Baba | Jul 2014 | B2 |
8792704 | Isaacs | Jul 2014 | B2 |
8798231 | Notohara et al. | Aug 2014 | B2 |
8812077 | Dempsey | Aug 2014 | B2 |
8814793 | Brabrand | Aug 2014 | B2 |
8818105 | Myronenko et al. | Aug 2014 | B2 |
8821511 | Von Jako et al. | Sep 2014 | B2 |
8867703 | Shapiro et al. | Oct 2014 | B2 |
8888821 | Rezach et al. | Nov 2014 | B2 |
8964934 | Ein-Gal | Feb 2015 | B2 |
8992580 | Bar et al. | Mar 2015 | B2 |
8996169 | Lightcap et al. | Mar 2015 | B2 |
9001963 | Sowards-Emmerd et al. | Apr 2015 | B2 |
9002076 | Khadem et al. | Apr 2015 | B2 |
9044190 | Rubner et al. | Jun 2015 | B2 |
9107683 | Hourtash et al. | Aug 2015 | B2 |
9113916 | Lozier | Aug 2015 | B2 |
9125556 | Zehavi et al. | Sep 2015 | B2 |
9131986 | Greer et al. | Sep 2015 | B2 |
9215968 | Schostek et al. | Dec 2015 | B2 |
9308050 | Kostrzewski et al. | Apr 2016 | B2 |
9380984 | Li et al. | Jul 2016 | B2 |
9393039 | Lechner et al. | Jul 2016 | B2 |
9398886 | Gregerson et al. | Jul 2016 | B2 |
9398890 | Dong et al. | Jul 2016 | B2 |
9414859 | Ballard et al. | Aug 2016 | B2 |
9420975 | Gutfleisch et al. | Aug 2016 | B2 |
9492235 | Hourtash et al. | Nov 2016 | B2 |
9592096 | Maillet et al. | Mar 2017 | B2 |
9750465 | Engel et al. | Sep 2017 | B2 |
9757203 | Hourtash et al. | Sep 2017 | B2 |
9795354 | Menegaz et al. | Oct 2017 | B2 |
9814535 | Bar et al. | Nov 2017 | B2 |
9820783 | Donner et al. | Nov 2017 | B2 |
9833265 | Donner et al. | Nov 2017 | B2 |
9848922 | Tohmeh et al. | Dec 2017 | B2 |
9925011 | Gombert et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
10034717 | Miller et al. | Jul 2018 | B2 |
20010036302 | Miller | Nov 2001 | A1 |
20040076259 | Jensen et al. | Apr 2004 | A1 |
20040265082 | Abrams | Dec 2004 | A1 |
20060184396 | Dennis et al. | Aug 2006 | A1 |
20060291612 | Nishide et al. | Dec 2006 | A1 |
20070038059 | Sheffer et al. | Feb 2007 | A1 |
20070073133 | Schoenefeld | Mar 2007 | A1 |
20070239187 | Brunnett | Oct 2007 | A1 |
20070293867 | Anitua | Dec 2007 | A1 |
20080004523 | Jensen | Jan 2008 | A1 |
20080013809 | Zhu et al. | Jan 2008 | A1 |
20080082109 | Moll et al. | Apr 2008 | A1 |
20080108991 | Von Jako | May 2008 | A1 |
20080144906 | Allred et al. | Jun 2008 | A1 |
20080161680 | Von Jako et al. | Jul 2008 | A1 |
20080235052 | Node-Langlois et al. | Sep 2008 | A1 |
20080269596 | Revie et al. | Oct 2008 | A1 |
20080287781 | Revie et al. | Nov 2008 | A1 |
20080300477 | Lloyd et al. | Dec 2008 | A1 |
20080302950 | Park et al. | Dec 2008 | A1 |
20080306490 | Lakin et al. | Dec 2008 | A1 |
20080319311 | Hamadeh | Dec 2008 | A1 |
20090024129 | Gordon et al. | Jan 2009 | A1 |
20090185655 | Koken et al. | Jul 2009 | A1 |
20090198121 | Hoheisel | Aug 2009 | A1 |
20090287222 | Lee et al. | Nov 2009 | A1 |
20100022874 | Wang et al. | Jan 2010 | A1 |
20100039506 | Sarvestani et al. | Feb 2010 | A1 |
20100125286 | Wang et al. | May 2010 | A1 |
20100145341 | Ranck et al. | Jun 2010 | A1 |
20100228117 | Hartmann | Sep 2010 | A1 |
20100274120 | Heuscher | Oct 2010 | A1 |
20110098553 | Robbins et al. | Apr 2011 | A1 |
20110098710 | Spratt et al. | Apr 2011 | A1 |
20110282189 | Graumann | Nov 2011 | A1 |
20110286573 | Schretter et al. | Nov 2011 | A1 |
20120035507 | George et al. | Feb 2012 | A1 |
20120051498 | Koishi | Mar 2012 | A1 |
20120143084 | Shoham | Jun 2012 | A1 |
20120226145 | Chang et al. | Sep 2012 | A1 |
20120235909 | Birkenbach et al. | Sep 2012 | A1 |
20120294498 | Popovic | Nov 2012 | A1 |
20120330315 | Ranck et al. | Dec 2012 | A1 |
20130016889 | Myronenko et al. | Jan 2013 | A1 |
20130060146 | Yang et al. | Mar 2013 | A1 |
20130094742 | Feilkas | Apr 2013 | A1 |
20130113791 | Isaacs et al. | May 2013 | A1 |
20130165937 | Patwardhan | Jun 2013 | A1 |
20130281821 | Liu et al. | Oct 2013 | A1 |
20130307955 | Deitz et al. | Nov 2013 | A1 |
20130342578 | Isaacs | Dec 2013 | A1 |
20130345757 | Stad | Dec 2013 | A1 |
20140046132 | Hoeg et al. | Feb 2014 | A1 |
20140049629 | Siewerdsen et al. | Feb 2014 | A1 |
20140080086 | Chen | Mar 2014 | A1 |
20140096369 | Matsumoto et al. | Apr 2014 | A1 |
20140121676 | Kostrzewski et al. | May 2014 | A1 |
20140135796 | Simon et al. | May 2014 | A1 |
20140130810 | Azizian et al. | Aug 2014 | A1 |
20140221819 | Sarment | Aug 2014 | A1 |
20140234804 | Huang et al. | Aug 2014 | A1 |
20140371577 | Maillet et al. | Dec 2014 | A1 |
20150039034 | Frankel et al. | Feb 2015 | A1 |
20150085970 | Bouhnik et al. | Mar 2015 | A1 |
20150146847 | Liu | May 2015 | A1 |
20150150524 | Yorkston et al. | Jun 2015 | A1 |
20150196261 | Funk | Jul 2015 | A1 |
20150213633 | Chang et al. | Jul 2015 | A1 |
20150335480 | Alvarez et al. | Nov 2015 | A1 |
20150342647 | Frankel et al. | Dec 2015 | A1 |
20160005194 | Schretter et al. | Jan 2016 | A1 |
20160008011 | Kostrzewski | Jan 2016 | A1 |
20160106442 | Guo et al. | Apr 2016 | A1 |
20160151120 | Kostrzewski et al. | Jun 2016 | A1 |
20160166329 | Langan et al. | Jun 2016 | A1 |
20160235480 | Scholl et al. | Aug 2016 | A1 |
20160249990 | Glozman et al. | Sep 2016 | A1 |
20160302871 | Gregerson et al. | Oct 2016 | A1 |
20160320322 | Suzuki | Nov 2016 | A1 |
20160331335 | Gregerson et al. | Nov 2016 | A1 |
20170135770 | Scholl et al. | May 2017 | A1 |
20170143284 | Sehnert et al. | May 2017 | A1 |
20170143426 | Isaacs et al. | May 2017 | A1 |
20170156816 | Ibrahim | Jun 2017 | A1 |
20170202629 | Maillet et al. | Jul 2017 | A1 |
20170212723 | Atarot et al. | Jul 2017 | A1 |
20170215825 | Johnson et al. | Aug 2017 | A1 |
20170215826 | Johnson et al. | Aug 2017 | A1 |
20170215827 | Johnson et al. | Aug 2017 | A1 |
20170231710 | Scholl et al. | Aug 2017 | A1 |
20170258426 | Risher-Kelly et al. | Sep 2017 | A1 |
20170273748 | Hourtash et al. | Sep 2017 | A1 |
20170296277 | Hourtash et al. | Oct 2017 | A1 |
20170360493 | Zucher et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
102085110 | Jun 2011 | CN |
103767759 | May 2014 | CN |
2698115 | Feb 2014 | EP |
2001212151 | Aug 2001 | JP |
2003245283 | Sep 2003 | JP |
2015508313 | Mar 2015 | JP |
2016209744 | Dec 2016 | JP |
2011147831 | Dec 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20210022750 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
62395795 | Sep 2016 | US | |
62278313 | Jan 2016 | US | |
62024402 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15405743 | Jan 2017 | US |
Child | 16993749 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14799170 | Jul 2015 | US |
Child | 15405743 | US |