The present invention relates generally to tools designed for tightening or loosening fasteners, in particular bolts and nuts. More specifically, the present invention is an anti-slip fastener remover tool that designed to engaged bolts, nuts, and other similar fasteners with little chance of slippage.
Hex bolts, nuts, screws, and other similar threaded devices are used to secure and hold multiple components together by being engaged to a complimentary thread, known as a female thread. The general structure of these types of fasteners is a cylindrical shaft with an external thread and a head portion that is connected at one end of the cylindrical shaft. The external thread engages a complimentary female thread tapped into a hole or a nut and secures the fastener in place, fastening the associated components together. The head portion receives an external torque force and is the means by which the fastener is turned, or driven, into the female threading. The head portion is shaped specifically to allow an external tool like a wrench to apply a torque to the fastener in order to rotate the fastener and engage the complimentary female threading to a certain degree. This type of fastener is simple, extremely effective, cheap, and highly popular in modern construction. One of the most common problems in using these types of fasteners, whether male or female, is the tool slipping in the head portion, or slipping on the head portion. This is generally caused by either a worn fastener or tool, corrosion, overtightening, or damage to the head portion of the fastener. Various methods may be used to remove a fastener, some more aggressive than others. Once a fastener head is damaged, a more aggressive method must be implemented to remove a seized fastener. Drilling out the fastener is a common method used by some users to dislodge the fastener. While this method can prove to be effective in some scenarios there is a high risk of damaging the internal threads of the hole.
The present invention is an anti-slip fastener remover tool that virtually eliminates the chance of slippage. The present invention uses a series of integrated engagement segments that bite into the head portion of the fastener and allow for efficient torque transfer between the extractor bit and the head portion of the fastener. Resultantly, the present invention may be used to tighten or loosen fasteners without worrying about stripping the corners of the fastener.
All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention.
The present invention is an anti-slip tool used to tighten or loosen a damaged/stripped fastener such as a nut or bolt. Traditional wrench designs transfer the majority of the torque to the damaged/stripped fastener through the lateral corners of the fastener head. Over time, the degradation of the lateral corners reduces the efficiency of transferring torque from the wrench to the fastener head and, as a result, causes slippage. The present invention overcomes this problem by moving the contact point to the lateral sides of the fastener head. This is accomplished through the use of a multitude of teeth. Each of the teeth is positioned to engage or “bite” the lateral surface of the fastener head instead of the lateral corner. This ensures an adequate amount of torque is transferred to the fastener head to initiate rotation and, resultantly, extraction or tighten the damaged/stripped fastener. However, the present invention is also designed to be used with an undamaged or new fastener without causing damage to the fastener when torque is applied in accordance with maximum specified and industry approved torque levels for the particular fastener size or diameter.
The present invention utilizes a multitude of teeth to engage the sides of the fastener head, damaged or otherwise, in order to efficiently apply torque onto the damaged/stripped fastener. The present invention may be integrated into or utilized by a variety of general tools to increase the torque force applied to a fastener. General tools include, but are not limited to, open-end wrenches, adjustable wrenches, pipe wrenches, socket wrenches, plumber wrench, and other similar fastener engaging tools. The present invention is compatible with female-member based head design fasteners; however, the present invention may be incorporated into a male fastener head design as described in this application. Fasteners which utilize a female-member head design, also known as female fasteners, use the internal cavity of the fastener head to engage a tool for tightening or loosening. Fasteners which utilize a male-member head design, also known as male fasteners, use the external lateral surface of the fastener head to engage a tool for tightening or loosening. In addition, the present invention is compatible with fasteners of a right-hand thread and fasteners of a left-hand thread. Furthermore, the present invention may be altered and configured to fit different types and different sizes of fasteners.
Referring to
The plurality of paired engagement features 3 is distributed into a polygon shape within the torque-tool body 1 and preferably symmetric along the rotational axis 2, wherein the rotational axis 2 centrally traverses through the torque-tool body 1. A symmetrical design is ensured within the present invention to perform equally when rotating the fastener in a clockwise direction or in a counterclockwise direction.
In reference to
In reference to
The present invention also incorporates an attachment feature which allows an external torque applying tool to attach to the torque-tool body 1 and increase the torque force applied to the fastener head. In reference to
A bottom surface of the attachment body 10 may be tapered away from the engagement bore 11 so that the plurality of paired engagement features 3 can be driven into the damaged/stripped fastener head by a hammer, without hitting or damaging the engagement bore 11. In other words, depending on the user's preference a diameter of the attachment body 10 about the engagement bore 11 may be slightly larger than a diameter of the attachment body 10 about the torque-tool body 1 so that the bottom surface of the attachment body 10 can be tapered away from the engagement bore 11. In some embodiments of the present invention, the attachment body 10 may not comprise the engagement bore 11 as the attachment body 10 itself functions as the engagement feature between the present invention and the external torque force. The attachment body 10 may be an external Hex or square able to have torque applied by an external torque tool such as wrench, socket, or pliers. An alternative attachment body 10 may incorporate a wrench handle wherein the wrench handle may preferably be diametrically connected to the torque tool body 1. In other words, the wrench handle would be connected perpendicular to the torque tool body 1 and the rotational axis 2.
Additionally, a wrench handle can be peripherally connected to the torque-tool body 1, wherein the wrench handle functions as the external torque applying tool. With respect to the female torque tool body 1, each of the plurality of paired engagement features 3 is extended along a specific length of the torque-tool body 1 thus delineating an empty space within the torque-tool body 1. The aforementioned empty space functions as a receptive cavity for the fastener head so that the plurality of paired engagement features 3 can grip the lateral surface of the fastener head. The present invention further comprises a fastener-receiving hole that traverses through the torque-tool body 1. The fastener-receiving hole, perpendicular to the rotational axis 2, is positioned opposite the wrench handle and across the torque-tool body 1 thus providing a lateral opening to engage the plurality of paired engagement features 3.
The attachment body 10 can also incorporate a quick connect feature that is typically used in drills, impact drivers, and screwdriver attachments.
The plurality of paired engagement features 3 is equally spaced about the torque-tool body 1 to create an enclosed profile as seen in
Furthermore, a cross section for the first engagement feature 7 and the second engagement feature 8 each comprises a bracing section 4, a cavity section 5, a connector section 31 as shown in
In some torque-tool body 1 applications or embodiments, when the bracing section 4 engages with a male fastener, as shown in
A top surface of the torque-tool body 1 and the bottom surface of the attachment body 10 are positioned opposite of each other across the plurality of paired engagement features 3, wherein the top surface and the bottom surface are configured as flat surfaces.
The length of the bracing section 4 and the cavity section 5 and the corresponding angles between the bracing section 4 and the cavity section 5 may vary to create a sharper tooth-like shape for the engagement feature. The first engagement feature 7 is any feature within the plurality of paired engagement features 3 in such a way that the second engagement feature 8 is the feature directly next to the first engagement feature 7 within corresponding the plurality of paired engagement features 3. More specifically, the cavity section 5 of the first engagement feature 7 is adjacently connected to the cavity section 5 of the second engagement feature 8. As shown in
In reference to
In reference to
Furthermore, a first bisecting angle 17 of the present invention is delineated between the connector section 31 of the first engagement feature 7 and the bisecting line 6 as shown in
Furthermore, a second bisecting angle 18 of the present invention is delineated between the connector section 31 of the second engagement feature 8 and the bisecting line 6 as shown in
Due to the angular positioning of the first bisecting angle 17 and the second bisecting angle 18, when an imaginary straight line is drawn in between the connector section 31 of the first engagement feature 7 and the connector section 31 of the second engagement feature 8, the imaginary straight line is positioned perpendicular to the bisecting line 6.
Furthermore, the first bisecting angle 17 and the second bisecting angle 18 are collectively combined into an angle less than 180 degrees when a first extended line is drawn parallel to the bracing section 4 of the first engagement feature 7 and intersected through the connector section 31 of the first engagement feature 7, and a second extended line is drawn parallel to the bracing section 4 of the second engagement feature 8 and intersected through the connector section 31 of the first engagement feature 7.
Furthermore, the bracing section 4 of the first engagement feature 7 and the bracing section 4 of the second engagement feature 8 are positioned offset of each other. More specifically, the present invention further comprises a first geometric plane and a second geometric plane. The first geometric plane is positioned parallel to the bracing section 4 of the first engagement feature 7, and the second geometric plane that is positioned parallel to the bracing section 4 of the second engagement feature 8 as the first geometric plane and the second geometric plane are positioned offset of each other. In other words, the first geometric plane and the second geometric plane are not co-planer within the present invention. More specifically, the bracing section 4 of the first engagement feature 7 and the bracing section 4 of the second engagement feature 8 are not aligned with each other. Additionally, a geometric plane of the bracing section 4 is preferably not aligned with the plane of a fastener bracing surface for female versions and the male version of the present invention.
Furthermore, a radial distance 35 of the plurality of intersection points 34 is 4 to 12 times larger than a first-length 36 for the bracing section 4 of the first engagement feature 7 or a second-length 37 for the bracing section 4 of the second engagement feature 8 as shown in
In reference to
In some embodiments of the present invention, the plurality of paired engagement features 3 can be tapered away from the rotational axis 2. In other words, an outer diameter of the plurality of paired engagement features 3 about the top surface of the torque-tool body 1 is smaller than an outer diameter of the plurality of paired engagement features 3 about the attachment body 10. In the case of the female embodiment of the present invention, a first base 21 is the plane at the opening of the torque-tool body 1 and a second base 22 is the plane opposite the first plane 21 about the plurality of paired engagement features. The inner diameter of the plurality of paired engagement features 3 at a first base 21 may be greater than the inner diameter of the plurality of paired engagement feature 3 at the second base 22, making the plurality of paired engagement features 3 tapered along the rotational axis 2 from the first base 21 to the second base 22. Additionally, the cavity section 5 of the first engagement feature 7 and the cavity section 5 of the second engagement feature 8 become narrower and shallower from the top surface of the torque-tool body 1 to the attachment body 10. Even though the cavity section 5 of the first engagement feature 7 and the cavity section 5 of the second engagement feature 8 collectively delineate a circular shaped profile, the present invention is not limited to the circular shaped profile and can be other type of geometric shapes. For example, the cavity section 5 of the first engagement feature 7 and the cavity section 5 of the second engagement feature 8 can delineate a triangular shaped profile within the corresponding bracing sections 4.
To remove the damaged/stripped fastener with the present invention, the torque-tool body 1 is positioned around the damaged/stripped fastener so that a significant portion of the plurality of paired engagement features 3 is positioned around or within the fastener head. The user then simply applies torque force to the torque-tool body 1 in order to rotate and remove the damaged/stripped fastener. When a torque force is applied to the torque-tool body 1, the plurality of paired engagement features 3 “bite” into the lateral sides of fastener head which in turn rotates the damaged/stripped fastener. The present invention is designed to engage partially or fully compromised fastener heads. The present invention overcomes slippage of the fastener head through the use of the plurality of paired engagement features 3.
The present invention is able to drive a fastener on cavity section 5 of the first engagement feature 7 and the cavity section 5 of the second engagement feature 8 in a corresponding lobular fastener design such as Torx, of E Torx as well as drive a fastener on the outer bracing surface of a socket fastener through the bracing sections 4 of the first engagement feature 7 and bracing sections 4 of the second engagement feature 8.
It is understood that all the components of the present invention can be mirror reversed to create male/female versions of the present embodiments. In other words, the female versions of the present invention would incorporate all the features, function and elements of the present invention but would be a female embodiment and the male versions would incorporate all the features, function, and elements of the associated female embodiments. The engagement features in the female embodiment would engage a male fastener lateral surfaces or sidewall. Whereas the protuberance on male version driver tool is orientated away from the rotational axis 2, the protuberance on the female driver tool is orientated towards the rational axis 2. Specifically, in a male embodiment, the bracing section 4 and the connector section 31 in the
In the present invention, the length of the bracing section 4 and the cavity section 5 and the corresponding angles between the bracing section 4 and the cavity section 5 may vary to create a sharper tooth-like shape for the plurality of paired engagement features 3. Specifically, the bracing section 4 of the first engagement feature 7 may be greater in length then a length of the bracing section 4 of the second engagement feature 8, or the bracing section 4 of the second engagement feature 8 may be greater in length than a length of the bracing section 4 of first engagement feature 7 to create a sharp aggressive engagement, or less aggressive dull engagement as preferred by the user. The first engagement feature 7 is any feature within the plurality of paired engagement features 3 in such a way that the second engagement feature 8 is the feature directly next to the first engagement feature 7 within corresponding the plurality of paired engagement features 3. More specifically, the cavity section 5 of the first engagement feature 7 is adjacently connected to the cavity section 5 of the second engagement feature 8. As shown in
Depending upon different embodiments of the present invention, the plurality of intersection points 34 can be a sharp point or a curved section similar to a small radius. In some embodiment, the plurality of intersection points 34 may incorporate a third segment, wherein the third segment is preferably a straight portion connected between the plurality of paired engagement features 3 of the arbitrary bracing section 4 and the adjacent bracing section 4. Furthermore, the radial distance 35 of the plurality of intersection points 34 is 4 to 12 times larger than the first-length 36 for the bracing section 4 of the first engagement feature 7 or the second-length 37 for the bracing section 4 of the second engagement feature 8 as shown in
As shown in
In an alternative embodiment referring to
In separate embodiments of the present invention, the plurality of paired engagement features 3 may be paired in different ways. For example, in
In the present invention, the length of the bracing section 4 and the cavity section 5 and the corresponding angles between the bracing section 4 and the cavity section 5 may vary to create a sharper tooth-like shape for the plurality of paired engagement features 3. In the preferred embodiment, the bracing section 4 of the first engagement feature 7 is equal in length then a length of the bracing section 4 of the second engagement feature 8. Alternatively, the bracing section 4 of the first engagement feature 7 may be greater in length then a length of the bracing section 4 of the second engagement feature 8, or the bracing section 4 of the second engagement feature 8 may be greater in length than a length of the bracing section 4 of first engagement feature 7 to create a sharp aggressive engagement, or less aggressive dull engagement as preferred by the user. The first engagement feature 7 is any feature within the plurality of paired engagement features 3 in such a way that the second engagement feature 8 is the feature directly next to the first engagement feature 7 within corresponding the plurality of paired engagement features 3. More specifically, the bracing section 4 of the first engagement feature 7 is adjacently connected to the bracing section 4 of the second engagement feature 8. As shown in
It is understood that all components described within the present application pertaining to the male embodiment of
In reference to
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
Number | Name | Date | Kind |
---|---|---|---|
1798944 | Jackman | Mar 1931 | A |
2969250 | Kull | Jan 1961 | A |
3405377 | Pierce | Oct 1968 | A |
3495485 | Knudsen et al. | Feb 1970 | A |
3902384 | Ehrler | Sep 1975 | A |
3908489 | Yamamoto | Sep 1975 | A |
4074597 | Jansson | Feb 1978 | A |
4536115 | Helderman | Aug 1985 | A |
4598616 | Colvin | Jul 1986 | A |
4607547 | Martus | Aug 1986 | A |
4893530 | Warheit | Jan 1990 | A |
4927020 | Randy | May 1990 | A |
4930378 | Colvin | Jun 1990 | A |
5019080 | Hemer | May 1991 | A |
5219392 | Ruzicka et al. | Jun 1993 | A |
5228570 | Robinson | Jul 1993 | A |
5251521 | Burda et al. | Oct 1993 | A |
5398823 | Anders | Mar 1995 | A |
5481948 | Zerkovitz | Jan 1996 | A |
5501342 | Geibel | Mar 1996 | A |
5519929 | Bleckman | May 1996 | A |
5645177 | Lin | Jul 1997 | A |
5669516 | Horn | Sep 1997 | A |
5725107 | Dembicks | Mar 1998 | A |
5737981 | Hildebrand | Apr 1998 | A |
5743394 | Martin | Apr 1998 | A |
5782148 | Kerkhoven | Jul 1998 | A |
5829327 | Stanton | Nov 1998 | A |
5832792 | Hsieh | Nov 1998 | A |
6009778 | Hsieh | Jan 2000 | A |
6079299 | Sundstrom | Jun 2000 | A |
6092279 | Shoup | Jul 2000 | A |
6352011 | Fruhm | Mar 2002 | B1 |
6431373 | Blick | Aug 2002 | B1 |
6575057 | Ploeger | Jun 2003 | B1 |
6626067 | Iwinski | Sep 2003 | B1 |
6761089 | Bergamo | Jan 2004 | B2 |
6698316 | Wright | Mar 2004 | B1 |
6755098 | Huang | Jun 2004 | B2 |
6857340 | Wagner | Feb 2005 | B2 |
6951156 | Garg | Oct 2005 | B2 |
7000501 | Chen | Feb 2006 | B1 |
D524615 | Albertson | Jul 2006 | S |
7225710 | Pacheco, Jr. | Jun 2007 | B2 |
7331260 | Cheng | Feb 2008 | B2 |
7434494 | Snider | Oct 2008 | B1 |
7717278 | Kao | Jan 2010 | B2 |
D614931 | Su | May 2010 | S |
7788994 | Wright | Sep 2010 | B2 |
7841480 | Hsieh | Nov 2010 | B2 |
7913593 | Dahar et al. | Mar 2011 | B2 |
8166851 | Pchola | May 2012 | B2 |
8302255 | Lin | Nov 2012 | B2 |
8336709 | Geibel | Dec 2012 | B1 |
D745814 | Hsieh | Dec 2015 | S |
D776505 | Doroslovac | Jan 2017 | S |
9687968 | Doroslovac et al. | Jan 2017 | B2 |
D784106 | Doroslovac | Apr 2017 | S |
D794405 | Doroslovac et al. | Aug 2017 | S |
9718170 | Eggert et al. | Aug 2017 | B2 |
D798682 | Doroslovac et al. | Oct 2017 | S |
9873195 | Buxton | Jan 2018 | B1 |
9878441 | Kao | Jan 2018 | B1 |
D829069 | Doroslovac et al. | Sep 2018 | S |
10081094 | Doroslovac et al. | Sep 2018 | B2 |
10328554 | Todd | Jun 2019 | B2 |
D859944 | Kukucka et al. | Sep 2019 | S |
D859945 | Kukucka et al. | Sep 2019 | S |
D859946 | Kukucka et al. | Sep 2019 | S |
D859947 | Kukucka et al. | Sep 2019 | S |
D867841 | Kukucka et al. | Nov 2019 | S |
D868553 | Kukucka et al. | Dec 2019 | S |
10493519 | Ross | Dec 2019 | B2 |
D879577 | Kukucka et al. | Mar 2020 | S |
D880968 | Kukucka et al. | Apr 2020 | S |
D880977 | Kukucka et al. | Apr 2020 | S |
D885149 | Kukucka et al. | May 2020 | S |
D887233 | Kukucka et al. | Jun 2020 | S |
D887711 | Kukucka et al. | Jun 2020 | S |
D889224 | Kukucka et al. | Jul 2020 | S |
D889257 | Kukucka et al. | Jul 2020 | S |
D892578 | Kukucka et al. | Aug 2020 | S |
10780556 | Kukucka et al. | Sep 2020 | B2 |
10786890 | Kukucka et al. | Sep 2020 | B2 |
D899091 | Kukucka et al. | Oct 2020 | S |
10828766 | Kukucka et al. | Nov 2020 | B2 |
D904152 | Kukucka et al. | Dec 2020 | S |
D906781 | Kukucka et al. | Jan 2021 | S |
10882162 | Kukucka et al. | Jan 2021 | B2 |
D909842 | Kukucka et al. | Feb 2021 | S |
D910490 | Lim et al. | Feb 2021 | S |
10919133 | Kukucka et al. | Feb 2021 | B2 |
10967488 | Kukucka et al. | Apr 2021 | B2 |
11045925 | Kukucka et al. | Jun 2021 | B2 |
11154969 | Kukucka et al. | Oct 2021 | B2 |
20030209111 | Huang | Nov 2003 | A1 |
20040256263 | Shih | Dec 2004 | A1 |
20050098459 | Gorman | May 2005 | A1 |
20050103664 | Shih | May 2005 | A1 |
20050257357 | Huang | Nov 2005 | A1 |
20050274233 | Lin | Dec 2005 | A1 |
20060130618 | Hsieh | Jun 2006 | A1 |
20060156869 | Hsieh | Jul 2006 | A1 |
20060266168 | Pacheco, Jr. | Nov 2006 | A1 |
20070261519 | Cheng | Nov 2007 | A1 |
20080235930 | English | Oct 2008 | A1 |
20090007732 | Hsieh | Jan 2009 | A1 |
20090120885 | Kao | May 2009 | A1 |
20090220321 | Sakamura | Sep 2009 | A1 |
20110056339 | Su | Mar 2011 | A1 |
20110303052 | Chen | Dec 2011 | A1 |
20120060656 | Chang | Mar 2012 | A1 |
20120132039 | Su | May 2012 | A1 |
20120210826 | Stawarski | Aug 2012 | A1 |
20130047798 | Huang | Feb 2013 | A1 |
20140260832 | Hsiao | Sep 2014 | A1 |
20140311302 | Taguchi et al. | Oct 2014 | A1 |
20140331826 | Campbell | Nov 2014 | A1 |
20140360321 | Steinweg et al. | Dec 2014 | A1 |
20150135910 | Eggert et al. | May 2015 | A1 |
20150266169 | Campbell, II | Sep 2015 | A1 |
20150314429 | Doroslovac | Nov 2015 | A1 |
20150321332 | Lee | Nov 2015 | A1 |
20160067853 | Neto | Mar 2016 | A1 |
20160136792 | Harp | May 2016 | A1 |
20160223005 | Rathmann | Aug 2016 | A1 |
20160271764 | Huang | Sep 2016 | A1 |
20160339564 | Chen | Nov 2016 | A1 |
20170028538 | Lourenco et al. | Feb 2017 | A1 |
20170246733 | Shehab | Aug 2017 | A1 |
20170252905 | Doroslovac | Sep 2017 | A1 |
20170282337 | Johnson et al. | Oct 2017 | A1 |
20170312839 | Moss et al. | Nov 2017 | A1 |
20170312897 | Doroslovac et al. | Nov 2017 | A1 |
20180003241 | Goss | Jan 2018 | A1 |
20180141192 | Chang | May 2018 | A1 |
20180354022 | Ross et al. | Dec 2018 | A1 |
20180354102 | Kukucka et al. | Dec 2018 | A1 |
20190001469 | Cho et al. | Jan 2019 | A1 |
20190015961 | Kukucka et al. | Jan 2019 | A1 |
20190152033 | Kukucka et al. | May 2019 | A1 |
20190217449 | Lee | Jul 2019 | A1 |
20190283233 | Kukucka et al. | Sep 2019 | A1 |
20190337131 | Kukucka et al. | Nov 2019 | A1 |
20190375077 | Kukucka et al. | Dec 2019 | A1 |
20200070321 | Schulz | Mar 2020 | A1 |
20200078908 | Wu et al. | Mar 2020 | A1 |
20200269398 | Donovan | Aug 2020 | A1 |
20200298380 | Doroslovac et al. | Sep 2020 | A1 |
20200376648 | Kukucka et al. | Dec 2020 | A1 |
20200391360 | Kukucka et al. | Dec 2020 | A1 |
20210039245 | Kukucka et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
201612229 | Apr 2016 | AU |
201612720 | Jun 2016 | AU |
201612721 | Jun 2016 | AU |
2564093 | Apr 2007 | CA |
168071 | Dec 2016 | CA |
2898480 | Jul 2017 | CA |
2767068 | Mar 2006 | CN |
3630254 | Jun 2006 | CN |
201046555 | Apr 2008 | CN |
101208181 | Jun 2008 | CN |
101208181 | Jun 2008 | CN |
102395447 | Mar 2012 | CN |
102554833 | Jul 2012 | CN |
103639950 | Mar 2014 | CN |
204186727 | Mar 2015 | CN |
303924849 | Nov 2016 | CN |
303956827 | Dec 2016 | CN |
303984883 | Dec 2016 | CN |
207548606 | Jun 2018 | CN |
3911409 | Oct 1990 | DE |
9403220 | Apr 1994 | DE |
4321325 | Jan 1995 | DE |
29613327 | Sep 1996 | DE |
10321284 | Dec 2004 | DE |
202010006146 | Jul 2010 | DE |
202012103034 | Nov 2012 | DE |
102012104298 | Nov 2013 | DE |
102013021238 | Jun 2015 | DE |
0930132 | Jul 1999 | EP |
0930132 | Nov 2000 | EP |
1371453 | Dec 2003 | EP |
1731774 | Dec 2006 | EP |
1731774 | Dec 2006 | EP |
0930132 | Apr 2007 | EP |
2363245 | Sep 2011 | EP |
2363245 | Jul 2015 | EP |
906839 | Sep 1962 | GB |
1294764 | Nov 1972 | GB |
2366532 | Mar 2002 | GB |
2011143522 | Jul 2011 | JP |
2012157913 | Oct 2011 | JP |
2017042898 | Mar 2017 | JP |
2015180835 | Jul 2017 | JP |
200149097 | Jul 1999 | KR |
2152870 | Jul 2000 | RU |
2225786 | Jan 2001 | RU |
45671 | May 2005 | RU |
58510 | Nov 2006 | RU |
2387533 | Apr 2010 | RU |
116398 | May 2012 | RU |
180548 | Jun 2018 | RU |
16616 | Aug 1930 | SU |
201341127 | Oct 2013 | TW |
201813785 | Apr 2018 | TW |
201829135 | Aug 2018 | TW |
9416862 | Aug 1994 | WO |
1994016862 | Aug 1994 | WO |
1996010932 | Apr 1996 | WO |
1996026870 | Sep 1996 | WO |
1996027745 | Sep 1996 | WO |
1997010926 | Mar 1997 | WO |
1998012982 | Apr 1998 | WO |
999032264 | Jul 1999 | WO |
1999032264 | Jul 1999 | WO |
1999032264 | Jul 1999 | WO |
2001066312 | Sep 2001 | WO |
2004002687 | Jan 2004 | WO |
2005070621 | Aug 2005 | WO |
2006023374 | Mar 2006 | WO |
2006130490 | Dec 2006 | WO |
2006130490 | Dec 2006 | WO |
2010007402 | Jan 2010 | WO |
2011109040 | Sep 2011 | WO |
2013028875 | Feb 2013 | WO |
2015013246 | Jan 2015 | WO |
2015082283 | Jun 2015 | WO |
2015050942 | Sep 2015 | WO |
2016005180 | Jan 2016 | WO |
2016051080 | Apr 2016 | WO |
DM090809 | Apr 2016 | WO |
DM091188 | May 2016 | WO |
DM091189 | May 2016 | WO |
2016174615 | Nov 2016 | WO |
2017178997 | Oct 2017 | WO |
2017187388 | Nov 2017 | WO |
2018150360 | Aug 2018 | WO |
2018172831 | Sep 2018 | WO |
2019012486 | Jan 2019 | WO |
2019167032 | Sep 2019 | WO |
2019175652 | Sep 2019 | WO |
2020039281 | Feb 2020 | WO |
2020039285 | Feb 2020 | WO |
2020058777 | Mar 2020 | WO |
2020152516 | Jul 2020 | WO |
2020208608 | Oct 2020 | WO |
2020225800 | Nov 2020 | WO |
2021001696 | Jan 2021 | WO |
2021019500 | Feb 2021 | WO |
2021033152 | Feb 2021 | WO |
Number | Date | Country | |
---|---|---|---|
20220362910 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
62733507 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17231530 | Apr 2021 | US |
Child | 17873717 | US | |
Parent | 16548470 | Aug 2019 | US |
Child | 17231530 | US | |
Parent | 16514117 | Jul 2019 | US |
Child | 16548470 | US | |
Parent | 16255341 | Jan 2019 | US |
Child | 16514117 | US |