This invention is directed to hex headed bits for the use with hex headed fasteners as an anti-slip multi-directional drive bit for driving and removing of hex headed fasteners. Such tool bits known and used in the art are defines as six sided flat surfaces for engagement and correspondingly configured receptacles for rotation to tighten and loosen as needed. Such fastener bolt designs may be compromised during use due to metal fatigue, rust and general abuse imparted by improper tool use thus making them difficult to engage by a typical hex headed tool.
Prior art hex wrench and bit tool configurations can be seen in the following U.S. Pat. Nos.: 4,105,056, 6,152,000, 8,302,255 and 8,640,575.
In U.S. Pat. No. 4,105,056, a non-slip screwdriver can be seen having a grooved foot portion from the driver blade with oppositely disposed parallel engagement grooves there across defining recessed surfaces.
U.S. Pat. No. 6,152,000 is directed to a driver bit and driver tool having a plurality of projections formed on at least one surface of the fastener engagement shank portion to enhance the tool to fastener registration engagement.
U.S. Pat. No. 8,302,255 illustrates a hexagonal wrench head with longitudinal groove adjacent the respective side surfaces edge intersections there along.
U.S. Pat. No. 8,640,575 discloses a ball end hex wrench wherein a groove is formed within the contoured multiple sides longitudinally.
The present invention provides a driver bit for engaging and maintaining efficient contact within a fastener to transfer rotational force from the drive bit to the fastener while maintaining proper engagement therewith. Contoured tapered engagement surface channel cuts within alternating flat hex bit surfaces define directional engagement edges. Tapered end surface cuts on each of corresponding hex bit end surface define directional radial engagement edges. Both of the engagement edge configurations dig into the corresponding vertical and horizontal registering fastener surfaces pulling the driver bit down within the fastener maintaining fastener engagement during rotational torque input.
Referring to
A driver engagement socket 13, best seen in
The hex engaged shank portion 12 has a plurality of elongated flat fastener engagement surfaces 14 of equal transverse and longitudinal dimension there about so as to define a hex tool bit configuration known within the art. The fastener engagement socket is therefore hexagonal with a plurality of flat engagement surfaces spaced radially about the longitudinal axis of the shank portion 12.
Some of the flat hex engagement surfaces 14 have a contoured C-shaped fastener engagement channel cut 15 therein. Each of the contoured engagement channel cuts 15 extend angularly across its respective hexagonal surface 14 having a contoured transverse tapered interior surface 16. The engagement channel cut 15 is also tapered longitudinally between respective opposing intersecting flat engagement surfaces 14A and 14B, best seen in
The contoured transverse tapered interior surface 16 of the engagement channel cut 16 is of a modified C-shape defining a pair of upstanding elongated fastener engagement lateral edges 16A and 16B extending in angular spaced relation from the shank 12 fastener insert end 17. The so-configured engagement channel cut 15 being selectively cut in alternate engagement surfaces 14 about the hex bit 10 indirect contact thereby providing multiple points of enhanced non-slip fastener engagement as seen in
The contoured tapered interior surface 16 of each engagement channel cut 15 thereby defines both a primary fastener lateral engagement edge 16A and the secondary lateral edge 16B in spaced orientation thereby provides for the displacement of fastener material as needed during rotational engagement assuring a secure and active multiple point engagement regardless of the fastener's condition within the fastener's receiving area 18. The contoured tapered interior modified C-shape channel cut 16 is tapered transversely from the elongated primary fastener engagement lateral edge 16A upwardly to the so defined secondary fastener engagement lateral edge 16B as seen best in
It will be seen that the hereinbefore described alternating placement of the unique contoured engagement channel cut 15 in three of the fastener engagement surfaces 14 thereby having a snug contact with the corresponding undamaged interior surfaces of the fastener's receiving area 18 and three engagement surfaces with the contoured center engagement channel cut 15 which work in concert to achieve an enhanced grip within the engagement fastener regardless of the relative fastener's condition as hereinbefore described.
During operation, the angular orientation of the contoured engagement channel cut 15's lateral edges 16A will engage within the fastener F and pull the hex bit 10 increasingly into the fastener's receiving area 18 thus maintaining the enhanced trilateral contact so achieved. It will be evident that the hex bit 10 engagement channel cut 15 will protrude inwardly towards the fastener at a corresponding scale percentage based on the size of the tool. It will also be apparent that the multiple contoured engagement channel cut 15's lateral edges 16A and 16B will allow during use “pivoting” of the hex bit tool 10 when the fastener engagement surfaces are compromised thus, as noted, forcing the hex bit tool to embed itself in the fastener to form a deeper and thereby better grip engagement with the compromised fastener.
This combination of flat engagement surfaces 14 with multiple selective positioning engagement channel cuts 15 will thereby provide multiple points of enhanced focus engagement regardless of fastener's condition in either rotational direction superior grip and hold currently unavailable within the art.
Referring now to
A hex shaft 24 extends from the hex shank fastener engagement socket portion 22 having a plurality of contoured hex engagement surfaces 25, each with a concave non-engagement surface 26 which defines flat hex engagement surfaces 27 there between, as best seen in
Each of the tapered end engagement surfaces 30 define an edge 32 which have an angular incline step surface 33 with a ten-degree vertical inclination illustrated at A in
Based on the foregoing, the corresponding end engagement edges 32 are on a horizontal plane for selective progressive engagement within a damaged fastener F interior surface 34 as seen graphically in
Referring now to
A hex shaft 39 extends from the hex shank fastener engagement socket portion 37 having a plurality of contoured surfaces, each with a concave non-engagement surface 40 which defines flat hex engagement surfaces 41 there between, as best seen in
Each of the tapered end engagement surfaces 44 define an edge 46 which have an angular incline step surface 47 with a ten-degree vertical inclination illustrated in broken lines in
It will be seen that alternating hex surfaces 42A, 42B and 43C in spaced relation to one another. Each of the alternate hex surfaces have a recess area 48 extending from the corresponding abutting hex engagement surface 42 intersections edges 50 to a mid-point therebetween. The recess areas 48 each have a vertical step edge 51 as seen best in
Referring now to
It will thus be seen that a new and useful anti-slip socket wrench hex head bit configuration has been illustrated and described and it will be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit of the invention. Therefore, I claim:
This is a continuation in part application of Ser. No. 17/078,280 filed Oct. 23, 2020.
Number | Date | Country | |
---|---|---|---|
Parent | 17078280 | Oct 2020 | US |
Child | 17842089 | US |