This application is a 371 of International Patent Application No. PCT/CN2017/093594, filed Jul. 20, 2017, which claims benefit of Chinese Patent Application No. 201611191699.X, filed to the China Patent Office on Dec. 21, 2016, entitled “Anti-Splash Structure and Humidification Apparatus,” contents of both of which are hereby incorporated by reference in their entirety.
The present disclosure relates to a field of humidification, and in particular to an anti-splash structure and a humidification apparatus.
A water storage reservoir of a related humidifier is of an open structure, and is opposite to a mist outlet of the humidifier. When the humidifier tiles or tips over, the water in the water storage reservoir easily splashes out of the mist outlet, thereby causing inconvenience to a user; and particularly, when the humidifier is a heating type humidifier, a temperature of the water in the water storage reservoir is high, and it is possible that the hot water splashes out to scald the user; therefore, the related humidifier has a potential safety hazard.
Some embodiments of the present disclosure provide an anti-splash structure and a humidification apparatus that effectively prevents the water from splashing out and has good use safety.
To this end, some embodiments of the present disclosure provide an anti-splash structure.
An anti-splash structure is provided between a mist outlet and a water storage reservoir of a humidification apparatus, and includes a mist-guiding passage configured to connect the mist outlet and the water storage reservoir; a water blocking structure is provided in the mist-guiding passage; and the water blocking structure is located at a position opposite to the mist outlet and an opening of the water storage reservoir.
In an exemplary embodiment, a water storage space is provided on a sidewall of the mist-guiding passage; and when the humidification apparatus tilts over, water in the water storage reservoir can enter the water storage space under a flow diversion effect of the water blocking structure.
In an exemplary embodiment, the water blocking structure includes a first baffle plate; and the first baffle plate is located at the position opposite to the mist outlet and the opening of the water storage reservoir.
In an exemplary embodiment, one end, close to the water storage reservoir, of the mist-guiding passage is provided with a first end plate; a first port corresponding to a position of the opening of the water storage reservoir is provided on the first end plate; and the first baffle plate is fixed on the first end plate by a support structure.
In an exemplary embodiment, the support structure includes a plurality of support ribs provided at an edge of the first port; and the plurality of support ribs are distributed at intervals along a circumferential direction of the first port.
In an exemplary embodiment, one surface, close to the water storage reservoir, of the water blocking structure is an arc surface protruded toward a direction of the water storage reservoir.
In an exemplary embodiment, one end, close to the mist outlet, of the mist-guiding passage is provided with a second end plate; a second port corresponding to a position of the mist outlet is provided on the second end plate; a size of the second port is smaller than a size of an outline of the second end plate; and the second end plate is formed into the water storage space with the sidewall of the mist-guiding passage.
In an exemplary embodiment, a second baffle plate extending toward a direction of the water storage reservoir is provided at an edge of the second port; and the second end plate, the second baffle plate and the sidewall of the mist-guiding passage are enclosed into the water storage space.
In an exemplary embodiment, the second baffle plate is enclosed into a cylindrical structure at the edge of the second port.
In an exemplary embodiment, a connecting structure is provided on the anti-splash structure, and is configured to mount the anti-splash structure onto the humidification apparatus.
In an exemplary embodiment, a switch apparatus is provided on the anti-splash structure; and the switch apparatus is configured to be capable of switching on a circuit of the humidification apparatus when the anti-splash structure is mounted on the humidification apparatus in place.
According to a second aspect, an embodiment of the present disclosure provides a humidification apparatus.
A humidification apparatus includes the above-mentioned anti-splash structure.
In an exemplary embodiment, the humidification apparatus further includes a pedestal, and a box body mounted on the pedestal; the water storage reservoir is formed by sinking on the pedestal; the mist outlet is formed at a position, corresponding to an opening of the water storage reservoir, on a top of the box body; and the anti-splash structure is mounted on the pedestal and is located in the box body.
In an exemplary embodiment, the anti-splash structure is mounted on the pedestal by a connecting structure in a rotational manner.
The connecting structure includes a bump provided on one of the anti-splash structure and the pedestal, and a mounting groove provided on the other of the anti-splash structure and the pedestal; the mounting groove includes an inlet section and a rotary section connected with the inlet section; and the bump can enter the mounting groove from the inlet section, and is slid along the rotary section to mount the anti-splash structure on the pedestal.
In an exemplary embodiment, the humidification apparatus includes a heating component, configured to heat water in the water storage reservoir.
The anti-splash structure provided by the present disclosure is provided with the water blocking structure at the position, opposite to the moist outlet and the opening of the water storage reservoir, of the humidification apparatus; when the humidification apparatus tilts or tips over, owing to the blocking effect of the water blocking structure, the water in the water storage reservoir does not splash out of the mist outlet directly, and thus the water in the water storage reservoir can be prevented from splashing out to a certain extent to cause inconvenience to a user; and when the humidification apparatus is of a heating type, the use safety of the user can further be guaranteed.
According to the humidification apparatus provided by the present disclosure, because the above anti-splash structure is adopted, the water can be prevented from splashing out of the mist outlet to a certain extent; and therefore, the humidification apparatus is convenient for the user to use and the use safety of the humidification apparatus is guaranteed.
With reference to the description of accompanying drawings on embodiments of the present disclosure, the above and other objectives, characteristics and advantages of the present disclosure will become apparent. In the drawings:
In the drawings, 1: mist-guiding passage; 2: first baffle plate; 21: arc surface; 3: first end plate; 31: first port; 32: cylindrical structure; 33: mounting groove; 331: inlet section; 332: rotary section; 34: limit block; 4: support rib; 5: water storage space; 6: second end plate; 61: second port; 7: second baffle plate; 8: switch apparatus; 9: mounting bracket; 10: pedestal; 101: water storage reservoir; 102: bump; 11: box body; 111: mist outlet; 12: cylindrical structure; 13: water tank structure; 14: heating component; 15: sealing ring; 16: anti-splash structure.
The present disclosure will be described below based on the embodiments. However, the present disclosure is not merely limited to these embodiments. Some particular detail portions are described in detail in the following detailed description of the present disclosure. A person skilled in the art may also completely understand the present disclosure if there is no description on these detail portions. In order to avoid confusing the essence of the present disclosure, well-known method, process, procedure and element are not described in detail.
In addition, a person of ordinary skill in the art should understand that the accompanying drawings provided herein are merely for illustration, and the accompanying drawings are unnecessarily drawn proportionally.
Unless otherwise specified explicitly herein, words such as “include” and “comprise” in the whole specification and claims should be understood as a meaning of inclusion rather than an exclusive or exhaustive meaning, i.e., an “include but not limited to” meaning.
In the description of some embodiments of the present disclosure, it should be understood that the terms “first” and “second” are merely for description and cannot be understood as indicating or implying a relative importance. Besides, in the description of the present disclosure, unless otherwise stated, “a plurality of” means two or more.
In some embodiments of the present disclosure, “upper”, “lower” and “top” are orientations when the humidification apparatus is used normally and may be referred to the orientations indicated in
Some embodiments of the present disclosure provide an anti-splash structure and a humidification apparatus provided with the anti-splash structure. As shown in
In an exemplary embodiment, the anti-splash structure includes a mist-guiding passage 1 configured to connect the mist outlet 111 and the water storage reservoir 101, and the water blocking structure is provided in the mist-guiding passage 1. A specific shape of the mist-guiding passage 1 is not limited, provided that a passage for water mist can be formed and vapor formed at the water storage reservoir 101 is discharged from the humidification apparatus by the mist-guiding passage 1 and the mist outlet 111. For example, the mist-guiding passage 1 may be of a cylindrical shape shown in
A specific structure of the water blocking structure is not limited provided that the effect of blocking the water can be implemented and the water in the water storage reservoir 101 is prevented from directly rushing out of the mist outlet 111. In an exemplary embodiment, as shown in
In an exemplary embodiment, in order to fix the first baffle plate 2 conveniently, one end, close to the water storage reservoir 101, of the mist-guiding passage 1 is provided with a first end plate 3; a first port 31 corresponding to a position of the opening of the water storage reservoir 101 is provided on the first end plate 3; and the first baffle plate 2 is fixed on the first end plate 3 by a support structure. A specific form of the support structure is not limited provided that a specific function of the first baffle plate 2 can be implemented. In addition, with the support structure, a blocking effect can further be formed for water rushed out of the water storage reservoir 101. In an exemplary embodiment, the support structure includes a plurality of support ribs 4 provided at an edge of the first port 31; and the plurality of support ribs 4 are distributed at intervals along a circumferential direction of the first port 31, so as to support and fix the first baffle plate 2 on one hand; and on the other hand, the support ribs 4 distributed along the circumferential direction can also form a blocking effect to the water, thereby further improving the anti-splash effect. In order to improve the structural reliability of the support ribs 4 and the fixing reliability of the first baffle plate 2, widths of the support ribs 4 towards a direction of the first baffle plate 2 are gradually reduced.
In an exemplary embodiment, one surface, close to the water storage reservoir 101, of the water blocking structure is an arc surface 21 protruded toward a direction of the water storage reservoir 101, thereby guiding the water rushed out of the water storage reservoir 101 and buffering the water on one hand. On the other hand, the water is moved toward the sidewall of the mist-guiding passage 1 under a flow diversion effect of the arc surface 21, thereby improving the anti-splash effect. In an exemplary embodiment, as shown in
In an exemplary embodiment, a water storage space 5 is provided on a sidewall of the mist-guiding passage 1. When the humidification apparatus tilts over, the water in the water storage reservoir 101 can enter the water storage space 5 under the flow diversion effect of the water blocking structure; and a storage space is provided by the water storage space 5 for the water flowed out of the water storage reservoir 101, thus further preventing the water from directly splashing out of the mist outlet 111.
A forming manner of the water storage space 5 is not limited specifically provided that the water enters the water storage space 5 under the flow diversion of the water blocking structure. For example, in one embodiment, the sidewall of the mist-guiding passage is sunken to form a concave portion and the concave portion is formed into the water storage space. In another embodiment, as shown in
In an exemplary embodiment, a second baffle plate 7 extending toward the direction of the water storage reservoir 101 is provided at an edge of the second port 61; and thus the second end plate 6, the second baffle plate 7 and the sidewall of the mist-guiding passage 1 are enclosed into the water storage space 5. With the blocking effect of the second baffle plate 7, the anti-splash effect can further be improved. A specific structure of the second baffle plate 7 is not limited. In an exemplary embodiment, the second baffle plate 7 at the edge of the second port 61 is enclosed into a cylindrical structure, a lower port of the cylindrical structure is opposite to the first baffle plate 2, and in an exemplary embodiment, a diameter of the lower port is smaller than an outer diameter of the first baffle plate 2. In this way, even though the humidification apparatus tilts over with a large angle (greater than 90°), the water in the water storage reservoir 101 is also flowed to the water storage space 5 enclosed by the second baffle plate 7 with the cylindrical structure, the second end plate 6 and the sidewall of the mist-guiding passage 1 under the guiding effect of the first baffle plate 2. In an exemplary embodiment, in order to increase the volume of the water storage space 5 and prevent the water in the water storage reservoir 101 from entering the second baffle plate 7 of the cylindrical structure, the second baffle plate 7 of the cylindrical structure is of a conical structure of which the size is shrunk gradually toward a direction of the first baffle plate 2.
In an exemplary embodiment, the sidewall of the mist-guiding passage 1 is obliquely provided, so that the sidewall of the mist-guiding passage 1 is tiled over gradually toward a radial outside from a direction of the water storage reservoir 101 to a direction of the mist outlet 111. The sidewall provided obliquely can guide the water to a certain extent, so that the water is flowed to the direction of the water storage reservoir 101 as much as possible.
In an exemplary embodiment, a connecting structure is provided on the anti-splash structure, and is configured to mount the anti-splash structure onto the humidification apparatus. A specific structure of the connecting structure is not limited provided that the anti-splash structure can be mounted conveniently and reliably (which will be described hereinafter).
In an exemplary embodiment, a switch apparatus 8 is provided on the anti-splash structure; and after the anti-splash structure 16 is mounted on the humidification apparatus in place, the switch apparatus 8 can switch on a circuit of the humidification apparatus. If no anti-splash structure is mounted, the humidification apparatus cannot be started, and thus the use safety of the humidification apparatus is improved. A specific structure of the switch apparatus 8 is not limited, and in an exemplary embodiment, the switch apparatus 8 is a proximity switch. The switch apparatus 8 is structured simply and is provided conveniently. A specific position of the switch apparatus 8 is not limited provided that it can be matched with a structure on the humidification apparatus to implement the above function. For example, in the embodiment shown in
In an exemplary embodiment, the first end plate 3, the mist-guiding passage 1 and the second end plate 6 may be of an integrally moulded structure, and may also be of a split structure for the purpose of machining and assembling conveniently, and are assembled together by a clamping structure, a splicing structure and the like. When the split structure is provided, a sealing structure is provided at a junction of each component so as to guarantee the sealing effect of the anti-splash structure.
In an exemplary embodiment, a humidification apparatus provided by the present disclosure includes the above-mentioned anti-splash structure. In a structure of the humidification apparatus, as shown in
As shown in
A specific connection relationship between the anti-splash structure 16 and the pedestal 10 is not limited. In an exemplary embodiment, the anti-splash structure 13 is mounted on the water storage reservoir 101 of the pedestal 10 by a connecting structure in a rotational manner. In an exemplary embodiment, as shown in
Besides, in order to guarantee the sealing in mounting of the anti-splash structure 16, a sealing structure is provided between the anti-splash structure 16 and the water storage reservoir 101. In an exemplary embodiment, the sealing structure is a sealing ring 15 provided on the anti-splash structure 16. Specifically, a limit block 34 is provided at a radial outside of the cylindrical structure 32 of the first end plate 3 of the anti-splash structure 16. In an exemplary embodiment, the limit block 34 is of an annular shape. The sealing ring 15 is provided between the limit block 34 and the cylindrical structure 32. When the anti-splash structure 16 is mounted, a top structure of the water storage reservoir 101 is inserted between the limit block 34 and the cylindrical structure 32.
It is easily understood by the person skilled in the art that the above preferable solution may be combined ad overlapped freely if there is no conflict.
It should be understood that the above embodiments are merely for illustration but not for limitation. On the premise of not departing from the basic principles of the present disclosure, the person skilled in the art may make various obvious or equivalent modifications or replacements for the above details, ad all should be included in a scope of the claims of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201611191699.X | Dec 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/093594 | 7/20/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/113287 | 6/28/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3325976 | West | Jun 1967 | A |
3729138 | Tysk | Apr 1973 | A |
3774602 | Edwards | Nov 1973 | A |
3788543 | St. Amand | Jan 1974 | A |
4087495 | Umehara | May 1978 | A |
4708826 | Mizoguchi | Nov 1987 | A |
4752422 | Uchida | Jun 1988 | A |
5067169 | Chiu | Nov 1991 | A |
5108663 | Chiu | Apr 1992 | A |
5195515 | Levine | Mar 1993 | A |
5217165 | Takahashi | Jun 1993 | A |
5343551 | Glucksman | Aug 1994 | A |
5361989 | Merchat | Nov 1994 | A |
5464572 | Bonzi | Nov 1995 | A |
5970211 | Ritsher | Oct 1999 | A |
6019355 | Birdsell | Feb 2000 | A |
9776144 | Lu | Oct 2017 | B1 |
10571138 | Chiu | Feb 2020 | B2 |
10946115 | Chiu | Mar 2021 | B2 |
20020085839 | Glucksman | Jul 2002 | A1 |
20030042629 | Eom | Mar 2003 | A1 |
20050116059 | Lin | Jun 2005 | A1 |
20050258554 | Bachert | Nov 2005 | A1 |
20060118977 | Huang | Jun 2006 | A1 |
20060213508 | Murray | Sep 2006 | A1 |
20060249144 | DeHaan | Nov 2006 | A1 |
20070035044 | Chiu | Feb 2007 | A1 |
20070278702 | French | Dec 2007 | A1 |
20080223953 | Tomono | Sep 2008 | A1 |
20100133162 | Huang | Jun 2010 | A1 |
20110147482 | Matsuura | Jun 2011 | A1 |
20120222548 | Lev | Sep 2012 | A1 |
20130300005 | Hou | Nov 2013 | A1 |
20130330238 | Lee | Dec 2013 | A1 |
20150223660 | Scholten | Aug 2015 | A1 |
20160356514 | Cai | Dec 2016 | A1 |
20170082306 | Murakami | Mar 2017 | A1 |
20190049133 | Cai | Feb 2019 | A1 |
20190072289 | Lai | Mar 2019 | A1 |
20190249888 | Chiu | Aug 2019 | A1 |
20190299230 | Song | Oct 2019 | A1 |
20190301756 | Luo | Oct 2019 | A1 |
20200139387 | Song | May 2020 | A1 |
20200368383 | Feng | Nov 2020 | A1 |
20200370769 | Yang | Nov 2020 | A1 |
20210389020 | Zhang | Dec 2021 | A1 |
20220003454 | Wang | Jan 2022 | A1 |
20220048794 | Zhang | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
201254069 | Jun 2009 | CN |
102589075 | Jul 2012 | CN |
102589075 | Jul 2012 | CN |
102095235 | Feb 2013 | CN |
202860748 | Apr 2013 | CN |
104197459 | Dec 2014 | CN |
204100467 | Jan 2015 | CN |
104776540 | Jul 2015 | CN |
104776540 | Jul 2015 | CN |
104964407 | Oct 2015 | CN |
205261826 | May 2016 | CN |
106500228 | Mar 2017 | CN |
206387053 | Aug 2017 | CN |
104776540 | Dec 2017 | CN |
209857306 | Dec 2019 | CN |
3141596 | Jul 1982 | DE |
1055431 | Nov 2000 | EP |
2278232 | Jan 2011 | EP |
2007162997 | Jun 2007 | JP |
20050047941 | May 2005 | KR |
100836684 | Jun 2008 | KR |
WO-2013163894 | Nov 2013 | WO |
WO-2019011146 | Jan 2019 | WO |
WO-2020073725 | Apr 2020 | WO |
Entry |
---|
The extended European search report for Application No. 17882968.5, dated Jun. 19, 2020, European Patent Office, Germany (8 pages). |
Chinese search report dated Aug. 26, 2021 in Chinese application No. 201611191699X (3 pages). |
International Search Report, with a mailing date of Oct. 25, 2017, in International application No. PCT/CN2017/093594, filed on Jul. 20, 2017. |
Number | Date | Country | |
---|---|---|---|
20210293424 A1 | Sep 2021 | US |