The inventive embodiments of the systems and methods disclose here are not limited to the application of particular polymers, formulation, liquid, product, or application temperatures. As used here a “substance”, at the temperature of application or dispensing, tends to form strings when flow of the substance is stopped temporarily or permanently. For example, inventive embodiments of the applicators disclosed here can be used equally well for dispensing honey at ambient temperatures or applying hot melt glue at elevated temperatures.
In one embodiment, the invention relates to a substance applicator configured to disrupt the flow of a substance by the flow of a gas out of a gas port. In some embodiments, the gas port is located between a nozzle of the applicator and the work surface. In one embodiment, the gas port can be located permanently in front of the nozzle. The gas port can be adapted to be enveloped by the substance (that is, the substance flows around the gas port) to disrupt flow of the substance.
As
In one embodiment, the gas flow 6 breaks the flow of the substance 4. Preferably, the disruption occurs while the substance 4 is still flowing to the nozzle 1 and the working surface 20. The disruption can be momentary, and the flow of substance 4 to the working surface can resume quickly. The momentary disruption can be used for the dispensing of substances into containers on a moving conveyer belt, for example.
The velocity and/or volume of the gas flow 6 can be chosen to suit a given application. It should be noted that if the velocity of the gas flow 6, described in terms of the gas pressure before the outlet of the gas port 3, is too low, then the forming string 5 might not break at the gas port 3. In this situation, the flow of the substance 4 might be disturbed but not sufficiently disrupted. For example, it has been observed that a gas pressure of 5-pounds-per-square-inch (psi) in a prototype apparatus was not sufficiently high to break the string 5. Another test with the same prototype at 50 psi was suitable to prevent stringing. There is no theoretical upper limit on the pressure (and therefore flow rate) of the gas in the port tubing. The preferred upper and lower pressure limits will be determined by several factors including gas source, pressure drop in the tubing, material of construction, temperature, and viscous fluid properties.
In one embodiment, a low pressure steady gas flow 6 from the gas port 3 prevents accidental back-flow up, or plugging of, the gas port 3. Preferably, the gas flow 6 is not great enough to disrupt flow of the substance 4. However, when needed, the gas flow 6 can be increased and then the flow of the substance 4 can be disrupted. In some embodiments, the gas used to prevent string formation is heated, which can allow the use of lower gas pressure, gas flow-rate, and time. Otherwise, without heating, the gas flow 6 may actually cool the substance 4 at the tip of the gas port 3 and the gas may need to operate at a higher pressure or flow rate in order to disrupt the flow of the substance 4. The heat source for the gas can be internal or external to the applicator. It is preferred that in an applicator where the substance 4 is heated, as in a hot melt glue gun, that the substance heater and/or the heated substance 4 be used to heat the gas. This can be accomplished, for example, by having a gas chamber adjacent to the substance heater or by locating the gas flow tubing next to the heater or within the heated substance.
In some situations it can be desirable for the gas flow 6 to occur at regular intervals. This method is preferable in certain applications where, for example, a conveyer moves boxes past the applicator. The gas flow 6 can be configured to cause a disruption in the substance flow in the space between boxes. Alternatively, the gas flow 6 can be configured to activate only at the request of an operator. This situation can describe typical home use of a hot melt glue gun. The user may prefer for the gas flow 6 to occur as the glue flow is stopped and the gun is lifted away from the work surface, thus breaking any forming string 5.
In one embodiment, the gas flow 6 breaks string precursor 5 by passing out of the gas port 3. In some embodiments, the gas flow 6 can be air, nitrogen, carbon dioxide, halogenated hydrocarbons, freons, steam, or combustion gases, for example. The preferred gas is preferably suitable for use with any given gas dispenser or container. For example, where a compact, pressured gas cylinder is the preferred gas source, then widely available carbon dioxide cartridges are suitable. However, where the source of the gas is a battery operated piston, then ambient air can be a suitable gas. The mention of gases and gas sources is not exhaustive and should not be construed to limit the inventive systems and methods described here.
Some sources of gas can be adopted from widely-available commercial products. A spring-driven and/or motor-driven piston may compress the ambient air and be immediately forced out of the gas port 3. Examples of this type of gas source are the manually compressed and battery powered Airsoft® guns. A cylinder or cartridge of compressed air can be used to provide the gas to the gas port 3. An example is carbon dioxide powered BB guns. The combustion gases from the burning of fuel, instead of driving a piston, could exit out of the gas port 3. An example would be a modified internal combustion nail gun or internal combustion engine. Pressurized steam created by heating water in an enclosed environment, a modified steam engine for example, could exit the gas port 3. Air either compressed by a manually operated spring via a piston or by a hand pump could provide the gas flow 6. For example, a manual Airsoft® pistol or a Nerf® dart-type gun can provide the gas flow 6. Yet another source can be an air compressor to make the compressed air either immediately adjacent to, or within or remotely from the applicator, and providing the air via tubing. An example is an air compressor used to make the pressurized air for automobile air horns. The selected source of gas will preferably be suited to the applicator requirements. The gas source can vary and the examples above do not limit the scope of this application.
The gas port 3 can have various configurations. When the nozzle 1 is linear, the gas port 3 can be formed in a linear fashion. In one embodiment, the substance 4 flows down both sides of the linear gas port 3, thus, enveloping the gas port 3. Alternatively, for the linear nozzle 1, the gas port 3 can be a series of ports (not shown) in close proximity. Preferably the ports are each enveloped by the flowing viscous liquid.
For hot melt glue guns 80, 85, for example, the disruption of the flow of glue occurs preferably after the application of the glue is stopped and the glue gun 80, 85 is being lifted away from the work surface 20. In this manner, any string precursor 5 between the nozzle 1 and the work surface 20 is broken. In some embodiments, a user can activate a manual switch or trigger (not shown) when lifting the glue gun 80, 85 away from the work surface 20. Alternatively, a level switch (not shown) within the gun 80, 85 can be configured to sense a change in the angle of the glue gun 80, 85 when the user lifts the gun 80, 85, thus automatically activating the gas flow 6 to the gas port 3.
In a common hand-held hot melt glue gun 80, 85, a nozzle 1 is a singular hole of about 1 to 5 millimeters in diameter. In some embodiments, for a hot melt glue gun 80, 85 for example, a preferred gas port 3 is tubing. When the gas port 3 is the terminus of a piece of tubing, then the inside and outside diameter of the tubing may be a variety of sizes. In one embodiment, the gas port 3 is tubing that terminates between 0.5 to 30 millimeters in front of the nozzle 1 (that is, in the direction of glue flow). In another embodiment, the tubing terminates between 2 to 15 millimeters in front of the nozzle 1. A preferred embodiment, in order to reduce the cost and complexity of the apparatus, is for the nozzle to reside at a fixed position that terminates in front of the nozzle; that is, the tubing does not retract or withdraw into the nozzle.
The material of the tubing for the gas port 3 is preferably selected to meet given design requirements. In some embodiments, a hot melt glue gun 80, 85 can use tubing made of a material that does not melt or unduly soften at the application temperatures. For such an application stainless steel tubing can be used. In other embodiments, a plastic material can be used for the tubing. For example, polytetrafluoroethylene is a plastic material that can be used with a typical hot melt glue gun. Lower manufacturing costs may dictate that yet another material be chosen for the tubing for the gas port 3.
As a general application, when tubing is the preferred method of delivering gas to the gas port 3, there are several possibilities to route the tubing to the space in front of the nozzle 1. When minimal or no modification to the nozzle 1 is preferred, the tubing can simply approach at an angle to the path of the substance 4 and into the space between the nozzle 1 and the work surface. For a similar but more compact configuration, the tubing can be positioned adjacent to the exterior of the nozzle 1. In some embodiments, the tubing can be located inside the nozzle 1 and the body of the applicator. For example, in a hot melt glue gun 80, 85, the tubing could enter the area of the melted glue anywhere from the side of the nozzle 1 itself to the entry point where the solid glue stick 12 enters the heater body. If there are anti-drip valves or other features in the nozzle 1 or melted glue area, these features can either be configured to fit around the tubing, or a groove can be cut into the interior body of the nozzle 1 or melted glue area, thus allowing the tubing to bypass the valve or other feature without negating interfering with its function.
Referencing
As a general application, the exact type of valve used to activate the flow of gas is not limited by this application. A valve assembly can include solenoids, tubing pinch valves, ball valves, and spring seated valves, for example. Examples of the valves useful for this invention include those in aerosol spray cans, the ball valves in Super Soaker-type water guns, the valves in Nerf air guns, the valve and regulator in AirDr CO2 keyboard duster, and the valve and regulator in Visage Nail Art Airbrush. It may be preferred that a valve be “momentary”, that is, only providing a flow of gas while the valve is actuated, or only providing a short burst a gas flow regardless of how long the valve is actuated. Releasing the valve then allows for another flow of gas to occur on the next valve actuation.
Turning to
As shown in
In some embodiments, the technology disclosed here can be used with multiport nozzles.
Turning to
As shown in
It should be understood by those of ordinary skill in the relevant technology, that electrical pumps, gas cylinders, combustion gases, steam, and mechanical devices that operate by a user's energy can also facilitate the provision of gas to the gas port 3. Such devices can include, but are not limited to, hand pumps and foot pumps and their intermediate gas storage devices such as rubber bladders and air chambers.
The embodiments described herein are examples provided to meet the descriptive requirements of the law and to provide examples. The embodiments described herein are examples provided in order to explain and to facilitate the full comprehension and enablement of all that is disclosed herein and the description of these examples is not intended to be limiting in any manner. Therefore, the invention is intended to be defined by the claims that follow and not by any of the examples or terms used herein. Additionally, terms utilized herein have been used in their broad respective senses unless otherwise stated. Therefore, terms should not be read as being used in any restrictive sense or as being redefined unless expressly stated as such.
This application claims an invention which was disclosed in Provisional Application No. 60/826,901 entitled “ANTI-STRINGING APPLICATOR”, filed Sep. 25, 2006, and U.S. Provisional Application No. 60/887,340, entitled “ANTI-STRINGING APPLICATOR”, filed Jan. 30, 2007. The benefit under 35 USC §119(e) of the United States provisional applications are hereby claimed, and the aforementioned applications are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60826901 | Sep 2006 | US | |
60887340 | Jan 2007 | US |