The present invention is directed towards an apparatus and method to prevent the retrieval of paper currency that is inserted into a vending machine adapted to accept paper currency in exchange for goods or services.
The popularity and presence of vending machines in the self-service market is constantly increasing. Vending machines are used, for example, to dispense change, food, drinks, and other goods, as well as to initiate services such as at a laundromat or car wash. As such machines are meant to provide self-service, they are often located in environments that are unattended by representatives of the owners of the machines. These unattended vending machines are an inviting target for those individuals who would seek to cheat the machines into dispensing their associated goods or services without properly paying for them.
One method that is employed in this type of theft is to attach a tether or string to a valid currency. In general, vending machines include mechanisms to transport paper currency along a paper currency path, validate the currency, and then store the currency. In this theft method, a tethered currency is inserted into a vending machine and as the paper currency travels along the currency path and into the storage mechanism, the tether trails behind and remains in the currency path and extends outside the vending machine. After the machine has dispensed the good or service, the tether is used to remove the valid currency from the machine. The prevention of theft by this method of removing valid paper currency from a vending machine is the goal of this invention.
Different anti-tether devices exist in the prior art. One such device is disclosed in U.S. Pat. No. 4,348,656 issued to Gorgone et al. This device involves a barrel located along the path taken by the paper currency. After the paper currency passes through the barrel, the barrel is caused to rotate about an axis perpendicular to the direction of the paper currency path. The barrel is prevented from being rotated in a reverse direction when the tether is pulled by mechanical means such as gears or needle bearings.
However, the barrel device suffers from several deficiencies. The mechanical barrel substantially increases the path along which the paper currency must travel, thereby creating greater space requirements in an already constrained environment within the vending machine. Further, the barrel requires additional mechanical anti-rotation equipment that adds expense and can be subject to malfunction. The device is also difficult to install as an after-market addition to existing vending machines because of the required increase in the length of the currency path.
An anti-tether apparatus according to an aspect of the invention, for use in a vending machine that dispenses a good or service in exchange for paper currency, includes a generally circular and rotatable disk with a slot. Paper currency that is accepted by a vending machine is passed through the slot and the disk is then rotated on an axis substantially parallel to the direction in which the paper currency passed through the slot. The invention provides a method of sensing the presence of a tether located in the slot and, when detected, the vending machine will not dispense a product or service. Further, if a product or service is dispensed despite the presence of a tether, the invention mechanically prevents the tethered paper currency from being withdrawn. The invention accomplishes these functions consistently and without the need for increased paper currency path length and without the need for additional mechanical components to prevent reverse rotation.
The anti-tether apparatus is located between a paper currency acceptor that receives paper currency inserted by a customer, and a paper currency stacker that stores the received paper currency. A paper currency validator is located within the paper currency acceptor and establishes the authenticity of the inserted paper currency. The vending machine also includes electronic controls that monitor the anti-tether apparatus and initiate the dispensing of a product or service if a tether attached to the paper currency is not detected. The anti-tether apparatus can be used on newly made vending machines or can be an add-on to existing vending machines.
Referring now specifically to the drawings and the illustrative embodiments depicted therein, an anti-tether apparatus 12 is one of the paper currency handling components, identified by reference numeral 50 (
As seen in
The geometry of disk 14 can be seen in
In operation, a paper currency 10a is fed into currency insertion opening 9 of paper currency acceptor 11, typically in a generally horizontal orientation. The paper currency 10a is then movably advanced along path 8 to an internal paper currency validator, which determines the authenticity of the paper currency 10a. If the paper currency 10a is found to be invalid, it is ejected out currency insertion opening 9. If the paper currency 10a is determined to be valid, the paper currency 10a is movably discharged out of the paper currency acceptor 11. The paper currency 10b then passes in a substantially perpendicular orientation through slot 15 of rotatable disk 14, which is normally aligned with openings 22 and shall be referred to as the home position. The paper currency 10c then enters paper currency stacker 40. If a tether is attached to paper currency 10c, it will remain in the openings 22 of front plate 17, back plate 16, and frame 13 and the slot 15 of disk 14 when paper currency 10c passes into currency stacker 40. Further, the tether will be located in the paper currency path 8 of paper currency acceptor 11 and extend out of currency insertion opening 9.
After a brief delay from when the paper currency 10b exits currency acceptor 11, disk 14 is caused to rotate by motor 18. If a tether is not attached to paper currency 10c, disk 14 will rotate freely. A vend function will be initiated upon completion of at least one full revolution of disk 14 within a predetermined time limit as monitored by the vending machine system control computer 46. The vending machine controls are described below.
If a tether is attached to paper currency 10c, the tether will be located in openings 22 and slot 15 when paper currency 10c enters currency stacker 40. When disk 14 is caused to rotate in a clockwise direction the tether will create a shearing resistance between slot 15 and trailing edge 25 of disk 14 and non-moving edges 24 of frame 13 and back plate 16. As motor 18 is of low torque, this shearing resistance will tend to stall motor 18. Alternatively, because of the tether, if disk 14 does make one complete revolution, it should do so outside of the predetermined time limit of the control system. The vending machine apparatus 45 will not perform the vend function if motor 18 stalls or disk 14 makes a complete revolution outside of the predetermined time limit. Further, upon motor 18 stalling or disk 14 rotating outside of the predetermined time limit, the vending machine apparatus 45 may be adapted to send an external signal. Such external signal can be any or all of contacting service personnel, emitting an audible alarm, or notifying law enforcement personnel.
If disk 14 makes at least one revolution within the predetermined time limit despite the presence of a tether attached to currency 10c the vend function will be initiated. Such a result is possible if the tether located in openings 22 and slot 15 does not create sufficient shearing resistance to slow the rotation or stall motor 18 when disk 14 is caused to rotate. However, bounded slot 15 and trailing edge 25 will cause the tether to be forced into the area defined by elevated portion 20 of front plate 17. When disk 14 makes the complete revolution the tether will be wound around shaft 19, which attaches disk 14 to motor 18. Retrieval of currency 10c by pulling on the tether is thereby prevented.
Referring now to
The system control computer 46 monitors the position and duration of spinning of disk 14 by the signal sent by disk position sensor 30 on line 34. If the system control computer 46 does not detect that disk 14 returned to the home position, as when a tether causes motor 18 to stall, the system control computer 46 will not initiate the vend function. Additionally, if disk 14 is not detected as returning to home, the system control computer 46 will de-energize the 120VAC system, which will in turn release relay 31, thereby cutting the 12VDC to motor 18. If disk 14 does return to the home position, but does not do so within a predetermined time limit as monitored by the system control computer 46, the system control computer 46 will not initiate the vend function. If the disk returns to the home position within the predetermined time limit the system control computer will initiate the vend function.
The control schematic in
Therefore, in summary, it can be seen that the anti-tether apparatus 12 of the present invention is located between a paper currency acceptor 11 and a paper currency stacker 40 and includes a rotatable disk 14 with slot 15 that is normally aligned with paper currency path 8. After paper currency 10c is passed through slot 15 of disk 14, disk 14 is caused to rotate by motor 18. The system control computer 46 of vending machine 45 monitors the position of disk 14 and the time it takes to rotate. If the system control computer 46 determines that disk 14 made at least one complete revolution within a predetermined time limit, the vend function will be initiated. However, a tether attached to paper currency 10c will remain in slot 15 of disk 14 after paper currency 10c has passed through slot 15. In this situation, the tether will prohibit the rotation of disk 14 and disk 14 may either not rotate a complete revolution because the motor stalls, or it will require a greater length of time to make the complete revolution. The system control computer 46 will detect that disk 14 did not make a complete revolution or that it required too much time to rotate and, therefore, the system control computer 46 will not initiate the vend function. If disk 14, despite the presence of a tether, is able to make at least one complete revolution within the time limit the vend function will be initiated. However, the rotation of disk 14 will cause the tether to be wound around shaft 19 of motor 18 and will prevent retrieval of paper currency 10c when the tether is pulled in a reverse direction.
The above is a description of the preferred embodiment. One skilled in the art will recognize that changes and modifications may be made without departing from the spirit of the disclosed invention, the scope of which is to be determined by the claims which follow and the breadth of interpretation that the law allows.
Number | Name | Date | Kind |
---|---|---|---|
3715031 | Okkonen | Feb 1973 | A |
4348656 | Gorgone et al. | Sep 1982 | A |
4513439 | Gorgone et al. | Apr 1985 | A |
4754126 | Caldwell | Jun 1988 | A |
5760380 | May | Jun 1998 | A |
6668998 | Mosteller et al. | Dec 2003 | B1 |