The present invention relates to transport vehicles with grating decks, and in particular, to security devices, such as an anti-theft device, for securing the grating to the transport vehicle, such as a railcar.
Transport railcars, such as multi-deck railroad flatbeds for transporting road vehicles, commonly have a support surface or deck formed by a grating of steel rods coupled to the deck surface. The panels are secured to the transport railcar by a grating connector, such as a hinge connector that permits the grating to be raised and tilted to facilitate the removal of debris from the deck surface. An example of a grating hinge connector is described in U.S. Pat. No. 5,312,213 to Winsor, which is incorporated herein by reference.
The gratings of transport railcars are frequently subject to theft as fencing material, concrete reinforcement, or scrap metal. Theft can be a particular problem in the railroad industry, where railcars are often stored on track sidings with little security. Bi-level auto-rack railcars may have as many as 28 grating panels that are about 12½ feet long and weigh about 75 pounds, or a total of about one ton of scrap metal. Consequently, railcar gratings can be an attractive target for thieves.
The grating connector is commonly fastened to the transport railcar by blind rivet fasteners such as the dome head steel body steel mandrel type. These fasteners have a top or head that lays flat against the transport railcar or grating connector surface. Thieves typically remove these fasteners by drilling into the head of the fasteners or otherwise break them off by wedging under the grating connector with a chisel. Thus, it would be desirable to provide an anti-theft device that increases the difficulty of removing the grating connector from the deck surface—e.g., by providing additional protection for the heads of the fasteners.
In an embodiment of the invention, an anti-theft device for a transport railcar grating is disclosed, where the grating is coupled to a surface of the railcar by a fastener having a head and a shank. The security device comprises a cup including a base and a wall, where the base and wall define a cavity. The base having a first opening that is sized and shaped to receive the shank of the fastener and retain the head within the cavity.
In another embodiment of the invention, an anti-theft device for a transport railcar grating is disclosed, where the grating includes a plurality of transversely coupled rods that form a plurality of grating openings therebetween. The grating is coupled to a surface of the railcar by a grating connector. The anti-theft device comprising a body that extends over the grating connector. The body includes a first end coupled to a surface of the railcar and a second end projecting through a grating opening. The second end further including a flange extending transversely to a rod forming the grating opening.
In another embodiment of the invention, an anti-theft device for a transport railcar grating is disclosed, where the grating includes a plurality of transversely coupled rods that form a plurality of grating openings therebetween. The grating is coupled to a surface of the railcar by a grating connector. The anti-theft device comprising a fastener and a body that extends over the grating connector. The body comprising a first end coupled to the railcar surface by the fastener. The first end including a base and a wall that define a cavity, where the base includes a first opening sized and shaped to receive the fastener. The wall having an outer surface including at least one side that forms an obtuse angle relative to the railcar surface. The body further comprising a second end that projects through a grating opening and includes a flange extending transversely to a rod forming the grating opening.
Referring now to the drawings, a security device, such as an anti-theft device, for a grating hinge connector is shown.
Hinge keeper 12 comprises a keeper seat 20 and an arched hinge bar cover 22. Keeper seat 20 is positioned on top of base seat 14 of hinge base 10. In a preferred embodiment, keeper seat 20 is sized and shaped to rest on and generally conform to the configuration of base seat 14 of hinge base 10. Hinge bar cover 22 is sized and shaped to extend over hinge bar 6 and at least a portion of platform 16 of hinge base 10, such that the hinge bar 6 is disposed between the hinge bar cover 22 and the platform 16. One or more tabs 23 are formed at the end of hinge bar cover 22. Slots 24 are formed in platform 16 of hinge base 10 that are sized and shaped to receive tabs 23 of the hinge bar cover 22. The engagement of the hinge bar cover tabs 23 in slots 24 assists in securing hinge keeper 12 to hinge base 10.
Hinge base 10 and hinge keeper 12 may be formed as elongated flat strips or slats. In an embodiment, hinge base 10 and hinge keeper 12 are formed of sheet metal, such as sheet steel, that is bent into the appropriate shape using any of a variety of sheet metal bending methods known in the art. In another embodiment, hinge base 10 and hinge keeper 12 are formed as a single, contiguous piece of material. In an alternative embodiment, hinge base 10 and hinge keeper 12 are formed as a plurality of pieces.
Hinge connector 8 is commonly secured to a railcar deck surface by any of a variety of fasteners known in the art, including screws, rivets and bolts, such as a Huck Magna-Lok® (Alcoa Fastening Systems & Rings—Waco, Tex.). Openings 25 are provided in base seat 14 and keeper seat 20, that are aligned and sized and shaped to receive the fasteners and secure hinge connector 8 to the railcar deck surface 40.
Hinge base 10 and hinge keeper 12 are assembled such that hinge bar 6 is disposed between the hinge bar cover 22 and platform 16, permitting grating panel 1 to rotate about its hinge bar 6 upwardly off of a transport railcar deck surface. Accordingly, legs 18 of platform 16 preferably raise the platform 16 above the transport railcar surface a distance sufficient to prevent end portions 2a of the grating panel 1 top rods 2 from contacting the transport railcar surface in a manner that prevents rotation of grating panel 1. When grating panel 1 is in an upward position, it is easy for snow and debris to be cleaned away from under grating panel 1 that has accumulated on the deck surface 40. Additionally, ice and snow or other debris clinging to grating panel 1 can be removed by impacting grating panel 1 on the railcar's deck surface.
Referring to
Cup 28 is positioned on hinge connector 8, with base 30 resting on keeper seat 20. Base 30 is preferably sized and shaped to conform to keeper seat 20, to minimize any space between cup-block anti-theft device 26 and hinge connector 8 that may allow access to fastener 38, or the insertion of a tool to pry the anti-theft device from the hinge connector. Base 30 may also be configured to accommodate or conform to other features of hinge connector 8 and/or railcar deck surface 40. For example, base 30 may be sheared or angled to form a bevel 31 that allows cup-block anti-theft device 26 to be positioned more closely to arched hinge bar cover 22 and/or to accommodate a larger sized anti-theft device.
An opening 35 is formed in base 30 that is sized and shaped to receive a hinge connector fastener 38 having a head 39a and a shank 39b that extends from the head 39a to the end point of the fastener 38, to secure cup-block anti-theft device 26 and hinge connector 8 to a transport railcar deck surface 40. In one embodiment, opening 35 has approximately the same size and shape as opening 25a formed in base seat 14 and opening 25b formed in keeper seat 20. In an alternative embodiment, opening 35 and/or shank 39b is larger than openings 25a and 25b. In this embodiment, openings 25a and 25b may be enlarged by means known in the art, such as drilling, to match the size of opening 35 and/or to receive shank 39b. Fastener 38 is inserted through opening 35 in base 30, opening 25a in base seat 14, and opening 25b in keeper seat 20, and through railcar deck surface 40. More particularly, the shank 39b extends through opening 35 in base 30, opening 25a in base seat 14, opening 25b in keeper seat 20, and through railcar deck surface 40. The head 39a of fastener 38 is sized and shaped to be retained in cavity 46 and to secure hinge connector 8 and cup-block anti-theft device 26 to railcar deck surface 40. In one embodiment, the head 39a is larger than opening 35 in base 30 such that head 39a will not fit through opening 35 in base 30.
Wall 32 may be of various sizes and shapes that are sufficient to form a cavity 46 large enough to contain both plate 34 and head 39a of fastener 38. In one embodiment, wall 32 may be cylindrical and base 30 may be circular, such that the wall and base form a cylindrical cup 28. The height of wall 32 may also vary. In an embodiment, wall 32 has a height above keeper seat 20 that is about the same or less than the height of arched hinge bar cover 22 and/or top rods 2, to avoid creating a tripping hazard. In another embodiment, wall 32 has a height above the keeper seat 20 that is greater than the height of the fastener head 39a that is retained in the cavity 46.
In one embodiment, cup-block anti-theft device 26 is assembled by snap fit insertion of plate 34 into cavity 46 of cup 28, as shown in
Plate 34 is forced through the smaller diameter A of inner edge 44a of rim 44—e.g., by hammering. As plate 34 is forced through opening 42, the lip of inner edge 44a and/or wall 32 flex to accommodate the larger diameter B of the plate. Once plate 34 passes through opening 42 and is fully inserted into cavity 46, the lip of inner edge 44a returns to its original configuration as shown in
The insertion of plate 34 into cavity 46 encloses head 39a of fastener 38 within cup 28, to prevent access to the head from the sides by a tool such as a nail puller or similar device. Plate 34 covers head 39a of fastener 38 to protect the top of the head from a drill or other device. Cavity 46 may have a width or diameter that is slightly larger than diameter B of plate 34, which allows plate 34 to freely rotate and/or provides some degree of tilt within the cavity. The free rotation and tilt of plate 34 increases the difficulty in drilling through the plate to reach the head 39a of the fastener 38, by causing the drill bit to slip or engage the plate off-axis.
In a preferred embodiment, the shape of opening 42 and cavity 46 generally conform to the shape of plate 34 to minimize any space that may allow insertion of a tool to pry or remove the plate from the cavity. In a further embodiment, the height of cavity 46 is about the same as or slightly greater than the combined height of plate 34 and head 39a of fastener 38, to firmly secure the head within cup-block anti-theft device 26 and further minimize any space that would allow insertion of a tool into the cavity.
In an alternative embodiment, cup-block anti-theft device 26 may be assembled by friction fit insertion of plate 34 within cavity 46. The width or diameter of cavity 46 may be slightly smaller than the diameter B of plate 34. Plate 34 is hammered or otherwise forced into cavity 46 until it engages head 39a of fastener 38, and is secured within the cavity by friction fit.
Cup 28 and/or plate 34 are preferably made of hardened steel, such as Hardox® steel (SSAB, Sweden). However, other types of steel and metal alloys may be used, as are known in the art.
The anti-theft device may be further configured to increase the difficulty in removing the fastener by brute force—e.g., by dislodging the anti-theft device and fastener using a sledge hammer.
Cup 128 is configured to deflect the impact of a blow to the side of anti-theft device 126. Wall 132 has an outer surface 132b where at least a portion of the outer surface forms an obtuse angle C with railcar deck surface 40. Any blow or force applied to angled outer surface 132b along a horizontal plane (e.g., as shown by arrow D) will be a glancing blow having reduced effectiveness. In one embodiment, cup 128 has a pyramidal shape—e.g., having an outer surface 132b with four sides 133a, 133b, 133c and 133d that form a truncated square pyramid, as shown in
It will also be apparent to those of skill in the art that the size of base 130 will generally increase as the angle of outer surface 132b becomes shallower. Although base 130 is positioned on keeper seat 20, it may also extend over a portion of railcar deck surface 40 and/or other portions of hinge connector 8, such as hinge bar cover 22. As described above, base 130 is preferably configured to conform to the keeper seat and other features of hinge connector 8 and/or the portion of railcar deck surface 40 over which it extends. For example, a notch 158 may be formed in the base that is sized and shaped to conform to the ends of keeper seat 20 and base seat 14 and/or base 130 may conform to the slope of arched hinge bar cover 22, as best shown in
In a further embodiment, base 130 may extend over one or more openings 25 that are provided in keeper seat 20 of hinge connector 8 to receive additional fasteners 38. As shown in
In yet another embodiment, plate 134 may be formed with an indentation or notch 168 in the bottom surface 134b of the plate, positioned adjacent to the head 39a of fastener 38. For example, notch 168 may be formed as a conical indentation in the surface 134b of plate 134. Notch 168 assists in centering plate 134 over the rounded head 39a of fastener 38 and also reduces the combined height of plate 134 and head 39a. In addition, notch 168 facilitates the rotation and/or tilting of the plate about the head of the fastener. Those of skill in the art will appreciate that notch may have other shapes, such as a dome shape.
Referring to
In one embodiment, anti-theft device seat 54 and/or arched cover 56 are respectively sized and shaped to conform to the configuration of keeper seat 20 and hinge bar cover 22. This configuration minimizes the space between hinge connector 8 and overhinge anti-theft device 50—e.g., that may allow room for the hinge connector to be pried away from the railcar deck surface, or to insert a tool between the hinge connector and anti-theft device to pry them apart.
In a preferred embodiment, anti-theft device arched cover 56 is sized and shaped to extend beyond the end of hinge connector 8—e.g., the anti-theft device cover may have an end 58 that extends beyond the end 16a of platform 16 of the hinge connector. End 58 of overhinge anti-theft device 50 may be further configured to engage or couple to grating panel 1 to increase the difficulty in removing the anti-theft device. In one embodiment, end 58 of anti-theft device arched cover 56 is sized and shaped to fit within openings 9 formed in grating panel 1. As shown in
One or more anti-theft devices 50 are positioned on hinge connector 8, spaced apart along the length of the hinge connector 8 and/or grating panel 1. In a preferred embodiment, at least two anti-theft devices 50 are positioned near each end of the length of hinge connector 8 and/or grating panel 1. Additional anti-theft devices 50 may be positioned along the length of hinge connector 8 and/or grating panel 1 therebetween for increased security. Each overhinge anti-theft device 50 is secured to railcar deck surface 40 by a fastener 53. An opening 51 is formed in first end 52a of overhinge anti-theft device 50, that is sized and shaped to receive fastener 53 and secure the anti-theft device to railcar deck surface 40. Fastener 53 may be any of a variety of fasteners known in the art, including screws, rivets and bolts. Because a relatively small number of fasteners 53 are required to secure grating panel 1, fastener 53 may be larger, made of more durable material and/or have a more secure design, that might otherwise be prohibitively expensive for use as a hinge connector fastener. In one embodiment, fastener 53 is a blind oversized mechanically locked fastener having a collar 55 and head 57, such as a Huck BOM® (Alcoa Fastening Systems & Rings—Waco, Tex.). In another embodiment (not shown), the fastener 53 includes a head and a shank that extends from the head to the endpoint of the fastener 53. In this embodiment, the opening 51 in the first end 52a of overhinge anti-theft device 50 is sized and shaped to receive the shank of the fastener 53 but not the head of fastener 53.
In operation, hinge connector 8 is positioned on railcar deck surface 40 with hinge bar 6 of grating panel 1 enclosed between hinge keeper 20 and hinge base 10. Overhinge anti-theft device 50 is positioned over hinge connector 8 with anti-theft device seat 54 positioned on railcar deck surface 40 and anti-theft device arched cover 56 extending over hinge connector 8. End 58 of anti-theft device arched cover 56 passes through an opening 9 of grating panel 1 with flanges 58a extending transversely below rods 2 of the grating. First end 52a of overhinge anti-theft device 50 is secured to railcar deck surface 40 by a fastener 53 received in opening 51. Second end 52b of overhinge anti-theft device 50 is secured under grating panel 1 by flanges 58a of anti-theft device arched cover 56. Additional fasteners may be received in openings 25 of hinge connector 8 to further secure the hinge connector to railcar deck surface 40.
To remove grating panel 1, fasteners 53 must be removed from the multiple anti-theft devices 50 that are positioned along the length of hinge connector 8 and/or grating panel 1. Hinge connector 8 also must be dissembled to release hinge bar 6 and free grating panel 1 from a transport railcar deck surface 40. The additional time and difficulty in removing numerous larger fasteners 53 to free grating panel 1 from anti-theft devices 50 creates a substantial deterrent to theft.
Referring to
The first end 72a of the body 72 may further include a cup comprising a base 74 and wall 75 that extends upwardly from the transport railcar surface 40 and/or the keeper seat 20. The base 74 and wall 75 form an interior cavity 76. The wall 75 includes an inner surface 75a and an outer surface 75b. The outer surface 75b can include a plurality of sides disposed at various angles to the keeper seat 20. For example, in the embodiment depicted in
The remainder of overhinge anti-theft device 70 depicted in
It will be understood that the embodiments depicted in
Although the invention has been described in detail with reference to preferred embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
This application is a continuation of U.S. application Ser. No. 15/874,046, filed Jan. 18, 2018, which claims the benefit of U.S. Provisional Application No. 62/447,574, filed on Jan. 18, 2017, and U.S. Provisional Application No. 62/447,566, filed on Jan. 18, 2017, each of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62447574 | Jan 2017 | US | |
62447566 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15874046 | Jan 2018 | US |
Child | 17368420 | US |