This invention relates to merchandise anti-theft devices. More specifically, it relates to an anti-theft device having adjustable arms and a locking mechanism for securing an article of merchandise against unauthorized removal from a display counter.
Retailers often prefer to present their merchandise to consumers in a way that allows the consumers to touch, inspect, and otherwise interact with the products at a display counter. Many merchandise items, especially portable electronic devices, are relatively expensive and, therefore, are under a serious threat of theft. Retailers often face a dilemma pertaining to how to interactively display their merchandise to attract customers and increase sales, while, at the same time, safeguarding the merchandise against theft.
Several anti-theft devices are currently known in the art, but they have serious flaws. One example of an existing anti-theft device is disclosed in a published PCT application WO 2011/032147. The device includes a housing that attaches to the back cover of the gadget via an adhesive layer. Two arms extend laterally from the housing and grasp the opposite edges of the gadget, thereby securing it within the clamp. This anti-theft device, however, has a serious flaw: many electronic gadgets have removable back covers, which makes them vulnerable to theft because thieves can easily circumvent this anti-theft device by simply removing the back cover of the gadget and sliding the gadget out of the grasping arms. This flaw significantly undermines the efficacy of this device rendering it inadequate for many electronic gadgets.
Other currently available anti-theft solutions involve obtrusive and aesthetically unattractive devices such as steel cables, locks, and casings. Although these security measures may effectively protect against theft, they have a negative effect on the consumers by discouraging interaction with products and may ruin overall ambience of a retail store. Accordingly, there exists an unresolved need for a discrete and effective anti-theft device that adequately secures an electronic gadget while allowing the prospective purchasers to fully experience the gadget without obstructing access to any of the gadget's functional features, including the front screen.
The invention pertains to an anti-theft security device that involves two sets of adjustable bracket arms having grips configured to receive opposite edges of an article of merchandise. The two sets of adjustable arms are in an orthogonal relationship with one another. Each arm is independently adjustable by sliding in and out relative to the housing of the anti-theft device. The four adjustable arms are spaced apart such that their inner edges define a rectangular aperture. Each inner edge has a plurality of gear teeth disposed therealong.
A locking mechanism is disposed within the housing and within the rectangular aperture defined by the inner edges of the bracket arms. The locking mechanism comprises two locking components in a sliding relationship with one another. A biasing member urges the two locking components toward one another such that their surfaces mate. The locking components have gear teeth configured to interlock with the gear teeth disposed on the inner edges of the arms. When the locking components are retracted from the arms, the gear teeth of the locking components disengage the gear teeth on the arms—this is the unlocked configuration. In the unlocked configuration, the bracket arms are free to slide with respect to the housing, thereby enabling the arms to adjust to accommodate the geometry of the article of merchandise, such that the grips secure the edges thereof.
The inner edges of the locking components have complementary notches, which form a funnel-like opening when the two locking components are in a mated configuration. An actuator having a pointed end is disposed over this funnel-like opening. The actuator is configured to translate along the center axis thereof in an inward direction relative to the housing. As the actuator translates inwardly, its pointed end engages the notches applying a force that opposes the biasing force retaining the locking components in a mated configuration. Thus, as the actuator is translated inwardly with respect to the housing, the locking components are displaced apart against the biasing force. When the locking components are displaced, the gear teeth of the locking components engage the gear teeth disposed on the inner edges of the adjustable arms, thereby immobilizing the arms with respect to the housing.
When the arms are immobilized, the anti-theft device is in its locked configuration. To transition the anti-theft device into the unlocked configuration, the actuator must be translated outwardly with respect to the housing. As the actuator disengages the notches of the locking components, the biasing force exerted onto the locking components by the biasing element urges the locking components toward one another and away from the arms, thereby disengaging the gear teeth of the locking components from the gear teeth of the arms. In this unlocked configuration, the arms can slide relative to the housing, thereby releasing the grips from edges of the article of merchandise.
For a fuller understanding of the invention, reference should be made to the following detailed description, taken in connection with the accompanying drawings, in which:
In the following detailed description of the preferred embodiment, reference is made to the accompanying drawings, which form a part hereof, and within which specific embodiments are shown by way of illustration by which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the invention.
Referring to
To ensure that arms 12 cannot be manipulated by an unauthorized individual, security device 10 includes a locking mechanism 20, depicted in
As depicted in
Locking components 28 are configured to transition between an unlocked configuration depicted in
In the locked configuration, depicted in
The pointed distal end of actuator 34 applies a force onto the sloping edges of locking members 28. Because the edges of locking members 28 and the pointed distal end of actuator 34 have complementary slopes, the force applied onto locking members 28 by actuator 34 has a horizontal component. The horizontal component of the applied force exceeds the biasing force exerted by biasing element 36, thereby causing locking members 28 to slide apart toward position depicted in
To transition security device 10 into the unlocked configuration, an authorized personnel member in possession of tool 38 uses tool 38 to rotate actuator 34 in a counterclockwise direction, thereby retracting actuator away from locking components 28. Biasing element 36 pulls locking components 28 toward each other, thereby disengaging gear teeth 30 from gear teeth 24. When the gear teeth 30 fully disengage gear teeth 24, security device 10 is in the unlocked configuration and lengths of arms 12 can be adjusted, thereby releasing the article of merchandise from grips 16.
The advantages set forth above, and those made apparent from the foregoing description, are efficiently attained. Since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matters contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
5715711 | Jennison | Feb 1998 | A |
6237375 | Wymer | May 2001 | B1 |
8464563 | Perez | Jun 2013 | B2 |
8711553 | Trinh | Apr 2014 | B2 |
9097380 | Wheeler | Aug 2015 | B2 |
9161466 | Huang | Oct 2015 | B2 |
9334679 | Lin | May 2016 | B2 |
9797543 | Lin | Oct 2017 | B2 |
10001153 | Fan | Jun 2018 | B1 |
20100079285 | Fawcett | Apr 2010 | A1 |
20120312936 | Huang | Dec 2012 | A1 |
20150129724 | Kohmoto et al. | May 2015 | A1 |
20160201359 | Berglund et al. | Jul 2016 | A1 |
20170206757 | Grant et al. | Jul 2017 | A1 |