In the electric utility industry, plug-in, socket-type, watt-hour meters are commonly used to measure electric power consumption at residential or commercial sites. The most common type is more properly known as a kilowatt hour meter or a joule meter. When used in electricity retailing, the utilities record the values measured by these meters to generate an invoice for the electricity. These meters may also record other variables including the time when the electricity was used.
The socket for the watt-hour meter is usually installed in a housing that is mounted on a wall of the residence or commercial building. Typically, the housing is transparent or has a window so that the meter can be read without opening the housing. The meter socket contains line and load terminals which are respectively connected to electric line and load connectors. The line and load connectors are connected to cables providing electrical power to/from the meter socket. The terminals receive the blade contacts of a plug-in watt-hour meter to complete an electric circuit through the meter between the line and load terminals.
The following detailed description refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements. Also, the following detailed description does not limit the invention.
According to implementations described herein, a conductive member for mounting a meter socket line connector may include an aperture configured to receive a fastener for the line connector and a protrusion located in a different plane than that of the aperture. The protrusion may include a first notch configured to receive a first-size line connector that is secured to the conductive member by the fastener through the aperture and a second notch configured to receive a second-size line connector that is secured to the conductive member by the fastener through the aperture. The protrusion may be configured to receive a corner of either the first-size line connector or the second-size line connector without changes to the conductive member. The first notch and the second notch may each engage two surfaces of a respective first-size or second-size line connector to prevent rotation of the line connectors around the fastener.
Referring collectively to
Meter 30 may be coupled to a plurality of bus members or lines at meter socket 40. Meter 30 typically includes a cylindrically-shaped enclosure containing a metering device with the meter display on the front side and a plurality of blade connectors (not shown) extending from the back side. The blade connectors may be adapted to be received by jaw-type terminals in meter socket 40 to electrically connect the line and load buses (e.g., associated with line cables 22 or load cables 24) through meter 30.
Meter socket 40 may include a non-conductive base 42, line connectors 46, fasteners 48, conductive plates 50-1 through 50-4 (referred to herein collectively as “conductive plates 50” or generically as “conductive plate 50”), and/or bus bars. In one implementation, each of conductive plates 50 may be integral with one or more terminals (e.g., terminal 51,
Connector 46 may include, for example, a conventional power line fitting, such as a solderless-type lug that may use retaining screws to clamp a conductive lead (e.g., from line cables 22 or load cables 24) within connector 46. Connector 46 may be provided in different configurations and sizes (e.g., different physical dimensions). For example, connector 46 may include a single-line connector (as shown in
As shown in
Connectors 46 may carry high voltage and, thus, proper spacing/alignment of each connector 46 with other components of meter socket 40 is important to prevent arcing. To prevent loss of proper spacing due to rotation of connector 46 (e.g., around fastener 48), an anti-turn arrangement may be provided. In implementations described herein, conductive plate 50 may include an anti-turn protrusion 100 configured to accommodate different-sized connectors 46. Anti-turn protrusion 100 may include, for example, an embossment or separate material applied to conductive plate 50. Anti-turn protrusion 100 may allow conductive plate 50 to receive different sizes of connectors 46 so that different connectors can be changed in the field without requiring a change to conductive plate 50 (or a bus bar). As described further herein, anti-turn protrusion 100 may be formed to engage two surfaces of connector 46, in different sizes, to provide a better anti-turn restraint than, for example, a single-side engagement. Although described herein primarily in the context of conductive plate 50, in other implementations, anti-turn protrusion 100 may be applied to another conductive member, such as a bus bar, a bracket, etc. In other implementations, anti-turn protrusion 100 may be used in other contexts (e.g., other than a meter socket) to align different sizes of a lug or another device connected to a base.
Anti-turn protrusion 100 may include a pair of internal notches 110 and 120 to receive different sizes of connector 46. Anti-turn protrusion 100 may be positioned at a distance from the center of aperture 54 to permit notch 110 and notch 120 to engage with a corner of a connector 46 when connector 46 is installed at aperture 54. Each notch 110 and 120 may include a top edge and a side edge having sufficient length to engage two surfaces of a connector 46. More particularly, notch 110 may include a side edge 112 and a top edge 114, and notch 120 may include a side edge 122 and a top edge 124. The length of side edge 112, top edge 114, side edge 122, and top edge 124 may all be longer than a radius of a rounded corner of connector 46 that may be received in notch 110 or notch 120.
As best shown in
As shown in
Still referring to
In one implementation, anti-turn protrusion 100 may be formed as an integral part of conductive plate 50. For example, anti-turn protrusion 100 may be molded or cast as a single piece with conductive plate 50. In another implementation, anti-turn protrusion 100 may be formed via a punching process. In still other implementations, anti-turn protrusion 100 may be formed as a separate piece and attached to a base (e.g., conductive plate 50). For example, anti-turn protrusion 100 may be attached to conductive plate 50 using a welding process or mechanical fasteners. If formed as a separate piece, anti-turn protrusion 100 may be formed of the same or a different material than conductive plate 50.
Referring to
Referring to
Still referring to
In implementations described herein, a conductive member for receiving a line connector is provided. The conductive member may include an aperture configured to receive a fastener for the line connector and a protrusion in a different plane than that of the aperture. The protrusion may include notches configured to receive different-sized line connectors (e.g., when the line connectors are secured to the conductive member by the fastener through the aperture). Each of the two or more notches may be configured to engage two surfaces of a line connector to prevent rotation of the line connector about the fastener.
The foregoing description of exemplary implementations provides illustration and description, but is not intended to be exhaustive or to limit the embodiments described herein to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of the embodiments.
Although the invention has been described in detail above, it is expressly understood that it will be apparent to persons skilled in the relevant art that the invention may be modified without departing from the spirit of the invention. Various changes of form, design, or arrangement may be made to the invention without departing from the spirit and scope of the invention. For example, although notches 110, 120, and 130 are shown having essentially right angles to receive corners of connectors 46, in other embodiments, differently-shaped notches may be used to receive differently-shaped connectors 46. Additionally, although described herein primarily in the context of a meter socket connection, one or more anti-turn protrusions 100 may be applied in other contexts to provide alignment and versatility for attaching other types of lugs/devices to a base structure. Therefore, the above mentioned description is to be considered exemplary, rather than limiting, and the true scope of the invention is that defined in the following claims.
No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
This application claims priority under 35 U.S.C. §119, based on U.S. Provisional Patent Application No. 61/636,776, filed Apr. 23, 2012, the disclosure of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3365537 | Fehr, Jr. et al. | Jan 1968 | A |
3966296 | Ericson | Jun 1976 | A |
4369484 | Fugate et al. | Jan 1983 | A |
4631634 | Raabe et al. | Dec 1986 | A |
4646200 | M'Sadoques et al. | Feb 1987 | A |
4679120 | Raabe et al. | Jul 1987 | A |
4713728 | Raabe et al. | Dec 1987 | A |
4720769 | Raabe et al. | Jan 1988 | A |
4783718 | Raabe et al. | Nov 1988 | A |
4849581 | Larkin et al. | Jul 1989 | A |
4950841 | Walker et al. | Aug 1990 | A |
5072081 | Sepelak et al. | Dec 1991 | A |
5075659 | Morgan et al. | Dec 1991 | A |
5080599 | Wimberly | Jan 1992 | A |
5117211 | Morgan et al. | May 1992 | A |
5160284 | Krom | Nov 1992 | A |
5162766 | Morris et al. | Nov 1992 | A |
5196987 | Webber et al. | Mar 1993 | A |
5627724 | Leach et al. | May 1997 | A |
5716154 | Miller et al. | Feb 1998 | A |
5945650 | Holland et al. | Aug 1999 | A |
5969308 | Pever | Oct 1999 | A |
6061230 | Mazzella et al. | May 2000 | A |
6803146 | Key et al. | Oct 2004 | B2 |
20130279086 | Lalancette et al. | Oct 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20130280967 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61636776 | Apr 2012 | US |