The present invention relates to a massage gun, and more particularly to a massage gun with an anti-vibration and wear-resistant structure.
As we all know, all kinds of massage equipment have been universally used by people and the principle of various massage equipment is roughly to relax the human muscles by repeatedly hitting the human body.
At present, massage guns are most commonly used among various massage equipment, as shown in
In order to improve the using feeling and product quality of the traditional massage gun, it mainly needs to solve two technical problems. The first technical problem is: how to reduce the vibration generated by the massage head (2) during movement, thereby reducing the noise. The second technical problem is: how to solve the problem of structural wear when the massage head (2) moves.
The first technical problem is described in detail, as shown in
As shown in
As shown in
As shown in
The second technical problem is described in detail, as shown in
When working, the massage head (2) is inserted in the front end of the moving shaft (5), the motor (3) works and drives the moving shaft (5) through the connecting rod (4) to perform high-speed forward and backward reciprocating motion in the shaft sleeve (6), at this moment, the moving shaft (5) drives the massage head (2) to perform beating massage actions.
In order to support the moving shaft (5) to perform high-speed reciprocating motion in the shaft sleeve (6), the traditional massage gun generally applies the following technical design schemes.
Scheme one: the moving shaft (5) is made of aluminum or other metal materials, the shaft sleeve (6) is made of resin or other non-metal materials, and the core design purpose of the scheme one is: the material hardness of the shaft sleeve (6) is lower than the material hardness of the moving shaft (5).
The design significance of the scheme one is that since the material hardness of the shaft sleeve (6) is lower than the material hardness of the moving shaft (5), the moving shaft (5) will not be worn during the high-speed movement.
However, the using disadvantage of the scheme one is that after the product works for a long time and generates heat, the thermal expansion rate of the moving shaft (5) is significantly higher than the thermal expansion rate of the shaft sleeve (6), so it is bound to happen that the moving shaft (5) is stuck in the shaft sleeve (6).
Scheme two: in order to overcome the disadvantage of the scheme one, the designers develop the scheme two. In the scheme two, the moving shaft (5) is made of aluminum or other metal materials, the shaft sleeve (6) is made of copper or other metal materials. The core design purpose of the scheme two is: to avoid the occurrence of the situation that the moving shaft (5) is stuck in the shaft sleeve (6), because the thermal expansion rate of the moving shaft (5) is significantly higher than the thermal expansion rate of the shaft sleeve (6).
The design significance of the scheme two is that the moving shaft (5) and the shaft sleeve (6) are made of metal materials. At the same time, the material hardness of the shaft sleeve (6) is higher than or equal to the material hardness of the moving shaft (5), so that the moving shaft (5) and the shaft sleeve (6) have the same or similar thermal expansion rate, thereby avoiding the situation that the moving shaft (5) is stuck in the shaft sleeve (6).
However, the using disadvantage of the scheme two is that since the material hardness of the shaft sleeve (6) is higher than or equal to the material hardness of the moving shaft (5), the moving shaft (5) will inevitably be worn after a long period of work, which increases the clearance between the moving shaft (5) and the shaft sleeve (6), thereby affecting the stability of the product, and greatly increasing the working noise of the product.
In addition, as shown in
When the fit clearance between the massage head (2) and the moving shaft (5) is too large, although it can be convenient for the user to plug and unplug, but the too large fit clearance often causes the massage head (2) to tilt when it is working.
When the fit clearance between the massage head (2) and the moving shaft (5) is too small, although the massage head (2) can be stably and safely inserted into the moving shaft (5), the users need to spend a lot of effort to pull out the massage head (2) for replacement, thereby greatly reduces the using feeling thereof.
As shown in
The above is the main technical problems of the traditional massage guns.
The technical solution adopted by the present invention is: an anti-vibration and wear-resistant massage gun, which comprises an adaptive buffer damping sleeve (300), wherein the damping sleeve (300) is disposed between a shaft sleeve (20) and a massage gun body (30), and the damping sleeve (300) is used for alleviating the vibration generated by the shaft sleeve (20), so that the vibration of the shaft sleeve (20) will not be directly transmitted to the massage gun body (30), wherein the massage gun body (30) is provided with an assembly cavity (31), the damping sleeve (300) is sleeved on the outer surface of the shaft sleeve (20), and at the same time, the damping sleeve (300) is assembled in the assembly cavity (31), the damping sleeve (300) is provided with several convex ribs (310), the several convex ribs (310) are located between the damping sleeve (300) and the assembly cavity (31), the damping sleeve (300) is set up in the assembly cavity (31) through the several convex ribs (310), and a self-adjusting clearance cavity (400) is formed between the damping sleeve (300) and the assembly cavity (31).
An anti-vibration and wear-resistant massage gun, which comprises a moving shaft (10), a shaft sleeve (20) and a friction protection body (100), wherein the shaft sleeve (20) is fixedly disposed in a massage gun body (30), the moving shaft (10) is disposed in the shaft sleeve (20), the moving shaft (10) is capable of reciprocating back and forth in the shaft sleeve (20), a massage head (40) is detachably disposed on the front end of the moving shaft (10), the friction protection body (100) is covered on the moving shaft (10), and at the same time, the friction protection body (100) is located between the moving shaft (10) and the shaft sleeve (20), and when the moving shaft (10) reciprocates back and forth in the shaft sleeve (20), the friction protection body (100) moves synchronously with the moving shaft (10), at this time, frictional force is generated between the friction protection body (100) and the shaft sleeve (20), the moving shaft (10) is not in contact with the shaft sleeve (20), the material hardness of the friction protection body (100) is greater than the material hardness of the shaft sleeve (20), the material hardness of the shaft sleeve (20) is greater than the material hardness of the moving shaft (10), the tube wall thickness (H1) of the friction protection body (100) is smaller than the tube wall thickness (H2) of the shaft sleeve (20), the tube wall thickness (H1) of the friction protection body (100) is smaller than the tube wall thickness (H3) of the moving shaft (10).
The beneficial effects of the present invention are:
The present invention provides an anti-vibration and wear-resistant massage gun, which comprises an adaptive buffer damping sleeve, wherein the damping sleeve is provided with several convex ribs, the present invention is capable of forming a self-adjusting clearance cavity through the structures of several the convex ribs, thereby creating an assembly margin and a vibration adjustment margin, so that the central axis of the shaft sleeve and the central axis of the assembly cavity coincide as much as possible, thereby ensuring the stability of the product during operation, and reducing the working noise.
The present invention provides an anti-vibration and wear-resistant massage gun, which adopts the friction protection body with thin tube wall and hard material, which can firstly avoid the wear of the moving shaft, and secondly, can reduce the thermal expansion and contraction value of the friction protection body, to avoid the occurrence of the situation that the moving shaft gets stuck in the shaft sleeve after thermal expansion.
The present invention provides an anti-vibration and wear-resistant massage gun, wherein since the existence of the friction protection body in the structure, and at the same time, since the hardness and structural strength of the friction protection body are higher than the moving shaft, making assembly groove will not reduce the structural strength of the portion of the moving shaft, and the massage head is able to coincide with the axis of the moving shaft through a assembly mechanism and the structure of the assembly groove, thereby improving the assembly accuracy, and facilitating disassembly.
As shown in
As shown in
Specifically, when a moving shaft (10) moves in the shaft sleeve (20), it will inevitably cause the shaft sleeve (20) to vibrate, and the damping sleeve (300) is capable of alleviating the vibration generated by the shaft sleeve (20), to improve the using feeling thereof.
The damping sleeve (300) is made of flexible damping material, such as silica gel, soft plastic, etc.
As shown in
The damping sleeve (300) is provided with a plurality of convex ribs (310), wherein the convex ribs (310) are located between the damping sleeve (300) and the assembly cavity (31), the damping sleeve (300) is set up in the assembly cavity (31) through the convex ribs (310), and a self-adjusting clearance cavity (400) is formed between the damping sleeve (300) and the assembly cavity (31).
The size of the self-adjusting clearance cavity (400) is determined by the convex ribs (310).
In the specific implementation, the convex ribs (310) evenly are held in the assembly cavity (31). In the prior art, the damping sleeve and the assembly cavity are have a surface contact therebetween, and no assembly clearance is reserved, so the damping sleeve is easily squeezed and deformed, so that the shaft sleeve deviates from the axis.
The present invention is able to form the self-adjusting clearance cavity (400) through the structure of the convex ribs (310) to define an assembly margin and a vibration adjustment margin and make the central axis of the shaft sleeve (20) and the central axis of the assembly cavity (31) coincide with each other as much as possible, so as to ensure the stability of the product during operation, and reducing the working noise.
In the specific implementation, the convex ribs (310) may have various shapes, such as, convex ribs having a trapezoid, triangle, rectangle, etc. cross-section.
In the specific implementation, the outer diameter of the damping sleeve (300) is larger than the inner diameter of the assembly cavity (31).
When the damping sleeve (300) is assembled in the assembly cavity (31), the convex ribs (310) are physically deformed to make the convex ribs (310) being held in the assembly cavity (31).
In the specific implementation, every two adjacent convex ribs (310) define an adjustment cavity (500) therebetween.
When the damping sleeve (300) is assembled in the assembly cavity (31), the convex ribs (310) deform and enter into the adjustment cavity (500), and the size of the adjustment cavity (500) is reduced.
As shown in
In practice, when the damping sleeve (300) is just assembled in the assembly cavity (31), the vertical distances (313) are not equal, wherein the elastic restoring force of the convex rib (310) corresponding to the shorter vertical distance (313) is inevitably greater, and the elastic restoring force of the convex rib (310) corresponding to the longer vertical distance (313) is inevitably smaller.
Along with the work of the product and the effect of the vibrating force of the shaft sleeve (20), the vertical distances (313) will tend to be equal, so to make the central axis of the shaft sleeve (20) and the central axis of the assembly cavity (31) tend to coincide and achieve the effect of self-adjusting clearance.
As shown in
All of the convex ribs (310) are inclined convex ribs, and the convex ribs (310) rotate and incline in the same direction around the outer surface of the damping sleeve (300). In practice, the convex ribs (310) may inclinedly rotate clockwise or counterclockwise at the same time.
The above structure is able to facilitate the rotational assembly of the damping sleeve (300) into the assembly cavity (31), which makes the assembly process faster and lighter. In the prior art, the damping sleeve and the assembly cavity are in surface contact, which is not conducive to assembly.
As shown in
Wherein, as shown in
The moving shaft (10) is disposed in the shaft sleeve (20), and the moving shaft (10) is able to reciprocate back and forth in the shaft sleeve (20). A massage head (40) is detachably disposed on the front end of the moving shaft (10).
The moving shaft (10) is connected to the output shaft of a motor (60) through a connecting rod (50).
When working, the motor (60) works, and the moving shaft (10) is driven through the connecting rod (50) to perform high-speed forward and backward reciprocating motion in the shaft sleeve (20). At this moment, the moving shaft (10) drives the massage head (40) to move, and the massage head (40) hits the human muscles to perform massage actions.
The friction protection body (100) is covered on the moving shaft (10), and at the same time, the friction protection body (100) is located between the moving shaft (10) and the shaft sleeve (20).
When the moving shaft (10) reciprocates back and forth in the shaft sleeve (20), the friction protection body (100) moves synchronously with the moving shaft (10), at this time, frictional force is generated between the friction protection body (100) and the shaft sleeve (20), and the moving shaft (10) is not in contact with the shaft sleeve (20).
The material hardness of the friction protection body (100) is greater than the material hardness of the shaft sleeve (20).
In the specific implementation, the material hardness of the friction protection body (100) is greater than the material hardness of the shaft sleeve (20), and the material hardness of the shaft sleeve (20) is greater than the material hardness of the moving shaft (10).
In the specific implementation, the friction protection body (100), all the moving shaft (10) and the shaft sleeve (20) are made of metal material, wherein the friction protection body (100) is made of stainless steel, the moving shaft (10) is made of aluminum, and the shaft sleeve (20) is made of copper.
In practice, since the friction protection body (100) has a relatively high hardness, the outer surface of the friction protection body (100) and the inner surface of shaft sleeve (20) may adopt a smooth design to reduce the friction force.
As shown in
The tube wall thickness (H1) of the friction protection body (100) is smaller than the tube wall thickness (H2) of the shaft sleeve (20), and the tube wall thickness (H1) of the friction protection body (100) is smaller than the tube wall thickness (H3) of the moving shaft (10).
In practice, the tube wall thickness (H1) of the friction protection body (100) of the present invention is much smaller than the tube wall thickness (H2) of the shaft sleeve (20) and the tube wall thickness (H3) of the moving shaft (10).
Firstly, this design can greatly reduce the material cost of the friction protection body (100).
Secondly, the friction protection body (100) with a thinner tube wall has a smaller thermal expansion and contraction value, which can avoid the occurrence of the situation that the moving shaft (10) gets stuck in the shaft sleeve (20) after thermal expansion.
In the specific implementation, the tube wall thickness (H1) of the friction protection body (100) is less than 1 mm.
In the specific implementation, in order to reduce the friction force between the friction protection body (100) and the shaft sleeve (20), the shaft sleeve (20) is a self-lubricating shaft sleeve, wherein a lubricating oil film is formed between the friction protection body (100) and the shaft sleeve (20), and the self-lubricating shaft sleeve is the prior art, which will not be redundantly described here.
As mentioned above, the present invention adopts the friction protection body (100) with thin tube wall and hard material, which can firstly avoid the wear of the moving shaft (10), and secondly, can reduce the thermal expansion and contraction value of the friction protection body (100), and avoid the occurrence of the situation that the moving shaft (10) gets stuck in the shaft sleeve (20) after thermal expansion.
As shown in
In practice, the end portion of the connecting rod (50) is provided with a connecting hole (51).
A connecting platform is disposed in the inner cavity of the moving shaft (10), and the connecting platform is provided with a fixing hole (52).
A connecting bolt is inserted in the connecting hole (51) and the fixing hole (52), so that the connecting rod (50) can be inserted into and connected to the moving shaft (10).
The moving shaft (10) is provided with a first tool hole (53) corresponding to the connecting hole (51), and the friction protection body (100) is provided with a second tool hole (54). Through the first tool hole (53) and the second tool hole (54), it is convenient for users to insert a tool from top to rotate the connecting bolt.
As shown in
The structural design mentioned above can greatly reduce the contact area between the friction protection body (100) and the moving shaft (10), thereby facilitating assembly, and improving assembly accuracy.
In the specific implementation, the contact assembly surfaces (11) are disposed on two end portions of the moving shaft (10), and the non-contact avoidance area (12) is located between the two contact assembly surfaces (11).
As shown in
The inner side surface of the massage head assembly hole (200) is provided with a assembly groove (210), and the massage head (40) is provided with a assembly mechanism (220) corresponding to the assembly groove (210), wherein the assembly mechanism (220) is fixed in the assembly groove (210), to assemble the massage head (40) in the massage head assembly hole (200).
In the traditional massage gun, if the inner side surface of the massage head assembly hole is slotted, the wall thickness of the moving shaft will inevitably be reduced, thereby greatly reducing the structural strength of the moving shaft.
In the present invention, since the existence of the friction protection body (100), and at the same time, since the hardness and structural strength of the friction protection body (100) are higher than the moving shaft (10), making the assembly groove (210) not reduce the structural strength of the portion of the moving shaft.
In practice, the massage head (40) is able to coincide with the axis of the moving shaft (10) through the assembly mechanism (220) and the structure of the assembly groove (210), thereby improving the assembly accuracy, and facilitating disassembly.
A preferred embodiment of the present invention is that the massage head (40) is rotatably assembled in the massage head assembly hole (200), wherein the assembly mechanism (220) is an external thread, the assembly groove (210) is an internal thread, and the assembly mechanism (220) is screwed in the assembly groove (210).
Number | Date | Country | Kind |
---|---|---|---|
202011292748.5 | Nov 2020 | CN | national |
202110015615.1 | Jan 2021 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
10993874 | Marton | May 2021 | B1 |
20090099413 | Kobashikawa | Apr 2009 | A1 |
20210038472 | Marton | Feb 2021 | A1 |
20210113427 | Liu | Apr 2021 | A1 |
20210196562 | Zhao | Jul 2021 | A1 |
20220211572 | Cao | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
103189021 | Jul 2013 | CN |
110302050 | Oct 2019 | CN |
110680711 | Jan 2020 | CN |
111092516 | May 2020 | CN |
5108705 | Dec 2012 | JP |
WO-2019014031 | Jan 2019 | WO |
Entry |
---|
Translation of JP-5108705-B2 (Year: 2012). |
Translation of CN-110680711-A (Year: 2020). |
Translation of CN-103189021-A (Year: 2013). |
Translation of CN-111092516-A (Year: 2020). |
Translation of CN-110302050-A (Year: 2019). |
Number | Date | Country | |
---|---|---|---|
20220151865 A1 | May 2022 | US |