The present invention relates to anti-vibration coupling for an electrical connector. More specifically, the coupling prevents counter-rotation of the electrical connector when engaged with its mating connector and subject to vibration or shock.
Electrical connector assemblies generally include mating plug and receptacle connectors. Often a threaded nut or collar is used to mate the plug and receptacle connectors. When an electrical connector assembly is subject to vibration or shock, however, the mating connectors of the assembly, often become loose or even decouple. The loosening or decoupling usually occurs because the coupling nut counter rotates, that is it rotates in a direction opposite the mating or locking direction, thereby compromising the integrity of both the mechanical and electrical connection between the plug and receptacle connectors.
Examples of some prior art couplings for electrical connector assemblies include U.S. Pat. No. 6,293,595 to Marc et al; U.S. Pat. No. 6,123,563; U.S. Pat. No. 6,086,400 to Fowler; U.S. Pat. No. 5,957,716 to Buckley et al.; U.S. Pat. No. 5,435,760 to Miklos; U.S. Pat. Nos. 5,399,096 to Quillet et al.; 4,208,082 to Davies et al.; U.S. Pat. No. 3,917,373 to Peterson; and U.S. Pat. No. 2,728,895 to Quackenbuash, the subject matter of each of which is hereby incorporated by reference.
Accordingly, the present invention relates to a connector coupling that comprises a connector body, a first collar rotatably coupled to the connector body that has a plurality of teeth extending from an inner surface thereof, a second collar that receives the first collar and is movable axially with respect to the first collar. A ratchet ring is supported by the connector body and has a plurality of teeth corresponding to the plurality of teeth of the first collar. The ratchet ring is axially moveable with respect to the connector body between an engaged position and a disengaged position. A biasing member is supported by the connector body adjacent the ratchet ring. The biasing member biases the ratchet ring in the engaged position. The second set of teeth of the ratchet ring engage the first set of teeth of the first collar when the ratchet ring is in the engaged position, and the second set of teeth of the ratchet ring are spaced from the first set of teeth of the first collar and the ratchet ring engages the second collar when the ratchet ring is in the disengaged position.
The present invention also relates to a connector coupling that comprises a connector body and a first collar rotatably coupled to the connector body that has a first set of spaced projections extending inwardly from the first collar and defines a plurality of slots between said projections. A first set of teeth extend from each of the projections of the first collar. A second collar receives the first collar and is movable axially with respect to the first collar and has a second set of spaced projections extending inwardly from the second collar and defines a plurality of slots between the projections. The plurality of slots of the second collar are adapted to receive the projections of the first collar, and the plurality of slots of the first collar are adapted to receive the projections of the second collar. A ratchet ring is supported by the connector body and is axially moveable with respect to the connector body between an engaged position and a disengaged position. A second set of teeth extend from the ratchet ring. The second set of teeth are complementary to first set of teeth of the first collar. A biasing member is supported by the connector body adjacent the ratchet ring which biases the ratchet ring in the engaged position. The second set of teeth of the ratchet ring engage the first set of teeth of the first collar when the ratchet ring is in the engaged position, and the second set of teeth of the ratchet ring is spaced from the first set of teeth of the first collar and the ratchet ring engages the second collar when the ratchet ring is in the disengaged position.
A connector coupling that comprises a connector body, a first collar that is rotatably coupled to the connector body, and a second collar that receives the first collar and is movable axially with respect to the first collar. A ratchet means for a one-way ratchet coupling is between the connector body and the first collar so that the first collar is rotatable with respect to the connector body in a first direction and not rotatable in a second direction opposite the first direction. The ratchet means is axially slidable with respect to the connector body between an engaged position and a disengaged position. A biasing member is supported by the connector body, which biases the ratchet means in an engaged position. The second collar engages the ratchet means when the ratchet means is in said disengaged position.
Other objects, advantages and salient features of the invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses a preferred embodiment of the present invention.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Referring to
As best seen in
Extending from the second end 408 of the main body 400 is a first set of a plurality of projections 420. The projections 420 define the diameter d of the second opening 412 of the collar's main body 400 such that the second opening 412 is smaller than the first opening 410. Each projection 420 includes opposite inner and outer surfaces 422 and 424 where the inner surfaces 422 faces the internal threads 402 of the main body 400 and the outer surfaces 424 faces outside of the main body 400. Between each of the projections 420 are slots 430, as best seen in
As seen in
The inner collar 204 is coupled to the connector body 102 such that it is rotatable with respect to the connector body 102; however its axial movement relative to the connector body 102 is restrained by a retaining clip 220 (
The outer collar 206 surrounds the inner collar 204 to provide a mechanism for manually unlocking the inner collar 204. The outer collar 206 is designed to slide axially with respect to the inner collar 204 and the connector body 102. As seen in
Extending from the second end 604 of the main body 600 is a second set of projections 620 which define the diameter d of the second opening 608 of the main body 600. The second opening 608 of the outer collar 206 is substantially the same size as the second opening 412 of the inner collar 204. Slots 630 are defined between the projections, as best seen in
As seen in
When assembling the coupling 100 to the connector body 102, the connector body 102 extends through the first and second openings 410, 606 and 412, 608 of the inner and outer collars 204 and 206, respectively, with the outer collar 206 surrounding the inner collar 204. A retaining clip 320 may be provided on the connector body 102 outside of the outer collar 206, thereby retaining the inner collar 204, the outer collar 206, the ratchet ring 208 and the biasing member 210 on the connector body 102. The retaining clip 220 restricts the axially movement of the inner collar 204 relative to the connector body. A grounding band 340 may be provided between the connector body 102 and the inner collar 204.
The biasing member 210, which may be a wave spring, for example, biases the coupling 100 into the engaged position, as seen in
In the engaged position, illustrated in
The coupling 100 may be manually unlocked to allow the inner collar 204 to rotate in the opposite direction, e.g. clockwise when viewed from front end 104 of the connector body 102. The manual unlocking allows decoupling the inner threads 402 of the inner collar 204 from the mating connector. To unlock the coupling 100, the outer collar 206 is moved axially relative to the inner collar 204 and the connector body 102 in the forward direction, i.e. towards the forward end 104 of the connector body 102. The outer collar 206 moves against the biasing of the biasing member 210 to separate the first and second sets of teeth 404 and 304.
While a particular embodiment has been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims. For example, any number of projections 420 on the inner collar 204 and any number of projections 620 on the ratchet ring 208 may be employed. Also, the biasing member is not limited to a wave spring and may be any type of biasing mechanism, such as a compression spring.
Number | Name | Date | Kind |
---|---|---|---|
2728895 | Quackenbush et al. | Dec 1955 | A |
3601764 | Cameron | Aug 1971 | A |
3917373 | Peterson | Nov 1975 | A |
4208082 | Davies et al. | Jun 1980 | A |
4268103 | Schildkraut et al. | May 1981 | A |
4291933 | Kakaris | Sep 1981 | A |
4359254 | Gallusser et al. | Nov 1982 | A |
4472013 | Frear | Sep 1984 | A |
4506942 | Flederbach et al. | Mar 1985 | A |
4588245 | Schwartz et al. | May 1986 | A |
4629272 | Mattingly et al. | Dec 1986 | A |
4971501 | Chavez | Nov 1990 | A |
5074703 | Dawson | Dec 1991 | A |
5188398 | Parimore, Jr. et al. | Feb 1993 | A |
5199894 | Kalny et al. | Apr 1993 | A |
5399096 | Quillet et al. | Mar 1995 | A |
5435760 | Miklos | Jul 1995 | A |
5447447 | Guss, III et al. | Sep 1995 | A |
5458501 | Lazaro, Jr. et al. | Oct 1995 | A |
5580278 | Fowler et al. | Dec 1996 | A |
5653605 | Woehl et al. | Aug 1997 | A |
5674087 | Kirma | Oct 1997 | A |
5957716 | Buckley et al. | Sep 1999 | A |
5971787 | Brown | Oct 1999 | A |
6086400 | Fowler | Jul 2000 | A |
6123563 | Johnson et al. | Sep 2000 | A |
6293595 | Marc et al. | Sep 2001 | B1 |
6602085 | Young et al. | Aug 2003 | B2 |
7032931 | Austin | Apr 2006 | B2 |
7544085 | Baldwin et al. | Jun 2009 | B2 |
7837495 | Baldwin et al. | Nov 2010 | B2 |
Number | Date | Country |
---|---|---|
0 247 814 | Dec 1987 | EP |
0 311 338 | Apr 1989 | EP |
0 535 867 | Apr 1993 | EP |