The present invention relates to an anti-vibration coupling device for electrical connector that prevents counter-rotation and loosening of the electrical connector due to vibration when engaged with its mating connector. More specifically, the invention relates to an anti-vibration coupling that self locks and incorporates a decoupling feature allowing manual unlocking of the electrical connector and its mating connector.
Electrical connector assemblies generally include mating plug and receptacle connectors. Often a threaded nut or collar is used to mate the plug and receptacle connectors. When an electrical connector assembly is subject to vibration or shock, however, the mating connectors of the assembly often become loose or even decouple. The loosening or decoupling usually occurs because the coupling nut counter rotates, that is it rotates in a direction opposite the mating or locking direction, thereby compromising the integrity of both the mechanical and electrical connection between the plug and receptacle connectors.
Examples of some prior art couplings for electrical connector assemblies include U.S. Pat. No. 8,579,644 to Cole et al.; U.S. Pat. No. 7,914,311 to Gallusser et al.; U.S. Pat. No. 7,905,741 to Wade et al., U.S. Pat. No. 6,293,595 to Marc et al; U.S. Pat. No. 6,123,563; U.S. Pat. No. 6,086,400 to Fowler; U.S. Pat. No. 5,957,716 to Buckley et al.; U.S. Pat. No. 5,435,760 to Miklos; U.S. Pat. No. 5,399,096 to Quillet et al.; U.S. Pat. No. 4,208,082 to Davies et al.; U.S. Pat. No. 3,917,373 to Peterson; and U.S. Pat. No. 2,728,895 to Quackenbush, the subject matter of each of which is hereby incorporated by reference
A need exists for a simplified anti-vibration coupling device that both prevents loosening of the mated plug and receptacle but also provides a mechanism for easily decoupling the plug and receptacle when desired.
Accordingly, the present invention provides a coupling device for an electrical connector that comprises a connector shell that has first and second ends and a ratchet engagement between the first and second ends, and an inner coupling member rotatably coupled to the connector shell, that has an actuating end through which the first end of the connector shell extends. The actuating end of the inner coupling member defines a cavity and an outer surface of the coupling device at the actuating end including at least one first locking guide. A spring ratchet member is received in the cavity of the inner coupling member and is configured to engage the ratchet engagement of the connector shell. An outer sleeve is disposed over the inner coupling member. The outer sleeve has an inner surface with at least one second locking guide that cooperates with the at least one first locking guide of the inner coupling member to rotate the inner coupling member in a mating direction and an unmating direction opposite the mating direction. The inner surface of the outer sleeve has at least one decoupling member. Rotating the outer sleeve in the mating direction rotates the inner coupling member in the mating direction with respect to the connector shell, thereby allowing the spring ratchet member to engage the ratchet engagement of the connector shell in a one-way ratchet and preventing the inner coupling member from rotating in the unmating direction.
The present invention may also provide a coupling device for an electrical connector that comprises a connector shell that has first and second ends and a plurality of ratchet teeth disposed on an outer surface of the connector shell between the first and second ends, and a coupling nut rotatably coupled to the connector shell. The coupling nut has an actuating end through which the first end of the connector shell extends and the actuating end defines a cavity. An outer surface of the coupling nut at the actuating end includes a recessed portion that forms a first locking guide. A spring ratchet member is received in the cavity of the coupling nut and includes at least one spring arm configured to engage the plurality of ratchet teeth of the connector shell. A decoupling sleeve is disposed over the coupling nut. The decoupling sleeve has an inner surface with a spline that forms a second locking guide that cooperates with the first locking guide of the coupling nut to rotate the coupling nut in a mating direction and an unmating direction opposite the mating direction. The inner surface of the decoupling sleeve has a ramp that forms a decoupling member. Rotating the decoupling sleeve in the mating direction rotates the coupling nut in the mating direction with respect to the connector shell, thereby allowing the spring arm of the spring ratchet member to engage the ratchet teeth of the connector shell in a one-way ratchet and preventing the coupling nut from rotating in the unmating direction, and rotating the decoupling sleeve in the unmating direction engages the ramp of the decoupling sleeve with the spring arm of the spring ratchet member, thereby releasing the spring arm and allowing the coupling nut to rotate in the unmating direction.
With those and other objects, advantages, and features of the invention that may become hereinafter apparent, the nature of the invention may be more clearly understood by reference to the following detailed description of the invention, the appended claims, and the several drawings attached herein.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
a is a perspective view of an inner coupling member of the anti-vibration device illustrated in
b is a cross-sectional view of the inner coupling member illustrated in
a is a perspective view of a ratchet member of the anti-vibration coupling device illustrated in
b is a perspective view of the ratchet member illustrated in
a is a perspective view of the outer sleeve of the anti-vibration coupling member illustrated in
b is perspective cutaway view of the outer sleeve illustrated in
In describing a preferred embodiment of the invention illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents that operate in similar manner to accomplish a similar purpose. Several preferred embodiments of the invention are described for illustrative purposes, it being understood that the invention may be embodied in other forms not specifically shown in the drawings.
Referring to
The connector shell 102 generally includes first and second ends 112 and 114 with a retention shoulder 116 therebetween, as seen in
The connector shell 102 is received in the inner coupling member 104, such that the first end 112 of the shell 102 is exposed, as seen in
On the outer surface 302 at the actuating end 306 of the out 104 may be one or more locking guides 320 that cooperate with the outer decoupling sleeve 108, as seen in
The ratchet member 106 may be formed of stamp metal. As seen in
Each spring arm 402 may include an extension 404 extending from the ring body 400, a carrier strip 406 extending from the extension 404, and one or more pawls 408 at the end of the carrier strip 406. When the ratchet member 106 is received in the cavity of the nut 104, the spring arm extensions 404 extend toward the nut's inner shoulder 308 generally perpendicular to the ring body 400. Each carrier strip 406 connects the pawls 408 and the extensions 404. Each carrier strip 406 slopes slightly inwardly toward the center of the ring body 400 such that the pawls 408 are also angled inward, as seen in
Secondary spring elements 420 may be provided extending from the inner diameter of the ring body 400 to limit arbitrary movement of the decoupling sleeve 108 to the nut 104 by latching over decoupling members 614. The secondary spring elements 420 may be formed as cutouts in the ring body 400, as seen in
The outer decoupling sleeve 108 is disposed over the nut 104, as seen in
As seen in
In operation the outer sleeve 108 may be rotated in a mating direction with respect to the connector shell 102 such that the sleeves splines 622 engage the recessed areas 322, respectively, of the nut 104 until the splines 622 catch on the nut's stops 324, thereby rotating the nut 104 in the mating direction. While the nut 104 is being rotated in the mating direction by the sleeve 108, the tail ends 412 of the ratchet springs arms 402 ride over the ratchet teeth 120 of the connector shell 102 and the heads 410 of the pawls 408 pivot in the channels 312, respectively, of the nut 104. That allows the end 112 of the shell to rotate and engage a mating component.
Because of the ratchet engagement between the shells' teeth 102 and the spring ratchet member 106, the nut 104 is prevented from rotating in the opposite unmating direction even during conditions, such as vibration. In order to unmate the shell 102 from its mating component, the decoupling sleeve 108 is rotated in the unmating direction such that the ramps 614 on the annular wall 610 lift the tail ends 412 of the ratchet spring arms 402, thereby clearing the shell's ratchet teeth 120 and allowing the nut 104 to rotate in the unmating direction.
The foregoing description and drawings should be considered as illustrative only of the principles of the invention. The invention may be configured in a variety of shapes and sizes and is not intended to be limited by the preferred embodiment. Numerous applications of the invention will readily occur to those skilled in the art. Therefore, it is not desired to limit the invention to the specific examples disclosed or the exact construction and operation shown and described. Rather, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
Although certain presently preferred embodiments of the disclosed invention have been specifically described herein, it will be apparent to those skilled in the art to which the invention pertains that variations and modifications of the various embodiments shown and described herein may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the invention be limited only to the extent required by the appended claims and the applicable rules of law.