Information
-
Patent Grant
-
6596380
-
Patent Number
6,596,380
-
Date Filed
Wednesday, September 12, 200123 years ago
-
Date Issued
Tuesday, July 22, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 428 335
- 428 201
- 428 4111
- 428 422
- 428 421
- 428 419
- 428 4744
- 428 4735
- 428 524
- 427 470
- 427 202
- 427 3742
- 427 3855
- 427 3881
- 427 409
- 427 282
-
International Classifications
- B32B516
- B32B2708
- B32B2730
- B32B2734
- B32B3126
-
Abstract
A non-stick coating with improved scratch resistance comprises an undercoat applied to a substrate, coated with a primary coat comprising a fluorocarbon resin and one or more fluorocarbon resin-based outer coats. The undercoat comprises at least 50% by weight of the polymer oxy-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene, known as PEEK, and is free of fluorocarbon resin.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a non-stick coating with improved scratch resistance.
Non-stick coatings applied to cookware are known. Such coatings are also known to be prone to scratching.
Such coatings are routinely applied to a hard undercoat of alumina, enamel, stainless steel or polyamide-imide (PAI) to improve their scratch resistance.
In principle, that undercoat forms a barrier that prevents scratches from reaching the surface of the substrate.
SUMMARY OF THE INVENTION
The present invention aims to provide a non-stick coating with a scratch resistance that is improved over known coatings, while retaining excellent non-stick properties.
The invention provides a non-stick coating with improved scratch resistance, comprising an undercoat applied to a substrate, coated with a primary coat comprising a fluorocarbon resin and one or more fluorocarbon resin-based outer coats.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The coating of the invention is characterized in that said undercoat comprises at least 50% of the polymer
oxy-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene,
known as PEEK, polyetheretherketone, this undercoat being free of fluorocarbon resin.
The formula for this polymer is:
The remaining proportion can be composed of:
thermostable polymers used pure or as a mixture, such as polyphenylene sulfide, polyetherimide, polyimide, polyetherketone, polyethersulfone or polyamide-imide;
inert fillers such as metal oxides, silica, mica particles or flaked fillers.
PEEK has already been used in non-stick coating formulations, mixed with a fluorocarbon resin such as polytetrafluoroethylene (PTFE).
However, PEEK has never been used without it being mixed with a fluorocarbon resin to constitute a hard undercoat.
It has surprisingly been ascertained that a non-stick coating applied to a PEEK-based undercoat exhibits improved scratch resistance.
Metal spatulas can therefore be used with the non-stick coating.
It has been ascertained that the PEEK undercoat covers 60% to 95% of the total coated surface of the substrate.
The mechanical characteristics of this mixed undercoat are such that they remove scratches made by metal as metal spatulas are used.
This represents an ideal compromise that can improve both the hardness of aluminum and the elasticity of the PTFE.
It should be noted here that the network could become continuous over a rough surface, or it could cover less than 60% without having any impact on the invention.
Depending on the case, the thickness of said undercoat could be between 5 microns and 100 microns.
The fluorocarbon resin used in the primary coat and in the outer coat or coats is preferably polytetrafluoroethylene (PTFE) or a PTFE/PFA mixture.
The invention is of particular application to cookware coated externally or internally with a non-stick coating applied over an undercoat comprising at least 50% by weight of PEEK.
The substrate for said cookware can be aluminum, stainless steel, glass, pottery or enamel.
Before applying the PEEK-based undercoat, the substrate may or may not be chemically treated, for example by acid attack, or it may or may not be mechanically treated, for example by sand blasting.
The mixed undercoat can be applied to the substrate at ambient temperature, or it can be heated to about 450° C., in the form of a powder or a dispersion.
It can also be applied by screen printing or pad printing as a paste, in which case the applied undercoat may have the following composition:
|
parts
|
by
|
weight
|
|
|
Mixture of PEEK + polymers
30 to 400
|
and/or inert fillers
|
Thickener
1 to 10
|
Diluent
10 to 450
|
Water
100 to 300
|
|
The constituents other than the PEEK or polymers and/or inert fillers disappear during curing.
The thermostable polymers, which behave as co-binders, improve adhesion of the undercoat to the support.
The effect of the inert fillers is to increase the roughness and/or hardness of the undercoat. The scratch and abrasion resistance of the coating are thus improved.
Further, by combining thermostable polymers, which result in reducing the hardness of the undercoat, with inert fillers, the hardness of the undercoat can be adjusted.
Finally, using inert fillers in the constitution of the undercoat is of considerable commercial interest because of their low cost.
The grain size of the PEEK powder used can be in the range 4 microns (μm) to 80 μm, with a mean grain size of about 20 μm.
Depending on the mode of application, it may be necessary to:
heat said undercoat to a temperature of at least 260° C.;
apply the PTFE-based primary coat and outer coat or coats to said undercoat in succession; and
cure the coat assembly at 400° C.-420° C.
An example will now be given of the composition of the coats that are applied in succession to the PEEK undercoat:
|
Constituents
Parts by weight
|
|
|
PRIMARY COAT
|
Aqueous dispersion of polyamide-
100 to 500
|
imide, about 13% dry extract
|
N-methylpyrrolidone
100
|
PTFE dispersion, 60% dry extract
100 to 400
|
Water
100
|
Carbon black, 20% dry extract
20-30
|
Colloidal silica, 30% dry
10-200
|
extract
|
INTERMEDIATE OUTER COAT
|
PTFE dispersion, 60% dry extract
80 to 90
|
PFA 6900 dispersion, 50% dry
0.5 to 5.0
|
extract
|
Distributing and film-forming
1 to 20
|
agent
|
TiO
2
-coated mica flakes
0.1 to 0.4
|
Derusol (carbon black, 25% dry
0.02 to 0.6
|
extract)
|
UPPERMOST OUTER COAT
|
PTFE dispersion, 60% dry extract
80 to 90
|
Distributing and film-forming
1 to 20
|
agent
|
TiO
2
-coated mica flakes
0.1 to 0.4
|
|
After drying, the above assembly of coats was sintered at 400-420° C. for 5 to 10 minutes.
A non-stick coating with improved properties was obtained.
Hardness measurements carried out in accordance with French standard NF 21-511 at different temperatures produced the following results and are compared with a conventional coating:
|
Hardness PTFE
20° C.
100° C.
180° C.
|
coating with
|
PEEK
|
Ball
3.4 kg
3.4 kg
1.7-2.0 kg
|
indentation
|
test
|
Conventional
1.8 kg
1.7 kg
1.6 kg
|
coating, no
|
undercoat
|
|
In particular, when used in a real food cooking situation, the performance as regards resistance to attack by metal spatulas was astonishing. After cooking, grilling and frying cycles carried out with different foods that corresponded to 2 years of use, the coating surface was hardly scratched, and the metal had not been reached.
This constitutes the first coating plus undercoat system that genuinely provides improved scratch resistance when used with metal utensils (with the exception of knives); until now, none of the undercoats tested provided a satisfactory solution (plasma, alumina, titanium, anodizing, and other surface treatments).
Clearly, this improvement in scratch resistance can be applied in all fields, providing external and internal coatings for cookware and household electrical appliances (hotplates, grill plates) and on all smooth surfaces, for example irons.
Clearly, the invention is not limited to the example described above and many modifications can be made in this regard without departing from the spirit and ambit of the invention.
Claims
- 1. A non-stick coating with improved scratch resistance, comprising an undercoat applied to a substrate, a primary coat comprising a fluorocarbon resin applied to said undercoat and at least one fluorocarbon resin-based outer coat, said undercoat comprising at least 50% by weight of the polymer oxy-1,4-phlenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene, known as PEEK; and a remaining proportion being composed of thermostable polymers used pure or as a mixture, and inert fillers selected from the group consisting of metal oxides, silica, mica particles, and flaked fillers; and said undercoat being free of fluorocarbon resin, said coats having been sintered at temperatures of 400-420° C., and wherein said thermostable polymers are selected from the group consisting of polyphenylene sulfide, polyetherimide, polyimide, polyamide-imide, and mixtures thereof.
- 2. A coating according to claim 1, wherein the undercoat constituted by said PEEK covers 60% to 95% of the total coated surface of the substrate.
- 3. A coating according to claim 1, wherein the thickness of said undercoat is in the range of 5 μm to 100 μm.
- 4. A coating according to claim 1, wherein said fluorocarbon resin is polytetrafluoroethylene (PTFE) or a PTFE-PFA (perfluoroalkyl vinyl ether) mixture.
- 5. Cookware coated with a coating comprising an undercoat applied to a substrate, a primary coat comprising a fluorocarbon resin applied to said undercoat and at least one fluorocarbon resin-based outer coat, said undercoat comprising at least 50% by weight of the polymer oxy-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene, known as PEEK; and a remaining proportion being composed of thermostable polymers used pure or as a mixture, and inert fillers selected from the group consisting of metal oxides, silica, mica particles, and flaked fillers; and said undercoat being free of fluorocarbon resin, said coats having been sintered at temperatures of 400-420° C., and wherein said thermostable polymers are selected from the group consisting of polyphenylene sulfide, polyetherimide, polyimide, polyamide-imide, and mixtures thereof.
- 6. A method of applying a non-stick coating with improved scratch resistance comprising the steps of:applying an undercoat to a substrate, said undercoat comprising at least 50% by weight of the polymer oxy-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene, known as PEEK; and a remaining proportion being composed of thermostable polymers used pure or as a mixture, and inert fillers selected from the group consisting of metal oxides, silica, mica particles or flaked fillers; and said undercoat being free of fluorocarbon resin; fusing said undercoat at a temperature of at least 340° C.; applying to said undercoat a primary coat comprising a fluorocarbon resin and at least one fluorocarbon resin-based outer coat in succession to said undercoat; and sintering the coats at a temperature in the range of 400-420° C., and wherein said thermostable polymers are selected from the group consisting of polyphenylene sulfide, polyetherimide, polyimide, polyamide-imide, and mixtures thereof.
- 7. A method according to claim 6, wherein said PEEK applying step comprises applying the PEEK in the form of a powder with a grain size in the range of 4 μm to 80 μm and a mean grain size of about 20 μm.
Priority Claims (1)
Number |
Date |
Country |
Kind |
99 03242 |
Mar 1999 |
FR |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/FR00/00626 |
|
WO |
00 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO00/54896 |
9/21/2000 |
WO |
A |
US Referenced Citations (5)
Number |
Name |
Date |
Kind |
4147683 |
Vassiliou et al. |
Apr 1979 |
A |
4546141 |
Gebauer |
Oct 1985 |
A |
5536583 |
Roberts et al. |
Jul 1996 |
A |
5846645 |
Yokota et al. |
Dec 1998 |
A |
6382545 |
Yeh |
May 2002 |
B1 |
Foreign Referenced Citations (5)
Number |
Date |
Country |
0100889 |
Feb 1984 |
EP |
0343282 |
Nov 1989 |
EP |
0367884 |
May 1990 |
EP |
0786290 |
Jul 1997 |
EP |
WO 8900757 |
Jan 1989 |
WO |