ANTIBIOTIC SUSCEPTIBILITY OF MICROORGANISMS AND RELATED MARKERS, COMPOSITIONS, METHODS AND SYSTEMS

Abstract
Provided herein are RNA markers and compositions, methods and systems for the related identification and/or uses in methods for detection of antibiotic susceptibility and resistance in a microorganism, and in particular in N. gonorrhoeae.
Description
FIELD

The present disclosure relates to microorganisms and related biology as well as to diagnosis and treatment of related conditions in individuals. In particular, the present disclosure relates to antibiotic susceptibility of microorganisms and related markers, compositions, methods and systems.


BACKGROUND

Antibiotic susceptibility is an important feature of the biology of various microorganisms, which can be used in identifying approaches to treat or prevent bacterial infections.


Ideal antibiotic therapy is based on determination of the etiological agent for a particular condition and determination of the antibiotic sensitivity of the identified agent. In particular, the effectiveness of individual antibiotics varies with various factors including the ability of the microorganism to resist or inactivate the antibiotic.


Despite progress in identifying methods and systems to test antibiotic susceptibility for various microorganisms, as well as the identification of related markers, determination of antibiotic susceptibility can still be challenging. In particular, determination of antibiotic susceptibility when a rapid and accurate detection is desired for microorganisms such as Neisseria gonorrhoeae which are slow growing and lack the classic transcriptional SOS response to DNA damage.


SUMMARY

Provided herein are RNA markers of antibiotic (sometimes abbreviated as ABX) susceptibility of microorganisms and related compositions, methods and systems that can be used for their identification and/or use. In particular described herein are RNA markers and related methods and systems to test antibiotic susceptibility of microorganisms as well as RNA markers and related methods and systems for the diagnosis and/or treatment of related infections in individuals.


According to a first aspect, a method is described to identify a RNA marker of antibiotic susceptibility in a microorganism. The method comprises providing a susceptible isolate or specimen comprising a strain of the microorganism susceptible to the antibiotic and a resistant isolate or specimen comprising a strain of the microorganism resistant to the antibiotic.


The method further comprises providing a susceptible (Cs:Ts) value for a candidate marker gene in the susceptible isolate or specimen, wherein Cs is a control susceptible gene expression value Cs for a candidate marker in a control susceptible sample not treated with the antibiotic and Ts is a treated susceptible gene expression for the candidate marker in a treated susceptible sample treated with the antibiotic.


The method also comprises providing a resistant (Cr:Tr) value for a candidate marker gene in the resistant isolate or specimen, wherein Cr is a control resistant gene expression value for the candidate marker in a control resistant sample not treated with the antibiotic and Tr is a treated resistant gene expression for the candidate marker in a treated resistant sample treated with the antibiotic. The method additionally comprises selecting the candidate marker gene when Cs:Ts in the susceptible isolate or specimen is different from Cr:Tr in the resistant isolate or specimen to provide a selected marker gene expressing the RNA marker of antibiotic susceptibility of the microorganism. In particular the selected marker gene is therefore differentially expressed in the treated samples of the susceptible isolate or specimen compared with the resistant isolate or specimen as will be understood by a skilled person.


According to a second aspect, an RNA marker of antibiotic susceptibility in a microorganism, a corresponding marker gene and/or a corresponding cDNA are described, which can be obtained by the method to identify an RNA marker of antibiotic susceptibility herein described.


In some embodiments the RNA marker can be selected from a transcript encoding for a ribosomal protein of the microorganism. In some of those embodiments the RNA marker can be selected from a transcript encoding for a 30S ribosomal protein and 50S ribosomal protein. In some embodiments, the RNA marker can be selected from: a transcript of N. gonorrhoeae gene having locus tag NGO0340, a transcript of N. gonorrhoeae gene having locus tag NGO1837, a transcript of N. gonorrhoeae gene having locus tag NGO1843, a transcript of N. gonorrhoeae gene having locus tag having locus tag NGO2024, a transcript of N. gonorrhoeae gene having locus tag NGO1845, a transcript of N. gonorrhoeae gene having locus tag NGO1677, a transcript of N. gonorrhoeae gene having locus tag NGO1844, a transcript of N. gonorrhoeae gene having locus tag NGO0171, a transcript of N. gonorrhoeae gene having locus tag NGO1834, a transcript of N. gonorrhoeae gene having locus tag NGO0172, a transcript of N. gonorrhoeae gene having locus tag NGO1835, a transcript of N. gonorrhoeae gene having locus tag NGO1673, a transcript of N. gonorrhoeae gene having locus tag NGO1833, a transcript of N. gonorrhoeae gene having locus tag NGO2173, a transcript of N. gonorrhoeae gene having locus tag NGO0604, a transcript of N. gonorrhoeae gene having locus tag NGO0016, a transcript of N. gonorrhoeae gene having locus tag NGO1676, a transcript of N. gonorrhoeae gene having locus tag NGO1679, a transcript of N. gene having locus tag NGO1658 and encoding hypothetical protein, a transcript of N. gonorrhoeae gene having locus tag NGO1440, a transcript of N. gonorrhoeae gene having locus tag NGO0174, a transcript of N. gonorrhoeae gene having locus tag NGO0173, a transcript of N. gonorrhoeae gene having locus tag NGO0592, a transcript of N. gonorrhoeae gene having locus tag NGO1680, a transcript of N. gonorrhoeae gene having locus tag NGO0620, a transcript of N. gonorrhoeae gene having locus tag NGO1659, a transcript of N. gonorrhoeae gene having locus tag NGO1291, a transcript of N. gonorrhoeae gene having locus tag NGO0648, a transcript of N. gonorrhoeae gene having locus tag NGO0593, a transcript of N. gonorrhoeae gene having locus tag NGO1804, a transcript of N. gonorrhoeae gene having locus tag NGO0618, a transcript of N. gonorrhoeae gene having locus tag NGO0619, a transcript of N. gonorrhoeae gene having locus tag NGO1812, a transcript of N. gonorrhoeae gene having locus tag NGO1890, a transcript of N. gonorrhoeae gene having locus tag NGO2098, a transcript of N. gonorrhoeae gene having locus tag NGO2100 and a transcript tRNA having GeneID A9Y61_RS02445 or NGO_t12, a tRNA transcript having GeneID A9Y61_RS04515 or NGO_t15, a transcript tRNA having GeneID A9Y61_RS04510 or NGO_t14, a transcript tRNA having GeneID A9Y61_RS09170 or NGO_t37, or a transcript tRNA having GeneID A9Y61_RS00075 or NGO_t01. The locus tags and GeneIDs of the transcripts of N. gonorrhoeae gene are the locus tags and GeneIDs of the registry of locus_tag prefixes of databases of the International Nucleotide Sequence Database Collaboration (INSDC) at the filing date of the present disclosure.


According to a third aspect, a method is described to detect a transcript of an N. gonorrhoeae. The method comprises quantitatively detecting in the N. gonorrhoeae a transcript expression value of an RNA marker of N. gonorrhoeae selected from any one of the RNA markers of N. gonorrhoeae herein described, following contacting of the N. gonorrhoeae with an antibiotic to obtain an antibiotic treated transcript expression value for the RNA marker of N. gonorrhoeae


According to a fourth aspect, a method to perform an antibiotic susceptibility test for N. gonorrhoeae is described. The method comprises detecting susceptibility to an antibiotic of an N. gonorrhoeae, by quantitatively detecting in a sample comprising the N. gonorrhoeae a transcript expression value of an RNA marker of N. gonorrhoeae selected from the RNA markers of an N. gonorrhoeae herein described following contacting the sample with the antibiotic.


According to a fifth aspect a method is described to detect an RNA marker of susceptibility to an antibiotic in N. gonorrhoeae in a sample comprising the N. gonorrhoeae. The method comprises contacting the sample with the antibiotic to obtain an antibiotic treated sample and quantitatively detecting in the antibiotic treated sample one or more of the RNA marker of N. gonorrhoeae herein described.


According to a sixth aspect, a method to diagnose susceptibility to an antibiotic of a N. gonorrhoeae infection in an individual is described. The method comprises contacting with the antibiotic a sample from the individual comprising N. gonorrhoeae; and quantitatively detecting expression by the N. gonorrhoeae in the sample of a marker of antibiotic susceptibility in N. gonorrhoeae selected from any one of the transcripts of N. gonorrhoeae genes herein described. In the method, the quantitatively detecting is performed following or upon contacting the sample with the antibiotic. The method further comprises detecting whether there is a downshift of the transcript presence quantitatively detected in the antibiotic treated sample with respect to the transcript presence in a sample from the individual not treated with antibiotic and comprising N. gonorrhoeae to diagnose the antibiotic susceptibility of the N. gonorrhoeae infection in the individual.


According to a seventh aspect, a method is described to detect antibiotic susceptibility of an N. gonorrhoeae bacterium and treat N. gonorrhoeae in an individual. The method comprises contacting a sample from the individual with an antibiotic, and quantitatively detecting in the sample, expression by the N. gonorrhoeae bacteria of a marker of antibiotic susceptibility selected from any one of the transcripts of N. gonorrhoeae genes herein described. In the method, the quantitatively detecting is performed following contacting the sample with the antibiotic. The method further comprises diagnosing antibiotic susceptibility of N. gonorrhoeae infection in the individual when a downshift in expression of at least one of the detected markers in the sample is detected in comparison with a control untreated sample of the individual. The method also comprises administering an effective amount of the antibiotic to the diagnosed individual.


According to an eighth aspect, a system is described for performing at least one of the methods herein described to detect an N. gonorrhoeae transcript, to detect antibiotic susceptibility of an N. gonorrhoeae bacteria, to perform an antibiotic susceptibility test for an N gonorrhoeae, and/or to diagnose and/or treat an N. gonorrhoeae in an individual. The system comprises at least one probe specific for a transcript selected from any one of the transcripts of N. gonorrhoeae genes herein described or for a polynucleotide complementary thereof, and reagents for detecting the at least one probe.


In additional aspects, methods and systems are described, in which RNA markers and related marker genes and cDNAs of a microorganism other than N. gonorrhoeae in accordance with the second aspect of the disclosure, are used in place of N. gonorrhoeae RNA markers and related genes and cDNA to: i) detect a transcript of the another microorganism, ii) perform an antibiotic susceptibility test for the another microorganism, detect an RNA marker of susceptibility to an antibiotic in the another microorganism, diagnose susceptibility to an antibiotic of the another microorganism infection in an individual, and/or detect antibiotic susceptibility of the another microorganism and treat the another microorganism in an individual, the methods and systems comprising the features according to the third to the eighth aspect of the instant disclosure. In some of these embodiments the another microorganism is N. meningitidis.


RNA markers and related compositions methods and systems herein described allow in several embodiments to elicit in a microorganism, (e.g. N gonorrhoeae) phenotypic responses to antibiotics that are faster and greater in magnitude compared to responses in DNA markers. Therefore, in several embodiments RNA markers and related compositions methods and systems herein described allow phenotypic measurements of antibiotic susceptibility and resistance of a microorganism (e.g. N gonorrhoeae).


RNA markers and related compositions methods and systems herein described allow in several embodiments to identify as markers of antibiotic susceptibility responsive transcripts with the highest abundance and fold changes, as well as validated gene expression.


RNA markers and related compositions methods and systems herein described allow in several embodiments to perform an accurate and rapid antibiotic susceptibility test for N. gonorrhoeae based on RNA signatures.


RNA markers and related compositions methods and systems herein described allow in several embodiments to compensate for errors in sample splitting between treated and control samples and to compensate for errors in sample preparation.


RNA markers and related compositions methods and systems herein described can be used in connection with various applications wherein identification and/or detection of antibiotic susceptibility for a microorganism is desired, in particular when the microorganism is N gonorrhoeae. For example, RNA markers and related compositions methods and systems herein described can be used in drug research and to develop diagnostic and therapeutic approaches and tools to counteract infections, in particular for N gonorrhoeae. Additional exemplary applications include uses of the RNA markers and related compositions methods and systems herein described in several fields including basic biology research, applied biology, bio-engineering, aetiology, medical research, medical diagnostics, therapeutics, and in additional fields identifiable by a skilled person upon reading of the present disclosure.


The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present disclosure and, together with the detailed description and example sections, serve to explain the principles and implementations of the disclosure. Exemplary embodiments of the present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 illustrates an exemplary workflow for selection and validation of RNA markers for phenotypic measurements of antibiotic susceptibility and resistance. Susceptible and resistant isolates of Neisseria gonorrhoeae are exposed to antibiotics (ABX) for 5, 10, and 15 min. Samples are collected for RNA sequencing at time zero and every 5 min thereafter. Genes demonstrating fold changes in expression (control:treated ratio (C:T ratio)) greater than the threshold of significance (edges of grey shaded area) are identified as differentially expressed (below grey shaded area: downregulated and above grey shaded area: upregulated). Candidate markers are selected from the pool of differentially expressed genes and validated by digital PCR.



FIGS. 2A-B shows exemplary temporal shifts in global gene expression upon ciprofloxacin exposure in Neisseria gonorrhoeae. FIG. 2A shows the distribution of -log2(C:T ratios) for a susceptible isolate (Sus) and resistant isolate (Res) at 0, 5, 10, and 15 min. FIG. 2B shows the fold change in gene expression between control and treated samples (C:T ratio) versus expression in the control sample at 0, 5, 10, and 15 min for one susceptible isolate and one resistant isolate. Genes with C:T ratios above or below the significance threshold are identified as differentially expressed (circles with diagonal lines: downregulated; solid black circles: upregulated). In the illustration of FIGS. 2A-B, thresholds for statistical significance of fold change (black solid lines) are determined by fitting a negative exponential curve (with 90% confidence interval) to the outer edge of the -log2 C:T ratios measured at time zero (see Methods).



FIGS. 3A-B show exemplary selection of candidate RNA markers for phenotypic antibiotic susceptibility testing in Neisseria gonorrhoeae and measurements of marker abundances per cell. FIG. 3A shows genes that are differentially expressed (dark grey) across three pairs of resistant and susceptible clinical isolates are identified as candidate markers (circles with vertical lines). Six candidate markers that span different biological functions were selected for validation (circles with diagonal lines). FIG. 3B shows copies/cell values for the candidate markers are determined from RNA sequencing and dPCR (see Methods). Data are shown for one pair of susceptible (S2) and resistant (R2) isolates at 15 min of ciprofloxacin exposure.



FIG. 4 shows an exemplary validation of the RNA sequencing approach using digital PCR (dPCR) with six candidate markers. Control:Treated ratios (C:T ratios) determined by RNA sequencing (light gray) were validated against C:T ratios measured by dPCR (dark gray). The dPCR C:T ratios were normalized using ribosomal RNA (rRNA) by dividing the C:T ratio of marker by the C:T ratio of 16S rRNA. Markers were validated using two susceptible (S1 and S2) and two resistant (R1 and R2) isolates at 15 min of ciprofloxacin exposure. In many sequencing experiments the counts per gene result from sequencing of a random sampling of the RNA pool. Relative expression values are calculated by normalizing to the total read count through generation of Transcript per Million (TPM) values (see Examples).



FIG. 5 shows in some embodiments antibiotic susceptibility testing of 49 clinical isolates using (a) porB, and (b) rpmB as RNA AST markers. Antibiotic susceptibility of 49 clinical isolates (9 susceptible and 40 resistant) from the Neisseria gonorrhoeae panel of the Central for Disease Control and Prevention (CDC) bacteria bank was determined using the “normalized” C:T ratios (C:T ratio of marker/C:T ratio of 16S rRNA). Clinical isolates were exposed to ciprofloxacin for 10 min and the concentration of RNA markers was measured by digital PCR.



FIG. 6 shows a table containing a list of candidate markers and their expression in transcripts per million (TPM) and copies per cell for susceptible isolate S2 and resistant isolate R2 after 15 min of ciprofloxacin exposure. The genome used for alignment was N. gonorrhoeae FA1090 (NCBI Reference Sequence: NC_002946.2).



FIG. 7 shows a table containing exemplary primer sequences used for validation of candidate markers by digital PCR (SEQ ID NOs: 160-173).



FIG. 8 shows a table containing minimum inhibitory concentration (MIC) values for the 49 Neisseria gonorrhoeae clinical isolates acquired from the Center for Disease Control and Prevention (CDC) and Federal Drug Administration (FDA) Antibiotic Resistance Isolate Bank published in 2018.



FIG. 9 shows a diagram reporting a fitting a curve of the C:T ratios expected to be obtained at various antibiotic concentrations in a prophetic example of the methods and systems herein described. In particular in the diagram of FIG. 9, the CT ratios obtained for a particular sample are reported vs the related concentration of antibiotic for samples comprising a microorganism susceptible to the antibiotic (black circles) a microorganism having intermediate susceptibility to the antibiotic (black squares) and a microorganism resistant to the antibiotic (black triangles). In the prophetic illustration of FIG. 9, the microorganism is N. gonorrhoeae and the antibiotic is ciprofloxacin.





ANNEX A-E

The accompanying ANNEX A provides exemplary 16S rRNA and 23S rRNA sequences (SEQ ID NO: 1-9 and 13-27) that can be used as control transcript for normalization. ANNEX B provides exemplary marker genes (SEQ ID NO: 28-153 and 228-230) differentially expressed by an exemplary microorganism (N. gonorrhoeae) in an untreated sample and in a sample treated with an antibiotic. ANNEX C provides exemplary marker genes (SEQ ID NO: 154-159) expected to be differentially expressed by an exemplary microorganism (N. meningitidis) in an untreated sample and in a sample treated with an antibiotic. ANNEX D provides sequences of an exemplary marker of antibiotic susceptibility (porB) in 50 clinical isolates from the Center of Disease Control and Prevention (CDC) bank (SEQ ID NO: 178-227). ANNEX E provides a list of exemplary RNAs reported in Table 1 (SEQ ID NO: 231-344 and SEQ ID NO: 10-12) with a log2 fold change less than 0.32 (corresponding to <25% change) that can be used as control transcripts. ANNEX A to E which are incorporated into and constitute a part of this specification, together with the detailed description section, serve to explain the principles and implementations of the disclosure. Other features, objects, and advantages will be apparent from the entire description and drawings, and from the claims.


DETAILED DESCRIPTION

Provided herein are RNA markers of antibiotic susceptibility of microorganisms and related compositions, methods and systems for their identification and/or use.


The term “RNA” or “Ribonucleic acid” as used herein indicates a polynucleotide composed of our of ribonucleotide bases: or an analog thereof linked to form an organic polymer. The term “ribonucleotide” refers to any compounds that consist of a ribose (ribonucleotide) sugar joined to a purine or pyrimidine base and to a phosphate group, and that are the basic structural units of a ribonucleic acid, typically adenine (A), cytosine (C), guanine (G), and uracil (U). In an RNA adjacent ribose nucleotide bases are chemically attached to one another in a chain typically via phosphodiester bonds. The term “ribonucleotide analog” refers to a ribonucleotide in which one or more individual atoms have been replaced with a different atom with a different functional group. For example, ribonucleotide analogues include chemically modified ribonucleotides, such as methylation hydroxymethylation glycosylation and additional modifications identifiable by a skilled person. Examples of chemical modifications of RNA comprise dynamic modifications to RNA identified in the transcriptome, including N6-methyladenosine (m6A), inosine (I), 5-methylcytosine (m5C), pseudouridine (Ψ), 5-hydroxymethylcytosine (hm5C), and N1-methyladenosine (m1A), and related epitranscriptome which are described in Song and Yi 2017,. [1] Additional chemical modifications of transfer RNA (tRNA) are described in Jackman and Alfonzo 2013 [2] (Accordingly, the term RNA includes ribonucleic acids of any length including analogs or fragments thereof.


The term “marker” as used herein refers to a category of characteristics that are objectively measured and evaluated as an indicator of biological processes, pathogenic processes, or pharmacologic response to a therapeutic intervention or an environmental exposure. A marker can be any molecule associated with the process and/or response of interest and that can be used as an identifier to detect the process and/or response of interest, such as certain characteristics in a microorganism and/or its response to a therapeutic intervention or an environmental exposure including exposure to antibiotics.


The term “antibiotic” sometimes abbreviated as ABX, as used herein refers to a type of antimicrobial used in the treatment and prevention of bacterial infection. Some antibiotics can either kill or inhibit the growth of bacteria. Others can be effective against fungi and protozoans. The term “antibiotic” can be used to refer to any substance used against microbes. Antibiotics are commonly classified based on their mechanism of action, chemical structure, or spectrum of activity. Most antibiotics target bacterial functions or growth processes. Antibiotics having bactericidal activities target the bacterial cell wall, such as penicillins and cephalosporins, or target the cell membrane, such as polymyxins, or interfere with essential bacterial enzymes, such as rifamycins, lipiarmycins, quinolones and sulfonamides. Antibiotics having bacteriostatic properties target protein synthesis, such as macrolides, lincosamides and tetracyclines. Antibiotics can be further categorized based on their target specificity. “Narrow-spectrum” antibacterial antibiotics target specific types of bacteria, such as Gram-negative or Gram-positive bacteria. “Broad-spectrum” antibiotics affect a wide range of bacteria. Exemplary antibiotics comprise topoisomerase inhibitors which are chemical compounds capable of blocking the action of a topoisomerase such as topoisomerase I and II (a type of enzyme that controls the changes in DNA structure by catalyzing the breaking and rejoining of the phosphodiester backbone of DNA strands during the normal cell cycle) and fluoroquinolones which are quinolones containing a fluorine atom in their chemical structure and are effective against both Gram-negative and Gram-positive bacteria. A quinolone antibiotic indicates any member of a large group of broad-spectrum bactericides that share a bicyclic core structure related to the compound 4-quinolone. Exemplary fluoroquinolones include ciprofloxacin (Cipro), gemifloxacin (Factive), levofloxacin (Levaquin), moxifloxacin (Avelox), norfloxacin (Noroxin), and ofloxacin (Floxin).


The wording “antibiotic susceptibility” or “antibiotic sensitivity” as used herein indicates the susceptibility of bacteria to antibiotics and the antibiotic susceptibility can vary within a species. Antibiotic susceptibility testing (AST) can be carried out to predict the clinical response to treatment and guide the selection of antibiotics as will be understood by a person skilled in the art. In some embodiments, AST categorizes organisms as susceptible, resistant, or intermediate to a certain antibiotic.


Microorganisms can be classified as susceptible (sensitive), intermediate or resistant based on breakpoint minimum inhibitory concentration (MIC) values that are arbitrarily defined and reflect the achievable levels of the antibiotic, the distribution of MICs for the organism and their correlation with clinical outcome. MIC value of a microorganism is the lowest concentration of an antibiotic that will inhibit its growth. Methods that can be used to measure the MIC of a microorganism comprise broth dilution, agar dilution and gradient diffusion (the ‘E test’), where twofold serial dilutions of antibiotic are incorporated into tubes of broth, agar plates or on a paper strip, respectively, as will be understood by a person skilled in the art. The disk diffusion method defines an organism as susceptible or resistant based on the extent of its growth around an antibiotic-containing disk. MIC values are influenced by several laboratory factors.


Laboratories follow standard for parameters such as incubation temperature, incubation environment, growth media, as well as inoculum and quality control parameters. In the U.S., standards for performing AST as well as breakpoint MIC values for various bacteria can be found in Clinical & Laboratory Standards Institute (CLSI) publications (see the web page https://clsi.org/standards/products/microbiology/documents/m100/ at the date of filing of the present disclosure). An example of standards for performing an Antibiotic Susceptibility Test (AST) as well as breakpoint MIC values for various bacteria which can be used in embodiments of the present disclosure is provided in Example 16. In Europe, standards for performing AST as well as breakpoint MIC values for bacteria can be found in European Committee on Antimicrobial Susceptibility Testing (EUCAST) see http://www.eucast.org/clinical_breakpoints/ at the time of filing of the instant disclosure) as will be understood by the skilled person.


The term “microorganism”, or “microbe” as used herein indicates a microscopic organism, which may exist in its single-celled form or in a colony of cells, such as prokaryotes and in particular bacteria.


The term “prokaryotic” is used herein interchangeably with the terms “cell” and refers to a microbial species which contains no nucleus or other organelles in the cell. Exemplary prokaryotic cells include bacteria.


The term “bacteria” or “bacterial cell”, used herein interchangeably with the terms “cell” indicates a large domain of prokaryotic microorganisms. Typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals, and are present in several habitats, such as soil, water, acidic hot springs, radioactive waste, the deep portions of Earth’s crust, as well as in symbiotic and parasitic relationships with plants and animals. Bacteria in the sense of the disclosure refers to several prokaryotic microbial species which comprise Gram-negative bacteria Gram-positive bacteria, Proteobacteria, Cyanobacteria, Spirochetes and related species, Planctomyces, Bacteroides, Flavobacteria, Chlamydia, Green sulfur bacteria, Green non-sulfur bacteria including anaerobic phototrophs, Radioresistant micrococci and related species, Thermotoga and Thermosipho thermophiles as would be understood by a skilled person. More specifically, the wording “Gram positive bacteria” refers to cocci, nonsporulating rods and sporulating rods, such as, for example, Actinomyces, Bacillus, Clostridium, Corynebacterium, Erysipelothrix, Lactobacillus, Listeria, Mycobacterium, Myxococcus, Nocardia, Staphylococcus, Streptococcus and Streptomyces.


The term “proteobacteria” as used herein refers to a major phylum of Gram-negative bacteria. Many move about using flagella, but some are nonmotile or rely on bacterial gliding. As understood by skilled persons, taxonomic classification as proteobacteria is determined primarily in terms of ribosomal RNA (rRNA) sequences. The Proteobacteria are divided into six classes, referred to by the Greek letters alpha through epsilon and the Acidithiobacillia and Oligoflexia, including alphaproteobacteria, betaproteobacteria and gammaproteobacteria as will be understood by a skilled person. Proteobacteria comprise the species: N. gonorrhoeae and N meningitidis within the class of Betaproteobacteria, the order: Neisseriales the Family of Neisseriaceae and the Genus of Neisseria.


In embodiments of the instant disclosure, RNA markers are described and related methods and systems to test antibiotic susceptibility of microorganisms as well as for the diagnosis and/or treatment of related infections in individuals.


In particular, in some embodiments described herein is a method to identify an RNA marker of antibiotic susceptibility in a microorganism. The method herein described is based on the use of a susceptible isolate or specimen comprising a strain of the microorganism susceptible to the antibiotic and of a resistant isolate or specimen comprising a strain of the microorganism resistant to the antibiotic.


The term “isolate” as used herein indicates a portion of matter resulting from a separation of a strain of a microorganism from a natural, usually mixed population of living microbes, as present in a natural or experimental environment, for example in water or soil flora, or from living beings with skin flora, oral flora or gut flora.


The word “specimen” as used herein indicates a portion of matter from an environment for use in testing, examination, or study. The environment can comprise living beings and in particular human beings. In these instances a specimen can include portion of tissues, organs or other biological material from the living being such as urethra, urine, cervix, vagina, rectum, oropharynges, conjunctiva, or any body fluids.


In some embodiments, the isolates can be obtained from isolate banks such as CDC and FDA AR Isolate Bank which provide curated collections of susceptible and resistant organisms. In particular in embodiments wherein the microorganism is N. gonorrhoeae, the susceptible and resistant isolates are obtained from the N. gonorrhoeae panel of the CDC Antimicrobial Resistance Isolate Bank, which as of Aug. 1, 2018 contained 50 total isolates.


In methods to identify such an RNA marker of antibiotic susceptibility in a microorganism herein described, the selected RNA marker of antibiotic susceptibility identified by the method is a transcript of a gene which is differentially expressed in a sample of the susceptible isolate or specimen treated with the antibiotic and in sample of the resistant isolate or specimen treated with the antibiotic.


The term “sample” as used herein indicates a limited quantity of something that is indicative of a larger quantity of that something, including but not limited to fluids from an isolate or a specimen such as biological environment, cultures, tissues, commercial recombinant proteins, synthetic compounds or portions thereof. In particular biological sample can comprise one or more cells of any biological lineage, as being representative of the total population of similar cells in the sampled individual. Exemplary biological samples comprise the following: cheek tissue, whole blood, dried blood spots, organ tissue, plasma, urine, mucus, mucosal secretions, vaginal fluids and secretions, urethral fluids and secretions, feces, skin, hair, or tumor cells, among others identifiable by a skilled person. Biological samples can be obtained using sterile techniques or non-sterile techniques, as appropriate for the sample type, as identifiable by persons skilled in the art. Some biological samples can be obtained by contacting a swab with a surface on a human body and removing some material from said surface, examples include throat swab, urethral swab, oropharyngeal swab, cervical swab, vaginal swab, genital swab, anal swab. Depending on the type of biological sample and the intended analysis, biological samples can be used freshly for sample preparation and analysis, or can be fixed using fixative. Preferably, in methods and systems herein described the sample comprises live cells.


The wording “differentially expressed” as used herein with respect to a gene indicates a difference in the expression of the gene by a cell under different experimental, environmental and/or biological conditions. Accordingly, differential expression of a gene can be detected in a microorganism following a different in one or more of these conditions as will be understood by a skilled person. For example, the wording “differentially expressed” can reference to a difference in the expression of a gene in a microorganism: i) with or without drug treatment, ii) on a same sample or different samples, and/or iii) at different times. Accordingly, differential expression analysis requires that gene expression values detected under the different conditions be compared and therefore that the expression of the genes be quantitatively detected.


In particular, detection of a differential expression of a gene in a susceptible or resistant isolate or specimen according to methods herein described can be performed by quantitatively detecting the expression of the gene in samples of the susceptible and resistant isolate or specimen.


The terms “detect” or “detection” as used herein indicates the determination of the existence, presence or fact of a target in a limited portion of space, including but not limited to a sample, a reaction mixture, a molecular complex and a substrate. The “detect” or “detection” as used herein can comprise determination of chemical and/or biological properties of the target, including but not limited to ability to interact, and in particular bind, other compounds, ability to activate another compound and additional properties identifiable by a skilled person upon reading of the present disclosure. The detection can be quantitative or qualitative. A detection is “quantitative” when it refers, relates to, or involves the measurement of quantity or amount of the target or signal (also referred as quantitation), which includes but is not limited to any analysis designed to determine the amounts or proportions of the target or signal. A detection is “qualitative” when it refers, relates to, or involves identification of a quality or kind of the target or signal in terms of relative abundance to another target or signal, which is not quantified.


An exemplary way to quantitatively detect differential expression is the fold change approach which can be used as a criterion to select differentially expressed genes as will be understood by a person skilled in the art. In the fold-change approach, a gene is considered to be differentially expressed if the ratio of the normalized marker expression level, possibly normalized, between the antibiotic treated and untreated conditions exceeds a certain threshold


In methods herein described, quantitative detection of expression of a gene can be performed with various techniques such as by RNA-seq, qPCR, digital PCR, and isothermal techniques such as LAMP or digital isothermal, microarrays signals, Nanostring as well high throughput RNA sequencing as reads per kilobase per million reads (RPKM) or transcripts per million (TPM) for RNA-seq data and additional nucleic acid quantification techniques identifiable to a skilled person. It should be understood that in such methods quantitative detection of expression of a gene is commonly combined with a reverse transcription step to convert the RNA sequence into a cDNA sequence which can be quantified by methods described herein and/or identifiable by a skilled person. Either sequence-specific or sequence-non-specific primers can be used to initiate reverse transcription of a target gene as will be understood by a skilled person.


In some embodiments, detecting specific gene expression can be performed at the transcription level by performing RNA-seq and calculating RNA expression values based on the sequence data.


In some embodiments, the RNA expression values can be detected and provided as transcripts per million (TPM) as will be understood by a person skilled in the art. In particular, to calculate TPM, read counts are first divided by the length of each gene in kilobases, which gives reads per kilobase (RPK). RPKs for all genes are added and the sum is divided by 1,000,000. This gives the “per million” scaling factor. Finally, the RPK value for each genes is divided by the “per million” scaling factor to give TPM. [3]


In particular, in method to identify an RNA marker of antibiotic susceptibility herein described, quantitatively detecting the expression of a gene is performed in treated samples of the susceptible and resistant isolate or specimen following treatment of the samples with the antibiotic and in control samples of the susceptible and resistant isolate or specimen without treatment with the antibiotic.


In some of these embodiments, providing a treated sample and a control sample of the susceptible and/or resistant isolate or specimen can comprise contacting a first sample of the susceptible and/or resistant isolate or specimen with a treatment media to obtain the susceptible and/or resistant control samples respectively and contacting a second sample of the susceptible and/or resistant isolate or specimen from the same source or host with the same treatment media and an antibiotic to obtain a susceptible and/or resistant antibiotic treated sample respectively. The contacting time (referring to the duration of the contact) with the treatment media is preferably substantially the same for the control sample and the treated sample. The wording “substantially the same” when referred to two or more times indicates times differing one from another of an amount up to 30%, Accordingly, for example two contacting times are substantially the same in the sense of the disclosure, if they are within approximately 30% of each other, 20% of each other, 10% of each other, 5% of each other. For example, the two contacting times can be within 2 minutes of each other, or within 1 minute of each other.


In some particular embodiments, treatment of a sample with a treatment media is performed to create a controlled environment that would minimize the impact of biochemical parameters of a sample, such as pH or salt concentration or presence of molecules other than RNA or cells (human cells or other microorganisms other than target microorganism from which gene expression is to be detected)) on the gene expression and RNA response of the target microorganism to an external stimulus such as a antibiotic treatment and/or quantitative detection of gene expression. Treatment media can be used to create a more controlled environment for obtaining a more reliable gene expression. For example, treatment media can be composed of commercially available broths designed for the cultivation of microorganisms (such as Fastidious Broth from Hardy Diagnostics) or prepared using chemically defined components. In some cases, commercial broths can be diluted to create the desired treatment environment. For example, a specific osmolarity (for example in the range 0.0 - 0.5 osmols) or pH (for example in the range 5 - 9). Treatment media can be modified to contain specific factors to increase or decrease the metabolism of the target microorganism (such as carbon source or specific anions or cations). Gentle or vigorous mixing can be performed at specific time intervals after the addition of microorganisms to the treatment media in order to maintain homogeneity and reliable gene expression.


In some embodiments, a control sample and/or treated sample of the susceptible and/or resistant isolate or specimen can preferably be pretreated to enrich said sample with RNA or with the target microorganism, and/or to remove human RNA or RNA of other microorganisms. The removal of human RNA can be performed via hybridization to beads or columns with probes specific for human RNA. The removal of human RNA can also be performed via selective lysis of human cells and degradation of released human RNA. The sample may also be pretreated to enrich or deplete, as desired, tRNA via size selection.


In some embodiments, treatment or exposure with antibiotic can be performed by adding antibiotics to the microorganism and incubating the sample under certain condition preferably following and/or upon contacting the sample with a treatment media.


Treatment media used in connection with antibiotic exposure in accordance to methods herein described can be designed to support physiological processes of the target microorganism, enable or accelerate DNA replication and translation, maintain cellular uniformity and homogeneity in suspension, and promote interaction of the microorganism and antibiotic. Accordingly, the treatment media can be selected to include a source of energy and nourishment specific for the target microorganism, such as carbon, hydrogen, oxygen, nitrogen phosphorus, Sulphur, potassium, magnesium, calcium, iron, trace elements and organic growth factors which can be provided as organic sources such as simple sugars e.g. glucose, acetate or pyruvate, amino acids, nitrogenous bases or extracts such as peptone, tryptone, yeast extract and additional identifiable by a skilled person., Inorganic sources such as ; carbon dioxide (CO2) or hydrogen carbonate salts (HCO3)NH4CI, (NH4)2S04, KNO3, and for dinitrogen fixers N2, KH2PO4, Na2HPO4, Na2SO4, H2S, KCI, K2HPO4, MgCI2, MgSO4, CaCI2, Ca(HC03)2, NaCI, FeCI3, Fe(NH4)(SO4)2, Fe-chelates1), CoCI2, ZnCI2, Na2MoO4, CuCI2, MnSO4, NiCI2, Na2SeO4, Na2WO4, Na2VO4, as well as Vitamins, amino acids, purines, pyrimidines (see the website https://www.sigmaaldrich.com/technical-documents/articles/microbiology/microbiology-introduction.html at the filing date of the present disclosure). Additional parameters considered to select the proper treatment media for a target microorganism comprise osmotic pressure, pH, oxygen content, water content, carbon dioxide content as will be understood by a skilled person to support physiological processes of the target microorganism, enable or accelerate DNA replication and translation, maintain cellular uniformity and homogeneity in suspension, and promote interaction of the microorganism and antibiotic. For example in the experiments described herein with reference to N. gonorrhoeae the treatment media used was Fastidious Broth from Hardy Diagnostics (cat no. K31) which comprise pancreatic Digest of Casein , Yeast Extract, Dextrose, Peptic Digest of Animal Tissue, Sodium Chloride, Brain Heart Infusion, TRIS , Pancreatic Digest of Gelatin, Agarose, L-Cysteine HCl, Magnesium Sulfate, Ferrous Sulfate , Hematin, NAD, Pyridoxal and Tween® 80 (see https://catalog.hardydiagnostics.com/cp_prod/content/hugo/fbbroth.htm at the filing date of the present disclosure) Additional treatment media suitable to support physiological processes of N. gonorrhoeae, to enable or accelerate DNA replication and translation, maintain cellular uniformity and homogeneity in suspension, and promote interaction of the N. gonorrhoeae and the antibiotic are identifiable by a skilled person.


In methods herein described, incubation of a sample with an antibiotic can be performed at a temperature such that a physiological response to the antibiotic is generated in the target microorganism (often the microorganisms optimal growth temperature, for example 37° C. or at a temperature ± 0.5 degrees, ± 1 degree, ± 2 degrees, ± 3° C. therefrom). Also, adding the antibiotics can be performed throughout incubation or at set intervals during incubation to increase or decrease the physiological response of the microorganism to the antibiotic.


In particular in some embodiments, the antibiotic for treating the sample herein described can be provided at a concentration equal to or above the breakpoint MIC for the susceptible isolate or specimen to the antibiotic. In particular, the antibiotic for treating the sample herein described can be provided at a concentration lower than the breakpoint MIC for the resistant isolate or specimen to the antibiotic, for example 1.5 times (or 1.5X) lower, 2 times (or 2X) lower, 3 times (or 3X) lower, 4 times (or 4X) lower, 8 times (or 8X) lower, or 16 times (or 16X) lower than the breakpoint MIC for a resistant isolate. In some embodiments, the antibiotic for treating the sample herein described is provided at a concentration higher than the breakpoint MIC for the resistant isolate or specimen to the antibiotic, for example 1.5 times (or 1.5X) higher, 2 times (or 2X) higher, 3 times (or 3X) higher, or 4 times (or 4X) higher, 8 times higher (8X), 16 times higher (or 16X) than then breakpoint MIC. The breakpoint MIC of the antibiotic can be obtained from the Clinical & Laboratory Standards Institute (CLSI) guidelines, European Committee of Antimicrobial Susceptibility Testing (EUCAST) or other sources identifiable to a skilled person. In some embodiments, samples can be treated at several concentrations of the antibiotics for example, to measure the MIC of an organism before identifying the marker of antibiotic susceptibility as will be understood by a skilled person.


In some embodiments, antibiotic treatment or exposure can be performed for a set time period (e.g. up to 5 minutes, 10 minutes, 15 minutes or 20 minutes or any other time between 0-20 minutes or longer).


In some embodiments of the methods of the instant disclosure, the time period of contacting the sample with an antibiotic is shorter than the doubling time of the target organism. For example, the time of contacting could be less than 1x doubling time, less than 0.75X doubling time, less than 0.5 doubling time, less than 0.35 doubling time, less than 0.25 doubling time, less than 0.2 doubling time, less than 0.15 doubling time, less than 0.1 doubling time, less than 0.075 doubling time, less than 0.05 doubling time.


During the incubation, the sample can be collected at different time interval for further analysis (see Example 1). In addition to collecting samples during the incubation with antibiotics, samples can be collected for analysis before treatment or exposure. Such samples can be used as controls in analysis. Detection of response of the microorganism to the antibiotic can be performed one or more times at any time after antibiotic treatment or exposure. In some embodiments, rapid detection, for example detection completed within 10 minutes, 15 minutes, 20 minutes, 30 minutes, 40 minutes after exposure.


In some of embodiments of the method to identify an RNA marker of antibiotic susceptibility herein described, providing a treated sample and a control sample of the susceptible and/or resistant isolate or specimen can comprise enriching a first sample and a second sample of the susceptible and/or resistant isolate or specimen from the same source or host with the microorganism to obtain the susceptible and/or resistant control samples respectively, and contacting the second sample with an antibiotic to obtain a susceptible and/or resistant antibiotic treated sample respectively.


In embodiments of the method to identify an RNA marker of antibiotic susceptibility herein described,, providing a treated sample and a control sample of the susceptible and/or resistant isolate or specimen can comprise enriching a first sample and a second sample of the susceptible and/or resistant isolate or specimen from the same source or host with the microorganism, contacting the first sample with a treatment media following the enriching to obtain the susceptible and/or resistant control samples respectively and contacting the second sample of the susceptible and/or resistant isolate or specimen from the same source or host with the same treatment media and an antibiotic to obtain a susceptible and/or resistant antibiotic treated sample respectively.


In methods herein described, enriching a sample with the microorganisms can be performed between sample collection (and optionally elution from a collection tool such as a swab) and exposure. In particular enriching a sample with microorganisms and in particular bacteria (such as Neisseria gonorrhoeae) can be performed by capturing the microorganism using a solid support (e.g. a membrane, a filtration membrane, an affinity membrane, an affinity column) or a suspension of a solid reagent (e.g. microspheres, beads). Capture of a target microorganism can improve the assay and the response to antibiotic. Capture can be used to enrich/concentrate low-concentration samples. Capture followed by washing can be used to remove inhibitors or components that may interfere with the method described here. Capture followed by washing may be used to remove inhibitors of nucleic acid amplification or inhibitors of other quantitative detection assays. Enrichment can also be performed using lysis-filtration techniques to lyse host cells and dissolve protein and/or salt precipitates while maintaining bacterial cell integrity then capturing target bacteria on filters (e.g. mixed cellulose ester membranes, polypropylene and polysulfone membranes). Enrichment can also be performed by binding target bacteria to membranes of microspheres, optionally coated with an affinity reagent (e.g. an antibody, an aptamer) specific to the target bacteria’s cell envelope. When microspheres or beads are used for capture, they can be filtered, centrifuged, or collected using a magnet to enrich bacteria. AST in the format described here can then be performed directly on captured bacteria, or the bacteria can be released before performing the method.


Accordingly, in methods to identify an RNA marker of antibiotic susceptibility, quantitative detection of a marker gene is performed to provide for each of the detected genes a control gene expression value C in a control sample not treated with the antibiotic and a corresponding treated gene expression value T in a treated sample treated with the antibiotic in each of the susceptible and resistant isolate or specimen.


In particular, quantitative detection of the expression of one or more genes in method herein described to identify an RNA marker of antibiotic susceptibility is performed to provide

  • a control susceptible gene expression value Cs for each of the detected genes in a control susceptible sample not treated with the antibiotic and a corresponding treated susceptible gene expression Ts for each of the detected genes in a treated susceptible sample treated with the antibiotic; and
  • a control resistant gene expression value Cr for each of the detected genes in a control resistant sample not treated with the antibiotic and a corresponding treated resistant gene expression Tr for each of the detected genes in a treated resistant sample treated with the antibiotic.


More particularly in methods to identify an RNA marker of antibiotic quantitative detection of the expression of one or more genes is performed to provide a susceptible (Cs:Ts) value for a candidate marker gene in the susceptible isolate or specimen, and a resistant (Cr:Tr) value for a candidate marker gene in the resistance isolate or specimen.


In particular providing a susceptible (Cs:Ts) value for the candidate marker gene in the susceptible isolate or specimen can be performed by

  • providing a treated susceptible sample treated with the antibiotic and a control susceptible sample not treated with the antibiotic,
  • quantitatively detecting a control susceptible gene expression value Cs for a candidate marker gene in the control susceptible sample,
  • quantitatively detecting a treated susceptible gene expression value Ts for the candidate marker gene in the treated susceptible sample, and
  • providing a susceptible (Cs:Ts) value for the candidate marker gene by dividing Cs for the candidate marker gene by Ts for the candidate marker gene .


Additionally, providing a resistant (Cr:Tr) value for the candidate marker gene in the at least one resistant isolate or specimen can be performed by.

  • providing a treated resistant sample treated with the antibiotic and a control resistant sample not treated with the antibiotic,
  • quantitatively detecting a control resistant gene expression value Cr for the candidate marker gene in the control resistant sample,
  • quantitatively detecting a treated resistant gene expression value Tr for the candidate marker gene in the treated resistant sample, and
  • providing a resistant (Cr:Tr) value for the candidate marker gene by dividing Cr for the candidate marker gene by Tr for the candidate marker gene.


In methods to identify an RNA marker of antibiotic susceptibility, the RNA is identified by selecting the candidate marker gene when Cs:Ts is different from Cr:Tr to provide a selected marker gene differentially expressed in the treated susceptible sample and in the treated resistant sample.


In some embodiments, the Cs:Ts ratio and the Cr:Tr ratios are provided by gene expressionin TPM in the control sample divided by the gene expression in TPM in the treated sample.


In some embodiments, the Cs:Ts ratio and the Cr:Tr ratios can be provided by RPKM (reads per kilobase per million mapped reads). The use of RPKM and comparison to TPM is described for example in Wagner et al 2012 [3]. In some embodiments the Cs:Ts ratio and the Cr:Tr ratios are provided by FPKM (fragments per kilobase per million), the use of FPKM is described for example in Conesa, Ana, et al. 2016 [4]. These units normalize for sequencing depth and transcript length. In some embodiments RPM (reads per million mapped reads; RPM does not normalize for transcript length) or raw sequencing read counts can be used. Typically, to calculate RPM (reads per million), the total reads from a sample are divided by 1,000,000 to obtain the “per million scaling factor”. The read counts for each gene are then divided by the “per million scaling factor” to give RPM. Also typically to calculate RPKM (for single-end RNA-seq), the RPM values are divided by the gene length in kilobases. FPKM (for paired-end RNA-seq), is calculated the same way as RPKM, taking into account that with paired-end RNA-seq, two reads can correspond to a single fragment, or, if one read in the pair did not map, one read can correspond to a single fragment as will be understood by a skilled person.


In some embodiments, the Cs:Ts ratio and the Cr:Tr ratio can be plotted as -log2(C:T) against the -log2(expression in TPM) for all genes (FIGS. 1-3).


In some embodiments, to qualify for a marker gene differentially expressed in the treated sample of the susceptible isolate or specimen and in the treated sample of the resistant isolate or specimen, the difference between the (Cs:Ts) value and resistant (Cr:Tr) value is statistically significant.


In preferred embodiments, to qualify for a marker gene differentially expressed in the treated sample of the susceptible isolate or specimen and in the treated sample of the resistant isolate or specimen, the difference between the (Cs:Ts) value and resistant (Cr:Tr) value is statistically significant over the related biological variability (variability due to physiologic differences among a biological unit of a same microorganism such as between different strains of the microorganism and/or between different individual microorganism of a same strains) and/or technical variability (variability due to performance of different measurements of a same biological unit), more preferably over both biological and technical variability.


To measure technical variability a Cs:Ts or a Cr:Tr ratio is measured from a given sample multiple times with the method of choice (e.g. at least 3 or more times, or 5 or more times depending on the variability of the methods chosen for measurement as will be understood by a skilled person) and statistical analysis is performed on the resulting distribution (e.g. standard error of the mean, or standard distribution depending on the number of samples used as will be understood by a skilled person). Technical variability would depend on the measurement method chosen, as different methods have different accuracy, upper quantitative limits and more importantly lower quantitative limits as will be understood by a skilled person. For example RNA sequencing and reverse transcription digital PCR are methods with low technical variability.


To measure biological variability, a Cs:Ts or a Cr:Tr ratio is measured from multiple samples (in particular one can use three resistant and three susceptible samples, or preferably at least 5 resistant and 5 susceptible samples) with a method that has minimal technical variability such as RNA sequencing or others identifiable by a skilled person upon of reading of the present disclosure.


Statistical significance can be defined using a desired percent confidence. A common choice would be a 95% confidence interval or a 99% confidence interval (for relevant descriptions see Devore 2017 [5]. Additional description of statistical analysis used in single-molecule (digital) measurements to resolve differences between two distributions is provided in Kreutz et al 2011. [6]


In preferred embodiments, to qualify for a marker gene differentially expressed in the treated sample of the susceptible isolate or specimen and in the treated sample of the resistant isolate or specimen, the difference between the (Cs:Ts) value and resistant (Cr:Tr) value is adjusted to reduce the impact of biological variability and/or technical variability, more preferably of both biological and technical variability. Accordingly, in some embodiments, the method to identify a marker, further comprises normalizing the susceptible (Cs:Ts) value and the resistant (Cr:Tr) value prior to selecting a marker gene differentially expressed in the treated samples.


The wording “normalizing” and “normalization” as used herein refer to adjustments of a value related to a quantified amount to account for variations. In particular normalization of a value can be performed to account for a variation in a parameter associated with the detection of the quantified amount, such as variations in an amount of starting material, variations in an amount of sample, variations in bacterial concentration of sample, variations due to biological variability and variations due to technical variability.


Normalizing the susceptible (Cs:Ts) value and the resistant (Cr:Tr) value is performed with a reference measurement of RNA, DNA or cell number, the number of samples, the volume of sample used, the concentration of sample used, the effective amount of sample used and/or a related ratio in a control and in a treated sample. Effective amount of sample can be calculated by for example measuring the volumes and concentration of the sample used. Normalizing the susceptible (Cs:Ts) value can be performed by dividing the control susceptible gene expression by a reference measurement in the control susceptible sample and dividing the treated susceptible gene expression by the reference measurement in the treated susceptible sample. Normalizing the resistant (Cr:Tr) value can be performed by dividing the control resistant gene expression by a reference measurement in the control resistant sample and dividing the treated resistant gene expression by the reference measurement in the treated resistant sample. In addition, the normalization ratio for susceptible sample can be calculated by dividing the control susceptible reference measurement by the treated susceptible reference measurement. Normalizing the susceptible (Cs:Ts) value can be performed by dividing the (Cs:Ts) value by a susceptible normalization ratio. The normalization ratio for resistant sample can be calculated by dividing the control resistant reference measurement by the treated resistant reference measurement. Normalizing the resistant (Cr:Tr) value can be performed by dividing the (Cs:Ts) value by a resistant normalization ratio.


In some embodiments, normalization can be performed with reference measurement of cells such as cell number and/or a related ratio (FIGS. 3A-B).


In some embodiments of these embodiments, the reference measurement is a measurement that reflects the number of target cells. For example, prior to the calculation of a CT ratio, the RNA expression in the untreated control sample and the RNA expression in the treated sample would be divided by a cell normalization ratio between number of target cells in the treated sample and number of target cells in the control sample which can be calculated from other measurements such as optical density, turbidity, increase in intensity of a colorimetric, fluorogenic, or luminescent metabolic indicator or a live/dead indicator, colony counting after plating, amount of pathogen-specific DNA and amount of pathogen-specific RNA as will be understood by a skilled person,.


In some embodiments, normalization can be performed with reference measurement of DNA and/or a related normalization ratio.


In some of these embodiments, the reference measurement is a measurement that reflects the amount of DNA of the target pathogen. For example, the amount of DNA of the target pathogen present could be measured using real time polymerase chain reaction, digital polymerase chain reaction, digital isothermal amplification, real time isothermal amplification, and/or other nucleic acid quantification techniques described herein. One or more DNA target sequences from the genome of the target pathogen can be used for estimating the amount of DNA of the target pathogen. Preferably, DNA sequences conserved within this organism are used.


For example, prior to the calculation of the CT ratio, the RNA expression in the untreated control sample would be divided by the amount of DNA of the target pathogen measured to be present in the control sample, and the RNA expression in the treated sample would be divided by the amount of DNA of the target pathogen measured to be present in the treated sample. In addition or in the alternative prior to the calculation of the CT ratio, a DNA normalization ratio can be provided by dividing the amount of DNA of the target pathogen measured to be present in the control sample and the amount of DNA of the target pathogen measured to be present in the treated sample. The RNA expression in the untreated control sample and the RNA expression in the treated sample can then be divided by the DNA normalization ratio to normalize the related value.


In some embodiments, normalization can be performed with reference to an RNA measurement and/or a related ratio. In particular, in those embodiments, the normalization can be performed using the expression value of a reference RNA, preferably selected among RNA expressed by the microorganism with low variability among strains of the microorganism.


In some of these embodiments, prior to the calculation of a CT ratio, the RNA expression value of a marker in the treated and/or in the untreated control sample would be divided by the expression value of the reference RNA in the treated and/or untreated control sample respectively. In addition or in the alternative, prior to the calculation of a CT ratio, the RNA expression in the untreated control sample and the RNA expression in the treated sample can be divided by a RNA normalization ratio provided by the expression value of the reference RNA in the untreated control sample divided by the expression of the reference RNA in the treated sample. The expression value the reference RNA can be detected by detecting the RNA and/or the corresponding cDNA in the microorganism.


In some embodiments, also the susceptible (Cs:Ts) value and the resistant (Cr:Tr) value can be normalized with respect to a reference parameter and/or a related ratio.


For example, normalization of the susceptible (Cs:Ts) value can be performed by dividing the susceptible (Cs:Ts) value of a target transcript in an untreated control sample by the expression of a control transcript such as 16S rRNA and/or 23S rRNA in the untreated control sample, and by dividing the susceptible (Cs:Ts) value of the target transcript in the treated sample by the expression of the same control transcript (e.g. 16S rRNA and/or 23S rRNA) in the treated sample. In addition or in the alternative normalizing the susceptible (Cs:Ts) value can be performed by dividing the susceptible (Cs:Ts) value by a susceptible control (Csc:Tsc) value of a control transcript (e.g. 16S rRNA or 23S rRNA) wherein the susceptible control (Csc:Tsc) value is calculated by dividing a gene expression value of the control transcript (e.g. 16S rRNA or 23S rRNA) in the control susceptible sample by a gene expression value of the control transcript (e.g. 16S rRNA or 23S rRNA) in the treated susceptible sample. In some embodiments, the control transcript can be ribosomal rRNA such as 16S rRNA or 23S rRNA.


Normalization of the resistant (Cr:Tr) value can be performed by dividing the resistant (Cr:Tr) value of a target transcript in an untreated control sample by the expression of 16S rRNA and/or 23S rRNA in the untreated control sample, and by dividing the resistant (Cr:Tr) value of the target transcript in the treated sample by the expression of 16S rRNA and/or 23S rRNA in the treated sample. In addition or in the alternative Normalizing the resistant (Cr:Tr) value can be performed by dividing the resistant (C:T) value by a resistant control (Crc:Trc) value of a control transcript (16S rRNA or 23S rRNA) wherein the resistant control (Crc:Trc) value is calculated by dividing a gene expression value of the control transcript (16S rRNA or 23S rRNA) in the control resistant sample by a gene expression value of the control transcript (16S rRNA or 23S rRNA) in the treated resistant sample.


The term “control transcript” refers to a transcript with a fold change in gene expression between control and treated samples (C:T ratio) that is substantially the same in the resistant and susceptible samples. In some embodiments, the CT ratio of the control transcript is within a 0.1-10 range, preferably within 0.5 to 2.0 range, more preferably within 0.75 and 1.25 range.


In preferred embodiments, a control transcript is selected so that the percentage change from control to treated gene expression is less than 25%, more preferably less than 10%. For example, in some embodiments control transcripts are selected so this C:T ratio is close to 1.0 in both resistant and susceptible samples. Preferably, control transcripts are selected so this C:T ratio has low technical and biological variability, for example described by standard deviation with value of less than 0.5, less than 0.4, less than 0.3, less than 0.2, less than 0.1. In some embodiments, high-abundance transcripts (for example, transcripts in the top 10% of most expressed transcripts) are used to achieve low technical variability. Preferably, control transcripts are selected so this C:T ratio has low biological variability. Transcripts with high expression and low biological variability which are not affected by the antibiotic treatment are good candidates for control transcripts.


Exemplary RNAs with a log2 fold change less than 0.32 (corresponding to <25% change) that can be used as control transcripts is reported in Table 1 below. The fold change is calculated as the average over the six (three susceptible and three resistant) isolates sequenced. The expression guidelines follow the same as in markers.


In Table 1, the GeneID and Gene Name columns are respectively the identification or reference and name or description of the control transcript gene from NCBI FA1090. Susc. Fold Change column represents the average Log2 C:T ratio for the three susceptible isolates sequenced and Susc. Control column represents the average TPM for the three susceptible isolates sequenced.





TABLE 1








List of exemplary control RNA with low C:T ratios


Geneid
Gene Name
DNA, cDNA and RNA sequences
Log2 Susc. Fold Change
Susc. Control




NGO0066a
opacity protein
SEQ ID NO: 231-233 in ANNEX E
-0.170968576
392.786073


NGO0070
opacity protein opA58
SEQ ID NO: 234-236 in ANNEX E
-0.209702876
233.9872447


NGO0372
amino acid ABC transporter substrate-binding protein
SEQ ID NO: 237-239 in ANNEX E
0.00367789
758.3587698


NGO0374
amino acid ABC transporter ATP-binding protein
SEQ ID NO: 240-242 in ANNEX E
-0.201484006
301.4382091


NGO0399
protease HtpX
SEQ ID NO: 243-245 in ANNEX E
-0.01276968
195.791542


NGO0453
type IV pilus assembly protein PilV
SEQ ID NO: 246-248 in ANNEX E
-0.304641252
102.3440114


NGO0571
hypothetical protein
SEQ ID NO: 249-251 in ANNEX E
-0.036612448
150.1617177


NGO0632
Fe-S)-cluster assembly protein
SEQ ID NO: 252-254 in ANNEX E
0.020285087
284.094415


NGO0633
iron-sulfur cluster assembly scaffold protein
SEQ ID NO: 255-257 in ANNEX E
0.005118807
205.6161095


NGO0678
hypothetical protein
SEQ ID NO: 258-260 in ANNEX E
-0.289054194
140.5781892


NGO0926
peroxiredoxin family protein/glutaredoxin
SEQ ID NO: 261-263 in ANNEX E
-0.206313513
1041.933939


NGO0936
elongation factor P
SEQ ID NO: 264-266 in ANNEX E
-0.139160962
220.8383642


NGO0950a
opacity protein
SEQ ID NO: 267-269 in ANNEX E
-0.023532111
210.4893677


NGO1040a
opacity protein
SEQ ID NO: 270-272 in ANNEX E
-0.230149948
366.4512778


NGO1073a
opacity protein
SEQ ID NO: 273-275 in ANNEX E
-0.071137135
260.6204103


NGO_r02
23S ribosomal RNA
SEQ ID NO: 324-326 in ANNEX E
0.05763481
98595.48132


NGO_r03
16S ribosomal RNA
SEQ ID NO: 327-329 in ANNEX E
0.075840851
09877.3255


NGO1225
peptidyl-prolyl isomerase
SEQ ID NO: 276-278 in ANNEX E
-0.269241544
210.4315667


NGO1277a
opacity protein
SEQ ID NO: 279-281 in ANNEX E
-0.22403411
774.1660932


NGO_r05
23S ribosomal RNA
SEQ ID NO: 330-332 in ANNEX E
0.056291313
105513.464


NGO_r06
16S ribosomal RNA
SEQ ID NO: 333-335 in ANNEX E
0.075380208
109869.8039


NGO1513
opacity protein OpaD
SEQ ID NO: 282-284 in ANNEX E
0.219592047
467.3481454


NGO1553a
opacity protein
SEQ ID NO: 285-287 in ANNEX E
0.046438846
199.2181833


NGO_r08
23S ribosomal RNA
SEQ ID NO: 336-338 in ANNEX E
0.055364901
113073.5889


NGO_r09
16S ribosomal RNA
SEQ ID NO: 339-341 in ANNEX E
0.077151808
109869.6765


NGO1762
acpP
SEQ ID NO: 288-290 in ANNEX E
0.108200968
418.8600381


NGO1842
Tuf
SEQ ID NO: 291-293 in ANNEX E
0.124500308
948.5850148


NGO_t45
tRNA-Trp
SEQ ID NO: 318-320 in ANNEX E
0.08302137
658.3452457


NGO_t47
tRNA-Gly
SEQ ID NO: 321-323 in ANNEX E
0.292430237
660.2453417


NGO1871
Peptide deformylase
SEQ ID NO: 294-296 in ANNEX E
0.046048547
201.2627628


NGO_r11
23S ribosomal RNA
SEQ ID NO: 342-344 in ANNEX E
0.059281774
109175.2904


NGO_r12
16S ribosomal RNA
SEQ ID NO: 10-12 in ANNEX E
0.080622568
109611.2649


NGO1908
pilus retraction protein PilT
SEQ ID NO: 297-299 in ANNEX E
-0.17727476
302.6151055


NGO1982
hypothetical protein
SEQ ID NO: 300-302 in ANNEX E
0.181935722
123.4307398


NGO2060a
opacity protein
SEQ ID NO: 303-305 in ANNEX E
0.014421302
237.2782045


NGO2084
membrane protein
SEQ ID NO: 306-308 in ANNEX E
0.242929753
158.6654013


NGO2134
rpsU
SEQ ID NO: 309-311 in ANNEX E
0.171806238
710.1798633


NGO2145
ATP synthase subunit C
SEQ ID NO: 312-314 in ANNEX E
0.08725091
432.1571821


NGO2146
ATP synthase subunit B
SEQ ID NO: 315-317 in ANNEX E
0.188542222
274.7458871






In some embodiments, the control transcript can be a ribosomal RNA, including 23S rRNA, 16S rRNA, 5S rRNA and other RNA component of ribosome.


In some embodiments, 16S rRNA or 23 rRNA are used as control transcripts for normalization. Exemplary control transcripts are listed in Table 2:





TABLE 2








List of exemplary 16S ribosomal RNA and 23S ribosomal RNA used as control transcripts for normalization


Locus Tag
Gene Description
DNA, cDNA and RNA sequences
Average Fold Change
Average Relative Abundance (TPM)




A9Y61_RS06450 or NGO_r02
23S ribosomal RNA
SEQ ID NOs: 1 to 3 in ANNEX A
1.054
110136.512


A9Y61_RS06465 or NGO_r03
16S ribosomal RNA
SEQ ID NOs:4 to 6 in ANNEX A
1.048
99551.420


A9Y61_RS07175 or NGO_r05
23S ribosomal RNA
SEQ ID NOs:7 to 9 in ANNEX A
1.054
110037.026


A9Y61_RS07190 or NGO_r04
16S ribosomal RNA
SEQ ID NOs:13 to 15 in ANNEX A
1.050
105158.011


A9Y61_RS09315 or NGO_r08
23S ribosomal RNA
SEQ ID NOs:16 to 18 in ANNEX A
1.054
110108.563


A9Y61_RS09330 or NGO_r09
16S ribosomal RNA
SEQ ID NOs:19 to 21 in ANNEX A
1.048
105226.036


A9Y61_RS 10490 Or NGO_r11
23S ribosomal RNA
SEQ ID NOs:22 to 24 in ANNEX A
1.054
110097.800


A9Y61_RS 10505 or NGO_r12
16S ribosomal RNA
SEQ ID NOs:25 to 27 in ANNEX A
1.048
05322.731






In some embodiments, control transcript according to the instant disclosure can have a sequence identity of at least 80%, or 90%, up to 100% of the markers listed in Table 1 and 2. In particular markers of the instant disclosure can be have sequence identity of 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the sequences indicated in Tables 1 and 2.


The Gene IDs listed above as well as their sequences can be retrieved from NCBI database (https://www.ncbi.nlm.nih.gov/nuccore/1036099588) as will be understood by a person skilled in the art.


For example, in some embodiments, a specific region (such as a gene) of the DNA can be measured in in the control and treated sample and used as normalization DNA measurement, as will be understood by a skilled person. In some embodiments DNA normalization methods can be performed by PCR or dPCR. In some embodiments, a fluorescence dye that quantitatively stains DNA can be used as a normalization method. Additional methods to perform normalization DNA measurements are identifiable by a skilled person upon reading of the present disclosure.


In some embodiments, quantitatively detecting Cs Ts and Cr and Tr can be performed on a treated sample and corresponding control sample under several sets of conditions (e.g. varying treatment times, different experimental settings and/or using a plurality of isolates or specimen and/or a plurality of related control and/or treated sample) to provide a gene expression pattern for the candidate marker gene formed by the gene expression values detected in each treated and corresponding control samples under each set of conditions. In those embodiments, the differential expression of the candidate gene marker is detected with respect to the corresponding gene expression pattern according to approaches identifiable by a skilled person upon reading of the present disclosure.


In some embodiments, the candidate gene marker is a plurality of candidate gene markers. In those embodiments the quantitative detection of the related expression can be performed by detecting global gene expression, or patterns of gene expression, in the samples of the susceptible and resistant isolate or specimen.


The wording “global gene expression” as used herein indicates an expression level of a population of RNA molecules in cells and tissues. In particular, global gene expression can be performed to detect a transcriptome which is the set of all RNA molecules in one cell or a population of cells. Global gene expression is an approach typically used to investigate a transcriptional behavior of a biological system in connection with various biological phenomenon, as global genes expression can provide quantitative information about the population of RNA species in cells and tissues. The wording “Pattern of gene expression” refers to gene expression of multiple markers, or gene expression of the same marker over multiple conditions.


In embodiments herein described detecting global gene expression and pattern of gene expression can be performed using DNA microarrays, Nanostring, RNA-Seq, digital PCR, bulk qPCR, isothermal techniques such as LAMP or digital isothermal amplification techniques, and other nucleic acid quantification techniques described herein to measure the levels of RNA species in biological systems.


In those embodiments, providing a susceptible (Cs:Ts) value for the candidate marker gene in the susceptible isolate or specimen and providing a resistant (Cr:Tr) value for the candidate marker gene in the resistant isolate or specimen can be performed by

  • quantitatively detecting a control susceptible gene expression value Cs for each of the plurality of genes in the control susceptible sample and a control resistant gene expression value Cr for each of a plurality of genes in the control resistant sample,
  • quantitatively detecting a treated susceptible gene expression Ts value for each of the plurality of genes in the treated susceptible sample and a treated resistant gene expression value Tr for each of a plurality of genes in the treated resistant sample,
  • providing a susceptible (Cs:Ts) value and a corresponding resistant (Cr:Tr) value for each of the plurality of genes.


In those embodiments, the method further comprises selecting a set of maker genes differentially expressed in the treated sample of the susceptible isolate or specimen and in the treated sample of the resistant isolate or specimen by identifying the genes with the susceptible (Cs:Ts) value different from the corresponding resistant (Cs:Ts) value.


In some embodiments, to qualify for a marker gene differentially expressed in the treated sample of the susceptible isolate or specimen and in the treated sample of the resistant isolate or specimen, the difference between the susceptible (C:T) value and resistant (C:T) value is larger than a threshold.


In some embodiments, the method further comprises selecting the candidate gene markers having a Cs:Ts and/or Cr:Tr above or below a threshold of significance respectively. In some embodiments, an individual threshold is established for each of the plurality of markers in accordance with approaches of the present disclosure. In particular the threshold can be based on the knowledge of a distribution of a parameter indicative of the expression of one or more transcripts, to include transcripts differentially expressed in treated vs control sample across the distribution. For example to establish the threshold for each marker, C:T measurements are performed on a plurality of resistant and susceptible isolates, optionally including isolates with intermediate resistance. Threshold values can then be chosen to maximally separate C:T ratios for resistant and susceptible isolates. If a plurality of markers is used to determine antibiotic susceptibility of an organism, a number of algorithms can be used to interpret such information to make the determination. For example, weighted average or weighted sum of C:T ratios of the markers can be compared to the weighted average or weighted sum of the thresholds. Machine learning and pattern-recognition algorithms can be used. Measured fold-changes can be multiplied and compared to multiplied thresholds for multiple markers.


In detections when there is overlap between C:T ratios of resistant and susceptible isolates, various classification models can be used to map the C:T ratios between the susceptible and resistant groups. For example, receiver operating characteristic (ROC curve) can be analyzed and used to set optimal threshold. (see https://en.wikipedia.org/wiki/Receiver_operating_characteristic at the filing date of the present disclosure). ROC curve can be used to select optimal balance of analytical specificity and sensitivity of the test. In particular, the wording “analytical sensitivity” indicates the method’s ability to detect the target molecule at low levels in a sample. This is defined as the lowest concentration of RNA in a sample that can be detected >95% of the time. The wording “analytical specificity” indicates the method’s ability to detect the intended target in a complex sample. This refers to the ability of the method to differentiate between the intended target and similar targets from other bacterial species and the ability of the method to overcome inhibitors from the sample. When tested with clinical samples, ROC curve can be used to select optimal balance of clinical specificity and sensitivity of the test. Furthermore, prevalence data can be incorporated to provide a further refinement or predicted specificity and sensitivity of the test.


Additionally, in those embodiments detection where there is overlap between C:T ratios of resistant and susceptible isolates, the threshold can be also set in view of the severity of one type of error versus another, to reduce or minimize major errors even if this requires an increase of minor errors. For example, in case of overlaps between C:T ratios of resistant and susceptible isolates the threshold can be set to reduce up to minimize false susceptible (considered a more problematic error in terms of resulting treatment) increasing the expected percentage of false resistant. In some embodiments, the method can be performed with a plurality of susceptible and/or resistant isolates having genetic variability.


The wording “genetic variability” refers to either the presence of, or the generation of, genetic differences in a microorganism. The term “genetic variability” is defined as the formation of individuals differing in genotype, or the presence of genotypically different individuals. Therefore, Genetic variability refers to the difference in genotype between specific organisms while biological variability refers to the phenotypic differences between specific organisms, in this case RNA response to an antibiotic given for a specified amount of time.


Accordingly, a genetic variant indicates a genetic difference from a reference genome. The genetic variant can be used to describe an alteration (such as insertions, deletions, and /or replacement of nucleotides) that can be a result of mutations, recombination as will be understood by a person skilled in the art. Exemplary genetic variants comprise single base-pair substitution, also known as single nucleotide polymorphism (SNP), insertion or deletion of a single stretch of DNA sequence that can range for example from two to hundreds of base-pairs in length, and structural variation including copy number variation and chromosomal rearrangement events. The structural variation typically include deletion, insertion, inversion, duplication and copy number variation of the individual nucleic acids as will be understood by a person skilled in the art.


In particular in some embodiments, the susceptible and resistant isolates or specimen used herein for identifying a marker of antibiotic susceptibility comprise at least three different susceptible isolates or specimen and at least three different resistant isolates or specimen, preferably at least five different susceptible isolates or specimen and at least five different resistant isolates.


In preferred embodiments, the susceptible and resistant isolates or specimen used herein for identifying a marker of antibiotic susceptibility are selected to differ in genotypes and in biological responses to antibiotic administration to maximize genetic and biological variability of the isolates or specimen used for identifying a marker.


In some embodiments, selection of susceptible and resistant isolates or specimen used for identifying a marker of antibiotic susceptibility to increase or maximize genetic variability can be performed by sequencing the genomes of multiple isolates and selecting genetically different isolates or by obtaining isolates from different clusters from an isolate depository such as the CDC isolate bank or others entities identifiable by a skilled person. Hierarchical clustering based on genetic distance can be performed by first generating a SNP profile for each isolate against a reference genome (NCBI FA1090). Then a maximum-likelihood based inference method for phylogenetic tree generation can be performed to cluster isolates by genetic variability using tools such as RAxML or Garli and additional tools identifiable by a skilled person. Isolates can then be chosen from a plurality of clusters after hierarchical phylogenetic clustering.


In some embodiments, selection of susceptible and resistant isolates or specimen used for identifying a marker of antibiotic susceptibility to increase or maximize biological variability in RNA expression can be performed on a full transcriptome scale, (e.g. by detecting the transctiptome through RNA sequencing or on a gene specific scale (e.g. by detecting the specific gene expression through PCR based methods) following administration of an antibiotic and then calculating the related C:T ratio. Reference is made in this connection to the resistant isolates in FIG. 5 of the instant disclosure wherein detection of the spread of the porB C:T ratios would provide an estimate for the biological variability for porB. Additional indicator of biological variability comprise resistance profile to antibiotics indicated for example in terms of MIC for one or more antbiotics.


In preferred embodiments, selection of susceptible and resistant isolates or specimen used herein for identifying a marker of antibiotic susceptibility to select isolates having a high prevalence in a target region (area where the marker is intended to be used, such a city a county, a state, a country or larger regions formed by groups of countries or the entire world) based on surveys or other epidemiological data on the strains of a certain microorganism in the target region. In particular, one or more isolates can be selected that cluster together with strains accounting for at least 75% more preferably at least 85% even more preferably at least 90% or most preferably at least 95% of the strains infecting individuals in the target region.


In preferred embodiments selection of susceptible and resistant isolates or specimen used for identifying a marker of antibiotic susceptibility is performed by selecting at least 3 to 5 isolates maximizing genetic variability, biological variability while selecting the isolates with a prevalence of at least 75% more preferably at least 85% even more preferably at least 90% or most preferably at least 95% of the strains infecting individuals in a target region.


Following selection of a plurality of isolates preferably maximizing genetic and biological variability and prevalence in a target region, candidate markers can be tested with methods herein described.


In some embodiments, detecting expression of a candidate gene marker in a plurality of the selected susceptible isolates and in a plurality of the selected resistant isolates (at least three preferably at least 5) gene expression upon antibiotic exposure is performed by detecting expression a plurality of candidate gene markers (e.g. at least 2, at least 5, at least 10, at least 50 or, at least 100 or 300 or more depending on the genome size and the candidate markers selected and the detection technique selected). In those embodiments, detecting expression a plurality of candidate gene markers can be performed by detecting patterns of gene expression and/or global gene expression upon antibiotic exposure in a control sample and in a treated sample of each of the plurality of the selected susceptible isolates and in each of the plurality of the selected resistance isolates.


In some embodiments wherein quantitatively detecting expression of a candidate marker genes is performed by quantitatively detecting a plurality of candidate marker gene, and/or by quantitatively detecting expression of a candidate marker gene in a plurality of resistant and/or susceptible isolate, the method to identify a marker of antibiotic susceptibility in a microorganism of the instant disclosure can further comprises selecting the candidate gene marker with a transcript having a high fold change in expression upon antibiotic exposure.


A high fold change is defined as at least two folder change or higher. In particular, in some embodiments, a significant shift of fold change (larger than 4) in transcript levels can be observed within 5 min of antibiotic exposure. In some typically more infrequent instances genes can respond to antibiotic exposure with changes as large as 6-fold within 5 min.


The term “transcript” as used herein refers to any ribonucleic acid sequence provided in the microorganism without limitation to any specific type, function or length. Transcripts include messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA) of any length.


In some embodiments, the method to identify an RNA marker of antibiotic susceptibility further comprises validating the candidate markers by determining whether the candidate markers respond consistently across a large pool of isolates with genetic variability.


The validation of candidate markers can be performed by selecting the candidate markers with the highest abundance and fold change and using these selected candidate markers to determine the susceptibility of clinical isolates with known susceptibility/resistance. The clinical isolates can be obtained from the Centers for Disease Control (CDC) Antimicrobial Resistance Isolate Bank (see Example 10) and preferably represent a large degree of genetic variation or difference.


Validate markers are identified as markers showing consistency in their ability to correctly determine susceptibility or resistant of the clinical isolates.


In some embodiments, wherein quantitatively detecting expression of a candidate marker genes is performed by quantitatively detecting a plurality of candidate marker gene, and/or by quantitatively detecting expression of a candidate marker gene in a plurality of resistant and/or susceptible isolates or specimen, the method to identify a marker of antibiotic susceptibility in a microorganism of the instant disclosure further comprises selecting a candidate gene marker having transcripts representative of different biochemical pathways.


The term “biochemical pathways” refer to a sequence of chemical or biochemical reactions catalyzed by enzymes in which a product of one enzyme acts as the substrate for the next.


In some embodiments of the method to identify a marker of antibiotic susceptibility in a microorganism of the instant disclosure, the microorganism is a slow growing microorganism, a microorganism with a transcriptome which is not characterized and/or a microorganism that lacks a transcriptional SOS response to DNA damage.


The term “slow growing” as used herein indicates an organism with a doubling time longer than 30 minutes.


In some embodiments of the method to identify a marker of antibiotic susceptibility in a microorganism of the instant disclosure, the antibiotic is a fluoroquinolone. The term “fluoroquinolone” as used herein indicates a group of antibiotics containing a fluorine atom in their chemical structure. Fluoroquinolones are usually effective against both Gram-negative and Gram-positive bacteria. Exemplary fluoroquinolone include levofloxacin, ofloxacin, gatifloxacin, moxifloxacin, and norfloxacin.


In some of these embodiments, the antibiotic for treating the sample herein described, the concentration of the antibiotic can be provided at a concentration between 0.015 microgram/mL and 16.0 microgram/mL.


In some of these embodiments, the fluoroquinolones is ciprofloxacin. In some of these embodiments, the concentration of antibiotic used during exposure or treatment can be any concentration between the susceptible and resistant MIC breakpoints of the target organism. For example, for exposure or treatment of Ng with ciprofloxacin, the concentration of antibiotic used could any concentration ≥ 0.06 microgram/mL (the susceptible MIC breakpoint for ciprofloxacin for Neisseria gonorrhoeae) and ≤ 1.00 microgram/mL (the resistant MIC breakpoint for ciprofloxacin for Neisseria gonorrhoeae). In some embodiments, for example when faster responses are desired, higher than breakpoint concentrations can be used.


In some embodiments of the method to identify a marker of antibiotic susceptibility in a microorganism of the instant disclosure the antibiotic is an antibiotic inhibiting the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV, thereby inhibiting cell division. Examples include Aminocoumarin antibiotics such as Novobiocin, Albamycin Coumermycin, Clorobiocin, and their derivatives, Simocyclinones and derivatives, moxifloxacin, ciprofloxacin, azithromycin, tetracycline, and ceftriaxone.


Additional examples of such antibiotics comprise novel bacterial topoisomerase inhibitors (NBTIs) and in particular Type I NBTIs such as gepotidacin and its analogues, GSK945237, AM-8722, 1,5-naphthyridine oxabicyclooctane linked NBTIs, and type II NBTIs, such as quinolone pyrimidone trione-1 (QPT-1) Zoliflodacin (AZD0914), isothiazolone analogue REDX04957 and its two enantiomer forms, REDX05967 and REDX05990,. Further examples comprise nalidixic acid, oxolinic acid, norfloxacin, iprofloxacin, levofloxacin, moxifloxacin, Gemifloxacin, EDX04139, REDX05604, REDX05931, kibdelomycin thiosemicarbazide; 4,5-dibromo-N-(thiazol-2-yl)-1H-pyrrole-2-carboxamide, cyclothialidine; pyrazolopyridone, 4-(4-(3,4-dichloro-5-methyl-1H-pyrrole-2carboxamido), piperidin-1-yl)-4-oxobutanoic acid, trans-4-(4,5-dibromo1H-pyrrole-2-carboxamide)cyclohexyl)glycine, pyrazolopyridones, cyclothialidines and their analogues, GR122222X, cinodine, albicidin, clerocidin, microcin B17, CcdB, an pentapeptide repeat proteins Qnr and MfpA, as well as additional antibiotics identifiable by a skilled person (see e.g. Badshah and Ullah 2018 [7] and Collin et al. 2018 [8]).


In the instant disclosure, an RNA marker of antibiotic susceptibility in a microorganism is described, as well as a corresponding marker gene and/or a corresponding cDNA are described, which can be obtained by the method to identify an RNA marker of antibiotic susceptibility


In some embodiments, the RNA markers comprise RNA markers encoding a ribosomal protein. The term “ribosomal protein” is the protein component of ribosome that in conjunction with rRNA make up the ribosomal subunits involved in the cellular process of translation. Prokaryotic bacteria and archaea have a 30S small subunit and a 50S large subunit. Accordingly, some of these mRNA markers disclosed herein comprise mRNA markers encoding 50S ribosomal proteins and mRNA markers encoding 30S ribosomal proteins.


Exemplary mRNA markers encoding ribosomal proteins include mRNA encoding 50S L4, 50S L13, 30S S12, 50S L27, 50S L19, 30S S19, 50S L2, 50S L22, 50S L32, 30S S1, 50S L21, 50S L33, 30S S16, 50S L28.


An additional list of exemplary mRNA markers of N. gonorrhoeae encoding ribosomal proteins is also shown in Table 5 of the instant application including rplD, rplM, rpsL, rpmA, rplS, rpsS, rplB, rplV, rpmF, rpsA, rplU, rpmG, rpsP, and rpmB.In some embodiments of the method herein described to identify a marker of antibiotic susceptibility in a microorganism of the instant disclosure, the microorganism is N. gonorrhoeae.


Neisseria gonorrhoeae is one type of proteobacteria that causes the sexually transmitted genitourinary infection gonorrhea as well as other forms of gonococcal disease including disseminated gonococcemia, septic arthritis, and gonococcal ophthalmia neonatorum. The term “Neisseria gonorrhea” includes all strains of N. gonorrhoeae identifiable by a person skilled in the art. Neisseria gonorrhea also includes genetic variants of different strains. One may determine whether the target organism is N. gonorrhoeae by a number of accepted methods, including sequencing of the 16S ribosomal RNA (rRNA) gene, as described in Chakravorty et al (2007) for N. gonorrhoeae. [9]


In some embodiments of the method herein described to identify a marker of antibiotic susceptibility in a microorganism of the instant disclosure, the microorganism is Neisseria meningitidis. Neisseria meningitidis, often referred to as meningococcus, is a Gram-negative bacterium that can cause meningitis and other forms of meningococcal disease such as meningococcemia, a life-threatening sepsis.


In some embodiments of the method herein described to identify a marker of antibiotic susceptibility in a microorganism of the instant disclosure, the RNA marker is not a direct target of the antibiotic. For example in some embodiments where the antibiotic is a quinolone and in particular ciprofloxacin, the selected markers are not identified target of gyrA, parC and/or recA identified as target for ciprofloxacin.


In some embodiments of the instant disclosure wherein the microorganism is N. gonorrhoeae, the markers can be selected from: a transcript of N. gonorrhoeae gene having locus tag NGO0340, a transcript of N. gonorrhoeae gene having locus tag NGO1837, a transcript of N. gonorrhoeae gene having locus tag NGO1843, a transcript of N. gonorrhoeae gene having locus tag having locus tag NGO2024, a transcript of N. gonorrhoeae gene having locus tag NGO1845, a transcript of N. gonorrhoeae gene having locus tag NGO1677, a transcript of N. gonorrhoeae gene having locus tag NGO1844, a transcript of N. gonorrhoeae gene having locus tag NGO0171, a transcript of N. gonorrhoeae gene having locus tag NGO1834, a transcript of N. gonorrhoeae gene having locus tag NGO0172, a transcript of N. gonorrhoeae gene having locus tag NGO1835, a transcript of N. gonorrhoeae gene having locus tag NGO1673, a transcript of N. gonorrhoeae gene having locus tag NGO1833, a transcript of N. gonorrhoeae gene having locus tag NGO2173, a transcript of N. gonorrhoeae gene having locus tag NGO0604, a transcript of N. gonorrhoeae gene having locus tag NGO0016, a transcript of N. gonorrhoeae gene having locus tag NGO1676, a transcript of N. gonorrhoeae gene having locus tag NGO1679, a transcript of N. gonorrhoeae gene having locus tag NGO1658, a transcript of N. gonorrhoeae gene having locus tag NGO1440, a transcript of N. gonorrhoeae gene having locus tag NGO0174, a transcript of N. gonorrhoeae gene having locus tag NGO0173, a transcript of N. gonorrhoeae gene having locus tag NGO0592, a transcript of N. gonorrhoeae gene having locus tag NGO1680, a transcript of N. gonorrhoeae gene having locus tag NGO0620, a transcript of N. gonorrhoeae gene having locus tag NGO1659, a transcript of N. gonorrhoeae gene having locus tag NGO1291, a transcript of N. gonorrhoeae gene having locus tag NGO0648, a transcript of N. gonorrhoeae gene having locus tag NGO0593, a transcript of N. gonorrhoeae gene having locus tag NGO1804, a transcript of N. gonorrhoeae gene having locus tag NGO0618, a transcript of N. gonorrhoeae gene having locus tag NGO0619, a transcript of N. gonorrhoeae gene having locus tag NGO1812, a transcript of N. gonorrhoeae gene having locus tag NGO1890, a transcript of N. gonorrhoeae gene having locus tag NGO2098, a transcript of N. gonorrhoeae gene having locus tag NGO2100, a transcript tRNA having GeneID A9Y61_RS02445 or NGO_t12, a transcript tRNA having GeneID A9Y61_RS04515 or NGO_t15, a transcript tRNA having GeneID A9Y61_RS04510 or NGO_t14, a transcript tRNA having GeneID A9Y61_RS09170 or NGO_t37, and a transcript tRNA having GeneID A9Y61_RS00075 or NGO_t01. The sequences of these transcripts can be retrieved from the public databases in compliance with the International Nucleotide Sequence Database Collaboration at the date of filing of the present disclosure as will be understood by a person skilled in the art. In particular, the sequences of these transcript can be identified by entering the locus tag or the GenID, alone or in combination with additional information provided in the present disclosure, in databases such as National Center for Biotechnology Information (NCBI) the European Bioinformatics Institute (EMBL-EBI) and DNA Data Bank of Japan (DDBJ) at the date of filing of the present disclosure.


In some embodiments the cDNAs of N. gonorrhoeae can have a sequence that can be shorter or longer than the sequences in the databases as will be understood by a skilled person. In particular, the transcript can include a re be up to 30 bp, 40 bp, 50 bp, 60 bp, 70 bp, 80 bp, 90 bp, 100 bp, 150 bp, 200 bp, 250 bp, 300 bp, 400 bp, 500 bp, 750 bp, 1000 bp, 1500 bp, 2000 bp, 2500 bp , or up to 3000 bp, shorter or longer of the sequence in the database as will be understood by a skilled person. Exemplary sequences for the above markers are provided in Table 3 below.





TABLE 3





List of exemplary marker genes differentially expressed between an untreated sample and a sample treated with antibiotics.


Locus Tag
DNA, cDNA and RNA Sequences




NGO0340
SEQ ID Nos. 49 to 51 in ANNEX B


NGO1837
SEQ ID Nos. 109 to 111 in ANNEX B


NGO1843
SEQ ID Nos. 112 to 114 in ANNEX B


NGO2024
SEQ ID Nos. 124 to 126 in ANNEX B


NGO1845
SEQ ID Nos. 118 to 120 in ANNEX B


NGO1677
SEQ ID Nos. 91 to 93 in ANNEX B


NGO1844
SEQ ID Nos. 115 to 117 in ANNEX B


NGO0171
SEQ ID Nos. 37 to 39 in ANNEX B


NGO1834
SEQ ID Nos. 103 to 105 in ANNEX B


NGO0172
SEQ ID Nos. 40 to 42 in ANNEX B


NGO1835
SEQ ID Nos. 106 to 108 in ANNEX B


NGO1673
SEQ ID Nos. 85 to 87 in ANNEX B


NGO1833
SEQ ID Nos. 100 to 102 in ANNEX B


NGO2173
SEQ ID Nos. 136 to 138 in ANNEX B


NGO0604
SEQ ID Nos. 58 to 60 in ANNEX B


NGO0016
SEQ ID Nos. 34 to 36 in ANNEX B


NGO2174
SEQ ID Nos. 139 to 141 in ANNEX B


NGO2164
SEQ ID Nos. 133 to 135 in ANNEX B


NGO1676
SEQ ID Nos. 88 to 90 in ANNEX B


NGO1679
SEQ ID Nos. 94 to 96 in ANNEX B


NGO1658
SEQ ID Nos. 79 to 81 in ANNEX B


NGO1440
SEQ ID Nos. 76 to 78 in ANNEX B


NGO0174
SEQ ID Nos. 46 to 48 in ANNEX B


NGO0173
SEQ ID Nos. 43 to 45 in ANNEX B


NGO0592
SEQ ID Nos. 52 to 54 in ANNEX B


NGO1680
SEQ ID Nos. 31 to 33 in ANNEX B


NGO0620
SEQ ID Nos. 67 to 69 in ANNEX B


NGO1659
SEQ ID Nos. 82 to 84 in ANNEX B


NGO1291
SEQ ID Nos. 73 to 75 in ANNEX B


NGO0648
SEQ ID Nos. 70 to 72 in ANNEX B


NGO0593
SEQ ID Nos. 55 to 57 in ANNEX B


NGO1804
SEQ ID Nos. 97 to 99 in ANNEX B


NGO0618
SEQ ID Nos. 61 to 63 in ANNEX B


NGO0619
SEQ ID Nos. 64 to 66 in ANNEX B


NGO1812
SEQ ID NOs.28 to 30 in ANNEX B


NGO1890
SEQ ID Nos. 121 to 123 in ANNEX B


NGO2098
SEQ ID Nos. 127 to 129 in ANNEX B


NGO2100
SEQ ID Nos. 130 to 132 in ANNEX B


A9Y61_RS02445 or NGO_t12
SEQ ID Nos. 145 to 147 in ANNEX B


A9Y61_RS04515 or NGO_t15
SEQ ID Nos. 151 to 153 in ANNEX B


A9Y61_RS04510 or NGO_t14
SEQ ID Nos. 148 to 150 in ANNEX B


A9Y61_RS09170 or NGO_t37
SEQ ID Nos. 228 to 230 in ANNEX B


A9Y61_RS00075 or NGO_t01
SEQ ID Nos. 142 to 144 in ANNEX B






In some embodiments, markers according to the instant disclosure can have a sequence identity of at least 80%, or 90%, up to 100% of the markers listed in Table 3. In particular, markers of the instant disclosure can have sequence identity of 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the sequences indicated in Table 3.


The term “sequence identity” refers to a quantitative measurement of the identity between sequences of a polypeptide or a polynucleotide and, in particular, indicates the amount of characters that match between two different sequences. Commonly used similarity searching programs, such as BLAST, PSI-BLAST [10] [11] [12] [13], SSEARCH [14] [15] FASTA[16] and the HMMER3 9 [17] can produce accurate statistical estimates, ensuring that protein sequences that share significant similarity also have similar structures.


The identity between sequences is typically measured by a process that comprises the steps of aligning the two polypeptide or polynucleotide sequences to form aligned sequences, then detecting the number of matched characters, i.e. characters identical between the two aligned sequences, and calculating the total number of matched characters divided by the total number of aligned characters in each polypeptide or polynucleotide sequence, including gaps. The identity result is expressed as a percentage of identity.


Biomarker’s features of the RNA markers of Table 3, such as resistant CT ratios and values, susceptible CT ratio values, abundance and threshold values, are further illustrated in





TABLE 4









List of exemplary marker genes differentially expressed between an untreated sample and a sample treated with antibiotics


Table 4: List of exemplary marker genes differentially expressed between an untreated sample and a sample treated with antibiotics


Locus Tag
Average Susceptible C:T ratio after 15 min exposure
Standard Deviation of Susceptible C:T ratio after 15 min exposure
Average Susceptible Relative Abundance (TPM)
Average Resistant C:T ratio after 15 min exposure
Standard Deviation of Resistant C:T ratio after 15 min exposure




NGO0340
2.757
0.811
886.752
0.917
0.014


NGO1837
2.08
0.382
542.158
0.906
0.058


NGO1843
2.053
0.089
596.162
0.856
0.036


NGO2024
1.93
0.138
504.857
0.921
0.023


NGO1845
1.981
0.083
793.435
0.872
0.03


NGO1677
2.991
0.631
500.919
0.983
0.02


NGO1844
2.084
0.051
719.419
0.815
0.034


NGO0171
2.425
0.448
425.961
0.913
0.02


NGO1834
2.161
0.123
418.234
0.892
0.055


NGO0172
3.551
1.865
273.08
0.892
0.031


NGO1835
2.149
0.21
507.389
0.891
0.061


NGO1673
4.902
2.876
227.951
0.931
0.005


NGO1833
2.2
0.146
441.363
0.879
0.074


NGO2173
2.629
0.25
429.176
0.962
0.019


NGO0604
2.452
0.162
504.385
0.881
0.037


NGO0016
3.348
0.64
161.719
0.946
0.034


NGO2174
2.8
0.264
422.688
0.955
0.046


NGO2164
2.978
0.257
136.319
0.901
0.043


NGO1676
3.237
0.371
626.49
0.936
0.006


NGO1679
5.201
2.268
317.278
0.952
0.074


NGO1658
3.428
0.841
127.162
0.957
0.058


NGO1440
4.781
1.963
140.148
0.916
0.065


NGO0174
4.187
1.653
368.372
0.885
0.04


NGO0173
4.834
2.216
400.084
0.967
0.054


NGO0592
6.014
1.977
145.561
0.92
0.062


NGO1680
5.579
1.488
522.393
0.931
0.052


NGO0620
4.147
0.727
61.968
0.937
0.091


NGO1659
5.667
1.791
73.859
0.939
0.076


NGO1291
5.105
1.164
77.971
0.998
0.061


NGO0648
4.959
1.74
57.357
1.115
0.169


NGO0593
4.643
0.768
70.256
0.951
0.018


NGO1804
5.062
1.772
103.085
0.901
0.09


NGO0618
4.323
0.445
91.615
0.874
0.063


NGO0619
5.758
1.431
63.787
0.88
0.054


NGO1812
4.875
0.352
1142.564
0.897
0.027


NGO1890
9.946
6.62
55.955
0.829
0.022


NGO2098
7.087
2.034
30.66
0.927
0.072


NGO2100
6.593
0.696
24.365
0.816
0.029


A9Y61_RS02445 or NGO_t12
6.495
2.273
72.289
1.113
0.114


A9Y61_RS04515 or NGO_t15
3.064
0.94
561.339
1.343
0.109


A9Y61_RS04510 or NGO_t14
2.9
0.827
889.592
1.119
0.048


A9Y61_RS09170 or NGO_t37
3.396
1.001
128.355
1.006
0.165


A9Y61_RS00075 or NGO_t01
4.086
0.448
64.178
1.046
0.248






In the illustration of Table 4, for each marker, the range of possible threshold C:T ratios is calculated as a range between the mean Cr:Tr ratios for resistant and the mean Cs:Ts ratios for susceptible isolates, and narrowed down further to account for variability of the Cr:Tr ratios for resistant and the Cs:Ts ratios of susceptible isolates.


In some embodiments, after the marker is selected, when testing a sample with bacteria of unknown susceptibility to an antibiotic, the C:T ratio for this marker obtained from this sample is compared with Cs:Ts and Cr:Tr ratios. In some embodiments the C:T ratio thus obtained can be assigned as belonging to susceptible or resistant organism based on a threshold value.


For example, for a marker downregulated in the susceptible bacteria, the Cr:Tr values will be smaller than Cs:Ts values and a threshold value can be set above Cr:Tr value(s) and below Cs:Ts value(s). If a detected C:T is below threshold, we call it resistant and if CT is above threshold we call susceptible. In particular the threshold value can be set based on the knowledge of a distribution of a parameter indicative of the expression of one or more transcripts, to include transcripts differentially expressed in treated vs control sample across the distribution. In particular the threshold value for a C:T ratio can be set based on the knowledge of Cs:Ts and Cr:Tr distributions of a given transcript. In some embodiments, the threshold value is set at the average between the means of Cs:Ts and Cr:Tr distributions. In some embodiments, especially when the Cs:Ts and Cr:Tr distributions have unequal variance, the threshold value is set to between the means of Cs:Ts and Cr:Tr distributions at a value where the overlap between Cs:Ts and Cr:Tr distributions is zero or minimized.


In some embodiments, the threshold value can be selected among any one of the value within the following ranges 0.931-1.946, 0.964-1.698, 0.892-1.964., 0.944-1.792, 0.902-1.898, 1.003-2.360, 0.849-2.033, 0.933-1.977, 0.947-2.038., 0.923-1.686, 0.952-1.939, 0.936-2.026, 0.953-2.054, 0.981-2.379, 0.918-2.290, 0.980-2.708, 1.001-2.536, 0.944-2.721, 0.942-2.866, 1.026-2.933, 1.015-2.587, 0.981-2.818, 0.925-2.534, 1.021-2.618, 0.982-4.037, 0.983-4.091, 1.028-3.420, 1.015-3.876, 1.059-3.941, 1.284-3.219, 0.969-3.875, 0.991-3.290, 0.937-3.878, 0.934-4.327, 0.924-4.523, 0.851-3.326, 0.999-5.053, 0.845-5.897, 1.227-4.222 as will be understood by a skilled person upon reading of the present disclosure.


In some embodiments the RNA markers of N. gonorrhoeae herein described can have the following sequences indicated properties indicated in Table 5.





TABLE 5





List of exemplary marker genes differentially expressed between an untreated sample and a sample treated with antibiotics.


Locus Tag
Description of putative or verified functionality associated to the marker




NGO0340
cysteine synthase A (cysK)


NGO1837
50S ribosomal protein L4 (rplD)


NGO1843
elongation factor G (fusA)


NGO2024
50S ribosomal protein L13 (rplM)


NGO1845
30S ribosomal protein S12 (rpsL)


NGO1677
50S ribosomal protein L27 (rpmA)


NGO1844
30S ribosomal protein S7


NGO0171
50S ribosomal protein L19 (rplS)


NGO1834
30S ribosomal protein S19 (rpsS)


NGO0172
tRNA (guanine-N(1)-)-methyltransferase (trmD)


NGO1835
50S ribosomal protein L2 (rplB)


NGO1673
type IV pilus assembly protein (pilB)


NGO1833
50S ribosomal protein L22 (rplV)


NGO2173
50S ribosomal protein L32 (rpmF)


NGO0604
30S ribosomal protein S1 (rpsA)


NGO0016
preprotein translocase subunit (secG)


NGO2174
hypothetical protein


NGO2164
GMP synthase (guaA)


NGO1676
50S ribosomal protein L21 (rplU)


NGO1679
50S ribosomal protein L33 (rpmG)


NGO1658
hypothetical protein


NGO1440
macrolide transport protein MacA


NGO0174
30S ribosomal protein S16 (rpsP)


NGO0173
ribosome maturation factor RimM (rimM)


NGO0592
trigger factor (tig)


NGO1680
50S ribosomal protein L28 (rpmB)


NGO0620
aspartate alpha-decarboxylase


NGO1659
intracellular septation protein A


NGO1291
transcriptional regulator (yebC)


NGO0648
membrane protein


NGO0593
ATP-dependent Clp protease proteolytic subunit (clpP)


NGO1804
(3R)-hydroxymyristoyl-ACP dehydratase (fabZ)


NGO0618
membrane protein


NGO0619
2-dehydro-3-deoxyphosphooctonate aldolase


NGO1812
major outer membrane protein (porB)


NGO1890
glutamate permease; sodium/glutamate symport carrier protein


NGO2098
diaminopimelate decarboxylase


NGO2100
frataxin-like protein (cyaY)


A9Y61_RS02445 or NGO_t12
tRNA-Serine


A9Y61_RS04515 or NGO_t15
tRNA-Serine


A9Y61 _RS04510 or NGO_t14
tRNA-Leucine


A9Y61_RS09170 or NGO_t37
tRNA-Arginine


A9Y61 _RS00075 or NGO_t01
tRNA-Leucine






In preferred embodiments, the transcript can comprise at least one of a transcript of N. gonorrhoeae gene having locus tag NGO1812, a transcript of N. gonorrhoeae gene having locus tag NGO1680), a transcript of N. gonorrhoeae gene having locus tag NGO1291, a transcript of N. gonorrhoeae gene having locus tag NGO1673, a transcript of a transcript of N. gonorrhoeae gene having locus tag NGO0592 and a transcript of N. gonorrhoeae gene having locus tag NGO0340.


In more preferred embodiments, the transcript comprises or is at least one of a transcript N. gonorrhoeae gene having locus tag NGO1812 and possibly and putatively encoding major outer membrane protein (porB), and N. gonorrhoeae gene having locus tag NGO1680 and possibly and putatively encoding 50S ribosomal protein L28 (rpmB).


In some embodiments of the instant disclosure a method is described to detect in an N. gonorrhoeae bacteria, a N. gonorrhoeae transcript, which comprises

  • quantitatively detecting a transcript expression value of an RNA marker of N. gonorrhoeae selected from anyone of the RNA markers of N. gonorrhoeae herein described, in the N. gonorrhoeae following and/or upon contacting of the N. gonorrhoeae with an antibiotic to obtain an antibiotic treated transcript expression value for the RNA marker of .


In some embodiments, the method further comprises detecting whether there is a downshift in the transcript expression value of the RNA marker of N. gonorrhoeae following and/or upon the contacting of the N. gonorrhoeae with the antibiotic by comparing the antibiotic treated transcript expression value with an untreated marker expression valuean untreated marker expression value indicating of the expression of the RNA marker of N. gonorrhoeae in N. gonorrhoeae in absence of antibiotic treatment.


In some embodiments, the reference expression value of the RNA marker of N. gonorrhoeae in absence of antibiotic treatment is a control transcript expression value obtained by quantitatively detecting the RNA of N. gonorrhoeae in a control sample not treated with the antibiotic. In some embodiments, the reference transcript expression value of the RNA marker of N. gonorrhoeae is a transcript expression value obtained by quantitatively detecting the RNA of N. gonorrhoeae in the same sample prior to treatment with the antibiotic. In some embodiments, the reference transcript expression value of the RNA marker of N. gonorrhoeae is a transcript expression value obtained by quantitatively detecting the RNA of N. gonorrhoeae at time zero of the RNA expression of the transcript.


Accordingly, in some embodiments, the method to detect in an N. gonorrhoeae bacteria an N. gonorrhoeae transcripts can be performed by

  • contacting a sample of an isolate or specimen comprising the N. gonorrhoeae with an antibiotic to obtain an antibiotic treated sample,
  • quantitatively detecting a transcript expression value of a RNA marker of N. gonorrhoeae herein described in the antibiotic treated sample at one or more times following and/or upon contacting the sample with the antibiotic, to provide an antibiotic treated transcript expression value for the RNA marker of N. gonorrhoeae; and
  • detecting whether there is a downshift of the quantitatively detected transcript of the RNA marker of N. gonorrhoeae herein described in the treated sample with respect to an untreated marker expression valuean untreated marker expression value indicative of the expression of the RNA marker of N. gonorrhoeae in N. gonorrhoeae in absence of antibiotic treatment.


In some embodiments an untreated marker expression value indicative of the expression of the RNA marker of N. gonorrhoeae in N. gonorrhoeae in absence of antibiotic treatment is a control transcript expression value obtained by

  • quantitatively detecting a transcript expression value of the RNA marker of N. gonorrhoeae herein described in a control sample of the isolate or specimen comprising the N. gonorrhoeae, to provide a control transcript expression value of the RNA marker of N. gonorrhoeae herein described.


In some embodiments, the RNA markers of N. gonorrhoeae herein described can be used in a method to perform an antibiotic susceptibility test for N. gonorrhoeae. The method comprises detecting susceptibility to an antibiotic of an N. gonorrhoeae, by quantitatively detecting in a sample comprising the N. gonorrhoeae a transcript expression value of an RNA marker of N. gonorrhoeae selected from the RNA markers of an N. gonorrhoeae herein described following and/or upon contacting the sample with the antibiotic.


In the method to perform an antibiotic susceptibility test for N. gonorrhoeae the quantitatively detecting is performed to obtain an antibiotic treated transcript expression value for the RNA marker of N. gonorrhoeae suitable to detect susceptibility to the antibiotic of the N. gonorrhoeae in the sample.


In some embodiments, the method to perform an antibiotic susceptibility test for N. gonorrhoeae further comprises detecting whether there is a downshift of the transcript expression value with respect to the expression of the transcript in an untreated sample of the same specimen by comparing the detected antibiotic transcript expression value with an untreated marker expression value indicative of the transcript expression in the sample in absence of antibiotic treatment.


In some embodiments, the RNA markers of N. gonorrhoeae herein described can be used in a method to detect an RNA marker of susceptibility to an antibiotic in N. gonorrhoeae in a sample comprising the N. gonorrhoeae. The method comprises contacting the sample with the antibiotic to obtain an antibiotic treated sample and quantitatively detecting in the antibiotic treated sample one or more of the RNA markers of N. gonorrhoeae herein described.


In some embodiments, the method to detect an RNA marker of susceptibility to an antibiotic in N. gonorrhoeae further comprises detecting a downshift of an RNA marker selected from any one of the transcripts of N. gonorrhoeae genes herein described with respect to an untreated marker expression value indicative of the expression of the RNA marker of N. gonorrhoeae in N. gonorrhoeae in absence of antibiotic treatment.


The RNA markers of N. gonorrhoeae herein described can be used in a method to diagnose susceptibility to an antibiotic of a N. gonorrhoeae infection in an individual. The method comprises contacting a sample from the individual with the antibiotic; and quantitatively detecting expression by the N. gonorrhoeae in the sample of a marker of antibiotic susceptibility in N. gonorrhoeae selected from any one of the transcripts of N. gonorrhoeae genes herein described. In the method, the quantitatively detecting is performed following contacting the sample with the antibiotic. The method further comprises detecting whether there is a downshift of the detected transcript presence in the antibiotic sample with respect to an untreated marker expression value indicative of the expression of the marker of antibiotic susceptibility in N. gonorrhoeae to diagnose the antibiotic susceptibility of the N. gonorrhoeae infection in the individual.


The RNA markers of N. gonorrhoeae herein described can be used in a method to detect antibiotic susceptibility of an N. gonorrhoeae bacterium and treat N. gonorrhoeae in an individual. The method comprises contacting a sample from the individual with an antibiotic, and quantitatively detecting in the sample expression by the N. gonorrhoeae bacteria of a marker of antibiotic susceptibility selected from any one of the transcripts of N. gonorrhoeae genes herein described. In the method, the quantitatively detecting is performed following and/or upon contacting the sample with the antibiotic.


The method further comprises diagnosing antibiotic susceptibility of N. gonorrhoeae infection in the individual when a downshift in expression of at least one of the detected markers in the sample is detected in comparison with an untreated marker expression value indicative of the expression of the at least one of the detected markers in the sample from the individual in absence of antibiotic treatment.


The method also comprises administering an effective amount of the antibiotic to the diagnosed individual.


The term “individual” as used herein in the context of treatment includes a single biological organism, including but not limited to, animals and in particular higher animals and in particular vertebrates such as mammals and in particular human beings


In embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, contacting the N. gonorrhea can be performed by adding antibiotics to the microorganism and incubating the sample under certain condition


In particular in some embodiments, the antibiotic for treating the sample herein described can be provided in a sample comprising N. gonorrhoeae at a concentration equal to or the breakpoint MIC for the N. gonorrhoeae, to the antibiotic. In particular, the antibiotic for treating the sample herein described can be provided at a concentration lower than the breakpoint MIC for the N. gonorrhoeae strain in the sample, for example 1.5 times (or 1.5X) lower, 2 times (or 2X) lower, 3 times (or 3X) lower, 4 times (or 4X) lower, 8 times (or 8X) lower, or 16 times (or 16X) lower than the breakpoint MIC for a resistant isolate.. In some embodiments, the antibiotic for treating the sample herein described can be provided at a concentration higher than the breakpoint MIC for the N. gonorrhoeae strain in the sample, for example 1.5 times (or 1.5X) higher, 2 times (or 2X) higher, 3 times (or 3X) higher, or 4 times (or 4X) higher, or 8 times higher (8X) or 16 times higher (or 16X) than the breakpoint MIC for a resistant isolate. The breakpoint MIC of the antibiotic for the N. gonorrhoeae strain in the sample, can be obtained from the Clinical & Laboratory Standards Institute (CLSI) guidelines, European Committee of Antimicrobial Susceptibility Testing (EUCAST) or other sources identifiable to a skilled person.


In some embodiments, samples may be treated at several concentrations of the antibiotic to measure MIC of an organism and/or to determine if a sample contains bacteria with intermediate susceptibility, susceptible bacteria, or resistant bacteria to the antibiotic of interest. In order to determine the MIC using the described method, samples can be treated at multiple concentrations of antibiotic. These concentrations would include multiple dilutions below the susceptible MIC breakpoint, dilutions between the susceptible and resistant MIC breakpoints (including intermediate breakpoint concentrations), as well as a dilution above the resistant MIC breakpoint (see Example 13) To determine, degree of susceptibility, the sample would be exposed to three concentrations of antibiotic: a concentration equal to the susceptible MIC breakpoint, a concentration equal to the concentration of the resistant MIC breakpoint, and a concentration equal to the average of the maximum and minimum of the intermediate MIC breakpoint range. Susceptibility would then be determined , for example, by measuring the slope obtained by fitting a curve or line to the three points on the C:T ratio vs treatment concentration plot, and/or by comparing the relative difference in C:T ratio between the low and intermediate concentration of antibiotic and the difference in CT ratio between the intermediate and high concentration, and/or by comparing the magnitude of the value relative to a pre-defined threshold, or a combination of these analyses (see Example 14).


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the time period of contacting the sample with an antibiotic can be up to 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes up to 60 up to 90 up to 120 or higher, inclusive of any value therebetween or fraction thereof.


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the time period of contacting the sample with an antibiotic is shorter than the doubling time of the N. gonorrhoeae strain in the sample. For example, for conditions with N. gonorrhoeae doubling time of 45 minutes, 1 hour, 1.5 hours, or 2 hours, antibiotic exposure contacting time could be less than the time indicated in Table 6 below





TABLE 6








time of contacting N. gonorrhoeae with antibiotic



45 minute doubling
60 min doubling
90 min doubling
120 doubling


factor X

contacting time, less than (minutes):




1
45
60
90
120


0.75
33.75
45
67.5
90


0.5
22.5
30
45
60


0.35
15.75
21
31.5
42


0.25
11.25
15
22.5
30


0.2
9
12
18
24


0.15
6.75
9
13.5
18


0.1
4.5
6
9
12


0.075
3.375
4.5
6.75
9


0.05
2.25
3
4.5
6






In methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, incubation of a sample with an antibiotic can be performed at a temperature such that a physiological response to the antibiotic is generated in N. gonorrhoeae. The contacting is performed typically in an incubation temperature at 37° C., in an incubation temperature within the range of 36-38° °C, in an incubation temperature within the range of 35-39° °C.


In methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the contacting can be performed by adding antibiotics to the microorganism and incubating the sample under certain condition preferably following and/or upon contacting the sample with a treatment media designed to support physiological processes of N. gonorrhoeae, enable or accelerate DNA replication and translation, maintain cellular uniformity and homogeneity in suspension, and promote interaction of the N. gonorrhoeae and antibiotic herein described.


In methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, quantitatively detecting an antibiotic treated transcript expression value in the treated sample can be performed following and/or upon contacting the sample with an antibiotic for a time period up to 20 minutes.


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, quantitatively detecting transcript expression value can be performed by RNA-seq, qPCR, digital PCR, isothermal techniques such as LAMP, digital isothermal amplification methods, or using probes specifically targeting any one of the differentially expressed transcripts herein described. Additional techniques include microarrays and nanostringtm as will be understood by a person skilled in the art.


In some embodiments, detecting specific gene expression can be performed at the transcription level by performing RNA sequencing (RNA-seq) and calculating RNA expression values based on the sequence data.


In some embodiments, the RNA expression values can be calculated as transcripts per million (TPM) as will be understood by a person skilled in the art. To calculate TPM, read counts are first divided by the length of each gene in kilobases, which gives reads per kilobase (RPK). RPKs for all genes are added and the sum is divided by 1,000,000. This gives the “per million” scaling factor. Finally, the RPK value for each genes is divided by the “per million” scaling factor to give TPM. [3]


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, quantitatively detecting a treated gene expression pattern of the transcript can be performed using probes specifically targeting any one of the differentially expressed transcripts herein described.


The term “probe” as described herein indicates a molecule or computer support tool capable of specifically detect a target molecule such as one of the markers herein described. The wording “specific” “specifically” or “specificity” as used herein with reference to the binding of a first molecule to second molecule refers to the recognition, contact and formation of a stable complex between the first molecule and the second molecule, together with substantially less to no recognition, contact and formation of a stable complex between each of the first molecule and the second molecule with other molecules that may be present. Exemplary specific bindings are antibody-antigen interaction, cellular receptor-ligand interactions, polynucleotide hybridization, enzyme substrate interactions and additional interactions identifiable by a skilled person. The wording “specific” “specifically” or “specificity” as used herein with reference to a computer supported tool, such as a software indicates a tool capable of identifying a target sequence (such as the one of a marker herein described) among a group of sequences e.g. within a database following alignment of the target sequence with the sequences of the database. Exemplary software configured to specifically detect target sequences comprise Primer-3, PerlPrimer and PrimerBlast.


In methods of the instant disclosure using any one of the N. gonorrhoeae transcripts herein described, treatment of the N. gonorrhoeae bacteria with a probe and/or antibiotic or with any other reagents functional to perform the related step is performed on samples.


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the probe specific for the transcript is selected from a primer having a sequence specific for the marker, or an antibody specific for the marker.


In particular, probes usable in methods herein described can include primers for nucleic acid amplification reactions (such as PCR, LAMP, HAD, RPA, NASBA, RCA, SDA, NEAR, and additional reactions identifiable by a skilled person), including digital single molecule versions of these reactions and including real-time versions of these reactions, molecular beacons that include dyes, quenchers, or combinations of dyes and quenchers.


Nucleic acid probes preferably have sequences that complementarily bind to the DNA and/or RNA sequences of the markers described herein, and can be used to target RNA molecules directly, or DNA molecules that result, for example, from reverse transcription of the target RNA molecules (such molecules may be referred to as cDNA). In embodiments of the present disclosure when two polynucleotide strands, sequences or segments are noted to be binding to each other through complementarily binding or complementarily bind to each other, this indicate that a sufficient number of bases pairs forms between the two strands, sequences or segments to form a thermodynamically stable double-stranded duplex, although the duplex can contain mismatches, bulges and/or wobble base pairs as will be understood by a skilled person.


The term “thermodynamic stability” as used herein indicates a lowest energy state of a chemical system. Thermodynamic stability can be used in connection with description of two chemical entities (e.g. two molecules or portions thereof) to compare the relative energies of the chemical entities. For example, when a chemical entity is a polynucleotide, thermodynamic stability can be used in absolute terms to indicate a conformation that is at a lowest energy state, or in relative terms to describe conformations of the polynucleotide or portions thereof to identify the prevailing conformation as a result of the prevailing conformation being in a lower energy state. Thermodynamic stability can be detected using methods and techniques identifiable by a skilled person. For example, for polynucleotides thermodynamic stability can be determined based on measurement of melting temperature Tm, among other methods, wherein a higher Tm can be associated with a more thermodynamically stable chemical entity as will be understood by a skilled person. Contributors to thermodynamic stability can include, but are not limited to, chemical compositions, base compositions, neighboring chemical compositions, and geometry of the chemical entity.


In embodiments herein described, primer and/or other nucleic acid probes can be designed to complementarily bind the target marker herein described with methods described in [13].


Probes usable in methods herein described include probes used in guiding CRISPR-based detection of nucleic acids. e.g. CRISPR-associated protein-9 nuclease; CRISPR-associated nucleases. An example of a CRISPR-based method is described in references [18] [19] [20]. Such probes can be synthesized using naturally occurring nucleotides including deoxyInosine, or include unnatural nucleotides such as locked nucleic acid (LNA). Probes can comprise dyes, quenchers, or combinations of dyes and quenchers attached to the probe. Hybridization probes, including those used in fluorescent in situ hybridization and hybridization chain reaction. Probes can also comprise electrochemically active redox molecules attached to the probe. Probes can be provided in a dry state. Probes can also include probes bound to beads, such beads may be fluorescently labeled. Probes can also include probes bound to nanoparticles, such nanoparticles may include gold nanoparticles. Probes can include probes disposed in arrays of wells with volumes less than 50 microliters, and/or wells within plastic substrates. Exemplary probes suitable to be used in methods using any one of the N. gonorrhoeae markers herein described comprise probes provided with the commercially available technology such as the technology of any of the companies GenProbe, Nanosphere, Luminex, Biofire and additional companies identifiable by a skilled person.


In some embodiments, quantitative detection of the marker/transcript is performed by one or more methods including Northern blotting, Nuclease Protection Assays (NPAs) in situ hybridization, reverse transcription polymerase chain reaction, and qPCR.


In some embodiments, of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, quantitatively detecting of a marker can be performed by detecting a detectable portion thereof. Exemplary detectable portions comprise to regions of at least 14 base pair, at least 16 base pair, at least 18 base pair, at least 19 base pair, at least 20 base pair, at least 21 base pair, at least 22 base pair, at least 23 base pair, at least 24 base pair, at least 30 base pair, at least 40 base pair, at least 50 base pair, at least 60 base pair, at least 70 base pair, at least 80 base pair, at least 90 base pair, or at least 100 base pair, The specific portion can be identified by a skilled person based on the length of the transcript to be detected as will be understood by a skilled person.


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, quantitatively detecting individual tRNA markers can be performed with quantification methods comparable with method used for detection of other RNA markers above. The secondary structure and multitude of base modifications prevalent on tRNA often makes reverse transcription inefficient and thus a variety of modified reverse transcription steps can be used. These can involve more flexible reverse transcriptases (RTs) like group II intron reverse transcriptase[21] [22].


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the methods comprise detecting whether there is a shift in the transcript expression of the markers, in a sample treated with an antibiotic with respect to a sample not treated with antibiotic.


In particular, in embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the methods comprise detecting whether there is a downshift of a detected presence in N. gonorrhoeae of a N. gonorrhoeae marker following treatment with antibiotic with respect to an untreated marker expression value indicative of the expression in N. gonorrhoeae of the one or more N. gonorrhoeae marker in absence of antibiotic treatment.


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers, the reference expression value is a control transcript expression value of the RNA marker of N. gonorrhoeae detected in a control sample of the specimen, and detecting whether there is a downshift can be performed by comparing the antibiotic treated transcript expression value with respect to the control transcript expression value of the RNA marker of N. gonorrhoeae in a control sample of the specimen.


Therefore, in some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers, the reference expression value indicative of the expression of the RNA marker of N. gonorrhoeae in absence of antibiotic treatment is a control transcript expression value obtained by quantitatively detecting the RNA of N. gonorrhoeae marker in a control sample not treated with the antibiotic.


A shift in the expression of the markers can be determined by calculating differential gene expression levels (C:T ratios) as described above in connection with methods to identify a marker of antibiotic susceptibility.


In particular in methods of the instant disclosure using any one of the N. gonorrhoeae markers, the methods can comprise for a specimen comprising N. gonorrhoeae (e.g. from an individual).

  • providing a treated N. gonorrhoeae sample treated with the antibiotic and a control N. gonorrhoeae sample not treated with the antibiotic,
  • quantitatively detecting a control N. gonorrhoeae gene expression value C for a N. gonorrhoeae marker gene in the control N. gonorrhoeae sample,
  • quantitatively detecting a treated N. gonorrhoeae gene expression value T for the N. gonorrhoeae marker gene in the treated N. gonorrhoeae sample, and
  • providing a N. gonorrhoeae (C:T) value for the N. gonorrhoeae marker gene by dividing C for the N. gonorrhoeae marker gene by T for the N. gonorrhoeae marker gene detected in the sample, and
  • detecting differential expression of the N. gonorrhoeae marker gene based on the N. gonorrhoeae C:T value:


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the marker comprises more than one marker.


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the N. gonorrhoeae bacteria is selected from any strain of N. gonorrhoeae including its genetic variants.


In some embodiments, the C:T ratio can be provided by RPKM (reads per kilobase per million mapped reads). The use of RPKM and comparison to TPM is described for example in Wagner et al 2012 [3]. In some embodiments the C:T ratio is provided by FPKM (fragments per kilobase per million), the use of FPKM is described for example in Conesa et al. 2016 [4]. These units normalize for sequencing depth and transcript length. In some embodiments RPM (reads per million mapped reads; RPM does not normalize for transcript length) or raw sequencing read counts can be used. The related methods are identifiable by a skilled person upon reading of the present disclosure.


In methods of the instant disclosure using any one of the N. gonorrhoeae markers, the differential expression of the N. gonorrhoeae marker can be expressed in accordance with a fold change approach in view of the C:T ratios identifiable by a skilled person upon reading of the present disclosure. In particular in the fold-change approach, a gene is considered to be differentially expressed if the ratio of the marker expression level between the antibiotic treated and untreated conditions exceeds a certain threshold, for example, 1.5-fold, twofold or threefold, or 4-fold or 5-fold change.


Accordingly, in some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers at least 1.2-fold magnitude of fold change is considered as a shift. In some embodiments, contacting the sample with an antibiotic results the markers a 1.5 fold change or 2-fold or 4-fold change up to 6-fold change within the first 5 minutes of contact. Increasing the antibiotic exposure time can further shift the fold-change value.


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers, the downshift of the transcript presence is at least 2-fold, 4-fold or is 6-fold or higher.


In preferred embodiments, the (C:T) value of an N. gonorrhoeae marker can be adjusted to reduce the impact of biological variability and/or technical variability in the C:T detection, more preferably of both biological and technical variability.


Accordingly, in some embodiments, any one of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described can further comprise normalizing the antibiotic treated transcript expression value, the control transcript expression value and/or the related ratio, before detecting whether there is a downshift in antibiotic treated sample with respect to the untreated sample.


In particular, in some embodiments, at least one of the antibiotic treated transcript expression value and the control transcript expression value are normalized before providing a C:T ratio. In some embodiments, the C:T ratio of the antibiotic treated transcript expression value and the control transcript expression value is normalized using reference measurements.


The normalization can be performed by dividing the antibiotic treated transcript expression value, the control transcript expression value and/or the related ratio, by a reference measurement of RNA, DNA, cell number, number of samples, effective amount of sample used and/or a related ratio in a control and in a treated sample, according to approaches indicated for methods to identify markers of antibiotic susceptibility of the disclosure.


In particular, in some of these embodiments, the quantitatively detecting can be performed at a plurality of times following and/or upon contacting the sample, and/or under several conditions following and/or upon contacting the sample. For example in some of these embodiments, the antibiotic can be added at different concentrations. Also, in some of those embodiments adding the antibiotic can be performed in the treated N. gonorrhoeae sample throughout incubation or at set intervals during incubation to increase or decrease the physiological response of the N. gonorrhoeae to the antibiotic. Also in some of those embodiments, the quantitatively detecting can be performed at various times including time zero (for example, immediately prior or immediately after antibiotic treatment) of the transcript expression in the sample. In some of those embodiments, the quantitatively detecting can be performed at various temperatures and/or in multiple samples. In these embodiments, normalization can be performed by dividing the detected expression value and/or the related ratio between treated and control samples by the volume of samples or other reference measurements, such as the expression value of a reference RNA, level of DNA, cell numbers, as well as other reference parameters.


The control transcripts and related method of identification described in the method to identify markers of the present disclosure apply to the instant methods as will be understood by a skilled person.


Preferably, control transcripts are selected so this C:T ratio has low technical and biological variability, for example described by standard deviation with value of less than 0.5, less than 0.4, less than 0.3, less than 0.2, less than 0.1. In some embodiments, high-abundance transcripts (for example, transcripts in the top 10% of most expressed transcripts) are used to achieve low technical variability. Preferably, control transcripts are selected so this C:T ratio has low biological variability. Transcripts with high expression not affected by the antibiotic treatment are good candidates for control transcripts with low biological variability. For mRNA high expression level is obtained with more than 10 copies per cell or equivalent parameter in view of the method of measurement (for example RNAseq can have preferred expression levels for detection are TPM > 100 for any transcript and “high expression” being TPM > 100,000 (greater than 3000 copies/cell).


In some embodiments, a control transcript can be selected by providing a pool of isolates with known susceptibility; for each of these isolates, measuring a CT ratio of each transcript; and selecting as the control transcripts the transcripts with a CT ratio that is substantially the same in the pool of isolates between the susceptible isolates and the resistant isolates. The pool of isolates can be obtained from CDC Antimicrobial Resistance Isolate Bank. and/or from clinical collections of isolates.


Alternatively, the control transcript can be selected by measuring a CT ratio of each transcript in a strain subject to the antibiotic susceptibility test, i.e. with unknown susceptibility, and selecting as the control transcript the transcript with a CT ratio close to one, i.e. transcripts with expression not affected by the antibiotic treatment. Preferably, the control transcripts have a high expression level (e.g. with a TPM >10,000). Exemplary control transcripts comprise the transcript listed in Table 1.


In some embodiments, the control transcript can be a ribosomal RNA, including 23S rRNA, 16S rRNA, 5S rRNA and other RNA component of ribosome.


In some embodiments, 16S rRNA or 23 rRNA are used as reference RNA for normalization (see e.g. Table 2 of the instant disclosure).


In some embodiments of the fold-change approach, a gene is considered to be differentially expressed if the ratio of the normalized marker expression level between the antibiotic treated and untreated conditions exceeds a certain threshold, for example, 1.5 fold, twofold or threefold, or 4-fold or 5-fold change, wherein normalization can be performed with any of the methods herein described.


In some embodiments of any one of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, detecting whether there is a downshift can be performed by comparing the antibiotic treated transcript expression value of the RNA marker of N. gonorrhoeae with the expression value in the treated sample of a biomarker of the expression of the RNA marker of N. gonorrhoeae to detect the downshift. In particular, a biomarker of the expression can be any molecule and in particular a transcript, whose expression, under control conditions, has been previously shown to be correlated with the expression of the RNA marker of N. gonorrhoeae, preferably for a plurality of strains. In some embodiments, a downshift of expression of the RNA marker is detected when the ratio of expression of this marker to the expression of the biomarker of the expression in the treated sample is statistically significantly different than the range of ratios expected based on the analysis correlation of expression of these two markers under control conditions.


In some embodiments any one of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the N. gonorrhoeae marker is a plurality of N. gonorrhoeae markers. In those embodiments the quantitative detection of the related expression can be performed by detecting global gene expression, or patterns of gene expression, in the tested samples for the plurality of the N. gonorrhoeae markers, as will be understood by a skilled person.


In methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the sample can be provided from urine, swab, genital swab, throat swab, urethral swab, cervical swab, vaginal swab, oropharyngeal swab, throat swab, and rectal swabs. For urine sample, the preferable amount is between 1 ul and 10 ml. If the sample is provided as in swabs, the swab can be placed in an elution buffer to elute bacterial target cells from the swab. Samples can also include bacterial culture samples, for example, those grown on solid media such as chocolate agar, or grown in liquid culture such as Hardy Fastidious Broth (HFB).


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the sample can be pretreated to enrich RNA or a N. gonorrhoeae by removal of human RNA or RNA of other microorganisms. The removal of human RNA can be performed via hybridization to beads or columns with probes specific for human RNA. The removal of human RNA can also be performed via selective lysis of human cells and degradation of released human RNA. The sample may also be pretreated to enrich tRNA via size selection.


In general, in embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, enriching a sample can be performed with methods and approaches described for the methods to identify an antibiotic susceptibility marker of the disclosure.


In some embodiments of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the sample can be stored until sample preparation and analysis, for example at room temperature, 4° C., -20° C., or -80° C., as appropriate, identifiable by those skilled in the art. When biological specimens are stored, ideally they remain equivalent to freshly-collected specimens for the purposes of analysis. In some embodiments, of the methods of the instant disclosure using any one of the N. gonorrhoeae markers herein described, the sample can be pre-incubated with growth media for a short period of time to increase the number of viable bacterial cells or to increase the level of RNA expression in such cells. The temperature and media for such pre-incubation can be performed as described herein for incubation. The duration of such pre-incubation can range, for example, from 5 minutes to 20 minutes to 1 hour to 2 hours.


In some embodiments of the instant disclosure wherein the microorganism is N. meningitidis, markers are expected to be selected from a transcript of a N. meningitidis gene based on the fact that Neisseria meningitidis also lacks the SOS response [23] ([24] (and [25] or a corresponding cDNA.


In particular, markers are expected to be selected from a transcript of a N. meningitidis gene comprise the ones listed in Table 7





TABLE 7







List of exemplary marker genes expected to be differentially expressed between an untreated sample and a sample treated with antibiotics


Marker
DNA(+)strand
cDNA strand
RNA




PorB NC_003112.2:2157529-2158524 Neisseria meningitidis MC58
SEQ ID NO:154 in ANNEX C
SEQ ID NO:155 in ANNEX C
SEQ ID NO:156 in ANNEX C


rpmB NC_003112.2:332567-332800 Neisseria meningitidis MC58 - on the (-)strand
SEQ ID NO:157 in ANNEX C
SEQ ID NO:158 in ANNEX C
SEQ ID NO:159 in ANNEX C






In some embodiments, markers according to the instant disclosure can have a sequence identity of at least 80%, or 90%, up to 100% of the markers listed in Table 7. In particular markers of the instant disclosure can have sequence identity of 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the sequences indicated in Table 7.


The RNA marker of N. meningitidis and/or corresponding cDNA can be used to detect a transcript of N. meningitidis., perform an antibiotic susceptibility test for N. meningitidis, detect an RNA marker of susceptibility to an antibiotic in N. meningitidis, diagnose susceptibility to an antibiotic of a N. meningitidis infection in an individual, and/or detect antibiotic susceptibility of an N. meningitidis bacterium and treat N. meningitidis in an individual, with methods and systems comprising the features indicated in any one of the third to the eighth aspect of the summary section and related portion of the detailed description of the instant disclosure in connection with N. gonorrhoeae transcripts and/or corresponding cDNA and their use in methods and systems related to the N. gonorrhoeae microorganism.


Methods of the present disclosure using any one of the N. gonorrhoeae transcripts and/or N. meningitidis herein described, can be performed with a corresponding system comprising at least one probe specific for a transcript herein described and/or or probe specific for cDNA a transcript herein described, and reagents for detecting the at least one probe. The at least one probe and reagents are included in the system for simultaneous combined or sequential use in any one of the methods of the present disclosure using any one of the N. gonorrhoeae transcripts herein described.


In particular, in the instant disclosure a system is described for performing at least one of the methods herein described to detect an N. gonorrhoeae transcript, to detect antibiotic susceptibility of N. gonorrhoeae bacteria, to perform an antibiotic susceptibility test for an N gonorrhoeae, and/or to diagnose and/or treat N. gonorrhoeae in an individual. The system comprises at least one probe specific for a transcript selected from any one of the transcripts of N. gonorrhoeae genes herein described, and/or a probe specific for cDNA a transcript herein described, and reagents for detecting the at least one probe.


In some embodiments of the system herein described the system comprises at least one probe specific for a transcript, and/or probe specific for a corresponding cDNA of said transcript, selected from at least one of a transcript of N. gonorrhoeae gene having locus tag NGO1812 and encoding major outer membrane protein (porB), a transcript of N. gonorrhoeae gene having locus tag NGO1680 and encoding 50S ribosomal protein L28 (rpmB), a transcript of N. gonorrhoeae gene having locus tag NGO1291 and encoding transcriptional regulator (yebC)a transcript of N. gonorrhoeae gene having locus tag NGO1673 and encoding type IV pilus assembly protein(pilB), a transcript of a transcript of N. gonorrhoeae gene having locus tag NGO0592 and encoding trigger factor (tig) and a transcript of N. gonorrhoeae gene having locus tag NGO0340 and encoding cysteine synthase A (cysK).


In some embodiments of the system herein described the system comprises at least one probe specific for a transcript and/or a corresponding cDNA, which comprises or is at least one of a transcript N. gonorrhoeae gene having locus tag NGO1812 and annotated as encoding major outer membrane protein (porB), and/or a corresponding cDNA and N. gonorrhoeae gene having locus tag NGO1680 and annotated as encoding 50S ribosomal protein L28 (rpmB) and/or a corresponding cDNA.


In some embodiments of the system herein described the system comprises primers configured to specifically hybridizes with the transcript and/or a corresponding cDNA. In some of these embodiments the system comprises a probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO1812, the probe comprises a pair of primers having sequence GCTACGATTCTCCCGAATTTGCC (SEQ ID NO: 160) (CCGCCKACCAAACGGTGAAC (SEQ ID NO: 161), a probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO1680 the probe comprises a pair of primers having sequence TTGCCCAACTTGCAATCACG (SEQ ID NO: 162) and AGCACGCAAATCAGCCAATAC (SEQ ID NO: 163). a probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO1291 the probe comprises a pair of primers having sequence GCTTTGGAAAAAGCAGCCG (SEQ ID NO: 164) and GGTTTTGTTGTCGGTCAGGC (SEQ ID NO: 165), a probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO1673, the probe comprises a pair of primers having sequence GACTTTTGCCGCTGCTTTG (SEQ ID NO: 166) and GCGCATTATTCGTGTGCAG (SEQ ID NO: 167), a probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO0592 the probe comprises a pair of primers having sequence AAAGCCTTGGGTATTGCGG (SEQ ID NO: 168) and TGACCAAAGCAACCGGAAC (SEQ ID NO: 169). and/or a probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO0340 the probe comprises a pair of primers having sequence GAGGCTTCCCCCGTATTGAG (SEQ ID NO: 170) and TTCAAAAGCCGCTTCGTTCG (SEQ ID NO: 171).


In some embodiments, the systems of the disclosure to be used in connection with methods herein described using any one of the N. gonorrhoeae transcripts herein described, the system further comprises a probe specific for a reference RNA and/or a corresponding cDNA. In some of these embodiments, the reference RNA is N. gonorrhoeae 16S rRNA the and the probe comprises a pair of primers having sequence the probe comprises a pair of primers having sequence ACTGCGTTCTGAACTGGGTG (SEQ ID NO: 172) and GGCGGTCAATTTCACGCG (SEQ ID NO: 173). In some of these embodiments, the control transcript is N. gonorrhoeae 23S rRNA and the probe comprises a pair of primers having sequence the probe comprises a pair of primers having sequence GCATCTAAGCGCGAAACTCG (SEQ ID NO: 174), and CCCCACCTATCAACGTCCTG (SEQ ID NO: 175).


In some embodiments, the systems of the disclosure to be used in connection with methods herein described using any one of the N. gonorrhoeae transcripts herein described or cDNA of any one of the N. gonorrhoeae transcripts herein described the system can further comprise an antibiotic formulated for administration to a sample in combination with the at least one probe.


In some embodiments, the systems of the disclosure to be used in connection with methods herein described using any one of the N. gonorrhoeae transcripts herein described and/or cDNA of any one of the N. gonorrhoeae transcripts herein described, the system further comprises an antibiotic formulated for administration to an individual in an effective amount to treat an N. gonorrhoeae infection in the individual.


In some embodiments, the systems of the disclosure to be used in connection with methods herein described using any one of the N. gonorrhoeae transcripts herein described, the reagents comprise RNA extraction kit and amplification mix. The system may also include one or more antibiotics and/or exposure media with or without the antibiotics. The system can also include reagents required for preparing the sample, such as one or more of buffers e.g. lysis, stabilization, binding, elution buffers for sample preparation, enzyme for removal of DNA e.g. DNase I, and solid phase extraction material for sample preparation., reagents required for quantitative detection such as intercalating dye, reverse-transcription enzyme, polymerase enzyme, nuclease enzyme (e.g. restriction enzymes; CRISPR-associated protein-9 nuclease; CRISPR-associated nucleases as described herein) and reaction buffer. Sample preparation materials and reagents may include reagents for preparation of RNA and DNA from samples, including commercially available reagents for example from Zymo Research, Qiagen or other sample preparations identifiable by a skilled person. The system can also include means for performing RNA quantification such as one or more of: container to define reaction volume, droplet generator for digital quantification, chip for digital detection, chip or device for multiplexed nucleic acid quantification or semiquantification, and optionally equipment for temperature control and detection, including optical detection, fluorescent detection, electrochemical detection.


In some embodiments, the system can comprise a device combining all aspects required for an antibiotic susceptibility test.


The systems herein disclosed can be provided in the form of kits of parts. In kit of parts for performing any one of the methods herein described, the probes and the reagents for the related detection can be included in the kit alone or in the presence of one or more antibiotic as well as any one of the RNA markers, corresponding cDNA and/or probes for one or more reference RNAs and/or corresponding cDNAs. In kit of parts for the treatment of an individual the probes and reagents for the related detection can be comprised together with the antibiotic formulated for administration to the individual as well as additional components identifiable by a skilled person.


In a kit of parts, the probes and the reagents for the related detection, antibiotics, RNA markers, and/or reference RNA and additional reagents identifiable by a skilled person are comprised in the kit independently possibly included in a composition together with suitable vehicle carrier or auxiliary agents. For example, one or more probes can be included in one or more compositions together with reagents for detection also in one or more suitable compositions.


Additional components can include labeled polynucleotides, labeled antibodies, labels, microfluidic chip, reference standards, and additional components identifiable by a skilled person upon reading of the present disclosure.


The terms “label” and “labeled molecule” as used herein refer to a molecule capable of detection, including but not limited to radioactive isotopes, fluorophores, chemiluminescent dyes, chromophores, enzymes, enzymes substrates, enzyme cofactors, enzyme inhibitors, dyes, metal ions, nanoparticles, metal sols, ligands (such as biotin, avidin, streptavidin or haptens) and the like. The term “fluorophore” refers to a substance or a portion thereof which is capable of exhibiting fluorescence in a detectable image. As a consequence, the wording “labeling signal” as used herein indicates the signal emitted from the label that allows detection of the label, including but not limited to radioactivity, fluorescence, chemoluminescence, production of a compound in outcome of an enzymatic reaction and the like.


In embodiments herein described, the components of the kit can be provided, with suitable instructions and other necessary reagents, in order to perform the methods here disclosed. The kit will normally contain the compositions in separate containers. Instructions, for example written or audio instructions, on paper or electronic support such as tapes, CD-ROMs, flash drives, or by indication of a Uniform Resource Locator (URL), which contains a pdf copy of the instructions for carrying out the assay, will usually be included in the kit. The kit can also contain, depending on the particular method used, other packaged reagents and materials (i.e. wash buffers and the like).


Further details concerning the identification of the suitable carrier agent or auxiliary agent of the compositions, and generally manufacturing and packaging of the kit, can be identified by the person skilled in the art upon reading of the present disclosure.


EXAMPLES

The methods and system herein disclosed are further illustrated in the following examples, which are provided by way of illustration and are not intended to be limiting.


Example 1: Microorganisms’ Exposure to Antibiotic

Antibiotic susceptible and resistant clinical isolates were obtained from the University of California, Los Angeles, Clinical Microbiology Laboratory.


Isolates were plated from glycerol stocks onto Chocolate Agar plates and grown in static incubation overnight (37° C., 5% CO2). Cells were re-suspended in Hardy Fastidious Broth (HFB) and incubated for 45 min (37° C., 5% CO2) with shaking (800 rpm) to an OD600 between 1 and 5. Cultures were diluted (5X) into HFB. Each isolate culture was split into “treated” and “control” tubes.


Ciprofloxacin was added to the “treated” tubes (final concentration of 0.5 µg/mL) and water was added to the “control” tubes; cultures were incubated (static; 37° C., 5% CO2) for 15 min. During incubation, samples were collected for RNA sequencing at 5, 10, and 15 min (300 µL aliquot of sample was mixed into 600 µL of Qiagen RNA Protect Reagent (Qiagen, Hilden, Germany) for immediate RNA stabilization).


In addition, a sample was collected for RNA sequencing immediately before ciprofloxacin was added.


To quantify CFU, the sample at t = 15 min was serially diluted (10x), plated on a Chocolate Agar plate, and incubated overnight (37° C., 5% CO2).


Example 2: Microorganisms’ Exposure to Antibiotic

Antibiotic susceptible and resistant clinical isolates were obtained from the N. gonorrhoeae panel of the CDC Antimicrobial Resistance Isolate Bank. Isolates were plated from glycerol stocks onto Chocolate Agar plates and grown in static incubation overnight (37° C., 5% CO2). Cells were re-suspended in pre-warmed HFB + 5 mM sodium bicarbonate and incubated for 30 min (37° C., 5% CO2) with shaking (800 rpm) to an OD600 between 1 and 5. Cultures were diluted (100X) into HFB + 5 mM sodium bicarbonate.


Each isolate culture was split into treated (0.5 µg/mL final concentration of ciprofloxacin) and control (water instead of antibiotic) samples. Samples were incubated at 37° C. for 10 min on a static hot plate. A 90 µLaliquot of each sample was placed into 180 µLof Qiagen RNA Protect Reagent for immediate RNA stabilization. A 5 µLaliquot of each sample was plated onto a Chocolate Agar plate and incubated overnight (37° C., 5% CO2) as a control for the exposure experiments. If the expected growth phenotypes (i.e. resistant = growth; susceptible = no growth) were not observed for any single sample in the plating control, the exposure experiment was repeated for the set of samples.


From the 50 total isolates available from the N. gonorrhoeae panel of the CDC Antimicrobial Resistance Isolate Bank, 49 were used in this study. One isolate was excluded from this study because it is suspected that it had been contaminated; N. gonorrhoeae porB primer amplification was not detected using qPCR.


Example 3: RNA Sequencing and Analysis

RNA was extracted using the Enzymatic Lysis of Bacteria protocol of the Qiagen RNeasy Mini Kit and processed according to the manufacturer’s protocol. DNA digestion was performed during extraction using the Qiagen RNase-Free DNase Set.


The quality of extracted RNA was measured using an Agilent 2200 TapeStation (Agilent, Santa Clara, CA, USA). Extracted RNA samples were prepared for sequencing using the NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs, Ipswitch, MA, USA) and the NEBNExt Multiplex Oligos for Illumina. Libraries were sequenced at 50 single base pair reads and a sequencing depth of 10 million reads on an Illumina HiSeq 2500 System (Illumina, San Diego, CA, USA) at the Millard and Muriel Jacobs Genetics and Genomics Laboratory, California Institute of Technology. Raw reads from the sequenced libraries were subjected to quality control to filter out low-quality reads and trim the adaptor sequences using Trimmomatic (version 0.35).


The reads were aligned to the FA 1090 strain of N. gonorrhoeae (NCBI Reference Sequence: NC_002946.2) using Bowtie2 (version 2.2.5) and quantified using the Subread package (version 1.5.0-p1). A pseudocount of 1 was added to the gene quantification; gene expression was defined in transcripts per million (TPM).


Example 4: Marker Selection Based on C:T Ratio

For each gene, the C:T ratio was defined as the gene expression (TPM) in the control sample divided by the gene expression (in TPM) in the treated sample. The -log2(C:T) was plotted against the -log2(expression in TPM) for all genes. To identify genes that were differentially expressed between control and treated samples, a threshold of significance was defined.


The threshold of significance was calculated from the C:T ratios at t = 0 for the biological replicates that were sequenced (three susceptible and three resistant isolates). For each of the six gene expression datasets (one for each isolate), a negative exponential curve was fit to the outer edge of each plot and then the curves were averaged from all six datasets.


Finally, a 90% confidence interval was added to the average curve by assuming a Gaussian fit for the error distribution, which is the threshold of significance. Genes with a -log2(C:T) value above or below the upper and lower thresholds were identified as differentially expressed. Genes that were differentially expressed consistently (either always above or always below the thresholds) among the three susceptible isolates and were not differentially expressed among the three resistant isolates were defined as candidate markers.


Example 5: Copies/Cell Measurements

To measure copies per cell using RNA sequencing data, 2uL of (1/1000 dilution) ERCC RNA Spike-In Mix (Thermo Fisher Scientific, Waltham, MA, USA) was added to the lysis buffer in the RNeasy Mini Kit to each individual sample. The number of copies of each ERCC transcript in the sample was calculated, by accounting for dilution and multiplying by Avogadro’s number (manufacturer’s concentrations were reported in attomoles/µL). The relationship between log2(ERCC copies added) against log2(gene expression in TPM) was plotted and a linear regression in the region of linearity was performed. The linear regression was used to convert TPM values to total RNA copies in each sample. Finally, using the CFU measured for each sample from plating (described in the “Antibiotic exposure for RNA sequencing” section), the total RNA copies were converted to copies per cell.


Example 6: Validation With Droplet Digital PCR (dPCR)

Primers were designed for candidate markers using Primer-BLAST[13] and primer alignments were verified using SnapGene. Expression of candidate markers was quantified using the Bio-Rad QX200 droplet dPCR system (Bio-Rad Laboratories, Hercules, CA, USA). The concentration of the components in the dPCR mix used in this study were as follows: 1× EvaGreen Droplet Generation Mix (Bio-Rad), 150U/mL WarmStart RTx Reverse Transcriptase, 800U/mL RiboGaurd RNase Inhibitor, 500 nM forward primer, and 500 nM reverse primer. The RNA extraction comprised 5% of the final volume in the dPCR mix.


For each isolate, candidate marker expression was quantified in the control and treated samples and the fold-change difference (C:T ratio) was calculated. To account for potential differences between the control and treated samples that could arise from experimental variability and extraction efficiency, ribosomal RNA (rRNA) was used as an internal control.


From the sequencing data, it was found that rRNA was not affected by antibiotic exposure in the time frame of this study and showed very low variability. The 16S rRNA in the control was therefore also quantified, samples were treated by dPCR and an rRNA C:T ratio was calculated. The C:T ratio of each marker was normalized with the rRNA C:T ratio. All dPCR C:T ratios reported in the example section of the disclosure are the normalized C:T ratios.


Example 7: Temporal Shifts in Global Gene Expression Upon Antibiotic Exposure

RNA-seq was used to study the transcriptome response of susceptible and resistant isolates of N. gonorrhoeae after 5, 10, and 15 min of ciprofloxacin exposure (FIG. 1). Each clinical isolate was initially split into two tubes, where one tube was exposed to the antibiotic (+) and the other served as the control with no antibiotic exposure (-). Samples were collected for RNA-seq prior to antibiotic exposure (time zero) and every 5 min for 15 min. The fold change in gene expression was calculated between the control and treated samples, which is defined as the control:treated ratio (C:T ratio).


Genes that demonstrated significant fold-change differences between the susceptible and resistant isolates were identified as differentially expressed. To account for biological variability, three pairs of susceptible and resistant isolates were used in this study to identify markers. Candidate markers were selected from the pool of differentially expressed genes and were validated using droplet dPCR (see Examples 4 and 6).


Global shifts were observed in RNA expression in susceptible isolates in as early as 5 min after antibiotic exposure (FIG. 2A). The distribution of fold changes in gene expression levels (C:T ratios) indicated global shifts toward negative log2 fold-change values (downregulation). The magnitude of fold change at which most genes were distributed was approximately 2-fold. The tail of the distribution illustrates that a few genes responded to antibiotic exposure with changes as large as 6-fold within 5 min. Increasing the antibiotic exposure time further shifted the distribution to larger negative log2 fold-change values. The transcriptional response in resistant isolates was tightly distributed around negative log2 zero values at all time points, indicating that the transcriptome did not significantly respond to antibiotic in the resistant isolates (FIG. 2A).


To identify genes that were differentially expressed between control and treated samples, a threshold of significance was defined (FIG. 2B). The threshold of significance took into account technical variability and was calculated from the C:T ratios at t = 0 min of all biological replicates that had RNA sequenced (three susceptible and three resistant isolates). For each of the six gene expression datasets (one for each isolate), the -log2(C:T ratio) was plotted against the -log2(expression) for all genes and a negative exponential curve was fit to the outer edge of each plot.


The curves were then averaged from all six datasets and added a 90% confidence interval to the average curve by assuming a Gaussian fit for the error distribution, which was defined as the threshold of significance. Genes with a -log2(C:T ratio) value above or below the upper and lower thresholds were identified as differentially expressed. Downregulated genes (fold changes below the significance threshold) appeared as early as 5 min after antibiotic exposure (blue dots, FIG. 2B). Two upregulated genes (above the significance threshold) appeared after 10 min of exposure (orange dots, FIG. 2B).


A key aim of this study was to identify RNA markers that would yield a measurable response after only a short antibiotic exposure (less or equal to 15 min) to ensure this approach can fit within the required timescale for a rapid AST. It is possible that longer exposure times could provide additional insight into the biological response of N. gonorrhoeae to ciprofloxacin, but this was not the focus of this study. Furthermore, the short exposure times potentially introduce a bias toward transcripts present at low abundance when evaluating fold change.


For transcripts present at high abundance to display the same fold change, a substantially higher number of mRNA molecules must be transcribed, which would require longer timescales. As an example, a 4-fold change from 1 to 4 transcripts requires 3 additional mRNA to be produced, whereas a 4-fold change from 20 to 80 requires 60 mRNA to be transcribed. This bias also holds true in downregulation, where mRNA continues to be transcribed in the control samples, whereas transcript levels drop in treated samples due to degradation of RNA, and/or a reduction in rate of transcription.


Example 8: Selection of Candidate Markers That Are Consistent in Response and Abundant

RNA expression in response to antibiotics can be heterogeneous among different isolates of the same species[26]; thus, it is important to select candidate markers from differentially expressed genes that respond consistently across isolates of N. gonorrhoeae.


To identify these markers, three different pairs of susceptible isolates (minimum inhibitory concentrations (MICs) <= 0.015microg/mL) and resistant isolates (MICs 2.0 microgram/mL, 4.0 microgram/mL, and 16.0 microgram/mL) were exposed to ciprofloxacin for 15 min and extracted RNA for sequencing (see workflow in FIG. 1).


The nature of the transcriptional response of N. gonorrhoeae to antibiotic exposure was a global downregulation in transcript levels. In particular, 181, 41, and 410 differentially expressed genes were found in susceptible isolates 1, 2, and 3, respectively (FIG. 3A).


Among the differentially expressed genes, 38 genes responded consistently across the three pairs of susceptible and resistant isolates (i.e. responses overlapped in all three susceptible isolates and were not responsive in all three resistant isolates) (see FIG. 6).


Among the 38 candidate markers, 15 were ribosomal proteins (including one of the top markers, rpmB), which play a prominent role in assembly and function of the ribosomes and are essential for cell growth. Mutations in ribosomal proteins have been reported to confer resistance to different classes of antibiotics[27].


These 38 genes spanned a variety of biochemical functions in the cell. Six candidate transcript markers were selected for further analysis based on the following criteria: (1) high fold change; (2) high expression levels (>75 transcripts per million, TPM); and (3) representative of different biochemical pathways.


The selected candidate markers were: porB (membrane protein), rpmB (ribosomal protein), tig (molecular chaperone), yebC (transcriptional regulator), pilB (pilus assembly ATPase), and cysK (cysteine synthase). Among the candidate marks, all exhibited downregulation in response to ciprofloxacin.


The candidate marker with the highest abundance and largest fold change upon antibiotic exposure was porB, which is a membrane channel forming protein and the site of antibiotic influx into the cell[28]. porB is a porin protein responsible for uptake of small nutrients and the site of antibiotic influx into the cell. The expression of porins is highly regulated in response to environmental stimuli[29]. Reducing permeability to decrease intracellular antibiotic concentration is a known mechanism for bacteria to confer antibiotic resistance[27]. The downregulation of porB observed in this study can be attributed to a halt in growth processes caused by ciprofloxacin damage and possibly an attempt to reduce influx of antibiotic.


A high level of gene expression was one of the criteria for selection of candidate markers from the sequencing data. High expression of candidate markers is not only important for sensitivity and limits of detection, as has been previously demonstrated in AST methods based on quantification of DNA replication[30], but is particularly important for clinical samples with low numbers of pathogen cells. One of the advantages of RNA compared with DNA as a nucleic acid marker is its natural abundance in the cell. Because the gene expression values obtained from sequencing are relative values, the next step was to quantify the absolute copies per cell for the candidate markers. In the quantification approach, clinical isolate samples were plated after 15 min of ciprofloxacin exposure to obtain cell numbers in colony forming units (CFU/mL). Primers were designed for the candidate markers (see Example 6 and FIG. 7) and measured their absolute concentration using dPCR. The concentrations were converted to per cell values using the cell counts from plating (FIG. 3B).


Additionally, the RNA sequencing data was used to obtain transcriptome-wide estimates of transcript copies per cell. In the sequencing approach, external RNA control consortium (ERCC) spike-ins was added to the lysis buffer step of the extraction protocol in order to capture any loss of RNA throughout the extraction steps. By linear regression the relationship between ERCC copies added to the samples and ERCC quantified by sequencing was captured. Using the linear regression, gene expression values were converted from RNA sequencing (in TPM) to approximate copy numbers per cell (see Example 5). The transcript copies per cell estimated for the candidate markers using the sequencing approach were within the same order of magnitude as the absolute copies per cell measured by digital PCR (FIG. 3B).


It is noted that gyrA and parC, which are known genotypic markers for resistance to ciprofloxacin, were not found to be differentially expressed. recA, which is one of the prominent genes in the SOS response, was also not found to have an increased transcript level because N. gonorrhoeae does not have a true SOS system[31, 32]. Whereas recA is a specific cellular response to overcome DNA damage, the global downregulation that was observed suggests a general shift away from growth and cell proliferation


Example 9: Validation of Markers by dPCR

To determine how the relative changes observed through RNA-seq compare to direct gene expression measurements by dPCR, dPCR assays were designed for candidate markers, which involved measuring the expression of the candidate marker in both control and treated samples, and calculating the C:T ratio.


In this assay, the 16S rRNA was also measured and used to normalize the C:T ratio of the candidate markers. In the three susceptible isolates that were sequenced we found that rRNA consistently showed the smallest fold change (< 1.06) in response to ciprofloxacin compared with all other genes in N. gonorrhoeae. Therefore, to account for experimental variations in the antibiotic exposure and RNA extraction steps between control and treated samples, the 16S rRNA was used as an intracellular control for normalizing the C:T ratios (see Example 6). It was found that the C:T ratios measured by the dPCR assay agreed with the C:T ratios obtained through sequencing (FIG. 4), confirming that both approaches accurately capture the transcriptional response to antibiotic exposure.


Example 10: Validation of RNA Markers porB and rpmB Across CDC Isolates

To determine whether candidate markers respond consistently across a large pool of isolates with genetic variability, the two candidate markers with the highest abundance and fold change (porB and rpmB) were chosen to determine the susceptibility of 49 clinical isolates, with a wide range of MIC values (see FIG. 8), from the N. gonorrhoeae panel of the Centers for Disease Control (CDC) Antimicrobial Resistance Isolate Bank.


The MIC values were representative of the population-wide distribution values reported by the European Committee on Antimicrobial Susceptibility Testing[34]. Each clinical isolate was exposed to ciprofloxacin for 10 min and the fold change was measured in expression of the two candidate markers between the control and treated sample using dPCR (FIG. 5). The results show that both markers correctly classified all 49 CDC isolates, based on Clinical and Laboratory Standards Institute (CLSI) breakpoint values, as 9 susceptible and 40 resistant strains.


In particular, both markers were consistent in their ability to correctly determine susceptibility or resistance of all 49 clinical isolates. porB demonstrated C:T ratios between 2.5 to 7 and rpmB demonstrated C:T ratios between 2 and 6 after 10 min of antibiotic exposure in the nine susceptible clinical isolates. The large fold changes highlight the significance of using RNA response as an AST marker compared with quantification of DNA replication. The previous work using dPCR quantification of DNA replication demonstrated C:T ratios between 1.2 and 2.4 for 15 min of antibiotic exposure in susceptible E. coli[30], which has a doubling time approximately 3 times shorter than N. gonorrhoeae.


An alignment search of porB was performed against other prokaryotes and porB was found to be specific to the Neisseria genus. AST markers should be specific to the pathogen of interest because additional bacterial species are likely to be present in clinical samples.


Example 11: DNA Quantification of N. Gonorrhoeae

Antibiotic susceptible and resistant clinical isolates plated from glycerol stocks onto Chocolate Agar plates and grown in static incubation overnight (37° C., 5% CO2). Cells were re-suspended in Hardy Fastidious Broth (HFB) and incubated for 45 min (37° C., 5% CO2) with shaking (800 rpm) to an OD600 between 1 and 5. Cultures were diluted (5X) into HFB. Each isolate culture was split into “treated” and “control” tubes. Ciprofloxacin was added to the “treated” tubes (final concentration of 0.5 µg/mL) and water was added to the “control” tubes; cultures were incubated (static; 37° C., 5% CO2) for 15 min. Samples for DNA quantification were extracted at 0 and 15 min using the Epicentre QuickExtract DNA Extraction Solution according to the manufacturer’s protocol. 10 uL of sample is placed into 90 uL extraction buffer and incubated at 65° C. for 6 min, followed by 98° C. for 4 min. t0 samples were left at 65° C. during treatment. DNA quantification was performed by digital droplet PCR. The concentrations of the components in the dPCR mix was as follows: 1× QX200 ddPCR EvaGreen Supermix (Bio-Rad), 500 nM forward primer GTTTCAGCGGCAGCATTCA (SEQ ID NO: 176), and 500 nM reverse primer CCGGAACTGGTTTCATCTGATT (SEQ ID NO: 177). Primers that target the 16S or 23S gene of N. gonorrhoeae can be used for dPCR amplification.


Example 12: porB Sequences in 50 Clinical Isolates From the CDC Bank

In order to understand the variability of the porB gene among the 50 CDC clinical isolates, a clustal omega alignment was performed to determine the smallest percent identity between the FA 1090 sequence and the 50 CDC sequences. The percent identity was shown to be 94.94%. porB is known to be more variable than rpmB and therefore it is likely that percent identity will be higher for rpmB. The porB sequences for the 50 clinical isolates from the CDC bank are listed in ANNEX D (SEQ ID NO: 178-227).


Example 13: Determination of Antibiotic MIC in Targeted Microorganism

An antibiotic MIC in a targeted organism can be determined in connection with any one of the methods herein described.


For example, when determining ciprofloxacin MIC in Neisseria gonorrhoeae, in some embodiments samples would be treated at 0.015, 0.030, 0.060, 0.125, 0.25, 0.5, 1.0, 2.0, and 4.0 microgram/mL. The C:T ratios measured at each concentration would then be used to determine the sample’s MIC. MIC could be determined, for example, by fitting a curve to the C:T ratios obtained at each concentration of antibiotic plotted vs the concentration of antibiotic used for treatment, and determining the concentration at which the maximum slope of the curve occurs.


This concentration of antibiotic would then correlate to a particular MIC, determined from performing this method on samples with known MICs. MIC could also be determined by the value at which the fit curve crosses a pre-defined threshold or from the lowest antibiotic concentration that gives a CT response larger than a pre-defined threshold. MIC could also be determined from matching the shape of single curve (or multiple curves) fit to the CT ratios to a pre-constructed library of curves determined by performing the method on isolates with known MICs. An exemplary curve fitting antibiotic concentrations and C:T ratios is reported in FIG. 9.


Example 14: Determination of Type of Degree of Antibiotic Susceptibility in Targeted Microorganism

In order to determine if a sample contains bacteria with intermediate susceptibility, susceptible bacteria, or resistant bacteria to the antibiotic of interest, the sample can be exposed to three concentrations of antibiotic: a concentration equal to the susceptible MIC breakpoint, a concentration equal to the concentration of the resistant MIC breakpoint, and a concentration equal to the average of the maximum and minimum of the intermediate MIC breakpoint range. Susceptibility would then be determined , for example, by measuring the slope obtained by fitting a curve or line to the three points on the C:T ratio vs treatment concentration plot, and/or by comparing the relative difference in C:T ratio between the low and intermediate concentration of antibiotic and the difference in CT ratio between the intermediate and high concentration, and/or by comparing the magnitude of the value relative to a pre-defined threshold, or a combination of these analyses. For example, for exposure or treatment of Neisseria gonorrhoeae to ciprofloxacin the sample would be exposed to 0.06, 0.25, and 1.0 ug/mL ciprofloxacin.


Example 15: Detection of Antibiotic Susceptibility of a N Gonorrhoeae Using an N. Gonorrhoeae RNA Marker of the Disclosure (Prophetic)

This example follows the procedure used in [30] Schoepp, N.G., et al., Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples. Sci Transl Med, 2017. 9(410)). Urine containing or suspected of containing Neisseria gonorrhoeae is obtained from a patient. Urine is then mixed and incubated in exposure media with and without antibiotics. After incubation in exposure media, nucleic acids are extracted and the target Neisseria gonorrhoeae RNA marker is quantified using digital loop-mediated isothermal amplification (dLAMP). The marker concentration in the control sample (sample without antibiotics) is divided by the concentration in the treated sample (sample with antibiotics) to generate a control-treated ratio (C:T ratio).


If the C:T ratio is above the threshold, Neisseria gonorrhoeae bacteria from this patient sample are called susceptible. If the C:T ratio is below the threshold, Neisseria gonorrhoeae bacteria from this patient sample are called resistant. If the C:T ratio is at the threshold, or within 0.05 of the threshold, Neisseria gonorrhoeae bacteria from this patient sample are called indeterminate.


Example 16: An Exemplary Performance Standard for Antimicrobial Susceptibility Testing According to CISI Standard

The following description is taken from Clinical Laboratory Standards Institute (CISI) as an example for performing an Antibiotic Susceptibility Test (AST) as well as breakpoint MIC values for various bacteria according to the CLSI standard. More detailed description and updates for CLSI documents can be further found at https://clsi.org/standards-development/documentcorrection-notices/ as will be understood by a person skilled in the art.





TABLE 8






below shows an exemplary zone diameter and MIC breakpoints for Neisseria gonorrhoease.


Table 8: An exemplary zone diameter and MIC breakpoints for Neiseeria gonorrhoeae




Testing Conditions
Routine QC Recommendations (see Tables 4B and 5C of the CLSI document at https://Clsi.org/standards/products/mi crobiology/documents/m100/for acceptable QC ranges) N. gonorrhoeae ATCCⓇ* 49226 When a commercial test system is used for susceptibility testing, refer to the manufacturer’s instructions for


Medium
Disk diffusion: GC agar base and 1% defined growth supplement. (The use of a cysteine-free growth supplement is not required for disk diffusion testing.) Agar dilution: GC agar base and 1% defined growth supplement. (The use of a cysteine-free growth supplement is required for agar dilution tests with carbapenems and clavulanate. Cysteine-containing defined growth supplement



does not significantly alter dilution test results with other drugs.)
QC test recommendations and QC ranges.


Inoculum
Colony suspension, equivalent to a 0.5 McFarland standard prepared in MHB or 0.9% phosphate-buffered saline, pH 7, using colonies from an overnight (20- to 24-hour) chocolate agar plate incubated in 5% CO2


Incubation
36° C. ± 1° C. (do not exceed 37° C.); 5% CO2; all methods, 20-24 hours


* ATCC® is a registered trademark of the American Type Culture Collection






General Comments include:

  • (1) For disk diffusion, test a maximum of 9 disks on a 150-mm plate and 4 disks on a 100-mm plate. For some agents, eg, fluoroquinolones or cephalosporins, only 2 to 3 disks may be tested per plate. Measure the diameter of the zones of complete inhibition (as judged by the unaided eye), including the diameter of the disk. Hold the Petri plate a few inches above a black background illuminated with reflected light. The zone margin should be considered the area showing no obvious, visible growth that can be detected with the unaided eye. Ignore faint growth of tiny colonies that can be detected only with a magnifying lens at the edge of the zone of inhibited growth.
  • (2) The clinical effectiveness of cefmetazole, cefotetan, cefoxitin, and spectinomycin for treating infections due to organisms that produce intermediate results with these agents is unknown.
  • (3) For disk diffusion testing of N. gonorrhoeae, an intermediate result for an antimicrobial agent indicates either a technical problem that should be resolved by repeat testing or a lack of clinical experience in treating infections due to organisms with these zones. Strains with intermediate zones to agents other than cefmetazole, cefotetan, cefoxitin, and spectinomycin have a documented lower clinical cure rate (85% to 95%) compared with > 95% for susceptible strains.
  • (4) The recommended medium for testing N. gonorrhoeae consists of GC agar to which a 1% defined growth supplement (1.1 g L-cystine, 0.03 g guanine HCl, 0.003 g thiamine HCl, 0.013 g para-aminobenzoic acid, 0.01 g B12, 0.1 g cocarboxylase, 0.25 g NAD, 1 g adenine, 10 g L-glutamine, 100 g glucose, 0.02 g ferric nitrate, 25.9 g L-cysteine HCl [in 1L H2O]) is added after autoclaving.





TABLE 9













Table 9: A list of exemplary antibiotics and their zone diameter and MIC breakpoints


Test/Repo rt Group
Antimicrobia 1 Agent
Disk Cont ent
Interpretive Categories and Zone Diameter Breakpoints, nearest whole mm
Interpretive Categories and MIC Breakpoints, µg/mL
Comments


S
I
R
S
I
R


PENICILLINS




O
Penicillin
10 units
≥ 47
27-46
≤ 26
≤ 0.06
0.12-1
≥2
See general comment (3). (5) A positive β-lactamase test predicts resistance to penicillin, ampicillin, and amoxicillin. (6) A β-lactamase test detects one form of penicillin resistance in N. gonorrhoeae and also may be used to provide epidemiological information. Strains with chromosomally mediated resistance can be detected only by the disk diffusion method or the agar dilution MIC method. (7) Gonococci that produce zones of inhibition of ≤ 19 mm around a 10-unit penicillin disk are likely to be β-lactamase-producing strains. However, the β-lactamase test remains preferable to other susceptibility methods for rapid, accurate recognition of this plasmid-mediated penicillin resistance.
















CEPHEMS (PARENTERAL) (Including cephalosporins I, II, III, and IV. Please refer to Glossary I.)




A
Ceftriaxone
30 µg
≥ 35
-
-
≤ 0.25
-
-



O
Cefoxitin
30 µg
≥ 28
24-27
≤ 23
≤2
4
≥8
See general comment (2)


O
Cefuroxime
30 µg
≥31
26-30
≤ 25
≤1
2
≥4
See general comment (2)


O
Cefepime
30 µg
≥31
-
-
≤ 0.5
-
-



O
Cefmetazole
30 µg
≥ 33
28-32
≤ 27
≤2
4
≥8
See general comment (2)


O
Cefotaxime
30 µg
≥31
-
-
≤ 0.5
-
-



O
Cefotetan
30 µg
≥26
20-25
≤19
≤2
4
≥8
See general comment (2)


O
Ceftazidime
30 µg
≥31
-
-
≤ 0.5
-
-



O
Ceftizoxime
30 µg
≥38
-
-
≤ 0.5
-
-



A
Cefixime
5 µg
≥31
-
-
≤ 0.25
-
-



O
Cefpodoxime
10 µg
≥29

-
≤ 0.5
-
-



Inv.
Cefetamet
10 µg
≥31
-
-
≤ 0.5
-
-



A
Tetracycline
30 µg
≥38
31-37
≤ 30
≤ 0.25
0.5-1
≥2
(9) Gonococci with 30-µg tetracycline disk zone diameters of ≤ 19 mm usually indicate a plasmid-mediated tetracycline-resistant N. gonorrhoeae isolate. Resistance in these strains should be confirmed by a dilution test (MIC ≥16 µg/mL).


A
Ciprofloxacin
5 µg
≥41
28-40
≤ 27
≤ 0.06
0.12-0.5
≥1



O
Enoxacin
10 µg
≥36
32-35
≤ 31
≤ 0.5
1
≥2



O
Lomefloxacin
10 µg
≥38
27-37
≤ 26
≤ 0.12
0.25-1
≥2



O
Ofloxacin
5 µg
≥31
25-30
≤ 24
≤ 0.25
0.5-1
≥2



Inv.
Fleroxacin
5 µg
≥35
29-34
≤ 28
≤ 0.25
0.5
≥1



O
Spectinomycin
100 µg
≥18
15-17
≤14
≤ 32
64
≥ 128
See general comment (2)


Abbreviations: ATCC®, American Type Culture Collection; I, intermediate; MHB, Mueller-Hinton broth; MIC, minimal inhibitory concentration; QC, quality control; NAD, nicotinamide adenine dinucleotide; R, resistant; S, susceptible.






The examples set forth above are provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use the embodiments of the materials, compositions, systems and methods of the disclosure, and are not intended to limit the scope of what the inventors regard as their disclosure. Those skilled in the art will recognize how to adapt the features of the exemplified methods and systems based on the RNA markers identified herein for detection of susceptibility and resistance against various antibiotics in antimicrobial-resistance bacteria according to various embodiments and scope of the claims.


All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the disclosure pertains.


The entire disclosure of each document cited (including webpages patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background, Summary, Detailed Description, and Examples is hereby incorporated herein by reference. All references cited in this disclosure, including references cited in any one of the Appendices, are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually. However, if any inconsistency arises between a cited reference and the present disclosure, the present disclosure takes precedence. Furthermore, the computer readable form of the sequence listing of the ASCII text file named “P2255-US-2021-08-23-Sq-List-ST25”, created on Aug. 23, 2021, and having a file size (not “size on disk”) of 425 kilobytes measured on Windows Server 2016 Standard ver. 1607, is incorporated herein by reference in its entirety.


The terms and expressions which have been employed herein are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the disclosure claimed. Thus, it should be understood that although the disclosure has been specifically disclosed by embodiments, exemplary embodiments and optional features, modification and variation of the concepts herein disclosed can be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this disclosure as defined by the appended claims.


It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. The term “plurality” includes two or more referents unless the content clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure pertains.


When a Markush group or other grouping is used herein, all individual members of the group and all combinations and possible subcombinations of the group are intended to be individually included in the disclosure. Every combination of components or materials described or exemplified herein can be used to practice the disclosure, unless otherwise stated. One of ordinary skill in the art will appreciate that methods, device elements, and materials other than those specifically exemplified may be employed in the practice of the disclosure without resort to undue experimentation. All art-known functional equivalents, of any such methods, device elements, and materials are intended to be included in this disclosure. Whenever a range is given in the specification, for example, a temperature range, a frequency range, a time range, or a composition range, all intermediate ranges and all subranges, as well as, all individual values included in the ranges given are intended to be included in the disclosure. Any one or more individual members of a range or group disclosed herein may be excluded from a claim of this disclosure. The disclosure illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein.


A number of embodiments of the disclosure have been described. The specific embodiments provided herein are examples of useful embodiments of the invention and it will be apparent to one skilled in the art that the disclosure can be carried out using a large number of variations of the devices, device components, methods steps set forth in the present description. As will be obvious to one of skill in the art, methods and devices useful for the present methods may include a large number of optional composition and processing elements and steps.


In particular, it will be understood that various modifications may be made without departing from the spirit and scope of the present disclosure. Accordingly, other embodiments are within the scope of the following claims.


REFERENCES



  • 1. Song, J. and C. Yi, Chemical Modifications to RNA: A New Layer of Gene Expression Regulation. ACS Chem Biol, 2017. 12(2): p. 316-325.

  • 2. Jackman, J.E. and J.D. Alfonzo, Transfer RNA modifications: Nature’s combinatorial chemistry playground. Wiley interdisciplinary reviews. RNA, 2013. 4(1): p. 35-48.

  • 3. Wagner, G.P., K. Kin, and V.J. Lynch, Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci, 2012. 131(4): p. 281-5.

  • 4. Conesa, A., et al., A survey of best practices for RNA-seq data analysis. Genome Biol, 2016. 17: p. 13.

  • 5. Devore, J.L., Probability and Statistics for Engineering and the Sciences. 9th ed. 2016: Cengage.

  • 6. Kreutz, J.E., et al., Theoretical design and analysis of multivolume digital assays with wide dynamic range validated experimentally with microfluidic digital PCR. Anal Chem, 2011. 83(21): p. 8158-68.

  • 7. Badshah, S.L. and A. Ullah, New developments in non-quinolone-based antibiotics for the inhibiton of bacterial gyrase and topoisomerase IV. Eur J Med Chem, 2018. 152: p. 393-400.

  • 8. Collin, F., S. Karkare, and A. Maxwell, Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol, 2011. 92(3): p. 479-97.

  • 9. Chakravorty, S., et al., A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods, 2007. 69(2): p. 330-9.

  • 10. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.

  • 11. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10.

  • 12. Tatusova, T.A. and T.L. Madden, BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett, 1999. 174(2): p. 247-50.

  • 13. Ye, J., et al., Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC bioinformatics, 2012. 13(1): p. 134.

  • 14. Smith, T.F. and M.S. Waterman, Identification of common molecular subsequences. J Mol Biol, 1981. 147(1): p. 195-7.

  • 15. Pearson, W.R., Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics, 1991. 11(3): p. 635-50.

  • 16. Pearson, W.R. and D.J. Lipman, Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A, 1988. 85(8): p. 2444-8.

  • 17. Johnson, L.S., S.R. Eddy, and E. Portugaly, Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics, 2010. 11: p. 431.

  • 18. Gootenberg, J.S., et al., Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017. 356(6336): p. 438-442.

  • 19. Myhrvold, C., et al., Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018. 360(6387): p. 444-448.

  • 20. Gootenberg, J.S., et al., Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018. 360(6387): p. 439-444.

  • 21. Zheng, G., et al., Efficient and quantitative high-throughput tRNA sequencing. Nat Methods, 2015. 12(9): p. 835-837.

  • 22. Honda, S., et al., Four-leaf clover qRT-PCR: A convenient method for selective quantification of mature tRNA. RNA Biol, 2015. 12(5): p. 501-8.

  • 23. Davidsen, T. and T. Tonjum, Meningococcal genome dynamics. Nat Rev Microbiol, 2006. 4(1): p. 11-22.

  • 24. Davidsen, T., et al., Genetic interactions of DNA repair pathways in the pathogen Neisseria meningitidis. J Bacteriol, 2007. 189(15): p. 5728-37.

  • 25. Marin, M.A., et al., The invasive Neisseria meningitidis MenC CC103 from Brazil is characterized by an accessory gene repertoire. Sci Rep, 2017. 7(1): p. 1617.

  • 26. Gao, Q., et al., Gene expression diversity among Mycobacterium tuberculosis clinical isolates. Microbiology, 2005. 151(1): p. 5-14.

  • 27. Gomez, J.E., et al., Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment. Elife, 2017. 6.

  • 28. Quillin, S.J. and H.S. Seifert, Neisseria gonorrhoeae host adaptation and pathogenesis. Nature Reviews Microbiology, 2018.

  • 29. Fernández, L. and R.E. Hancock, Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clinical microbiology reviews, 2012. 25(4): p. 661-681.

  • 30. Schoepp, N.G., et al., Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples. Science translational medicine, 2017. 9(410): p. eaal3693.

  • 31. Stohl, E.A., et al., Purification and characterization of the RecA protein from Neisseria gonorrhoeae. PloS one, 2011. 6(2): p. e17101.

  • 32. Schook, P.O., et al., The DNA-binding activity of the Neisseria gonorrhoeae LexA orthologue NG1427 is modulated by oxidation. Molecular microbiology, 2011. 79(4): p. 846-860.

  • 33. Testing, T.E.C.o.A.S., Ciprofloxacin/Neisseria gonorrhoeae International MIC Distribution - Reference Database 2018-04-02.

  • 34. The European Committee on Antimicrobial Susceptibility Testing. Ciprofloxacin/Neisseria gonorrhoeae International MIC Distribution - Reference Database 2018-04-02. 2018; Available from: https://mic.eucast.org/Eucast2/regShow.jsp?Id=35702.



ANNEX A

Appendix D: List of 16S ribosomal RNA and 23S ribosomal RNA used for normalization


Sequences for rRNA

> A9Y61_06450: 23S ribosomal RNA (1 of 4 copies) NZ_CP016017.1:1190505-1193403 - Is on the negative strand DNA (- strand): SEQ ID NO: 1









TGAAATGATAGAGTCAAGTGAATAAGTGCATCAGGCGGATGCCTTGGCGATGATAGGCGAC


GAAGGACGTGTAAGCCTGCGAAAAGCGCGGGGGAGCTGGCAATAAAGCAATGATCCCGCG


GTGTCCGAATGGGGAAACCCACTGCATTCTGTGCAGTATCCTAAGTTGAATACATAGGCTTA


GAGAAGCGAACCCGGAGAACTGAACCATCTAAGTACCCGGAGGAAAAGAAATCAACCGAG


ATTCCGCAAGTAGTGGCGAGCGAACGCGGAGGAGCCTGTACGTAATAACTGTCGAGGTAGA


AGAACAAGCTGGGAAGCTTGACCATAGCGGGTGACAGTCCCGTATTCGAAATCTCAACAGC


GGTACTAAGCGTACGAAAAGTAGGGCGGGACACGTGAAATCCTGTCTGAATATGGGGGGAC


CATCCTCCAAGGCTAAATACTCATCATCGACCGATAGTGAACCAGTACCGTGAGGGAAAGG


CGAAAAGAACCCCGGGAGGGGAGTGAAACAGAACCTGAAACCTGATGCATACAAACAGTG


GGAGCGCCCTAGTGGTGTGACTGCGTACCTTTTGTATAATGGGTCAACGACTTACATTCAGT


AGCGAGCTTAACCGGATAGGGGAGGCGTAGGGAAACCGAGTCTTAATAGGGCGATGAGTTG


CTGGGTGTAGACCCGAAACCGAGTGATCTATCCATGGCCAGGTTGAAGGTGCCGTAACAGG


TACTGGAGGACCGAACCCACGCATGTTGCAAAATGCGGGGATGAGCTGTGGGTAGGGGTGA


AAGGCTAAACAAACTCGGAGATAGCTGGTTCTCCCCGAAAACTATTTAGGTAGTGCCTCGAG


CAAGACACTGATGGGGGTAAAGCACTGTTATGGCTAGGGGGTTATTGCAACTTACCAACCCA


TGGCAAACTCAGAATACCATCAAGTGGTTCCTCGGGAGACAGACAGCGGGTGCTAACGTCC


GTTGTCAAGAGGGAAACAACCCAGACCGCCGGCTAAGGTCCCAAATGATAGATTAAGTGGT


AAACGAAGTGGGAAGGCACAGACAGCCAGGATGTTGGCTTAGAAGCAGCCATCATTTAAAG


AAAGCGTAATAGCTCACTGGTCGAGTCGTCCTGCGCGGAAGATGTAACGGGGCTCAAATCT


ATAACCGAAGCTGCGGATGCCGGTTTACCGGCATGGTAGGGGAGCGTTCTGTAGGCTGATG


AAGGTGCATTGTAAAGTGTGCTGGAGGTATCAGAAGTGCGAATGTTGACATGAGTAGCGAT


AAAGCGGGTGAAAAGCCCGCTCGCCGAAAGCCCAAGGTTTCCTACGCAACGTTCATCGGCG


TAGGGTGAGTCGGCCCCTAAGGCGAGGCAGAAATGCGTAGTCGATGGGAAACAGGTTAATA


TTCCTGTACTTGATTCAAATGCGATGTGGGGACGGAGAAGGTTAGGTTGGCAAGCTGTTGGA


ATAGCTTGTTTAAGCCGGTAGGTGGAAGACTTAGGCAAATCCGGGTTTTCTTAACACCGAAG


AAGTGATGACGAGTGTTTACGGACACGAAGCAACCGATACCACGCTTCCAGGAAAAGCCAC


TAAGCTTCAGTTTGAATCGAACCGTACCGCAAACCGACACAGGTGGGCAGGATGAGAATTC


TAAGGCGCTTGAGAGAACTCGGGAGAAGGAACTCGGCAAATTGATACCGTAACTTCGGGAG


AAGGTATGCCCTCTAAGGTTAAGGACTTGCTCCGTAAGCCCCGGAGGGTCGCAGAGAATAG


GTGGCTGCGACTTGTTTATTAAAAACACGAGCACTCTTGCCAACACGAAAGTGGACGTATAG


GGTGTAACGCCTGCCCGGTGCCGGAAGGTTAATTGAAGATGTGCAAGCATCGGATCGAAGC


CCCGGTAAACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAATTCCTTGTCGGGTAAG


TTCCGACCCGCACGAATGGCGTAACGATGGCCACACTGTCTCCTCCCGAGACTCAGCGAAGT


TGAAGTGGTTGTGAAGATGCAATCTACCCGCTGCTAGACGGAAAGACCCCGTGAACCTTTAC


TGTAGCTTTGCATTGGACTTTGAAGTCACTTGTGTAGGATAGGTGGAAGGCTTGGAAGCAAA


GACGCCAGTCTCTGTGGAGTCGTCCTTGAAAATACCACCCTGGTGTCTTTGAGGTTCTAACCC


AGACCCGTCATCCGGGTCGGGGACCGTGCATGGTAGGCAGTTTGACTGGGGCGGTCTCCTCC


CAAAGCGTAACGGAGGAGTTCGAAGGTTACCTAGGTCCGGTCGGAAATCGGACTGATAGTG


CAATGGCAAAAGGTAGCTTAACTGCGAGACCGACAAGTCGGGCAGGTGCGAAAGCAGGAC


ATAGTGATCCGGTGGTTCTGTATGGAAGGGCCATCGCTCAACGGATAAAAGGTACTCCGGG


GATAACAGGCTTGATTCCGCCCAAGAGTTCATATCGACGGCGGAGTTTGGCACCTCGATGTC


GGCTCATCACATCCTGGGGCTGTAGTCGGTCCCAAGGGTATGGCTGTTCGCCATTTTAAAGT


GGTACGTGAGTTGGGTTTAAAACGTCGTGAGACAGTTTGGTCCCTATCTGCAGTGGGCGTTG


GAAGTTTGACGGGGGCTGCTCCTAGTACGAGAGGACCGGAGTGGACGAACCTCTGGTGTAC


CGGTTGTAACGCCAGTTGCATAGCCGGGTAGCTAAGTTCGGAAGAGATAAGCGCTGAAAGC


ATCTAAGCGCGAAACTCGCCTGAAGATGAGACTTCCCTTGCGGTTTAACCGCACTAAAGGGT


CGTTCGAGACCAGGACGTTGATAGGTGGGGTGTGGAAGCGCGGTAACGCGTGAAGCTAACC


CATACTAATTGCCCGTGAGGCTTGACTCT






cDNA: SEQ ID NO: 2









AGAGTCAAGCCTCACGGGCAATTAGTATGGGTTAGCTTCACGCGTTACCGCGCTTCCACACC


CCACCTATCAACGTCCTGGTCTCGAACGACCCTTTAGTGCGGTTAAACCGCAAGGGAAGTCT


CATCTTCAGGCGAGTTTCGCGCTTAGATGCTTTCAGCGCTTATCTCTTCCGAACTTAGCTACC


CGGCTATGCAACTGGCGTTACAACCGGTACACCAGAGGTTCGTCCACTCCGGTCCTCTCGTA


CTAGGAGCAGCCCCCGTCAAACTTCCAACGCCCACTGCAGATAGGGACCAAACTGTCTCACG


ACGTTTTAAACCCAACTCACGTACCACTTTAAAATGGCGAACAGCCATACCCTTGGGACCGA


CTACAGCCCCAGGATGTGATGAGCCGACATCGAGGTGCCAAACTCCGCCGTCGATATGAACT


CTTGGGCGGAATCAAGCCTGTTATCCCCGGAGTACCTTTTATCCGTTGAGCGATGGCCCTTCC


ATACAGAACCACCGGATCACTATGTCCTGCTTTCGCACCTGCCCGACTTGTCGGTCTCGCAGT


TAAGCTACCTTTTGCCATTGCACTATCAGTCCGATTTCCGACCGGACCTAGGTAACCTTCGAA


CTCCTCCGTTACGCTTTGGGAGGAGACCGCCCCAGTCAAACTGCCTACCATGCACGGTCCCC


GACCCGGATGACGGGTCTGGGTTAGAACCTCAAAGACACCAGGGTGGTATTTTCAAGGACG


ACTCCACAGAGACTGGCGTCTTTGCTTCCAAGCCTTCCACCTATCCTACACAAGTGACTTCAA


AGTCCAATGCAAAGCTACAGTAAAGGTTCACGGGGTCTTTCCGTCTAGCAGCGGGTAGATTG


CATCTTCACAACCACTTCAACTTCGCTGAGTCTCGGGAGGAGACAGTGTGGCCATCGTTACG


CCATTCGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAGGACCGTTATAGTT


ACGGCCGCCGTTTACCGGGGCTTCGATCCGATGCTTGCACATCTTCAATTAACCTTCCGGCAC


CGGGCAGGCGTTACACCCTATACGTCCACTTTCGTGTTGGCAAGAGTGCTCGTGTTTTTAATA


AACAAGTCGCAGCCACCTATTCTCTGCGACCCTCCGGGGCTTACGGAGCAAGTCCTTAACCT


TAGAGGGCATACCTTCTCCCGAAGTTACGGTATCAATTTGCCGAGTTCCTTCTCCCGAGTTCT


CTCAAGCGCCTTAGAATTCTCATCCTGCCCACCTGTGTCGGTTTGCGGTACGGTTCGATTCAA


ACTGAAGCTTAGTGGCTTTTCCTGGAAGCGTGGTATCGGTTGCTTCGTGTCCGTAAACACTCG


TCATCACTTCTTCGGTGTTAAGAAAACCCGGATTTGCCTAAGTCTTCCACCTACCGGCTTAAA


CAAGCTATTCCAACAGCTTGCCAACCTAACCTTCTCCGTCCCCACATCGCATTTGAATCAAGT


ACAGGAATATTAACCTGTTTCCCATCGACTACGCATTTCTGCCTCGCCTTAGGGGCCGACTCA


CCCTACGCCGATGAACGTTGCGTAGGAAACCTTGGGCTTTCGGCGAGCGGGCTTTTCACCCG


CTTTATCGCTACTCATGTCAACATTCGCACTTCTGATACCTCCAGCACACTTTACAATGCACC


TTCATCAGCCTACAGAACGCTCCCCTACCATGCCGGTAAACCGGCATCCGCAGCTTCGGTTA


TAGATTTGAGCCCCGTTACATCTTCCGCGCAGGACGACTCGACCAGTGAGCTATTACGCTTT


CTTTAAATGATGGCTGCTTCTAAGCCAACATCCTGGCTGTCTGTGCCTTCCCACTTCGTTTAC


CACTTAATCTATCATTTGGGACCTTAGCCGGCGGTCTGGGTTGTTTCCCTCTTGACAACGGAC


GTTAGCACCCGCTGTCTGTCTCCCGAGGAACCACTTGATGGTATTCTGAGTTTGCCATGGGTT


GGTAAGTTGCAATAACCCCCTAGCCATAACAGTGCTTTACCCCCATCAGTGTCTTGCTCGAG


GCACTACCTAAATAGTTTTCGGGGAGAACCAGCTATCTCCGAGTTTGTTTAGCCTTTCACCCC


TACCCACAGCTCATCCCCGCATTTTGCAACATGCGTGGGTTCGGTCCTCCAGTACCTGTTACG


GCACCTTCAACCTGGCCATGGATAGATCACTCGGTTTCGGGTCTACACCCAGCAACTCATCG


CCCTATTAAGACTCGGTTTCCCTACGCCTCCCCTATCCGGTTAAGCTCGCTACTGAATGTAAG


TCGTTGACCCATTATACAAAAGGTACGCAGTCACACCACTAGGGCGCTCCCACTGTTTGTAT


GCATCAGGTTTCAGGTTCTGTTTCACTCCCCTCCCGGGGTTCTTTTCGCCTTTCCCTCACGGTA


CTGGTTCACTATCGGTCGATGATGAGTATTTAGCCTTGGAGGATGGTCCCCCCATATTCAGA


CAGGATTTCACGTGTCCCGCCCTACTTTTCGTACGCTTAGTACCGCTGTTGAGATTTCGAATA


CGGGACTGTCACCCGCTATGGTCAAGCTTCCCAGCTTGTTCTTCTACCTCGACAGTTATTACG


TACAGGCTCCTCCGCGTTCGCTCGCCACTACTTGCGGAATCTCGGTTGATTTCTTTTCCTCCG


GGTACTTAGATGGTTCAGTTCTCCGGGTTCGCTTCTCTAAGCCTATGTATTCAACTTAGGATA


CTGCACAGAATGCAGTGGGTTTCCCCATTCGGACACCGCGGGATCATTGCTTTATTGCCAGC


TCCCCCGCGCTTTTCGCAGGCTTACACGTCCTTCGTCGCCTATCATCGCCAAGGCATCCGCCT


GATGCACTTATTCACTTGACTCTATCATTTCA






RNA: SEQ ID NO: 3









UGAAAUGAUAGAGUCAAGUGAAUAAGUGCAUCAGGCGGAUGCCUUGGCGAUGAUAGGCG


ACGAAGGACGUGUAAGCCUGCGAAAAGCGCGGGGGAGCUGGCAAUAAAGCAAUGAUCCC


GCGGUGUCCGAAUGGGGAAACCCACUGCAUUCUGUGCAGUAUCCUAAGUUGAAUACAUA


GGCUUAGAGAAGCGAACCCGGAGAACUGAACCAUCUAAGUACCCGGAGGAAAAGAAAUC


AACCGAGAUUCCGCAAGUAGUGGCGAGCGAACGCGGAGGAGCCUGUACGUAAUAACUGU


CGAGGUAGAAGAACAAGCUGGGAAGCUUGACCAUAGCGGGUGACAGUCCCGUAUUCGAA


AUCUCAACAGCGGUACUAAGCGUACGAAAAGUAGGGCGGGACACGUGAAAUCCUGUCUG


AAUAUGGGGGGACCAUCCUCCAAGGCUAAAUACUCAUCAUCGACCGAUAGUGAACCAGUA


CCGUGAGGGAAAGGCGAAAAGAACCCCGGGAGGGGAGUGAAACAGAACCUGAAACCUGA


UGCAUACAAACAGUGGGAGCGCCCUAGUGGUGUGACUGCGUACCUUUUGUAUAAUGGGU


CAACGACUUACAUUCAGUAGCGAGCUUAACCGGAUAGGGGAGGCGUAGGGAAACCGAGU


CUUAAUAGGGCGAUGAGUUGCUGGGUGUAGACCCGAAACCGAGUGAUCUAUCCAUGGCC


AGGUUGAAGGUGCCGUAACAGGUACUGGAGGACCGAACCCACGCAUGUUGCAAAAUGCG


GGGAUGAGCUGUGGGUAGGGGUGAAAGGCUAAACAAACUCGGAGAUAGCUGGUUCUCCC


CGAAAACUAUUUAGGUAGUGCCUCGAGCAAGACACUGAUGGGGGUAAAGCACUGUUAUG


GCUAGGGGGUUAUUGCAACUUACCAACCCAUGGCAAACUCAGAAUACCAUCAAGUGGUUC


CUCGGGAGACAGACAGCGGGUGCUAACGUCCGUUGUCAAGAGGGAAACAACCCAGACCGC


CGGCUAAGGUCCCAAAUGAUAGAUUAAGUGGUAAACGAAGUGGGAAGGCACAGACAGCC


AGGAUGUUGGCUUAGAAGCAGCCAUCAUUUAAAGAAAGCGUAAUAGCUCACUGGUCGAG


UCGUCCUGCGCGGAAGAUGUAACGGGGCUCAAAUCUAUAACCGAAGCUGCGGAUGCCGGU


UUACCGGCAUGGUAGGGGAGCGUUCUGUAGGCUGAUGAAGGUGCAUUGUAAAGUGUGCU


GGAGGUAUCAGAAGUGCGAAUGUUGACAUGAGUAGCGAUAAAGCGGGUGAAAAGCCCGC


UCGCCGAAAGCCCAAGGUUUCCUACGCAACGUUCAUCGGCGUAGGGUGAGUCGGCCCCUA


AGGCGAGGCAGAAAUGCGUAGUCGAUGGGAAACAGGUUAAUAUUCCUGUACUUGAUUCA


AAUGCGAUGUGGGGACGGAGAAGGUUAGGUUGGCAAGCUGUUGGAAUAGCUUGUUUAAG


CCGGUAGGUGGAAGACUUAGGCAAAUCCGGGUUUUCUUAACACCGAAGAAGUGAUGACG


AGUGUUUACGGACACGAAGCAACCGAUACCACGCUUCCAGGAAAAGCCACUAAGCUUCAG


UUUGAAUCGAACCGUACCGCAAACCGACACAGGUGGGCAGGAUGAGAAUUCUAAGGCGC


UUGAGAGAACUCGGGAGAAGGAACUCGGCAAAUUGAUACCGUAACUUCGGGAGAAGGUA


UGCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCGGAGGGUCGCAGAGAAUAGGUGGC


UGCGACUUGUUUAUUAAAAACACGAGCACUCUUGCCAACACGAAAGUGGACGUAUAGGG


UGUAACGCCUGCCCGGUGCCGGAAGGUUAAUUGAAGAUGUGCAAGCAUCGGAUCGAAGC


CCCGGUAAACGGCGGCCGUAACUAUAACGGUCCUAAGGUAGCGAAAUUCCUUGUCGGGUA


AGUUCCGACCCGCACGAAUGGCGUAACGAUGGCCACACUGUCUCCUCCCGAGACUCAGCG


AAGUUGAAGUGGUUGUGAAGAUGCAAUCUACCCGCUGCUAGACGGAAAGACCCCGUGAA


CCUUUACUGUAGCUUUGCAUUGGACUUUGAAGUCACUUGUGUAGGAUAGGUGGAAGGCU


UGGAAGCAAAGACGCCAGUCUCUGUGGAGUCGUCCUUGAAAAUACCACCCUGGUGUCUUU


GAGGUUCUAACCCAGACCCGUCAUCCGGGUCGGGGACCGUGCAUGGUAGGCAGUUUGACU


GGGGCGGUCUCCUCCCAAAGCGUAACGGAGGAGUUCGAAGGUUACCUAGGUCCGGUCGGA


AAUCGGACUGAUAGUGCAAUGGCAAAAGGUAGCUUAACUGCGAGACCGACAAGUCGGGC


AGGUGCGAAAGCAGGACAUAGUGAUCCGGUGGUUCUGUAUGGAAGGGCCAUCGCUCAAC


GGAUAAAAGGUACUCCGGGGAUAACAGGCUUGAUUCCGCCCAAGAGUUCAUAUCGACGG


CGGAGUUUGGCACCUCGAUGUCGGCUCAUCACAUCCUGGGGCUGUAGUCGGUCCCAAGGG


UAUGGCUGUUCGCCAUUUUAAAGUGGUACGUGAGUUGGGUUUAAAACGUCGUGAGACAG


UUUGGUCCCUAUCUGCAGUGGGCGUUGGAAGUUUGACGGGGGCUGCUCCUAGUACGAGA


GGACCGGAGUGGACGAACCUCUGGUGUACCGGUUGUAACGCCAGUUGCAUAGCCGGGUA


GCUAAGUUCGGAAGAGAUAAGCGCUGAAAGCAUCUAAGCGCGAAACUCGCCUGAAGAUG


AGACUUCCCUUGCGGUUUAACCGCACUAAAGGGUCGUUCGAGACCAGGACGUUGAUAGG


UGGGGUGUGGAAGCGCGGUAACGCGUGAAGCUAACCCAUACUAAUUGCCCGUGAGGCUU


GACUCU






> A9Y61_06465: 16S ribosomal RNA (1 of 4 copies) NZ_CP016017.1:1194001-1195552 - Is on the negative strand DNA (- strand): SEQ ID NO: 4









TGAACATAAGAGTTTGATCCTGGCTCAGATTGAACGCTGGCGGCATGCTTTACACATGCAAG


TCGGACGGCAGCACAGGGAAGCTTGCTTCTCGGGTGGCGAGTGGCGAACGGGTGAGTAACA


TATCGGAACGTACCGGGTAGCGGGGGATAACTGATCGAAAGATCAGCTAATACCGCATACG


TCTTGAGAGGGAAAGCAGGGGACCTTCGGGCCTTGCGCTATCCGAGCGGCCGATATCTGATT


AGCTGGTTGGCGGGGTAAAGGCCCACCAAGGCGACGATCAGTAGCGGGTCTGAGAGGATGA


TCCGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTT


TGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGTCTGAAGAAGGCCTTCGGGTTGT


AAAGGACTTTTGTCAGGGAAGAAAAGGCCGTTGCCAATATCGGCGGCCGATGACGGTACCT


GAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGT


TAATCGGAATTACTGGGCGTAAAGCGGGCGCAGACGGTTACTTAAGCAGGATGTGAAATCC


CCGGGCTCAACCCGGGAACTGCGTTCTGAACTGGGTGACTCGAGTGTGTCAGAGGGAGGTG


GAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTGGAGGAATACCGATGGCGAAGGCAG


CCTCCTGGGATAACACTGACGTTCATGTCCGAAAGCGTGGGTAGCAAACAGGATTAGATACC


CTGGTAGTCCACGCCCTAAACGATGTCAATTAGCTGTTGGGCAACTTGATTGCTTGGTAGCG


TAGCTAACGCGTGAAATTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAA


TTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTCGATGCAACGCGAAGAACC


TTACCTGGTTTTGACATGTGCGGAATCCTCCGGAGACGGAGGAGTGCCTTCGGGAGCCGTAA


CACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACG


AGCGCAACCCTTGTCATTAGTTGCCATCATTCGGTTGGGCACTCTAATGAGACTGCCGGTGA


CAAGCCGGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTATGACCAGGGCTTCAC


ACGTCATACAATGGTCGGTACAGAGGGTAGCCAAGCCGCGAGGCGGAGCCAATCTCACAAA


ACCGATCGTAGTCCGGATTGCACTCTGCAACTCGAGTGCATGAAGTCGGAATCGCTAGTAAT


CGCAGGTCAGCATACTGCGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCA


TGGGAGTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGAGTCCGCTTACCACGGTAT


GCTTCATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAGGGGAACCTGCGGCTGGATCAC


CTCCTTTCTA






cDNA: SEQ ID NO: 5









TAGAAAGGAGGTGATCCAGCCGCAGGTTCCCCTACGGCTACCTTGTTACGACTTCACCCCAG


TCATGAAGCATACCGTGGTAAGCGGACTCCTTGCGGTTACCCTACCTACTTCTGGTATCCCCC


ACTCCCATGGTGTGACGGGCGGTGTGTACAAGACCCGGGAACGTATTCACCGCAGTATGCTG


ACCTGCGATTACTAGCGATTCCGACTTCATGCACTCGAGTTGCAGAGTGCAATCCGGACTAC


GATCGGTTTTGTGAGATTGGCTCCGCCTCGCGGCTTGGCTACCCTCTGTACCGACCATTGTAT


GACGTGTGAAGCCCTGGTCATAAGGGCCATGAGGACTTGACGTCATCCCCACCTTCCTCCGG


CTTGTCACCGGCAGTCTCATTAGAGTGCCCAACCGAATGATGGCAACTAATGACAAGGGTTG


CGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGCACC


TGTGTTACGGCTCCCGAAGGCACTCCTCCGTCTCCGGAGGATTCCGCACATGTCAAAACCAG


GTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATCATCCACCGCTTGTGCGGGTCCCCGTC


AATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCCCAGGCGGTCAATTTCACGCGTTAGCTA


CGCTACCAAGCAATCAAGTTGCCCAACAGCTAATTGACATCGTTTAGGGCGTGGACTACCAG


GGTATCTAATCCTGTTTGCTACCCACGCTTTCGGACATGAACGTCAGTGTTATCCCAGGAGG


CTGCCTTCGCCATCGGTATTCCTCCACATCTCTACGCATTTCACTGCTACACGTGGAATTCCA


CCTCCCTCTGACACACTCGAGTCACCCAGTTCAGAACGCAGTTCCCGGGTTGAGCCCGGGGA


TTTCACATCCTGCTTAAGTAACCGTCTGCGCCCGCTTTACGCCCAGTAATTCCGATTAACGCT


CGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGGTGCTTATTCTTCAGGTACC


GTCATCGGCCGCCGATATTGGCAACGGCCTTTTCTTCCCTGACAAAAGTCCTTTACAACCCG


AAGGCCTTCTTCAGACACGCGGCATGGCTGGATCAGGCTTGCGCCCATTGTCCAAAATTCCC


CACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCGGATCATCCTCTC


AGACCCGCTACTGATCGTCGCCTTGGTGGGCCTTTACCCCGCCAACCAGCTAATCAGATATC


GGCCGCTCGGATAGCGCAAGGCCCGAAGGTCCCCTGCTTTCCCTCTCAAGACGTATGCGGTA


TTAGCTGATCTTTCGATCAGTTATCCCCCGCTACCCGGTACGTTCCGATATGTTACTCACCCG


TTCGCCACTCGCCACCCGAGAAGCAAGCTTCCCTGTGCTGCCGTCCGACTTGCATGTGTAAA


GCATGCCGCCAGCGTTCAATCTGAGCCAGGATCAAACTCTTATGTTCA






RNA: SEQ ID NO: 6









UGAACAUAAGAGUUUGAUCCUGGCUCAGAUUGAACGCUGGCGGCAUGCUUUACACAUGC


AAGUCGGACGGCAGCACAGGGAAGCUUGCUUCUCGGGUGGCGAGUGGCGAACGGGUGAG


UAACAUAUCGGAACGUACCGGGUAGCGGGGGAUAACUGAUCGAAAGAUCAGCUAAUACC


GCAUACGUCUUGAGAGGGAAAGCAGGGGACCUUCGGGCCUUGCGCUAUCCGAGCGGCCGA


UAUCUGAUUAGCUGGUUGGCGGGGUAAAGGCCCACCAAGGCGACGAUCAGUAGCGGGUC


UGAGAGGAUGAUCCGCCACACUGGGACUGAGACACGGCCCAGACUCCUACGGGAGGCAGC


AGUGGGGAAUUUUGGACAAUGGGCGCAAGCCUGAUCCAGCCAUGCCGCGUGUCUGAAGA


AGGCCUUCGGGUUGUAAAGGACUUUUGUCAGGGAAGAAAAGGCCGUUGCCAAUAUCGGC


GGCCGAUGACGGUACCUGAAGAAUAAGCACCGGCUAACUACGUGCCAGCAGCCGCGGUAA


UACGUAGGGUGCGAGCGUUAAUCGGAAUUACUGGGCGUAAAGCGGGCGCAGACGGUUAC


UUAAGCAGGAUGUGAAAUCCCCGGGCUCAACCCGGGAACUGCGUUCUGAACUGGGUGACU


CGAGUGUGUCAGAGGGAGGUGGAAUUCCACGUGUAGCAGUGAAAUGCGUAGAGAUGUGG


AGGAAUACCGAUGGCGAAGGCAGCCUCCUGGGAUAACACUGACGUUCAUGUCCGAAAGCG


UGGGUAGCAAACAGGAUUAGAUACCCUGGUAGUCCACGCCCUAAACGAUGUCAAUUAGC


UGUUGGGCAACUUGAUUGCUUGGUAGCGUAGCUAACGCGUGAAAUUGACCGCCUGGGGA


GUACGGUCGCAAGAUUAAAACUCAAAGGAAUUGACGGGGACCCGCACAAGCGGUGGAUG


AUGUGGAUUAAUUCGAUGCAACGCGAAGAACCUUACCUGGUUUUGACAUGUGCGGAAUC


CUCCGGAGACGGAGGAGUGCCUUCGGGAGCCGUAACACAGGUGCUGCAUGGCUGUCGUCA


GCUCGUGUCGUGAGAUGUUGGGUUAAGUCCCGCAACGAGCGCAACCCUUGUCAUUAGUU


GCCAUCAUUCGGUUGGGCACUCUAAUGAGACUGCCGGUGACAAGCCGGAGGAAGGUGGG


GAUGACGUCAAGUCCUCAUGGCCCUUAUGACCAGGGCUUCACACGUCAUACAAUGGUCGG


UACAGAGGGUAGCCAAGCCGCGAGGCGGAGCCAAUCUCACAAAACCGAUCGUAGUCCGGA


UUGCACUCUGCAACUCGAGUGCAUGAAGUCGGAAUCGCUAGUAAUCGCAGGUCAGCAUAC


UGCGGUGAAUACGUUCCCGGGUCUUGUACACACCGCCCGUCACACCAUGGGAGUGGGGGA


UACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCUUACCACGGUAUGCUUCAUGACU


GGGGUGAAGUCGUAACAAGGUAGCCGUAGGGGAACCUGCGGCUGGAUCACCUCCUUUCU


A






> A9Y61_07175: 23S ribosomal RNA (1 of 4 copies) NZ_CP016017.1:1325810-1328708 - Is on the negative strand DNA (- strand): SEQ ID NO: 7









TGAAATGATAGAGTCAAGTGAATAAGTGCATCAGGCGGATGCCTTGGCGATGATAGGCGAC


GAAGGACGTGTAAGCCTGCGAAAAGCGCGGGGGAGCTGGCAATAAAGCAATGATCCCGCG


GTGTCCGAATGGGGAAACCCACTGCATTCTGTGCAGTATCCTAAGTTGAATACATAGGCTTA


GAGAAGCGAACCCGGAGAACTGAACCATCTAAGTACCCGGAGGAAAAGAAATCAACCGAG


ATTCCGCAAGTAGTGGCGAGCGAACGCGGAGGAGCCTGTACGTAATAACTGTCGAGGTAGA


AGAACAAGCTGGGAAGCTTGACCATAGCGGGTGACAGTCCCGTATTCGAAATCTCAACAGC


GGTACTAAGCGTACGAAAAGTAGGGCGGGACACGTGAAATCCTGTCTGAATATGGGGGGAC


CATCCTCCAAGGCTAAATACTCATCATCGACCGATAGTGAACCAGTACCGTGAGGGAAAGG


CGAAAAGAACCCCGGGAGGGGAGTGAAACAGAACCTGAAACCTGATGCATACAAACAGTG


GGAGCGCCCTAGTGGTGTGACTGCGTACCTTTTGTATAATGGGTCAACGACTTACATTCAGT


AGCGAGCTTAACCGGATAGGGGAGGCGTAGGGAAACCGAGTCTTAATAGGGCGATGAGTTG


CTGGGTGTAGACCCGAAACCGAGTGATCTATCCATGGCCAGGTTGAAGGTGCCGTAACAGG


TACTGGAGGACCGAACCCACGCATGTTGCAAAATGCGGGGATGAGCTGTGGGTAGGGGTGA


AAGGCTAAACAAACTCGGAGATAGCTGGTTCTCCCCGAAAACTATTTAGGTAGTGCCTCGAG


CAAGACACTGATGGGGGTAAAGCACTGTTATGGCTAGGGGGTTATTGCAACTTACCAACCCA


TGGCAAACTCAGAATACCATCAAGTGGTTCCTCGGGAGACAGACAGCGGGTGCTAACGTCC


GTTGTCAAGAGGGAAACAACCCAGACCGCCGGCTAAGGTCCCAAATGATAGATTAAGTGGT


AAACGAAGTGGGAAGGCACAGACAGCCAGGATGTTGGCTTAGAAGCAGCCATCATTTAAAG


AAAGCGTAATAGCTCACTGGTCGAGTCGTCCTGCGCGGAAGATGTAACGGGGCTCAAATCT


ATAACCCAAGCTGCGTATGCCGGTTTACCGGCATGGTAGGGGAGCGTTCTGTAGGCTGATGA


AGGTGCATTGTAAAGTGTGCTGGAGGTATCAGAAGTGCGAATGTTGACATGAGTAGCGATA


AAGCGGGTGAAAAGCCCGCTCGCCGCAAAGCCCAAGGTTTCCTACGCAACGTTCATCGGCG


TAGGGTGAGTCGGCCCCTAAGGCGAGGCAGAAATGCGTAGTCGATGGGAAACAGGTTAATA


TTCCTGTACTTGATTCAAATGCGATGTGGGGACGGAGAAGGTTAGGTTGGCAAGCTGTTGGA


ATAGCTTGTTTAAGCCGGTAGGTGGAAGACTTAGGCAAATCCGGGTTTTCTTAACACCGAGA


AGTGATGACGAGTGTCTACGGACACGAAGCAACCGATACCACGCTTCCAGGAAAAGCCACT


AAGCTTCAGTTTGAATCGAACCGTACCGCAAACCGACACAGGTGGGCAGGATGAGAATTCT


AAGGCGCTTGAGAGAACTCGGGAGAAGGAACTCGGCAAATTGATACCGTAACTTCGGGAGA


AGGTATGCCCTCTAAGGTTAAGGACTTGCTCCGTAAGCCCCGGAGGGTCGCAGAGAATAGG


TGGCTGCGACTGTTTATTAAAAACACAGCACTCTGCCAACACGAAAGTGGACGTATAGGGTG


TGACGCCTGCCCGGTGCCGGAAGGTTAATTGAAGATGTGCAAGCATCGGATCGAAGCCCCG


GTAAACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAATTCCTTGTCGGGTAAGTTCC


GACCCGCACGAATGGCGTAACGATGGCCACACTGTCTCCTCCCGAGACTCAGCGAAGTTGA


AGTGGTTGTGAAGATGCAATCTACCCGCTGCTAGACGGAAAGACCCCGTGAACCTTTACTGT


AGCTTTGCATTGGACTTTGAAGTCACTTGTGTAGGATAGGTGGGAGGCTTGGAAGCAGAGAC


GCCAGTCTCTGTGGAGTCGTCCTTGAAATACCACCCTGGTGTCTTTGAGGTTCTAACCCAGAC


CCGTCATCCGGGTCGGGGACCGTGCATGGTAGGCAGTTTGACTGGGGCGGTCTCCTCCCAAA


GCGTAACGGAGGAGTTCGAAGGTTACCTAGGTCCGGTCGGAAATCGGACTGATAGTGCAAT


GGCAAAAGGTAGCTTAACTGCGAGACCGACAAGTCGGGCAGGTGCGAAAGCAGGACATAGT


GATCCGGTGGTTCTGTATGGAAGGGCCATCGCTCAACGGATAAAAGGTACTCCGGGGATAA


CAGGCTGATTCCGCCCAAGAGTTCATATCGACGGCGGAGTTTGGCACCTCGATGTCGGCTCA


TCACATCCTGGGGCTGTAGTCGGTCCCAAGGGTATGGCTGTTCGCCATTTAAAGTGGTACGT


GAGCTGGGTTTAAAACGTCGTGAGACAGTTTGGTCCCTATCTGCAGTGGGCGTTGGAAGTTT


GACGGGGGCTGCTCCTAGTACGAGAGGACCGGAGTGGACGAACCTCTGGTGTACCGGTTGT


AACGCCAGTTGCATAGCCGGGTAGCTAAGTTCGGAAGAGATAAGCGCTGAAAGCATCTAAG


CGCGAAACTCGCCTGAAGATGAGACTTCCCTTGCGGTTTAACCGCACTAAAGGGTCGTTCGA


GACCAGGACGTTGATAGGTGGGGTGTGGAAGCGCGGTAACGCGTGAAGCTAACCCATACTA


ATTGCCCGTGAGGCTTGACTCT






cDNA: SEQ ID NO: 8









AGAGTCAAGCCTCACGGGCAATTAGTATGGGTTAGCTTCACGCGTTACCGCGCTTCCACACC


CCACCTATCAACGTCCTGGTCTCGAACGACCCTTTAGTGCGGTTAAACCGCAAGGGAAGTCT


CATCTTCAGGCGAGTTTCGCGCTTAGATGCTTTCAGCGCTTATCTCTTCCGAACTTAGCTACC


CGGCTATGCAACTGGCGTTACAACCGGTACACCAGAGGTTCGTCCACTCCGGTCCTCTCGTA


CTAGGAGCAGCCCCCGTCAAACTTCCAACGCCCACTGCAGATAGGGACCAAACTGTCTCACG


ACGTTTTAAACCCAGCTCACGTACCACTTTAAATGGCGAACAGCCATACCCTTGGGACCGAC


TACAGCCCCAGGATGTGATGAGCCGACATCGAGGTGCCAAACTCCGCCGTCGATATGAACTC


TTGGGCGGAATCAGCCTGTTATCCCCGGAGTACCTTTTATCCGTTGAGCGATGGCCCTTCCAT


ACAGAACCACCGGATCACTATGTCCTGCTTTCGCACCTGCCCGACTTGTCGGTCTCGCAGTTA


AGCTACCTTTTGCCATTGCACTATCAGTCCGATTTCCGACCGGACCTAGGTAACCTTCGAACT


CCTCCGTTACGCTTTGGGAGGAGACCGCCCCAGTCAAACTGCCTACCATGCACGGTCCCCGA


CCCGGATGACGGGTCTGGGTTAGAACCTCAAAGACACCAGGGTGGTATTTCAAGGACGACT


CCACAGAGACTGGCGTCTCTGCTTCCAAGCCTCCCACCTATCCTACACAAGTGACTTCAAAG


TCCAATGCAAAGCTACAGTAAAGGTTCACGGGGTCTTTCCGTCTAGCAGCGGGTAGATTGCA


TCTTCACAACCACTTCAACTTCGCTGAGTCTCGGGAGGAGACAGTGTGGCCATCGTTACGCC


ATTCGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAGGACCGTTATAGTTAC


GGCCGCCGTTTACCGGGGCTTCGATCCGATGCTTGCACATCTTCAATTAACCTTCCGGCACCG


GGCAGGCGTCACACCCTATACGTCCACTTTCGTGTTGGCAGAGTGCTGTGTTTTTAATAAAC


AGTCGCAGCCACCTATTCTCTGCGACCCTCCGGGGCTTACGGAGCAAGTCCTTAACCTTAGA


GGGCATACCTTCTCCCGAAGTTACGGTATCAATTTGCCGAGTTCCTTCTCCCGAGTTCTCTCA


AGCGCCTTAGAATTCTCATCCTGCCCACCTGTGTCGGTTTGCGGTACGGTTCGATTCAAACTG


AAGCTTAGTGGCTTTTCCTGGAAGCGTGGTATCGGTTGCTTCGTGTCCGTAGACACTCGTCAT


CACTTCTCGGTGTTAAGAAAACCCGGATTTGCCTAAGTCTTCCACCTACCGGCTTAAACAAG


CTATTCCAACAGCTTGCCAACCTAACCTTCTCCGTCCCCACATCGCATTTGAATCAAGTACAG


GAATATTAACCTGTTTCCCATCGACTACGCATTTCTGCCTCGCCTTAGGGGCCGACTCACCCT


ACGCCGATGAACGTTGCGTAGGAAACCTTGGGCTTTGCGGCGAGCGGGCTTTTCACCCGCTT


TATCGCTACTCATGTCAACATTCGCACTTCTGATACCTCCAGCACACTTTACAATGCACCTTC


ATCAGCCTACAGAACGCTCCCCTACCATGCCGGTAAACCGGCATACGCAGCTTGGGTTATAG


ATTTGAGCCCCGTTACATCTTCCGCGCAGGACGACTCGACCAGTGAGCTATTACGCTTTCTTT


AAATGATGGCTGCTTCTAAGCCAACATCCTGGCTGTCTGTGCCTTCCCACTTCGTTTACCACT


TAATCTATCATTTGGGACCTTAGCCGGCGGTCTGGGTTGTTTCCCTCTTGACAACGGACGTTA


GCACCCGCTGTCTGTCTCCCGAGGAACCACTTGATGGTATTCTGAGTTTGCCATGGGTTGGTA


AGTTGCAATAACCCCCTAGCCATAACAGTGCTTTACCCCCATCAGTGTCTTGCTCGAGGCAC


TACCTAAATAGTTTTCGGGGAGAACCAGCTATCTCCGAGTTTGTTTAGCCTTTCACCCCTACC


CACAGCTCATCCCCGCATTTTGCAACATGCGTGGGTTCGGTCCTCCAGTACCTGTTACGGCAC


CTTCAACCTGGCCATGGATAGATCACTCGGTTTCGGGTCTACACCCAGCAACTCATCGCCCT


ATTAAGACTCGGTTTCCCTACGCCTCCCCTATCCGGTTAAGCTCGCTACTGAATGTAAGTCGT


TGACCCATTATACAAAAGGTACGCAGTCACACCACTAGGGCGCTCCCACTGTTTGTATGCAT


CAGGTTTCAGGTTCTGTTTCACTCCCCTCCCGGGGTTCTTTTCGCCTTTCCCTCACGGTACTGG


TTCACTATCGGTCGATGATGAGTATTTAGCCTTGGAGGATGGTCCCCCCATATTCAGACAGG


ATTTCACGTGTCCCGCCCTACTTTTCGTACGCTTAGTACCGCTGTTGAGATTTCGAATACGGG


ACTGTCACCCGCTATGGTCAAGCTTCCCAGCTTGTTCTTCTACCTCGACAGTTATTACGTACA


GGCTCCTCCGCGTTCGCTCGCCACTACTTGCGGAATCTCGGTTGATTTCTTTTCCTCCGGGTA


CTTAGATGGTTCAGTTCTCCGGGTTCGCTTCTCTAAGCCTATGTATTCAACTTAGGATACTGC


ACAGAATGCAGTGGGTTTCCCCATTCGGACACCGCGGGATCATTGCTTTATTGCCAGCTCCC


CCGCGCTTTTCGCAGGCTTACACGTCCTTCGTCGCCTATCATCGCCAAGGCATCCGCCTGATG


CACTTATTCACTTGACTCTATCATTTCA






RNA: SEQ ID NO: 9









UGAAAUGAUAGAGUCAAGUGAAUAAGUGCAUCAGGCGGAUGCCUUGGCGAUGAUAGGCG


ACGAAGGACGUGUAAGCCUGCGAAAAGCGCGGGGGAGCUGGCAAUAAAGCAAUGAUCCC


GCGGUGUCCGAAUGGGGAAACCCACUGCAUUCUGUGCAGUAUCCUAAGUUGAAUACAUA


GGCUUAGAGAAGCGAACCCGGAGAACUGAACCAUCUAAGUACCCGGAGGAAAAGAAAUC


AACCGAGAUUCCGCAAGUAGUGGCGAGCGAACGCGGAGGAGCCUGUACGUAAUAACUGU


CGAGGUAGAAGAACAAGCUGGGAAGCUUGACCAUAGCGGGUGACAGUCCCGUAUUCGAA


AUCUCAACAGCGGUACUAAGCGUACGAAAAGUAGGGCGGGACACGUGAAAUCCUGUCUG


AAUAUGGGGGGACCAUCCUCCAAGGCUAAAUACUCAUCAUCGACCGAUAGUGAACCAGUA


CCGUGAGGGAAAGGCGAAAAGAACCCCGGGAGGGGAGUGAAACAGAACCUGAAACCUGA


UGCAUACAAACAGUGGGAGCGCCCUAGUGGUGUGACUGCGUACCUUUUGUAUAAUGGGU


CAACGACUUACAUUCAGUAGCGAGCUUAACCGGAUAGGGGAGGCGUAGGGAAACCGAGU


CUUAAUAGGGCGAUGAGUUGCUGGGUGUAGACCCGAAACCGAGUGAUCUAUCCAUGGCC


AGGUUGAAGGUGCCGUAACAGGUACUGGAGGACCGAACCCACGCAUGUUGCAAAAUGCG


GGGAUGAGCUGUGGGUAGGGGUGAAAGGCUAAACAAACUCGGAGAUAGCUGGUUCUCCC


CGAAAACUAUUUAGGUAGUGCCUCGAGCAAGACACUGAUGGGGGUAAAGCACUGUUAUG


GCUAGGGGGUUAUUGCAACUUACCAACCCAUGGCAAACUCAGAAUACCAUCAAGUGGUUC


CUCGGGAGACAGACAGCGGGUGCUAACGUCCGUUGUCAAGAGGGAAACAACCCAGACCGC


CGGCUAAGGUCCCAAAUGAUAGAUUAAGUGGUAAACGAAGUGGGAAGGCACAGACAGCC


AGGAUGUUGGCUUAGAAGCAGCCAUCAUUUAAAGAAAGCGUAAUAGCUCACUGGUCGAG


UCGUCCUGCGCGGAAGAUGUAACGGGGCUCAAAUCUAUAACCCAAGCUGCGUAUGCCGGU


UUACCGGCAUGGUAGGGGAGCGUUCUGUAGGCUGAUGAAGGUGCAUUGUAAAGUGUGCU


GGAGGUAUCAGAAGUGCGAAUGUUGACAUGAGUAGCGAUAAAGCGGGUGAAAAGCCCGC


UCGCCGCAAAGCCCAAGGUUUCCUACGCAACGUUCAUCGGCGUAGGGUGAGUCGGCCCCU


AAGGCGAGGCAGAAAUGCGUAGUCGAUGGGAAACAGGUUAAUAUUCCUGUACUUGAUUC


AAAUGCGAUGUGGGGACGGAGAAGGUUAGGUUGGCAAGCUGUUGGAAUAGCUUGUUUAA


GCCGGUAGGUGGAAGACUUAGGCAAAUCCGGGUUUUCUUAACACCGAGAAGUGAUGACG


AGUGUCUACGGACACGAAGCAACCGAUACCACGCUUCCAGGAAAAGCCACUAAGCUUCAG


UUUGAAUCGAACCGUACCGCAAACCGACACAGGUGGGCAGGAUGAGAAUUCUAAGGCGC


UUGAGAGAACUCGGGAGAAGGAACUCGGCAAAUUGAUACCGUAACUUCGGGAGAAGGUA


UGCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCGGAGGGUCGCAGAGAAUAGGUGGC


UGCGACUGUUUAUUAAAAACACAGCACUCUGCCAACACGAAAGUGGACGUAUAGGGUGU


GACGCCUGCCCGGUGCCGGAAGGUUAAUUGAAGAUGUGCAAGCAUCGGAUCGAAGCCCCG


GUAAACGGCGGCCGUAACUAUAACGGUCCUAAGGUAGCGAAAUUCCUUGUCGGGUAAGU


UCCGACCCGCACGAAUGGCGUAACGAUGGCCACACUGUCUCCUCCCGAGACUCAGCGAAG


UUGAAGUGGUUGUGAAGAUGCAAUCUACCCGCUGCUAGACGGAAAGACCCCGUGAACCU


UUACUGUAGCUUUGCAUUGGACUUUGAAGUCACUUGUGUAGGAUAGGUGGGAGGCUUGG


AAGCAGAGACGCCAGUCUCUGUGGAGUCGUCCUUGAAAUACCACCCUGGUGUCUUUGAGG


UUCUAACCCAGACCCGUCAUCCGGGUCGGGGACCGUGCAUGGUAGGCAGUUUGACUGGGG


CGGUCUCCUCCCAAAGCGUAACGGAGGAGUUCGAAGGUUACCUAGGUCCGGUCGGAAAUC


GGACUGAUAGUGCAAUGGCAAAAGGUAGCUUAACUGCGAGACCGACAAGUCGGGCAGGU


GCGAAAGCAGGACAUAGUGAUCCGGUGGUUCUGUAUGGAAGGGCCAUCGCUCAACGGAU


AAAAGGUACUCCGGGGAUAACAGGCUGAUUCCGCCCAAGAGUUCAUAUCGACGGCGGAG


UUUGGCACCUCGAUGUCGGCUCAUCACAUCCUGGGGCUGUAGUCGGUCCCAAGGGUAUGG


CUGUUCGCCAUUUAAAGUGGUACGUGAGCUGGGUUUAAAACGUCGUGAGACAGUUUGGU


CCCUAUCUGCAGUGGGCGUUGGAAGUUUGACGGGGGCUGCUCCUAGUACGAGAGGACCG


GAGUGGACGAACCUCUGGUGUACCGGUUGUAACGCCAGUUGCAUAGCCGGGUAGCUAAG


UUCGGAAGAGAUAAGCGCUGAAAGCAUCUAAGCGCGAAACUCGCCUGAAGAUGAGACUU


CCCUUGCGGUUUAACCGCACUAAAGGGUCGUUCGAGACCAGGACGUUGAUAGGUGGGGU


GUGGAAGCGCGGUAACGCGUGAAGCUAACCCAUACUAAUUGCCCGUGAGGCUUGACUCU






> A9Y61_RS07190: 16S ribosomal RNA (1 of 4 copies) NZ_CP016017.1:1329306-1330857 - Is on the negative strand DNA (+ strand): SEQ ID NO: 13









TGAACATAAGAGTTTGATCCTGGCTCAGATTGAACGCTGGCGGCATGCTTTACACATGCAAG


TCGGACGGCAGCACAGGGAAGCTTGCTTCTCGGGTGGCGAGTGGCGAACGGGTGAGTAACA


TATCGGAACGTACCGGGTAGCGGGGGATAACTGATCGAAAGATCAGCTAATACCGCATACG


TCTTGAGAGGGAAAGCAGGGGACCTTCGGGCCTTGCGCTATCCGAGCGGCCGATATCTGATT


AGCTGGTTGGCGGGGTAAAGGCCCACCAAGGCGACGATCAGTAGCGGGTCTGAGAGGATGA


TCCGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTT


TGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGTCTGAAGAAGGCCTTCGGGTTGT


AAAGGACTTTTGTCAGGGAAGAAAAGGCCGTTGCCAATATCGGCGGCCGATGACGGTACCT


GAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGT


TAATCGGAATTACTGGGCGTAAAGCGGGCGCAGACGGTTACTTAAGCAGGATGTGAAATCC


CCGGGCTCAACCCGGGAACTGCGTTCTGAACTGGGTGACTCGAGTGTGTCAGAGGGAGGTG


GAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTGGAGGAATACCGATGGCGAAGGCAG


CCTCCTGGGATAACACTGACGTTCATGTCCGAAAGCGTGGGTAGCAAACAGGATTAGATACC


CTGGTAGTCCACGCCCTAAACGATGTCAATTAGCTGTTGGGCAACTTGATTGCTTGGTAGCG


TAGCTAACGCGTGAAATTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAA


TTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTCGATGCAACGCGAAGAACC


TTACCTGGTTTTGACATGTGCGGAATCCTCCGGAGACGGAGGAGTGCCTTCGGGAGCCGTAA


CACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACG


AGCGCAACCCTTGTCATTAGTTGCCATCATTCGGTTGGGCACTCTAATGAGACTGCCGGTGA


CAAGCCGGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTATGACCAGGGCTTCAC


ACGTCATACAATGGTCGGTACAGAGGGTAGCCAAGCCGCGAGGCGGAGCCAATCTCACAAA


ACCGATCGTAGTCCGGATTGCACTCTGCAACTCGAGTGCATGAAGTCGGAATCGCTAGTAAT


CGCAGGTCAGCATACTGCGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCA


TGGGAGTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGAGTCCGCTTACCACGGTAT


GCTTCATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAGGGGAACCTGCGGCTGGATCAC


CTCCTTTCTA






cDNA: SEQ ID NO: 14









TAGAAAGGAGGTGATCCAGCCGCAGGTTCCCCTACGGCTACCTTGTTACGACTTCACCCCAG


TCATGAAGCATACCGTGGTAAGCGGACTCCTTGCGGTTACCCTACCTACTTCTGGTATCCCCC


ACTCCCATGGTGTGACGGGCGGTGTGTACAAGACCCGGGAACGTATTCACCGCAGTATGCTG


ACCTGCGATTACTAGCGATTCCGACTTCATGCACTCGAGTTGCAGAGTGCAATCCGGACTAC


GATCGGTTTTGTGAGATTGGCTCCGCCTCGCGGCTTGGCTACCCTCTGTACCGACCATTGTAT


GACGTGTGAAGCCCTGGTCATAAGGGCCATGAGGACTTGACGTCATCCCCACCTTCCTCCGG


CTTGTCACCGGCAGTCTCATTAGAGTGCCCAACCGAATGATGGCAACTAATGACAAGGGTTG


CGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGCACC


TGTGTTACGGCTCCCGAAGGCACTCCTCCGTCTCCGGAGGATTCCGCACATGTCAAAACCAG


GTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATCATCCACCGCTTGTGCGGGTCCCCGTC


AATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCCCAGGCGGTCAATTTCACGCGTTAGCTA


CGCTACCAAGCAATCAAGTTGCCCAACAGCTAATTGACATCGTTTAGGGCGTGGACTACCAG


GGTATCTAATCCTGTTTGCTACCCACGCTTTCGGACATGAACGTCAGTGTTATCCCAGGAGG


CTGCCTTCGCCATCGGTATTCCTCCACATCTCTACGCATTTCACTGCTACACGTGGAATTCCA


CCTCCCTCTGACACACTCGAGTCACCCAGTTCAGAACGCAGTTCCCGGGTTGAGCCCGGGGA


TTTCACATCCTGCTTAAGTAACCGTCTGCGCCCGCTTTACGCCCAGTAATTCCGATTAACGCT


CGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGGTGCTTATTCTTCAGGTACC


GTCATCGGCCGCCGATATTGGCAACGGCCTTTTCTTCCCTGACAAAAGTCCTTTACAACCCG


AAGGCCTTCTTCAGACACGCGGCATGGCTGGATCAGGCTTGCGCCCATTGTCCAAAATTCCC


CACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCGGATCATCCTCTC


AGACCCGCTACTGATCGTCGCCTTGGTGGGCCTTTACCCCGCCAACCAGCTAATCAGATATC


GGCCGCTCGGATAGCGCAAGGCCCGAAGGTCCCCTGCTTTCCCTCTCAAGACGTATGCGGTA


TTAGCTGATCTTTCGATCAGTTATCCCCCGCTACCCGGTACGTTCCGATATGTTACTCACCCG


TTCGCCACTCGCCACCCGAGAAGCAAGCTTCCCTGTGCTGCCGTCCGACTTGCATGTGTAAA


GCATGCCGCCAGCGTTCAATCTGAGCCAGGATCAAACTCTTATGTTCA






RNA: SEQ ID NO: 15









UGAACAUAAGAGUUUGAUCCUGGCUCAGAUUGAACGCUGGCGGCAUGCUUUACACAUGC


AAGUCGGACGGCAGCACAGGGAAGCUUGCUUCUCGGGUGGCGAGUGGCGAACGGGUGAG


UAACAUAUCGGAACGUACCGGGUAGCGGGGGAUAACUGAUCGAAAGAUCAGCUAAUACC


GCAUACGUCUUGAGAGGGAAAGCAGGGGACCUUCGGGCCUUGCGCUAUCCGAGCGGCCGA


UAUCUGAUUAGCUGGUUGGCGGGGUAAAGGCCCACCAAGGCGACGAUCAGUAGCGGGUC


UGAGAGGAUGAUCCGCCACACUGGGACUGAGACACGGCCCAGACUCCUACGGGAGGCAGC


AGUGGGGAAUUUUGGACAAUGGGCGCAAGCCUGAUCCAGCCAUGCCGCGUGUCUGAAGA


AGGCCUUCGGGUUGUAAAGGACUUUUGUCAGGGAAGAAAAGGCCGUUGCCAAUAUCGGC


GGCCGAUGACGGUACCUGAAGAAUAAGCACCGGCUAACUACGUGCCAGCAGCCGCGGUAA


UACGUAGGGUGCGAGCGUUAAUCGGAAUUACUGGGCGUAAAGCGGGCGCAGACGGUUAC


UUAAGCAGGAUGUGAAAUCCCCGGGCUCAACCCGGGAACUGCGUUCUGAACUGGGUGACU


CGAGUGUGUCAGAGGGAGGUGGAAUUCCACGUGUAGCAGUGAAAUGCGUAGAGAUGUGG


AGGAAUACCGAUGGCGAAGGCAGCCUCCUGGGAUAACACUGACGUUCAUGUCCGAAAGCG


UGGGUAGCAAACAGGAUUAGAUACCCUGGUAGUCCACGCCCUAAACGAUGUCAAUUAGC


UGUUGGGCAACUUGAUUGCUUGGUAGCGUAGCUAACGCGUGAAAUUGACCGCCUGGGGA


GUACGGUCGCAAGAUUAAAACUCAAAGGAAUUGACGGGGACCCGCACAAGCGGUGGAUG


AUGUGGAUUAAUUCGAUGCAACGCGAAGAACCUUACCUGGUUUUGACAUGUGCGGAAUC


CUCCGGAGACGGAGGAGUGCCUUCGGGAGCCGUAACACAGGUGCUGCAUGGCUGUCGUCA


GCUCGUGUCGUGAGAUGUUGGGUUAAGUCCCGCAACGAGCGCAACCCUUGUCAUUAGUU


GCCAUCAUUCGGUUGGGCACUCUAAUGAGACUGCCGGUGACAAGCCGGAGGAAGGUGGG


GAUGACGUCAAGUCCUCAUGGCCCUUAUGACCAGGGCUUCACACGUCAUACAAUGGUCGG


UACAGAGGGUAGCCAAGCCGCGAGGCGGAGCCAAUCUCACAAAACCGAUCGUAGUCCGGA


UUGCACUCUGCAACUCGAGUGCAUGAAGUCGGAAUCGCUAGUAAUCGCAGGUCAGCAUAC


UGCGGUGAAUACGUUCCCGGGUCUUGUACACACCGCCCGUCACACCAUGGGAGUGGGGGA


UACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCUUACCACGGUAUGCUUCAUGACU


GGGGUGAAGUCGUAACAAGGUAGCCGUAGGGGAACCUGCGGCUGGAUCACCUCCUUUCU


A






> A9Y61_09315: 23S ribosomal RNA (1 of 4 copies) NZ_CP016017.1:1718894-1721792 - Is on the negative strand DNA (- strand): SEQ ID NO: 16









TGAAATGATAGAGTCAAGTGAATAAGTGCATCAGGCGGATGCCTTGGCGATGATAGGCGAC


GAAGGACGTGTAAGCCTGCGAAAAGCGCGGGGGAGCTGGCAATAAAGCAATGATCCCGCG


GTGTCCGAATGGGGAAACCCACTGCATTCTGTGCAGTATCCTAAGTTGAATACATAGGCTTA


GAGAAGCGAACCCGGAGAACTGAACCATCTAAGTACCCGGAGGAAAAGAAATCAACCGAG


ATTCCGCAAGTAGTGGCGAGCGAACGCGGAGGAGCCTGTACGTAATAACTGTCGAGGTAGA


AGAACAAGCTGGGAAGCTTGACCATAGCGGGTGACAGTCCCGTATTCGAAATCTCAACAGC


GGTACTAAGCGTACGAAAAGTAGGGCGGGACACGTGAAATCCTGTCTGAATATGGGGGGAC


CATCCTCCAAGGCTAAATACTCATCATCGACCGATAGTGAACCAGTACCGTGAGGGAAAGG


CGAAAAGAACCCCGGGAGGGGAGTGAAACAGAACCTGAAACCTGATGCATACAAACAGTG


GGAGCGCCCTAGTGGTGTGACTGCGTACCTTTTGTATAATGGGTCAACGACTTACATTCAGT


AGCGAGCTTAACCGGATAGGGGAGGCGTAGGGAAACCGAGTCTTAATAGGGCGATGAGTTG


CTGGGTGTAGACCCGAAACCGAGTGATCTATCCATGGCCAGGTTGAAGGTGCCGTAACAGG


TACTGGAGGACCGAACCCACGCATGTTGCAAAATGCGGGGATGAGCTGTGGGTAGGGGTGA


AAGGCTAAACAAACTCGGAGATAGCTGGTTCTCCCCGAAAACTATTTAGGTAGTGCCTCGAG


CAAGACACTGATGGGGGTAAAGCACTGTTATGGCTAGGGGGTTATTGCAACTTACCAACCCA


TGGCAAACTCAGAATACCATCAAGTGGTTCCTCGGGAGACAGACAGCGGGTGCTAACGTCC


GTTGTCAAGAGGGAAACAACCCAGACCGCCGGCTAAGGTCCCAAATGATAGATTAAGTGGT


AAACGAAGTGGGAAGGCACAGACAGCCAGGATGTTGGCTTAGAAGCAGCCATCATTTAAAG


AAAGCGTAATAGCTCACTGGTCGAGTCGTCCTGCGCGGAAGATGTAACGGGGCTCAAATCT


ATAACCGAAGCTGCGGATGCCGGTTTACCGGCATGGTAGGGGAGCGTTCTGTAGGCTGATG


AAGGTGCATTGTAAAGTGTGCTGGAGGTATCAGAAGTGCGAATGTTGACATGAGTAGCGAT


AAAGCGGGTGAAAAGCCCGCTCGCCGAAAGCCCAAGGTTTCCTACGCAACGTTCATCGGCG


TAGGGTGAGTCGGCCCCTAAGGCGAGGCAGAAATGCGTAGTCGATGGGAAACAGGTTAATA


TTCCTGTACTTGATTCAAATGCGATGTGGGGACGGAGAAGGTTAGGTTGGCAAGCTGTTGGA


ATAGCTTGTTTAAGCCGGTAGGTGGAAGACTTAGGCAAATCCGGGTTTTCTTAACACCGAGA


AGTGATGACGAGTGTCTACGGACACGAAGCAACCGATACCACGCTTCCAGGAAAAGCCACT


AAGCTTCAGTTTGAATCGAACCGTACCGCAAACCGACACAGGTGGGCAGGATGAGAATTCT


AAGGCGCTTGAGAGAACTCGGGAGAAGGAACTCGGCAAATTGATACCGTAACTTCGGGAGA


AGGTATGCCCTCTAAGGTTAAGGACTTGCTCCGTAAGCCCCGGAGGGTCGCAGAGAATAGG


TGGCTGCGACTGTTTATTAAAAACACAGCACTCTGCCAACACGAAAGTGGACGTATAGGGTG


TGACGCCTGCCCGGTGCCGGAAGGTTAATTGAAGATGTGCAAGCATCGGATCGAAGCCCCG


GTAAACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAATTCCTTGTCGGGTAAGTTCC


GACCCGCACGAATGGCGTAACGATGGCCACACTGTCTCCTCCCGAGACTCAGCGAAGTTGA


AGTGGTTGTGAAGATGCAATCTACCCGCTGCTAGACGGAAAGACCCCGTGAACCTTTACTGT


AGCTTTGCATTGGACTTTGAAGTCACTTGTGTAGGATAGGTGGGAGGCTTGGAAGCAGAGAC


GCCAGTCTCTGTGGAGTCGTCCTTGAAATACCACCCTGGTGTCTTTGAGGTTCTAACCCAGAC


CCGTCATCCGGGTCGGGGACCGTGCATGGTAGGCAGTTTGACTGGGGCGGTCTCCTCCCAAA


GCGTAACGGAGGAGTTCGAAGGTTACCTAGGTCCGGTCGGAAATCGGACTGATAGTGCAAT


GGCAAAAGGTAGCTTAACTGCGAGACCGACAAGTCGGGCAGGTGCGAAAGCAGGACATAGT


GATCCGGTGGTTCTGTATGGAAGGGCCATCGCTCAACGGATAAAAGGTACTCCGGGGATAA


CAGGCTGATTCCGCCCAAGAGTTCATATCGACGGCGGAGTTTGGCACCTCGATGTCGGCTCA


TCACATCCTGGGGCTGTAGTCGGTCCCAAGGGTATGGCTGTTCGCCATTTAAAGTGGTACGT


GAGCTGGGTTTAAAACGTCGTGAGACAGTTTGGTCCCTATCTGCAGTGGGCGTTGGAAGTTT


GACGGGGGCTGCTCCTAGTACGAGAGGACCGGAGTGGACGAACCTCTGGTGTACCGGTTGT


AACGCCAGTTGCATAGCCGGGTAGCTAAGTTCGGAAGAGATAAGCGCTGAAAGCATCTAAG


CGCGAAACTCGCCTGAAGATGAGACTTCCCTTGCGGTTTAACCGCACTAAAGGGTCGTTCGA


GACCAGGACGTTGATAGGTGGGGTGTGGAAGCGCGGTAACGCGTGAAGCTAACCCATACTA


ATTGCCCGTGAGGCTTGACTCT






cDNA: SEQ ID NO: 17









AGAGTCAAGCCTCACGGGCAATTAGTATGGGTTAGCTTCACGCGTTACCGCGCTTCCACACC


CCACCTATCAACGTCCTGGTCTCGAACGACCCTTTAGTGCGGTTAAACCGCAAGGGAAGTCT


CATCTTCAGGCGAGTTTCGCGCTTAGATGCTTTCAGCGCTTATCTCTTCCGAACTTAGCTACC


CGGCTATGCAACTGGCGTTACAACCGGTACACCAGAGGTTCGTCCACTCCGGTCCTCTCGTA


CTAGGAGCAGCCCCCGTCAAACTTCCAACGCCCACTGCAGATAGGGACCAAACTGTCTCACG


ACGTTTTAAACCCAGCTCACGTACCACTTTAAATGGCGAACAGCCATACCCTTGGGACCGAC


TACAGCCCCAGGATGTGATGAGCCGACATCGAGGTGCCAAACTCCGCCGTCGATATGAACTC


TTGGGCGGAATCAGCCTGTTATCCCCGGAGTACCTTTTATCCGTTGAGCGATGGCCCTTCCAT


ACAGAACCACCGGATCACTATGTCCTGCTTTCGCACCTGCCCGACTTGTCGGTCTCGCAGTTA


AGCTACCTTTTGCCATTGCACTATCAGTCCGATTTCCGACCGGACCTAGGTAACCTTCGAACT


CCTCCGTTACGCTTTGGGAGGAGACCGCCCCAGTCAAACTGCCTACCATGCACGGTCCCCGA


CCCGGATGACGGGTCTGGGTTAGAACCTCAAAGACACCAGGGTGGTATTTCAAGGACGACT


CCACAGAGACTGGCGTCTCTGCTTCCAAGCCTCCCACCTATCCTACACAAGTGACTTCAAAG


TCCAATGCAAAGCTACAGTAAAGGTTCACGGGGTCTTTCCGTCTAGCAGCGGGTAGATTGCA


TCTTCACAACCACTTCAACTTCGCTGAGTCTCGGGAGGAGACAGTGTGGCCATCGTTACGCC


ATTCGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAGGACCGTTATAGTTAC


GGCCGCCGTTTACCGGGGCTTCGATCCGATGCTTGCACATCTTCAATTAACCTTCCGGCACCG


GGCAGGCGTCACACCCTATACGTCCACTTTCGTGTTGGCAGAGTGCTGTGTTTTTAATAAAC


AGTCGCAGCCACCTATTCTCTGCGACCCTCCGGGGCTTACGGAGCAAGTCCTTAACCTTAGA


GGGCATACCTTCTCCCGAAGTTACGGTATCAATTTGCCGAGTTCCTTCTCCCGAGTTCTCTCA


AGCGCCTTAGAATTCTCATCCTGCCCACCTGTGTCGGTTTGCGGTACGGTTCGATTCAAACTG


AAGCTTAGTGGCTTTTCCTGGAAGCGTGGTATCGGTTGCTTCGTGTCCGTAGACACTCGTCAT


CACTTCTCGGTGTTAAGAAAACCCGGATTTGCCTAAGTCTTCCACCTACCGGCTTAAACAAG


CTATTCCAACAGCTTGCCAACCTAACCTTCTCCGTCCCCACATCGCATTTGAATCAAGTACAG


GAATATTAACCTGTTTCCCATCGACTACGCATTTCTGCCTCGCCTTAGGGGCCGACTCACCCT


ACGCCGATGAACGTTGCGTAGGAAACCTTGGGCTTTCGGCGAGCGGGCTTTTCACCCGCTTT


ATCGCTACTCATGTCAACATTCGCACTTCTGATACCTCCAGCACACTTTACAATGCACCTTCA


TCAGCCTACAGAACGCTCCCCTACCATGCCGGTAAACCGGCATCCGCAGCTTCGGTTATAGA


TTTGAGCCCCGTTACATCTTCCGCGCAGGACGACTCGACCAGTGAGCTATTACGCTTTCTTTA


AATGATGGCTGCTTCTAAGCCAACATCCTGGCTGTCTGTGCCTTCCCACTTCGTTTACCACTT


AATCTATCATTTGGGACCTTAGCCGGCGGTCTGGGTTGTTTCCCTCTTGACAACGGACGTTAG


CACCCGCTGTCTGTCTCCCGAGGAACCACTTGATGGTATTCTGAGTTTGCCATGGGTTGGTAA


GTTGCAATAACCCCCTAGCCATAACAGTGCTTTACCCCCATCAGTGTCTTGCTCGAGGCACT


ACCTAAATAGTTTTCGGGGAGAACCAGCTATCTCCGAGTTTGTTTAGCCTTTCACCCCTACCC


ACAGCTCATCCCCGCATTTTGCAACATGCGTGGGTTCGGTCCTCCAGTACCTGTTACGGCACC


TTCAACCTGGCCATGGATAGATCACTCGGTTTCGGGTCTACACCCAGCAACTCATCGCCCTA


TTAAGACTCGGTTTCCCTACGCCTCCCCTATCCGGTTAAGCTCGCTACTGAATGTAAGTCGTT


GACCCATTATACAAAAGGTACGCAGTCACACCACTAGGGCGCTCCCACTGTTTGTATGCATC


AGGTTTCAGGTTCTGTTTCACTCCCCTCCCGGGGTTCTTTTCGCCTTTCCCTCACGGTACTGGT


TCACTATCGGTCGATGATGAGTATTTAGCCTTGGAGGATGGTCCCCCCATATTCAGACAGGA


TTTCACGTGTCCCGCCCTACTTTTCGTACGCTTAGTACCGCTGTTGAGATTTCGAATACGGGA


CTGTCACCCGCTATGGTCAAGCTTCCCAGCTTGTTCTTCTACCTCGACAGTTATTACGTACAG


GCTCCTCCGCGTTCGCTCGCCACTACTTGCGGAATCTCGGTTGATTTCTTTTCCTCCGGGTAC


TTAGATGGTTCAGTTCTCCGGGTTCGCTTCTCTAAGCCTATGTATTCAACTTAGGATACTGCA


CAGAATGCAGTGGGTTTCCCCATTCGGACACCGCGGGATCATTGCTTTATTGCCAGCTCCCC


CGCGCTTTTCGCAGGCTTACACGTCCTTCGTCGCCTATCATCGCCAAGGCATCCGCCTGATGC


ACTTATTCACTTGACTCTATCATTTCA






RNA: SEQ ID NO: 18









UGAAAUGAUAGAGUCAAGUGAAUAAGUGCAUCAGGCGGAUGCCUUGGCGAUGAUAGGCG


ACGAAGGACGUGUAAGCCUGCGAAAAGCGCGGGGGAGCUGGCAAUAAAGCAAUGAUCCC


GCGGUGUCCGAAUGGGGAAACCCACUGCAUUCUGUGCAGUAUCCUAAGUUGAAUACAUA


GGCUUAGAGAAGCGAACCCGGAGAACUGAACCAUCUAAGUACCCGGAGGAAAAGAAAUC


AACCGAGAUUCCGCAAGUAGUGGCGAGCGAACGCGGAGGAGCCUGUACGUAAUAACUGU


CGAGGUAGAAGAACAAGCUGGGAAGCUUGACCAUAGCGGGUGACAGUCCCGUAUUCGAA


AUCUCAACAGCGGUACUAAGCGUACGAAAAGUAGGGCGGGACACGUGAAAUCCUGUCUG


AAUAUGGGGGGACCAUCCUCCAAGGCUAAAUACUCAUCAUCGACCGAUAGUGAACCAGUA


CCGUGAGGGAAAGGCGAAAAGAACCCCGGGAGGGGAGUGAAACAGAACCUGAAACCUGA


UGCAUACAAACAGUGGGAGCGCCCUAGUGGUGUGACUGCGUACCUUUUGUAUAAUGGGU


CAACGACUUACAUUCAGUAGCGAGCUUAACCGGAUAGGGGAGGCGUAGGGAAACCGAGU


CUUAAUAGGGCGAUGAGUUGCUGGGUGUAGACCCGAAACCGAGUGAUCUAUCCAUGGCC


AGGUUGAAGGUGCCGUAACAGGUACUGGAGGACCGAACCCACGCAUGUUGCAAAAUGCG


GGGAUGAGCUGUGGGUAGGGGUGAAAGGCUAAACAAACUCGGAGAUAGCUGGUUCUCCC


CGAAAACUAUUUAGGUAGUGCCUCGAGCAAGACACUGAUGGGGGUAAAGCACUGUUAUG


GCUAGGGGGUUAUUGCAACUUACCAACCCAUGGCAAACUCAGAAUACCAUCAAGUGGUUC


CUCGGGAGACAGACAGCGGGUGCUAACGUCCGUUGUCAAGAGGGAAACAACCCAGACCGC


CGGCUAAGGUCCCAAAUGAUAGAUUAAGUGGUAAACGAAGUGGGAAGGCACAGACAGCC


AGGAUGUUGGCUUAGAAGCAGCCAUCAUUUAAAGAAAGCGUAAUAGCUCACUGGUCGAG


UCGUCCUGCGCGGAAGAUGUAACGGGGCUCAAAUCUAUAACCGAAGCUGCGGAUGCCGGU


UUACCGGCAUGGUAGGGGAGCGUUCUGUAGGCUGAUGAAGGUGCAUUGUAAAGUGUGCU


GGAGGUAUCAGAAGUGCGAAUGUUGACAUGAGUAGCGAUAAAGCGGGUGAAAAGCCCGC


UCGCCGAAAGCCCAAGGUUUCCUACGCAACGUUCAUCGGCGUAGGGUGAGUCGGCCCCUA


AGGCGAGGCAGAAAUGCGUAGUCGAUGGGAAACAGGUUAAUAUUCCUGUACUUGAUUCA


AAUGCGAUGUGGGGACGGAGAAGGUUAGGUUGGCAAGCUGUUGGAAUAGCUUGUUUAAG


CCGGUAGGUGGAAGACUUAGGCAAAUCCGGGUUUUCUUAACACCGAGAAGUGAUGACGA


GUGUCUACGGACACGAAGCAACCGAUACCACGCUUCCAGGAAAAGCCACUAAGCUUCAGU


UUGAAUCGAACCGUACCGCAAACCGACACAGGUGGGCAGGAUGAGAAUUCUAAGGCGCU


UGAGAGAACUCGGGAGAAGGAACUCGGCAAAUUGAUACCGUAACUUCGGGAGAAGGUAU


GCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCGGAGGGUCGCAGAGAAUAGGUGGCU


GCGACUGUUUAUUAAAAACACAGCACUCUGCCAACACGAAAGUGGACGUAUAGGGUGUG


ACGCCUGCCCGGUGCCGGAAGGUUAAUUGAAGAUGUGCAAGCAUCGGAUCGAAGCCCCGG


UAAACGGCGGCCGUAACUAUAACGGUCCUAAGGUAGCGAAAUUCCUUGUCGGGUAAGUU


CCGACCCGCACGAAUGGCGUAACGAUGGCCACACUGUCUCCUCCCGAGACUCAGCGAAGU


UGAAGUGGUUGUGAAGAUGCAAUCUACCCGCUGCUAGACGGAAAGACCCCGUGAACCUU


UACUGUAGCUUUGCAUUGGACUUUGAAGUCACUUGUGUAGGAUAGGUGGGAGGCUUGGA


AGCAGAGACGCCAGUCUCUGUGGAGUCGUCCUUGAAAUACCACCCUGGUGUCUUUGAGGU


UCUAACCCAGACCCGUCAUCCGGGUCGGGGACCGUGCAUGGUAGGCAGUUUGACUGGGGC


GGUCUCCUCCCAAAGCGUAACGGAGGAGUUCGAAGGUUACCUAGGUCCGGUCGGAAAUCG


GACUGAUAGUGCAAUGGCAAAAGGUAGCUUAACUGCGAGACCGACAAGUCGGGCAGGUG


CGAAAGCAGGACAUAGUGAUCCGGUGGUUCUGUAUGGAAGGGCCAUCGCUCAACGGAUA


AAAGGUACUCCGGGGAUAACAGGCUGAUUCCGCCCAAGAGUUCAUAUCGACGGCGGAGU


UUGGCACCUCGAUGUCGGCUCAUCACAUCCUGGGGCUGUAGUCGGUCCCAAGGGUAUGGC


UGUUCGCCAUUUAAAGUGGUACGUGAGCUGGGUUUAAAACGUCGUGAGACAGUUUGGUC


CCUAUCUGCAGUGGGCGUUGGAAGUUUGACGGGGGCUGCUCCUAGUACGAGAGGACCGG


AGUGGACGAACCUCUGGUGUACCGGUUGUAACGCCAGUUGCAUAGCCGGGUAGCUAAGU


UCGGAAGAGAUAAGCGCUGAAAGCAUCUAAGCGCGAAACUCGCCUGAAGAUGAGACUUC


CCUUGCGGUUUAACCGCACUAAAGGGUCGUUCGAGACCAGGACGUUGAUAGGUGGGGUG


UGGAAGCGCGGUAACGCGUGAAGCUAACCCAUACUAAUUGCCCGUGAGGCUUGACUCU






> A9Y61_09330: 16S ribosomal RNA (1 of 4 copies) NZ_CP016017.1:1722390-17239411721792 — Is on the negative strand DNA (- strand): SEQ ID NO: 19









TGAACATAAGAGTTTGATCCTGGCTCAGATTGAACGCTGGCGGCATGCTTTACACATGCAAG


TCGGACGGCAGCACAGGGAAGCTTGCTTCTCGGGTGGCGAGTGGCGAACGGGTGAGTAACA


TATCGGAACGTACCGGGTAGCGGGGGATAACTGATCGAAAGATCAGCTAATACCGCATACG


TCTTGAGAGGGAAAGCAGGGGACCTTCGGGCCTTGCGCTATCCGAGCGGCCGATATCTGATT


AGCTGGTTGGCGGGGTAAAGGCCCACCAAGGCGACGATCAGTAGCGGGTCTGAGAGGATGA


TCCGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTT


TGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGTCTGAAGAAGGCCTTCGGGTTGT


AAAGGACTTTTGTCAGGGAAGAAAAGGCCGTTGCCAATATCGGCGGCCGATGACGGTACCT


GAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGT


TAATCGGAATTACTGGGCGTAAAGCGGGCGCAGACGGTTACTTAAGCAGGATGTGAAATCC


CCGGGCTCAACCCGGGAACTGCGTTCTGAACTGGGTGACTCGAGTGTGTCAGAGGGAGGTG


GAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTGGAGGAATACCGATGGCGAAGGCAG


CCTCCTGGGATAACACTGACGTTCATGTCCGAAAGCGTGGGTAGCAAACAGGATTAGATACC


CTGGTAGTCCACGCCCTAAACGATGTCAATTAGCTGTTGGGCAACTTGATTGCTTGGTAGCG


TAGCTAACGCGTGAAATTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAA


TTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTCGATGCAACGCGAAGAACC


TTACCTGGTTTTGACATGTGCGGAATCCTCCGGAGACGGAGGAGTGCCTTCGGGAGCCGTAA


CACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACG


AGCGCAACCCTTGTCATTAGTTGCCATCATTCGGTTGGGCACTCTAATGAGACTGCCGGTGA


CAAGCCGGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTATGACCAGGGCTTCAC


ACGTCATACAATGGTCGGTACAGAGGGTAGCCAAGCCGCGAGGCGGAGCCAATCTCACAAA


ACCGATCGTAGTCCGGATTGCACTCTGCAACTCGAGTGCATGAAGTCGGAATCGCTAGTAAT


CGCAGGTCAGCATACTGCGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCA


TGGGAGTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGAGTCCGCTTACCACGGTAT


GCTTCATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAGGGGAACCTGCGGCTGGATCAC


CTCCTTTCTA






cDNA: SEQ ID NO: 20









TAGAAAGGAGGTGATCCAGCCGCAGGTTCCCCTACGGCTACCTTGTTACGACTTCACCCCAG


TCATGAAGCATACCGTGGTAAGCGGACTCCTTGCGGTTACCCTACCTACTTCTGGTATCCCCC


ACTCCCATGGTGTGACGGGCGGTGTGTACAAGACCCGGGAACGTATTCACCGCAGTATGCTG


ACCTGCGATTACTAGCGATTCCGACTTCATGCACTCGAGTTGCAGAGTGCAATCCGGACTAC


GATCGGTTTTGTGAGATTGGCTCCGCCTCGCGGCTTGGCTACCCTCTGTACCGACCATTGTAT


GACGTGTGAAGCCCTGGTCATAAGGGCCATGAGGACTTGACGTCATCCCCACCTTCCTCCGG


CTTGTCACCGGCAGTCTCATTAGAGTGCCCAACCGAATGATGGCAACTAATGACAAGGGTTG


CGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGCACC


TGTGTTACGGCTCCCGAAGGCACTCCTCCGTCTCCGGAGGATTCCGCACATGTCAAAACCAG


GTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATCATCCACCGCTTGTGCGGGTCCCCGTC


AATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCCCAGGCGGTCAATTTCACGCGTTAGCTA


CGCTACCAAGCAATCAAGTTGCCCAACAGCTAATTGACATCGTTTAGGGCGTGGACTACCAG


GGTATCTAATCCTGTTTGCTACCCACGCTTTCGGACATGAACGTCAGTGTTATCCCAGGAGG


CTGCCTTCGCCATCGGTATTCCTCCACATCTCTACGCATTTCACTGCTACACGTGGAATTCCA


CCTCCCTCTGACACACTCGAGTCACCCAGTTCAGAACGCAGTTCCCGGGTTGAGCCCGGGGA


TTTCACATCCTGCTTAAGTAACCGTCTGCGCCCGCTTTACGCCCAGTAATTCCGATTAACGCT


CGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGGTGCTTATTCTTCAGGTACC


GTCATCGGCCGCCGATATTGGCAACGGCCTTTTCTTCCCTGACAAAAGTCCTTTACAACCCG


AAGGCCTTCTTCAGACACGCGGCATGGCTGGATCAGGCTTGCGCCCATTGTCCAAAATTCCC


CACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCGGATCATCCTCTC


AGACCCGCTACTGATCGTCGCCTTGGTGGGCCTTTACCCCGCCAACCAGCTAATCAGATATC


GGCCGCTCGGATAGCGCAAGGCCCGAAGGTCCCCTGCTTTCCCTCTCAAGACGTATGCGGTA


TTAGCTGATCTTTCGATCAGTTATCCCCCGCTACCCGGTACGTTCCGATATGTTACTCACCCG


TTCGCCACTCGCCACCCGAGAAGCAAGCTTCCCTGTGCTGCCGTCCGACTTGCATGTGTAAA


GCATGCCGCCAGCGTTCAATCTGAGCCAGGATCAAACTCTTATGTTCA






RNA: SEQ ID NO: 21









UGAACAUAAGAGUUUGAUCCUGGCUCAGAUUGAACGCUGGCGGCAUGCUUUACACAUGC


AAGUCGGACGGCAGCACAGGGAAGCUUGCUUCUCGGGUGGCGAGUGGCGAACGGGUGAG


UAACAUAUCGGAACGUACCGGGUAGCGGGGGAUAACUGAUCGAAAGAUCAGCUAAUACC


GCAUACGUCUUGAGAGGGAAAGCAGGGGACCUUCGGGCCUUGCGCUAUCCGAGCGGCCGA


UAUCUGAUUAGCUGGUUGGCGGGGUAAAGGCCCACCAAGGCGACGAUCAGUAGCGGGUC


UGAGAGGAUGAUCCGCCACACUGGGACUGAGACACGGCCCAGACUCCUACGGGAGGCAGC


AGUGGGGAAUUUUGGACAAUGGGCGCAAGCCUGAUCCAGCCAUGCCGCGUGUCUGAAGA


AGGCCUUCGGGUUGUAAAGGACUUUUGUCAGGGAAGAAAAGGCCGUUGCCAAUAUCGGC


GGCCGAUGACGGUACCUGAAGAAUAAGCACCGGCUAACUACGUGCCAGCAGCCGCGGUAA


UACGUAGGGUGCGAGCGUUAAUCGGAAUUACUGGGCGUAAAGCGGGCGCAGACGGUUAC


UUAAGCAGGAUGUGAAAUCCCCGGGCUCAACCCGGGAACUGCGUUCUGAACUGGGUGACU


CGAGUGUGUCAGAGGGAGGUGGAAUUCCACGUGUAGCAGUGAAAUGCGUAGAGAUGUGG


AGGAAUACCGAUGGCGAAGGCAGCCUCCUGGGAUAACACUGACGUUCAUGUCCGAAAGCG


UGGGUAGCAAACAGGAUUAGAUACCCUGGUAGUCCACGCCCUAAACGAUGUCAAUUAGC


UGUUGGGCAACUUGAUUGCUUGGUAGCGUAGCUAACGCGUGAAAUUGACCGCCUGGGGA


GUACGGUCGCAAGAUUAAAACUCAAAGGAAUUGACGGGGACCCGCACAAGCGGUGGAUG


AUGUGGAUUAAUUCGAUGCAACGCGAAGAACCUUACCUGGUUUUGACAUGUGCGGAAUC


CUCCGGAGACGGAGGAGUGCCUUCGGGAGCCGUAACACAGGUGCUGCAUGGCUGUCGUCA


GCUCGUGUCGUGAGAUGUUGGGUUAAGUCCCGCAACGAGCGCAACCCUUGUCAUUAGUU


GCCAUCAUUCGGUUGGGCACUCUAAUGAGACUGCCGGUGACAAGCCGGAGGAAGGUGGG


GAUGACGUCAAGUCCUCAUGGCCCUUAUGACCAGGGCUUCACACGUCAUACAAUGGUCGG


UACAGAGGGUAGCCAAGCCGCGAGGCGGAGCCAAUCUCACAAAACCGAUCGUAGUCCGGA


UUGCACUCUGCAACUCGAGUGCAUGAAGUCGGAAUCGCUAGUAAUCGCAGGUCAGCAUAC


UGCGGUGAAUACGUUCCCGGGUCUUGUACACACCGCCCGUCACACCAUGGGAGUGGGGGA


UACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCUUACCACGGUAUGCUUCAUGACU


GGGGUGAAGUCGUAACAAGGUAGCCGUAGGGGAACCUGCGGCUGGAUCACCUCCUUUCU


A






> A9Y61_10490: 23S ribosomal RNA (1 of 4 copies) NZ_CP016017.1:1941315-1944213 - Is on the negative strand DNA (- strand): SEQ ID NO: 22









TGAAATGATAGAGTCAAGTGAATAAGTGCATCAGGCGGATGCCTTGGCGATGATAGGCGAC


GAAGGACGTGTAAGCCTGCGAAAAGCGCGGGGGAGCTGGCAATAAAGCAATGATCCCGCG


GTGTCCGAATGGGGAAACCCACTGCATTCTGTGCAGTATCCTAAGTTGAATACATAGGCTTA


GAGAAGCGAACCCGGAGAACTGACCCATCTAAGTACCCGGAGGAAAAGAAATCAACCGAG


ATTCCGCAAGTAGTGGCGAGCGAACGCGGAGGAGCCTGTACGTAATAACTGTCGAGGTAGA


AGAACAAGCTGGGAAGCTTGACCATAGCGGGTGACAGTCCCGTATTCGAAATCTCAACAGC


GGTACTAAGCGTACGAAAAGTAGGGCGGGACACGTGAAATCCTGTCTGAATATGGGGGGAC


CATCCTCCAAGGCTAAATACTCATCATCGACCGATAGTGAACCAGTACCGTGAGGGAAAGG


CGAAAAGAACCCCGGGAGGGGAGTGAAACAGAACCTGAAACCTGATGCATACAAACAGTG


GGAGCGCCCTAGTGGTGTGACTGCGTACCTTTTGTATAATGGGTCAACGACTTACATTCAGT


AGCGAGCTTAACCGGATAGGGGAGGCGTAGGGAAACCGAGTCTTAATAGGGCGATGAGTTG


CTGGGTGTAGACCCGAAACCGAGTGATCTATCCATGGCCAGGTTGAAGGTGCCGTAACAGG


TACTGGAGGACCGAACCCACGCATGTTGCAAAATGCGGGGATGAGCTGTGGGTAGGGGTGA


AAGGCTAAACAAACTCGGAGATAGCTGGTTCTCCCCGAAAACTATTTAGGTAGTGCCTCGAG


CAAGACACTGATGGGGGTAAAGCACTGTTATGGCTAGGGGGTTATTGCAACTTACCAACCCA


TGGCAAACTCAGAATACCATCAAGTGGTTCCTCGGGAGACAGACAGCGGGTGCTAACGTCC


GTTGTCAAGAGGGAAACAACCCAGACCGCCGGCTAAGGTCCCAAATGATAGATTAAGTGGT


AAACGAAGTGGGAAGGCACAGACAGCCAGGATGTTGGCTTAGAAGCAGCCATCATTTAAAG


AAAGCGTAATAGCTCACTGGTCGAGTCGTCCTGCGCGGAAGATGTAACGGGGCTCAAATCT


ATAACCGAAGCTGCGGATGCCGGTTTACCGGCATGGTAGGGGAGCGTTCTGTAGGCTGATG


AAGGTGCATTGTAAAGTGTGCTGGAGGTATCAGAAGTGCGAATGTTGACATGAGTAGCGAT


AAAGCGGGTGAAAAGCCCGCTCGCCGAAAGCCCAAGGTTTCCTACGCAACGTTCATCGGCG


TAGGGTGAGTCGGCCCCTAAGGCGAGGCAGAAATGCGTAGTCGATGGGAAACAGGTTAATA


TTCCTGTACTTGATTCAAATGCGATGTGGGGACGGAGAAGGTTAGGTTGGCAAGCTGTTGGA


ATAGCTTGTTTAAGCCGGTAGGTGGAAGACTTAGGCAAATCCGGGTTTTCTTAACACCGAGA


AGTGATGACGAGTGTCTACGGACACGAAGCAACCGATACCACGCTTCCAGGAAAAGCCACT


AAGCTTCAGTTTGAATCGAACCGTACCGCAAACCGACACAGGTGGGCAGGATGAGAATTCT


AAGGCGCTTGAGAGAACTCGGGAGAAGGAACTCGGCAAATTGATACCGTAACTTCGGGAGA


AGGTATGCCCTCTAAGGTTAAGGACTTGCTCCGTAAGCCCCGGAGGGTCGCAGAGAATAGG


TGGCTGCGACTGTTTATTAAAAACACAGCACTCTGCCAACACGAAAGTGGACGTATAGGGTG


TGACGCCTGCCCGGTGCCGGAAGGTTAATTGAAGATGTGCAAGCATCGGATCGAAGCCCCG


GTAAACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAATTCCTTGTCGGGTAAGTTCC


GACCCGCACGAATGGCGTAACGATGGCCACACTGTCTCCTCCCGAGACTCAGCGAAGTTGA


AGTGGTTGTGAAGATGCAATCTACCCGCTGCTAGACGGAAAGACCCCGTGAACCTTTACTGT


AGCTTTGCATTGGACTTTGAAGTCACTTGTGTAGGATAGGTGGGAGGCTTGGAAGCAGAGAC


GCCAGTCTCTGTGGAGTCGTCCTTGAAATACCACCCTGGTGTCTTTGAGGTTCTAACCCAGAC


CCGTCATCCGGGTCGGGGACCGTGCATGGTAGGCAGTTTGACTGGGGCGGTCTCCTCCCAAA


GCGTAACGGAGGAGTTCGAAGGTTACCTAGGTCCGGTCGGAAATCGGACTGATAGTGCAAT


GGCAAAAGGTAGCTTAACTGCGAGACCGACAAGTCGGGCAGGTGCGAAAGCAGGACATAGT


GATCCGGTGGTTCTGTATGGAAGGGCCATCGCTCAACGGATAAAAGGTACTCCGGGGATAA


CAGGCTGATTCCGCCCAAGAGTTCATATCGACGGCGGAGTTTGGCACCTCGATGTCGGCTCA


TCACATCCTGGGGCTGTAGTCGGTCCCAAGGGTATGGCTGTTCGCCATTTAAAGTGGTACGT


GAGCTGGGTTTAAAACGTCGTGAGACAGTTTGGTCCCTATCTGCAGTGGGCGTTGGAAGTTT


GACGGGGGCTGCTCCTAGTACGAGAGGACCGGAGTGGACGAACCTCTGGTGTACCGGTTGT


AACGCCAGTTGCATAGCCGGGTAGCTAAGTTCGGAAGAGATAAGCGCTGAAAGCATCTAAG


CGCGAAACTCGCCTGAAGATGAGACTTCCCTTGCGGTTTAACCGCACTAAAGGGTCGTTCGA


GACCAGGACGTTGATAGGTGGGGTGTGGAAGCGCGGTAACGCGTGAAGCTAACCCATACTA


ATTGCCCGTGAGGCTTGACTCT






cDNA: SEQ ID NO: 23









AGAGTCAAGCCTCACGGGCAATTAGTATGGGTTAGCTTCACGCGTTACCGCGCTTCCACACC


CCACCTATCAACGTCCTGGTCTCGAACGACCCTTTAGTGCGGTTAAACCGCAAGGGAAGTCT


CATCTTCAGGCGAGTTTCGCGCTTAGATGCTTTCAGCGCTTATCTCTTCCGAACTTAGCTACC


CGGCTATGCAACTGGCGTTACAACCGGTACACCAGAGGTTCGTCCACTCCGGTCCTCTCGTA


CTAGGAGCAGCCCCCGTCAAACTTCCAACGCCCACTGCAGATAGGGACCAAACTGTCTCACG


ACGTTTTAAACCCAGCTCACGTACCACTTTAAATGGCGAACAGCCATACCCTTGGGACCGAC


TACAGCCCCAGGATGTGATGAGCCGACATCGAGGTGCCAAACTCCGCCGTCGATATGAACTC


TTGGGCGGAATCAGCCTGTTATCCCCGGAGTACCTTTTATCCGTTGAGCGATGGCCCTTCCAT


ACAGAACCACCGGATCACTATGTCCTGCTTTCGCACCTGCCCGACTTGTCGGTCTCGCAGTTA


AGCTACCTTTTGCCATTGCACTATCAGTCCGATTTCCGACCGGACCTAGGTAACCTTCGAACT


CCTCCGTTACGCTTTGGGAGGAGACCGCCCCAGTCAAACTGCCTACCATGCACGGTCCCCGA


CCCGGATGACGGGTCTGGGTTAGAACCTCAAAGACACCAGGGTGGTATTTCAAGGACGACT


CCACAGAGACTGGCGTCTCTGCTTCCAAGCCTCCCACCTATCCTACACAAGTGACTTCAAAG


TCCAATGCAAAGCTACAGTAAAGGTTCACGGGGTCTTTCCGTCTAGCAGCGGGTAGATTGCA


TCTTCACAACCACTTCAACTTCGCTGAGTCTCGGGAGGAGACAGTGTGGCCATCGTTACGCC


ATTCGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAGGACCGTTATAGTTAC


GGCCGCCGTTTACCGGGGCTTCGATCCGATGCTTGCACATCTTCAATTAACCTTCCGGCACCG


GGCAGGCGTCACACCCTATACGTCCACTTTCGTGTTGGCAGAGTGCTGTGTTTTTAATAAAC


AGTCGCAGCCACCTATTCTCTGCGACCCTCCGGGGCTTACGGAGCAAGTCCTTAACCTTAGA


GGGCATACCTTCTCCCGAAGTTACGGTATCAATTTGCCGAGTTCCTTCTCCCGAGTTCTCTCA


AGCGCCTTAGAATTCTCATCCTGCCCACCTGTGTCGGTTTGCGGTACGGTTCGATTCAAACTG


AAGCTTAGTGGCTTTTCCTGGAAGCGTGGTATCGGTTGCTTCGTGTCCGTAGACACTCGTCAT


CACTTCTCGGTGTTAAGAAAACCCGGATTTGCCTAAGTCTTCCACCTACCGGCTTAAACAAG


CTATTCCAACAGCTTGCCAACCTAACCTTCTCCGTCCCCACATCGCATTTGAATCAAGTACAG


GAATATTAACCTGTTTCCCATCGACTACGCATTTCTGCCTCGCCTTAGGGGCCGACTCACCCT


ACGCCGATGAACGTTGCGTAGGAAACCTTGGGCTTTCGGCGAGCGGGCTTTTCACCCGCTTT


ATCGCTACTCATGTCAACATTCGCACTTCTGATACCTCCAGCACACTTTACAATGCACCTTCA


TCAGCCTACAGAACGCTCCCCTACCATGCCGGTAAACCGGCATCCGCAGCTTCGGTTATAGA


TTTGAGCCCCGTTACATCTTCCGCGCAGGACGACTCGACCAGTGAGCTATTACGCTTTCTTTA


AATGATGGCTGCTTCTAAGCCAACATCCTGGCTGTCTGTGCCTTCCCACTTCGTTTACCACTT


AATCTATCATTTGGGACCTTAGCCGGCGGTCTGGGTTGTTTCCCTCTTGACAACGGACGTTAG


CACCCGCTGTCTGTCTCCCGAGGAACCACTTGATGGTATTCTGAGTTTGCCATGGGTTGGTAA


GTTGCAATAACCCCCTAGCCATAACAGTGCTTTACCCCCATCAGTGTCTTGCTCGAGGCACT


ACCTAAATAGTTTTCGGGGAGAACCAGCTATCTCCGAGTTTGTTTAGCCTTTCACCCCTACCC


ACAGCTCATCCCCGCATTTTGCAACATGCGTGGGTTCGGTCCTCCAGTACCTGTTACGGCACC


TTCAACCTGGCCATGGATAGATCACTCGGTTTCGGGTCTACACCCAGCAACTCATCGCCCTA


TTAAGACTCGGTTTCCCTACGCCTCCCCTATCCGGTTAAGCTCGCTACTGAATGTAAGTCGTT


GACCCATTATACAAAAGGTACGCAGTCACACCACTAGGGCGCTCCCACTGTTTGTATGCATC


AGGTTTCAGGTTCTGTTTCACTCCCCTCCCGGGGTTCTTTTCGCCTTTCCCTCACGGTACTGGT


TCACTATCGGTCGATGATGAGTATTTAGCCTTGGAGGATGGTCCCCCCATATTCAGACAGGA


TTTCACGTGTCCCGCCCTACTTTTCGTACGCTTAGTACCGCTGTTGAGATTTCGAATACGGGA


CTGTCACCCGCTATGGTCAAGCTTCCCAGCTTGTTCTTCTACCTCGACAGTTATTACGTACAG


GCTCCTCCGCGTTCGCTCGCCACTACTTGCGGAATCTCGGTTGATTTCTTTTCCTCCGGGTAC


TTAGATGGGTCAGTTCTCCGGGTTCGCTTCTCTAAGCCTATGTATTCAACTTAGGATACTGCA


CAGAATGCAGTGGGTTTCCCCATTCGGACACCGCGGGATCATTGCTTTATTGCCAGCTCCCC


CGCGCTTTTCGCAGGCTTACACGTCCTTCGTCGCCTATCATCGCCAAGGCATCCGCCTGATGC


ACTTATTCACTTGACTCTATCATTTCA






RNA: SEQ ID NO: 24









UGAAAUGAUAGAGUCAAGUGAAUAAGUGCAUCAGGCGGAUGCCUUGGCGAUGAUAGGCG


ACGAAGGACGUGUAAGCCUGCGAAAAGCGCGGGGGAGCUGGCAAUAAAGCAAUGAUCCC


GCGGUGUCCGAAUGGGGAAACCCACUGCAUUCUGUGCAGUAUCCUAAGUUGAAUACAUA


GGCUUAGAGAAGCGAACCCGGAGAACUGACCCAUCUAAGUACCCGGAGGAAAAGAAAUC


AACCGAGAUUCCGCAAGUAGUGGCGAGCGAACGCGGAGGAGCCUGUACGUAAUAACUGU


CGAGGUAGAAGAACAAGCUGGGAAGCUUGACCAUAGCGGGUGACAGUCCCGUAUUCGAA


AUCUCAACAGCGGUACUAAGCGUACGAAAAGUAGGGCGGGACACGUGAAAUCCUGUCUG


AAUAUGGGGGGACCAUCCUCCAAGGCUAAAUACUCAUCAUCGACCGAUAGUGAACCAGUA


CCGUGAGGGAAAGGCGAAAAGAACCCCGGGAGGGGAGUGAAACAGAACCUGAAACCUGA


UGCAUACAAACAGUGGGAGCGCCCUAGUGGUGUGACUGCGUACCUUUUGUAUAAUGGGU


CAACGACUUACAUUCAGUAGCGAGCUUAACCGGAUAGGGGAGGCGUAGGGAAACCGAGU


CUUAAUAGGGCGAUGAGUUGCUGGGUGUAGACCCGAAACCGAGUGAUCUAUCCAUGGCC


AGGUUGAAGGUGCCGUAACAGGUACUGGAGGACCGAACCCACGCAUGUUGCAAAAUGCG


GGGAUGAGCUGUGGGUAGGGGUGAAAGGCUAAACAAACUCGGAGAUAGCUGGUUCUCCC


CGAAAACUAUUUAGGUAGUGCCUCGAGCAAGACACUGAUGGGGGUAAAGCACUGUUAUG


GCUAGGGGGUUAUUGCAACUUACCAACCCAUGGCAAACUCAGAAUACCAUCAAGUGGUUC


CUCGGGAGACAGACAGCGGGUGCUAACGUCCGUUGUCAAGAGGGAAACAACCCAGACCGC


CGGCUAAGGUCCCAAAUGAUAGAUUAAGUGGUAAACGAAGUGGGAAGGCACAGACAGCC


AGGAUGUUGGCUUAGAAGCAGCCAUCAUUUAAAGAAAGCGUAAUAGCUCACUGGUCGAG


UCGUCCUGCGCGGAAGAUGUAACGGGGCUCAAAUCUAUAACCGAAGCUGCGGAUGCCGGU


UUACCGGCAUGGUAGGGGAGCGUUCUGUAGGCUGAUGAAGGUGCAUUGUAAAGUGUGCU


GGAGGUAUCAGAAGUGCGAAUGUUGACAUGAGUAGCGAUAAAGCGGGUGAAAAGCCCGC


UCGCCGAAAGCCCAAGGUUUCCUACGCAACGUUCAUCGGCGUAGGGUGAGUCGGCCCCUA


AGGCGAGGCAGAAAUGCGUAGUCGAUGGGAAACAGGUUAAUAUUCCUGUACUUGAUUCA


AAUGCGAUGUGGGGACGGAGAAGGUUAGGUUGGCAAGCUGUUGGAAUAGCUUGUUUAAG


CCGGUAGGUGGAAGACUUAGGCAAAUCCGGGUUUUCUUAACACCGAGAAGUGAUGACGA


GUGUCUACGGACACGAAGCAACCGAUACCACGCUUCCAGGAAAAGCCACUAAGCUUCAGU


UUGAAUCGAACCGUACCGCAAACCGACACAGGUGGGCAGGAUGAGAAUUCUAAGGCGCU


UGAGAGAACUCGGGAGAAGGAACUCGGCAAAUUGAUACCGUAACUUCGGGAGAAGGUAU


GCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCGGAGGGUCGCAGAGAAUAGGUGGCU


GCGACUGUUUAUUAAAAACACAGCACUCUGCCAACACGAAAGUGGACGUAUAGGGUGUG


ACGCCUGCCCGGUGCCGGAAGGUUAAUUGAAGAUGUGCAAGCAUCGGAUCGAAGCCCCGG


UAAACGGCGGCCGUAACUAUAACGGUCCUAAGGUAGCGAAAUUCCUUGUCGGGUAAGUU


CCGACCCGCACGAAUGGCGUAACGAUGGCCACACUGUCUCCUCCCGAGACUCAGCGAAGU


UGAAGUGGUUGUGAAGAUGCAAUCUACCCGCUGCUAGACGGAAAGACCCCGUGAACCUU


UACUGUAGCUUUGCAUUGGACUUUGAAGUCACUUGUGUAGGAUAGGUGGGAGGCUUGGA


AGCAGAGACGCCAGUCUCUGUGGAGUCGUCCUUGAAAUACCACCCUGGUGUCUUUGAGGU


UCUAACCCAGACCCGUCAUCCGGGUCGGGGACCGUGCAUGGUAGGCAGUUUGACUGGGGC


GGUCUCCUCCCAAAGCGUAACGGAGGAGUUCGAAGGUUACCUAGGUCCGGUCGGAAAUCG


GACUGAUAGUGCAAUGGCAAAAGGUAGCUUAACUGCGAGACCGACAAGUCGGGCAGGUG


CGAAAGCAGGACAUAGUGAUCCGGUGGUUCUGUAUGGAAGGGCCAUCGCUCAACGGAUA


AAAGGUACUCCGGGGAUAACAGGCUGAUUCCGCCCAAGAGUUCAUAUCGACGGCGGAGU


UUGGCACCUCGAUGUCGGCUCAUCACAUCCUGGGGCUGUAGUCGGUCCCAAGGGUAUGGC


UGUUCGCCAUUUAAAGUGGUACGUGAGCUGGGUUUAAAACGUCGUGAGACAGUUUGGUC


CCUAUCUGCAGUGGGCGUUGGAAGUUUGACGGGGGCUGCUCCUAGUACGAGAGGACCGG


AGUGGACGAACCUCUGGUGUACCGGUUGUAACGCCAGUUGCAUAGCCGGGUAGCUAAGU


UCGGAAGAGAUAAGCGCUGAAAGCAUCUAAGCGCGAAACUCGCCUGAAGAUGAGACUUC


CCUUGCGGUUUAACCGCACUAAAGGGUCGUUCGAGACCAGGACGUUGAUAGGUGGGGUG


UGGAAGCGCGGUAACGCGUGAAGCUAACCCAUACUAAUUGCCCGUGAGGCUUGACUCU






> A9Y61_10505: 16S ribosomal RNA (1 of 4 copies) NZ_CP016017.1:1944811-1946362- Is on the negative strand DNA (- strand): SEQ ID NO: 25









TGAACATAAGAGTTTGATCCTGGCTCAGATTGAACGCTGGCGGCATGCTTTACACATGCAAG


TCGGACGGCAGCACAGGGAAGCTTGCTTCTCGGGTGGCGAGTGGCGAACGGGTGAGTAACA


TATCGGAACGTACCGGGTAGCGGGGGATAACTGATCGAAAGATCAGCTAATACCGCATACG


TCTTGAGAGGGAAAGCAGGGGACCTTCGGGCCTTGCGCTATCCGAGCGGCCGATATCTGATT


AGCTGGTTGGCGGGGTAAAGGCCCACCAAGGCGACGATCAGTAGCGGGTCTGAGAGGATGA


TCCGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTT


TGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGTCTGAAGAAGGCCTTCGGGTTGT


AAAGGACTTTTGTCAGGGAAGAAAAGGCCGTTGCCAATATCGGCGGCCGATGACGGTACCT


GAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGT


TAATCGGAATTACTGGGCGTAAAGCGGGCGCAGACGGTTACTTAAGCAGGATGTGAAATCC


CCGGGCTCAACCCGGGAACTGCGTTCTGAACTGGGTGACTCGAGTGTGTCAGAGGGAGGTG


GAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTGGAGGAATACCGATGGCGAAGGCAG


CCTCCTGGGATAACACTGACGTTCATGTCCGAAAGCGTGGGTAGCAAACAGGATTAGATACC


CTGGTAGTCCACGCCCTAAACGATGTCAATTAGCTGTTGGGCAACTTGATTGCTTGGTAGCG


TAGCTAACGCGTGAAATTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAA


TTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTCGATGCAACGCGAAGAACC


TTACCTGGTTTTGACATGTGCGGAATCCTCCGGAGACGGAGGAGTGCCTTCGGGAGCCGTAA


CACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACG


AGCGCAACCCTTGTCATTAGTTGCCATCATTCGGTTGGGCACTCTAATGAGACTGCCGGTGA


CAAGCCGGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTATGACCAGGGCTTCAC


ACGTCATACAATGGTCGGTACAGAGGGTAGCCAAGCCGCGAGGCGGAGCCAATCTCACAAA


ACCGATCGTAGTCCGGATTGCACTCTGCAACTCGAGTGCATGAAGTCGGAATCGCTAGTAAT


CGCAGGTCAGCATACTGCGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCA


TGGGAGTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGAGTCCGCTTACCACGGTAT


GCTTCATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAGGGGAACCTGCGGCTGGATCAC


CTCCTTTCTA






cDNA: SEQ ID NO: 26









TAGAAAGGAGGTGATCCAGCCGCAGGTTCCCCTACGGCTACCTTGTTACGACTTCACCCCAG


TCATGAAGCATACCGTGGTAAGCGGACTCCTTGCGGTTACCCTACCTACTTCTGGTATCCCCC


ACTCCCATGGTGTGACGGGCGGTGTGTACAAGACCCGGGAACGTATTCACCGCAGTATGCTG


ACCTGCGATTACTAGCGATTCCGACTTCATGCACTCGAGTTGCAGAGTGCAATCCGGACTAC


GATCGGTTTTGTGAGATTGGCTCCGCCTCGCGGCTTGGCTACCCTCTGTACCGACCATTGTAT


GACGTGTGAAGCCCTGGTCATAAGGGCCATGAGGACTTGACGTCATCCCCACCTTCCTCCGG


CTTGTCACCGGCAGTCTCATTAGAGTGCCCAACCGAATGATGGCAACTAATGACAAGGGTTG


CGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGCACC


TGTGTTACGGCTCCCGAAGGCACTCCTCCGTCTCCGGAGGATTCCGCACATGTCAAAACCAG


GTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATCATCCACCGCTTGTGCGGGTCCCCGTC


AATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCCCAGGCGGTCAATTTCACGCGTTAGCTA


CGCTACCAAGCAATCAAGTTGCCCAACAGCTAATTGACATCGTTTAGGGCGTGGACTACCAG


GGTATCTAATCCTGTTTGCTACCCACGCTTTCGGACATGAACGTCAGTGTTATCCCAGGAGG


CTGCCTTCGCCATCGGTATTCCTCCACATCTCTACGCATTTCACTGCTACACGTGGAATTCCA


CCTCCCTCTGACACACTCGAGTCACCCAGTTCAGAACGCAGTTCCCGGGTTGAGCCCGGGGA


TTTCACATCCTGCTTAAGTAACCGTCTGCGCCCGCTTTACGCCCAGTAATTCCGATTAACGCT


CGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGGTGCTTATTCTTCAGGTACC


GTCATCGGCCGCCGATATTGGCAACGGCCTTTTCTTCCCTGACAAAAGTCCTTTACAACCCG


AAGGCCTTCTTCAGACACGCGGCATGGCTGGATCAGGCTTGCGCCCATTGTCCAAAATTCCC


CACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCGGATCATCCTCTC


AGACCCGCTACTGATCGTCGCCTTGGTGGGCCTTTACCCCGCCAACCAGCTAATCAGATATC


GGCCGCTCGGATAGCGCAAGGCCCGAAGGTCCCCTGCTTTCCCTCTCAAGACGTATGCGGTA


TTAGCTGATCTTTCGATCAGTTATCCCCCGCTACCCGGTACGTTCCGATATGTTACTCACCCG


TTCGCCACTCGCCACCCGAGAAGCAAGCTTCCCTGTGCTGCCGTCCGACTTGCATGTGTAAA


GCATGCCGCCAGCGTTCAATCTGAGCCAGGATCAAACTCTTATGTTCA






RNA: SEQ ID NO: 27









UGAACAUAAGAGUUUGAUCCUGGCUCAGAUUGAACGCUGGCGGCAUGCUUUACACAUGC


AAGUCGGACGGCAGCACAGGGAAGCUUGCUUCUCGGGUGGCGAGUGGCGAACGGGUGAG


UAACAUAUCGGAACGUACCGGGUAGCGGGGGAUAACUGAUCGAAAGAUCAGCUAAUACC


GCAUACGUCUUGAGAGGGAAAGCAGGGGACCUUCGGGCCUUGCGCUAUCCGAGCGGCCGA


UAUCUGAUUAGCUGGUUGGCGGGGUAAAGGCCCACCAAGGCGACGAUCAGUAGCGGGUC


UGAGAGGAUGAUCCGCCACACUGGGACUGAGACACGGCCCAGACUCCUACGGGAGGCAGC


AGUGGGGAAUUUUGGACAAUGGGCGCAAGCCUGAUCCAGCCAUGCCGCGUGUCUGAAGA


AGGCCUUCGGGUUGUAAAGGACUUUUGUCAGGGAAGAAAAGGCCGUUGCCAAUAUCGGC


GGCCGAUGACGGUACCUGAAGAAUAAGCACCGGCUAACUACGUGCCAGCAGCCGCGGUAA


UACGUAGGGUGCGAGCGUUAAUCGGAAUUACUGGGCGUAAAGCGGGCGCAGACGGUUAC


UUAAGCAGGAUGUGAAAUCCCCGGGCUCAACCCGGGAACUGCGUUCUGAACUGGGUGACU


CGAGUGUGUCAGAGGGAGGUGGAAUUCCACGUGUAGCAGUGAAAUGCGUAGAGAUGUGG


AGGAAUACCGAUGGCGAAGGCAGCCUCCUGGGAUAACACUGACGUUCAUGUCCGAAAGCG


UGGGUAGCAAACAGGAUUAGAUACCCUGGUAGUCCACGCCCUAAACGAUGUCAAUUAGC


UGUUGGGCAACUUGAUUGCUUGGUAGCGUAGCUAACGCGUGAAAUUGACCGCCUGGGGA


GUACGGUCGCAAGAUUAAAACUCAAAGGAAUUGACGGGGACCCGCACAAGCGGUGGAUG


AUGUGGAUUAAUUCGAUGCAACGCGAAGAACCUUACCUGGUUUUGACAUGUGCGGAAUC


CUCCGGAGACGGAGGAGUGCCUUCGGGAGCCGUAACACAGGUGCUGCAUGGCUGUCGUCA


GCUCGUGUCGUGAGAUGUUGGGUUAAGUCCCGCAACGAGCGCAACCCUUGUCAUUAGUU


GCCAUCAUUCGGUUGGGCACUCUAAUGAGACUGCCGGUGACAAGCCGGAGGAAGGUGGG


GAUGACGUCAAGUCCUCAUGGCCCUUAUGACCAGGGCUUCACACGUCAUACAAUGGUCGG


UACAGAGGGUAGCCAAGCCGCGAGGCGGAGCCAAUCUCACAAAACCGAUCGUAGUCCGGA


UUGCACUCUGCAACUCGAGUGCAUGAAGUCGGAAUCGCUAGUAAUCGCAGGUCAGCAUAC


UGCGGUGAAUACGUUCCCGGGUCUUGUACACACCGCCCGUCACACCAUGGGAGUGGGGGA


UACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCUUACCACGGUAUGCUUCAUGACU


GGGGUGAAGUCGUAACAAGGUAGCCGUAGGGGAACCUGCGGCUGGAUCACCUCCUUUCU


A






ANNEX B

Sequences for the exemplary marker genes differentially expressed between an untreated sample and a sample treated with antibiotics


1. porB (Locus Tag: NGO1812)
Ngo1812: Nc_002946.2:1788697-1789744

DNA (+ strand): SEQ ID NO: 28









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAATGGCC


GATGTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAA


CATACAGACGGCAAGGTAAGTAAAGTGGAAACCGGCAGCGAAATCGCCGACTTCGG


TTCAAAAATCGGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTT


GGCAGTTGGAACAAGGTGCCTCCGTCGCCGGCACTAACACCGGCTGGGGCAACAAA


CAATCCTTCGTCGGCTTGAAGGGCGGCTTCGGTACCATCCGCGCCGGTAGCCTGAAC


AGCCCCCTGAAAAACACCGGCGCCAACGTCAATGCTTGGGAATCCGGCAAATTTAC


CGGCAATGTGCTGGAAATCAGCGGAATGGCCCAACGGGAACACCGCTACCTGTCCG


TACGCTACGATTCTCCCGAATTTGCCGGCTTCAGCGGCAGCGTACAATACGCACCTA


AAGACAATTCAGGCTCAAACGGCGAATCTTACCACGTTGGCTTGAACTACCAAAAC


AGCGGCTTCTTCGCGCAATACGCCGGCTTGTTCCAAAGATACGGCGAAGGCACTAA


AAAAATCGAATACGATGGTCAAACTTATAGTATCCCCAGTCTGTTTGTTGAAAAACT


GCAAGTTCACCGTTTGGTAGGCGGTTACGACAATAATGCCCTGTACGTTTCCGTAGC


CGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAATTCGCACAACT


CTCAAACCGAAGTTGCCGCTACCGCGGCATACCGTTTCGGCAATGTAACGCCCCGCG


TTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATAGTGCAAACCACGACAATACTT


ATGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTGG


TTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCC


AGCGCCGTCGTTCTGCGCCACAAATTCTAA






cDNA: SEQ ID NO: 29









TTAGAATTTGTGGCGCAGAACGACGGCGCTGGCAGTCGATACGATTTTGTCTGCGCC


TTTGCCTTCTTGCAACCAGCCGGCAGAAACCAAGGCAGAAGTGCGTTTGGAGAAGT


CGTATTCCGCACCGACAACCACTTGGTCATAAGTATTGTCGTGGTTTGCACTATCAA


CAGTGCCTTTGAAGCCGTGGGCGTAAGAAACGCGGGGCGTTACATTGCCGAAACGG


TATGCCGCGGTAGCGGCAACTTCGGTTTGAGAGTTGTGCGAATTACCGCTCATTGCT


CCATACAATTTGGCATCTTGTTGTTGTGCGGCTACGGAAACGTACAGGGCATTATTG


TCGTAACCGCCTACCAAACGGTGAACTTGCAGTTTTTCAACAAACAGACTGGGGATA


CTATAAGTTTGACCATCGTATTCGATTTTTTTAGTGCCTTCGCCGTATCTTTGGAACA


AGCCGGCGTATTGCGCGAAGAAGCCGCTGTTTTGGTAGTTCAAGCCAACGTGGTAA


GATTCGCCGTTTGAGCCTGAATTGTCTTTAGGTGCGTATTGTACGCTGCCGCTGAAG


CCGGCAAATTCGGGAGAATCGTAGCGTACGGACAGGTAGCGGTGTTCCCGTTGGGC


CATTCCGCTGATTTCCAGCACATTGCCGGTAAATTTGCCGGATTCCCAAGCATTGAC


GTTGGCGCCGGTGTTTTTCAGGGGGCTGTTCAGGCTACCGGCGCGGATGGTACCGAA


GCCGCCCTTCAAGCCGACGAAGGATTGTTTGTTGCCCCAGCCGGTGTTAGTGCCGGC


GACGGAGGCACCTTGTTCCAACTGCCAAACGGCCTTCAGGCCGTTGCCGAGGTCTTC


TTGGCCTTTGAAGCCGATTTTTGAACCGAAGTCGGCGATTTCGCTGCCGGTTTCCACT


TTACTTACCTTGCCGTCTGTATGTTCTACAGAACGGTAAGTTTGTACGCCGGCTTTGA


TGGCGCCGTACAGGGTGACATCGGCCATTGCCGCAACAGGAAGGGCTGCCAAAGTC


AGGGCAATCAGGGATTTTTTCAT






RNA: SEQ ID NO: 30









AUGAAAAAAUCCCUGAUUGCCCUGACUUUGGCAGCCCUUCCUGUUGCGGCAAUGG


CCGAUGUCACCCUGUACGGCGCCAUCAAAGCCGGCGUACAAACUUACCGUUCUGU


AGAACAUACAGACGGCAAGGUAAGUAAAGUGGAAACCGGCAGCGAAAUCGCCGA


CUUCGGUUCAAAAAUCGGCUUCAAAGGCCAAGAAGACCUCGGCAACGGCCUGAAG


GCCGUUUGGCAGUUGGAACAAGGUGCCUCCGUCGCCGGCACUAACACCGGCUGGG


GCAACAAACAAUCCUUCGUCGGCUUGAAGGGCGGCUUCGGUACCAUCCGCGCCGG


UAGCCUGAACAGCCCCCUGAAAAACACCGGCGCCAACGUCAAUGCUUGGGAAUCC


GGCAAAUUUACCGGCAAUGUGCUGGAAAUCAGCGGAAUGGCCCAACGGGAACACC


GCUACCUGUCCGUACGCUACGAUUCUCCCGAAUUUGCCGGCUUCAGCGGCAGCGU


ACAAUACGCACCUAAAGACAAUUCAGGCUCAAACGGCGAAUCUUACCACGUUGGC


UUGAACUACCAAAACAGCGGCUUCUUCGCGCAAUACGCCGGCUUGUUCCAAAGAU


ACGGCGAAGGCACUAAAAAAAUCGAAUACGAUGGUCAAACUUAUAGUAUCCCCA


GUCUGUUUGUUGAAAAACUGCAAGUUCACCGUUUGGUAGGCGGUUACGACAAUA


AUGCCCUGUACGUUUCCGUAGCCGCACAACAACAAGAUGCCAAAUUGUAUGGAGC


AAUGAGCGGUAAUUCGCACAACUCUCAAACCGAAGUUGCCGCUACCGCGGCAUAC


CGUUUCGGCAAUGUAACGCCCCGCGUUUCUUACGCCCACGGCUUCAAAGGCACUG


UUGAUAGUGCAAACCACGACAAUACUUAUGACCAAGUGGUUGUCGGUGCGGAAU


ACGACUUCUCCAAACGCACUUCUGCCUUGGUUUCUGCCGGCUGGUUGCAAGAAGG


CAAAGGCGCAGACAAAAUCGUAUCGACUGCCAGCGCCGUCGUUCUGCGCCACAAA


UUCUAA






2. rpmB (Locus Tag: NGO1680
NGO1680: NC_002946.2: C1633854-1633621

DNA (- strand): SEQ ID NO: 31









ATGGCACGAGTTTGCAAAGTGACCGGTAAACGCCCGATGTCCGGCAACAACGTATC


GCACGCCAACAACAAAACCAAACGCCGTTTTTTGCCCAACTTGCAATCACGTCGTTT


TTGGGTAGAAAGTGAAAACCGCTGGGTTCGCCTGCGCGTTTCCAACGCTGCATTGCG


TACCATCGACAAAGTAGGCATTGATGTCGTATTGGCTGATTTGCGTGCTCGCGGCGA


AGCTTAA






cDNA: SEQ ID NO: 32









TTAAGCTTCGCCGCGAGCACGCAAATCAGCCAATACGACATCAATGCCTACTTTGTC


GATGGTACGCAATGCAGCGTTGGAAACGCGCAGGCGAACCCAGCGGTTTTCACTTTC


TACCCAAAAACGACGTGATTGCAAGTTGGGCAAAAAACGGCGTTTGGTTTTGTTGTT


GGCGTGCGATACGTTGTTGCCGGACATCGGGCGTTTACCGGTCACTTTGCAAACTCG


TGCCAT






RNA: SEQ ID NO: 33









AUGGCACGAGUUUGCAAAGUGACCGGUAAACGCCCGAUGUCCGGCAACAACGUAU


CGCACGCCAACAACAAAACCAAACGCCGUUUUUUGCCCAACUUGCAAUCACGUCG


UUUUUGGGUAGAAAGUGAAAACCGCUGGGUUCGCCUGCGCGUUUCCAACGCUGC


AUUGCGUACCAUCGACAAAGUAGGCAUUGAUGUCGUAUUGGCUGAUUUGCGUGC


UCGCGGCGAAGCUUAA






3. NGO0016: NC_002946.2:c14431-14081

DNA (- strand): SEQ ID NO: 34









ATGGAAGCCTTCAAAACCCTAATTTGGATTATTAATATTATTTCCGCTTTGGCCGTCA


TCGTGTTAGTATTGCTCCAACACGGCAAAGGCGCGGATGCCGGCGCGACCTTCGGAT


CGGGAAGCGGCAGCGCGCAAGGCGTATTCGGCTCTGCCGGCAACGCCAACTTCCTC


AGCCGCTCGACCGCCGTTGCAGCAACATTTTTCTTTGCAACCTGCATGGCTATGGTG


TATATTCACACCCACACGACAAAACACGGTTTGGACTTCAGCAACATACGACAGAC


TCAGCAAGCACCCAAACCCGTAAGCAATACCGAACCTTCTGCCCCTGTTCCTCAGCA


GCAGAAATAA






cDNA: SEQ ID NO: 35









TTATTTCTGCTGCTGAGGAACAGGGGCAGAAGGTTCGGTATTGCTTACGGGTTTGGG


TGCTTGCTGAGTCTGTCGTATGTTGCTGAAGTCCAAACCGTGTTTTGTCGTGTGGGTG


TGAATATACACCATAGCCATGCAGGTTGCAAAGAAAAATGTTGCTGCAACGGCGGT


CGAGCGGCTGAGGAAGTTGGCGTTGCCGGCAGAGCCGAATACGCCTTGCGCGCTGC


CGCTTCCCGATCCGAAGGTCGCGCCGGCATCCGCGCCTTTGCCGTGTTGGAGCAATA


CTAACACGATGACGGCCAAAGCGGAAATAATATTAATAATCCAAATTAGGGTTTTG


AAGGCTTCCAT






RNA: SEQ ID NO: 36









AUGGAAGCCUUCAAAACCCUAAUUUGGAUUAUUAAUAUUAUUUCCGCUUUGGCC


GUCAUCGUGUUAGUAUUGCUCCAACACGGCAAAGGCGCGGAUGCCGGCGCGACCU


UCGGAUCGGGAAGCGGCAGCGCGCAAGGCGUAUUCGGCUCUGCCGGCAACGCCAA


CUUCCUCAGCCGCUCGACCGCCGUUGCAGCAACAUUUUUCUUUGCAACCUGCAUG


GCUAUGGUGUAUAUUCACACCCACACGACAAAACACGGUUUGGACUUCAGCAACA


UACGACAGACUCAGCAAGCACCCAAACCCGUAAGCAAUACCGAACCUUCUGCCCC


UGUUCCUCAGCAGCAGAAAUAA






4. NGO0171: NC_002946.2:c174519-174154

DNA (- strand): SEQ ID NO: 37









ATGAACCTGATTCAACAGCTCGAGCAAGAAGAAATTGCCCGCCTGAACAAAGAAAT


CCCCGAATTCGCACCGGGCGACACCGTAGTCGTATCCGTACGCGTCGTGGAAGGTA


CCCGCAGCCGTCTGCAAGCCTACGAAGGCGTGGTTATCGCCCGTCGCAACCGTGGTT


TGAACAGCAACTTCATCGTCCGCAAAATCTCCAGCGGCGAAGGTGTTGAACGTACTT


TCCAACTGTATTCCCCTACTGTTGAGAAAATCGAAGTCAAACGCCGTGGCGACGTAC


GCCGTGCCAAACTGTACTACCTGCGCGGTCTGACCGGCAAAGCTGCACGCATCAAA


GAAAAACTGCCTGCACGCAAAGGTTGA






cDNA: SEQ ID NO: 38









TCAACCTTTGCGTGCAGGCAGTTTTTCTTTGATGCGTGCAGCTTTGCCGGTCAGACCG


CGCAGGTAGTACAGTTTGGCACGGCGTACGTCGCCACGGCGTTTGACTTCGATTTTC


TCAACAGTAGGGGAATACAGTTGGAAAGTACGTTCAACACCTTCGCCGCTGGAGAT


TTTGCGGACGATGAAGTTGCTGTTCAAACCACGGTTGCGACGGGCGATAACCACGCC


TTCGTAGGCTTGCAGACGGCTGCGGGTACCTTCCACGACGCGTACGGATACGACTAC


GGTGTCGCCCGGTGCGAATTCGGGGATTTCTTTGTTCAGGCGGGCAATTTCTTCTTGC


TCGAGCTGTTGAATCAGGTTCAT






RNA: SEQ ID NO: 39









AUGAACCUGAUUCAACAGCUCGAGCAAGAAGAAAUUGCCCGCCUGAACAAAGAA


AUCCCCGAAUUCGCACCGGGCGACACCGUAGUCGUAUCCGUACGCGUCGUGGAAG


GUACCCGCAGCCGUCUGCAAGCCUACGAAGGCGUGGUUAUCGCCCGUCGCAACCG


UGGUUUGAACAGCAACUUCAUCGUCCGCAAAAUCUCCAGCGGCGAAGGUGUUGA


ACGUACUUUCCAACUGUAUUCCCCUACUGUUGAGAAAAUCGAAGUCAAACGCCGU


GGCGACGUACGCCGUGCCAAACUGUACUACCUGCGCGGUCUGACCGGCAAAGCUG


CACGCAUCAAAGAAAAACUGCCUGCACGCAAAGGUUGA






5. NGO0172: NC_002946.2:c175283-174534

DNA (- strand): SEQ ID NO: 40









ATGCTTATCCAGGCAGTTACCATTTTCCCCGAAATGTTCGACAGCATTACCCGCTAC


GGCGTAACGGGACGCGCGAACAGACAGGGAATCTGGCAGTTTGAAGCAGTCAATCC


CCGAAAGTTTGCCGACAACAGATTGGGCTATATCGACGACCGCCCGTTCGGCGGCG


GTCCGGGAATGATTATGATGGCTCCGCCGCTTCATGCGGCGATAGAACACGCCAAA


GCACAATCTTCCCAAACCGCAAAAGTCATCTACCTCAGCCCCCAAGGAAAACCGCT


GACACACCAAAAAGCGGCAGAACTGGCAGAACTTACGCATCTGATTCTGCTGTGCG


GACGCTATGAGGGAATAGACGAAAGACTGCTGCAAAGCAGCGTCGATGAAGAAATC


AGCATCGGAGACTTCGTCGTTTCCGGCGGAGAGCTTCCCGCCATGATGCTGATGGAT


GCGGTATTGAGGCTCGTACCCGGCATATTGGGCGACATTCAGTCTGCCGAACAGGAT


TCGTTCTCAAGCGGTATTTTGGACTGCCCCCACTACACCAAACCCTTAGAATTTCAA


GGCATGGCTGTTCCGGAAGTATTGCGCTCCGGAAATCATGGCTTGATAGCGGAATGG


CGGTTGGAACAATCGCTGCGCCGCACCTTGGAGCGCAGACCCGATCTTTTGGAAAA


GCGCGTTTTAATCCCAAAGGAATCCCGCCTCTTGAATAAAATCCTACAAGAGCAACG


GGAAATCCAATCATAA






cDNA: SEQ ID NO: 41









TTATGATTGGATTTCCCGTTGCTCTTGTAGGATTTTATTCAAGAGGCGGGATTCCTTT


GGGATTAAAACGCGCTTTTCCAAAAGATCGGGTCTGCGCTCCAAGGTGCGGCGCAG


CGATTGTTCCAACCGCCATTCCGCTATCAAGCCATGATTTCCGGAGCGCAATACTTC


CGGAACAGCCATGCCTTGAAATTCTAAGGGTTTGGTGTAGTGGGGGCAGTCCAAAA


TACCGCTTGAGAACGAATCCTGTTCGGCAGACTGAATGTCGCCCAATATGCCGGGTA


CGAGCCTCAATACCGCATCCATCAGCATCATGGCGGGAAGCTCTCCGCCGGAAACG


ACGAAGTCTCCGATGCTGATTTCTTCATCGACGCTGCTTTGCAGCAGTCTTTCGTCTA


TTCCCTCATAGCGTCCGCACAGCAGAATCAGATGCGTAAGTTCTGCCAGTTCTGCCG


CTTTTTGGTGTGTCAGCGGTTTTCCTTGGGGGCTGAGGTAGATGACTTTTGCGGTTTG


GGAAGATTGTGCTTTGGCGTGTTCTATCGCCGCATGAAGCGGCGGAGCCATCATAAT


CATTCCCGGACCGCCGCCGAACGGGCGGTCGTCGATATAGCCCAATCTGTTGTCGGC


AAACTTTCGGGGATTGACTGCTTCAAACTGCCAGATTCCCTGTCTGTTCGCGCGTCCC


GTTACGCCGTAGCGGGTAATGCTGTCGAACATTTCGGGGAAAATGGTAACTGCCTGG


ATAAGCAT






RNA: SEQ ID NO: 42









AUGCUUAUCCAGGCAGUUACCAUUUUCCCCGAAAUGUUCGACAGCAUUACCCGCU


ACGGCGUAACGGGACGCGCGAACAGACAGGGAAUCUGGCAGUUUGAAGCAGUCA


AUCCCCGAAAGUUUGCCGACAACAGAUUGGGCUAUAUCGACGACCGCCCGUUCGG


CGGCGGUCCGGGAAUGAUUAUGAUGGCUCCGCCGCUUCAUGCGGCGAUAGAACAC


GCCAAAGCACAAUCUUCCCAAACCGCAAAAGUCAUCUACCUCAGCCCCCAAGGAA


AACCGCUGACACACCAAAAAGCGGCAGAACUGGCAGAACUUACGCAUCUGAUUCU


GCUGUGCGGACGCUAUGAGGGAAUAGACGAAAGACUGCUGCAAAGCAGCGUCGA


UGAAGAAAUCAGCAUCGGAGACUUCGUCGUUUCCGGCGGAGAGCUUCCCGCCAUG


AUGCUGAUGGAUGCGGUAUUGAGGCUCGUACCCGGCAUAUUGGGCGACAUUCAG


UCUGCCGAACAGGAUUCGUUCUCAAGCGGUAUUUUGGACUGCCCCCACUACACCA


AACCCUUAGAAUUUCAAGGCAUGGCUGUUCCGGAAGUAUUGCGCUCCGGAAAUC


AUGGCUUGAUAGCGGAAUGGCGGUUGGAACAAUCGCUGCGCCGCACCUUGGAGC


GCAGACCCGAUCUUUUGGAAAAGCGCGUUUUAAUCCCAAAGGAAUCCCGCCUCUU


GAAUAAAAUCCUACAAGAGCAACGGGAAAUCCAAUCAUAA






6. NGO0173: NC_002946.2:c175792-175283

DNA (- strand): SEQ ID NO: 43









ATGACAGACACTCAAAACCGGGTAGCCATGGGCTACATCAAAGGCGTATTCGGCAT


AAAAGGCTGGCTGAAAATTGCCGCCAACACCGAATATTCCGACAGCCTTTTGGACTA


CCCCGAGTGGCATTTGGCCAAGGACGGCAAAACCGTCAGCGTTACCCTTGAAGCCG


GAAAAGTCGTCAACGGCGAACTCCAAGTCAAATTCGAAGGCATAGACGACCGCGAT


TCAGCATTCTCATTGCGCGGTTACACCATCGAAATACCCCGTGAAGCATTCGCCCCG


ACAGAAGAAGACGAATACTACTGGGCAGACTTGGTCGGCATGACCGTCGTCAACAA


AGACGATACCGTTTTAGGCAAGGTAAGCAACCTGATGGAAACCGGCGCAAACGACG


TATTGATGATTGACGGAGAACACGGGCAGATTCTGATTCCGTTCGTTTCCCAATATA


TCGAAACCGTCGATACCGGCAGCAAGACCATTACTGCCGACTGGGGTTTGGACTACT


GA






cDNA: SEQ ID NO: 44









TCAGTAGTCCAAACCCCAGTCGGCAGTAATGGTCTTGCTGCCGGTATCGACGGTTTC


GATATATTGGGAAACGAACGGAATCAGAATCTGCCCGTGTTCTCCGTCAATCATCAA


TACGTCGTTTGCGCCGGTTTCCATCAGGTTGCTTACCTTGCCTAAAACGGTATCGTCT


TTGTTGACGACGGTCATGCCGACCAAGTCTGCCCAGTAGTATTCGTCTTCTTCTGTCG


GGGCGAATGCTTCACGGGGTATTTCGATGGTGTAACCGCGCAATGAGAATGCTGAA


TCGCGGTCGTCTATGCCTTCGAATTTGACTTGGAGTTCGCCGTTGACGACTTTTCCGG


CTTCAAGGGTAACGCTGACGGTTTTGCCGTCCTTGGCCAAATGCCACTCGGGGTAGT


CCAAAAGGCTGTCGGAATATTCGGTGTTGGCGGCAATTTTCAGCCAGCCTTTTATGC


CGAATACGCCTTTGATGTAGCCCATGGCTACCCGGTTTTGAGTGTCTGTCAT






RNA: SEQ ID NO: 45









AUGACAGACACUCAAAACCGGGUAGCCAUGGGCUACAUCAAAGGCGUAUUCGGCA


UAAAAGGCUGGCUGAAAAUUGCCGCCAACACCGAAUAUUCCGACAGCCUUUUGGA


CUACCCCGAGUGGCAUUUGGCCAAGGACGGCAAAACCGUCAGCGUUACCCUUGAA


GCCGGAAAAGUCGUCAACGGCGAACUCCAAGUCAAAUUCGAAGGCAUAGACGACC


GCGAUUCAGCAUUCUCAUUGCGCGGUUACACCAUCGAAAUACCCCGUGAAGCAUU


CGCCCCGACAGAAGAAGACGAAUACUACUGGGCAGACUUGGUCGGCAUGACCGUC


GUCAACAAAGACGAUACCGUUUUAGGCAAGGUAAGCAACCUGAUGGAAACCGGC


GCAAACGACGUAUUGAUGAUUGACGGAGAACACGGGCAGAUUCUGAUUCCGUUC


GUUUCCCAAUAUAUCGAAACCGUCGAUACCGGCAGCAAGACCAUUACUGCCGACU


GGGGUUUGGACUACUGA






7. NGO0174: NC_002946.2:c176053-175808

DNA (- strand): SEQ ID NO: 46









ATGGTAGTTATCCGTTTGGCACGCGGCGGCTCGAAACACCGCCCCTTCTACAACGTC


ATCGTTACTGACTCACGCAGCCGCCGCGACGGCCGCTTCATCGAACGCGTAGGCTTC


TACAACCCCGTAGCCAACGAAAAACAAGAGCGCGTCCGCCTCAATGCAGACCGCCT


GAACCACTGGATTGCACAAGGCGCGCAAGTCAGCGACTCCGTTGCAAAACTGATTA


AAGAACAAAAAGCCGTCTAA






cDNA: SEQ ID NO: 47









TTAGACGGCTTTTTGTTCTTTAATCAGTTTTGCAACGGAGTCGCTGACTTGCGCGCCT


TGTGCAATCCAGTGGTTCAGGCGGTCTGCATTGAGGCGGACGCGCTCTTGTTTTTCG


TTGGCTACGGGGTTGTAGAAGCCTACGCGTTCGATGAAGCGGCCGTCGCGGCGGCT


GCGTGAGTCAGTAACGATGACGTTGTAGAAGGGGCGGTGTTTCGAGCCGCCGCGTG


CCAAACGGATAACTACCAT






RNA: SEQ ID NO: 48









AUGGUAGUUAUCCGUUUGGCACGCGGCGGCUCGAAACACCGCCCCUUCUACAACG


UCAUCGUUACUGACUCACGCAGCCGCCGCGACGGCCGCUUCAUCGAACGCGUAGG


CUUCUACAACCCCGUAGCCAACGAAAAACAAGAGCGCGUCCGCCUCAAUGCAGAC


CGCCUGAACCACUGGAUUGCACAAGGCGCGCAAGUCAGCGACUCCGUUGCAAAAC


UGAUUAAAGAACAAAAAGCCGUCUAA






8. Ngo0340: Nc_002946.2:334760-335692

DNA (+ strand): SEQ ID NO: 49









ATGAAAATTGCAAACAGCATCACCGAATTGATCGGCAACACGCCTTTGGTCAAACT


GAACCGTTTGACCAAAGGTTTGAAGGCAGAGGTTGCCGTGAAACTGGAATTTTTTAA


TCCGGGCAGCAGCGTCAAAGACCGCATTGCCGAAGCAATGATCGAGGCCGCCGAAA


AAGCGGGAAAAATCAACAAAAACACCGTCATTGTCGAAGCAACCAGCGGCAATAC


GGGTATCGGTTTGGCAATGGTATGTGCCGCACGCGGCTACAAACTGGCGATTACCAT


GCCGGAAAGCATGAGCAAAGAGCGCAAAATGCTGTTGCGCACGTTTGGCGCGGAAC


TGATTCTAACCCCCGCCGCCGAAGGTATGGCGGGCGCGATTGCCAAAGCGCAATCC


TTGGTGGACGCTCATCCAGACACTTATTTTATGCCGCGCCAGTTCGACAATGAGGCA


AATCCCGAAGTCCACCGCAAAACAACCGCCGAGGAAATTTGGAACGATACCGACGG


TAAAGTCGATGTCTTCGTTGCCGGCGTCGGCACGGGCGGTACGATTACCGGCGTGGG


CGAAGTGTTGAAAAAATACAAACCCGAAATTGAAGTGTGTGCCGTCGAAGCTGGCG


CTTCCCCCGTATTGAGCGGCGGCGAAAAAGGTCCGCACCCGATTCAAGGTATCGGC


GCAGGTTTTATTCCGACCGTTTTGAATACCAAAATCTACGACAGCATTGCCAAAGTG


CCGAACGAAGCGGCTTTTGAAACCGCCCGTGCAATGGCGGAAAAAGAAGGCATTTT


GGCGGGCATTTCTTCCGGTGCGGCGGTTTGGAGCGCGTTGCAGCTTGCCAAACAGCC


TGAAAACGAAGGCAAGCTGATAGTCGTGCTGCTGCCTTCTTATGGCGAACGCTATCT


TTCTACGCCACTTTTTGCAGATTTGGCATAA






cDNA: SEQ ID NO: 50









TTATGCCAAATCTGCAAAAAGTGGCGTAGAAAGATAGCGTTCGCCATAAGAAGGCA


GCAGCACGACTATCAGCTTGCCTTCGTTTTCAGGCTGTTTGGCAAGCTGCAACGCGC


TCCAAACCGCCGCACCGGAAGAAATGCCCGCCAAAATGCCTTCTTTTTCCGCCATTG


CACGGGCGGTTTCAAAAGCCGCTTCGTTCGGCACTTTGGCAATGCTGTCGTAGATTT


TGGTATTCAAAACGGTCGGAATAAAACCTGCGCCGATACCTTGAATCGGGTGCGGA


CCTTTTTCGCCGCCGCTCAATACGGGGGAAGCGCCAGCTTCGACGGCACACACTTCA


ATTTCGGGTTTGTATTTTTTCAACACTTCGCCCACGCCGGTAATCGTACCGCCCGTGC


CGACGCCGGCAACGAAGACATCGACTTTACCGTCGGTATCGTTCCAAATTTCCTCGG


CGGTTGTTTTGCGGTGGACTTCGGGATTTGCCTCATTGTCGAACTGGCGCGGCATAA


AATAAGTGTCTGGATGAGCGTCCACCAAGGATTGCGCTTTGGCAATCGCGCCCGCCA


TACCTTCGGCGGCGGGGGTTAGAATCAGTTCCGCGCCAAACGTGCGCAACAGCATTT


TGCGCTCTTTGCTCATGCTTTCCGGCATGGTAATCGCCAGTTTGTAGCCGCGTGCGGC


ACATACCATTGCCAAACCGATACCCGTATTGCCGCTGGTTGCTTCGACAATGACGGT


GTTTTTGTTGATTTTTCCCGCTTTTTCGGCGGCCTCGATCATTGCTTCGGCAATGCGG


TCTTTGACGCTGCTGCCCGGATTAAAAAATTCCAGTTTCACGGCAACCTCTGCCTTCA


AACCTTTGGTCAAACGGTTCAGTTTGACCAAAGGCGTGTTGCCGATCAATTCGGTGA


TGCTGTTTGCAATTTTCAT






RNA: SEQ ID NO 51









AUGAAAAUUGCAAACAGCAUCACCGAAUUGAUCGGCAACACGCCUUUGGUCAAAC


UGAACCGUUUGACCAAAGGUUUGAAGGCAGAGGUUGCCGUGAAACUGGAAUUUU


UUAAUCCGGGCAGCAGCGUCAAAGACCGCAUUGCCGAAGCAAUGAUCGAGGCCGC


CGAAAAAGCGGGAAAAAUCAACAAAAACACCGUCAUUGUCGAAGCAACCAGCGGC


AAUACGGGUAUCGGUUUGGCAAUGGUAUGUGCCGCACGCGGCUACAAACUGGCG


AUUACCAUGCCGGAAAGCAUGAGCAAAGAGCGCAAAAUGCUGUUGCGCACGUUU


GGCGCGGAACUGAUUCUAACCCCCGCCGCCGAAGGUAUGGCGGGCGCGAUUGCCA


AAGCGCAAUCCUUGGUGGACGCUCAUCCAGACACUUAUUUUAUGCCGCGCCAGUU


CGACAAUGAGGCAAAUCCCGAAGUCCACCGCAAAACAACCGCCGAGGAAAUUUGG


AACGAUACCGACGGUAAAGUCGAUGUCUUCGUUGCCGGCGUCGGCACGGGCGGUA


CGAUUACCGGCGUGGGCGAAGUGUUGAAAAAAUACAAACCCGAAAUUGAAGUGU


GUGCCGUCGAAGCUGGCGCUUCCCCCGUAUUGAGCGGCGGCGAAAAAGGUCCGCA


CCCGAUUCAAGGUAUCGGCGCAGGUUUUAUUCCGACCGUUUUGAAUACCAAAAUC


UACGACAGCAUUGCCAAAGUGCCGAACGAAGCGGCUUUUGAAACCGCCCGUGCAA


UGGCGGAAAAAGAAGGCAUUUUGGCGGGCAUUUCUUCCGGUGCGGCGGUUUGGA


GCGCGUUGCAGCUUGCCAAACAGCCUGAAAACGAAGGCAAGCUGAUAGUCGUGCU


GCUGCCUUCUUAUGGCGAACGCUAUCUUUCUACGCCACUUUUUGCAGAUUUGGCA


UAA






9. Ngo0592: Nc_002946.2:578772-580085

DNA (+ strand): SEQ ID NO: 52









ATGATGAGCGTAACTGTTGAAATTTTAGAAAATCTGGAACGCAAAGTAGTGTTGTCC


CTGCCTTGGTCCGAAATCAACGCAGAAACCGATAAAAAACTGAAACAAACCCAACG


CCGTGCAAAAATCGACGGTTTCCGTCCGGGTAAAGCACCTTTAAAAATGATTGCCCA


AATGTACGGTGCGAGCGCGCAAAACGACGTGATCAACGAGCTGGTGCAACGCCGCT


TCTACGATGTTGCCGTTGCCCAAGAGTTGAAAGTGGCAGGCTATCCACGTTTTGAAG


GCGTTGAAGAACAAGACGATAAAGAGTCTTTCAAAGTTGCCGCCATTTTTGAAGTGT


TCCCCGAAGTCGTTATCGGCGATTTGTCTGCACAAGAGGTCGAAAAAGTAACCGCTT


CCGTCGGCGATGCCGAAGTCGACCAAACTGTAGAAATCCTGCGTAAACAACGTACC


CGCTTCAACCATGTTGACCGCGAAGCCCGAAACGGCGACCGCGTCATCATCGACTTT


GAAGGCAAAATCGACGGCGAACCTTTTGCCGGCGGCACATCCAAAAACTACGCCTT


CGTATTGGGCGCAGGTCAAATGCTGCCTGAATTTGAAGCCGGCGTAGTCGGCATGA


AAGCGGGCGAAAGTAAAGACGTTACCGTCAACTTCCCTGAAGAATACCACGGCAAA


GATGTTGCCGGTAAAACTGCCGTGTTCACCATTACGCTGAACAATGTTTCCGAGCCC


ACTCTGCCTGAAGTCGATGCAGATTTTGCAAAAGCCTTGGGTATTGCGGATGGCGAT


GTTGCCAAAATGCGTGAAGAAGTGAAGAAAAACGTAAGCCGCGAAGTGGAACGCC


GCGTGAACGAACAAACCAAAGAATCCGTAATGAACGCGCTGATTAAAGCCGTAGAG


TTGAAAGTTCCGGTTGCTTTGGTCAATGAAGAAGCCGCCCGCCTGGCAAACGAAATG


AAACAAAACTTCGTTAACCAAGGTATGACCGATGCCGCGAACTTGGATTTGCCTTTG


GATATGTTCAAAGAACAAGCCGAACGTCGCGTATCTTTGGGTCTGATTTTGGCCAAA


CTGGTTGACGAAAACAAACTGGAACCGACTGAAGGGCAAATCAAAGCCGTTGTCGC


CAACTTCGCAGAAAGCTACGAAGATCCTCAAGAAGTGATTGACTGGTACTACGCAG


ATACTTCCCGCCTGCAAGCCCCGACTTCTTTGGCAGTAGAAAGCAACGTTGTTGATT


TCGTTTTGGGCAAAGCCAAAGTAAACAAAAAAGCTTTGTCTTTTGACGAAGTGATGG


GCGCGCAAGCCTGA






cDNA: SEQ ID NO: 53









TCAGGCTTGCGCGCCCATCACTTCGTCAAAAGACAAAGCTTTTTTGTTTACTTTGGCT


TTGCCCAAAACGAAATCAACAACGTTGCTTTCTACTGCCAAAGAAGTCGGGGCTTGC


AGGCGGGAAGTATCTGCGTAGTACCAGTCAATCACTTCTTGAGGATCTTCGTAGCTT


TCTGCGAAGTTGGCGACAACGGCTTTGATTTGCCCTTCAGTCGGTTCCAGTTTGTTTT


CGTCAACCAGTTTGGCCAAAATCAGACCCAAAGATACGCGACGTTCGGCTTGTTCTT


TGAACATATCCAAAGGCAAATCCAAGTTCGCGGCATCGGTCATACCTTGGTTAACGA


AGTTTTGTTTCATTTCGTTTGCCAGGCGGGCGGCTTCTTCATTGACCAAAGCAACCGG


AACTTTCAACTCTACGGCTTTAATCAGCGCGTTCATTACGGATTCTTTGGTTTGTTCG


TTCACGCGGCGTTCCACTTCGCGGCTTACGTTTTTCTTCACTTCTTCACGCATTTTGGC


AACATCGCCATCCGCAATACCCAAGGCTTTTGCAAAATCTGCATCGACTTCAGGCAG


AGTGGGCTCGGAAACATTGTTCAGCGTAATGGTGAACACGGCAGTTTTACCGGCAA


CATCTTTGCCGTGGTATTCTTCAGGGAAGTTGACGGTAACGTCTTTACTTTCGCCCGC


TTTCATGCCGACTACGCCGGCTTCAAATTCAGGCAGCATTTGACCTGCGCCCAATAC


GAAGGCGTAGTTTTTGGATGTGCCGCCGGCAAAAGGTTCGCCGTCGATTTTGCCTTC


AAAGTCGATGATGACGCGGTCGCCGTTTCGGGCTTCGCGGTCAACATGGTTGAAGCG


GGTACGTTGTTTACGCAGGATTTCTACAGTTTGGTCGACTTCGGCATCGCCGACGGA


AGCGGTTACTTTTTCGACCTCTTGTGCAGACAAATCGCCGATAACGACTTCGGGGAA


CACTTCAAAAATGGCGGCAACTTTGAAAGACTCTTTATCGTCTTGTTCTTCAACGCCT


TCAAAACGTGGATAGCCTGCCACTTTCAACTCTTGGGCAACGGCAACATCGTAGAAG


CGGCGTTGCACCAGCTCGTTGATCACGTCGTTTTGCGCGCTCGCACCGTACATTTGG


GCAATCATTTTTAAAGGTGCTTTACCCGGACGGAAACCGTCGATTTTTGCACGGCGT


TGGGTTTGTTTCAGTTTTTTATCGGTTTCTGCGTTGATTTCGGACCAAGGCAGGGACA


ACACTACTTTGCGTTCCAGATTTTCTAAAATTTCAACAGTTACGCTCATCAT






RNA: SEQ ID NO: 54









AUGAUGAGCGUAACUGUUGAAAUUUUAGAAAAUCUGGAACGCAAAGUAGUGUUG


UCCCUGCCUUGGUCCGAAAUCAACGCAGAAACCGAUAAAAAACUGAAACAAACCC


AACGCCGUGCAAAAAUCGACGGUUUCCGUCCGGGUAAAGCACCUUUAAAAAUGA


UUGCCCAAAUGUACGGUGCGAGCGCGCAAAACGACGUGAUCAACGAGCUGGUGCA


ACGCCGCUUCUACGAUGUUGCCGUUGCCCAAGAGUUGAAAGUGGCAGGCUAUCCA


CGUUUUGAAGGCGUUGAAGAACAAGACGAUAAAGAGUCUUUCAAAGUUGCCGCC


AUUUUUGAAGUGUUCCCCGAAGUCGUUAUCGGCGAUUUGUCUGCACAAGAGGUC


GAAAAAGUAACCGCUUCCGUCGGCGAUGCCGAAGUCGACCAAACUGUAGAAAUCC


UGCGUAAACAACGUACCCGCUUCAACCAUGUUGACCGCGAAGCCCGAAACGGCGA


CCGCGUCAUCAUCGACUUUGAAGGCAAAAUCGACGGCGAACCUUUUGCCGGCGGC


ACAUCCAAAAACUACGCCUUCGUAUUGGGCGCAGGUCAAAUGCUGCCUGAAUUUG


AAGCCGGCGUAGUCGGCAUGAAAGCGGGCGAAAGUAAAGACGUUACCGUCAACU


UCCCUGAAGAAUACCACGGCAAAGAUGUUGCCGGUAAAACUGCCGUGUUCACCAU


UACGCUGAACAAUGUUUCCGAGCCCACUCUGCCUGAAGUCGAUGCAGAUUUUGCA


AAAGCCUUGGGUAUUGCGGAUGGCGAUGUUGCCAAAAUGCGUGAAGAAGUGAAG


AAAAACGUAAGCCGCGAAGUGGAACGCCGCGUGAACGAACAAACCAAAGAAUCCG


UAAUGAACGCGCUGAUUAAAGCCGUAGAGUUGAAAGUUCCGGUUGCUUUGGUCA


AUGAAGAAGCCGCCCGCCUGGCAAACGAAAUGAAACAAAACUUCGUUAACCAAGG


UAUGACCGAUGCCGCGAACUUGGAUUUGCCUUUGGAUAUGUUCAAAGAACAAGC


CGAACGUCGCGUAUCUUUGGGUCUGAUUUUGGCCAAACUGGUUGACGAAAACAA


ACUGGAACCGACUGAAGGGCAAAUCAAAGCCGUUGUCGCCAACUUCGCAGAAAGC


UACGAAGAUCCUCAAGAAGUGAUUGACUGGUACUACGCAGAUACUUCCCGCCUGC


AAGCCCCGACUUCUUUGGCAGUAGAAAGCAACGUUGUUGAUUUCGUUUUGGGCA


AAGCCAAAGUAAACAAAAAAGCUUUGUCUUUUGACGAAGUGAUGGGCGCGCAAG


CCUGA






10. Ngo0593: Nc_002946.2:580181-580795

DNA (+ strand): SEQ ID NO: 55









ATGTCTTTTGATAACCATCTTGTCCCTACCGTTATCGAGCAGAGCGGTCGCGGTGAG


CGTGCATTCGATATCTATTCCCGGCTTTTGAAAGAGCGCATCGTATTTCTGGTTGGCC


CGGTAACCGATGAGTCTGCTAATCTGGTGGTCGCCCAACTGTTGTTTTTGGAAAGTG


AGAATCCGGATAAGGATATTTTCTTCTACATCAATTCCCCCGGCGGCTCGGTAACGG


CCGGTATGTCGATTTACGACACGATGAATTTCATCAAGCCCGATGTATCGACTTTGT


GCTTGGGGCAGGCGGCAAGTATGGGCGCGTTCTTATTGTCGGCAGGCGAGAAAGGC


AAACGTTTCGCCCTGCCCAACAGCCGGATTATGATTCACCAGCCTTTAATCAGCGGC


GGCTTGGGCGGTCAGGCATCCGACATTGAAATCCACGCACGCGAGTTGTTGAAAAT


CAAAGAAAAACTCAACCGCCTGATGGCGAAACATTGCGGCCGCGATTTGGCAGATT


TGGAGCGCGACACCGACCGTGATAATTTCATGTCTGCCGAAGAAGCAAAAGAATAT


GGTTTGATCGACCAAGTTTTGGAAAACCGCGCTTCTTTGCGGCTTTAA






cDNA: SEQ ID NO: 56









TTAAAGCCGCAAAGAAGCGCGGTTTTCCAAAACTTGGTCGATCAAACCATATTCTTT


TGCTTCTTCGGCAGACATGAAATTATCACGGTCGGTGTCGCGCTCCAAATCTGCCAA


ATCGCGGCCGCAATGTTTCGCCATCAGGCGGTTGAGTTTTTCTTTGATTTTCAACAAC


TCGCGTGCGTGGATTTCAATGTCGGATGCCTGACCGCCCAAGCCGCCGCTGATTAAA


GGCTGGTGAATCATAATCCGGCTGTTGGGCAGGGCGAAACGTTTGCCTTTCTCGCCT


GCCGACAATAAGAACGCGCCCATACTTGCCGCCTGCCCCAAGCACAAAGTCGATAC


ATCGGGCTTGATGAAATTCATCGTGTCGTAAATCGACATACCGGCCGTTACCGAGCC


GCCGGGGGAATTGATGTAGAAGAAAATATCCTTATCCGGATTCTCACTTTCCAAAAA


CAACAGTTGGGCGACCACCAGATTAGCAGACTCATCGGTTACCGGGCCAACCAGAA


ATACGATGCGCTCTTTCAAAAGCCGGGAATAGATATCGAATGCACGCTCACCGCGA


CCGCTCTGCTCGATAACGGTAGGGACAAGATGGTTATCAAAAGACAT






RNA: SEQ ID NO: 57









AUGUCUUUUGAUAACCAUCUUGUCCCUACCGUUAUCGAGCAGAGCGGUCGCGGUG


AGCGUGCAUUCGAUAUCUAUUCCCGGCUUUUGAAAGAGCGCAUCGUAUUUCUGG


UUGGCCCGGUAACCGAUGAGUCUGCUAAUCUGGUGGUCGCCCAACUGUUGUUUU


UGGAAAGUGAGAAUCCGGAUAAGGAUAUUUUCUUCUACAUCAAUUCCCCCGGCG


GCUCGGUAACGGCCGGUAUGUCGAUUUACGACACGAUGAAUUUCAUCAAGCCCGA


UGUAUCGACUUUGUGCUUGGGGCAGGCGGCAAGUAUGGGCGCGUUCUUAUUGUC


GGCAGGCGAGAAAGGCAAACGUUUCGCCCUGCCCAACAGCCGGAUUAUGAUUCAC


CAGCCUUUAAUCAGCGGCGGCUUGGGCGGUCAGGCAUCCGACAUUGAAAUCCACG


CACGCGAGUUGUUGAAAAUCAAAGAAAAACUCAACCGCCUGAUGGCGAAACAUU


GCGGCCGCGAUUUGGCAGAUUUGGAGCGCGACACCGACCGUGAUAAUUUCAUGUC


UGCCGAAGAAGCAAAAGAAUAUGGUUUGAUCGACCAAGUUUUGGAAAACCGCGC


UUCUUUGCGGCUUUAA






11. NGO0604: NC_002946.2:c591006-589321

DNA (- strand): SEQ ID NO: 58









ATGTCTATGGAAAATTTTGCTCAGCTGTTGGAAGAAAGCTTTACCCTGCAAGAAATG


ACCCGGGTGAGGTGATTACCGCTGAAGTAGTGGCAATCGACCAAAACTTCGTTAC


CGTAAACGCAGGTCTGAAATCAGAATCCCTGATCGATGTAGCTGAATTCAAAAACG


CTCAAGGCGAAATTGAAGTTAAAGTCGGCGACTTCGTTACCGTTACCATCGAATCCG


TCGAAAACGGCTTCGGCGAAACCAAACTGTCCCGCGAAAAAGCCAAACGCGCAGCC


GATTGGATCGCTTTGGAAGAAGCCATGGAAAACGGCAACATCCTGTCCGGCATCAT


CAACGGTAAAGTCAAAGGCGGCCTGACCGTTATGATCAGCAGCATCCGCGCATTCC


TGCCGGGTTCTTTGGTCGACGTACGTCCCGTTAAAGACACTTCCCATTTTGAAGGCA


AAGAGATCGAATTCAAAGTGATCAAACTGGACAAAAAACGCAACAACGTCGTTGTT


TCCCGCCGCGCCGTTTTGGAAGCCACTTTGGGTGAAGAACGCAAAGCCCTGCTGGA


AAACCTGCAAGAAGGCTCCGTCATCAAAGGCATCGTCAAAAATATCACCGACTACG


GCGCATTCGTTGACCTGGGCGGCATCGACGGCCTGCTGCACATCACCGATTTGGCAT


GGCGTCGCGTGAAACACCCGAGCGAAGTCTTGGAAGTCGGTCAGGAAGTTGAAGCC


AAAGTATTGAAATTCGACCAAGAAAAACAACGTGTTTCCTTGGGTATGAAACAACT


GGGCGAAGATCCTTGGAGCGGTCTGACCCGCCGTTATCCGCAAGCCACCCGCCTGTT


CGGCAAAGTATCCAACCTGACCGACTACGGCGCATTCGTCGAAATCGAACAAGGCA


TCGAAGGTTTGGTACACGTCTCCGAAATGGACTGGACCAACAAAAACGTACACCCG


AGCAAAGTCGTACAACTGGGTGACGAAGTCGAAGTCATGATTTTGGAAATCGACGA


AGGCCGCCGCCGTATCTCTTTGGGTATGAAACAATGCCAAGCCAATCCTTGGGAAGA


ATTTGCCGCCAACCACAACAAAGGAGACAAAATCTCCGGTGCGGTTAAATCCATTA


CCGATTTCGGCGTATTCGTCGGCCTGCCCGGCGGCATCGACGGTCTGGTTCACCTGT


CCGACCTGTCTTGGACCGAATCCGGCGAAGAAGCCGTACGCAAATACAAAAAAGGA


GAAGAAGTCGAAGCCGTCGTATTGGCAATCGATGTGGAAAAAGAACGCATCTCCTT


GGGTATCAAACAACTGGAAGGCGATCCTTTCGGCAACTTCATCAGCGTGAACGACA


AAGGTTCTTTGGTTAAAGGTTCCGTGAAATCTGTTGACGCCAAAGGCGCTGTTATCG


CCCTGTCTGACGAAGTAGAAGGCTACCTGCCTGCTTCCGAATTTGCAGCCGACCGCG


TTGAAGACTTGACCACCAAACTGAAAGAAGGCGACGAAGTTGAAGCCGTCATCGTT


ACCGTTGACCGCAAAAACCGCAGCATCAAACTTTCCGTTAAAGCCAAAGATGCCAA


AGAAAGCCGCGAAGCACTGAACTCCGTCAATGCCGCCGCCAATGCGAATGCCGGTA


CCACCAGCTTGGGCGACCTGCTGAAAGCCAAACTCTCCGGCGAACAAGAATAA






cDNA: SEQ ID NO: 59









TTATTCTTGTTCGCCGGAGAGTTTGGCTTTCAGCAGGTCGCCCAAGCTGGTGGTACC


GGCATTCGCATTGGCGGCGGCATTGACGGAGTTCAGTGCTTCGCGGCTTTCTTTGGC


ATCTTTGGCTTTAACGGAAAGTTTGATGCTGCGGTTTTTGCGGTCAACGGTAACGAT


GACGGCTTCAACTTCGTCGCCTTCTTTCAGTTTGGTGGTCAAGTCTTCAACGCGGTCG


GCTGCAAATTCGGAAGCAGGCAGGTAGCCTTCTACTTCGTCAGACAGGGCGATAAC


AGCGCCTTTGGCGTCAACAGATTTCACGGAACCTTTAACCAAAGAACCTTTGTCGTT


CACGCTGATGAAGTTGCCGAAAGGATCGCCTTCCAGTTGTTTGATACCCAAGGAGAT


GCGTTCTTTTTCCACATCGATTGCCAATACGACGGCTTCGACTTCTTCTCCTTTTTTGT


ATTTGCGTACGGCTTCTTCGCCGGATTCGGTCCAAGACAGGTCGGACAGGTGAACCA


GACCGTCGATGCCGCCGGGCAGGCCGACGAATACGCCGAAATCGGTAATGGATTTA


ACCGCACCGGAGATTTTGTCTCCTTTGTTGTGGTTGGCGGCAAATTCTTCCCAAGGAT


TGGCTTGGCATTGTTTCATACCCAAAGAGATACGGCGGCGGCCTTCGTCGATTTCCA


AAATCATGACTTCGACTTCGTCACCCAGTTGTACGACTTTGCTCGGGTGTACGTTTTT


GTTGGTCCAGTCCATTTCGGAGACGTGTACCAAACCTTCGATGCCTTGTTCGATTTCG


ACGAATGCGCCGTAGTCGGTCAGGTTGGATACTTTGCCGAACAGGCGGGTGGCTTGC


GGATAACGGCGGGTCAGACCGCTCCAAGGATCTTCGCCCAGTTGTTTCATACCCAAG


GAAACACGTTGTTTTTCTTGGTCGAATTTCAATACTTTGGCTTCAACTTCCTGACCGA


CTTCCAAGACTTCGCTCGGGTGTTTCACGCGACGCCATGCCAAATCGGTGATGTGCA


GCAGGCCGTCGATGCCGCCCAGGTCAACGAATGCGCCGTAGTCGGTGATATTTTTGA


CGATGCCTTTGATGACGGAGCCTTCTTGCAGGTTTTCCAGCAGGGCTTTGCGTTCTTC


ACCCAAAGTGGCTTCCAAAACGGCGCGGCGGGAAACAACGACGTTGTTGCGTTTTTT


GTCCAGTTTGATCACTTTGAATTCGATCTCTTTGCCTTCAAAATGGGAAGTGTCTTTA


ACGGGACGTACGTCGACCAAAGAACCCGGCAGGAATGCGCGGATGCTGCTGATCAT


AACGGTCAGGCCGCCTTTGACTTTACCGTTGATGATGCCGGACAGGATGTTGCCGTT


TTCCATGGCTTCTTCCAAAGCGATCCAATCGGCTGCGCGTTTGGCTTTTTCGCGGGAC


AGTTTGGTTTCGCCGAAGCCGTTTTCGACGGATTCGATGGTAACGGTAACGAAGTCG


CCGACTTTAACTTCAATTTCGCCTTGAGCGTTTTTGAATTCAGCTACATCGATCAGGG


ATTCTGATTTCAGACCTGCGTTTACGGTAACGAAGTTTTGGTCGATTGCCACTACTTC


AGCGGTAATCACCTCACCCGGGTTCATTTCTTGCAGGGTAAAGCTTTCTTCCAACAG


CTGAGCAAAATTTTCCATAGACAT






RNA: SEQ ID NO: 60









AUGUCUAUGGAAAAUUUUGCUCAGCUGUUGGAAGAAAGCUUUACCCUGCAAGAA


AUGAACCCGGGUGAGGUGAUUACCGCUGAAGUAGUGGCAAUCGACCAAAACUUC


GUUACCGUAAACGCAGGUCUGAAAUCAGAAUCCCUGAUCGAUGUAGCUGAAUUC


AAAAACGCUCAAGGCGAAAUUGAAGUUAAAGUCGGCGACUUCGUUACCGUUACC


AUCGAAUCCGUCGAAAACGGCUUCGGCGAAACCAAACUGUCCCGCGAAAAAGCCA


AACGCGCAGCCGAUUGGAUCGCUUUGGAAGAAGCCAUGGAAAACGGCAACAUCCU


GUCCGGCAUCAUCAACGGUAAAGUCAAAGGCGGCCUGACCGUUAUGAUCAGCAGC


AUCCGCGCAUUCCUGCCGGGUUCUUUGGUCGACGUACGUCCCGUUAAAGACACUU


CCCAUUUUGAAGGCAAAGAGAUCGAAUUCAAAGUGAUCAAACUGGACAAAAAAC


GCAACAACGUCGUUGUUUCCCGCCGCGCCGUUUUGGAAGCCACUUUGGGUGAAGA


ACGCAAAGCCCUGCUGGAAAACCUGCAAGAAGGCUCCGUCAUCAAAGGCAUCGUC


AAAAAUAUCACCGACUACGGCGCAUUCGUUGACCUGGGCGGCAUCGACGGCCUGC


UGCACAUCACCGAUUUGGCAUGGCGUCGCGUGAAACACCCGAGCGAAGUCUUGGA


AGUCGGUCAGGAAGUUGAAGCCAAAGUAUUGAAAUUCGACCAAGAAAAACAACG


UGUUUCCUUGGGUAUGAAACAACUGGGCGAAGAUCCUUGGAGCGGUCUGACCCG


CCGUUAUCCGCAAGCCACCCGCCUGUUCGGCAAAGUAUCCAACCUGACCGACUAC


GGCGCAUUCGUCGAAAUCGAACAAGGCAUCGAAGGUUUGGUACACGUCUCCGAA


AUGGACUGGACCAACAAAAACGUACACCCGAGCAAAGUCGUACAACUGGGUGACG


AAGUCGAAGUCAUGAUUUUGGAAAUCGACGAAGGCCGCCGCCGUAUCUCUUUGG


GUAUGAAACAAUGCCAAGCCAAUCCUUGGGAAGAAUUUGCCGCCAACCACAACAA


AGGAGACAAAAUCUCCGGUGCGGUUAAAUCCAUUACCGAUUUCGGCGUAUUCGU


CGGCCUGCCCGGCGGCAUCGACGGUCUGGUUCACCUGUCCGACCUGUCUUGGACC


GAAUCCGGCGAAGAAGCCGUACGCAAAUACAAAAAAGGAGAAGAAGUCGAAGCC


GUCGUAUUGGCAAUCGAUGUGGAAAAAGAACGCAUCUCCUUGGGUAUCAAACAA


CUGGAAGGCGAUCCUUUCGGCAACUUCAUCAGCGUGAACGACAAAGGUUCUUUG


GUUAAAGGUUCCGUGAAAUCUGUUGACGCCAAAGGCGCUGUUAUCGCCCUGUCU


GACGAAGUAGAAGGCUACCUGCCUGCUUCCGAAUUUGCAGCCGACCGCGUUGAAG


ACUUGACCACCAAACUGAAAGAAGGCGACGAAGUUGAAGCCGUCAUCGUUACCGU


UGACCGCAAAAACCGCAGCAUCAAACUUUCCGUUAAAGCCAAAGAUGCCAAAGAA


AGCCGCGAAGCACUGAACUCCGUCAAUGCCGCCGCCAAUGCGAAUGCCGGUACCA


CCAGCUUGGGCGACCUGCUGAAAGCCAAACUCUCCGGCGAACAAGAAUAA






12. NGO0618: NC_002946.2:c606708-606268

DNA (- strand): SEQ ID NO: 61









ATGATGCAGACTTTCCGAAAAATCAGCCTGTATGCCGCAACCTTGTGGCTCGGTATG


CAGATTATGGCAGGTTATATCGCCGCACCGGTGCTGTTCAAAATGCTGCCCAAAATG


CAGGCGGGCGAAATTGCCGGCGTATTGTTCGACATCCTCTCTTGGAGCGGGCTTGCC


GTTTGGGGCACGGTACTGGCTGCCGCCTTTGCCGCCCTAACCCGGCGGCAAACCGCC


CTGCTGCTTTTTTTATTGTCCGCCCTTGCCGCCAACCAATTTTTGGTTACACCCGTTAT


CGAGGCACTGAAATACGGGCATGAAAATTGGCTGTTGTCGGTTGCAGGCGGATCCTT


CGGAATGTGGCACGGTATTTCCAGCATGACTTTCATGGCAACCGCCCTACTTTCAGC


AGTTTTAAGTTGGCGGCTTTCCGGCAAAGAGGCCGTCTGA






cDNA: SEQ ID NO: 62









TCAGACGGCCTCTTTGCCGGAAAGCCGCCAACTTAAAACTGCTGAAAGTAGGGCGG


TTGCCATGAAAGTCATGCTGGAAATACCGTGCCACATTCCGAAGGATCCGCCTGCAA


CCGACAACAGCCAATTTTCATGCCCGTATTTCAGTGCCTCGATAACGGGTGTAACCA


AAAATTGGTTGGCGGCAAGGGCGGACAATAAAAAAAGCAGCAGGGCGGTTTGCCGC


CGGGTTAGGGCGGCAAAGGCGGCAGCCAGTACCGTGCCCCAAACGGCAAGCCCGCT


CCAAGAGAGGATGTCGAACAATACGCCGGCAATTTCGCCCGCCTGCATTTTGGGCA


GCATTTTGAACAGCACCGGTGCGGCGATATAACCTGCCATAATCTGCATACCGAGCC


ACAAGGTTGCGGCATACAGGCTGATTTTTCGGAAAGTCTGCATCAT






RNA: SEQ ID NO: 63









AUGAUGCAGACUUUCCGAAAAAUCAGCCUGUAUGCCGCAACCUUGUGGCUCGGUA


UGCAGAUUAUGGCAGGUUAUAUCGCCGCACCGGUGCUGUUCAAAAUGCUGCCCAA


AAUGCAGGCGGGCGAAAUUGCCGGCGUAUUGUUCGACAUCCUCUCUUGGAGCGG


GCUUGCCGUUUGGGGCACGGUACUGGCUGCCGCCUUUGCCGCCCUAACCCGGCGG


CAAACCGCCCUGCUGCUUUUUUUAUUGUCCGCCCUUGCCGCCAACCAAUUUUUGG


UUACACCCGUUAUCGAGGCACUGAAAUACGGGCAUGAAAAUUGGCUGUUGUCGG


UUGCAGGCGGAUCCUUCGGAAUGUGGCACGGUAUUUCCAGCAUGACUUUCAUGG


CAACCGCCCUACUUUCAGCAGUUUUAAGUUGGCGGCUUUCCGGCAAAGAGGCCGU


CUGA






13. NGO0619: NC_002946.2:c607565-606723

DNA (- strand): SEQ ID NO: 64









ATGGATATTAAAATCAACGACATCACCCTCGGCAACAATTCGCCTTTCGTCCTATTC


GGCGGCATCAACGTTTTAGAAGATTTGGATTCCACCCTCCAAACCTGTGCGCATTAC


GTCGAAGTTACCCGCAAACTGGGCATCCCCTATATCTTTAAAGCCTCTTTCGACAAG


GCAAACCGCTCGTCTATCCATTCCTATCGCGGCGTAGGCTTGGAAGAAGGCTTAAAG


ATTTTTGAAAAAGTCAAAGCAGAGTTCGGCATCCCCGTCATTACCGACGTACACGAA


CCCCATCAATGCCAACCCGTCGCCGAAGTGTGCGATGTCATCCAGCTTCCCGCCTTT


CTTGCGCGGCAGACCGATTTGGTGGCCGCAATGGCGGAAACGGGCAATGTTATCAA


CATCAAAAAACCCCAGTTCCTCAGCCCTTCGCAAATGAAAAACATCGTGGAAAAAT


TCCGCGAAGCCGGCAACGGGAAGCTGATTTTATGCGAACGCGGCAGCAGCTTCGGC


TACGACAACCTCGTTGTCGATATGCTCGGTTTCGGCGTGATGAAACAAACCTGCGGC


AACCTGCCGGTTATTTTCGACGTTACCCATTCCCTGCAAACCCGCGATGCCGGTTCT


GCCGCATCCGGCGGTCGTCGCGCACAGGCTTTGGATTTGGCACTTGCAGGCATGGCA


ACCCGCCTTGCCGGCCTGTTCCTCGAATCGCACCCCGATCCGAAACTGGCAAAATGC


GACGGCCCCAGCGCGCTGCCGCTACACCTTTTAGAAAATTTTTTAATCCGCATCAAA


GCATTGGACGATTTAATCAAATCACAACCGATTTTAACAATCGAGTAA






cDNA: SEQ ID NO: 65









TTACTCGATTGTTAAAATCGGTTGTGATTTGATTAAATCGTCCAATGCTTTGATGCGG


ATTAAAAAATTTTCTAAAAGGTGTAGCGGCAGCGCGCTGGGGCCGTCGCATTTTGCC


AGTTTCGGATCGGGGTGCGATTCGAGGAACAGGCCGGCAAGGCGGGTTGCCATGCC


TGCAAGTGCCAAATCCAAAGCCTGTGCGCGACGACCGCCGGATGCGGCAGAACCGG


CATCGCGGGTTTGCAGGGAATGGGTAACGTCGAAAATAACCGGCAGGTTGCCGCAG


GTTTGTTTCATCACGCCGAAACCGAGCATATCGACAACGAGGTTGTCGTAGCCGAAG


CTGCTGCCGCGTTCGCATAAAATCAGCTTCCCGTTGCCGGCTTCGCGGAATTTTTCCA


CGATGTTTTTCATTTGCGAAGGGCTGAGGAACTGGGGTTTTTTGATGTTGATAACATT


GCCCGTTTCCGCCATTGCGGCCACCAAATCGGTCTGCCGCGCAAGAAAGGCGGGAA


GCTGGATGACATCGCACACTTCGGCGACGGGTTGGCATTGATGGGGTTCGTGTACGT


CGGTAATGACGGGGATGCCGAACTCTGCTTTGACTTTTTCAAAAATCTTTAAGCCTT


CTTCCAAGCCTACGCCGCGATAGGAATGGATAGACGAGCGGTTTGCCTTGTCGAAA


GAGGCTTTAAAGATATAGGGGATGCCCAGTTTGCGGGTAACTTCGACGTAATGCGC


ACAGGTTTGGAGGGTGGAATCCAAATCTTCTAAAACGTTGATGCCGCCGAATAGGA


CGAAAGGCGAATTGTTGCCGAGGGTGATGTCGTTGATTTTAATATCCAT






RNA: SEQ ID NO: 66









AUGGAUAUUAAAAUCAACGACAUCACCCUCGGCAACAAUUCGCCUUUCGUCCUAU


UCGGCGGCAUCAACGUUUUAGAAGAUUUGGAUUCCACCCUCCAAACCUGUGCGCA


UUACGUCGAAGUUACCCGCAAACUGGGCAUCCCCUAUAUCUUUAAAGCCUCUUUC


GACAAGGCAAACCGCUCGUCUAUCCAUUCCUAUCGCGGCGUAGGCUUGGAAGAAG


GCUUAAAGAUUUUUGAAAAAGUCAAAGCAGAGUUCGGCAUCCCCGUCAUUACCG


ACGUACACGAACCCCAUCAAUGCCAACCCGUCGCCGAAGUGUGCGAUGUCAUCCA


GCUUCCCGCCUUUCUUGCGCGGCAGACCGAUUUGGUGGCCGCAAUGGCGGAAACG


GGCAAUGUUAUCAACAUCAAAAAACCCCAGUUCCUCAGCCCUUCGCAAAUGAAAA


ACAUCGUGGAAAAAUUCCGCGAAGCCGGCAACGGGAAGCUGAUUUUAUGCGAAC


GCGGCAGCAGCUUCGGCUACGACAACCUCGUUGUCGAUAUGCUCGGUUUCGGCGU


GAUGAAACAAACCUGCGGCAACCUGCCGGUUAUUUUCGACGUUACCCAUUCCCUG


CAAACCCGCGAUGCCGGUUCUGCCGCAUCCGGCGGUCGUCGCGCACAGGCUUUGG


AUUUGGCACUUGCAGGCAUGGCAACCCGCCUUGCCGGCCUGUUCCUCGAAUCGCA


CCCCGAUCCGAAACUGGCAAAAUGCGACGGCCCCAGCGCGCUGCCGCUACACCUU


UUAGAAAAUUUUUUAAUCCGCAUCAAAGCAUUGGACGAUUUAAUCAAAUCACAA


CCGAUUUUAACAAUCGAGUAA






14. NGO0620: NC_002946.2:c607970-607587

DNA (- strand): SEQ ID NO: 67









ATGTTCCGTACTATACTTGGCGGAAAAATCCACCGCGCCACCGTAACCGAAGCCGAT


TTAAACTACGTCGGCAGCATTACCGTCGATCAAGACCTGTTAGACGCGGCAGGCATC


TGCCCCAACGAAAAAGTCGCCATCGTCAACAACAACAACGGCGAACGTTTTGAAAC


CTATACCATTGCAGGGAAACGCGGCAGCGGCGTGATTTGCCTGAACGGTGCTGCAG


CCAGGCTGGTACAGAAAGGCGACATCGTCATCATTATGTCTTATATCCAACTTTCCG


AACCGGAAATCGCCGCACACGAACCCAAAGTCGTCTTAGTGGACGGAAACAATAAA


ATCCGCGACATCATCTCCTACGAGCCGCCGCACACCGTACTGTAA






cDNA: SEQ ID NO: 68









TTACAGTACGGTGTGCGGCGGCTCGTAGGAGATGATGTCGCGGATTTTATTGTTTCC


GTCCACTAAGACGACTTTGGGTTCGTGTGCGGCGATTTCCGGTTCGGAAAGTTGGAT


ATAAGACATAATGATGACGATGTCGCCTTTCTGTACCAGCCTGGCTGCAGCACCGTT


CAGGCAAATCACGCCGCTGCCGCGTTTCCCTGCAATGGTATAGGTTTCAAAACGTTC


GCCGTTGTTGTTGTTGACGATGGCGACTTTTTCGTTGGGGCAGATGCCTGCCGCGTCT


AACAGGTCTTGATCGACGGTAATGCTGCCGACGTAGTTTAAATCGGCTTCGGTTACG


GTGGCGCGGTGGATTTTTCCGCCAAGTATAGTACGGAACAT






RNA: SEQ ID NO: 69









AUGUUCCGUACUAUACUUGGCGGAAAAAUCCACCGCGCCACCGUAACCGAAGCCG


AUUUAAACUACGUCGGCAGCAUUACCGUCGAUCAAGACCUGUUAGACGCGGCAGG


CAUCUGCCCCAACGAAAAAGUCGCCAUCGUCAACAACAACAACGGCGAACGUUUU


GAAACCUAUACCAUUGCAGGGAAACGCGGCAGCGGCGUGAUUUGCCUGAACGGU


GCUGCAGCCAGGCUGGUACAGAAAGGCGACAUCGUCAUCAUUAUGUCUUAUAUCC


AACUUUCCGAACCGGAAAUCGCCGCACACGAACCCAAAGUCGUCUUAGUGGACGG


AAACAAUAAAAUCCGCGACAUCAUCUCCUACGAGCCGCCGCACACCGUACUGUAA


  






15. Ngo0648: Nc_002946.2:638163-638717

DNA (+ strand): SEQ ID NO: 70









ATGAAAAAAATCATCGCCTCCGCGCTTATCGCAACATTCGCACTCACCGCCTGCCAA


GACGACACGCAGGCGCGGCTCGAACGGCAGCAGAAACAGATTGAAGCCCTGCAAC


AGCAGCTCGCACAGCAGGCAGACGATACGGTTTACCAACTGACTCCCGAAGCAGTC


AAAGACACCATTCCTGCCCAGGCGCAGGCAAACGGCAACAACGGTCAGCCCGTTAC


CGGCAAAGACGGGCAGCAGTATATTTACGACCAATCGACAGGAAGCTGGCTGCTGC


AAAGCCTGATTGGCGCGGCGGCAGGCGCGTTTATCGGCAACGCGCTGGCAAACAAA


TTCACACGGGCGGGCAACCAAGACAGCCCCGTCGCCCGTCGCGCGCGTGCTGCCTA


CCATCAGTCCGCACGCCCCAATGCGCGCACCAGCAGGGATTTGAACACGCGCAGCC


TCCGTGCAAAACAACAGGCGGCGCAGGCGCAGCGTTACCGCCCGACAACGCGCCCG


CCCGTCAATTACCGCCGTCCCGCTATGCGCGGTTTCGGCAGAAGGCGGTAA






cDNA: SEQ ID NO: 71









TTACCGCCTTCTGCCGAAACCGCGCATAGCGGGACGGCGGTAATTGACGGGCGGGC


GCGTTGTCGGGCGGTAACGCTGCGCCTGCGCCGCCTGTTGTTTTGCACGGAGGCTGC


GCGTGTTCAAATCCCTGCTGGTGCGCGCATTGGGGCGTGCGGACTGATGGTAGGCAG


CACGCGCGCGACGGGCGACGGGGCTGTCTTGGTTGCCCGCCCGTGTGAATTTGTTTG


CCAGCGCGTTGCCGATAAACGCGCCTGCCGCCGCGCCAATCAGGCTTTGCAGCAGC


CAGCTTCCTGTCGATTGGTCGTAAATATACTGCTGCCCGTCTTTGCCGGTAACGGGCT


GACCGTTGTTGCCGTTTGCCTGCGCCTGGGCAGGAATGGTGTCTTTGACTGCTTCGG


GAGTCAGTTGGTAAACCGTATCGTCTGCCTGCTGTGCGAGCTGCTGTTGCAGGGCTT


CAATCTGTTTCTGCTGCCGTTCGAGCCGCGCCTGCGTGTCGTCTTGGCAGGCGGTGA


GTGCGAATGTTGCGATAAGCGCGGAGGCGATGATTTTTTTCAT






RNA: SEQ ID NO: 72









AUGAAAAAAAUCAUCGCCUCCGCGCUUAUCGCAACAUUCGCACUCACCGCCUGCC


AAGACGACACGCAGGCGCGGCUCGAACGGCAGCAGAAACAGAUUGAAGCCCUGCA


ACAGCAGCUCGCACAGCAGGCAGACGAUACGGUUUACCAACUGACUCCCGAAGCA


GUCAAAGACACCAUUCCUGCCCAGGCGCAGGCAAACGGCAACAACGGUCAGCCCG


UUACCGGCAAAGACGGGCAGCAGUAUAUUUACGACCAAUCGACAGGAAGCUGGC


UGCUGCAAAGCCUGAUUGGCGCGGCGGCAGGCGCGUUUAUCGGCAACGCGCUGGC


AAACAAAUUCACACGGGCGGGCAACCAAGACAGCCCCGUCGCCCGUCGCGCGCGU


GCUGCCUACCAUCAGUCCGCACGCCCCAAUGCGCGCACCAGCAGGGAUUUGAACA


CGCGCAGCCUCCGUGCAAAACAACAGGCGGCGCAGGCGCAGCGUUACCGCCCGAC


AACGCGCCCGCCCGUCAAUUACCGCCGUCCCGCUAUGCGCGGUUUCGGCAGAAGG


CGGUAA






16. Ngo1291: Nc_002946.2:1246814-1247542

DNA (+ strand): SEQ ID NO: 73









ATGGCAGGCCATAGCAAGTGGGCGAATATCCAGCATAAAAAAGCCCGTCAGGATGC


CAAACGCGGCAAAATCTTCACCCGTTTAATCAAAGAAATCACCGTTGCGGCGCGTAT


GGGCGGCGGCGATCCCGGCGCAAATCCGCGCCTGCGTCTGGCTTTGGAAAAAGCAG


CCGAAAACAATATGCCCAAAGACAATGTGCAACGCGCCATCGACAAAGGTACGGGT


AACTTGGAAGGCGTGGAATACATCGAGTTGCGCTACGAAGGCTACGGCATCGGCGG


CGCAGCTTTGATGGTGGACTGCCTGACCGACAACAAAACCCGCACCGTTGCGGACG


TACGCCACGCATTTACCAAAAACGGCGGCAACTTGGGTACCGACGGCTGCGTGGCG


TTCAACTTCGTGCATCAGGGCTATTTGGTATTCGAACCCGGCGTTGACGAAGACGAG


CTGATGGAAGCGGCTTTGGAAGCCGGTGCGGAAGACGTGGTTACCAACGACGACGG


TTCCATCGAAGTCATTACCGCGCCAAATGATTGGGCGGGCGTAAAATCCGCTTTGGA


GGCGGCAGGTTACAAATCCGTTGACGGCGACGTTACGATGCGCGCCCAAAACGAAA


CCGAACTCTCCGGCGACGATGCCGTCAAAATGCAAAAACTGATTGACGCGCTGGAA


GACTTGGACGACGTGCAAGACGTTTACACTTCCGCCGTATTGAATCTGGACTGA






cDNA: SEQ ID NO: 74









TCAGTCCAGATTCAATACGGCGGAAGTGTAAACGTCTTGCACGTCGTCCAAGTCTTC


CAGCGCGTCAATCAGTTTTTGCATTTTGACGGCATCGTCGCCGGAGAGTTCGGTTTC


GTTTTGGGCGCGCATCGTAACGTCGCCGTCAACGGATTTGTAACCTGCCGCCTCCAA


AGCGGATTTTACGCCCGCCCAATCATTTGGCGCGGTAATGACTTCGATGGAACCGTC


GTCGTTGGTAACCACGTCTTCCGCACCGGCTTCCAAAGCCGCTTCCATCAGCTCGTC


TTCGTCAACGCCGGGTTCGAATACCAAATAGCCCTGATGCACGAAGTTGAACGCCA


CGCAGCCGTCGGTACCCAAGTTGCCGCCGTTTTTGGTAAATGCGTGGCGTACGTCCG


CAACGGTGCGGGTTTTGTTGTCGGTCAGGCAGTCCACCATCAAAGCTGCGCCGCCGA


TGCCGTAGCCTTCGTAGCGCAACTCGATGTATTCCACGCCTTCCAAGTTACCCGTAC


CTTTGTCGATGGCGCGTTGCACATTGTCTTTGGGCATATTGTTTTCGGCTGCTTTTTCC


AAAGCCAGACGCAGGCGCGGATTTGCGCCGGGATCGCCGCCGCCCATACGCGCCGC


AACGGTGATTTCTTTGATTAAACGGGTGAAGATTTTGCCGCGTTTGGCATCCTGACG


GGCTTTTTTATGCTGGATATTCGCCCACTTGCTATGGCCTGCCAT






RNA: SEQ ID NO: 75









AUGGCAGGCCAUAGCAAGUGGGCGAAUAUCCAGCAUAAAAAAGCCCGUCAGGAU


GCCAAACGCGGCAAAAUCUUCACCCGUUUAAUCAAAGAAAUCACCGUUGCGGCGC


GUAUGGGCGGCGGCGAUCCCGGCGCAAAUCCGCGCCUGCGUCUGGCUUUGGAAAA


AGCAGCCGAAAACAAUAUGCCCAAAGACAAUGUGCAACGCGCCAUCGACAAAGGU


ACGGGUAACUUGGAAGGCGUGGAAUACAUCGAGUUGCGCUACGAAGGCUACGGC


AUCGGCGGCGCAGCUUUGAUGGUGGACUGCCUGACCGACAACAAAACCCGCACCG


UUGCGGACGUACGCCACGCAUUUACCAAAAACGGCGGCAACUUGGGUACCGACGG


CUGCGUGGCGUUCAACUUCGUGCAUCAGGGCUAUUUGGUAUUCGAACCCGGCGUU


GACGAAGACGAGCUGAUGGAAGCGGCUUUGGAAGCCGGUGCGGAAGACGUGGUU


ACCAACGACGACGGUUCCAUCGAAGUCAUUACCGCGCCAAAUGAUUGGGCGGGCG


UAAAAUCCGCUUUGGAGGCGGCAGGUUACAAAUCCGUUGACGGCGACGUUACGA


UGCGCGCCCAAAACGAAACCGAACUCUCCGGCGACGAUGCCGUCAAAAUGCAAAA


ACUGAUUGACGCGCUGGAAGACUUGGACGACGUGCAAGACGUUUACACUUCCGCC


GUAUUGAAUCUGGACUGA






17. NGO1440: NC_002946.2:c1406345-1405167

DNA (- strand): SEQ ID NO: 76









ATGGCAAAAATGATGAAATGGGCGGCTGTTGCGGCGGTCGCGGCGGCAGCGGTTTG


GGGCGGATGGTCTTATCTGAAGCCCGAACCGCAGGCTGCTTATATTACGGAAACGGT


CAGGCGCGGCGATATCAGCCGGACGGTTTCCGCGACGGGCGAGATTTCGCCGTCCA


ACCTGGTATCGGTCGGCGCGCAGGCTTCGGGGCAGATTAAAAAGCTTTATGTCAAAC


TCGGGCAACAGGTCAAAAAGGGCGATTTGATTGCGGAAATCAATTCGACCACGCAG


ACCAACACGATCGATATGGAAAAATCCAAATTGGAAACGTATCAGGCGAAGCTGGT


GTCGGCACAGATTGCATTGGGCAGCGCGGAGAAGAAATATAAGCGTCAGGCGGCGT


TGTGGAAGGATGATGCGACCTCTAAAGAAGATTTGGAAAGCGCGCAGGATGCGCTT


GCCGCCGCCAAAGCCAATGTTGCCGAGTTGAAGGCTTTAATCAGACAGAGCAAAAT


TTCCATCAATACCGCCGAGTCGGATTTGGGCTACACGCGCATTACCGCGACGATGGA


CGGCACGGTGGTGGCGATTCCCGTGGAAGAGGGGCAGACTGTGAACGCGGCGCAGT


CTACGCCGACGATTGTCCAATTGGCGAATCTGGATATGATGTTGAACAAAATGCAGA


TTGCCGAGGGCGATATTACCAAGGTGAAGGCGGGGCAGGATATTTCGTTTACGATTT


TGTCCGAACCGGATACGCCGATTAAGGCGAAGCTCGACAGCGTCGACCCCGGGCTG


ACCACGATGTCGTCGGGCGGCTACAACAGCAGTACGGATACGGCTTCCAATGCGGT


CTATTATTATGCCCGTTCGTTTGTGCCGAATCCGGACGGCAAACTCGCCACGGGGAT


GACGACGCAGAATACGGTTGAAATCGACGGTGTGAAAAATGTGTTGCTTATTCCGTC


GCTGACCGTGAAAAATCGCGGCGGCAAGGCGTTCGTACGCGTGTTGGGTGCGGACG


GCAAGGCAGTGGAACGCGAAATCCGGACCGGTATGAAAGACAGTATGAATACCGA


AGTGAAAAGCGGGTTGAAAGAGGGGGACAAAGTGGTCATCTCCGAAATAACCGCCG


CCGAGCAGCAGGAAAGCGGCGAACGCGCCCTAGGCGGCCCGCCGCGCCGATAA






cDNA: SEQ ID NO: 77









TTATCGGCGCGGCGGGCCGCCTAGGGCGCGTTCGCCGCTTTCCTGCTGCTCGGCGGC


GGTTATTTCGGAGATGACCACTTTGTCCCCCTCTTTCAACCCGCTTTTCACTTCGGTA


TTCATACTGTCTTTCATACCGGTCCGGATTTCGCGTTCCACTGCCTTGCCGTCCGCAC


CCAACACGCGTACGAACGCCTTGCCGCCGCGATTTTTCACGGTCAGCGACGGAATA


AGCAACACATTTTTCACACCGTCGATTTCAACCGTATTCTGCGTCGTCATCCCCGTGG


CGAGTTTGCCGTCCGGATTCGGCACAAACGAACGGGCATAATAATAGACCGCATTG


GAAGCCGTATCCGTACTGCTGTTGTAGCCGCCCGACGACATCGTGGTCAGCCCGGGG


TCGACGCTGTCGAGCTTCGCCTTAATCGGCGTATCCGGTTCGGACAAAATCGTAAAC


GAAATATCCTGCCCCGCCTTCACCTTGGTAATATCGCCCTCGGCAATCTGCATTTTGT


TCAACATCATATCCAGATTCGCCAATTGGACAATCGTCGGCGTAGACTGCGCCGCGT


TCACAGTCTGCCCCTCTTCCACGGGAATCGCCACCACCGTGCCGTCCATCGTCGCGG


TAATGCGCGTGTAGCCCAAATCCGACTCGGCGGTATTGATGGAAATTTTGCTCTGTC


TGATTAAAGCCTTCAACTCGGCAACATTGGCTTTGGCGGCGGCAAGCGCATCCTGCG


CGCTTTCCAAATCTTCTTTAGAGGTCGCATCATCCTTCCACAACGCCGCCTGACGCTT


ATATTTCTTCTCCGCGCTGCCCAATGCAATCTGTGCCGACACCAGCTTCGCCTGATAC


GTTTCCAATTTGGATTTTTCCATATCGATCGTGTTGGTCTGCGTGGTCGAATTGATTT


CCGCAATCAAATCGCCCTTTTTGACCTGTTGCCCGAGTTTGACATAAAGCTTTTTAAT


CTGCCCCGAAGCCTGCGCGCCGACCGATACCAGGTTGGACGGCGAAATCTCGCCCG


TCGCGGAAACCGTCCGGCTGATATCGCCGCGCCTGACCGTTTCCGTAATATAAGCAG


CCTGCGGTTCGGGCTTCAGATAAGACCATCCGCCCCAAACCGCTGCCGCCGCGACCG


CCGCAACAGCCGCCCATTTCATCATTTTTGCCAT






RNA: SEQ ID NO: 78









AUGGCAAAAAUGAUGAAAUGGGCGGCUGUUGCGGCGGUCGCGGCGGCAGCGGUU


UGGGGCGGAUGGUCUUAUCUGAAGCCCGAACCGCAGGCUGCUUAUAUUACGGAA


ACGGUCAGGCGCGGCGAUAUCAGCCGGACGGUUUCCGCGACGGGCGAGAUUUCGC


CGUCCAACCUGGUAUCGGUCGGCGCGCAGGCUUCGGGGCAGAUUAAAAAGCUUUA


UGUCAAACUCGGGCAACAGGUCAAAAAGGGCGAUUUGAUUGCGGAAAUCAAUUC


GACCACGCAGACCAACACGAUCGAUAUGGAAAAAUCCAAAUUGGAAACGUAUCA


GGCGAAGCUGGUGUCGGCACAGAUUGCAUUGGGCAGCGCGGAGAAGAAAUAUAA


GCGUCAGGCGGCGUUGUGGAAGGAUGAUGCGACCUCUAAAGAAGAUUUGGAAAG


CGCGCAGGAUGCGCUUGCCGCCGCCAAAGCCAAUGUUGCCGAGUUGAAGGCUUUA


AUCAGACAGAGCAAAAUUUCCAUCAAUACCGCCGAGUCGGAUUUGGGCUACACGC


GCAUUACCGCGACGAUGGACGGCACGGUGGUGGCGAUUCCCGUGGAAGAGGGGC


AGACUGUGAACGCGGCGCAGUCUACGCCGACGAUUGUCCAAUUGGCGAAUCUGGA


UAUGAUGUUGAACAAAAUGCAGAUUGCCGAGGGCGAUAUUACCAAGGUGAAGGC


GGGGCAGGAUAUUUCGUUUACGAUUUUGUCCGAACCGGAUACGCCGAUUAAGGC


GAAGCUCGACAGCGUCGACCCCGGGCUGACCACGAUGUCGUCGGGCGGCUACAAC


AGCAGUACGGAUACGGCUUCCAAUGCGGUCUAUUAUUAUGCCCGUUCGUUUGUG


CCGAAUCCGGACGGCAAACUCGCCACGGGGAUGACGACGCAGAAUACGGUUGAAA


UCGACGGUGUGAAAAAUGUGUUGCUUAUUCCGUCGCUGACCGUGAAAAAUCGCG


GCGGCAAGGCGUUCGUACGCGUGUUGGGUGCGGACGGCAAGGCAGUGGAACGCG


AAAUCCGGACCGGUAUGAAAGACAGUAUGAAUACCGAAGUGAAAAGCGGGUUGA


AAGAGGGGGACAAAGUGGUCAUCUCCGAAAUAACCGCCGCCGAGCAGCAGGAAA


GCGGCGAACGCGCCCUAGGCGGCCCGCCGCGCCGAUAA






18. NGO1658: NC_002946.2:c1613531-1613241

DNA (- strand): SEQ ID NO: 79









GTGGAATATTTTATGTTGCTGGCAACAGACGGGGAGGATGTGCATGAAGCGCGTAT


GGCGGCACGTCCCGAACACTTTAAACGGCTGGAAACGCTGAAATCGGAAGGCCGTC


TGCTGACGGCAGGCCCAAACCTGCTGCCGGACAATCCCGAACGTGTTTCGGGCAGC


TTGATTGTGGCACAGTTCGAGTCTTTGGATGCGGCGCAGGCTTGGGCTGAAGACGAT


CCCTATGTTCATGCCGGCGTGTACAGCGAAGTGCTGATCAAGCCGTTTAAAGCGGTG


TTCAAATAA






cDNA: SEQ ID NO: 80









TTATTTGAACACCGCTTTAAACGGCTTGATCAGCACTTCGCTGTACACGCCGGCATG


AACATAGGGATCGTCTTCAGCCCAAGCCTGCGCCGCATCCAAAGACTCGAACTGTG


CCACAATCAAGCTGCCCGAAACACGTTCGGGATTGTCCGGCAGCAGGTTTGGGCCT


GCCGTCAGCAGACGGCCTTCCGATTTCAGCGTTTCCAGCCGTTTAAAGTGTTCGGGA


CGTGCCGCCATACGCGCTTCATGCACATCCTCCCCGTCTGTTGCCAGCAACATAAAA


TATTCCAC






RNA: SEQ ID NO: 81









GUGGAAUAUUUUAUGUUGCUGGCAACAGACGGGGAGGAUGUGCAUGAAGCGCGU


AUGGCGGCACGUCCCGAACACUUUAAACGGCUGGAAACGCUGAAAUCGGAAGGCC


GUCUGCUGACGGCAGGCCCAAACCUGCUGCCGGACAAUCCCGAACGUGUUUCGGG


CAGCUUGAUUGUGGCACAGUUCGAGUCUUUGGAUGCGGCGCAGGCUUGGGCUGA


AGACGAUCCCUAUGUUCAUGCCGGCGUGUACAGCGAAGUGCUGAUCAAGCCGUUU


AAAGCGGUGUUCAAAUAA






19. NGO1659: NC_002946.2:c1614064-1613534

DNA (- strand): SEQ ID NO: 82









ATGAAATTTGTCAGCGACCTTTTGTCCGTCATCTTGTTTTTTGCTACTTATACCGTTAC


CAAAAATATGATTGCCGCTGCGGCGGTTGCCTTGGTTGCAGGCGTGGTTCAGGCGGC


TTTCCTGTATTGGAAGCATAAAAGGCTGGATACGATGCAGTGGGTCGGACTGGTGCT


GATTGTCGTATTCGGCGGCGCAACCATTGTTTTGGGCGACAGCCGCTTCATTATGTG


GAAGCCGACAGTATTGTTCTGGTGCGGGGCGTTATTCCTGCTGGGCAGCCACCTTGC


GGGTAAAAACGGCTTGAAAGCGAGTATCGGCAGGGAGATTCAGCTTCCGGATGCCG


TATGGGGAAAATTGACATATATGTGGGTCGGTTTTCTGATTTTTATGGGTATTGCCA


ACTGGTTTGTGTTTACTAGGTTTGAAGCGCAATGGGTTAACTATAAGATGTTCGGTT


CGACTGCGCTGATGCTTTTTTTCTTTATTATTCAGGGTATTTATCTGAGTACCTATCTG


AAAAAGGAGGATTGA






cDNA: SEQ ID NO: 83









TCAATCCTCCTTTTTCAGATAGGTACTCAGATAAATACCCTGAATAATAAAGAAAAA


AAGCATCAGCGCAGTCGAACCGAACATCTTATAGTTAACCCATTGCGCTTCAAACCT


AGTAAACACAAACCAGTTGGCAATACCCATAAAAATCAGAAAACCGACCCACATAT


ATGTCAATTTTCCCCATACGGCATCCGGAAGCTGAATCTCCCTGCCGATACTCGCTTT


CAAGCCGTTTTTACCCGCAAGGTGGCTGCCCAGCAGGAATAACGCCCCGCACCAGA


ACAATACTGTCGGCTTCCACATAATGAAGCGGCTGTCGCCCAAAACAATGGTTGCGC


CGCCGAATACGACAATCAGCACCAGTCCGACCCACTGCATCGTATCCAGCCTTTTAT


GCTTCCAATACAGGAAAGCCGCCTGAACCACGCCTGCAACCAAGGCAACCGCCGCA


GCGGCAATCATATTTTTGGTAACGGTATAAGTAGCAAAAAACAAGATGACGGACAA


AAGGTCGCTGACAAATTTCAT






RNA: SEQ ID NO: 84









AUGAAAUUUGUCAGCGACCUUUUGUCCGUCAUCUUGUUUUUUGCUACUUAUACC


GUUACCAAAAAUAUGAUUGCCGCUGCGGCGGUUGCCUUGGUUGCAGGCGUGGUU


CAGGCGGCUUUCCUGUAUUGGAAGCAUAAAAGGCUGGAUACGAUGCAGUGGGUC


GGACUGGUGCUGAUUGUCGUAUUCGGCGGCGCAACCAUUGUUUUGGGCGACAGC


CGCUUCAUUAUGUGGAAGCCGACAGUAUUGUUCUGGUGCGGGGCGUUAUUCCUG


CUGGGCAGCCACCUUGCGGGUAAAAACGGCUUGAAAGCGAGUAUCGGCAGGGAG


AUUCAGCUUCCGGAUGCCGUAUGGGGAAAAUUGACAUAUAUGUGGGUCGGUUUU


CUGAUUUUUAUGGGUAUUGCCAACUGGUUUGUGUUUACUAGGUUUGAAGCGCAA


UGGGUUAACUAUAAGAUGUUCGGUUCGACUGCGCUGAUGCUUUUUUUCUUUAUU


AUUCAGGGUAUUUAUCUGAGUACCUAUCUGAAAAAGGAGGAUUGA






20. NGO1673: NC_002946.2:c1629235-1627559

DNA (- strand): SEQ ID NO: 85









ATGAGCGTAGGTTTGCTGAGGATTCTGGTTCAAAACCAGGTGGTTACTGTTGAGCGG


GCCGAGCATTACTACAATGAGTCGCAGGCGGGTAAGGAAGTGTTGCCGATGCTGTTT


TCAGACGGTGTCATTTCGCCCAAGTCGCTTGCGGCATTGATTGCGAGGGTGTTCAGT


TATTCGATTCTTGATTTGCGTCATTATCCGCGCCACAGGGTGCTGATGGGGGTGTTG


ACGGAGGAGCAGATGGTGGAGTTCCACTGTGTGCCGGTTTTCCGTCGGGGCGACAA


AGTATTTTTTGCGGTTTCCGATCCGACCCAGATGCCGCAAATTCAGAAAACCGTTTC


TGCCGCAGGGATTGCGGTTGAGTTGGTCATTGTCGAGGATGACCAGTTGGCGGGTTT


GCTCGATTGGGTGGGTTCGCGTTCGACATCGCTGCTTCAGGAGCTTGGGGAGGGGCA


AGAGGAAGAGGAAAGCCACACCCTGTATATCGACAACGAGGAGGCAGAAGACGGC


CCTGTTCCGAGGTTTATCCATAAAACTTTGTCGGATGCCTTGCGTAGCGGGGCATCC


GACATCCATTTCGAGTTTTACGAACACAATGCGCGTATCCGTTTCCGTGTGGACGGG


CAGCTCCGCGAGGTGGTTCAGCCGCCCATTGCGGTAAGGGGGCAGCTTGCTTCCCGG


ATTAAGGTAATGTCGCGTTTGGACATTTCCGAAAAACGGATACCGCAGGACGGTAG


GATGCAGCTGACCTTTCAAAAGGGCGGCAAGCCTGTCGATTTCCGTGTCAGCACATT


GCCGACGCTGTTTGGCGAAAAGGTCGTGATGCGGATTTTGAATTCCGATGCCGCGTC


TTTGAACATCGACCAGCTCGGTTTTGAGCCGTTCCAGAAAAAATTGTTGTTGGAAGC


GATTCACCGTCCTTACGGGATGGTGCTGGTAACCGGTCCGACGGGTTCGGGTAAGAC


GGTGTCGCTCTATACCTGTTTGAATATTTTGAATACGGAGTCGGTAAATATTGCAAC


GGCGGAAGACCCTGCCGAGATTAACCTGCCGGGCATCAATCAGGTTAACGTCAATG


ATAAGCAGGGTCTGACTTTTGCCGCTGCTTTGAAGTCTTTCCTGCGTCAGGACCCGG


ACATCATTATGGTCGGTGAGATTCGTGATTTGGAAACTGCCGATATTGCGATTAAGG


CGGCACAAACAGGGCATATGGTGTTTTCCACACTGCACACGAATAATGCGCCGGCG


ACGTTGTCGCGTATGCTGAATATGGGTGTCGCGCCGTTTAATATTGCCAGTTCGGTC


AGCCTGATTATGGCGCAGCGTCTTTTACGCAGGCTGTGTTCGAGCTGCAAACAGGAA


GTGGAACGCCCGTCTGCCTCTGCTTTGAAGGAAGTCGGTTTCACCGATGAGGATCTT


GCAAAAGATTGGAAACTTTACCGCGCCGTCGGTTGCGACCGTTGCCGGGGGCAGGG


TTATAAGGGGCGTGCGGGCGTGTATGAGGTTATGCCCATCAGCGAAGAAATGCAGC


GTGTGATTATGAACAACGGTACGGAAGTGGGTATTTTGGACGTTGCCTATAAGGAG


GGTATGGTGGATTTGCGCCGGGCCGGTATTTTGAAAATTATGCAGGGCATTACTTCA


TTGGAAGAGGTAACGGCAAATACCAACGATTAG






cDNA: SEQ ID NO: 86









CTAATCGTTGGTATTTGCCGTTACCTCTTCCAATGAAGTAATGCCCTGCATAATTTTC


AAAATACCGGCCCGGCGCAAATCCACCATACCCTCCTTATAGGCAACGTCCAAAAT


ACCCACTTCCGTACCGTTGTTCATAATCACACGCTGCATTTCTTCGCTGATGGGCATA


ACCTCATACACGCCCGCACGCCCCTTATAACCCTGCCCCCGGCAACGGTCGCAACCG


ACGGCGCGGTAAAGTTTCCAATCTTTTGCAAGATCCTCATCGGTGAAACCGACTTCC


TTCAAAGCAGAGGCAGACGGGCGTTCCACTTCCTGTTTGCAGCTCGAACACAGCCTG


CGTAAAAGACGCTGCGCCATAATCAGGCTGACCGAACTGGCAATATTAAACGGCGC


GACACCCATATTCAGCATACGCGACAACGTCGCCGGCGCATTATTCGTGTGCAGTGT


GGAAAACACCATATGCCCTGTTTGTGCCGCCTTAATCGCAATATCGGCAGTTTCCAA


ATCACGAATCTCACCGACCATAATGATGTCCGGGTCCTGACGCAGGAAAGACTTCA


AAGCAGCGGCAAAAGTCAGACCCTGCTTATCATTGACGTTAACCTGATTGATGCCCG


GCAGGTTAATCTCGGCAGGGTCTTCCGCCGTTGCAATATTTACCGACTCCGTATTCA


AAATATTCAAACAGGTATAGAGCGACACCGTCTTACCCGAACCCGTCGGACCGGTT


ACCAGCACCATCCCGTAAGGACGGTGAATCGCTTCCAACAACAATTTTTTCTGGAAC


GGCTCAAAACCGAGCTGGTCGATGTTCAAAGACGCGGCATCGGAATTCAAAATCCG


CATCACGACCTTTTCGCCAAACAGCGTCGGCAATGTGCTGACACGGAAATCGACAG


GCTTGCCGCCCTTTTGAAAGGTCAGCTGCATCCTACCGTCCTGCGGTATCCGTTTTTC


GGAAATGTCCAAACGCGACATTACCTTAATCCGGGAAGCAAGCTGCCCCCTTACCG


CAATGGGCGGCTGAACCACCTCGCGGAGCTGCCCGTCCACACGGAAACGGATACGC


GCATTGTGTTCGTAAAACTCGAAATGGATGTCGGATGCCCCGCTACGCAAGGCATCC


GACAAAGTTTTATGGATAAACCTCGGAACAGGGCCGTCTTCTGCCTCCTCGTTGTCG


ATATACAGGGTGTGGCTTTCCTCTTCCTCTTGCCCCTCCCCAAGCTCCTGAAGCAGCG


ATGTCGAACGCGAACCCACCCAATCGAGCAAACCCGCCAACTGGTCATCCTCGACA


ATGACCAACTCAACCGCAATCCCTGCGGCAGAAACGGTTTTCTGAATTTGCGGCATC


TGGGTCGGATCGGAAACCGCAAAAAATACTTTGTCGCCCCGACGGAAAACCGGCAC


ACAGTGGAACTCCACCATCTGCTCCTCCGTCAACACCCCCATCAGCACCCTGTGGCG


CGGATAATGACGCAAATCAAGAATCGAATAACTGAACACCCTCGCAATCAATGCCG


CAAGCGACTTGGGCGAAATGACACCGTCTGAAAACAGCATCGGCAACACTTCCTTA


CCCGCCTGCGACTCATTGTAGTAATGCTCGGCCCGCTCAACAGTAACCACCTGGTTT


TGAACCAGAATCCTCAGCAAACCTACGCTCAT






RNA: SEQ ID NO: 87









AUGAGCGUAGGUUUGCUGAGGAUUCUGGUUCAAAACCAGGUGGUUACUGUUGAG


CGGGCCGAGCAUUACUACAAUGAGUCGCAGGCGGGUAAGGAAGUGUUGCCGAUG


CUGUUUUCAGACGGUGUCAUUUCGCCCAAGUCGCUUGCGGCAUUGAUUGCGAGG


GUGUUCAGUUAUUCGAUUCUUGAUUUGCGUCAUUAUCCGCGCCACAGGGUGCUG


AUGGGGGUGUUGACGGAGGAGCAGAUGGUGGAGUUCCACUGUGUGCCGGUUUUC


CGUCGGGGCGACAAAGUAUUUUUUGCGGUUUCCGAUCCGACCCAGAUGCCGCAAA


UUCAGAAAACCGUUUCUGCCGCAGGGAUUGCGGUUGAGUUGGUCAUUGUCGAGG


AUGACCAGUUGGCGGGUUUGCUCGAUUGGGUGGGUUCGCGUUCGACAUCGCUGC


UUCAGGAGCUUGGGGAGGGGCAAGAGGAAGAGGAAAGCCACACCCUGUAUAUCG


ACAACGAGGAGGCAGAAGACGGCCCUGUUCCGAGGUUUAUCCAUAAAACUUUGU


CGGAUGCCUUGCGUAGCGGGGCAUCCGACAUCCAUUUCGAGUUUUACGAACACAA


UGCGCGUAUCCGUUUCCGUGUGGACGGGCAGCUCCGCGAGGUGGUUCAGCCGCCC


AUUGCGGUAAGGGGGCAGCUUGCUUCCCGGAUUAAGGUAAUGUCGCGUUUGGAC


AUUUCCGAAAAACGGAUACCGCAGGACGGUAGGAUGCAGCUGACCUUUCAAAAG


GGCGGCAAGCCUGUCGAUUUCCGUGUCAGCACAUUGCCGACGCUGUUUGGCGAAA


AGGUCGUGAUGCGGAUUUUGAAUUCCGAUGCCGCGUCUUUGAACAUCGACCAGC


UCGGUUUUGAGCCGUUCCAGAAAAAAUUGUUGUUGGAAGCGAUUCACCGUCCUU


ACGGGAUGGUGCUGGUAACCGGUCCGACGGGUUCGGGUAAGACGGUGUCGCUCU


AUACCUGUUUGAAUAUUUUGAAUACGGAGUCGGUAAAUAUUGCAACGGCGGAAG


ACCCUGCCGAGAUUAACCUGCCGGGCAUCAAUCAGGUUAACGUCAAUGAUAAGCA


GGGUCUGACUUUUGCCGCUGCUUUGAAGUCUUUCCUGCGUCAGGACCCGGACAUC


AUUAUGGUCGGUGAGAUUCGUGAUUUGGAAACUGCCGAUAUUGCGAUUAAGGCG


GCACAAACAGGGCAUAUGGUGUUUUCCACACUGCACACGAAUAAUGCGCCGGCGA


CGUUGUCGCGUAUGCUGAAUAUGGGUGUCGCGCCGUUUAAUAUUGCCAGUUCGG


UCAGCCUGAUUAUGGCGCAGCGUCUUUUACGCAGGCUGUGUUCGAGCUGCAAACA


GGAAGUGGAACGCCCGUCUGCCUCUGCUUUGAAGGAAGUCGGUUUCACCGAUGA


GGAUCUUGCAAAAGAUUGGAAACUUUACCGCGCCGUCGGUUGCGACCGUUGCCGG


GGGCAGGGUUAUAAGGGGCGUGCGGGCGUGUAUGAGGUUAUGCCCAUCAGCGAA


GAAAUGCAGCGUGUGAUUAUGAACAACGGUACGGAAGUGGGUAUUUUGGACGUU


GCCUAUAAGGAGGGUAUGGUGGAUUUGCGCCGGGCCGGUAUUUUGAAAAUUAUG


CAGGGCAUUACUUCAUUGGAAGAGGUAACGGCAAAUACCAACGAUUAG






21. Ngo1676: Nc_002946.2:1631221-1631529

DNA (+ strand): SEQ ID NO: 88









ATGTACGCGGTCGTAAAAACCGGCGGCAAACAGTATAAAGTTTCCGTCGGCGAAAA


ATTGAAAGTAGAACAGATACCAGCCCAACTCGACAGCCAAATCGAACTGACCGAAG


TTTTGATGATTGCTGACGGCGAATCTGTAAAAGTTGGCGCACCCTTTATCGAAGGTG


CAAAAGTAACGGCTAAAGTAGTGGCACACGGTCGTGGCGAAAAAGTCCGCATCTTC


AAAATGCGCCGCCGCAAACACTACCAAAAACGCCAAGGCCACCGCCAAAATTTCAC


CCAAATCGAAATCGTGGCAATCGCCTAA






cDNA: SEQ ID NO: 89









TTAGGCGATTGCCACGATTTCGATTTGGGTGAAATTTTGGCGGTGGCCTTGGCGTTTT


TGGTAGTGTTTGCGGCGGCGCATTTTGAAGATGCGGACTTTTTCGCCACGACCGTGT


GCCACTACTTTAGCCGTTACTTTTGCACCTTCGATAAAGGGTGCGCCAACTTTTACAG


ATTCGCCGTCAGCAATCATCAAAACTTCGGTCAGTTCGATTTGGCTGTCGAGTTGGG


CTGGTATCTGTTCTACTTTCAATTTTTCGCCGACGGAAACTTTATACTGTTTGCCGCC


GGTTTTTACGACCGCGTACAT






RNA: SEQ ID NO: 90









AUGUACGCGGUCGUAAAAACCGGCGGCAAACAGUAUAAAGUUUCCGUCGGCGAA


AAAUUGAAAGUAGAACAGAUACCAGCCCAACUCGACAGCCAAAUCGAACUGACCG


AAGUUUUGAUGAUUGCUGACGGCGAAUCUGUAAAAGUUGGCGCACCCUUUAUCG


AAGGUGCAAAAGUAACGGCUAAAGUAGUGGCACACGGUCGUGGCGAAAAAGUCC


GCAUCUUCAAAAUGCGCCGCCGCAAACACUACCAAAAACGCCAAGGCCACCGCCA


AAAUUUCACCCAAAUCGAAAUCGUGGCAAUCGCCUAA






22. Ngo1677: Nc_002946.2:1631554-1631826

DNA (+ strand): SEQ ID NO: 91









ATGGCAAGTAAAAAAGCAGGCGGCAGCACCCGCAACGGTCGCGATTCAGAAGCCA


AACGCTTGGGCGTTAAAGCCTACGGCAACGAGCTGATTCCCGCAGGTTCCATCATCG


TACGCCAACGCGGTACCAAATTCCACGCAGGCGACAACGTAGGTATGGGCAAAGAC


CACACTTTGTTCGCCAAAATTGACGGTTATGTCGAATTCAAAACCAAAGGCGCGCTG


AACCGTAAAACTGTCAGCATCCGTCCTTACACCGGTTCTGAAGAATAA






cDNA: SEQ ID NO: 92









TTATTCTTCAGAACCGGTGTAAGGACGGATGCTGACAGTTTTACGGTTCAGCGCGCC


TTTGGTTTTGAATTCGACATAACCGTCAATTTTGGCGAACAAAGTGTGGTCTTTGCCC


ATACCTACGTTGTCGCCTGCGTGGAATTTGGTACCGCGTTGGCGTACGATGATGGAA


CCTGCGGGAATCAGCTCGTTGCCGTAGGCTTTAACGCCCAAGCGTTTGGCTTCTGAA


TCGCGACCGTTGCGGGTGCTGCCGCCTGCTTTTTTACTTGCCAT






RNA: SEQ ID NO: 93









AUGGCAAGUAAAAAAGCAGGCGGCAGCACCCGCAACGGUCGCGAUUCAGAAGCCA


AACGCUUGGGCGUUAAAGCCUACGGCAACGAGCUGAUUCCCGCAGGUUCCAUCAU


CGUACGCCAACGCGGUACCAAAUUCCACGCAGGCGACAACGUAGGUAUGGGCAAA


GACCACACUUUGUUCGCCAAAAUUGACGGUUAUGUCGAAUUCAAAACCAAAGGC


GCGCUGAACCGUAAAACUGUCAGCAUCCGUCCUUACACCGGUUCUGAAGAAUAA






23. NGO1679: NC_002946.2:c1633589-1633434

DNA (- strand): SEQ ID NO: 94









ATGCGCGATAAAATCAAACTGGAATCCGGTGCAGGTACTGGCCACTTCTACACCACT


ACCAAAAATAAACGCACTATGCCCGGCAAACTGGAAATCAAAAAATTCGATCCGGT


TGCCCGCAAACACGTAGTGTACAAAGAAACCAAACTGAAATAA






cDNA: SEQ ID NO: 95









TTATTTCAGTTTGGTTTCTTTGTACACTACGTGTTTGCGGGCAACCGGATCGAATTTT


TTGATTTCCAGTTTGCCGGGCATAGTGCGTTTATTTTTGGTAGTGGTGTAGAAGTGGC


CAGTACCTGCACCGGATTCCAGTTTGATTTTATCGCGCAT






RNA: SEQ ID NO: 96









AUGCGCGAUAAAAUCAAACUGGAAUCCGGUGCAGGUACUGGCCACUUCUACACCA


CUACCAAAAAUAAACGCACUAUGCCCGGCAAACUGGAAAUCAAAAAAUUCGAUCC


GGUUGCCCGCAAACACGUAGUGUACAAAGAAACCAAACUGAAAUAA






24. Ngo1804: Nc_002946.2:1777677-1778126

DNA (+ strand): SEQ ID NO: 97









ATGGACGTACAACTCCCCATCGAAGCCAAAGACATCCAAAAACTCATCCCCCACCG


CTACCCGTTTCTCCAGCTCGACCGCATTACCGCCTTCGAGCCGATGAAAACCCTGAC


CGCCATCAAAAACGTAACCATAAACGAACCCCAATTCCAAGGCCATTTCCCCGACCT


GCCCGTTATGCCCGGCGTACTCATCATCGAAGCGATGGCGCAGGCGTGCGGCACGTT


GGCGATTTTGAGCGAAGGCGGGCGCAAGGAAAACGAATTTTTCTTCTTCGCCGGCAT


AGACGAAGCCCGTTTCAAACGCCAAGTCATCCCCGGCGACCAACTCGTCTTTGAAGT


CGAACTCCTGACCAGCCGGCGCGGCATCGGCAAATTCAACGCCGTTGCCAAAGTGG


ACGGACAAGTCGCCGTCGAAGCCGTGATTATGTGCGCCAAACGCGTGGTTTGA






cDNA: SEQ ID NO: 98









TCAAACCACGCGTTTGGCGCACATAATCACGGCTTCGACGGCGACTTGTCCGTCCAC


TTTGGCAACGGCGTTGAATTTGCCGATGCCGCGCCGGCTGGTCAGGAGTTCGACTTC


AAAGACGAGTTGGTCGCCGGGGATGACTTGGCGTTTGAAACGGGCTTCGTCTATGCC


GGCGAAGAAGAAAAATTCGTTTTCCTTGCGCCCGCCTTCGCTCAAAATCGCCAACGT


GCCGCACGCCTGCGCCATCGCTTCGATGATGAGTACGCCGGGCATAACGGGCAGGT


CGGGGAAATGGCCTTGGAATTGGGGTTCGTTTATGGTTACGTTTTTGATGGCGGTCA


GGGTTTTCATCGGCTCGAAGGCGGTAATGCGGTCGAGCTGGAGAAACGGGTAGCGG


TGGGGGATGAGTTTTTGGATGTCTTTGGCTTCGATGGGGAGTTGTACGTCCAT






RNA: SEQ ID NO: 99









AUGGACGUACAACUCCCCAUCGAAGCCAAAGACAUCCAAAAACUCAUCCCCCACC


GCUACCCGUUUCUCCAGCUCGACCGCAUUACCGCCUUCGAGCCGAUGAAAACCCU


GACCGCCAUCAAAAACGUAACCAUAAACGAACCCCAAUUCCAAGGCCAUUUCCCC


GACCUGCCCGUUAUGCCCGGCGUACUCAUCAUCGAAGCGAUGGCGCAGGCGUGCG


GCACGUUGGCGAUUUUGAGCGAAGGCGGGCGCAAGGAAAACGAAUUUUUCUUCU


UCGCCGGCAUAGACGAAGCCCGUUUCAAACGCCAAGUCAUCCCCGGCGACCAACU


CGUCUUUGAAGUCGAACUCCUGACCAGCCGGCGCGGCAUCGGCAAAUUCAACGCC


GUUGCCAAAGUGGACGGACAAGUCGCCGUCGAAGCCGUGAUUAUGUGCGCCAAAC


GCGUGGUUUGA






25. NGO1833: NC_002946.2:c1803866-1803537

DNA (- strand): SEQ ID NO: 100









ATGAGAGTAAATGCACAACATAAAAATGCCCGTATCTCTGCTCAAAAGGCTCGTTTG


GTAGCTGATTTGATTCGTGGTAAAGACGTTGCCCAAGCTTTGAATATTTTGGCTTTCA


GCCCTAAAAAAGGTGCCGAGCTGATCAAAAAAGTATTGGAGTCAGCTATTGCTAAT


GCTGAGCATAATAACGGTGCGGACATTGATGAACTGAAAGTGGTAACTATCTTTGTT


GACAAAGGTCCAAGCTTGAAACGTTTTCAAGCTCGCGCCAAAGGTCGCGGTAACCG


CATCGAAAAACAAACTTGTCATATCAATGTGACAGTGGGTAACTAA






cDNA: SEQ ID NO: 101









TTAGTTACCCACTGTCACATTGATATGACAAGTTTGTTTTTCGATGCGGTTACCGCGA


CCTTTGGCGCGAGCTTGAAAACGTTTCAAGCTTGGACCTTTGTCAACAAAGATAGTT


ACCACTTTCAGTTCATCAATGTCCGCACCGTTATTATGCTCAGCATTAGCAATAGCTG


ACTCCAATACTTTTTTGATCAGCTCGGCACCTTTTTTAGGGCTGAAAGCCAAAATATT


CAAAGCTTGGGCAACGTCTTTACCACGAATCAAATCAGCTACCAAACGAGCCTTTTG


AGCAGAGATACGGGCATTTTTATGTTGTGCATTTACTCTCAT






RNA: SEQ ID NO: 102









AUGAGAGUAAAUGCACAACAUAAAAAUGCCCGUAUCUCUGCUCAAAAGGCUCGU


UUGGUAGCUGAUUUGAUUCGUGGUAAAGACGUUGCCCAAGCUUUGAAUAUUUUG


GCUUUCAGCCCUAAAAAAGGUGCCGAGCUGAUCAAAAAAGUAUUGGAGUCAGCU


AUUGCUAAUGCUGAGCAUAAUAACGGUGCGGACAUUGAUGAACUGAAAGUGGUA


ACUAUCUUUGUUGACAAAGGUCCAAGCUUGAAACGUUUUCAAGCUCGCGCCAAA


GGUCGCGGUAACCGCAUCGAAAAACAAACUUGUCAUAUCAAUGUGACAGUGGGU


AACUAA






26. NGO1834: NC_002946.2:c1804153-1803875

DNA (- strand): SEQ ID NO: 103









ATGGCTCGTTCATTGAAAAAAGGCCCATATGTAGACCTGCATTTGCTGAAAAAAGTA


GATGCTGTTCGCGCAAGCAACGACAAACGCCCGATTAAAACCTGGTCTCGTCGTTCT


ACCATTCTGCCTGATTTTATCGGTCTGACCATTGCCGTGCACAACGGTCGCACCCAT


GTGCCTGTGTTTATCAGCGACAATATGGTTGGTCATAAATTAGGCGAATTCTCATTG


ACCCGTACCTTTAAAGGCCACCTGGCCGATAAAAAGGCTAAAAAGAAATAA






cDNA: SEQ ID NO: 104









TTATTTCTTTTTAGCCTTTTTATCGGCCAGGTGGCCTTTAAAGGTACGGGTCAATGAG


AATTCGCCTAATTTATGACCAACCATATTGTCGCTGATAAACACAGGCACATGGGTG


CGACCGTTGTGCACGGCAATGGTCAGACCGATAAAATCAGGCAGAATGGTAGAACG


ACGAGACCAGGTTTTAATCGGGCGTTTGTCGTTGCTTGCGCGAACAGCATCTACTTT


TTTCAGCAAATGCAGGTCTACATATGGGCCTTTTTTCAATGAACGAGCCAT






RNA: SEQ ID NO: 105









AUGGCUCGUUCAUUGAAAAAAGGCCCAUAUGUAGACCUGCAUUUGCUGAAAAAA


GUAGAUGCUGUUCGCGCAAGCAACGACAAACGCCCGAUUAAAACCUGGUCUCGUC


GUUCUACCAUUCUGCCUGAUUUUAUCGGUCUGACCAUUGCCGUGCACAACGGUCG


CACCCAUGUGCCUGUGUUUAUCAGCGACAAUAUGGUUGGUCAUAAAUUAGGCGA


AUUCUCAUUGACCCGUACCUUUAAAGGCCACCUGGCCGAUAAAAAGGCUAAAAAG


AAAUAA






27. NGO1835: NC_002946.2:c1804992-1804159

DNA (- strand): SEQ ID NO: 106









ATGGCAATCGTTAAAATGAAGCCGACCTCTGCAGGCCGTCGCGGCATGGTTCGCGTG


GTAACAGAAGGTTTGCACAAAGGTGCACCTTATGCACCCTTGCTTGAAAAGAAAAA


TTCTACTGCCGGCCGTAACAATAATGGTCATATCACCACCCGTCACAAAGGCGGCGG


TCATAAACACCATTACCGTGTTGTAGACTTTAAACGTAACAAAGACGGCATTTCTGC


TAAAGTAGAGCGTATCGAATACGATCCTAACCGTACTGCCTTCATCGCACTGTTGTG


CTATGCAGACGGCGAGCGTCGTTACATCATCGCTCCTCGCGGTATTCAAGCCGGTGT


CGTATTGGTTTCCGGTGCTGAAGCTGCCATCAAAGTAGGCAACACCCTGCCGATCCG


CAACATTCCCGTTGGTACGACTATCCACTGTATCGAAATGAAACCCGGTAAAGGTGC


TCAAATCGCACGTTCTGCCGGTGCTTCTGCGGTATTGTTGGCTAAAGAAGGTGCATA


CGCTCAAGTCCGTCTGCGCTCTGGCGAAGTTCGTAAAATCAACGTAGATTGCCGTGC


GACCATCGGTGAAGTCGGTAACGAAGAGCAAAGCCTGAAAAAAATCGGTAAAGCC


GGTGCTAACCGTTGGCGCGGTATTCGTCCGACCGTACGCGGTGTTGTCATGAATCCC


GTCGATCACCCGCATGGTGGTGGTGAAGGCCGTACCGGCGAAGCCCGCGAACCGGT


TAGTCCATGGGGTACTCCTGCTAAAGGCTACCGCACTCGTAATAACAAACGCACGG


ATAATATGATTGTTCGTCGCCGTTACTCAAATAAAGGTTAA






cDNA: SEQ ID NO: 107









TTAACCTTTATTTGAGTAACGGCGACGAACAATCATATTATCCGTGCGTTTGTTATTA


CGAGTGCGGTAGCCTTTAGCAGGAGTACCCCATGGACTAACCGGTTCGCGGGCTTCG


CCGGTACGGCCTTCACCACCACCATGCGGGTGATCGACGGGATTCATGACAACACC


GCGTACGGTCGGACGAATACCGCGCCAACGGTTAGCACCGGCTTTACCGATTTTTTT


CAGGCTTTGCTCTTCGTTACCGACTTCACCGATGGTCGCACGGCAATCTACGTTGATT


TTACGAACTTCGCCAGAGCGCAGACGGACTTGAGCGTATGCACCTTCTTTAGCCAAC


AATACCGCAGAAGCACCGGCAGAACGTGCGATTTGAGCACCTTTACCGGGTTTCATT


TCGATACAGTGGATAGTCGTACCAACGGGAATGTTGCGGATCGGCAGGGTGTTGCCT


ACTTTGATGGCAGCTTCAGCACCGGAAACCAATACGACACCGGCTTGAATACCGCG


AGGAGCGATGATGTAACGACGCTCGCCGTCTGCATAGCACAACAGTGCGATGAAGG


CAGTACGGTTAGGATCGTATTCGATACGCTCTACTTTAGCAGAAATGCCGTCTTTGTT


ACGTTTAAAGTCTACAACACGGTAATGGTGTTTATGACCGCCGCCTTTGTGACGGGT


GGTGATATGACCATTATTGTTACGGCCGGCAGTAGAATTTTTCTTTTCAAGCAAGGG


TGCATAAGGTGCACCTTTGTGCAAACCTTCTGTTACCACGCGAACCATGCCGCGACG


GCCTGCAGAGGTCGGCTTCATTTTAACGATTGCCAT






RNA: SEQ ID NO: 108









AUGGCAAUCGUUAAAAUGAAGCCGACCUCUGCAGGCCGUCGCGGCAUGGUUCGCG


UGGUAACAGAAGGUUUGCACAAAGGUGCACCUUAUGCACCCUUGCUUGAAAAGA


AAAAUUCUACUGCCGGCCGUAACAAUAAUGGUCAUAUCACCACCCGUCACAAAGG


CGGCGGUCAUAAACACCAUUACCGUGUUGUAGACUUUAAACGUAACAAAGACGG


CAUUUCUGCUAAAGUAGAGCGUAUCGAAUACGAUCCUAACCGUACUGCCUUCAUC


GCACUGUUGUGCUAUGCAGACGGCGAGCGUCGUUACAUCAUCGCUCCUCGCGGUA


UUCAAGCCGGUGUCGUAUUGGUUUCCGGUGCUGAAGCUGCCAUCAAAGUAGGCA


ACACCCUGCCGAUCCGCAACAUUCCCGUUGGUACGACUAUCCACUGUAUCGAAAU


GAAACCCGGUAAAGGUGCUCAAAUCGCACGUUCUGCCGGUGCUUCUGCGGUAUUG


UUGGCUAAAGAAGGUGCAUACGCUCAAGUCCGUCUGCGCUCUGGCGAAGUUCGU


AAAAUCAACGUAGAUUGCCGUGCGACCAUCGGUGAAGUCGGUAACGAAGAGCAA


AGCCUGAAAAAAAUCGGUAAAGCCGGUGCUAACCGUUGGCGCGGUAUUCGUCCG


ACCGUACGCGGUGUUGUCAUGAAUCCCGUCGAUCACCCGCAUGGUGGUGGUGAAG


GCCGUACCGGCGAAGCCCGCGAACCGGUUAGUCCAUGGGGUACUCCUGCUAAAGG


CUACCGCACUCGUAAUAACAAACGCACGGAUAAUAUGAUUGUUCGUCGCCGUUAC


UCAAAUAAAGGUUAA






28. NGO1837: NC_002946.2:c1805929-1805309

DNA (- strand): SEQ ID NO: 109









ATGGAATTGAAAGTAATTGACGCTAAAGGACAAGTTTCAGGCAGCCTGTCTGTTTCT


GATGCTTTGTTCGCCCGCGAATACAATGAAGCGTTGGTTCACCAGCTGGTAAATGCC


TACTTGGCAAACGCCCGCTCTGGTAACCGTGCTCAAAAAACCCGTGCCGAAGTAAA


ACACTCAACCAAAAAACCATGGCGTCAAAAAGGTACCGGCCGCGCCCGTTCCGGTA


TGACTTCTTCTCCGCTGTGGCGTAAAGGCGGTCGCGCGTTCCCGAACAAACCCGACG


AAAACTTCACTCAAAAAGTAAACCGTAAAATGTACCGTGCCGGTATGGCGACTATC


CTGTCCCAATTGGCGCGTGACGAGCGTTTGTTTGTGATTGAGGCGTTGACTGCCGAA


ACTCCCAAAACCAAAGTTTTTGCCGAACAAGTAAAAAATTTGGCTCTGGAGCAAGT


GCTGTTTGTAACCAAACGGCTCGACGAGAATGTTTACTTGGCTTCACGCAACTTGCC


AAACGTATTGGTTTTGGAAGCTCAACAAGTTGATCCTTACAGCTTGCTGCGTTATAA


AAAAGTAATCATCACTAAAGATGCGGTTGCACAATTAGAGGAGCAATGGGTATGA






cDNA: SEQ ID NO: 110









TCATACCCATTGCTCCTCTAATTGTGCAACCGCATCTTTAGTGATGATTACTTTTTTA


TAACGCAGCAAGCTGTAAGGATCAACTTGTTGAGCTTCCAAAACCAATACGTTTGGC


AAGTTGCGTGAAGCCAAGTAAACATTCTCGTCGAGCCGTTTGGTTACAAACAGCACT


TGCTCCAGAGCCAAATTTTTTACTTGTTCGGCAAAAACTTTGGTTTTGGGAGTTTCGG


CAGTCAACGCCTCAATCACAAACAAACGCTCGTCACGCGCCAATTGGGACAGGATA


GTCGCCATACCGGCACGGTACATTTTACGGTTTACTTTTTGAGTGAAGTTTTCGTCGG


GTTTGTTCGGGAACGCGCGACCGCCTTTACGCCACAGCGGAGAAGAAGTCATACCG


GAACGGGCGCGGCCGGTACCTTTTTGACGCCATGGTTTTTTGGTTGAGTGTTTTACTT


CGGCACGGGTTTTTTGAGCACGGTTACCAGAGCGGGCGTTTGCCAAGTAGGCATTTA


CCAGCTGGTGAACCAACGCTTCATTGTATTCGCGGGCGAACAAAGCATCAGAAACA


GACAGGCTGCCTGAAACTTGTCCTTTAGCGTCAATTACTTTCAATTCCAT






RNA: SEQ ID NO: 111









AUGGAAUUGAAAGUAAUUGACGCUAAAGGACAAGUUUCAGGCAGCCUGUCUGUU


UCUGAUGCUUUGUUCGCCCGCGAAUACAAUGAAGCGUUGGUUCACCAGCUGGUA


AAUGCCUACUUGGCAAACGCCCGCUCUGGUAACCGUGCUCAAAAAACCCGUGCCG


AAGUAAAACACUCAACCAAAAAACCAUGGCGUCAAAAAGGUACCGGCCGCGCCCG


UUCCGGUAUGACUUCUUCUCCGCUGUGGCGUAAAGGCGGUCGCGCGUUCCCGAAC


AAACCCGACGAAAACUUCACUCAAAAAGUAAACCGUAAAAUGUACCGUGCCGGUA


UGGCGACUAUCCUGUCCCAAUUGGCGCGUGACGAGCGUUUGUUUGUGAUUGAGG


CGUUGACUGCCGAAACUCCCAAAACCAAAGUUUUUGCCGAACAAGUAAAAAAUU


UGGCUCUGGAGCAAGUGCUGUUUGUAACCAAACGGCUCGACGAGAAUGUUUACU


UGGCUUCACGCAACUUGCCAAACGUAUUGGUUUUGGAAGCUCAACAAGUUGAUC


CUUACAGCUUGCUGCGUUAUAAAAAAGUAAUCAUCACUAAAGAUGCGGUUGCAC


AAUUAGAGGAGCAAUGGGUAUGA






29. NGO1843: NC_002946.2:c1811065-1808960

DNA (- strand): SEQ ID NO: 112









ATGGCTCGTAAGACCCCGATCAGCCTGTACCGCAACATCGGTATTTCCGCCCATATC


GATGCGGGTAAAACCACGACGACAGAACGTATTTTGTTCTATACCGGTTTGACCCAC


AAGCTGGGCGAAGTGCATGACGGTGCGGCTACTACCGACTACATGGAACAAGAGCA


AGAGCGCGGTATTACCATTACCTCCGCTGCCGTTACTTCCTACTGGTCCGGTATGGC


GAAACAATTCCCCGAGCACCGCTTCAACATCATCGACACCCCGGGGCACGTTGACTT


TACCGTAGAGGTAGAGCGTTCTATGCGTGTATTGGACGGCGCGGTAATGGTTTACTG


TGCGGTGGGCGGTGTTCAACCGCAATCTGAAACCGTATGGCGGCAAGCCAACAAAT


ACCAAGTTCCGCGCTTGGCGTTTGTCAATAAAATGGACCGCCAAGGTGCCAACTTCT


TCCGCGTTGTCGAGCAAATGAAAACCCGTTTGCGCGCAAACCCCGTACCTATCGTCA


TTCCGGTAGGCGCGGAAGACAGTTTTACCGGTGTTGTCGATTTGCTGAAAATGAAAT


CTATCATCTGGAATGAAGCCGATAAAGGTACAACCTTTACCTATGGCGATATTCCTG


CCGAATTGGTCGAAACTGCCGAAGAATGGCGTCAAAATATGATTGAAGCCGCAGCC


GAAGCCAGCGAAGAACTGATGGACAAATACTTGGGCGGTGAAGATCTGGCCGAAGA


AGAAATCGTAGGCGCGTTGCGTCAACGTACTTTGGCAGGCGAAATTCAGCCTATGCT


GTGCGGTTCTGCATTTAAAAACAAAGGTGTTCAACGTATGTTGGACGCAGTTGTAGA


ATTGCTGCCAGCTCCTACCGATATTCCTCCGGTTCAAGGTGTTAATCCTAACACTGA


AGAAGCCGACAGCCGTCAAGCCAGCGATGAAGAGAAATTCTCTGCATTGGCATTCA


AAATGTTGAACGACAAATACGTCGGTCAGCTGACCTTTATCCGCGTTTACTCAGGCG


TAGTAAAATCCGGCGATACCGTACTGAATTCTGTAAAAGGCACTCGCGAACGTATCG


GTCGTTTGGTGCAAATGACTGCCGCAGACCGTACTGAAATCGAAGAAGTACGCGCT


GGCGACATCGCAGCCGCTATCGGTCTGAAAGACGTTACTACCGGTGAAACCTTGTGT


GCGGAAAGCGCGCCGATTATCTTGGAACGTATGGAATTCCCCGAGCCGGTAATCCAT


ATTGCCGTTGAGCCGAAAACCAAAGCCGACCAAGAGAAAATGGGTATCGCCCTGAA


CCGCTTGGCTAAAGAAGACCCTTCTTTCCGCGTTCGTACAGACGAAGAATCCGGTCA


AACCATTATTTCCGGTATGGGTGAGCTGCACTTGGAAATTATTGTTGACCGTATGAA


ACGCGAATTCGGTGTGGAAGCAAATATCGGTGCACCTCAAGTGGCTTACCGTGAAA


CTATCCGCAAAGCCGTTAAAGCTGAATACAAACATGCAAAACAATCCGGTGGTAAA


GGTCAATACGGTCACGTTGTGATTGAAATGGAACCTATGGAACCGGGTGGTGAAGG


TTACGAGTTTATCGATGAAATTAAAGGTGGTGTGATTCCTCGCGAATTTATTCCGTCT


GTCGATAAAGGTATCCGCGATACGTTGCCTAACGGTATCGTTGCCGGCTATCCTGTA


GTTGACGTACGTATCCGTCTGGTATTCGGTTCTTACCATGATGTCGACTCTTCCCAAT


TGGCATTTGAATTGGCTGCTTCTCAAGCGTTTAAAGAAGGTATGCGTCAAGCATCTC


CTGCCCTGCTTGAGCCGATTATGGCAGTTGAAGTGGAAACTCCGGAAGAATACATG


GGCGACGTAATGGGCGACTTGAACCGCCGTCGCGGTGTTGTATTGGGTATGGATGAT


GACGGTATCGGCGGTAAAAAAGTCCGTGCCGAAGTACCTCTGGCAGAAATGTTCGG


TTACTCGACCGACCTGCGTTCTGCAACCCAAGGCCGCGCTACTTACTCTATGGAGTT


CAAGAAATATTCTGAAGCTCCTGCCCACATAGCTGCTGCTGTAACTGAAGCCCGTAA


AGGCTAA






cDNA: SEQ ID NO: 113









TTAGCCTTTACGGGCTTCAGTTACAGCAGCAGCTATGTGGGCAGGAGCTTCAGAATA


TTTCTTGAACTCCATAGAGTAAGTAGCGCGGCCTTGGGTTGCAGAACGCAGGTCGGT


CGAGTAACCGAACATTTCTGCCAGAGGTACTTCGGCACGGACTTTTTTACCGCCGAT


ACCGTCATCATCCATACCCAATACAACACCGCGACGGCGGTTCAAGTCGCCCATTAC


GTCGCCCATGTATTCTTCCGGAGTTTCCACTTCAACTGCCATAATCGGCTCAAGCAG


GGCAGGAGATGCTTGACGCATACCTTCTTTAAACGCTTGAGAAGCAGCCAATTCAAA


TGCCAATTGGGAAGAGTCGACATCATGGTAAGAACCGAATACCAGACGGATACGTA


CGTCAACTACAGGATAGCCGGCAACGATACCGTTAGGCAACGTATCGCGGATACCT


TTATCGACAGACGGAATAAATTCGCGAGGAATCACACCACCTTTAATTTCATCGATA


AACTCGTAACCTTCACCACCCGGTTCCATAGGTTCCATTTCAATCACAACGTGACCG


TATTGACCTTTACCACCGGATTGTTTTGCATGTTTGTATTCAGCTTTAACGGCTTTGC


GGATAGTTTCACGGTAAGCCACTTGAGGTGCACCGATATTTGCTTCCACACCGAATT


CGCGTTTCATACGGTCAACAATAATTTCCAAGTGCAGCTCACCCATACCGGAAATAA


TGGTTTGACCGGATTCTTCGTCTGTACGAACGCGGAAAGAAGGGTCTTCTTTAGCCA


AGCGGTTCAGGGCGATACCCATTTTCTCTTGGTCGGCTTTGGTTTTCGGCTCAACGGC


AATATGGATTACCGGCTCGGGGAATTCCATACGTTCCAAGATAATCGGCGCGCTTTC


CGCACACAAGGTTTCACCGGTAGTAACGTCTTTCAGACCGATAGCGGCTGCGATGTC


GCCAGCGCGTACTTCTTCGATTTCAGTACGGTCTGCGGCAGTCATTTGCACCAAACG


ACCGATACGTTCGCGAGTGCCTTTTACAGAATTCAGTACGGTATCGCCGGATTTTAC


TACGCCTGAGTAAACGCGGATAAAGGTCAGCTGACCGACGTATTTGTCGTTCAACAT


TTTGAATGCCAATGCAGAGAATTTCTCTTCATCGCTGGCTTGACGGCTGTCGGCTTCT


TCAGTGTTAGGATTAACACCTTGAACCGGAGGAATATCGGTAGGAGCTGGCAGCAA


TTCTACAACTGCGTCCAACATACGTTGAACACCTTTGTTTTTAAATGCAGAACCGCA


CAGCATAGGCTGAATTTCGCCTGCCAAAGTACGTTGACGCAACGCGCCTACGATTTC


TTCTTCGGCCAGATCTTCACCGCCCAAGTATTTGTCCATCAGTTCTTCGCTGGCTTCG


GCTGCGGCTTCAATCATATTTTGACGCCATTCTTCGGCAGTTTCGACCAATTCGGCAG


GAATATCGCCATAGGTAAAGGTTGTACCTTTATCGGCTTCATTCCAGATGATAGATT


TCATTTTCAGCAAATCGACAACACCGGTAAAACTGTCTTCCGCGCCTACCGGAATGA


CGATAGGTACGGGGTTTGCGCGCAAACGGGTTTTCATTTGCTCGACAACGCGGAAG


AAGTTGGCACCTTGGCGGTCCATTTTATTGACAAACGCCAAGCGCGGAACTTGGTAT


TTGTTGGCTTGCCGCCATACGGTTTCAGATTGCGGTTGAACACCGCCCACCGCACAG


TAAACCATTACCGCGCCGTCCAATACACGCATAGAACGCTCTACCTCTACGGTAAAG


TCAACGTGCCCCGGGGTGTCGATGATGTTGAAGCGGTGCTCGGGGAATTGTTTCGCC


ATACCGGACCAGTAGGAAGTAACGGCAGCGGAGGTAATGGTAATACCGCGCTCTTG


CTCTTGTTCCATGTAGTCGGTAGTAGCCGCACCGTCATGCACTTCGCCCAGCTTGTGG


GTCAAACCGGTATAGAACAAAATACGTTCTGTCGTCGTGGTTTTACCCGCATCGATA


TGGGCGGAAATACCGATGTTGCGGTACAGGCTGATCGGGGTCTTACGAGCCAT






RNA: SEQ ID NO: 114









AUGGCUCGUAAGACCCCGAUCAGCCUGUACCGCAACAUCGGUAUUUCCGCCCAUA


UCGAUGCGGGUAAAACCACGACGACAGAACGUAUUUUGUUCUAUACCGGUUUGA


CCCACAAGCUGGGCGAAGUGCAUGACGGUGCGGCUACUACCGACUACAUGGAACA


AGAGCAAGAGCGCGGUAUUACCAUUACCUCCGCUGCCGUUACUUCCUACUGGUCC


GGUAUGGCGAAACAAUUCCCCGAGCACCGCUUCAACAUCAUCGACACCCCGGGGC


ACGUUGACUUUACCGUAGAGGUAGAGCGUUCUAUGCGUGUAUUGGACGGCGCGG


UAAUGGUUUACUGUGCGGUGGGCGGUGUUCAACCGCAAUCUGAAACCGUAUGGC


GGCAAGCCAACAAAUACCAAGUUCCGCGCUUGGCGUUUGUCAAUAAAAUGGACCG


CCAAGGUGCCAACUUCUUCCGCGUUGUCGAGCAAAUGAAAACCCGUUUGCGCGCA


AACCCCGUACCUAUCGUCAUUCCGGUAGGCGCGGAAGACAGUUUUACCGGUGUUG


UCGAUUUGCUGAAAAUGAAAUCUAUCAUCUGGAAUGAAGCCGAUAAAGGUACAA


CCUUUACCUAUGGCGAUAUUCCUGCCGAAUUGGUCGAAACUGCCGAAGAAUGGCG


UCAAAAUAUGAUUGAAGCCGCAGCCGAAGCCAGCGAAGAACUGAUGGACAAAUA


CUUGGGCGGUGAAGAUCUGGCCGAAGAAGAAAUCGUAGGCGCGUUGCGUCAACG


UACUUUGGCAGGCGAAAUUCAGCCUAUGCUGUGCGGUUCUGCAUUUAAAAACAA


AGGUGUUCAACGUAUGUUGGACGCAGUUGUAGAAUUGCUGCCAGCUCCUACCGA


UAUUCCUCCGGUUCAAGGUGUUAAUCCUAACACUGAAGAAGCCGACAGCCGUCAA


GCCAGCGAUGAAGAGAAAUUCUCUGCAUUGGCAUUCAAAAUGUUGAACGACAAA


UACGUCGGUCAGCUGACCUUUAUCCGCGUUUACUCAGGCGUAGUAAAAUCCGGCG


AUACCGUACUGAAUUCUGUAAAAGGCACUCGCGAACGUAUCGGUCGUUUGGUGC


AAAUGACUGCCGCAGACCGUACUGAAAUCGAAGAAGUACGCGCUGGCGACAUCGC


AGCCGCUAUCGGUCUGAAAGACGUUACUACCGGUGAAACCUUGUGUGCGGAAAG


CGCGCCGAUUAUCUUGGAACGUAUGGAAUUCCCCGAGCCGGUAAUCCAUAUUGCC


GUUGAGCCGAAAACCAAAGCCGACCAAGAGAAAAUGGGUAUCGCCCUGAACCGCU


UGGCUAAAGAAGACCCUUCUUUCCGCGUUCGUACAGACGAAGAAUCCGGUCAAAC


CAUUAUUUCCGGUAUGGGUGAGCUGCACUUGGAAAUUAUUGUUGACCGUAUGAA


ACGCGAAUUCGGUGUGGAAGCAAAUAUCGGUGCACCUCAAGUGGCUUACCGUGA


AACUAUCCGCAAAGCCGUUAAAGCUGAAUACAAACAUGCAAAACAAUCCGGUGG


UAAAGGUCAAUACGGUCACGUUGUGAUUGAAAUGGAACCUAUGGAACCGGGUGG


UGAAGGUUACGAGUUUAUCGAUGAAAUUAAAGGUGGUGUGAUUCCUCGCGAAUU


UAUUCCGUCUGUCGAUAAAGGUAUCCGCGAUACGUUGCCUAACGGUAUCGUUGCC


GGCUAUCCUGUAGUUGACGUACGUAUCCGUCUGGUAUUCGGUUCUUACCAUGAU


GUCGACUCUUCCCAAUUGGCAUUUGAAUUGGCUGCUUCUCAAGCGUUUAAAGAA


GGUAUGCGUCAAGCAUCUCCUGCCCUGCUUGAGCCGAUUAUGGCAGUUGAAGUG


GAAACUCCGGAAGAAUACAUGGGCGACGUAAUGGGCGACUUGAACCGCCGUCGCG


GUGUUGUAUUGGGUAUGGAUGAUGACGGUAUCGGCGGUAAAAAAGUCCGUGCCG


AAGUACCUCUGGCAGAAAUGUUCGGUUACUCGACCGACCUGCGUUCUGCAACCCA


AGGCCGCGCUACUUACUCUAUGGAGUUCAAGAAAUAUUCUGAAGCUCCUGCCCAC


AUAGCUGCUGCUGUAACUGAAGCCCGUAAAGGCUAA






30. NGO1844: NC_002946.2:c1811554-1811084

DNA (- strand): SEQ ID NO: 115









ATGCCAAGACGTAGAGAAGTCCCCAAGCGCGACGTACTGCCAGATCCTAAATTCGG


TAGCGTCGAGTTGACCAAATTCATGAACGTATTGATGATTGACGGTAAAAAATCCGT


TGCCGAGCGTATCGTTTACGGTGCGTTGGAACAGATTGAGAAAAAAACCGGCAAAG


CAGCAATCGAAGTATTTAACGAAGCCATTGCAAACTCCAAACCTATCGTGGAAGTG


AAAAGCCGCCGTGTAGGTGGTGCAAACTACCAAGTTCCTGTTGAAGTTCGTCCTTCA


CGCCGTCTGGCTTTGGCAATGCGTTGGGTTCGCGACGCGGCCCGCAAACGTGGTGAG


AAATCCATGGATCTGCGTTTGGCAGGCGAGTTGATTGATGCGTCCGAAGGCCGTGGC


GGTGCGTTGAAAAAACGTGAAGAAGTACACCGTATGGCTGAAGCCAACAAAGCATT


CTCTCACTTCCGTTTCTAA






cDNA: SEQ ID NO: 116









TTAGAAACGGAAGTGAGAGAATGCTTTGTTGGCTTCAGCCATACGGTGTACTTCTTC


ACGTTTTTTCAACGCACCGCCACGGCCTTCGGACGCATCAATCAACTCGCCTGCCAA


ACGCAGATCCATGGATTTCTCACCACGTTTGCGGGCCGCGTCGCGAACCCAACGCAT


TGCCAAAGCCAGACGGCGTGAAGGACGAACTTCAACAGGAACTTGGTAGTTTGCAC


CACCTACACGGCGGCTTTTCACTTCCACGATAGGTTTGGAGTTTGCAATGGCTTCGTT


AAATACTTCGATTGCTGCTTTGCCGGTTTTTTTCTCAATCTGTTCCAACGCACCGTAA


ACGATACGCTCGGCAACGGATTTTTTACCGTCAATCATCAATACGTTCATGAATTTG


GTCAACTCGACGCTACCGAATTTAGGATCTGGCAGTACGTCGCGCTTGGGGACTTCT


CTACGTCTTGGCAT






RNA: SEQ ID NO: 117









AUGCCAAGACGUAGAGAAGUCCCCAAGCGCGACGUACUGCCAGAUCCUAAAUUCG


GUAGCGUCGAGUUGACCAAAUUCAUGAACGUAUUGAUGAUUGACGGUAAAAAAU


CCGUUGCCGAGCGUAUCGUUUACGGUGCGUUGGAACAGAUUGAGAAAAAAACCG


GCAAAGCAGCAAUCGAAGUAUUUAACGAAGCCAUUGCAAACUCCAAACCUAUCGU


GGAAGUGAAAAGCCGCCGUGUAGGUGGUGCAAACUACCAAGUUCCUGUUGAAGU


UCGUCCUUCACGCCGUCUGGCUUUGGCAAUGCGUUGGGUUCGCGACGCGGCCCGC


AAACGUGGUGAGAAAUCCAUGGAUCUGCGUUUGGCAGGCGAGUUGAUUGAUGCG


UCCGAAGGCCGUGGCGGUGCGUUGAAAAAACGUGAAGAAGUACACCGUAUGGCU


GAAGCCAACAAAGCAUUCUCUCACUUCCGUUUCUAA






31. NGO1845: NC_002946.2:c1812043-1811672

DNA (- strand): SEQ ID NO: 118









ATGCCAACTATCAACCAATTGGTACGCAAAGGCCGTCAAAAGCCCGTGTACGTAAA


CAAAGTGCCCGCACTGGAAGCCTGCCCGCAAAAACGCGGCGTGTGCACCCGTGTAT


ACACGACTACCCCTAGAAAACCTAACTCTGCATTGCGTAAAGTATGTAAAGTCCGCC


TGACCAACGGTTTTGAAGTCATTTCATATATCGGCGGTGAAGGCCACAACCTGCAAG


AGCACAGCGTCGTACTGATTCGCGGCGGCCGTGTAAAAGACTTGCCGGGTGTACGTT


ACCACACTGTACGCGGTTCTTTGGATACTGCAGGTGTTAAAGACCGCAAACAAGCCC


GTTCTAAATACGGTGCTAAGCGTCCTAAATAA






cDNA: SEQ ID NO: 119









TTATTTAGGACGCTTAGCACCGTATTTAGAACGGGCTTGTTTGCGGTCTTTAACACCT


GCAGTATCCAAAGAACCGCGTACAGTGTGGTAACGTACACCCGGCAAGTCTTTTACA


CGGCCGCCGCGAATCAGTACGACGCTGTGCTCTTGCAGGTTGTGGCCTTCACCGCCG


ATATATGAAATGACTTCAAAACCGTTGGTCAGGCGGACTTTACATACTTTACGCAAT


GCAGAGTTAGGTTTTCTAGGGGTAGTCGTGTATACACGGGTGCACACGCCGCGTTTT


TGCGGGCAGGCTTCCAGTGCGGGCACTTTGTTTACGTACACGGGCTTTTGACGGCCT


TTGCGTACCAATTGGTTGATAGTTGGCAT






RNA: SEQ ID NO: 120









AUGCCAACUAUCAACCAAUUGGUACGCAAAGGCCGUCAAAAGCCCGUGUACGUAA


ACAAAGUGCCCGCACUGGAAGCCUGCCCGCAAAAACGCGGCGUGUGCACCCGUGU


AUACACGACUACCCCUAGAAAACCUAACUCUGCAUUGCGUAAAGUAUGUAAAGUC


CGCCUGACCAACGGUUUUGAAGUCAUUUCAUAUAUCGGCGGUGAAGGCCACAACC


UGCAAGAGCACAGCGUCGUACUGAUUCGCGGCGGCCGUGUAAAAGACUUGCCGGG


UGUACGUUACCACACUGUACGCGGUUCUUUGGAUACUGCAGGUGUUAAAGACCG


CAAACAAGCCCGUUCUAAAUACGGUGCUAAGCGUCCUAAAUAA






32. NGO1890: NC_002946.2:c1857972-1856758

DNA (- strand): SEQ ID NO: 121









ATGGAATGGGCGTTTAACAGTTATTACACCTTGATTGCCGCCACTTTGGTTTTGTTGG


TCGGCAAGGTTTTGGTTAAGAAAATCAAAATCTTGCGTGATTTTAACATCCCCGAAC


CCGTGGCGGGCGGGCTGATTGCCGCGATTATCCTGTTTGCGCTGCACGAGGCGTACG


GCGTGAGCTTCAAATTTGAGAAACCGCTGCAAAATGCGTTTATGCTGATTTTCTTCA


CGTCCATCGGCTTGAGCGCGGATTTTTCCCGTTTGAAGGCGGGCGGTTTGCCGCTGG


TGGTTTTTACCGCGATTGTGGGCGGATTTATCTTGGTGCAAAACTTTGTCGGGGTCG


GACTGGCTACGGCTTTGGGTTTGGACCCGCTCATCGGTCTGATTACCGGTTCGGTGT


CGCTGACGGGCGGACACGGCACGTCAGGTGCGTGGGGACCTAATTTTGAAACGCAA


TACGGCTTGGTCGGCGCAACCGGTTTGGGTATTGCTTCGGTTACTTTCGGGCTGGTGT


TCGGCGGCCTGATCGGAGGGCCGGTTGCGCGCCGCCTGATCAACAAAATGGGCCGC


AAACCGGTTGAAAACACAAAACAGGATCAGGACGACAACGCGGACGACGTGTTCG


AGCAGGCAAAACGCACCCGCCTGATTACGGCGGAATCTGCCGTTGAAACGCTTGCC


ATGTTTGCCGCGTGTCTGGCGTTTGCCGAGATTATGGACGGTTTCGACAAAGAATAC


CTGTTCGACCTGCCCAAATTCGTGTGGTGTCTGTTTGGCGGCGTGGTTATCCGCAAC


ATCCTTACCGCCGCATTCAAGGTCAATATGTTCGACCGTGCCATCGATGTGTTCGGC


AATGCTTCGCTTTCGCTTTTCTTGGCAATGGCGTTGCTGAATTTGAAACTGTGGGAGC


TGACCGGTTTGGCGGGGTCTGTAACCGTGATTCTTGCAGTACAAACCGCAGTGATGG


TTTTGTACGCGACTTTTGTTACCTATGTCTTTATGGGGCGCGACTATGATGCCGCAGT


ATTGGCTGCCGGCCACTGCGGTTTCGGTTTGGGCGCAACGCCGACGGCGGTGGCAA


ATATGCAGTCCGTCACGCATACTTTCGGCGCGTCACATAAGGCGTTTTTGATTGTGC


CTATGGTCGGCGCGTTCTTTGTCGATTTGATTAATGCCGCGATTCTCACCGGTTTTGT


GAATTTCTTTAAAGGCTGA






cDNA: SEQ ID NO: 122









TCAGCCTTTAAAGAAATTCACAAAACCGGTGAGAATCGCGGCATTAATCAAATCGA


CAAAGAACGCGCCGACCATAGGCACAATCAAAAACGCCTTATGTGACGCGCCGAAA


GTATGCGTGACGGACTGCATATTTGCCACCGCCGTCGGCGTTGCGCCCAAACCGAAA


CCGCAGTGGCCGGCAGCCAATACTGCGGCATCATAGTCGCGCCCCATAAAGACATA


GGTAACAAAAGTCGCGTACAAAACCATCACTGCGGTTTGTACTGCAAGAATCACGG


TTACAGACCCCGCCAAACCGGTCAGCTCCCACAGTTTCAAATTCAGCAACGCCATTG


CCAAGAAAAGCGAAAGCGAAGCATTGCCGAACACATCGATGGCACGGTCGAACAT


ATTGACCTTGAATGCGGCGGTAAGGATGTTGCGGATAACCACGCCGCCAAACAGAC


ACCACACGAATTTGGGCAGGTCGAACAGGTATTCTTTGTCGAAACCGTCCATAATCT


CGGCAAACGCCAGACACGCGGCAAACATGGCAAGCGTTTCAACGGCAGATTCCGCC


GTAATCAGGCGGGTGCGTTTTGCCTGCTCGAACACGTCGTCCGCGTTGTCGTCCTGA


TCCTGTTTTGTGTTTTCAACCGGTTTGCGGCCCATTTTGTTGATCAGGCGGCGCGCAA


CCGGCCCTCCGATCAGGCCGCCGAACACCAGCCCGAAAGTAACCGAAGCAATACCC


AAACCGGTTGCGCCGACCAAGCCGTATTGCGTTTCAAAATTAGGTCCCCACGCACCT


GACGTGCCGTGTCCGCCCGTCAGCGACACCGAACCGGTAATCAGACCGATGAGCGG


GTCCAAACCCAAAGCCGTAGCCAGTCCGACCCCGACAAAGTTTTGCACCAAGATAA


ATCCGCCCACAATCGCGGTAAAAACCACCAGCGGCAAACCGCCCGCCTTCAAACGG


GAAAAATCCGCGCTCAAGCCGATGGACGTGAAGAAAATCAGCATAAACGCATTTTG


CAGCGGTTTCTCAAATTTGAAGCTCACGCCGTACGCCTCGTGCAGCGCAAACAGGAT


AATCGCGGCAATCAGCCCGCCCGCCACGGGTTCGGGGATGTTAAAATCACGCAAGA


TTTTGATTTTCTTAACCAAAACCTTGCCGACCAACAAAACCAAAGTGGCGGCAATCA


AGGTGTAATAACTGTTAAACGCCCATTCCAT






RNA: SEQ ID NO: 123









AUGGAAUGGGCGUUUAACAGUUAUUACACCUUGAUUGCCGCCACUUUGGUUUUG


UUGGUCGGCAAGGUUUUGGUUAAGAAAAUCAAAAUCUUGCGUGAUUUUAACAUC


CCCGAACCCGUGGCGGGCGGGCUGAUUGCCGCGAUUAUCCUGUUUGCGCUGCACG


AGGCGUACGGCGUGAGCUUCAAAUUUGAGAAACCGCUGCAAAAUGCGUUUAUGC


UGAUUUUCUUCACGUCCAUCGGCUUGAGCGCGGAUUUUUCCCGUUUGAAGGCGG


GCGGUUUGCCGCUGGUGGUUUUUACCGCGAUUGUGGGCGGAUUUAUCUUGGUGC


AAAACUUUGUCGGGGUCGGACUGGCUACGGCUUUGGGUUUGGACCCGCUCAUCG


GUCUGAUUACCGGUUCGGUGUCGCUGACGGGCGGACACGGCACGUCAGGUGCGUG


GGGACCUAAUUUUGAAACGCAAUACGGCUUGGUCGGCGCAACCGGUUUGGGUAU


UGCUUCGGUUACUUUCGGGCUGGUGUUCGGCGGCCUGAUCGGAGGGCCGGUUGC


GCGCCGCCUGAUCAACAAAAUGGGCCGCAAACCGGUUGAAAACACAAAACAGGAU


CAGGACGACAACGCGGACGACGUGUUCGAGCAGGCAAAACGCACCCGCCUGAUUA


CGGCGGAAUCUGCCGUUGAAACGCUUGCCAUGUUUGCCGCGUGUCUGGCGUUUGC


CGAGAUUAUGGACGGUUUCGACAAAGAAUACCUGUUCGACCUGCCCAAAUUCGU


GUGGUGUCUGUUUGGCGGCGUGGUUAUCCGCAACAUCCUUACCGCCGCAUUCAAG


GUCAAUAUGUUCGACCGUGCCAUCGAUGUGUUCGGCAAUGCUUCGCUUUCGCUUU


UCUUGGCAAUGGCGUUGCUGAAUUUGAAACUGUGGGAGCUGACCGGUUUGGCGG


GGUCUGUAACCGUGAUUCUUGCAGUACAAACCGCAGUGAUGGUUUUGUACGCGA


CUUUUGUUACCUAUGUCUUUAUGGGGCGCGACUAUGAUGCCGCAGUAUUGGCUG


CCGGCCACUGCGGUUUCGGUUUGGGCGCAACGCCGACGGCGGUGGCAAAUAUGCA


GUCCGUCACGCAUACUUUCGGCGCGUCACAUAAGGCGUUUUUGAUUGUGCCUAUG


GUCGGCGCGUUCUUUGUCGAUUUGAUUAAUGCCGCGAUUCUCACCGGUUUUGUG


AAUUUCUUUAAAGGCUGA






33. Ngo2024: Nc_002946.2:1995172-1995603

DNA (+ strand): SEQ ID NO: 124









ATGAAAACCTTTTCAGCGAAACCCCACGAGGTGAAGCGCGAATGGTTCGTCATCGA


TGCCCAAGACAAAGTCTTGGGTCGCGTTGCAACCGAAGTCGCCAGCCGTCTGCGTG


GCAAACACAAACCTGAATACACCCCCCACGTCGATACCGGCGATTACATCATCGTC


ATCAATGCGGACAAACTGCGTGTAACCGGTGCCAAATTCGAAGATAAAAAATACTT


CCGCCATTCCGGTTTTCCAGGCGGCATCTACGAGCGCACTTTCCGCGAAATGCAAGA


TCAATTCCCGGGCCGCGCTTTGGAGCAGGCTGTAAAAGGTATGCTGCCCAAAGGTCC


GCTGGGTTACGCCATGATTAAAAAACTGAAAGTGTACGCTGGTGCGGAGCATGCCC


ATGCTGCGCAACAACCCAAAGTTTTGGAACTGAAATAA






cDNA: SEQ ID NO: 125









TTATTTCAGTTCCAAAACTTTGGGTTGTTGCGCAGCATGGGCATGCTCCGCACCAGC


GTACACTTTCAGTTTTTTAATCATGGCGTAACCCAGCGGACCTTTGGGCAGCATACC


TTTTACAGCCTGCTCCAAAGCGCGGCCCGGGAATTGATCTTGCATTTCGCGGAAAGT


GCGCTCGTAGATGCCGCCTGGAAAACCGGAATGGCGGAAGTATTTTTTATCTTCGAA


TTTGGCACCGGTTACACGCAGTTTGTCCGCATTGATGACGATGATGTAATCGCCGGT


ATCGACGTGGGGGGTGTATTCAGGTTTGTGTTTGCCACGCAGACGGCTGGCGACTTC


GGTTGCAACGCGACCCAAGACTTTGTCTTGGGCATCGATGACGAACCATTCGCGCTT


CACCTCGTGGGGTTTCGCTGAAAAGGTTTTCAT






RNA: SEQ ID NO: 126









AUGAAAACCUUUUCAGCGAAACCCCACGAGGUGAAGCGCGAAUGGUUCGUCAUCG


AUGCCCAAGACAAAGUCUUGGGUCGCGUUGCAACCGAAGUCGCCAGCCGUCUGCG


UGGCAAACACAAACCUGAAUACACCCCCCACGUCGAUACCGGCGAUUACAUCAUC


GUCAUCAAUGCGGACAAACUGCGUGUAACCGGUGCCAAAUUCGAAGAUAAAAAA


UACUUCCGCCAUUCCGGUUUUCCAGGCGGCAUCUACGAGCGCACUUUCCGCGAAA


UGCAAGAUCAAUUCCCGGGCCGCGCUUUGGAGCAGGCUGUAAAAGGUAUGCUGCC


CAAAGGUCCGCUGGGUUACGCCAUGAUUAAAAAACUGAAAGUGUACGCUGGUGC


GGAGCAUGCCCAUGCUGCGCAACAACCCAAAGUUUUGGAACUGAAAUAA






34. NGO2098: NC_002946.2:c2078739-2077519

DNA (- strand): SEQ ID NO: 127









ATGACCCTGTTTTGCGAACAAGTCCCCTACCCCCGCCTTGCCGAAGAATTCGGCACG


CCGCTTTATGTGTACAGCCAATCCGCGCTGACCGGAGCATTTGAAAACTATCAAACC


GCCTTTGCCGCTTTGAACCCGCTTGTCTGCTACGCCGTCAAGGCAAACGGCAACCTG


AGCATTATCAAACACTTTGCTTCTTTGGGCAGCGGTTTTGACATTGTGTCGGGCGGC


GAATTGGCACGCGTTTTGGCGGCAGGCGGCGATGCGGCGAAAACGATTTTTTCCGGC


GTAGGCAAAAGCGAGGCGGAAATCGAGTTCGCGCTGAATGCCGGCGTAAAATGCTT


CAATATGGAAAGCATCCCCGAAATCGACCGCATTCAGAAAATTGCCGCGCGTTTGG


GCAAAACCGCGCCCGTCTCCCTGCGCGTCAATCCCGATGTCGATGCAAAAACCCATC


CCTACATCTCCACAGGTCTGAAAGCCAACAAATTCGGCATCGCCTACGCCGACGCGC


TCGAAGCCTACCGCCATGCCGCACAACAGCCCAATTTGAAAATCATCGGCATCGACT


GCCACATCGGTTCGCAACTGACCGACTTAAGCCCACTGGTCGAAGCCTGCGAACGC


ATTTTGATTTTGGTTGACGCTCTTGCCGCCGAAGGCATTGTTTTGGAACATTTGGACT


TAGGCGGCGGCGTCGGCATTGTTTACAAAGACGAAGGCGTCCCCGATTTGGGTGCGT


ATGCCCGAGCGGTTCAAAAACTGATGGGGACACGCCGTCTGAAACTCATTCTTGAGC


CAGGCCGCAGCTTGGTCGGCAACGCAGGTGCATTGCTGACGCGCGTCGAATTTGTCA


AACACGGTGAAGAGAAAAACTTTGTGATGGTCGATGCGGCGATGAACGATTTGATG


CGCCCAGCCCTATACGATGCCTACCACCACATCGAAGCGGTTGAAACCAAAAACAT


TGAGCCTCTGACCGCCAACATCGTCGGCCCGATTTGTGAAACCGGCGACTTCCTCGG


CAAAGACCGCACCATCGCCTGCGAAGAAGGCGATTTGCTGCTTATCCGCAGCGCGG


GCGCATACGGGGCCAGTATGGCTAGCAATTACAACACGCGCAACCGTGCGGCGGAG


GTGTTGGTTGACGGCGGCGGATACAAACTCATCCGCCGGCGCGAAACCTTGGAACA


GCAAATGGCAAACGAACTCGCCTGCCTATAA






cDNA: SEQ ID NO: 128









TTATAGGCAGGCGAGTTCGTTTGCCATTTGCTGTTCCAAGGTTTCGCGCCGGCGGAT


GAGTTTGTATCCGCCGCCGTCAACCAACACCTCCGCCGCACGGTTGCGCGTGTTGTA


ATTGCTAGCCATACTGGCCCCGTATGCGCCCGCGCTGCGGATAAGCAGCAAATCGCC


TTCTTCGCAGGCGATGGTGCGGTCTTTGCCGAGGAAGTCGCCGGTTTCACAAATCGG


GCCGACGATGTTGGCGGTCAGAGGCTCAATGTTTTTGGTTTCAACCGCTTCGATGTG


GTGGTAGGCATCGTATAGGGCTGGGCGCATCAAATCGTTCATCGCCGCATCGACCAT


CACAAAGTTTTTCTCTTCACCGTGTTTGACAAATTCGACGCGCGTCAGCAATGCACC


TGCGTTGCCGACCAAGCTGCGGCCTGGCTCAAGAATGAGTTTCAGACGGCGTGTCCC


CATCAGTTTTTGAACCGCTCGGGCATACGCACCCAAATCGGGGACGCCTTCGTCTTT


GTAAACAATGCCGACGCCGCCGCCTAAGTCCAAATGTTCCAAAACAATGCCTTCGG


CGGCAAGAGCGTCAACCAAAATCAAAATGCGTTCGCAGGCTTCGACCAGTGGGCTT


AAGTCGGTCAGTTGCGAACCGATGTGGCAGTCGATGCCGATGATTTTCAAATTGGGC


TGTTGTGCGGCATGGCGGTAGGCTTCGAGCGCGTCGGCGTAGGCGATGCCGAATTTG


TTGGCTTTCAGACCTGTGGAGATGTAGGGATGGGTTTTTGCATCGACATCGGGATTG


ACGCGCAGGGAGACGGGCGCGGTTTTGCCCAAACGCGCGGCAATTTTCTGAATGCG


GTCGATTTCGGGGATGCTTTCCATATTGAAGCATTTTACGCCGGCATTCAGCGCGAA


CTCGATTTCCGCCTCGCTTTTGCCTACGCCGGAAAAAATCGTTTTCGCCGCATCGCCG


CCTGCCGCCAAAACGCGTGCCAATTCGCCGCCCGACACAATGTCAAAACCGCTGCC


CAAAGAAGCAAAGTGTTTGATAATGCTCAGGTTGCCGTTTGCCTTGACGGCGTAGCA


GACAAGCGGGTTCAAAGCGGCAAAGGCGGTTTGATAGTTTTCAAATGCTCCGGTCA


GCGCGGATTGGCTGTACACATAAAGCGGCGTGCCGAATTCTTCGGCAAGGCGGGGG


TAGGGGACTTGTTCGCAAAACAGGGTCAT






RNA: SEQ ID NO: 129









AUGACCCUGUUUUGCGAACAAGUCCCCUACCCCCGCCUUGCCGAAGAAUUCGGCA


CGCCGCUUUAUGUGUACAGCCAAUCCGCGCUGACCGGAGCAUUUGAAAACUAUCA


AACCGCCUUUGCCGCUUUGAACCCGCUUGUCUGCUACGCCGUCAAGGCAAACGGC


AACCUGAGCAUUAUCAAACACUUUGCUUCUUUGGGCAGCGGUUUUGACAUUGUG


UCGGGCGGCGAAUUGGCACGCGUUUUGGCGGCAGGCGGCGAUGCGGCGAAAACG


AUUUUUUCCGGCGUAGGCAAAAGCGAGGCGGAAAUCGAGUUCGCGCUGAAUGCC


GGCGUAAAAUGCUUCAAUAUGGAAAGCAUCCCCGAAAUCGACCGCAUUCAGAAA


AUUGCCGCGCGUUUGGGCAAAACCGCGCCCGUCUCCCUGCGCGUCAAUCCCGAUG


UCGAUGCAAAAACCCAUCCCUACAUCUCCACAGGUCUGAAAGCCAACAAAUUCGG


CAUCGCCUACGCCGACGCGCUCGAAGCCUACCGCCAUGCCGCACAACAGCCCAAU


UUGAAAAUCAUCGGCAUCGACUGCCACAUCGGUUCGCAACUGACCGACUUAAGCC


CACUGGUCGAAGCCUGCGAACGCAUUUUGAUUUUGGUUGACGCUCUUGCCGCCGA


AGGCAUUGUUUUGGAACAUUUGGACUUAGGCGGCGGCGUCGGCAUUGUUUACAA


AGACGAAGGCGUCCCCGAUUUGGGUGCGUAUGCCCGAGCGGUUCAAAAACUGAU


GGGGACACGCCGUCUGAAACUCAUUCUUGAGCCAGGCCGCAGCUUGGUCGGCAAC


GCAGGUGCAUUGCUGACGCGCGUCGAAUUUGUCAAACACGGUGAAGAGAAAAAC


UUUGUGAUGGUCGAUGCGGCGAUGAACGAUUUGAUGCGCCCAGCCCUAUACGAU


GCCUACCACCACAUCGAAGCGGUUGAAACCAAAAACAUUGAGCCUCUGACCGCCA


ACAUCGUCGGCCCGAUUUGUGAAACCGGCGACUUCCUCGGCAAAGACCGCACCAU


CGCCUGCGAAGAAGGCGAUUUGCUGCUUAUCCGCAGCGCGGGCGCAUACGGGGCC


AGUAUGGCUAGCAAUUACAACACGCGCAACCGUGCGGCGGAGGUGUUGGUUGAC


GGCGGCGGAUACAAACUCAUCCGCCGGCGCGAAACCUUGGAACAGCAAAUGGCAA


ACGAACUCGCCUGCCUAUAA






35. Ngo2100: Nc_002946.2:2078991-2079314

DNA (+ strand): SEQ ID NO: 130









ATGATGACCGAAAGCGAGTTTATCCGCGCGAGCGAAGCATTATTTGAACACATCGA


AGACCAAATCGACGAAAACGGCTGGGATTTCGACTGCCGGTTTGCCGGAAACGTCC


TGACCATCGAAGCCGGAGACGGCACGCAAATCATCGTCAACCGCCACACGCCCAAC


CAAGAATTGTGGATTGCCGCAAAAAGCGGCGGCTACCATTTCGCCGAACAAAACGG


CAAATGGCTGGCAACGCGCGACAGCCGCGATTTTTACGACGTTTTAAACGAAGCCCT


GAGCGCGGCTTCGGGCGAAGCGGTTGAGATTGCCGAATTGTGA






cDNA: SEQ ID NO: 131









TCACAATTCGGCAATCTCAACCGCTTCGCCCGAAGCCGCGCTCAGGGCTTCGTTTAA


AACGTCGTAAAAATCGCGGCTGTCGCGCGTTGCCAGCCATTTGCCGTTTTGTTCGGC


GAAATGGTAGCCGCCGCTTTTTGCGGCAATCCACAATTCTTGGTTGGGCGTGTGGCG


GTTGACGATGATTTGCGTGCCGTCTCCGGCTTCGATGGTCAGGACGTTTCCGGCAAA


CCGGCAGTCGAAATCCCAGCCGTTTTCGTCGATTTGGTCTTCGATGTGTTCAAATAAT


GCTTCGCTCGCGCGGATAAACTCGCTTTCGGTCATCAT






RNA: SEQ ID NO: 132









AUGAUGACCGAAAGCGAGUUUAUCCGCGCGAGCGAAGCAUUAUUUGAACACAUC


GAAGACCAAAUCGACGAAAACGGCUGGGAUUUCGACUGCCGGUUUGCCGGAAAC


GUCCUGACCAUCGAAGCCGGAGACGGCACGCAAAUCAUCGUCAACCGCCACACGC


CCAACCAAGAAUUGUGGAUUGCCGCAAAAAGCGGCGGCUACCAUUUCGCCGAACA


AAACGGCAAAUGGCUGGCAACGCGCGACAGCCGCGAUUUUUACGACGUUUUAAAC


GAAGCCCUGAGCGCGGCUUCGGGCGAAGCGGUUGAGAUUGCCGAAUUGUGA






36. NGO2164: NC_002946.2:c2141372-2139807

DNA (- strand): SEQ ID NO: 133









ATGACCCAAGACAAAATCCTCATCCTCGACTTCGGTTCTCAAGTTACCCGGCTGATT


GCCCGCCGCGTGCGCGAAGCCCACGTTTACTGCGAACTGCATTCCTTCGATATGCCT


TTGGACGAAATCAAAGCCTTCAACCCCAAAGGCATCATCCTTTCCGGCGGCCCTAAT


TCTGTTTACGAATCCGACTATCAAGCCGATACCGGTATTTTTGATTTGGGCATTCCGG


TTTTGGGCATCTGCTACGGCATGCAGTTTATGGCGCACCACTTGGGTGGCGAAGTGC


AGCCCGGCAACCAGCGCGAATTCGGTTACGCGCAAGTCAAAACCATCGACAGCGGA


CTGACACGCGGCATTCAAGACGACGCGCCCAACACACTCGACGTATGGATGAGCCA


CGGCGACAAAGTGTCCAAACTGCCCGACGGTTTCGCCGTCATCGGCGATACCCCGTC


CTGCCCGATTGCAATGATGGAAAACGCCGAAAAACAATTCTACGGCATCCAGTTCC


ACCCCGAAGTTACCCACACCAAACAAGGCCGCGCCCTGTTGAACCGCTTTGTCTTGG


ATATTTGCGGCGCGCAACCGGGCTGGACGATGCCCAACTACATCGAAGAAGCCGTT


GCCAAAATCCGCGAACAAGTCGGCAGCGACGAAGTGATTTTAGGTCTGTCCGGCGG


CGTGGACTCTTCCGTAGCCGCCGCGCTGATTCACCGCGCCATCGGCGACCAACTGAC


CTGCGTGTTCGTCGATCACGGTTTGTTGCGCCTGAACGAAGGCAAAATGGTGATGGA


TATGTTCGCCCGCAACTTGGGTGTGAAAGTGATACACGTCGATGCCGAAGGGCAGTT


TATGGCGAAACTCGCCGGCGTGACCGACCCTGAGAAAAAACGCAAAATCATCGGCG


CGGAATTTATCGAAGTATTTGATGCCGAAGAGAAAAAACTCACCAACGCCAAATGG


CTGGCGCAAGGCACGATTTACCCCGACGTAATCGAATCCGCCGGTGCGAAAACCAA


AAAAGCCCACGCCATCAAATCCCACCACAACGTCGGCGGCCTGCCTGAAAATATGA


AGCTCAAACTGCTTGAGCCCTTGCGCGACTTGTTCAAAGACGAAGTGCGCGAGTTGG


GCGTGGCTTTGGGCCTGCCGCGCGAAATGGTGTACCGCCACCCCTTCCCGGGCCCCG


GTTTGGGTGTGCGCATCTTGGGCGAAGTGAAAAAAGAATACGCCGACTTGCTGCGTC


AGGCGGACGATATTTTCATCCAAGAATTACGCAATACTACCGACGAAAACGGCACG


TCTTGGTATGACCTGACCAGCCAGGCATTTGCCGTATTCCTGCCCGTCAAATCCGTC


GGCGTGATGGGCGACGGCCGCACTTACGACTACGTCGTCGCACTGCGCGCAGTCAT


CACCAGCGACTTTATGACTGCACACTGGGCAGAGCTGCCATACTCACTGCTCGGCCG


CGTGTCCAACCGCATCATCAACGAAGTCAAAGGCATCAACCGCGTGGTGTACGATG


TCAGCGGCAAACCGCCCGCCACCATCGAGTGGGAATAA






cDNA: SEQ ID NO: 134









TTATTCCCACTCGATGGTGGCGGGCGGTTTGCCGCTGACATCGTACACCACGCGGTT


GATGCCTTTGACTTCGTTGATGATGCGGTTGGACACGCGGCCGAGCAGTGAGTATGG


CAGCTCTGCCCAGTGTGCAGTCATAAAGTCGCTGGTGATGACTGCGCGCAGTGCGAC


GACGTAGTCGTAAGTGCGGCCGTCGCCCATCACGCCGACGGATTTGACGGGCAGGA


ATACGGCAAATGCCTGGCTGGTCAGGTCATACCAAGACGTGCCGTTTTCGTCGGTAG


TATTGCGTAATTCTTGGATGAAAATATCGTCCGCCTGACGCAGCAAGTCGGCGTATT


CTTTTTTCACTTCGCCCAAGATGCGCACACCCAAACCGGGGCCCGGGAAGGGGTGG


CGGTACACCATTTCGCGCGGCAGGCCCAAAGCCACGCCCAACTCGCGCACTTCGTCT


TTGAACAAGTCGCGCAAGGGCTCAAGCAGTTTGAGCTTCATATTTTCAGGCAGGCCG


CCGACGTTGTGGTGGGATTTGATGGCGTGGGCTTTTTTGGTTTTCGCACCGGCGGATT


CGATTACGTCGGGGTAAATCGTGCCTTGCGCCAGCCATTTGGCGTTGGTGAGTTTTTT


CTCTTCGGCATCAAATACTTCGATAAATTCCGCGCCGATGATTTTGCGTTTTTTCTCA


GGGTCGGTCACGCCGGCGAGTTTCGCCATAAACTGCCCTTCGGCATCGACGTGTATC


ACTTTCACACCCAAGTTGCGGGCGAACATATCCATCACCATTTTGCCTTCGTTCAGG


CGCAACAAACCGTGATCGACGAACACGCAGGTCAGTTGGTCGCCGATGGCGCGGTG


AATCAGCGCGGCGGCTACGGAAGAGTCCACGCCGCCGGACAGACCTAAAATCACTT


CGTCGCTGCCGACTTGTTCGCGGATTTTGGCAACGGCTTCTTCGATGTAGTTGGGCAT


CGTCCAGCCCGGTTGCGCGCCGCAAATATCCAAGACAAAGCGGTTCAACAGGGCGC


GGCCTTGTTTGGTGTGGGTAACTTCGGGGTGGAACTGGATGCCGTAGAATTGTTTTT


CGGCGTTTTCCATCATTGCAATCGGGCAGGACGGGGTATCGCCGATGACGGCGAAA


CCGTCGGGCAGTTTGGACACTTTGTCGCCGTGGCTCATCCATACGTCGAGTGTGTTG


GGCGCGTCGTCTTGAATGCCGCGTGTCAGTCCGCTGTCGATGGTTTTGACTTGCGCG


TAACCGAATTCGCGCTGGTTGCCGGGCTGCACTTCGCCACCCAAGTGGTGCGCCATA


AACTGCATGCCGTAGCAGATGCCCAAAACCGGAATGCCCAAATCAAAAATACCGGT


ATCGGCTTGATAGTCGGATTCGTAAACAGAATTAGGGCCGCCGGAAAGGATGATGC


CTTTGGGGTTGAAGGCTTTGATTTCGTCCAAAGGCATATCGAAGGAATGCAGTTCGC


AGTAAACGTGGGCTTCGCGCACGCGGCGGGCAATCAGCCGGGTAACTTGAGAACCG


AAGTCGAGGATGAGGATTTTGTCTTGGGTCAT






RNA: SEQ ID NO: 135









AUGACCCAAGACAAAAUCCUCAUCCUCGACUUCGGUUCUCAAGUUACCCGGCUGA


UUGCCCGCCGCGUGCGCGAAGCCCACGUUUACUGCGAACUGCAUUCCUUCGAUAU


GCCUUUGGACGAAAUCAAAGCCUUCAACCCCAAAGGCAUCAUCCUUUCCGGCGGC


CCUAAUUCUGUUUACGAAUCCGACUAUCAAGCCGAUACCGGUAUUUUUGAUUUG


GGCAUUCCGGUUUUGGGCAUCUGCUACGGCAUGCAGUUUAUGGCGCACCACUUGG


GUGGCGAAGUGCAGCCCGGCAACCAGCGCGAAUUCGGUUACGCGCAAGUCAAAAC


CAUCGACAGCGGACUGACACGCGGCAUUCAAGACGACGCGCCCAACACACUCGAC


GUAUGGAUGAGCCACGGCGACAAAGUGUCCAAACUGCCCGACGGUUUCGCCGUCA


UCGGCGAUACCCCGUCCUGCCCGAUUGCAAUGAUGGAAAACGCCGAAAAACAAUU


CUACGGCAUCCAGUUCCACCCCGAAGUUACCCACACCAAACAAGGCCGCGCCCUG


UUGAACCGCUUUGUCUUGGAUAUUUGCGGCGCGCAACCGGGCUGGACGAUGCCCA


ACUACAUCGAAGAAGCCGUUGCCAAAAUCCGCGAACAAGUCGGCAGCGACGAAGU


GAUUUUAGGUCUGUCCGGCGGCGUGGACUCUUCCGUAGCCGCCGCGCUGAUUCAC


CGCGCCAUCGGCGACCAACUGACCUGCGUGUUCGUCGAUCACGGUUUGUUGCGCC


UGAACGAAGGCAAAAUGGUGAUGGAUAUGUUCGCCCGCAACUUGGGUGUGAAAG


UGAUACACGUCGAUGCCGAAGGGCAGUUUAUGGCGAAACUCGCCGGCGUGACCGA


CCCUGAGAAAAAACGCAAAAUCAUCGGCGCGGAAUUUAUCGAAGUAUUUGAUGC


CGAAGAGAAAAAACUCACCAACGCCAAAUGGCUGGCGCAAGGCACGAUUUACCCC


GACGUAAUCGAAUCCGCCGGUGCGAAAACCAAAAAAGCCCACGCCAUCAAAUCCC


ACCACAACGUCGGCGGCCUGCCUGAAAAUAUGAAGCUCAAACUGCUUGAGCCCUU


GCGCGACUUGUUCAAAGACGAAGUGCGCGAGUUGGGCGUGGCUUUGGGCCUGCC


GCGCGAAAUGGUGUACCGCCACCCCUUCCCGGGCCCCGGUUUGGGUGUGCGCAUC


UUGGGCGAAGUGAAAAAAGAAUACGCCGACUUGCUGCGUCAGGCGGACGAUAUU


UUCAUCCAAGAAUUACGCAAUACUACCGACGAAAACGGCACGUCUUGGUAUGACC


UGACCAGCCAGGCAUUUGCCGUAUUCCUGCCCGUCAAAUCCGUCGGCGUGAUGGG


CGACGGCCGCACUUACGACUACGUCGUCGCACUGCGCGCAGUCAUCACCAGCGAC


UUUAUGACUGCACACUGGGCAGAGCUGCCAUACUCACUGCUCGGCCGCGUGUCCA


ACCGCAUCAUCAACGAAGUCAAAGGCAUCAACCGCGUGGUGUACGAUGUCAGCGG


CAAACCGCCCGCCACCAUCGAGUGGGAAUAA






37. NGO2173: NC_002946.2:c2149065-2148886

DNA (- strand): SEQ ID NO: 136









ATGGCCGTTCAACAAAACAAAAAATCCCCTTCCAAACGCGGTATGCACCGTTCGCA


CGACGCACTGACCGCGCCCGCACTGTTTGTCGACAGCACAACCGGCGAAGTACACC


GCCCGCACCACATCTCCCCCAACGGTATGTACCGCGGCCGCAAAGTGGTCAAAGCC


AAAGGCGAATAA






cDNA: SEQ ID NO: 137









TTATTCGCCTTTGGCTTTGACCACTTTGCGGCCGCGGTACATACCGTTGGGGGAGAT


GTGGTGCGGGCGGTGTACTTCGCCGGTTGTGCTGTCGACAAACAGTGCGGGCGCGGT


CAGTGCGTCGTGCGAACGGTGCATACCGCGTTTGGAAGGGGATTTTTTGTTTTGTTG


AACGGCCAT






RNA: SEQ ID NO: 138









AUGGCCGUUCAACAAAACAAAAAAUCCCCUUCCAAACGCGGUAUGCACCGUUCGC


ACGACGCACUGACCGCGCCCGCACUGUUUGUCGACAGCACAACCGGCGAAGUACA


CCGCCCGCACCACAUCUCCCCCAACGGUAUGUACCGCGGCCGCAAAGUGGUCAAA


GCCAAAGGCGAAUAA






38. NGO2174: NC_002946.2:c2149599-2149099

DNA (- strand): SEQ ID NO: 139









ATGTCAGACCCTAATTTGATTGACCCGGAAATTTTTGCCGCCGAAAGGCAGAACCTG


CAAGGCAGTTTTCTGCTGGAAGAATTGGACGAGCGAGTCAGTTTGCACGATTATCCC


GCCGACAGGCGGAACAAAATATCGTTTACACTGACCGGCGGTCGCGACCGGCTGCA


ACGCCTGTTCCTCGACCTGAACGTCAAAGCCGATATGCCCCTGATTTGCCAGAGATG


TATCAAACCCATGCCGTTCATGCTCGATGAAAGCAGCCGTATCATCCTGTTTTCCGA


CGAAGAGTCCTTGGACGAATCCATGCTTGCCGACGAAGAACTCGAAGGCATACTGA


TTGAAAAAGAACTCGACGTGCGCGCATTGGTAGAAGACCAAATCCTGATGTCCCTG


CCCTTTTCGCCGCGACACGGACACTGCGGCAATACCCTTCCGGAATCCGCCAACCAA


GACAAACCCAACCCCTTTGCTGTTTTGGCGGGTTTGAAAAGCAGTTAA






cDNA: SEQ ID NO: 140









TTAACTGCTTTTCAAACCCGCCAAAACAGCAAAGGGGTTGGGTTTGTCTTGGTTGGC


GGATTCCGGAAGGGTATTGCCGCAGTGTCCGTGTCGCGGCGAAAAGGGCAGGGACA


TCAGGATTTGGTCTTCTACCAATGCGCGCACGTCGAGTTCTTTTTCAATCAGTATGCC


TTCGAGTTCTTCGTCGGCAAGCATGGATTCGTCCAAGGACTCTTCGTCGGAAAACAG


GATGATACGGCTGCTTTCATCGAGCATGAACGGCATGGGTTTGATACATCTCTGGCA


AATCAGGGGCATATCGGCTTTGACGTTCAGGTCGAGGAACAGGCGTTGCAGCCGGT


CGCGACCGCCGGTCAGTGTAAACGATATTTTGTTCCGCCTGTCGGCGGGATAATCGT


GCAAACTGACTCGCTCGTCCAATTCTTCCAGCAGAAAACTGCCTTGCAGGTTCTGCC


TTTCGGCGGCAAAAATTTCCGGGTCAATCAAATTAGGGTCTGACAT






RNA: SEQ ID NO: 141









AUGUCAGACCCUAAUUUGAUUGACCCGGAAAUUUUUGCCGCCGAAAGGCAGAACC


UGCAAGGCAGUUUUCUGCUGGAAGAAUUGGACGAGCGAGUCAGUUUGCACGAUU


AUCCCGCCGACAGGCGGAACAAAAUAUCGUUUACACUGACCGGCGGUCGCGACCG


GCUGCAACGCCUGUUCCUCGACCUGAACGUCAAAGCCGAUAUGCCCCUGAUUUGC


CAGAGAUGUAUCAAACCCAUGCCGUUCAUGCUCGAUGAAAGCAGCCGUAUCAUCC


UGUUUUCCGACGAAGAGUCCUUGGACGAAUCCAUGCUUGCCGACGAAGAACUCGA


AGGCAUACUGAUUGAAAAAGAACUCGACGUGCGCGCAUUGGUAGAAGACCAAAU


CCUGAUGUCCCUGCCCUUUUCGCCGCGACACGGACACUGCGGCAAUACCCUUCCG


GAAUCCGCCAACCAAGACAAACCCAACCCCUUUGCUGUUUUGGCGGGUUUGAAAA


GCAGUUAA






SEQUENCES FOR TRNA
1. NGO_t01: NC_002946.2:c14067-13982

DNA (- strand): SEQ ID NO: 142









GCCGACATGGTGAAATTGGTAGACACGCTATCTTGAGGGGGTAGTGGCCGTAGGCT


GTGCGAGTTCAAATCTCGCTGTCGGCACCA






cDNA: SEQ ID NO: 143









TGGTGCCGACAGCGAGATTTGAACTCGCACAGCCTACGGCCACTACCCCCTCAAGAT


AGCGTGTCTACCAATTTCACCATGTCGGC






RNA: SEQ ID NO: 144









GCCGACAUGGUGAAAUUGGUAGACACGCUAUCUUGAGGGGGUAGUGGCCGUAGG


CUGUGCGAGUUCAAAUCUCGCUGUCGGCACCA






2. NGO_t12: NC_002946.2:454725-454812

DNA (+ strand): SEQ ID NO: 145









GGAAGCGTGGCAGAGCGGTTTAATGCAACGGTCTTGAAAACCGTCGAGGGTTGATA


GCCCTCCGTGAGTTCGAATCTCACCGCTTCCG






cDNA: SEQ ID NO: 146









CGGAAGCGGTGAGATTCGAACTCACGGAGGGCTATCAACCCTCGACGGTTTTCAAG


ACCGTTGCATTAAACCGCTCTGCCACGCTTCC






RNA: SEQ ID NO: 147









GGAAGCGUGGCAGAGCGGUUUAAUGCAACGGUCUUGAAAACCGUCGAGGGUUGA


UAGCCCUCCGUGAGUUCGAAUCUCACCGCUUCCG






3. NGO_t14: NC_002946.2:793319-793402

DNA (+ strand): SEQ ID NO: 148









GCCCGGGTGGCGGAATTGGTAGACGCGCCAGCTTCAGGTGCTGGTATCCTCACGGGT


ATGGAAGTTCGAGTCTTCTCCCGGGCA






cDNA: SEQ ID NO: 149









TGCCCGGGAGAAGACTCGAACTTCCATACCCGTGAGGATACCAGCACCTGAAGCTG


GCGCGTCTACCAATTCCGCCACCCGGGC






RNA: SEQ ID NO: 150









GCCCGGGUGGCGGAAUUGGUAGACGCGCCAGCUUCAGGUGCUGGUAUCCUCACGG


GUAUGGAAGUUCGAGUCUUCUCCCGGGCA






4. NGO_t15: NC_002946.2:793444-793531

DNA (+ strand): SEQ ID NO: 151









AGAGAGGTGGATGAGTGGTTTAAGTCGCACGCCTGGAAAGCGTGTATACGTGAATA


GCGTATCGAGGGTTCGAATCCCTTCCTCTCTG






cDNA: SEQ ID NO: 152









CAGAGAGGAAGGGATTCGAACCCTCGATACGCTATTCACGTATACACGCTTTCCAGG


CGTGCGACTTAAACCACTCATCCACCTCTCT






RNA: SEQ ID NO: 153









AGAGAGGUGGAUGAGUGGUUUAAGUCGCACGCCUGGAAAGCGUGUAUACGUGAA


UAGCGUAUCGAGGGUUCGAAUCCCUUCCUCUCUG






5. NGO_t37: NC_002946.2:cl629552-1629481

DNA (- strand): SEQ ID NO: 228









CTCGCCATAGTTCAACGGATAGAACGTATGCCTCCTAAGCGTAAAATACAGGTTCGA


TTCCTGTTGGCGAGG






cDNA: SEQ ID NO: 229









CCTCGCCAACAGGAATCGAACCTGTATTTTACGCTTAGGAGGCATACGTTCTATCCG


TTGAACTATGGCGAG






RNA: SEQ ID NO: 230









CUCGCCAUAGUUCAACGGAUAGAACGUAUGCCUCCUAAGCGUAAAAUACAGGUUC


GAUUCCUGUUGGCGAGG






ANNEX C
Expected Exemplary RNA Markers of N. Meningitides
PorB
NC_003112.2:2157529-2158524 Neisseria Meningitides MC58

DNA(+)strand: SEQ ID NO: 154









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCAGCAATGGCTGACGT


TACCCTGTACGGCACCATCAAAGCCGGCGTAGAAACTTCCCGCTCTGTATTTCACCAGAACG


GCCAAGTTACTGAAGTTACAACCGCTACCGGCATCGTTGATTTGGGTTCGAAAATCGGCTTC


AAAGGCCAAGAAGACCTCGGTAACGGCCTGAAAGCCATTTGGCAGGTTGAGCAAAAAGCAT


CTATCGCCGGTACTGACTCCGGTTGGGGCAACCGCCAATCCTTCATCGGCTTGAAAGGCGGC


TTCGGTAAATTGCGCGTCGGTCGTTTGAACAGCGTCCTGAAAGACACCGGCGACATCAATCC


TTGGGATAGCAAAAGCGACTATTTGGGTGTAAACAAAATTGCCGAACCCGAGGCACGCCTC


ATTTCCGTACGCTACGATTCTCCCGAATTTGCCGGCCTCAGCGGCAGCGTACAATACGCGCT


TAACGACAATGCAGGCAGACATAACAGCGAATCTTACCACGCCGGCTTCAACTACAAAAAC


GGTGGCTTCTTCGTGCAATATGGCGGTGCCTATAAAAGACATCATCAAGTGCAAGAGGGCTT


GAATATTGAGAAATACCAGATTCACCGTTTGGTCAGCGGTTACGACAATGATGCCCTGTACG


CTTCCGTAGCCGTACAGCAACAAGACGCGAAACTGACTGATGCTTCCAATTCGCACAACTCT


CAAACCGAAGTTGCCGCTACCTTGGCATACCGCTTCGGCAACGTAACGCCCCGAGTTTCTTA


CGCCCACGGCTTCAAAGGTTTGGTTGATGATGCAGACATAGGCAACGAATACGACCAAGTG


GTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTGGTTTCTGCCGGTTGGTTG


CAAGAAGGCAAAGGCGAAAACAAATTCGTAGCGACTGCCGGCGGTGTCGGTCTGCGCCACA


AATTCTAA






cDNA: SEQ ID NO: 155









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCAGCAATGGCTGACGT


TACCCTGTACGGCACCATCAAAGCCGGCGTAGAAACTTCCCGCTCTGTATTTCACCAGAACG


GCCAAGTTACTGAAGTTACAACCGCTACCGGCATCGTTGATTTGGGTTCGAAAATCGGCTTC


AAAGGCCAAGAAGACCTCGGTAACGGCCTGAAAGCCATTTGGCAGGTTGAGCAAAAAGCAT


CTATCGCCGGTACTGACTCCGGTTGGGGCAACCGCCAATCCTTCATCGGCTTGAAAGGCGGC


TTCGGTAAATTGCGCGTCGGTCGTTTGAACAGCGTCCTGAAAGACACCGGCGACATCAATCC


TTGGGATAGCAAAAGCGACTATTTGGGTGTAAACAAAATTGCCGAACCCGAGGCACGCCTC


ATTTCCGTACGCTACGATTCTCCCGAATTTGCCGGCCTCAGCGGCAGCGTACAATACGCGCT


TAACGACAATGCAGGCAGACATAACAGCGAATCTTACCACGCCGGCTTCAACTACAAAAAC


GGTGGCTTCTTCGTGCAATATGGCGGTGCCTATAAAAGACATCATCAAGTGCAAGAGGGCTT


GAATATTGAGAAATACCAGATTCACCGTTTGGTCAGCGGTTACGACAATGATGCCCTGTACG


CTTCCGTAGCCGTACAGCAACAAGACGCGAAACTGACTGATGCTTCCAATTCGCACAACTCT


CAAACCGAAGTTGCCGCTACCTTGGCATACCGCTTCGGCAACGTAACGCCCCGAGTTTCTTA


CGCCCACGGCTTCAAAGGTTTGGTTGATGATGCAGACATAGGCAACGAATACGACCAAGTG


GTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTGGTTTCTGCCGGTTGGTTG


CAAGAAGGCAAAGGCGAAAACAAATTCGTAGCGACTGCCGGCGGTGTCGGTCTGCGCCACA


AATTCTAA









RNA: SEQ ID NO: 156









UUAGAAUUUGUGGCGCAGACCGACACCGCCGGCAGUCGCUACGAAUUUGUUUUCGCCUUU


GCCUUCUUGCAACCAACCGGCAGAAACCAAGGCAGAAGUGCGUUUGGAGAAGUCGUAUUC


CGCACCGACAACCACUUGGUCGUAUUCGUUGCCUAUGUCUGCAUCAUCAACCAAACCUUU


GAAGCCGUGGGCGUAAGAAACUCGGGGCGUUACGUUGCCGAAGCGGUAUGCCAAGGUAG


CGGCAACUUCGGUUUGAGAGUUGUGCGAAUUGGAAGCAUCAGUCAGUUUCGCGUCUUGU


UGCUGUACGGCUACGGAAGCGUACAGGGCAUCAUUGUCGUAACCGCUGACCAAACGGUGA


AUCUGGUAUUUCUCAAUAUUCAAGCCCUCUUGCACUUGAUGAUGUCUUUUAUAGGCACC


GCCAUAUUGCACGAAGAAGCCACCGUUUUUGUAGUUGAAGCCGGCGUGGUAAGAUUCGC


UGUUAUGUCUGCCUGCAUUGUCGUUAAGCGCGUAUUGUACGCUGCCGCUGAGGCCGGCAA


AUUCGGGAGAAUCGUAGCGUACGGAAAUGAGGCGUGCCUCGGGUUCGGCAAUUUUGUUU


ACACCCAAAUAGUCGCUUUUGCUAUCCCAAGGAUUGAUGUCGCCGGUGUCUUUCAGGACG


CUGUUCAAACGACCGACGCGCAAUUUACCGAAGCCGCCUUUCAAGCCGAUGAAGGAUUGG


CGGUUGCCCCAACCGGAGUCAGUACCGGCGAUAGAUGCUUUUUGCUCAACCUGCCAAAUG


GCUUUCAGGCCGUUACCGAGGUCUUCUUGGCCUUUGAAGCCGAUUUUCGAACCCAAAUCA


ACGAUGCCGGUAGCGGUUGUAACUUCAGUAACUUGGCCGUUCUGGUGAAAUACAGAGCG


GGAAGUUUCUACGCCGGCUUUGAUGGUGCCGUACAGGGUAACGUCAGCCAUUGCUGCAAC


AGGAAGGGCUGCCAAAGUCAGGGCAAUCAGGGAUUUUUUCAU






rpmB
>NC_003112.2:332567-332800 Neisseria Meningitidis MC58 - on the (-)strand

DNA (+)strand SEQ ID NO: 157









TTAAGCTTCGCCGCGAGCACGCAAATCAGCCAATACGACATCAATGCCTACTTTGTCGATGG


TACGCAGTGCAGCGTTGGAAACGCGCAGGCGAACCCAGCGGTTTTCACTTTCTACCCAAAAA


CGACGTGATTGCAAGTTGGGCAAAAAACGGCGTTTGGTTTTGTTGTTGGCGTGCGATACGTT


GTTGCCGGACATCGGGCGTTTGCCGGTCACTTTGCAAACTCGTGCCAT






Cdna SEQ ID NO: 158









ATGGCACGAGTTTGCAAAGTGACCGGCAAACGCCCGATGTCCGGCAACAACGTATCGCACG


CCAACAACA


AAACCAAACGCCGTTTTTTGCCCAACTTGCAATCACGTCGTTTTTGGGTAGAAAGTGAAAAC


CGCTGGGT


TCGCCTGCGCGTTTCCAACGCTGCACTGCGTACCATCGACAAAGTAGGCATTGATGTCGTAT


TGGCTGAT


TTGCGTGCTCGCGGCGAAGCTTAA






RNA SEQ ID NO: 159









UUAAGCUUCGCCGCGAGCACGCAAAUCAGCCAAUACGACAUCAAUGCCUACUUUGUCGAU


GGUACGCAGUGCAGCGUUGGAAACGCGCAGGCGAACCCAGCGGUUUUCACUUUCUACCCA


AAAACGACGUGAUUGCAAGUUGGGCAAAAAACGGCGUUUGGUUUUGUUGUUGGCGUGCG


AUACGUUGUUGCCGGACAUCGGGCGUUUGCCGGUCACUUUGCAAACUCGUGCCAU






ANNEX D

>ng_165_porB SEQ ID NO: 178









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTTACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_166_porB SEQ ID NO: 179









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTTACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATAATCAATTTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_167_porB SEQ ID NO: 180









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTTACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGTCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCGCTAACACCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTG


AAAGGCGGCTTCGGCACCATCCGCGTCGGCAGCCTGAACAGCCCCCTGAAAAACACCGGT


GCCAACGTCAATGCTTGGGAATCCGGCAAATATACCGGCGAGCTTCTGGAAATCAGCAAA


ATGGCCGGACGGGAACACCGCTACCTGTCCGCACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGGTAATTCAGGCTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAGCGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCGAATACGATGATCAAACTTATAGTATGCCCAGT


CTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTAGGCGGTTACGACAATAATGCCCTG


TACGTTTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAACGAGGGTTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGCGGCATACCGTTTCGGCAATGTAACG


CCCCGCGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTATGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTGCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_168_porB SEQ ID NO: 181









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_169_porB SEQ ID NO: 182









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCEGAAAGCCAGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCTGAATACCTATGGTCAAACTTAIAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAACGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_170_porB SEQ ID NO: 183









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_171_porB SEQ ID NO: 184









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_172_porB SEQ ID NO: 185









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_173_porB SEQ ID NO: 186









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAACGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_174_porB SEQ ID NO: 187









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


TCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_175_porB SEQ ID NO: 188









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTTACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGTCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCGCTAACACCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTG


AAAGGCGGCTTCGGCACCATCCGCGTCGGCAGCCTGAACAGCCCCCTGAAAAACACCGGT


GCCAACGTCAATGCTTGGGAATCCGGCAAATATACCGGCGAGCTTCTGGAAATCAGCAAA


ATGGCCGGACGGGAACACCGCTACCTGTCCGCACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGGTAATTCAGGCTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAGCGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCGAATACGATGATCAAACTTATAGTATGCCCAGT


CTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTAGGCGGTTACGACAATAATGCCCTG


TACGTTTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAACGAGGGTTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGCGGCATACCGTTTCGGCAATGTAACG


CCCCGCGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTATGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA









>ng_176_porB SEQ ID NO: 189









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGGCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_177_porB SEQ ID NO: 190









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACACCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_178_porB SEQ ID NO: 191









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_179_porB SEQ ID NO: 192









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTTACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGAAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGTCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAA


GGTGCCTCCGTCGCCGGCACTAACACCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTG


AAAGGCGGCTTCGGCACCATCCGCGTCGGCAGCCTGAACAGCCCCCTGAAAAACACCGGT


GCCAACGTCAATGCTTGGGAATCCGGCAAATATACCGGCGAGTTTCTGGAAATCAGCAAA


ATGGCCAGACGGGAACACCGCTACCTGTCCGCACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGATAATTCAGGCTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACGGCGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCGAATACGCTGGTCAATATTATAGTATCCCCAGC


CTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAACATGGAGTGCTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGCGGCATACCGTTTCGGCAACTTAACG


CCCCGCGTTTCTTACGCCCACGGCTTCAAAGGCTCTGTTCATAGTGCAGACTACGACAAT


ACTTATGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGAAAAAGTCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_180_porB SEQ ID NO: 193









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_181_porB SEQ ID NO: 194









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGACGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCGCTAACAGCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCGGC


AGCAAAGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAGTGTGCTGAAAATCAGCGGA


ATGGCCGAACGGGAACACCGCTACCTGTCCGCACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGCTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCAAAACAGCGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCGAATACGATGGICAAACTIATAGTATGCCCAGT


CTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTAGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAACATGGAGTGCTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTGGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_182_porB SEQ ID NO: 195









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGAAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAATCTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_183_porB SEQ ID NO: 196









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_184_porB SEQ ID NO: 197









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


TCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_185_porB SEQ ID NO: 198









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTACTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_186_porB SEQ ID NO: 199









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_187_porB SEQ ID NO: 200









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTTACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGTCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACACCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTG


AAAGGCGGCTTCGGCACCATCCGCGTCGGCAGCCTGAACAGCCCCCIGAAAAACACCGGT


GCCAACGTCAATGCTTGGGAAICCGGCAAATATACCGGCGAGCTTCTGGAAAICAGCAAA


ATGGCCGGACGGGAACACCGCTACCTGTCCGCACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGGTAATTCAGGCTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGCGGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_188_porB SEQ ID NO: 201









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


TCACCCTGTACGGCGGCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_189_porB SEQ ID NO: 202









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_190_porB SEQ ID NO: 203









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCACCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATACA


AAAGGCAAGGTAAGTAAAGTGGAAACCGGCAGCGAAATCGCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAA


GGTGCCTCCGTCGCCGGCACTAACACCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTG


AAGGGCGGCTTCGGTACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


GACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCGATGTGCTGGAAATCAGCGGA


ATGGCCAAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGATAATTCAGGCTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACGGCGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCGAATACGATAATCAATTTTAATAGTGTCCCCAGC


CTGTCTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAACATGGCGTGCTAAT


TCGCACAACTCTCAAACCGAAGTTGCTGCTACCGCGGCATACCGTTTCGGCAACTTAACG


CCCCGCGTTTCTTACGCCCACGGCTTCAAAGGCTCTGTTCATAGTGCAGACTACGACAAT


ACTTATGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_191_porB SEQ ID NO: 204









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGGCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAACTGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_192_porB SEQ ID NO: 205









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_193_porB SEQ ID NO: 206









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCACCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATACA


AAAGGCAAGGTAAGTAAAGTGGAAACCGGCAGCGAAATCGCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAA


GGTGCCTCCGTCGCCCGGCACTAACACCGGCTCTGGGGCAACAAACAATCCTTCGTCGGCTTG


AAGGGCGGCTTCGGTACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


GACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCGATGTGCTGGAAATCAGCGGA


ATGGCCAAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGATAATTCAGGCTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACGGCGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCGAATACAATAATCAATTTTATAGTGTCCCCAGC


CTGTCTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAACATGGCGTGCTAAT


TCGCACAACTCTCAAACCGAAGTTGCTGCTACCGCGGCATACCGTTTCGGCAACTTAACG


CCCCGCGTTTCTTACGCCCACGGCTTCAAAGGCTCTGTTCATAGTGCAGACTACGACAAT


ACTTATGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGCAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_194_porB SEQ ID NO: 207









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTTACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGAAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGTCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAA


GGTGCCTCCGTCGCCGGCACTAACACCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTG


AAGGGCGGCTTCGGTACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAC


GCCAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCAAA


ATGGCCGAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGATAATTCAGGCTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACGGCGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCGAATACGATAATCAATCTTATAGTATCCCCAGC


CTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTAGGCGGTTACGACAATAATGCCCTG


TACGTCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGATCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGCGGCATACCGTTTCGGCAACGTAACG


CCCCGCGTTTCTTACGCCCACGGCTTCAAAGGCAGTGTTGATAGTGCAAACCACGACAAT


ACTTATGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_195_porB SEQ ID NO: 208









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTTACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATAATCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_196_porB SEQ ID NO: 209









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTTACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGACAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATAATCAATTTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_197_porB SEQ ID NO: 210









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGACAGCGAAATCTCCGACTTCGGTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACAATAATCAATTTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_198_porB SEQ ID NO: 211









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_199_porB SEQ ID NO: 212









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCACCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATACA


AAAGGCAAGGTAAGTAAAGTGGAAACCGGCAGCGAAATCGCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAA


GGTGCCTCCGTCGCCGGCACTAACACCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTG


AAGGGCGGCTTCGGTACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


GACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCGATGTGCTGGAAATCAGCGGA


ATGGCCAAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGATAATTCAGGCTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACGGCGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCGAATACAATAATCAATTTTATAGTGTCCCCAGC


CTGTCTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAACATGGCGTGCTAAT


TCGCACAACTCTCAAACCGAAGTTGCTGCTACCGCGGCATACCGTTTCGGCAACTTAACG


CCCCGCGTTTCTTACGCCCACGGCTTCAAAGGCTCTGTTCATAGTGCAGACTACGACAAT


ACTTATGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGCAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_200_porB SEQ ID NO: 213









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAARTCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCGGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_201_porB SEQ ID NO: 214









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCGGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_202_porB SEQ ID NO: 215









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTTACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGTCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACACCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTG


AAAGGCGGCTTCGGCACCATCCGCGTCGGCAGCCTGAACAGCCCCCTGAAAAACACCGGT


GCCAACGTCAATGCTTGGGAATCCGGCAAATATACCGGCGAGCTTCTGGAAATCAGCAAA


ATGGCCGGACGGGAACACCGCTACCTGTCCGCACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGGTAATTCAGGCTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAGCGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCGAATACTACGATGATCAAACTTATAGTATGCCC


AGTCTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTAGGCGGTTACGACAATAATGCC


CTGTACGTTTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAACGAGGGTT


AATTCGCACAACTCTCAAACCGAAGTTGCCGCTACCGCGGCATACCGTTTCGGCAATGTA


ACGCCCCGCGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGAC


AATACTTATGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCC


TTGGTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCC


AGCGCCGTCGTTCTGCGCCACAAATTCTAA









>ng_203_porB SEQ ID NO: 216









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCGGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_204_porB SEQ ID NO: 217









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGAAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_205_porB SEQ ID NO: 218









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_206_porB SEQ ID NO: 219









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCCA


GAAGGCAAAGTAATTGGCGTGGAAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_207_porB SEQ ID NO: 220









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAGTTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_208_porB SEQ ID NO: 221









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_209_porB SEQ ID NO: 222









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_210_porB SEQ ID NO: 223









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCGGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_211_porB SEQ ID NO: 224









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTTACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCAGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_212_porB SEQ ID NO: 225









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGAAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATCGAATACGATGGTCAAACTTATAATATCCCCGGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_213_porB SEQ ID NO: 226









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGAAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGTCAAACTTATAATATCCCCGGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






>ng_214_porB SEQ ID NO: 227









ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGAT


GTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATCGG


GAAGGCAAAGTAATTGGCGTGGGAACCGGCAGCGAAATCTCCGACTTCGGTTCAAAAATC


GGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAAGCCATTTGGCAGTTGGAACAA


GGCGCCTCCGTCGCCGGCACTAACAGCGGCTGGGGCAACAAACAATCCTTCATCGGCTTG


AAGGGCGGCTTCGGCACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCAAG


AACAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGA


ATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGC


TTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGGTCAAACGGCGAATCTTAC


CACGTTGGCTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAA


AGATACGGCGAAGGCACTAAAAAAATGGAATACGATGGECAAACITAIAATATCCCCGGT


TTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTCGGCGGTTACGACAATAATGCCCTG


TACGCCTCCGTAGCCGCACAACAACAAGATGCCAAATTGTATGGAGCAATGAGCGGTAAT


TCGCACAACTCTCAAACCGAAGTTGCCGCTACCGTAGCATACCGTTTCGGCAACGTAACG


CCCCGTGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATGATGCAAACCACGACAAT


ACTTACGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTG


GTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGC


GCCGTCGTTCTGCGCCACAAATTCTAA






ANNEX E
Sequences for Exemplary RNA With Low C:T Ratios to Be Used for Normalization
1. NGO0066a: NC_002946.2:c69710-69021

DNA (- strand): SEQ ID NO: 231









GTGCAGGCGGATTTAGCCTACGCCGCCGAACGCATTACCCACGATTATCCGGAA


  CCAACCGGTGCAAAAAAAGGCAAAATAAGCACGGTAAGCGATTATTTCAGAAAC


  ATCCGTACGCATTCCATCCACCCCAGGGTGTCGGTCGGCTACGACTTCGGCGGCT


  GGAGGATAGCGGCAGATTATGCCCGTTACAGAAAGTGGAACAACAGTAAATATT


  CCGTCAACACAAAAAAGGTGAACGAAAACAAGGGCGAAAAGATAAACGTGACG


  CAATATCTGAAGGCGGAAAATCAGGAAAACGGTACGTTCCACGCCGTTTCTTCTC


  TCGGCTTGTCCGCCGTTTACGATTTCAAACTCAACGACAAATTCAAACCCTATAT


  CGGCATGCGCGTCGGCTACGGGCACGTCAGACATCAGGTTCGTTCGGTTGAACA


  AGAAACCACGACTGTTACCACTTACCTACAGAGTGGTAAGCCAAGTCCTATCGT


  ACGAGGTTCGACCCTCAAACTTCCCCATCACGAAAGCCGCAGCAGCCGCCGCTT


  GGGCTTCGGCGCGATGGCGGGCGTGGGCATAGACGTCGCGCCCGGTCTGACCTT


  GGACGCCGGCTACCGCTACCACTATTGGGGACGCCTGGAAAACACCCGCTTCAA


  AACCCACGAAGCCTCGTTGGGCGTGCGCTACCGCTTCTGA






RNA SEQ ID NO: 232









GUGCAGGCGGAUUUAGCCUACGCCGCCGAACGCAUUACCCACGAUUAUCCGGA


  ACCAACCGGUGCAAAAAAAGGCAAAAUAAGCACGGUAAGCGAUUAUUUCAGA


  AACAUCCGUACGCAUUCCAUCCACCCCAGGGUGUCGGUCGGCUACGACUUCGG


  CGGCUGGAGGAUAGCGGCAGAUUAUGCCCGUUACAGAAAGUGGAACAACAGU


  AAAUAUUCCGUCAACACAAAAAAGGUGAACGAAAACAAGGGCGAAAAGAUAA


  ACGUGACGCAAUAUCUGAAGGCGGAAAAUCAGGAAAACGGUACGUUCCACGC


  CGUUUCUUCUCUCGGCUUGUCCGCCGUUUACGAUUUCAAACUCAACGACAAAU


  UCAAACCCUAUAUCGGCAUGCGCGUCGGCUACGGGCACGUCAGACAUCAGGUU


  CGUUCGGUUGAACAAGAAACCACGACUGUUACCACUUACCUACAGAGUGGUA


  AGCCAAGUCCUAUCGUACGAGGUUCGACCCUCAAACUUCCCCAUCACGAAAGC


  CGCAGCAGCCGCCGCUUGGGCUUCGGCGCGAUGGCGGGCGUGGGCAUAGACGU


  CGCGCCCGGUCUGACCUUGGACGCCGGCUACCGCUACCACUAUUGGGGACGCC


  UGGAAAACACCCGCUUCAAAACCCACGAAGCCUCGUUGGGCGUGCGCUACCGC


  UUCUGA






cDNA: SEQ ID NO: 233









TCAGAAGCGGTAGCGCACGCCCAACGAGGCTTCGTGGGTTTTGAAGCGGGTGTT


  TTCCAGGCGTCCCCAATAGTGGTAGCGGTAGCCGGCGTCCAAGGTCAGACCGGG


  CGCGACGTCTATGCCCACGCCCGCCATCGCGCCGAAGCCCAAGCGGCGGCTGCT


  GCGGCTTTCGTGATGGGGAAGTTTGAGGGTCGAACCTCGTACGATAGGACTTGG


  CTTACCACTCTGTAGGTAAGTGGTAACAGTCGTGGTTTCTTGTTCAACCGAACGA


  ACCTGATGTCTGACGTGCCCGTAGCCGACGCGCATGCCGATATAGGGTTTGAATT


  TGTCGTTGAGTTTGAAATCGTAAACGGCGGACAAGCCGAGAGAAGAAACGGCGT


  GGAACGTACCGTTTTCCTGATTTTCCGCCTTCAGATATTGCGTCACGTTTATCTTT


  TCGCCCTTGTTTTCGTTCACCTTTTTTGTGTTGACGGAATATTTACTGTTGTTCCAC


  TTTCTGTAACGGGCATAATCTGCCGCTATCCTCCAGCCGCCGAAGTCGTAGCCGA


  CCGACACCCTGGGGTGGATGGAATGCGTACGGATGTTTCTGAAATAATCGCTTAC


  CGTGCTTATTTTGCCTTTTTTTGCACCGGTTGGTTCCGGATAATCGTGGGTAATGC


  GTTCGGCGGCGTAGGCTAAATCCGCCTGCAC






2. NGO0070: NC_002946.2: C75580-74783

DNA (- strand): SEQ ID NO: 234









ATGAATCCAGCCCGCAAAAAACCTTCTCTTCTCTTCTCTTCTCTTCTCTTCTCTTCT


  CTTCTCTTCTCTTCGGCAGCGCAGGCGGCAAGTGAAGGCAATGGCCGCGGCCCG


  TATGTGCAGGCGGATTTAGCCTACGCCGCCGAACGCATTACCCACGATTATCCGG


  AACCAACCGCTCCAGGCAAAAACAAAATAAGCACGGTAAGCGATTATTTCAGAA


  ACATCCGTACGCATTCCATCCACCCCAGGGTGTCGGTCGGCTACGACTTCGGCGG


  CTGGAGGATAGCGGCAGATTATGCCCGTTACAGAAAGTGGAACGACAATAAATA


  TTCCGTCGACATAAAAGAGTTGGAAAACAAGAATCAGAATAAGAGAGACCTGA


  AGACGGAAAATCAGGAAAACGGCAGCTTCCACGCCGTTTCTTCTCTCGGCTTATC


  AGCCGTTTACGATTTCAAACTCAACGACAAATTCAAACCCTATATCGGTGCGCGC


  GTCGCCTACGGACACGTCAGACACAGCATCGATTCGACTAAAAAAATAACAGGT


  ACTCTTACCGCCTACCCTAGTGATGCTGACGCAGCAGTTACGGTTTATCCTGACG


  GACATCCGCAAAAAAACACCTATCAAAAAAGCAACAGCAGCCGCCGCTTGGGCT


  TCGGCGCGATGGCGGGCGTGGGCATAGACGTCGCGCCCGGCCTGACCTTGGACG


  CCGGCTACCGCTACCACAACTGGGGACGCTTGGAAAACACCCGCTTCAAAACCC


  ACGAAGCCTCATTGGGCATGCGCTACCGCTTCTGA






RNA: SEQ ID NO: 235









AUGAAUCCAGCCCGCAAAAAACCUUCUCUUCUCUUCUCUUCUCUUCUCUUCUC


  UUCUCUUCUCUUCUCUUCGGCAGCGCAGGCGGCAAGUGAAGGCAAUGGCCGCG


  GCCCGUAUGUGCAGGCGGAUUUAGCCUACGCCGCCGAACGCAUUACCCACGAU


  UAUCCGGAACCAACCGCUCCAGGCAAAAACAAAAUAAGCACGGUAAGCGAUU


  AUUUCAGAAACAUCCGUACGCAUUCCAUCCACCCCAGGGUGUCGGUCGGCUAC


  GACUUCGGCGGCUGGAGGAUAGCGGCAGAUUAUGCCCGUUACAGAAAGUGGA


  ACGACAAUAAAUAUUCCGUCGACAUAAAAGAGUUGGAAAACAAGAAUCAGAA


  UAAGAGAGACCUGAAGACGGAAAAUCAGGAAAACGGCAGCUUCCACGCCGUU


  UCUUCUCUCGGCUUAUCAGCCGUUUACGAUUUCAAACUCAACGACAAAUUCAA


  ACCCUAUAUCGGUGCGCGCGUCGCCUACGGACACGUCAGACACAGCAUCGAUU


  CGACUAAAAAAAUAACAGGUACUCUUACCGCCUACCCUAGUGAUGCUGACGCA


  GCAGUUACGGUUUAUCCUGACGGACAUCCGCAAAAAAACACCUAUCAAAAAA


  GCAACAGCAGCCGCCGCUUGGGCUUCGGCGCGAUGGCGGGCGUGGGCAUAGAC


  GUCGCGCCCGGCCUGACCUUGGACGCCGGCUACCGCUACCACAACUGGGGACG


  CUUGGAAAACACCCGCUUCAAAACCCACGAAGCCUCAUUGGGCAUGCGCUACC


  GCUUCUGA






cDNA: SEQ ID NO: 236









TCAGAAGCGGTAGCGCATGCCCAATGAGGCTTCGTGGGTTTTGAAGCGGGTGTTT


  TCCAAGCGTCCCCAGTTGTGGTAGCGGTAGCCGGCGTCCAAGGTCAGGCCGGGC


  GCGACGTCTATGCCCACGCCCGCCATCGCGCCGAAGCCCAAGCGGCGGCTGCTG


  TTGCTTTTTTGATAGGTGTTTTTTTGCGGATGTCCGTCAGGATAAACCGTAACTGC


  TGCGTCAGCATCACTAGGGTAGGCGGTAAGAGTACCTGTTATTTTTTTAGTCGAA


  TCGATGCTGTGTCTGACGTGTCCGTAGGCGACGCGCGCACCGATATAGGGTTTGA


  ATTTGTCGTTGAGTTTGAAATCGTAAACGGCTGATAAGCCGAGAGAAGAAACGG


  CGTGGAAGCTGCCGTTTTCCTGATTTTCCGTCTTCAGGTCTCTCTTATTCTGATTC


  TTGTTTTCCAACTCTTTTATGTCGACGGAATATTTATTGTCGTTCCACTTTCTGTA


  ACGGGCATAATCTGCCGCTATCCTCCAGCCGCCGAAGTCGTAGCCGACCGACAC


  CCTGGGGTGGATGGAATGCGTACGGATGTTTCTGAAATAATCGCTTACCGTGCTT


  ATTTTGTTTTTGCCTGGAGCGGTTGGTTCCGGATAATCGTGGGTAATGCGTTCGG


  CGGCGTAGGCTAAATCCGCCTGCACATACGGGCCGCGGCCATTGCCTTCACTTGC


  CGCCTGCGCTGCCGAAGAGAAGAGAAGAGAAGAGAAGAGAAGAGAAGAGAAG


  AGAAGAGAAGGTTTTTTGCGGGCTGGATTCAT






3. Ngo0372: Nc_002946.2:366358-367185

DNA (+ strand): SEQ ID NO: 237









ATGATGTTGAAAAAATTCGTACTCGGCGGCATTGCCGCATTGGTTTTGGCGGCCT


  GCGGCGGTTCGGAAGGCGGCAGCGGAGCATCTTCCGCGCCTGCACAATCGGCAA


  TTTCCGGTTCTTTAATCGAGCGCATCAACAATAAAGGCACGGTTACCGTCGGCAC


  GGAAGGCACTTACGCACCGTTTACCTACCACGACAAAGACGGCAAACTGACCGG


  TTACGACGTGGAAGTAACCCGCGCCGTGGCGGAAAAACTGGGCGTAAAAGTCGA


  GTTTAAAGAAACGCAATGGGATTCGATGATGGCGGGTTTGAAAGCCGGACGTTT


  CGACGTGGTGGCAAACCAAGTCGGCCTGACCAGCCCCGAACGCCAGGCGACATT


  TGACAAATCCGAACCTTACAGCTGGAGCGGTGCGGTTTTGGTTGCGCATAACGA


  CAGCAACATTAAATCCATAGCCGACATCAAAGGCGTGAAAACCGCGCAATCCCT


  GACCAGCAACTACGGCGAAAAAGCCAAAGCCGCAGGTGCGCAACTCGTGCCGG


  TGGACGGTTTGGCGCAATCGCTGACCCTGATTGAACAAAAACGCGCCGATGCGA


  CGTTGAACGATGAATTGGCGGTTTTGGACTATCTGAAGAAAAACCCGAATGCGG


  GGGTGAAAATCGTGTGGTCCGCGCCTGCCGATGAAAAAGTCGGTTCCGGTCTGA


  TTGTCAACAAGGGCAATGACGAGGCCGTGGCGAAATTCAGCACGGCAATCAACG


  AGCTGAAAGCCGACGGCACGTTGAAAAAACTGGGCGAACAATTCTTCGGAAAAG


  ACATCAGTGTTCAATAA






RNA SEQ ID NO: 238









AUGAUGUUGAAAAAAUUCGUACUCGGCGGCAUUGCCGCAUUGGUUUUGGCGG


  CCUGCGGCGGUUCGGAAGGCGGCAGCGGAGCAUCUUCCGCGCCUGCACAAUCG


  GCAAUUUCCGGUUCUUUAAUCGAGCGCAUCAACAAUAAAGGCACGGUUACCG


  UCGGCACGGAAGGCACUUACGCACCGUUUACCUACCACGACAAAGACGGCAAA


  CUGACCGGUUACGACGUGGAAGUAACCCGCGCCGUGGCGGAAAAACUGGGCG


  UAAAAGUCGAGUUUAAAGAAACGCAAUGGGAUUCGAUGAUGGCGGGUUUGAA


  AGCCGGACGUUUCGACGUGGUGGCAAACCAAGUCGGCCUGACCAGCCCCGAAC


  GCCAGGCGACAUUUGACAAAUCCGAACCUUACAGCUGGAGCGGUGCGGUUUU


  GGUUGCGCAUAACGACAGCAACAUUAAAUCCAUAGCCGACAUCAAAGGCGUG


  AAAACCGCGCAAUCCCUGACCAGCAACUACGGCGAAAAAGCCAAAGCCGCAGG


  UGCGCAACUCGUGCCGGUGGACGGUUUGGCGCAAUCGCUGACCCUGAUUGAAC


  AAAAACGCGCCGAUGCGACGUUGAACGAUGAAUUGGCGGUUUUGGACUAUCU


  GAAGAAAAACCCGAAUGCGGGGGUGAAAAUCGUGUGGUCCGCGCCUGCCGAU


  GAAAAAGUCGGUUCCGGUCUGAUUGUCAACAAGGGCAAUGACGAGGCCGUGG


  CGAAAUUCAGCACGGCAAUCAACGAGCUGAAAGCCGACGGCACGUUGAAAAA


  ACUGGGCGAACAAUUCUUCGGAAAAGACAUCAGUGUUCAAUAA






cDNA: SEQ ID NO: 239









TTATTGAACACTGATGTCTTTTCCGAAGAATTGTTCGCCCAGTTTTTTCAACGTGC


  CGTCGGCTTTCAGCTCGTTGATTGCCGTGCTGAATTTCGCCACGGCCTCGTCATTG


  CCCTTGTTGACAATCAGACCGGAACCGACTTTTTCATCGGCAGGCGCGGACCAC


  ACGATTTTCACCCCCGCATTCGGGTTTTTCTTCAGATAGTCCAAAACCGCCAATT


  CATCGTTCAACGTCGCATCGGCGCGTTTTTGTTCAATCAGGGTCAGCGATTGCGC


  CAAACCGTCCACCGGCACGAGTTGCGCACCTGCGGCTTTGGCTTTTTCGCCGTAG


  TTGCTGGTCAGGGATTGCGCGGTTTTCACGCCTTTGATGTCGGCTATGGATTTAA


  TGTTGCTGTCGTTATGCGCAACCAAAACCGCACCGCTCCAGCTGTAAGGTTCGGA


  TTTGTCAAATGTCGCCTGGCGTTCGGGGCTGGTCAGGCCGACTTGGTTTGCCACC


  ACGTCGAAACGTCCGGCTTTCAAACCCGCCATCATCGAATCCCATTGCGTTTCTT


  TAAACTCGACTTTTACGCCCAGTTTTTCCGCCACGGCGCGGGTTACTTCCACGTC


  GTAACCGGTCAGTTTGCCGTCTTTGTCGTGGTAGGTAAACGGTGCGTAAGTGCCT


  TCCGTGCCGACGGTAACCGTGCCTTTATTGTTGATGCGCTCGATTAAAGAACCGG


  AAATTGCCGATTGTGCAGGCGCGGAAGATGCTCCGCTGCCGCCTTCCGAACCGC


  CGCAGGCCGCCAAAACCAATGCGGCAATGCCGCCGAGTACGAATTTTTTCAACA


  TCAT






4. Ngo0374: Nc_002946.2:367901-368656

DNA (+ strand): SEQ ID NO: 240









ATGATTAAAATCCGCAATATCCATAAGACCTTTGGCGAAAACACCATTTTGCGCG


  GCATCGATTTGGATGTGGGCAAAGGGCAGGTGGTCGTCATCCTCGGGCCTTCCG


  GCTCGGGTAAAACAACATTTCTGCGCTGCCTAAACGCGTTGGAAATGCCCGAAG


  ACGGACAAATCGAGTTCGACAACGCGCGGCCGTTACGCATTGATTTTTCCAAAA


  AAACAAGCAAACACGATATTTTGGCACTGCGCCGCAAGTCCGGAATGGTATTCC


  AACAATACAACCTCTTCCCGCATAAAACCGTGTTGGAAAACGTGATGGAAGGGC


  CGGTTGCCGTACAGGGCAAGCCTGCCGCCCAAGCGCGCGAAGAGGCTTTGAAAC


  TGCTGGAAAAAGTCGGCTTGGGCGATAAAGTGGATTTGTATCCCTACCAGCTTTC


  CGGCGGTCAGCAGCAGCGTGTCGGTATCGCCCGCGCACTGGCGATTCAGCCTGA


  ATTGATGCTGTTTGACGAACCCACTTCCGCGCTGGACCCCGAGTTGGTGCAAGAC


  GTGTTGGACGCCATGAAGGAATTGGCGCGGGAAGGTTGGACGATGGTCGTCGTT


  ACCCACGAAATCAAGTTCACGCTGGAAGTTGCCACGAACGTCGTCGTGATGGAC


  GGCGGCGTTATCGTAGAGCAGGGCAGCCCGAAAGAGTTGTTCGACCACCTCAAA


  CACGAACGGACGCGGAGATTTTTAAGCCAAATCCAATCTGCCAAGATTTGA






RNA SEQ ID NO: 241









AUGAUUAAAAUCCGCAAUAUCCAUAAGACCUUUGGCGAAAACACCAUUUUGC


  GCGGCAUCGAUUUGGAUGUGGGCAAAGGGCAGGUGGUCGUCAUCCUCGGGCC


  UUCCGGCUCGGGUAAAACAACAUUUCUGCGCUGCCUAAACGCGUUGGAAAUG


  CCCGAAGACGGACAAAUCGAGUUCGACAACGCGCGGCCGUUACGCAUUGAUUU


  UUCCAAAAAAACAAGCAAACACGAUAUUUUGGCACUGCGCCGCAAGUCCGGA


  AUGGUAUUCCAACAAUACAACCUCUUCCCGCAUAAAACCGUGUUGGAAAACG


  UGAUGGAAGGGCCGGUUGCCGUACAGGGCAAGCCUGCCGCCCAAGCGCGCGAA


  GAGGCUUUGAAACUGCUGGAAAAAGUCGGCUUGGGCGAUAAAGUGGAUUUGU


  AUCCCUACCAGCUUUCCGGCGGUCAGCAGCAGCGUGUCGGUAUCGCCCGCGCA


  CUGGCGAUUCAGCCUGAAUUGAUGCUGUUUGACGAACCCACUUCCGCGCUGGA


  CCCCGAGUUGGUGCAAGACGUGUUGGACGCCAUGAAGGAAUUGGCGCGGGAA


  GGUUGGACGAUGGUCGUCGUUACCCACGAAAUCAAGUUCACGCUGGAAGUUG


  CCACGAACGUCGUCGUGAUGGACGGCGGCGUUAUCGUAGAGCAGGGCAGCCCG


  AAAGAGUUGUUCGACCACCUCAAACACGAACGGACGCGGAGAUUUUUAAGCC


  AAAUCCAAUCUGCCAAGAUUUGA






cDNA: SEQ ID NO: 242









TCAAATCTTGGCAGATTGGATTTGGCTTAAAAATCTCCGCGTCCGTTCGTGTTTG


  AGGTGGTCGAACAACTCTTTCGGGCTGCCCTGCTCTACGATAACGCCGCCGTCCA


  TCACGACGACGTTCGTGGCAACTTCCAGCGTGAACTTGATTTCGTGGGTAACGAC


  GACCATCGTCCAACCTTCCCGCGCCAATTCCTTCATGGCGTCCAACACGTCTTGC


  ACCAACTCGGGGTCCAGCGCGGAAGTGGGTTCGTCAAACAGCATCAATTCAGGC


  TGAATCGCCAGTGCGCGGGCGATACCGACACGCTGCTGCTGACCGCCGGAAAGC


  TGGTAGGGATACAAATCCACTTTATCGCCCAAGCCGACTTTTTCCAGCAGTTTCA


  AAGCCTCTTCGCGCGCTTGGGCGGCAGGCTTGCCCTGTACGGCAACCGGCCCTTC


  CATCACGTTTTCCAACACGGTTTTATGCGGGAAGAGGTTGTATTGTTGGAATACC


  ATTCCGGACTTGCGGCGCAGTGCCAAAATATCGTGTTTGCTTGTTTTTTTGGAAA


  AATCAATGCGTAACGGCCGCGCGTTGTCGAACTCGATTTGTCCGTCTTCGGGCAT


  TTCCAACGCGTTTAGGCAGCGCAGAAATGTTGTTTTACCCGAGCCGGAAGGCCC


  GAGGATGACGACCACCTGCCCTTTGCCCACATCCAAATCGATGCCGCGCAAAAT


  GGTGTTTTCGCCAAAGGTCTTATGGATATTGCGGATTTTAATCAT






5. NGO0399: NC_002946.2: C392291-391452

DNA (- strand): SEQ ID NO: 243









GTGAAACGCATTTTTCTGTTTTTGGCTACCAATATCGCTGTTTTGGTCGTAATCAA


  CATTGTTTTGGCGGTTCTGGGCATCAACAGCCGGGGCGGCGCGGGCAGCCTGTTG


  GCGTATTCCGCCGTCGTCGGCTTCACTGGTTCGATTATTTCGCTGCTGATGTCCAA


  ATTTATCGCCAAACAATCGGTCGGTGCGGAAGTCATCGACACGCCGCGCACCGA


  AGAAGAAGCCTGGCTTCTGAACACTGTCGAAGCCCAAGCGCGGCAATGGAATCT


  GAAAACGCCAGAAGTCGCCATCTACCACTCCCCCGAACCCAATGCCTTTGCCAC


  GGGCGCATCGAGAAACAGCTCCCTGATCGCCGTCAGCACCGGTTTGCTCGACCA


  TATGACGCGCGACGAAGTGGAAGCCGTGTTGGCGCACGAAATGGCGCACGTCGG


  CAACGGCGACATGGTTACGCTGACGCTGATTCAAGGCGTGGTCAATACCTTTGTC


  GTGTTCCTGTCGCGCATTATTGCCAACCTGATTGCCCGAAACAACGACGGCAGCC


  AGTCCCAGGGAACTTATTTCCTAGTCAGCATGGTATTCCAAATCCTGTTCGGCTT


  CCTTGCCAGCCTGATTGTCATGTGGTTCAGCCGCCAACGCGAATACCGCGCCGAC


  GCGGGCGCGGCAAAACTGGTCGGCGCACCGAAAATGATTTCCGCCCTGCAAAGG


  CTTAAAGGCAACCCGGTCGATTTGCCCGAAGAAATGAACGCAATGGGCATCGCC


  GGAGATACGCGCGACTCCCTGCTCAGCACCCACCCTTCGCTGGACAACCGAATC


  GCCCGCCTCAAATCGCTTTAA






RNA SEQ ID NO: 244









GUGAAACGCAUUUUUCUGUUUUUGGCUACCAAUAUCGCUGUUUUGGUCGUAA


  UCAACAUUGUUUUGGCGGUUCUGGGCAUCAACAGCCGGGGCGGCGCGGGCAG


  CCUGUUGGCGUAUUCCGCCGUCGUCGGCUUCACUGGUUCGAUUAUUUCGCUGC


  UGAUGUCCAAAUUUAUCGCCAAACAAUCGGUCGGUGCGGAAGUCAUCGACAC


  GCCGCGCACCGAAGAAGAAGCCUGGCUUCUGAACACUGUCGAAGCCCAAGCGC


  GGCAAUGGAAUCUGAAAACGCCAGAAGUCGCCAUCUACCACUCCCCCGAACCC


  AAUGCCUUUGCCACGGGCGCAUCGAGAAACAGCUCCCUGAUCGCCGUCAGCAC


  CGGUUUGCUCGACCAUAUGACGCGCGACGAAGUGGAAGCCGUGUUGGCGCAC


  GAAAUGGCGCACGUCGGCAACGGCGACAUGGUUACGCUGACGCUGAUUCAAG


  GCGUGGUCAAUACCUUUGUCGUGUUCCUGUCGCGCAUUAUUGCCAACCUGAU


  UGCCCGAAACAACGACGGCAGCCAGUCCCAGGGAACUUAUUUCCUAGUCAGCA


  UGGUAUUCCAAAUCCUGUUCGGCUUCCUUGCCAGCCUGAUUGUCAUGUGGUU


  CAGCCGCCAACGCGAAUACCGCGCCGACGCGGGCGCGGCAAAACUGGUCGGCG


  CACCGAAAAUGAUUUCCGCCCUGCAAAGGCUUAAAGGCAACCCGGUCGAUUUG


  CCCGAAGAAAUGAACGCAAUGGGCAUCGCCGGAGAUACGCGCGACUCCCUGCU


  CAGCACCCACCCUUCGCUGGACAACCGAAUCGCCCGCCUCAAAUCGCUUUAA






cDNA: SEQ ID NO: 245









TTAAAGCGATTTGAGGCGGGCGATTCGGTTGTCCAGCGAAGGGTGGGTGCTGAG


  CAGGGAGTCGCGCGTATCTCCGGCGATGCCCATTGCGTTCATTTCTTCGGGCAAA


  TCGACCGGGTTGCCTTTAAGCCTTTGCAGGGCGGAAATCATTTTCGGTGCGCCGA


  CCAGTTTTGCCGCGCCCGCGTCGGCGCGGTATTCGCGTTGGCGGCTGAACCACAT


  GACAATCAGGCTGGCAAGGAAGCCGAACAGGATTTGGAATACCATGCTGACTAG


  GAAATAAGTTCCCTGGGACTGGCTGCCGTCGTTGTTTCGGGCAATCAGGTTGGCA


  ATAATGCGCGACAGGAACACGACAAAGGTATTGACCACGCCTTGAATCAGCGTC


  AGCGTAACCATGTCGCCGTTGCCGACGTGCGCCATTTCGTGCGCCAACACGGCTT


  CCACTTCGTCGCGCGTCATATGGTCGAGCAAACCGGTGCTGACGGCGATCAGGG


  AGCTGTTTCTCGATGCGCCCGTGGCAAAGGCATTGGGTTCGGGGGAGTGGTAGA


  TGGCGACTTCTGGCGTTTTCAGATTCCATTGCCGCGCTTGGGCTTCGACAGTGTTC


  AGAAGCCAGGCTTCTTCTTCGGTGCGCGGCGTGTCGATGACTTCCGCACCGACCG


  ATTGTTTGGCGATAAATTTGGACATCAGCAGCGAAATAATCGAACCAGTGAAGC


  CGACGACGGCGGAATACGCCAACAGGCTGCCCGCGCCGCCCCGGCTGTTGATGC


  CCAGAACCGCCAAAACAATGTTGATTACGACCAAAACAGCGATATTGGTAGCCA


  AAAACAGAAAAATGCGTTTCAC






6. Ngo0453: Nc_002946.2:447935-448546

DNA (+ strand): SEQ ID NO: 246









ATGAAGAATAATGATTGCTTGCGCCTGAAAAATCCCCAGTCCGGTATGGCGTTG


  ATAGAAGTCTTGGTCGCTATGCTCGTTCTGACCATCGGTATTTTGGCATTGCTGTC


  CGTACAGTTGCGGACAGTCGCTTCCGTCAGGGAGGCGGAAACGCAAACCATCGT


  CAGCCAAATCACGCAAAACCTGATGGAAGGAATGTTGATGAATCCGACCATTGA


  TTTGGACAGCAACAAGAAAAACTATAGTCTTTACATGGGAAAACAGACACTATC


  AGCTGTGGATGGTGAGTTTATGCTTGATGCCGAGAAAAGTAAGGCGCAGTTGGC


  AGAGGAACAATTGAAGAGATTTAGTCATGAGCTGAAAAATGCCTTGCCGGATGC


  GGTAGCTATTCATTACGCCGTCTGCAAGGATTCGTCGGGTGACGCGCCGACATTG


  TCCGACAGCGGTGCTTTTTCTTCAAATTGCGACAATAAGGCAAACGGGGATACTT


  TGATTAAAGTATTGTGGGTAAATGATTCGGCAGGGGATTCGGATATTTCCCGTAC


  GAATCTTGAAGTGAGCGGCGACAATATCGTATATACCTATCAGGCAAGGGTCGG


  AGGTCGTGAATGA






RNA SEQ ID NO: 247









AUGAAGAAUAAUGAUUGCUUGCGCCUGAAAAAUCCCCAGUCCGGUAUGGCGU


  UGAUAGAAGUCUUGGUCGCUAUGCUCGUUCUGACCAUCGGUAUUUUGGCAUU


  GCUGUCCGUACAGUUGCGGACAGUCGCUUCCGUCAGGGAGGCGGAAACGCAA


  ACCAUCGUCAGCCAAAUCACGCAAAACCUGAUGGAAGGAAUGUUGAUGAAUC


  CGACCAUUGAUUUGGACAGCAACAAGAAAAACUAUAGUCUUUACAUGGGAAA


  ACAGACACUAUCAGCUGUGGAUGGUGAGUUUAUGCUUGAUGCCGAGAAAAGU


  AAGGCGCAGUUGGCAGAGGAACAAUUGAAGAGAUUUAGUCAUGAGCUGAAAA


  AUGCCUUGCCGGAUGCGGUAGCUAUUCAUUACGCCGUCUGCAAGGAUUCGUC


  GGGUGACGCGCCGACAUUGUCCGACAGCGGUGCUUUUUCUUCAAAUUGCGAC


  AAUAAGGCAAACGGGGAUACUUUGAUUAAAGUAUUGUGGGUAAAUGAUUCGG


  CAGGGGAUUCGGAUAUUUCCCGUACGAAUCUUGAAGUGAGCGGCGACAAUAU


  CGUAUAUACCUAUCAGGCAAGGGUCGGAGGUCGUGAAUGA






cDNA: SEQ ID NO: 248









TCATTCACGACCTCCGACCCTTGCCTGATAGGTATATACGATATTGTCGCCGCTC


  ACTTCAAGATTCGTACGGGAAATATCCGAATCCCCTGCCGAATCATTTACCCACA


  ATACTTTAATCAAAGTATCCCCGTTTGCCTTATTGTCGCAATTTGAAGAAAAAGC


  ACCGCTGTCGGACAATGTCGGCGCGTCACCCGACGAATCCTTGCAGACGGCGTA


  ATGAATAGCTACCGCATCCGGCAAGGCATTTTTCAGCTCATGACTAAATCTCTTC


  AATTGTTCCTCTGCCAACTGCGCCTTACTTTTCTCGGCATCAAGCATAAACTCAC


  CATCCACAGCTGATAGTGTCTGTTTTCCCATGTAAAGACTATAGTTTTTCTTGTTG


  CTGTCCAAATCAATGGTCGGATTCATCAACATTCCTTCCATCAGGTTTTGCGTGA


  TTTGGCTGACGATGGTTTGCGTTTCCGCCTCCCTGACGGAAGCGACTGTCCGCAA


  CTGTACGGACAGCAATGCCAAAATACCGATGGTCAGAACGAGCATAGCGACCAA


  GACTTCTATCAACGCCATACCGGACTGGGGATTTTTCAGGCGCAAGCAATCATTA


  TTCTTCAT






7. Ng00571: Nc_002946.2:553869-555665

DNA (+ strand): SEQ ID NO: 249









ATGCGCTACAAACCCCTTCTGCTTGCCCTGATGCTCGTTTTTTCCACGCCCGCCGT


  TGCCGCCCACGACGCGGCACACAACCGTTCCGCCGAAGTGAAAAAACAGGCGA


  AGAACAAAAAAGAACAGCCCGAAGCGGCGGAAGGCAAAAAAGAAAAAGGCAA


  AAATGCCGCAGTGAAAGATAAAAAAACAGGCGGCAAAGAGGCGGCAAAAGAGT


  TCAAAAAAACCGCCAAAAACCGCAAAGAAGCAGAGAAGGAGGCGACATCCAGG


  CAGTCTGCGCGCAAAGGACGCGAAGGGGATAAGGAATCGAAGGCGGAACACAA


  AAAGGCACATGGCAAGCCCGTGTCCGGATCCAAAGAAAAAAACGCAAAAACAC


  AGCCTGAAAACAAACAAGGCAAAAAAGGGGCAAAAGGACAGGGCAATCCGCGC


  AAGGGCGGCAAGGCGGAAAAAGACACTGTTTCTGCAAATAAAAAAGCCCGTTCC


  GACAAGAACGGCAAAGCAGTGAAACAGGACAAAAAACACACGGAAGAGAAAA


  ATGCCAAAACCGATTCCGACGAATTGAAAGCCGCCGTTGCCGCTGCCACCAATG


  ATGTCGAAAACAAAAAAGCCCTGCTCAAACAAAGCGAAGGAATGCTGCTTCATG


  TCAGCAATTCCCTCAAACAGCTTCAGGAAGAGCGTATCCGCCAAGAACGTATCC


  GCCAAGAGCGTATCCGTCAGGCGCGCGGCAACCTTGCTTCCGTCAACCGCAAAC


  AGCGCGAGGCTTGGGACAAATTCCAAAAACTCAATACCGAGCTGAACCGTTTGA


  AAACGGAAGTCGCCGCTACGAAAGCGCAGATTTCCCGTTTCGTATCGGGGAACT


  ATAAAAACAGCCGGCCGAATGCGGTTGCCCTGTTCCTGAAAAACGCCGAACCGG


  GTCAGAAAAACCGCTTTTTGCGTTATACGCGTTATGTAAACGCCTCCAATCGGGA


  AGTTGTCAAGGATTTGGAAAAACAGCAGAAGGCTTTGGCGGTACAAGAGCAGAA


  AATCAACAATGAGCTTGCCCGTTTGAAGAAAATTCAGGCAAACGTGCAATCCCT


  GCTGAAAAAACAGGGTGTAACCGATGCGGCGGAACAGACGGAAAGCCGCAGAC


  AGAATGCCAAAATCTCCAAAGATGCCCGAAAACTGCTGGAACAGAAAGGGAAC


  GAGCAGCAGCTGAACAAGCTCTTGAGCAATTTGGAGAAAAAAAAAGCCGAACA


  CCGCATTCAGGATGCGGAAGCAAAAAGAAAATTGGCTGAAGCCAAACTGGCGG


  CAGCCGAAAAAGCCAGAAAAGAAGCGGCGCAGCAGAAGGCTGAAGCGCGACGT


  GCGGAAATGTCCAACCTGACCGCCGAAGACAGGAACATCCAAGCGCCTTCGGTT


  ATGGGTATCGGCAGTGCCGACGGTTTCAGCCGCATGCAGGGACGTTTGAAAAAA


  CCGGTTGACGGTGTGCCGACCGGGCTTTTCGGGCAGAACCGGAGCGGCGGCGAT


  GTTTGGAAAGGCGTGTTCTATTCCACTGCGCCTGCAACGGTTGAAAGCATTGCGC


  CGGGAACGGTAAGCTATGCGGACGAGTTGGACGGCTACGGCAAAGTGGTCGTGA


  TCGATCACGGCGAGAACTACATCAGCATCTATGCCGGTTTGAGCGAAATTTCCGC


  CGGCAAGGGTTATACGGTCGCGGCAGGAAGCAAAATCGGCACGAGCGGGTCGC


  TGCCGGACGGGGAAGAGGGGCTTTACCTGCAAATACGTTATCGAGGTCAGGTGT


  TGAACCCTTCGGGCTGGATACGTTGA






RNA: SEQ ID NO: 250









AUGCGCUACAAACCCCUUCUGCUUGCCCUGAUGCUCGUUUUUUCCACGCCCGC


  CGUUGCCGCCCACGACGCGGCACACAACCGUUCCGCCGAAGUGAAAAAACAGG


  CGAAGAACAAAAAAGAACAGCCCGAAGCGGCGGAAGGCAAAAAAGAAAAAGG


  CAAAAAUGCCGCAGUGAAAGAUAAAAAAACAGGCGGCAAAGAGGCGGCAAAA


  GAGUUCAAAAAAACCGCCAAAAACCGCAAAGAAGCAGAGAAGGAGGCGACAU


  CCAGGCAGUCUGCGCGCAAAGGACGCGAAGGGGAUAAGGAAUCGAAGGCGGA


  ACACAAAAAGGCACAUGGCAAGCCCGUGUCCGGAUCCAAAGAAAAAAACGCA


  AAAACACAGCCUGAAAACAAACAAGGCAAAAAAGGGGCAAAAGGACAGGGCA


  AUCCGCGCAAGGGCGGCAAGGCGGAAAAAGACACUGUUUCUGCAAAUAAAAA


  AGCCCGUUCCGACAAGAACGGCAAAGCAGUGAAACAGGACAAAAAACACACG


  GAAGAGAAAAAUGCCAAAACCGAUUCCGACGAAUUGAAAGCCGCCGUUGCCG


  CUGCCACCAAUGAUGUCGAAAACAAAAAAGCCCUGCUCAAACAAAGCGAAGG


  AAUGCUGCUUCAUGUCAGCAAUUCCCUCAAACAGCUUCAGGAAGAGCGUAUCC


  GCCAAGAACGUAUCCGCCAAGAGCGUAUCCGUCAGGCGCGCGGCAACCUUGCU


  UCCGUCAACCGCAAACAGCGCGAGGCUUGGGACAAAUUCCAAAAACUCAAUAC


  CGAGCUGAACCGUUUGAAAACGGAAGUCGCCGCUACGAAAGCGCAGAUUUCCC


  GUUUCGUAUCGGGGAACUAUAAAAACAGCCGGCCGAAUGCGGUUGCCCUGUU


  CCUGAAAAACGCCGAACCGGGUCAGAAAAACCGCUUUUUGCGUUAUACGCGU


  UAUGUAAACGCCUCCAAUCGGGAAGUUGUCAAGGAUUUGGAAAAACAGCAGA


  AGGCUUUGGCGGUACAAGAGCAGAAAAUCAACAAUGAGCUUGCCCGUUUGAA


  GAAAAUUCAGGCAAACGUGCAAUCCCUGCUGAAAAAACAGGGUGUAACCGAU


  GCGGCGGAACAGACGGAAAGCCGCAGACAGAAUGCCAAAAUCUCCAAAGAUG


  CCCGAAAACUGCUGGAACAGAAAGGGAACGAGCAGCAGCUGAACAAGCUCUU


  GAGCAAUUUGGAGAAAAAAAAAGCCGAACACCGCAUUCAGGAUGCGGAAGCA


  AAAAGAAAAUUGGCUGAAGCCAAACUGGCGGCAGCCGAAAAAGCCAGAAAAG


  AAGCGGCGCAGCAGAAGGCUGAAGCGCGACGUGCGGAAAUGUCCAACCUGACC


  GCCGAAGACAGGAACAUCCAAGCGCCUUCGGUUAUGGGUAUCGGCAGUGCCG


  ACGGUUUCAGCCGCAUGCAGGGACGUUUGAAAAAACCGGUUGACGGUGUGCC


  GACCGGGCUUUUCGGGCAGAACCGGAGCGGCGGCGAUGUUUGGAAAGGCGUG


  UUCUAUUCCACUGCGCCUGCAACGGUUGAAAGCAUUGCGCCGGGAACGGUAA


  GCUAUGCGGACGAGUUGGACGGCUACGGCAAAGUGGUCGUGAUCGAUCACGG


  CGAGAACUACAUCAGCAUCUAUGCCGGUUUGAGCGAAAUUUCCGCCGGCAAG


  GGUUAUACGGUCGCGGCAGGAAGCAAAAUCGGCACGAGCGGGUCGCUGCCGG


  ACGGGGAAGAGGGGCUUUACCUGCAAAUACGUUAUCGAGGUCAGGUGUUGAA


  CCCUUCGGGCUGGAUACGUUGA


  






cDNA: SEQ ID NO: 251









TCAACGTATCCAGCCCGAAGGGTTCAACACCTGACCTCGATAACGTATTTGCAG


  GTAAAGCCCCTCTTCCCCGTCCGGCAGCGACCCGCTCGTGCCGATTTTGCTTCCT


  GCCGCGACCGTATAACCCTTGCCGGCGGAAATTTCGCTCAAACCGGCATAGATG


  CTGATGTAGTTCTCGCCGTGATCGATCACGACCACTTTGCCGTAGCCGTCCAACT


  CGTCCGCATAGCTTACCGTTCCCGGCGCAATGCTTTCAACCGTTGCAGGCGCAGT


  GGAATAGAACACGCCTTTCCAAACATCGCCGCCGCTCCGGTTCTGCCCGAAAAG


  CCCGGTCGGCACACCGTCAACCGGTTTTTTCAAACGTCCCTGCATGCGGCTGAAA


  CCGTCGGCACTGCCGATACCCATAACCGAAGGCGCTTGGATGTTCCTGTCTTCGG


  CGGTCAGGTTGGACATTTCCGCACGTCGCGCTTCAGCCTTCTGCTGCGCCGCTTC


  TTTTCTGGCTTTTTCGGCTGCCGCCAGTTTGGCTTCAGCCAATTTTCTTTTTGCTTC


  CGCATCCTGAATGCGGTGTTCGGCTTTTTTTTTCTCCAAATTGCTCAAGAGCTTGT


  TCAGCTGCTGCTCGTTCCCTTTCTGTTCCAGCAGTTTTCGGGCATCTTTGGAGATT


  TTGGCATTCTGTCTGCGGCTTTCCGTCTGTTCCGCCGCATCGGTTACACCCTGTTT


  TTTCAGCAGGGATTGCACGTTTGCCTGAATTTTCTTCAAACGGGCAAGCTCATTG


  TTGATTTTCTGCTCTTGTACCGCCAAAGCCTTCTGCTGTTTTTCCAAATCCTTGAC


  AACTTCCCGATTGGAGGCGTTTACATAACGCGTATAACGCAAAAAGCGGTTTTTC


  TGACCCGGTTCGGCGTTTTTCAGGAACAGGGCAACCGCATTCGGCCGGCTGTTTT


  TATAGTTCCCCGATACGAAACGGGAAATCTGCGCTTTCGTAGCGGCGACTTCCGT


  TTTCAAACGGTTCAGCTCGGTATTGAGTTTTTGGAATTTGTCCCAAGCCTCGCGCT


  GTTTGCGGTTGACGGAAGCAAGGTTGCCGCGCGCCTGACGGATACGCTCTTGGC


  GGATACGTTCTTGGCGGATACGCTCTTCCTGAAGCTGTTTGAGGGAATTGCTGAC


  ATGAAGCAGCATTCCTTCGCTTTGTTTGAGCAGGGCTTTTTTGTTTTCGACATCAT


  TGGTGGCAGCGGCAACGGCGGCTTTCAATTCGTCGGAATCGGTTTTGGCATTTTT


  CTCTTCCGTGTGTTTTTTGTCCTGTTTCACTGCTTTGCCGTTCTTGTCGGAACGGG


  CTTTTTTATTTGCAGAAACAGTGTCTTTTTCCGCCTTGCCGCCCTTGCGCGGATTG


  CCCTGTCCTTTTGCCCCTTTTTTGCCTTGTTTGTTTTCAGGCTGTGTTTTTGCGTTT


  TTTTCTTTGGATCCGGACACGGGCTTGCCATGTGCCTTTTTGTGTTCCGCCTTCGA


  TTCCTTATCCCCTTCGCGTCCTTTGCGCGCAGACTGCCTGGATGTCGCCTCCTTCT


  CTGCTTCTTTGCGGTTTTTGGCGGTTTTTTTGAACTCTTTTGCCGCCTCTTTGCCGC


  CTGTTTTTTTATCTTTCACTGCGGCATTTTTGCCTTTTTCTTTTTTGCCTTCCGCCG


  CTTCGGGCTGTTCTTTTTTGTTCTTCGCCTGTTTTTTCACTTCGGCGGAACGGTTGT


  GTGCCGCGTCGTGGGCGGCAACGGCGGGCGTGGAAAAAACGAGCATCAGGGCA


  AGCAGAAGGGGTTTGTAGCGCAT






8. NGO0632: NC_002946.2:c622370-622050

DNA (- strand): SEQ ID NO: 252









ATGATTACCCTTACCGAGAATGCCGCAAAACACATCAATGACTATCTCGCCAAA


  CGCGGCAAAGGCTTGGGCGTACGCTTGGGTGTAAAAACCAGCGGCTGCTCGGGG


  ATGGCGTACAACCTTGAATTTGTCGATGAAGCCAACGGCGACGACCTGATTTTCG


  AAGGACACGGCGCGCGCATTTATATCGACCCGAAAAGCTTGGTTTATCTGGACG


  GCACACAAGTCGATTACACCAAAGAAGATTTGCAGGAAGGTTTCAAATTTGAAA


  ACCCCAATGTCAAAGACTCCTGCGGCTGCGGCGAGAGCTTCCACGTTTAA






RNA: SEQ ID NO: 253









AUGAUUACCCUUACCGAGAAUGCCGCAAAACACAUCAAUGACUAUCUCGCCAA


  ACGCGGCAAAGGCUUGGGCGUACGCUUGGGUGUAAAAACCAGCGGCUGCUCG


  GGGAUGGCGUACAACCUUGAAUUUGUCGAUGAAGCCAACGGCGACGACCUGA


  UUUUCGAAGGACACGGCGCGCGCAUUUAUAUCGACCCGAAAAGCUUGGUUUA


  UCUGGACGGCACACAAGUCGAUUACACCAAAGAAGAUUUGCAGGAAGGUUUC


  AAAUUUGAAAACCCCAAUGUCAAAGACUCCUGCGGCUGCGGCGAGAGCUUCCA


  CGUUUAA






cDNA: SEQ ID NO: 254









TTAAACGTGGAAGCTCTCGCCGCAGCCGCAGGAGTCTTTGACATTGGGGTTTTCA


  AATTTGAAACCTTCCTGCAAATCTTCTTTGGTGTAATCGACTTGTGTGCCGTCCAG


  ATAAACCAAGCTTTTCGGGTCGATATAAATGCGCGCGCCGTGTCCTTCGAAAATC


  AGGTCGTCGCCGTTGGCTTCATCGACAAATTCAAGGTTGTACGCCATCCCCGAGC


  AGCCGCTGGTTTTTACACCCAAGCGTACGCCCAAGCCTTTGCCGCGTTTGGCGAG


  ATAGTCATTGATGTGTTTTGCGGCATTCTCGGTAAGGGTAATCAT






9. NGO0633: NC_002946.2:c622843-622457

DNA (- strand): SEQ ID NO: 255









ATGGCATACAGCGATAAAGTAATCGACCACTACGAAAATCCCCGCAACGTCGGC


  ACTTTCGACAAAAACGACGAGTCCGTCGGCACCGGCATGGTCGGCGCGCCCGCC


  TGCGGCGACGTGATGCGCCTGCAAATCAAAGTGAACGATGAAGGCATCATCGAA


  GATGCGAAATTCAAAACTTACGGCTGCGGTTCCGCCATCGCTTCGTCCAGCCTGA


  TTACCGAGTGGGTCAAAGGCAAAAGTCTGGATGACGCGCTGGCAATCAAAAACA


  GCGAAATCGCCGAAGAACTGGAATTGCCGCCGGTAAAAATCCACTGCTCCATCT


  TGGCTGAAGATGCGGTAAAAGCGGCCGTTGCCGACTACCGCAAACGTCAGGAAA


  ACAGATAA






RNA SEQ ID NO: 256









AUGGCAUACAGCGAUAAAGUAAUCGACCACUACGAAAAUCCCCGCAACGUCGG


  CACUUUCGACAAAAACGACGAGUCCGUCGGCACCGGCAUGGUCGGCGCGCCCG


  CCUGCGGCGACGUGAUGCGCCUGCAAAUCAAAGUGAACGAUGAAGGCAUCAU


  CGAAGAUGCGAAAUUCAAAACUUACGGCUGCGGUUCCGCCAUCGCUUCGUCCA


  GCCUGAUUACCGAGUGGGUCAAAGGCAAAAGUCUGGAUGACGCGCUGGCAAU


  CAAAAACAGCGAAAUCGCCGAAGAACUGGAAUUGCCGCCGGUAAAAAUCCAC


  UGCUCCAUCUUGGCUGAAGAUGCGGUAAAAGCGGCCGUUGCCGACUACCGCAA


  ACGUCAGGAAAACAGAUAA






cDNA: SEQ ID NO: 257









TTATCTGTTTTCCTGACGTTTGCGGTAGTCGGCAACGGCCGCTTTTACCGCATCTT


  CAGCCAAGATGGAGCAGTGGATTTTTACCGGCGGCAATTCCAGTTCTTCGGCGAT


  TTCGCTGTTTTTGATTGCCAGCGCGTCATCCAGACTTTTGCCTTTGACCCACTCGG


  TAATCAGGCTGGACGAAGCGATGGCGGAACCGCAGCCGTAAGTTTTGAATTTCG


  CATCTTCGATGATGCCTTCATCGTTCACTTTGATTTGCAGGCGCATCACGTCGCCG


  CAGGCGGGCGCGCCGACCATGCCGGTGCCGACGGACTCGTCGTTTTTGTCGAAA


  GTGCCGACGTTGCGGGGATTTTCGTAGTGGTCGATTACTTTATCGCTGTATGCCA


  T






10. NGO0678: NC_002946.2:c667233-666979

DNA (- strand): SEQ ID NO: 258









ATGAACAAACTTTTCGTTACCGCCCTGTCCGCCCTCGCCTTGTCCGCCTGCGCCG


  GCACTTGGCAGGGCGCGAAACAAGACACCGCCCGCAACCTTGACAAAACACAG


  GCCGCCGCCGAACGCGCCGCCGAACAAACAGGCAACGCCGTCGAAAAAGGTTG


  GGACAAAACCAAAGAAGCCGTCAAAAAAGGCGGCAATGCCGTCGGACGCGGCA


  TTTCCCATCTCGGCAAAAAAATCGAAAACGCCACCGAATAA






RNA SEQ ID NO: 259









AUGAACAAACUUUUCGUUACCGCCCUGUCCGCCCUCGCCUUGUCCGCCUGCGC


  CGGCACUUGGCAGGGCGCGAAACAAGACACCGCCCGCAACCUUGACAAAACAC


  AGGCCGCCGCCGAACGCGCCGCCGAACAAACAGGCAACGCCGUCGAAAAAGGU


  UGGGACAAAACCAAAGAAGCCGUCAAAAAAGGCGGCAAUGCCGUCGGACGCG


  GCAUUUCCCAUCUCGGCAAAAAAAUCGAAAACGCCACCGAAUAA






cDNA: SEQ ID NO: 260









TTATTCGGTGGCGTTTTCGATTTTTTTGCCGAGATGGGAAATGCCGCGTCCGACG


  GCATTGCCGCCTTTTTTGACGGCTTCTTTGGTTTTGTCCCAACCTTTTTCGACGGC


  GTTGCCTGTTTGTTCGGCGGCGCGTTCGGCGGCGGCCTGTGTTTTGTCAAGGTTG


  CGGGCGGTGTCTTGTTTCGCGCCCTGCCAAGTGCCGGCGCAGGCGGACAAGGCG


  AGGGCGGACAGGGCGGTAACGAAAAGTTTGTTCAT






11. NGO0926: NC_002946.2:c906814-906077

DNA (- strand): SEQ ID NO: 261









ATGGCTTTGCAAGATCGTACCGGTCAAAAAGTACCTTCCGTAGTATTCCGCACCC


  GCGTCGGCGACACTTGGAAAGATGTGTCTACCGATGATTTGTTCAAAGGCAAAA


  AAGTAGTCGTATTCTCCCTGCCCGGTGCATTTACCCCGACTTGTTCTTCTTCACAC


  CTGCCGCGTTACAACGAATTGTTCGGCGCGTTCAAAGAAAACGGCGTTGACGCA


  ATCTGCTGCGTATCTGTAAACGATACTTTCGTAATGAACGCTTGGGCTGCCGAAG


  AAGAATCAGACAACATCTACATGATTCCTGACGGCAACGGCGAATTTACCGAAG


  GTATGGGTATGCTGGTCGGTAAAGAAGACTTGGGCTTCGGCAAACGCTCTTGGC


  GTTACTCCATGCTGGTTAACGACGGCGTGGTTGAAAAAATGTTCATCGAACCTGA


  AGAACCGGGCGATCCTTTCAAAGTATCCGATGCAGATACTATGCTGAAATTCGTT


  GCTCCCGATTGGAAGGCTCAAGAGTCTGTGGCAATTTTCACTAAACCAGGTTGCC


  AATTCTGTGCCAAAGTCAAACAAGCTTTGCAAGACAAAGGTTTGTCTTACGAAG


  AAATCGTATTGGGCAAAGATGCAACCGTTACTTCCGTTCGCGCTATTACCGGCAA


  GATGACTGCCCCTCAAGTCTTCATCGGCGGCAAATACATCGGCGGCAGCGAAGA


  TTTGGAAGCTTACTTGGCTAAAAACTGA






RNA: SEQ ID NO: 262









AUGGCUUUGCAAGAUCGUACCGGUCAAAAAGUACCUUCCGUAGUAUUCCGCA


  CCCGCGUCGGCGACACUUGGAAAGAUGUGUCUACCGAUGAUUUGUUCAAAGG


  CAAAAAAGUAGUCGUAUUCUCCCUGCCCGGUGCAUUUACCCCGACUUGUUCUU


  CUUCACACCUGCCGCGUUACAACGAAUUGUUCGGCGCGUUCAAAGAAAACGGC


  GUUGACGCAAUCUGCUGCGUAUCUGUAAACGAUACUUUCGUAAUGAACGCUU


  GGGCUGCCGAAGAAGAAUCAGACAACAUCUACAUGAUUCCUGACGGCAACGG


  CGAAUUUACCGAAGGUAUGGGUAUGCUGGUCGGUAAAGAAGACUUGGGCUUC


  GGCAAACGCUCUUGGCGUUACUCCAUGCUGGUUAACGACGGCGUGGUUGAAA


  AAAUGUUCAUCGAACCUGAAGAACCGGGCGAUCCUUUCAAAGUAUCCGAUGC


  AGAUACUAUGCUGAAAUUCGUUGCUCCCGAUUGGAAGGCUCAAGAGUCUGUG


  GCAAUUUUCACUAAACCAGGUUGCCAAUUCUGUGCCAAAGUCAAACAAGCUU


  UGCAAGACAAAGGUUUGUCUUACGAAGAAAUCGUAUUGGGCAAAGAUGCAAC


  CGUUACUUCCGUUCGCGCUAUUACCGGCAAGAUGACUGCCCCUCAAGUCUUCA


  UCGGCGGCAAAUACAUCGGCGGCAGCGAAGAUUUGGAAGCUUACUUGGCUAA


  AAACUGA






cDNA: SEQ ID NO: 263









TCAGTTTTTAGCCAAGTAAGCTTCCAAATCTTCGCTGCCGCCGATGTATTTGCCG


  CCGATGAAGACTTGAGGGGCAGTCATCTTGCCGGTAATAGCGCGAACGGAAGTA


  ACGGTTGCATCTTTGCCCAATACGATTTCTTCGTAAGACAAACCTTTGTCTTGCA


  AAGCTTGTTTGACTTTGGCACAGAATTGGCAACCTGGTTTAGTGAAAATTGCCAC


  AGACTCTTGAGCCTTCCAATCGGGAGCAACGAATTTCAGCATAGTATCTGCATCG


  GATACTTTGAAAGGATCGCCCGGTTCTTCAGGTTCGATGAACATTTTTTCAACCA


  CGCCGTCGTTAACCAGCATGGAGTAACGCCAAGAGCGTTTGCCGAAGCCCAAGT


  CTTCTTTACCGACCAGCATACCCATACCTTCGGTAAATTCGCCGTTGCCGTCAGG


  AATCATGTAGATGTTGTCTGATTCTTCTTCGGCAGCCCAAGCGTTCATTACGAAA


  GTATCGTTTACAGATACGCAGCAGATTGCGTCAACGCCGTTTTCTTTGAACGCGC


  CGAACAATTCGTTGTAACGCGGCAGGTGTGAAGAAGAACAAGTCGGGGTAAATG


  CACCGGGCAGGGAGAATACGACTACTTTTTTGCCTTTGAACAAATCATCGGTAGA


  CACATCTTTCCAAGTGTCGCCGACGCGGGTGCGGAATACTACGGAAGGTACTTTT


  TGACCGGTACGATCTTGCAAAGCCAT






12. NGO0936: NC_002946.2:c914813-914253

DNA (- strand): SEQ ID NO: 264









ATGAAAACAGCACAAGAACTGCGCGCCGGCAATGTATTTATGGTCGGCAACGAT


  CCTATGGTCGTTCAAAAAACCGAATACATCAAAGGCGGCCGCTCTTCCGCCAAA


  GTCAGCATGAAACTGAAAAACCTGCTGACCGGCGCTGCTTCCGAAACCATTTAC


  AAAGCCGACGACAAATTCGACGTGGTCATCCTGTCCCGCAAAAACTGTACGTAC


  AGCTATTTTGCCGACCCGATGTACGTCTTTATGGACGAAGAATTCAACCAATACG


  AAATCGAAGCCGACAACATCGGCGACGCGTTGAAATTCATCGTTGACGGTATGG


  AAGACCAATGCGAAGTTACCTTCTATGAAGGCAATCCCATTTCTGTCGAACTGCC


  CACCATCATCGTGCGCGAAGTCGAGTACACCGAGCCTGCCGTCAAAGGCGATAC


  TTCCGGCAAAGTGATGAAAACCGCGCGTCTGGTCGGCGGCACCGAAATCCAAGT


  GATGTCTTACATCGAAAACGGCGACAAAGTCGAAATCGATACCCGTACCGGCGA


  ATTCCGCAAACGCGCCTGA






RNA: SEQ ID NO: 265









AUGAAAACAGCACAAGAACUGCGCGCCGGCAAUGUAUUUAUGGUCGGCAACG


  AUCCUAUGGUCGUUCAAAAAACCGAAUACAUCAAAGGCGGCCGCUCUUCCGCC


  AAAGUCAGCAUGAAACUGAAAAACCUGCUGACCGGCGCUGCUUCCGAAACCAU


  UUACAAAGCCGACGACAAAUUCGACGUGGUCAUCCUGUCCCGCAAAAACUGUA


  CGUACAGCUAUUUUGCCGACCCGAUGUACGUCUUUAUGGACGAAGAAUUCAA


  CCAAUACGAAAUCGAAGCCGACAACAUCGGCGACGCGUUGAAAUUCAUCGUU


  GACGGUAUGGAAGACCAAUGCGAAGUUACCUUCUAUGAAGGCAAUCCCAUUU


  CUGUCGAACUGCCCACCAUCAUCGUGCGCGAAGUCGAGUACACCGAGCCUGCC


  GUCAAAGGCGAUACUUCCGGCAAAGUGAUGAAAACCGCGCGUCUGGUCGGCG


  GCACCGAAAUCCAAGUGAUGUCUUACAUCGAAAACGGCGACAAAGUCGAAAU


  CGAUACCCGUACCGGCGAAUUCCGCAAACGCGCCUGA






cDNA: SEQ ID NO: 266









TCAGGCGCGTTTGCGGAATTCGCCGGTACGGGTATCGATTTCGACTTTGTCGCCG


  TTTTCGATGTAAGACATCACTTGGATTTCGGTGCCGCCGACCAGACGCGCGGTTT


  TCATCACTTTGCCGGAAGTATCGCCTTTGACGGCAGGCTCGGTGTACTCGACTTC


  GCGCACGATGATGGTGGGCAGTTCGACAGAAATGGGATTGCCTTCATAGAAGGT


  AACTTCGCATTGGTCTTCCATACCGTCAACGATGAATTTCAACGCGTCGCCGATG


  TTGTCGGCTTCGATTTCGTATTGGTTGAATTCTTCGTCCATAAAGACGTACATCGG


  GTCGGCAAAATAGCTGTACGTACAGTTTTTGCGGGACAGGATGACCACGTCGAA


  TTTGTCGTCGGCTTTGTAAATGGTTTCGGAAGCAGCGCCGGTCAGCAGGTTTTTC


  AGTTTCATGCTGACTTTGGCGGAAGAGCGGCCGCCTTTGATGTATTCGGTTTTTT


  GAACGACCATAGGATCGTTGCCGACCATAAATACATTGCCGGCGCGCAGTTCTT


  GTGCTGTTTTCAT






13. NGO0950a: NC_002946.2:925084-925782

DNA (+ strand): SEQ ID NO: 267









GTGCAGGCGGATTTAGCCTACGCCGCCGAACGCATTACCCACGATTATCCGGAA


  CCAACCGGTGCAAAAAAAGACAAAAAAATAAGCACGGTAAGCGATTATTTCAG


  AAACATCCGTACGCATTCCGTCCACCCCAGGGTGTCGGTCGGCTACGATTTCGGC


  AGCTGGAGGATAGCGGCAGATTATGCCCGTTACAGAAAGTGGAACAACAGTAAA


  TATTCCGTCAACATAAAAAGGGTGAAAGAAAACAATGGCAGCGGGAAAAAACT


  GACGCAAGACCTGAAGACGGAAAATCAGGAAAACGGTACGTTCCACGCCGTTTC


  TTCTCTCGGCTTGTCCGCCGTTTACGATTTCGATACCGGTTCCCGCTTCAAACCCT


  ATGCAGGCGTGCGCGTCAGCTACGGACACGTCAGACACAGCATCGATTCGACCA


  AAAAAACAACAGATGTTATTACCGCCCCCCCCACTACTTCTGACGGAGCACCTA


  CAACTTATAATGCTAATCCACAGACGCAAAACCCTTATCACCAAAGCGACAGCA


  TCCGCCGCGTGGGCCTCGGCGTCATCGCCGGCGTCGGTTTCGACATCACGCCCAA


  CCTGACCCTGGACACCGGCTACCGCTACCACAACTGGGGACGCCTGGAAAACAC


  CCGCTTCAAAACCCACGAAGCCTCATTGGGCATGCGCTACCGCTTCTGA






RNA: SEQ ID NO: 268









GUGCAGGCGGAUUUAGCCUACGCCGCCGAACGCAUUACCCACGAUUAUCCGGA


  ACCAACCGGUGCAAAAAAAGACAAAAAAAUAAGCACGGUAAGCGAUUAUUUC


  AGAAACAUCCGUACGCAUUCCGUCCACCCCAGGGUGUCGGUCGGCUACGAUUU


  CGGCAGCUGGAGGAUAGCGGCAGAUUAUGCCCGUUACAGAAAGUGGAACAAC


  AGUAAAUAUUCCGUCAACAUAAAAAGGGUGAAAGAAAACAAUGGCAGCGGGA


  AAAAACUGACGCAAGACCUGAAGACGGAAAAUCAGGAAAACGGUACGUUCCA


  CGCCGUUUCUUCUCUCGGCUUGUCCGCCGUUUACGAUUUCGAUACCGGUUCCC


  GCUUCAAACCCUAUGCAGGCGUGCGCGUCAGCUACGGACACGUCAGACACAGC


  AUCGAUUCGACCAAAAAAACAACAGAUGUUAUUACCGCCCCCCCCACUACUUC


  UGACGGAGCACCUACAACUUAUAAUGCUAAUCCACAGACGCAAAACCCUUAUC


  ACCAAAGCGACAGCAUCCGCCGCGUGGGCCUCGGCGUCAUCGCCGGCGUCGGU


  UUCGACAUCACGCCCAACCUGACCCUGGACACCGGCUACCGCUACCACAACUG


  GGGACGCCUGGAAAACACCCGCUUCAAAACCCACGAAGCCUCAUUGGGCAUGC


  GCUACCGCUUCUGA






cDNA: SEQ ID NO: 269









TCAGAAGCGGTAGCGCATGCCCAATGAGGCTTCGTGGGTTTTGAAGCGGGTGTTT


  TCCAGGCGTCCCCAGTTGTGGTAGCGGTAGCCGGTGTCCAGGGTCAGGTTGGGC


  GTGATGTCGAAACCGACGCCGGCGATGACGCCGAGGCCCACGCGGCGGATGCTG


  TCGCTTTGGTGATAAGGGTTTTGCGTCTGTGGATTAGCATTATAAGTTGTAGGTG


  CTCCGTCAGAAGTAGTGGGGGGGGCGGTAATAACATCTGTTGTTTTTTTGGTCGA


  ATCGATGCTGTGTCTGACGTGTCCGTAGCTGACGCGCACGCCTGCATAGGGTTTG


  AAGCGGGAACCGGTATCGAAATCGTAAACGGCGGACAAGCCGAGAGAAGAAAC


  GGCGTGGAACGTACCGTTTTCCTGATTTTCCGTCTTCAGGTCTTGCGTCAGTTTTT


  TCCCGCTGCCATTGTTTTCTTTCACCCTTTTTATGTTGACGGAATATTTACTGTTGT


  TCCACTTTCTGTAACGGGCATAATCTGCCGCTATCCTCCAGCTGCCGAAATCGTA


  GCCGACCGACACCCTGGGGTGGACGGAATGCGTACGGATGTTTCTGAAATAATC


  GCTTACCGTGCTTATTTTTTTGTCTTTTTTTGCACCGGTTGGTTCCGGATAATCGT


  GGGTAATGCGTTCGGCGGCGTAGGCTAAATCCGCCTGCAC






14. NGO1040a: NC_002946.2:c1000440-999760

DNA (- strand): SEQ ID NO: 270









GTGCAGGCGGATCTGGCTTACGCCTACGAGCACATCACCCGCGATTATCCCGAT


  GCAGCCGGTGCAAACCAAGGCAAAAAAATAAGCACGGTAAGCGATTATTTCAAA


  AACATCCGTACGCATTCCATCCACCCCAGGGTGTCGGTCGGCTACGACTTCGGCG


  GCTGGAGGATAGCGGCAGATTATGCCCGTTACAGAAAGTGGAACGACAATAAAT


  ATTCCGTCGACATAAAAGAGTTGGAAAACAAGAATCAGAATAAGAGAGACCTG


  AAGACGGAAAATCAGGAAAACGGCAGCTTCCACGCCGTTTCTTCTCTCGGCTTAT


  CAGCCGTTTACGATTTCAAACTCAACGACAAATTCAAACCCTATATCGGTGCGCG


  CGTCGCCTACGGACACGTCAGACACAGCATCGATTCGACCAAAAAAACAACAGA


  GTTTCTTACCGCCGCCGGTCAGGATGGCGGAGCGCCTACGGTTTATAATAACGGA


  AGTACGCAAGACGCCCATCAAGAAAGCGACAGCATCCGCCGCGTGGGCCTCGGC


  GTCATCGCCGGTATCGGTTTCGACATCACGCCCAAGCTGACCCTGGACACCGGCT


  ACCGCTACCACAACTGGGGACGCTTGGAAAACACCCGCTTCAAAACCCACGAAG


  CCTCATTGGGCGTGCGCTACCGCTTCTGA






RNA: SEQ ID NO: 271









GUGCAGGCGGAUCUGGCUUACGCCUACGAGCACAUCACCCGCGAUUAUCCCGA


  UGCAGCCGGUGCAAACCAAGGCAAAAAAAUAAGCACGGUAAGCGAUUAUUUC


  AAAAACAUCCGUACGCAUUCCAUCCACCCCAGGGUGUCGGUCGGCUACGACUU


  CGGCGGCUGGAGGAUAGCGGCAGAUUAUGCCCGUUACAGAAAGUGGAACGAC


  AAUAAAUAUUCCGUCGACAUAAAAGAGUUGGAAAACAAGAAUCAGAAUAAGA


  GAGACCUGAAGACGGAAAAUCAGGAAAACGGCAGCUUCCACGCCGUUUCUUC


  UCUCGGCUUAUCAGCCGUUUACGAUUUCAAACUCAACGACAAAUUCAAACCCU


  AUAUCGGUGCGCGCGUCGCCUACGGACACGUCAGACACAGCAUCGAUUCGACC


  AAAAAAACAACAGAGUUUCUUACCGCCGCCGGUCAGGAUGGCGGAGCGCCUAC


  GGUUUAUAAUAACGGAAGUACGCAAGACGCCCAUCAAGAAAGCGACAGCAUC


  CGCCGCGUGGGCCUCGGCGUCAUCGCCGGUAUCGGUUUCGACAUCACGCCCAA


  GCUGACCCUGGACACCGGCUACCGCUACCACAACUGGGGACGCUUGGAAAACA


  CCCGCUUCAAAACCCACGAAGCCUCAUUGGGCGUGCGCUACCGCUUCUGA






cDNA: SEQ ID NO: 272









TCAGAAGCGGTAGCGCACGCCCAATGAGGCTTCGTGGGTTTTGAAGCGGGTGTT


  TTCCAAGCGTCCCCAGTTGTGGTAGCGGTAGCCGGTGTCCAGGGTCAGCTTGGGC


  GTGATGTCGAAACCGATACCGGCGATGACGCCGAGGCCCACGCGGCGGATGCTG


  TCGCTTTCTTGATGGGCGTCTTGCGTACTTCCGTTATTATAAACCGTAGGCGCTCC


  GCCATCCTGACCGGCGGCGGTAAGAAACTCTGTTGTTTTTTTGGTCGAATCGATG


  CTGTGTCTGACGTGTCCGTAGGCGACGCGCGCACCGATATAGGGTTTGAATTTGT


  CGTTGAGTTTGAAATCGTAAACGGCTGATAAGCCGAGAGAAGAAACGGCGTGGA


  AGCTGCCGTTTTCCTGATTTTCCGTCTTCAGGTCTCTCTTATTCTGATTCTTGTTTT


  CCAACTCTTTTATGTCGACGGAATATTTATTGTCGTTCCACTTTCTGTAACGGGCA


  TAATCTGCCGCTATCCTCCAGCCGCCGAAGTCGTAGCCGACCGACACCCTGGGGT


  GGATGGAATGCGTACGGATGTTTTTGAAATAATCGCTTACCGTGCTTATTTTTTTG


  CCTTGGTTTGCACCGGCTGCATCGGGATAATCGCGGGTGATGTGCTCGTAGGCGT


  AAGCCAGATCCGCCTGCAC






15. NGO1073a: NC_002946.2:1035309-1035998

DNA (+ strand): SEQ ID NO: 273









GTGCAGGCGGATTTAGCCTACGCCGCCGAACGCATTACCCACGATTATCCGGAA


  CCAACCGGTACAAAAAAAGACAAAATAAGCACGGTAAGCGATTATTTCAGAAAC


  ATCCGTACGCATTCCATCCACCCCAGGGTGTCGGTCGGCTACGACTTCGGCGGCT


  GGAGGATAGCGGCAGATTATGCCCGTTACAGAAAGTGGAACAACAGTAAATATT


  CCGTCAACACAAAAAAGGTGAACGAAAACAAGGGCGAAAAGATAAACGTGACG


  CAATATCTGAAGGCGGAAAATCAGGAAAACGGTACGTTCCACGCCGTTTCTTCTC


  TCGGCTTGTCCGCCGTTTACGATTTCAAACTCAACGACAAATTCAAACCCTATAT


  CGGTGCGCGCGTCGCCTACGGACACGTCAGACACAGCATCGATTCGACCAAAAA


  AACAACAGAGTTTCTTACCGCCGCCGGTCAGGATGGCGGAGCGCCTACGGTTTA


  TAATAACGGAAGTACGCAAGACGCCCATCAAGAAAGCGACAGCATCCGCCGCGT


  GGGCCTCGGCGTCATCGCCGGCGTCGGTTTCGACATCACGCCCAACCTGACCTTG


  GACGCCGGGTACCGCTACCACAACTGGGGACGCTTGGAAAACACCCGCTTCAAA


  ACCCACGAAGCCTCGTTGGGCATGCGCTACCGCTTCTGA






RNA: SEQ ID NO: 274









GUGCAGGCGGAUUUAGCCUACGCCGCCGAACGCAUUACCCACGAUUAUCCGGA


  ACCAACCGGUACAAAAAAAGACAAAAUAAGCACGGUAAGCGAUUAUUUCAGA


  AACAUCCGUACGCAUUCCAUCCACCCCAGGGUGUCGGUCGGCUACGACUUCGG


  CGGCUGGAGGAUAGCGGCAGAUUAUGCCCGUUACAGAAAGUGGAACAACAGU


  AAAUAUUCCGUCAACACAAAAAAGGUGAACGAAAACAAGGGCGAAAAGAUAA


  ACGUGACGCAAUAUCUGAAGGCGGAAAAUCAGGAAAACGGUACGUUCCACGC


  CGUUUCUUCUCUCGGCUUGUCCGCCGUUUACGAUUUCAAACUCAACGACAAAU


  UCAAACCCUAUAUCGGUGCGCGCGUCGCCUACGGACACGUCAGACACAGCAUC


  GAUUCGACCAAAAAAACAACAGAGUUUCUUACCGCCGCCGGUCAGGAUGGCG


  GAGCGCCUACGGUUUAUAAUAACGGAAGUACGCAAGACGCCCAUCAAGAAAG


  CGACAGCAUCCGCCGCGUGGGCCUCGGCGUCAUCGCCGGCGUCGGUUUCGACA


  UCACGCCCAACCUGACCUUGGACGCCGGGUACCGCUACCACAACUGGGGACGC


  UUGGAAAACACCCGCUUCAAAACCCACGAAGCCUCGUUGGGCAUGCGCUACCG


  CUUCUGA






cDNA: SEQ ID NO: 275









TCAGAAGCGGTAGCGCATGCCCAACGAGGCTTCGTGGGTTTTGAAGCGGGTGTT


  TTCCAAGCGTCCCCAGTTGTGGTAGCGGTACCCGGCGTCCAAGGTCAGGTTGGG


  CGTGATGTCGAAACCGACGCCGGCGATGACGCCGAGGCCCACGCGGCGGATGCT


  GTCGCTTTCTTGATGGGCGTCTTGCGTACTTCCGTTATTATAAACCGTAGGCGCTC


  CGCCATCCTGACCGGCGGCGGTAAGAAACTCTGTTGTTTTTTTGGTCGAATCGAT


  GCTGTGTCTGACGTGTCCGTAGGCGACGCGCGCACCGATATAGGGTTTGAATTTG


  TCGTTGAGTTTGAAATCGTAAACGGCGGACAAGCCGAGAGAAGAAACGGCGTGG


  AACGTACCGTTTTCCTGATTTTCCGCCTTCAGATATTGCGTCACGTTTATCTTTTC


  GCCCTTGTTTTCGTTCACCTTTTTTGTGTTGACGGAATATTTACTGTTGTTCCACTT


  TCTGTAACGGGCATAATCTGCCGCTATCCTCCAGCCGCCGAAGTCGTAGCCGACC


  GACACCCTGGGGTGGATGGAATGCGTACGGATGTTTCTGAAATAATCGCTTACC


  GTGCTTATTTTGTCTTTTTTTGTACCGGTTGGTTCCGGATAATCGTGGGTAATGCG


  TTCGGCGGCGTAGGCTAAATCCGCCTGCAC






16. NGO1225: NC_002946.2:c1175547-1174729

DNA (- strand): SEQ ID NO: 276









ATGAACACCATTTTCAAAATCAGCGCACTGACCCTTTCCGCCGCTTTGGCACTTT


  CCGCCTGCGGCAAAAAAGAAGCCGCCCCCGCATCTGCATCCGAACCTGCCGCCG


  CTTCTGCCGCGCAGGGCGACACCTCTTCAATCGGCAGCACGATGCAGCAGGCAA


  GCTATGCAATGGGCGTGGACATCGGACGCTCCCTGAAACAAATGAAGGAACAGG


  GCGCGGAAATCGATTTGAAAGTCTTTACCGATGCCATGCAGGCAGTGTATGACG


  GCAAAGAAATCAAAATGACCGAAGAGCAGGCCCAGGAAGTGATGATGAAATTC


  CTGCAGGAGCAGCAGGCTAAAGCCGTAGAAAAACACAAGGCGGATGCGAAGGC


  CAACAAAGAAAAAGGCGAAGCCTTCCTGAAGGAAAATGCCGCCAAAGACGGCG


  TGAAGACCACTGCTTCCGGTCTGCAGTACAAAATCACCAAACAGGGTGAAGGCA


  AACAGCCGACAAAAGACGACATCGTTACCGTGGAATACGAAGGCCGCCTGATTG


  ACGGTACCGTATTCGACAGCAGCAAAGCCAACGGCGGCCCGGCCACCTTCCCTT


  TGAGCCAAGTGATTCCGGGTTGGACCGAAGGCGTACGGCTTCTGAAAGAAGGCG


  GCGAAGCCACGTTCTACATCCCGTCCAACCTTGCCTACCGCGAACAGGGTGCGG


  GCGAAAAAATCGGTCCGAACGCCACTTTGGTATTTGACGTGAAACTGGTCAAAA


  TCGGCGCACCCGAAAACGCGCCCGCCAAGCAGCCGGATCAAGTCGACATCAAAA


  AAGTAAATTAA






RNA: SEQ ID NO: 277









AUGAACACCAUUUUCAAAAUCAGCGCACUGACCCUUUCCGCCGCUUUGGCACU


  UUCCGCCUGCGGCAAAAAAGAAGCCGCCCCCGCAUCUGCAUCCGAACCUGCCG


  CCGCUUCUGCCGCGCAGGGCGACACCUCUUCAAUCGGCAGCACGAUGCAGCAG


  GCAAGCUAUGCAAUGGGCGUGGACAUCGGACGCUCCCUGAAACAAAUGAAGG


  AACAGGGCGCGGAAAUCGAUUUGAAAGUCUUUACCGAUGCCAUGCAGGCAGU


  GUAUGACGGCAAAGAAAUCAAAAUGACCGAAGAGCAGGCCCAGGAAGUGAUG


  AUGAAAUUCCUGCAGGAGCAGCAGGCUAAAGCCGUAGAAAAACACAAGGCGG


  AUGCGAAGGCCAACAAAGAAAAAGGCGAAGCCUUCCUGAAGGAAAAUGCCGC


  CAAAGACGGCGUGAAGACCACUGCUUCCGGUCUGCAGUACAAAAUCACCAAAC


  AGGGUGAAGGCAAACAGCCGACAAAAGACGACAUCGUUACCGUGGAAUACGA


  AGGCCGCCUGAUUGACGGUACCGUAUUCGACAGCAGCAAAGCCAACGGCGGCC


  CGGCCACCUUCCCUUUGAGCCAAGUGAUUCCGGGUUGGACCGAAGGCGUACGG


  CUUCUGAAAGAAGGCGGCGAAGCCACGUUCUACAUCCCGUCCAACCUUGCCUA


  CCGCGAACAGGGUGCGGGCGAAAAAAUCGGUCCGAACGCCACUUUGGUAUUU


  GACGUGAAACUGGUCAAAAUCGGCGCACCCGAAAACGCGCCCGCCAAGCAGCC


  GGAUCAAGUCGACAUCAAAAAAGUAAAUUAA






cDNA: SEQ ID NO: 278









TTAATTTACTTTTTTGATGTCGACTTGATCCGGCTGCTTGGCGGGCGCGTTTTCGG


  GTGCGCCGATTTTGACCAGTTTCACGTCAAATACCAAAGTGGCGTTCGGACCGAT


  TTTTTCGCCCGCACCCTGTTCGCGGTAGGCAAGGTTGGACGGGATGTAGAACGTG


  GCTTCGCCGCCTTCTTTCAGAAGCCGTACGCCTTCGGTCCAACCCGGAATCACTT


  GGCTCAAAGGGAAGGTGGCCGGGCCGCCGTTGGCTTTGCTGCTGTCGAATACGG


  TACCGTCAATCAGGCGGCCTTCGTATTCCACGGTAACGATGTCGTCTTTTGTCGG


  CTGTTTGCCTTCACCCTGTTTGGTGATTTTGTACTGCAGACCGGAAGCAGTGGTCT


  TCACGCCGTCTTTGGCGGCATTTTCCTTCAGGAAGGCTTCGCCTTTTTCTTTGTTG


  GCCTTCGCATCCGCCTTGTGTTTTTCTACGGCTTTAGCCTGCTGCTCCTGCAGGAA


  TTTCATCATCACTTCCTGGGCCTGCTCTTCGGTCATTTTGATTTCTTTGCCGTCATA


  CACTGCCTGCATGGCATCGGTAAAGACTTTCAAATCGATTTCCGCGCCCTGTTCC


  TTCATTTGTTTCAGGGAGCGTCCGATGTCCACGCCCATTGCATAGCTTGCCTGCT


  GCATCGTGCTGCCGATTGAAGAGGTGTCGCCCTGCGCGGCAGAAGCGGCGGCAG


  GTTCGGATGCAGATGCGGGGGCGGCTTCTTTTTTGCCGCAGGCGGAAAGTGCCA


  AAGCGGCGGAAAGGGTCAGTGCGCTGATTTTGAAAATGGTGTTCAT






17. NGO1277a: NC_002946.2:1231620-1232324

DNA (+ strand): SEQ ID NO: 279









GTGCAGGCGGATTTAGCCTACGCCGCCGAACGCATTACCCACGATTATCCGGAA


  CCAACCGGTGCAAAAAAAGGCAAAATAAGCACGGTAAGCGATTATTTCAGAAAC


  ATCCGTACGCATTCCATCCACCCCAGGGTGTCGGTCGGCTACGACTTCGGCGGCT


  GGAGGATAGCGGCAGATTATGCCCGTTACAGAAAGTGGAACGACAATAAATATT


  CCGTGAACATAAAAGAGTTGGGAAGAAAGGATGGTACCTCTTCTAGCGGCCGCT


  ATCTTAACATACAAACCCGAAAGACGGAAAATCAGGAAAACGGTACGTTCCACG


  CCGTTTCTTCTCTCGGCTTGTCAACCGTTTACGATTTCAGAGCCAACGATAAATTC


  AAACCCTATATCGGCGTGCGCGTCGCCTACGGACACGTCAGACATCAGGTTCATT


  CAATGGAAAAAGAAACCACGACTGTTACCACTTACCCAAGCGACGGTAGTGCGA


  AAACTTCTGTTCCATCAGAAATGCCCCCCAAACCTGCCTATCACGAAAACCGCA


  GCAGCCGCCGCTTGGGCTTCGGCGCGATGGCGGGCGTGGGCATAGACGTCGCGC


  CCGGTCTGACCTTGGACGCCGGCTACCGCTACCACTATTGGGGACGCCTGGAAA


  ACACCCGCTTCAAAACCCACGAAGCCTCATTGGGCATGCGCTACCGCTTCTGA






RNA: SEQ ID NO: 280









GUGCAGGCGGAUUUAGCCUACGCCGCCGAACGCAUUACCCACGAUUAUCCGGA


  ACCAACCGGUGCAAAAAAAGGCAAAAUAAGCACGGUAAGCGAUUAUUUCAGA


  AACAUCCGUACGCAUUCCAUCCACCCCAGGGUGUCGGUCGGCUACGACUUCGG


  CGGCUGGAGGAUAGCGGCAGAUUAUGCCCGUUACAGAAAGUGGAACGACAAU


  AAAUAUUCCGUGAACAUAAAAGAGUUGGGAAGAAAGGAUGGUACCUCUUCUA


  GCGGCCGCUAUCUUAACAUACAAACCCGAAAGACGGAAAAUCAGGAAAACGG


  UACGUUCCACGCCGUUUCUUCUCUCGGCUUGUCAACCGUUUACGAUUUCAGAG


  CCAACGAUAAAUUCAAACCCUAUAUCGGCGUGCGCGUCGCCUACGGACACGUC


  AGACAUCAGGUUCAUUCAAUGGAAAAAGAAACCACGACUGUUACCACUUACC


  CAAGCGACGGUAGUGCGAAAACUUCUGUUCCAUCAGAAAUGCCCCCCAAACCU


  GCCUAUCACGAAAACCGCAGCAGCCGCCGCUUGGGCUUCGGCGCGAUGGCGGG


  CGUGGGCAUAGACGUCGCGCCCGGUCUGACCUUGGACGCCGGCUACCGCUACC


  ACUAUUGGGGACGCCUGGAAAACACCCGCUUCAAAACCCACGAAGCCUCAUUG


  GGCAUGCGCUACCGCUUCUGA






cDNA: SEQ ID NO: 281









TCAGAAGCGGTAGCGCATGCCCAATGAGGCTTCGTGGGTTTTGAAGCGGGTGTTT


  TCCAGGCGTCCCCAATAGTGGTAGCGGTAGCCGGCGTCCAAGGTCAGACCGGGC


  GCGACGTCTATGCCCACGCCCGCCATCGCGCCGAAGCCCAAGCGGCGGCTGCTG


  CGGTTTTCGTGATAGGCAGGTTTGGGGGGCATTTCTGATGGAACAGAAGTTTTCG


  CACTACCGTCGCTTGGGTAAGTGGTAACAGTCGTGGTTTCTTTTTCCATTGAATG


  AACCTGATGTCTGACGTGTCCGTAGGCGACGCGCACGCCGATATAGGGTTTGAA


  TTTATCGTTGGCTCTGAAATCGTAAACGGTTGACAAGCCGAGAGAAGAAACGGC


  GTGGAACGTACCGTTTTCCTGATTTTCCGTCTTTCGGGTTTGTATGTTAAGATAGC


  GGCCGCTAGAAGAGGTACCATCCTTTCTTCCCAACTCTTTTATGTTCACGGAATA


  TTTATTGTCGTTCCACTTTCTGTAACGGGCATAATCTGCCGCTATCCTCCAGCCGC


  CGAAGTCGTAGCCGACCGACACCCTGGGGTGGATGGAATGCGTACGGATGTTTC


  TGAAATAATCGCTTACCGTGCTTATTTTGCCTTTTTTTGCACCGGTTGGTTCCGGA


  TAATCGTGGGTAATGCGTTCGGCGGCGTAGGCTAAATCCGCCTGCAC






18. Ngo1513: Nc_002946.2:1481445-1482281

DNA (+ strand): SEQ ID NO: 282









ATGAATCCAGCCCGCAAAAAACCTTCTCTTCTCTTCTCTTCTCTTCTCTTCTCTTCT


  CTTCTCTTCTCTTCTCTTCTCTTCTCTTCGGCAGCGCAGGCGGCAAGTGAAGGCAA


  TGGCCGCGGCCCGTATGTGCAGGCGGATTTAGCCTACGCCGCCGAACGCATTAC


  CCACGATTATCCGGAACCAACCGCTCCAGGCAAAAACAAAATAAGCACGGTAAG


  CGATTATTTCAGAAACATCCGTACGCATTCCATCCACCCCAGGGTGTCGGTCGGC


  TACGACTTCGGCGGCTGGCGCATCGCCGCGGATTATGCCCGTTACAGGAAATGG


  CACAACAATAAATATTCCGTGAACATAAAAGAGTTGGAAAGAAAGAATAATAA


  AACTTTTGGCGGCAACCAGCTTAACATAAAATACCAAAAGACGGAACATCAGGA


  AAACGGCACATTCCACGCCGTTTCTTCTCTCGGCTTGTCCGCCGTTTACGATTTCA


  AACTCAACGACAAATTCAAACCCTATATCGGTGCGCGCGTCGCCTACGGACACG


  TCAGACACAGCATCGATTCGACTAAAAAAATAACAGGTACTCTTACCGCCTACC


  CTAGTGATGCTGACGCAGCAGTTACGGTTTATCCTGACGGACATCCGCAAAAAA


  ACACCTATCAAAAAAGCAACAGCAGCCGCCGCTTGGGCTTCGGCGCGATGGCGG


  GCGTGGGCATAGACGTCGCGCCCGGCCTGACCTTGGACGCCGGCTACCGCTACC


  ACAACTGGGGACGCTTGGAAAACACCCGCTTCAAAACCCACGAAGCCTCGTTGG


  GCATGCGCTACCGCTTCTGA






RNA: SEQ ID NO: 283









AUGAAUCCAGCCCGCAAAAAACCUUCUCUUCUCUUCUCUUCUCUUCUCUUCUC


  UUCUCUUCUCUUCUCUUCUCUUCUCUUCUCUUCGGCAGCGCAGGCGGCAAGUG


  AAGGCAAUGGCCGCGGCCCGUAUGUGCAGGCGGAUUUAGCCUACGCCGCCGAA


  CGCAUUACCCACGAUUAUCCGGAACCAACCGCUCCAGGCAAAAACAAAAUAAG


  CACGGUAAGCGAUUAUUUCAGAAACAUCCGUACGCAUUCCAUCCACCCCAGGG


  UGUCGGUCGGCUACGACUUCGGCGGCUGGCGCAUCGCCGCGGAUUAUGCCCGU


  UACAGGAAAUGGCACAACAAUAAAUAUUCCGUGAACAUAAAAGAGUUGGAAA


  GAAAGAAUAAUAAAACUUUUGGCGGCAACCAGCUUAACAUAAAAUACCAAAA


  GACGGAACAUCAGGAAAACGGCACAUUCCACGCCGUUUCUUCUCUCGGCUUGU


  CCGCCGUUUACGAUUUCAAACUCAACGACAAAUUCAAACCCUAUAUCGGUGCG


  CGCGUCGCCUACGGACACGUCAGACACAGCAUCGAUUCGACUAAAAAAAUAAC


  AGGUACUCUUACCGCCUACCCUAGUGAUGCUGACGCAGCAGUUACGGUUUAUC


  CUGACGGACAUCCGCAAAAAAACACCUAUCAAAAAAGCAACAGCAGCCGCCGC


  UUGGGCUUCGGCGCGAUGGCGGGCGUGGGCAUAGACGUCGCGCCCGGCCUGAC


  CUUGGACGCCGGCUACCGCUACCACAACUGGGGACGCUUGGAAAACACCCGCU


  UCAAAACCCACGAAGCCUCGUUGGGCAUGCGCUACCGCUUCUGA






cDNA: SEQ ID NO: 284









TCAGAAGCGGTAGCGCATGCCCAACGAGGCTTCGTGGGTTTTGAAGCGGGTGTT


  TTCCAAGCGTCCCCAGTTGTGGTAGCGGTAGCCGGCGTCCAAGGTCAGGCCGGG


  CGCGACGTCTATGCCCACGCCCGCCATCGCGCCGAAGCCCAAGCGGCGGCTGCT


  GTTGCTTTTTTGATAGGTGTTTTTTTGCGGATGTCCGTCAGGATAAACCGTAACTG


  CTGCGTCAGCATCACTAGGGTAGGCGGTAAGAGTACCTGTTATTTTTTTAGTCGA


  ATCGATGCTGTGTCTGACGTGTCCGTAGGCGACGCGCGCACCGATATAGGGTTTG


  AATTTGTCGTTGAGTTTGAAATCGTAAACGGCGGACAAGCCGAGAGAAGAAACG


  GCGTGGAATGTGCCGTTTTCCTGATGTTCCGTCTTTTGGTATTTTATGTTAAGCTG


  GTTGCCGCCAAAAGTTTTATTATTCTTTCTTTCCAACTCTTTTATGTTCACGGAAT


  ATTTATTGTTGTGCCATTTCCTGTAACGGGCATAATCCGCGGCGATGCGCCAGCC


  GCCGAAGTCGTAGCCGACCGACACCCTGGGGTGGATGGAATGCGTACGGATGTT


  TCTGAAATAATCGCTTACCGTGCTTATTTTGTTTTTGCCTGGAGCGGTTGGTTCCG


  GATAATCGTGGGTAATGCGTTCGGCGGCGTAGGCTAAATCCGCCTGCACATACG


  GGCCGCGGCCATTGCCTTCACTTGCCGCCTGCGCTGCCGAAGAGAAGAGAAGAG


  AAGAGAAGAGAAGAGAAGAGAAGAGAAGAGAAGAGAAGAGAAGAGAAGGTTT


  TTTGCGGGCTGGATTCAT






19. NGO1553a: NC_002946.2:1531422-1532120

DNA (+ strand): SEQ ID NO: 285









GTGCAGGCGGATTTAGCCTACGCCGCCGAACGCATTACCCACGATTATCCGGAA


  CCAACCGGTGCAAAAAAAGACAAAAAAATAAGCACGGTAAGCGATTATTTCAG


  AAACATCCGTACGCATTCCGTCCACCCCAGGGTGTCGGTCGGCTACGATTTCGGC


  AGCTGGAGGATAGCGGCAGATTATGCCCGTTACAGAAAGTGGAACAACAGTAAA


  TATTCCGTCAACATAAAAAGGGTGAAAGAAAACAATGGCAGCGGGAAAAAACT


  GACGCAAGACCTGAAGACGGAAAATCAGGAAAACGGTACGTTCCACGCCGTTTC


  TTCTCTCGGCTTGTCCGCCGTTTACGATTTCGATACCGGTTCCCGCTTCAAACCCT


  ATGCAGGCGTGCGCGTCAGCTACGGACACGTCAGACACAGCATCGATTCGACCA


  AAAAAACAACAGATGTTATTACCGCCCCCCCCACTACTTCTGACGGAGCACCTA


  CAACTTATAATGCTAATCCACAGACGCAAAACCCTTATCACCAAAGCGACAGCA


  TCCGCCGCGTGGGCCTCGGCGTCATCGCCGGCGTCGGTTTCGACATCACGCCCAA


  CCTGACCCTGGACACCGGCTACCGCTACCACAACTGGGGACGCCTGGAAAACAC


  CCGCTTCAAAACCCACGAAGCCTCATTGGGCATGCGCTACCGCTTCTGA






RNA: SEQ ID NO: 286









GUGCAGGCGGAUUUAGCCUACGCCGCCGAACGCAUUACCCACGAUUAUCCGGA


  ACCAACCGGUGCAAAAAAAGACAAAAAAAUAAGCACGGUAAGCGAUUAUUUC


  AGAAACAUCCGUACGCAUUCCGUCCACCCCAGGGUGUCGGUCGGCUACGAUUU


  CGGCAGCUGGAGGAUAGCGGCAGAUUAUGCCCGUUACAGAAAGUGGAACAAC


  AGUAAAUAUUCCGUCAACAUAAAAAGGGUGAAAGAAAACAAUGGCAGCGGGA


  AAAAACUGACGCAAGACCUGAAGACGGAAAAUCAGGAAAACGGUACGUUCCA


  CGCCGUUUCUUCUCUCGGCUUGUCCGCCGUUUACGAUUUCGAUACCGGUUCCC


  GCUUCAAACCCUAUGCAGGCGUGCGCGUCAGCUACGGACACGUCAGACACAGC


  AUCGAUUCGACCAAAAAAACAACAGAUGUUAUUACCGCCCCCCCCACUACUUC


  UGACGGAGCACCUACAACUUAUAAUGCUAAUCCACAGACGCAAAACCCUUAUC


  ACCAAAGCGACAGCAUCCGCCGCGUGGGCCUCGGCGUCAUCGCCGGCGUCGGU


  UUCGACAUCACGCCCAACCUGACCCUGGACACCGGCUACCGCUACCACAACUG


  GGGACGCCUGGAAAACACCCGCUUCAAAACCCACGAAGCCUCAUUGGGCAUGC


  GCUACCGCUUCUGA






cDNA: SEQ ID NO: 287









TCAGAAGCGGTAGCGCATGCCCAATGAGGCTTCGTGGGTTTTGAAGCGGGTGTTT


  TCCAGGCGTCCCCAGTTGTGGTAGCGGTAGCCGGTGTCCAGGGTCAGGTTGGGC


  GTGATGTCGAAACCGACGCCGGCGATGACGCCGAGGCCCACGCGGCGGATGCTG


  TCGCTTTGGTGATAAGGGTTTTGCGTCTGTGGATTAGCATTATAAGTTGTAGGTG


  CTCCGTCAGAAGTAGTGGGGGGGGCGGTAATAACATCTGTTGTTTTTTTGGTCGA


  ATCGATGCTGTGTCTGACGTGTCCGTAGCTGACGCGCACGCCTGCATAGGGTTTG


  AAGCGGGAACCGGTATCGAAATCGTAAACGGCGGACAAGCCGAGAGAAGAAAC


  GGCGTGGAACGTACCGTTTTCCTGATTTTCCGTCTTCAGGTCTTGCGTCAGTTTTT


  TCCCGCTGCCATTGTTTTCTTTCACCCTTTTTATGTTGACGGAATATTTACTGTTGT


  TCCACTTTCTGTAACGGGCATAATCTGCCGCTATCCTCCAGCTGCCGAAATCGTA


  GCCGACCGACACCCTGGGGTGGACGGAATGCGTACGGATGTTTCTGAAATAATC


  GCTTACCGTGCTTATTTTTTTGTCTTTTTTTGCACCGGTTGGTTCCGGATAATCGT


  GGGTAATGCGTTCGGCGGCGTAGGCTAAATCCGCCTGCAC






20. Ngo1762: Nc_002946.2:1724401-1724637

DNA (+ strand): SEQ ID NO: 288









ATGTCAAACATCGAACAACAAGTTAAGAAAATTATTGCTGAACAACTGGGCGTA


  AACGAAGCCGACGTGAAAAACGAATCTTCCTTCCAAGACGACTTGGGCGCGGAT


  TCTTTGGATACCGTGGAGTTGGTTATGGCTTTGGAAGAAGCCTTCGGCTGCGAAA


  TCCCCGACGAAGATGCCGAAAAAATCACCACCGTCCAACTGGCTATCGACTACA


  TCAATGCCCACAACGGCTAA






RNA: SEQ ID NO: 289









AUGUCAAACAUCGAACAACAAGUUAAGAAAAUUAUUGCUGAACAACUGGGCG


  UAAACGAAGCCGACGUGAAAAACGAAUCUUCCUUCCAAGACGACUUGGGCGC


  GGAUUCUUUGGAUACCGUGGAGUUGGUUAUGGCUUUGGAAGAAGCCUUCGGC


  UGCGAAAUCCCCGACGAAGAUGCCGAAAAAAUCACCACCGUCCAACUGGCUAU


  CGACUACAUCAAUGCCCACAACGGCUAA






cDNA: SEQ ID NO: 290









TTAGCCGTTGTGGGCATTGATGTAGTCGATAGCCAGTTGGACGGTGGTGATTTTT


  TCGGCATCTTCGTCGGGGATTTCGCAGCCGAAGGCTTCTTCCAAAGCCATAACCA


  ACTCCACGGTATCCAAAGAATCCGCGCCCAAGTCGTCTTGGAAGGAAGATTCGT


  TTTTCACGTCGGCTTCGTTTACGCCCAGTTGTTCAGCAATAATTTTCTTAACTTGT


  TGTTCGATGTTTGACAT






21. NGO1842: NC_002946.2:c1808872-1807688

DNA (- strand): SEQ ID NO: 291









ATGGCTAAGGAAAAATTCGAACGTAGCAAACCGCACGTAAACGTTGGCACCATC


  GGTCACGTTGACCATGGTAAAACCACCCTGACTGCTGCTTTGACTACTATTTTAG


  CTAAAAAATTCGGCGGCGCTGCAAAAGCTTACGACCAAATCGACAACGCACCCG


  AAGAAAAAGCACGCGGTATTACCATTAACACCTCGCACGTAGAATACGAAACCG


  AAACCCGCCACTACGCACACGTAGACTGTCCGGGTCACGCCGACTACGTTAAAA


  ACATGATTACCGGCGCCGCACAAATGGACGGTGCAATCCTGGTATGTTCTGCTGC


  CGACGGCCCTATGCCGCAAACCCGCGAACACATCCTGCTGGCCCGTCAAGTAGG


  CGTACCTTACATCATCGTGTTCATGAACAAATGCGACATGGTCGACGATGCCGAG


  CTGTTGGAACTGGTTGAAATGGAAATCCGCGACCTGCTGTCCAGCTACGACTTCC


  CCGGCGACGACTGCCCGATCGTACAAGGTTCCGCACTGAAAGCCTTGGAAGGCG


  ATGCCGCTTACGAAGAAAAAATCTTCGAACTGGCTACCGCATTGGACAGCTACA


  TCCCGACTCCCGAGCGTGCCGTGGACAAACCATTCCTGCTGCCTATCGAAGACGT


  GTTCTCCATTTCCGGCCGCGGTACCGTAGTCACCGGCCGTGTAGAGCGAGGTATC


  ATCCACGTTGGTGACGAGATTGAAATCGTCGGTCTGAAAGAAACCCAAAAAACC


  ACCTGTACCGGCGTTGAAATGTTCCGCAAACTGCTGGACGAAGGTCAGGCGGGC


  GACAACGTAGGCGTATTGCTGCGCGGTACCAAACGTGAAGACGTAGAACGCGGT


  CAGGTATTGGCCAAACCGGGTACTATCACTCCTCACACCAAGTTCAAAGCAGAA


  GTGTACGTATTGAGCAAAGAAGAGGGCGGCCGCCATACCCCGTTTTTCGCCAAC


  TACCGTCCCCAATTCTACTTCCGTACCACTGACGTAACCGGCGCGGTTACTTTGG


  AAAAAGGTGTGGAAATGGTAATGCCGGGTGAGAACGTAACCATTACTGTAGAAC


  TGATTGCGCCTATCGCTATGGAAGAAGGTCTGCGCTTTGCGATTCGCGAAGGCGG


  CCGTACCGTGGGTGCCGGCGTGGTTTCTTCTGTTATCGCTTAA






RNA: SEQ ID NO: 292









AUGGCUAAGGAAAAAUUCGAACGUAGCAAACCGCACGUAAACGUUGGCACCA


  UCGGUCACGUUGACCAUGGUAAAACCACCCUGACUGCUGCUUUGACUACUAUU


  UUAGCUAAAAAAUUCGGCGGCGCUGCAAAAGCUUACGACCAAAUCGACAACG


  CACCCGAAGAAAAAGCACGCGGUAUUACCAUUAACACCUCGCACGUAGAAUAC


  GAAACCGAAACCCGCCACUACGCACACGUAGACUGUCCGGGUCACGCCGACUA


  CGUUAAAAACAUGAUUACCGGCGCCGCACAAAUGGACGGUGCAAUCCUGGUA


  UGUUCUGCUGCCGACGGCCCUAUGCCGCAAACCCGCGAACACAUCCUGCUGGC


  CCGUCAAGUAGGCGUACCUUACAUCAUCGUGUUCAUGAACAAAUGCGACAUG


  GUCGACGAUGCCGAGCUGUUGGAACUGGUUGAAAUGGAAAUCCGCGACCUGC


  UGUCCAGCUACGACUUCCCCGGCGACGACUGCCCGAUCGUACAAGGUUCCGCA


  CUGAAAGCCUUGGAAGGCGAUGCCGCUUACGAAGAAAAAAUCUUCGAACUGG


  CUACCGCAUUGGACAGCUACAUCCCGACUCCCGAGCGUGCCGUGGACAAACCA


  UUCCUGCUGCCUAUCGAAGACGUGUUCUCCAUUUCCGGCCGCGGUACCGUAGU


  CACCGGCCGUGUAGAGCGAGGUAUCAUCCACGUUGGUGACGAGAUUGAAAUC


  GUCGGUCUGAAAGAAACCCAAAAAACCACCUGUACCGGCGUUGAAAUGUUCC


  GCAAACUGCUGGACGAAGGUCAGGCGGGCGACAACGUAGGCGUAUUGCUGCG


  CGGUACCAAACGUGAAGACGUAGAACGCGGUCAGGUAUUGGCCAAACCGGGU


  ACUAUCACUCCUCACACCAAGUUCAAAGCAGAAGUGUACGUAUUGAGCAAAG


  AAGAGGGCGGCCGCCAUACCCCGUUUUUCGCCAACUACCGUCCCCAAUUCUAC


  UUCCGUACCACUGACGUAACCGGCGCGGUUACUUUGGAAAAAGGUGUGGAAA


  UGGUAAUGCCGGGUGAGAACGUAACCAUUACUGUAGAACUGAUUGCGCCUAU


  CGCUAUGGAAGAAGGUCUGCGCUUUGCGAUUCGCGAAGGCGGCCGUACCGUG


  GGUGCCGGCGUGGUUUCUUCUGUUAUCGCUUAA






cDNA: SEQ ID NO: 293









TTAAGCGATAACAGAAGAAACCACGCCGGCACCCACGGTACGGCCGCCTTCGCG


  AATCGCAAAGCGCAGACCTTCTTCCATAGCGATAGGCGCAATCAGTTCTACAGT


  AATGGTTACGTTCTCACCCGGCATTACCATTTCCACACCTTTTTCCAAAGTAACC


  GCGCCGGTTACGTCAGTGGTACGGAAGTAGAATTGGGGACGGTAGTTGGCGAAA


  AACGGGGTATGGCGGCCGCCCTCTTCTTTGCTCAATACGTACACTTCTGCTTTGA


  ACTTGGTGTGAGGAGTGATAGTACCCGGTTTGGCCAATACCTGACCGCGTTCTAC


  GTCTTCACGTTTGGTACCGCGCAGCAATACGCCTACGTTGTCGCCCGCCTGACCT


  TCGTCCAGCAGTTTGCGGAACATTTCAACGCCGGTACAGGTGGTTTTTTGGGTTT


  CTTTCAGACCGACGATTTCAATCTCGTCACCAACGTGGATGATACCTCGCTCTAC


  ACGGCCGGTGACTACGGTACCGCGGCCGGAAATGGAGAACACGTCTTCGATAGG


  CAGCAGGAATGGTTTGTCCACGGCACGCTCGGGAGTCGGGATGTAGCTGTCCAA


  TGCGGTAGCCAGTTCGAAGATTTTTTCTTCGTAAGCGGCATCGCCTTCCAAGGCT


  TTCAGTGCGGAACCTTGTACGATCGGGCAGTCGTCGCCGGGGAAGTCGTAGCTG


  GACAGCAGGTCGCGGATTTCCATTTCAACCAGTTCCAACAGCTCGGCATCGTCGA


  CCATGTCGCATTTGTTCATGAACACGATGATGTAAGGTACGCCTACTTGACGGGC


  CAGCAGGATGTGTTCGCGGGTTTGCGGCATAGGGCCGTCGGCAGCAGAACATAC


  CAGGATTGCACCGTCCATTTGTGCGGCGCCGGTAATCATGTTTTTAACGTAGTCG


  GCGTGACCCGGACAGTCTACGTGTGCGTAGTGGCGGGTTTCGGTTTCGTATTCTA


  CGTGCGAGGTGTTAATGGTAATACCGCGTGCTTTTTCTTCGGGTGCGTTGTCGAT


  TTGGTCGTAAGCTTTTGCAGCGCCGCCGAATTTTTTAGCTAAAATAGTAGTCAAA


  GCAGCAGTCAGGGTGGTTTTACCATGGTCAACGTGACCGATGGTGCCAACGTTTA


  CGTGCGGTTTGCTACGTTCGAATTTTTCCTTAGCCAT






22. NGO1871: NC_002946.2:c1842986-1842483

DNA (- strand): SEQ ID NO: 294









ATGGCTTTACTGAATATCTTGCAATATCCCGACGAGCGTCTGCACACGGTGGCAA


  AGCCTGTCGAACAAGTTGACGAGCGCATCCGGAAGCTGGTTGCCGATATGTTTG


  AAACGATGTACGAATCGCGCGGCATCGGGCTGGCGGCGACGCAGGTCGATGTGC


  ACGAACGCGTGGTCGTGATGGATTTGACCGAAGACCGCAGCGAACCGCGCGTGT


  TCATCAACCCCGTCATCGTTGAAAAAGACGGCGAAACCACTTACGAAGAGGGCT


  GCCTGTCCGTACCGGGCATTTACGACGCCGTTACCCGCGCCGAACGCGTCAAGG


  TCGAGGCTTTGAACGAAAAAGGCGAAAAATTCACGCTGGAGGCGGACGGGCTGC


  TGGCGATTTGCGTGCAGCACGAGTTAGATCACCTGATGGGCATCGTGTTTGTCGA


  ACGCCTTTCCCAACTCAAGCAGGGGCGGATTAAGACCAAACTGAAAAAACGTCA


  GAAACATACGATTTGA






RNA: SEQ ID NO: 295









AUGGCUUUACUGAAUAUCUUGCAAUAUCCCGACGAGCGUCUGCACACGGUGG


  CAAAGCCUGUCGAACAAGUUGACGAGCGCAUCCGGAAGCUGGUUGCCGAUAU


  GUUUGAAACGAUGUACGAAUCGCGCGGCAUCGGGCUGGCGGCGACGCAGGUC


  GAUGUGCACGAACGCGUGGUCGUGAUGGAUUUGACCGAAGACCGCAGCGAAC


  CGCGCGUGUUCAUCAACCCCGUCAUCGUUGAAAAAGACGGCGAAACCACUUAC


  GAAGAGGGCUGCCUGUCCGUACCGGGCAUUUACGACGCCGUUACCCGCGCCGA


  ACGCGUCAAGGUCGAGGCUUUGAACGAAAAAGGCGAAAAAUUCACGCUGGAG


  GCGGACGGGCUGCUGGCGAUUUGCGUGCAGCACGAGUUAGAUCACCUGAUGG


  GCAUCGUGUUUGUCGAACGCCUUUCCCAACUCAAGCAGGGGCGGAUUAAGACC


  AAACUGAAAAAACGUCAGAAACAUACGAUUUGA






cDNA: SEQ ID NO: 296









TCAAATCGTATGTTTCTGACGTTTTTTCAGTTTGGTCTTAATCCGCCCCTGCTTGA


  GTTGGGAAAGGCGTTCGACAAACACGATGCCCATCAGGTGATCTAACTCGTGCT


  GCACGCAAATCGCCAGCAGCCCGTCCGCCTCCAGCGTGAATTTTTCGCCTTTTTC


  GTTCAAAGCCTCGACCTTGACGCGTTCGGCGCGGGTAACGGCGTCGTAAATGCC


  CGGTACGGACAGGCAGCCCTCTTCGTAAGTGGTTTCGCCGTCTTTTTCAACGATG


  ACGGGGTTGATGAACACGCGCGGTTCGCTGCGGTCTTCGGTCAAATCCATCACG


  ACCACGCGTTCGTGCACATCGACCTGCGTCGCCGCCAGCCCGATGCCGCGCGATT


  CGTACATCGTTTCAAACATATCGGCAACCAGCTTCCGGATGCGCTCGTCAACTTG


  TTCGACAGGCTTTGCCACCGTGTGCAGACGCTCGTCGGGATATTGCAAGATATTC


  AGTAAAGCCAT






23. Ngo1908: Nc_002946.2:1881198-1882241

DNA (+ strand): SEQ ID NO: 297









ATGCAGATTACCGACTTACTCGCCTTCGGCGCTAAAAACAAAGCATCCGACCTTC


  ACCTGAGTTCGGGCATATCCCCTATGATTCGGGTTCACGGCGACATGCGGCGCAT


  CAACCTTCCCGAAATGAGCGCGGAAGAGGTCGGCAATATGGTAACTTCGGTGAT


  GAACGACCACCAGCGGAAAATCTACCAGCAAAACTTGGAAGTCGACTTCTCGTT


  CGAACTGCCCAACGTCGCCCGATTCCGCGTCAACGCCTTCAACACCGGCCGCGG


  CCCCGCCGCCGTATTCCGCACCATTCCCAGCACCGTCTTATCGCTGGAAGAATTG


  AAAGCCCCGAGCATTTTCCAAAAAATCGCAGAATCGCCGCGCGGCATGGTATTG


  GTTACCGGCCCTACCGGTTCGGGCAAATCGACCACGCTTGCCGCGATGATCAACT


  ACATCAACGAAACCCAGCCGGCACACATCCTGACCATCGAAGACCCGATCGAAT


  TCGTCCACCAAAGCAAAAAATCCCTGATTAACCAACGCGAGCTGCACCAGCACA


  CCCTCAGCTTCGCCAACGCGCTGAGTTCCGCATTGCGCGAAGACCCCGACGTTAT


  CCTTGTCGGCGAGATGCGCGACCCCGAAACCATCGGCTTGGCACTGACCGCCGC


  CGAAACCGGACACTTGGTTTTCGGCACGCTGCACACGACCGGCGCGGCAAAAAC


  CGTCGACCGTATCGTGGACGTATTCCCCGCCGGAGAGAAAGAAATGGTGCGTTC


  CATGCTGTCCGAATCGCTGACCGCCGTCATCTCCCAAAACCTGCTGAAAACGCAC


  GACGGCGACGGCCGTGTCGCCTCGCACGAAATCCTGATTGCCAACCCCGCCGTC


  CGCAACCTCATCCGCGAAAACAAAATCACGCAGATTAACTCCGTCCTGCAAACC


  GGGCGGGCGAGCGGTATGCAGACGATGGACCAATCGCTGCAATCGCTGGTGCGC


  CAAGGGCTGATCGCACCGGAAGCCACACGCAGACGCGCGCAAAACAGCGAAAG


  TATGAGTTTCTGA






RNA: SEQ ID NO: 298









AUGCAGAUUACCGACUUACUCGCCUUCGGCGCUAAAAACAAAGCAUCCGACCU


  UCACCUGAGUUCGGGCAUAUCCCCUAUGAUUCGGGUUCACGGCGACAUGCGGC


  GCAUCAACCUUCCCGAAAUGAGCGCGGAAGAGGUCGGCAAUAUGGUAACUUC


  GGUGAUGAACGACCACCAGCGGAAAAUCUACCAGCAAAACUUGGAAGUCGAC


  UUCUCGUUCGAACUGCCCAACGUCGCCCGAUUCCGCGUCAACGCCUUCAACAC


  CGGCCGCGGCCCCGCCGCCGUAUUCCGCACCAUUCCCAGCACCGUCUUAUCGC


  UGGAAGAAUUGAAAGCCCCGAGCAUUUUCCAAAAAAUCGCAGAAUCGCCGCG


  CGGCAUGGUAUUGGUUACCGGCCCUACCGGUUCGGGCAAAUCGACCACGCUUG


  CCGCGAUGAUCAACUACAUCAACGAAACCCAGCCGGCACACAUCCUGACCAUC


  GAAGACCCGAUCGAAUUCGUCCACCAAAGCAAAAAAUCCCUGAUUAACCAACG


  CGAGCUGCACCAGCACACCCUCAGCUUCGCCAACGCGCUGAGUUCCGCAUUGC


  GCGAAGACCCCGACGUUAUCCUUGUCGGCGAGAUGCGCGACCCCGAAACCAUC


  GGCUUGGCACUGACCGCCGCCGAAACCGGACACUUGGUUUUCGGCACGCUGCA


  CACGACCGGCGCGGCAAAAACCGUCGACCGUAUCGUGGACGUAUUCCCCGCCG


  GAGAGAAAGAAAUGGUGCGUUCCAUGCUGUCCGAAUCGCUGACCGCCGUCAU


  CUCCCAAAACCUGCUGAAAACGCACGACGGCGACGGCCGUGUCGCCUCGCACG


  AAAUCCUGAUUGCCAACCCCGCCGUCCGCAACCUCAUCCGCGAAAACAAAAUC


  ACGCAGAUUAACUCCGUCCUGCAAACCGGGCGGGCGAGCGGUAUGCAGACGAU


  GGACCAAUCGCUGCAAUCGCUGGUGCGCCAAGGGCUGAUCGCACCGGAAGCCA


  CACGCAGACGCGCGCAAAACAGCGAAAGUAUGAGUUUCUGA






cDNA: SEQ ID NO: 299









TCAGAAACTCATACTTTCGCTGTTTTGCGCGCGTCTGCGTGTGGCTTCCGGTGCG


  ATCAGCCCTTGGCGCACCAGCGATTGCAGCGATTGGTCCATCGTCTGCATACCGC


  TCGCCCGCCCGGTTTGCAGGACGGAGTTAATCTGCGTGATTTTGTTTTCGCGGAT


  GAGGTTGCGGACGGCGGGGTTGGCAATCAGGATTTCGTGCGAGGCGACACGGCC


  GTCGCCGTCGTGCGTTTTCAGCAGGTTTTGGGAGATGACGGCGGTCAGCGATTCG


  GACAGCATGGAACGCACCATTTCTTTCTCTCCGGCGGGGAATACGTCCACGATAC


  GGTCGACGGTTTTTGCCGCGCCGGTCGTGTGCAGCGTGCCGAAAACCAAGTGTC


  CGGTTTCGGCGGCGGTCAGTGCCAAGCCGATGGTTTCGGGGTCGCGCATCTCGCC


  GACAAGGATAACGTCGGGGTCTTCGCGCAATGCGGAACTCAGCGCGTTGGCGAA


  GCTGAGGGTGTGCTGGTGCAGCTCGCGTTGGTTAATCAGGGATTTTTTGCTTTGG


  TGGACGAATTCGATCGGGTCTTCGATGGTCAGGATGTGTGCCGGCTGGGTTTCGT


  TGATGTAGTTGATCATCGCGGCAAGCGTGGTCGATTTGCCCGAACCGGTAGGGC


  CGGTAACCAATACCATGCCGCGCGGCGATTCTGCGATTTTTTGGAAAATGCTCGG


  GGCTTTCAATTCTTCCAGCGATAAGACGGTGCTGGGAATGGTGCGGAATACGGC


  GGCGGGGCCGCGGCCGGTGTTGAAGGCGTTGACGCGGAATCGGGCGACGTTGGG


  CAGTTCGAACGAGAAGTCGACTTCCAAGTTTTGCTGGTAGATTTTCCGCTGGTGG


  TCGTTCATCACCGAAGTTACCATATTGCCGACCTCTTCCGCGCTCATTTCGGGAA


  GGTTGATGCGCCGCATGTCGCCGTGAACCCGAATCATAGGGGATATGCCCGAAC


  TCAGGTGAAGGTCGGATGCTTTGTTTTTAGCGCCGAAGGCGAGTAAGTCGGTAAT


  CTGCAT






24. NGO1982: NC_002946.2:c1957797-1957498

DNA (- strand): SEQ ID NO: 300









ATGAAAATATTTGAAAATATAGAAGATGTTAAAGCCATCCGTAAAAAGACCGGG


  ATGAACCAGATAGACTTCTGGGGCAAGGTCGGCGTTACTCAATCCGGAGGTTCA


  CGCTACGAAACCGGCCGTAAGATGCCCAAACCCGTACGCGAACTGCTCCGCCTC


  GTCCATATCGAATGCCTCGATTTGGCAAAAGTCAACAAAAAAGATATGGAAATC


  GCCGCCCTGTTGAAAAAACACCATCCCGACCTGTATGCCGAGTTGTCCAAACAG


  ACCAAGTCCGAAAGAAAAAAACAAAGTTAA






RNA: SEQ ID NO: 301









AUGAAAAUAUUUGAAAAUAUAGAAGAUGUUAAAGCCAUCCGUAAAAAGACCG


  GGAUGAACCAGAUAGACUUCUGGGGCAAGGUCGGCGUUACUCAAUCCGGAGG


  UUCACGCUACGAAACCGGCCGUAAGAUGCCCAAACCCGUACGCGAACUGCUCC


  GCCUCGUCCAUAUCGAAUGCCUCGAUUUGGCAAAAGUCAACAAAAAAGAUAU


  GGAAAUCGCCGCCCUGUUGAAAAAACACCAUCCCGACCUGUAUGCCGAGUUGU


  CCAAACAGACCAAGUCCGAAAGAAAAAAACAAAGUUAA






cDNA: SEQ ID NO: 302









TTAACTTTGTTTTTTTCTTTCGGACTTGGTCTGTTTGGACAACTCGGCATACAGGT


  CGGGATGGTGTTTTTTCAACAGGGCGGCGATTTCCATATCTTTTTTGTTGACTTTT


  GCCAAATCGAGGCATTCGATATGGACGAGGCGGAGCAGTTCGCGTACGGGTTTG


  GGCATCTTACGGCCGGTTTCGTAGCGTGAACCTCCGGATTGAGTAACGCCGACCT


  TGCCCCAGAAGTCTATCTGGTTCATCCCGGTCTTTTTACGGATGGCTTTAACATCT


  TCTATATTTTCAAATATTTTCAT






25. NGO2060a: NC_002946.2:c2037067-2036384

DNA (- strand): SEQ ID NO: 303









GTGCAGGCGGATTTAGCCTACGCCGCCGAACGCATTACCCACGATTATCCGGAA


  CCAACCGCTCCAGGCAAAAACAAAATAAGCACGGTAAGCGATTATTTCAGAAAC


  ATCCGTACGCATTCCATCCACCCCAGGGTGTCGGTCGGCTACGACTTCGGCGGCT


  GGAGGATAGCGGCAGATTATGCCCGTTACAGAAAGTGGAACGACAATAAATATT


  CCGTCGACATAAAAGAGTTGGAAAACAAGAATCAGAATAAGAGAGACCTGAAG


  ACGGAAAATCAGGAAAACGGCAGCTTCCACGCCGTTTCTTCTCTCGGCTTATCAG


  CCGTTTACGATTTCAAACTCAACGACAAATTCAAACCCTATATCGGTGCGCGCGT


  CGCCTACGGACACGTCAGACACAGCATCGATTCGACTAAAAAAATAACAGGTAC


  TCTTACCGCCTACCCTAGTGATGCTGACGCAGCAGTTACGGTTTATCCTGACGGA


  CATCCGCAAAAAAACACCTATCAAAAAAGCAACAGCAGCCGCCGCTTGGGCTTC


  GGCGCGATGGCGGGCGTGGGCATAGACGTCGCGCCCGGCCTGACCTTGGACGCC


  GGCTACCGCTACCACAACTGGGGACGCTTGGAAAACACCCGCTTCAAAACCCAC


  GAAGCCTCATTGGGCATGCGCTACCGCTTCTGA






RNA: SEQ ID NO: 304









GUGCAGGCGGAUUUAGCCUACGCCGCCGAACGCAUUACCCACGAUUAUCCGGA


  ACCAACCGCUCCAGGCAAAAACAAAAUAAGCACGGUAAGCGAUUAUUUCAGA


  AACAUCCGUACGCAUUCCAUCCACCCCAGGGUGUCGGUCGGCUACGACUUCGG


  CGGCUGGAGGAUAGCGGCAGAUUAUGCCCGUUACAGAAAGUGGAACGACAAU


  AAAUAUUCCGUCGACAUAAAAGAGUUGGAAAACAAGAAUCAGAAUAAGAGAG


  ACCUGAAGACGGAAAAUCAGGAAAACGGCAGCUUCCACGCCGUUUCUUCUCUC


  GGCUUAUCAGCCGUUUACGAUUUCAAACUCAACGACAAAUUCAAACCCUAUA


  UCGGUGCGCGCGUCGCCUACGGACACGUCAGACACAGCAUCGAUUCGACUAAA


  AAAAUAACAGGUACUCUUACCGCCUACCCUAGUGAUGCUGACGCAGCAGUUAC


  GGUUUAUCCUGACGGACAUCCGCAAAAAAACACCUAUCAAAAAAGCAACAGC


  AGCCGCCGCUUGGGCUUCGGCGCGAUGGCGGGCGUGGGCAUAGACGUCGCGCC


  CGGCCUGACCUUGGACGCCGGCUACCGCUACCACAACUGGGGACGCUUGGAAA


  ACACCCGCUUCAAAACCCACGAAGCCUCAUUGGGCAUGCGCUACCGCUUCUGA






cDNA: SEQ ID NO: 305









TCAGAAGCGGTAGCGCATGCCCAATGAGGCTTCGTGGGTTTTGAAGCGGGTGTTT


  TCCAAGCGTCCCCAGTTGTGGTAGCGGTAGCCGGCGTCCAAGGTCAGGCCGGGC


  GCGACGTCTATGCCCACGCCCGCCATCGCGCCGAAGCCCAAGCGGCGGCTGCTG


  TTGCTTTTTTGATAGGTGTTTTTTTGCGGATGTCCGTCAGGATAAACCGTAACTGC


  TGCGTCAGCATCACTAGGGTAGGCGGTAAGAGTACCTGTTATTTTTTTAGTCGAA


  TCGATGCTGTGTCTGACGTGTCCGTAGGCGACGCGCGCACCGATATAGGGTTTGA


  ATTTGTCGTTGAGTTTGAAATCGTAAACGGCTGATAAGCCGAGAGAAGAAACGG


  CGTGGAAGCTGCCGTTTTCCTGATTTTCCGTCTTCAGGTCTCTCTTATTCTGATTC


  TTGTTTTCCAACTCTTTTATGTCGACGGAATATTTATTGTCGTTCCACTTTCTGTA


  ACGGGCATAATCTGCCGCTATCCTCCAGCCGCCGAAGTCGTAGCCGACCGACAC


  CCTGGGGTGGATGGAATGCGTACGGATGTTTCTGAAATAATCGCTTACCGTGCTT


  ATTTTGTTTTTGCCTGGAGCGGTTGGTTCCGGATAATCGTGGGTAATGCGTTCGG


  CGGCGTAGGCTAAATCCGCCTGCAC






26. Ngo2084: Nc_002946.2:2061613-2062296

DNA (+ strand): SEQ ID NO: 306









ATGCAACACGACGTTTACGACTACACCGCGCATACGGTTTCTAAAAACACCGTC


  CTGCAGAAAACCTACCGCCTGCTCGGATTTTCATTCATTCCGGCAGCCGCAGGCG


  CGGCACTTGCCGCCAATGCCGGTTTCAATTTTTACGCCGCCTTCGGTTCGCGCTG


  GATAGGATTTGCCGTCGTATTGGCGTTTTTCTACGGTATGATCCACTTCATCGAA


  AAAAACCGTTACAGCAATACCGGCGTTACCCTGCTGATGGTATTCACATTCGGTA


  TGGGCGTATTGATCGGCCCCGTGCTGCAATACGCACTCCATATTGCCGACGGTGC


  GAAAATCGTCGGCATTGCCGCCGCGATGACCGCCGCCGTCTTTTTAACGATGTCC


  GCATTGGCACGCCGAACCCGGCTCGATATGAACGCGCTCGGACGCTTCCTGACC


  GTAGGTGCGGTCATTCTGATGGTCGCCGTGGTTGCCAATCTGTTTTTGGGTATTCC


  CGCACTCGCCCTGACCATTTCCGCCGGTTTTGTCTTGTTCAGTTCCTTAATAATTA


  TGTGGCAGGTACGCACCGTCATCGACGGCGGCGAAGACAGTTACATCAGCGCGG


  CACTGACACTGTTTATCTCGCTTTACAACATCTTCAGCAGCCTGCTCAACATCCT


  GCTGTCCTTAAACGGCGACGACTGA






RNA: SEQ ID NO: 307









AUGCAACACGACGUUUACGACUACACCGCGCAUACGGUUUCUAAAAACACCGU


  CCUGCAGAAAACCUACCGCCUGCUCGGAUUUUCAUUCAUUCCGGCAGCCGCAG


  GCGCGGCACUUGCCGCCAAUGCCGGUUUCAAUUUUUACGCCGCCUUCGGUUCG


  CGCUGGAUAGGAUUUGCCGUCGUAUUGGCGUUUUUCUACGGUAUGAUCCACU


  UCAUCGAAAAAAACCGUUACAGCAAUACCGGCGUUACCCUGCUGAUGGUAUU


  CACAUUCGGUAUGGGCGUAUUGAUCGGCCCCGUGCUGCAAUACGCACUCCAUA


  UUGCCGACGGUGCGAAAAUCGUCGGCAUUGCCGCCGCGAUGACCGCCGCCGUC


  UUUUUAACGAUGUCCGCAUUGGCACGCCGAACCCGGCUCGAUAUGAACGCGCU


  CGGACGCUUCCUGACCGUAGGUGCGGUCAUUCUGAUGGUCGCCGUGGUUGCCA


  AUCUGUUUUUGGGUAUUCCCGCACUCGCCCUGACCAUUUCCGCCGGUUUUGUC


  UUGUUCAGUUCCUUAAUAAUUAUGUGGCAGGUACGCACCGUCAUCGACGGCG


  GCGAAGACAGUUACAUCAGCGCGGCACUGACACUGUUUAUCUCGCUUUACAAC


  AUCUUCAGCAGCCUGCUCAACAUCCUGCUGUCCUUAAACGGCGACGACUGA






cDNA: SEQ ID NO: 308









TCAGTCGTCGCCGTTTAAGGACAGCAGGATGTTGAGCAGGCTGCTGAAGATGTT


  GTAAAGCGAGATAAACAGTGTCAGTGCCGCGCTGATGTAACTGTCTTCGCCGCC


  GTCGATGACGGTGCGTACCTGCCACATAATTATTAAGGAACTGAACAAGACAAA


  ACCGGCGGAAATGGTCAGGGCGAGTGCGGGAATACCCAAAAACAGATTGGCAA


  CCACGGCGACCATCAGAATGACCGCACCTACGGTCAGGAAGCGTCCGAGCGCGT


  TCATATCGAGCCGGGTTCGGCGTGCCAATGCGGACATCGTTAAAAAGACGGCGG


  CGGTCATCGCGGCGGCAATGCCGACGATTTTCGCACCGTCGGCAATATGGAGTG


  CGTATTGCAGCACGGGGCCGATCAATACGCCCATACCGAATGTGAATACCATCA


  GCAGGGTAACGCCGGTATTGCTGTAACGGTTTTTTTCGATGAAGTGGATCATACC


  GTAGAAAAACGCCAATACGACGGCAAATCCTATCCAGCGCGAACCGAAGGCGG


  CGTAAAAATTGAAACCGGCATTGGCGGCAAGTGCCGCGCCTGCGGCTGCCGGAA


  TGAATGAAAATCCGAGCAGGCGGTAGGTTTTCTGCAGGACGGTGTTTTTAGAAA


  CCGTATGCGCGGTGTAGTCGTAAACGTCGTGTTGCAT






27. NGO2134: NC_002946.2:c2114153-2113941

DNA (- strand): SEQ ID NO: 309









ATGCCTGCAATCCGCGTAAAAGAGAATGAACCATTTGAAGTCGCTATGCGCCGT


  TTCAAACGCGCCGTAGAAAAAACCGGCCTGCTGACCGAGCTGCGCGCCCGCGAA


  GCCTACGAAAAACCGACTACCGAACGCAAACGCAAAAAAGCGGCAGCCGTAAA


  ACGCCTGCAAAAACGCCTGCGCAGCCAACAGCTGCCGCCCAAAATGTACTAA






RNA: SEQ ID NO: 310









AUGCCUGCAAUCCGCGUAAAAGAGAAUGAACCAUUUGAAGUCGCUAUGCGCC


  GUUUCAAACGCGCCGUAGAAAAAACCGGCCUGCUGACCGAGCUGCGCGCCCGC


  GAAGCCUACGAAAAACCGACUACCGAACGCAAACGCAAAAAAGCGGCAGCCGU


  AAAACGCCUGCAAAAACGCCUGCGCAGCCAACAGCUGCCGCCCAAAAUGUACU


  AA






cDNA: SEQ ID NO: 311









TTAGTACATTTTGGGCGGCAGCTGTTGGCTGCGCAGGCGTTTTTGCAGGCGTTTT


  ACGGCTGCCGCTTTTTTGCGTTTGCGTTCGGTAGTCGGTTTTTCGTAGGCTTCGCG


  GGCGCGCAGCTCGGTCAGCAGGCCGGTTTTTTCTACGGCGCGTTTGAAACGGCG


  CATAGCGACTTCAAATGGTTCATTCTCTTTTACGCGGATTGCAGGCAT






28. Ngo2145: Nc_002946.2:2122709-2122945

DNA (+ strand): SEQ ID NO: 312









ATGGGTTTGATTGCTATCGCATGTGGTTTGATCGTTGCATTGGGTGCATTGGGTG


  CATCTATCGGTATCGCAATGGTCGGTTCTAAATATTTGGAGTCTTCTGCTCGCCA


  ACCTGAACTGATTGGTCCGCTGCAAACCAAACTGTTCCTGATTGCCGGTCTGATT


  GATGCCGCATTCTTGATCGGTGTCGCCATTGCACTACTGTTCGCCTTCGTCAACC


  CGTTTGCAGGTGCATAA






RNA: SEQ ID NO: 313









AUGGGUUUGAUUGCUAUCGCAUGUGGUUUGAUCGUUGCAUUGGGUGCAUUGG


  GUGCAUCUAUCGGUAUCGCAAUGGUCGGUUCUAAAUAUUUGGAGUCUUCUGC


  UCGCCAACCUGAACUGAUUGGUCCGCUGCAAACCAAACUGUUCCUGAUUGCCG


  GUCUGAUUGAUGCCGCAUUCUUGAUCGGUGUCGCCAUUGCACUACUGUUCGCC


  UUCGUCAACCCGUUUGCAGGUGCAUAA






cDNA: SEQ ID NO: 314









TTATGCACCTGCAAACGGGTTGACGAAGGCGAACAGTAGTGCAATGGCGACACC


  GATCAAGAATGCGGCATCAATCAGACCGGCAATCAGGAACAGTTTGGTTTGCAG


  CGGACCAATCAGTTCAGGTTGGCGAGCAGAAGACTCCAAATATTTAGAACCGAC


  CATTGCGATACCGATAGATGCACCCAATGCACCCAATGCAACGATCAAACCACA


  TGCGATAGCAATCAAACCCAT






29. Ngo2146: Nc_002946.2:2123015-2123485

DNA (+ strand): SEQ ID NO: 315









GTGAATATCAATGCAACATTATTCGCTCAAATCATCGTCTTTTTCGGTTTGGTATG


  GTTTACCATGAAATTTGTGTGGCCGCCGATTGCAAAAGCTTTGGATGAGCGTGCC


  GCAAAAATCGCCGAGGGCTTGGCTGCCGCCGAGCGTGGTAAAAGCGATTTCGAG


  CAGGCTGAAAAAAAGGTTGCAGAACTTTTGGCAGAAGGGCGTAATCAGGTTTCC


  GAAATGGTTGCCAACGCCGAAAAACGTGCCGCCAAAATTGTCGAAGAAGCCAA


  AGAACAGGCTTCTTCCGAGGCGGCGCGCATTGCAGCTCAGGCAAAGGCCGATGT


  GGAGCAGGAATTGTTCCGCGCACGCGAATCCCTGCGCGATCAGGTTGCCGTGTT


  GGCTGTCAAAGGTGCCGAATCTATTTTGCGCAGCGAAGTCGATGCTTCCAAACAC


  GCAAAACTGCTCGATACCCTGAAACAGGAGTTGTAA






RNA: SEQ ID NO: 316









GUGAAUAUCAAUGCAACAUUAUUCGCUCAAAUCAUCGUCUUUUUCGGUUUGG


  UAUGGUUUACCAUGAAAUUUGUGUGGCCGCCGAUUGCAAAAGCUUUGGAUGA


  GCGUGCCGCAAAAAUCGCCGAGGGCUUGGCUGCCGCCGAGCGUGGUAAAAGCG


  AUUUCGAGCAGGCUGAAAAAAAGGUUGCAGAACUUUUGGCAGAAGGGCGUAA


  UCAGGUUUCCGAAAUGGUUGCCAACGCCGAAAAACGUGCCGCCAAAAUUGUC


  GAAGAAGCCAAAGAACAGGCUUCUUCCGAGGCGGCGCGCAUUGCAGCUCAGGC


  AAAGGCCGAUGUGGAGCAGGAAUUGUUCCGCGCACGCGAAUCCCUGCGCGAUC


  AGGUUGCCGUGUUGGCUGUCAAAGGUGCCGAAUCUAUUUUGCGCAGCGAAGU


  CGAUGCUUCCAAACACGCAAAACUGCUCGAUACCCUGAAACAGGAGUUGUAA






cDNA: SEQ ID NO: 317









TTACAACTCCTGTTTCAGGGTATCGAGCAGTTTTGCGTGTTTGGAAGCATCGACT


  TCGCTGCGCAAAATAGATTCGGCACCTTTGACAGCCAACACGGCAACCTGATCG


  CGCAGGGATTCGCGTGCGCGGAACAATTCCTGCTCCACATCGGCCTTTGCCTGAG


  CTGCAATGCGCGCCGCCTCGGAAGAAGCCTGTTCTTTGGCTTCTTCGACAATTTT


  GGCGGCACGTTTTTCGGCGTTGGCAACCATTTCGGAAACCTGATTACGCCCTTCT


  GCCAAAAGTTCTGCAACCTTTTTTTCAGCCTGCTCGAAATCGCTTTTACCACGCTC


  GGCGGCAGCCAAGCCCTCGGCGATTTTTGCGGCACGCTCATCCAAAGCTTTTGCA


  ATCGGCGGCCACACAAATTTCATGGTAAACCATACCAAACCGAAAAAGACGATG


  ATTTGAGCGAATAATGTTGCATTGATATTCAC






tRNA Control Transcripts
1. NGO_t45: NC_002946.2:cl827200-1827128

DNA (- strand): SEQ ID NO: 318









AGGCCAATAGCTCAATTGGTAGAGTATCGGTCTCCAAAACCGAGGGTTGGGGGT


  TCGAGACCCTCTTGGCCTG






RNA: SEQ ID NO: 319









AGGCCAAUAGCUCAAUUGGUAGAGUAUCGGUCUCCAAAACCGAGGGUUGGGG


  GUUCGAGACCCUCUUGGCCUG






cDNA: SEQ ID NO: 320









CAGGCCAAGAGGGTCTCGAACCCCCAACCCTCGGTTTTGGAGACCGATACTCTA


  CCAATTGAGCTATTGGCCT






2. NGO_t47: NC_002946.2:c1828597-1828527

DNA (- strand) SEQ ID NO: 321









GCGGGTGTAGCTCAATGGTAGAGCAGAAGCCTTCCAAGCTTACGGTGAGGGTTC


  GATTCCCTTCACCCGCT






RNA: SEQ ID NO: 322









GCGGGUGUAGCUCAAUGGUAGAGCAGAAGCCUUCCAAGCUUACGGUGAGGGU


  UCGAUUCCCUUCACCCGCU






cDNA: SEQ ID NO: 323









AGCGGGTGAAGGGAATCGAACCCTCACCGTAAGCTTGGAAGGCTTCTGCTCTAC


  CATTGAGCTACACCCGC






Ribosomal RNA Control Transcripts
1. NGO_r02: NC_002946.2:c1119158-1116249

DNA (- strand): SEQ ID NO: 324









TGAAATGATAGAGTCAAGTGAATAAGTGCATCAGGCGGATGCCTTGGCGATGAT


  AGGCGACGAAGGACGTGTAAGCCTGCGAAAAGCGCGGGGGAGCTGGCAATAAA


  GCAATGATCCCGCGGTGTCCGAATGGGGAAACCCACTGCATTCTGTGCAGTATC


  CTAAGTTGAATACATAGGCTTAGAGAAGCGAACCCGGAGAACTGAACCATCTAA


  GTACCCGGAGGAAAAGAAATCAACCGAGATTCCGCAAGTAGTGGCGAGCGAAC


  GCGGAGGAGCCTGTACGTAATAACTGTCGAGGTAGAAGAACAAGCTGGGAAGCT


  TGACCATAGCGGGTGACAGTCCCGTATTCGAAATCTCAACAGCGGTACTAAGCG


  TACGAAAAGTAGGGCGGGACACGTGAAATCCTGTCTGAATATGGGGGGACCATC


  CTCCAAGGCTAAATACTCATCATCGACCGATAGTGAACCAGTACCGTGAGGGAA


  AGGCGAAAAGAACCCCGGGAGGGGAGTGAAACAGAACCTGAAACCTGATGCAT


  ACAAACAGTGGGAGCGCCCTAGTGGTGTGACTGCGTACCTTTTGTATAATGGGTC


  AACGACTTACATTCAGTAGCGAGCTTAACCGGATAGGGGAGGCGTAGGGAAACC


  GAGTCTTAATAGGGCGATGAGTTGCTGGGTGTAGACCCGAAACCGAGTGATCTA


  TCCATGGCCAGGTTGAAGGTGCCGTAACAGGTACTGGAGGACCGAACCCACGCA


  TGTTGCAAAATGCGGGGATGAGCTGTGGGTAGGGGTGAAAGGCTAAACAAACTC


  GGAGATAGCTGGTTCTCCCCGAAAACTATTTAGGTAGTGCCTCGAGCAAGACAC


  TGATGGGGGTAAAGCACTGTTATGGCTAGGGGGTTATTGCAACTTACCAACCCAT


  GGCAAACTCAGAATACCATCAAGTGGTTCCTCGGGAGACAGACAGCGGGTGCTA


  ACGTCCGTTGTCAAGAGGGAAACAACCCAGACCGCCGGCTAAGGTCCCAAATGA


  TAGATTAAGTGGTAAACGAAGTGGGAAGGCACAGACAGCCAGGATGTTGGCTTA


  GAAGCAGCCATCATTTAAAGAAAGCGTAATAGCTCACTGGTCGAGTCGTCCTGC


  GCGGAAGATGTAACGGGGCTCAAATCTATAACCGAAGCTGCGGATGCCGGTTTA


  CCGGCATGGTAGGGGAGCGTTCTGTAGGCTGATGAAGGTGCATTGTAAAGTGTG


  CTGGAGGTATCAGAAGTGCGAATGTTGACATGAGTAGCGATAAAGCGGGTGAAA


  AGCCCGCTCGCCGAAAGCCCAAGGTTTCCTACGCAACGTTCATCGGCGTAGGGT


  GAGTCGGCCCCTAAGGCGAGGCAGAAATGCGTAGTCGATGGGAAACAGGTTAAT


  ATTCCTGTACTTGATTCAAATGCGATGTGGGGACGGAGAAGGTTAGGTTGGCAA


  GCTGTTGGAATAGCTTGTTTAAGCCGGTAGGTGGAAGACTTAGGCAAATCCGGG


  TTTTCTTAACACCGAAGAAGTGATGACGAGTGTTTACGGACACGAAGCAACCGA


  TACCACGCTTCCAGGAAAAGCCACTAAGCTTCAGTTTGAATCGAACCGTACCGC


  AAACCGACACAGGTGGGCAGGATGAGAATTCTAAGGCGCTTGAGAGAACTCGG


  GAGAAGGAACTCGGCAAATTGATACCGTAACTTCGGGAGAAGGTATGCCCTCTA


  AGGTTAAGGACTTGCTCCGTAAGCCCCGGAGGGTCGCAGAGAATAGGTGGCTGC


  GACTTGTTTATTAAAAACACGAGCACTCTTGCCAACACGAAAGTGGACGTATAG


  GGTGTAACGCCTGCCCGGTGCCGGAAGGTTAATTGAAGATGTGCAAGCATCGGA


  TCGAAGCCCCGGTAAACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAAT


  TCCTTGTCGGGTAAGTTCCGACCCGCACGAATGGCGTAACGATGGCCACACTGTC


  TCCTCCCGAGACTCAGCGAAGTTGAAGTGGTTGTGAAGATGCAATCTACCCGCTG


  CTAGACGGAAAGACCCCGTGAACCTTTACTGTAGCTTTGCATTGGACTTTGAAGT


  CACTTGTGTAGGATAGGTGGAAGGCTTGGAAGCAAAGACGCCAGTCTCTGTGGA


  GTCGTCCTTGAAAATACCACCCTGGTGTCTTTGAGGTTCTAACCCAGACCCGTCA


  TCCGGGTCGGGGACCGTGCATGGTAGGCAGTTTGACTGGGGCGGTCTCCTCCCA


  AAGCGTAACGGAGGAGTTCGAAGGTTACCTAGGTCCGGTCGGAAATCGGACTGA


  TAGTGCAATGGCAAAAGGTAGCTTAACTGCGAGACCGACAAGTCGGGCAGGTGC


  GAAAGCAGGACATAGTGATCCGGTGGTTCTGTATGGAAGGGCCATCGCTCAACG


  GATAAAAGGTACTCCGGGGATAACAGGCTTGATTCCGCCCAAGAGTTCATATCG


  ACGGCGGAGTTTGGCACCTCGATGTCGGCTCATCACATCCTGGGGCTGTAGTCGG


  TCCCAAGGGTATGGCTGTTCGCCATTTTAAAGTGGTACGTGAGTTGGGTTTAAAA


  CGTCGTGAGACAGTTTGGTCCCTATCTGCAGTGGGCGTTGGAAGTTTGACGGGGG


  CTGCTCCTAGTACGAGAGGACCGGAGTGGACGAACCTCTGGTGTACCGGTTGTA


  ACGCCAGTTGCATAGCCGGGTAGCTAAGTTCGGAAGAGATAAGCGCTGAAAGCA


  TCTAAGCGCGAAACTCGCCTGAAGATGAGACTTCCCTTGCGGTTTAACCGCACTA


  AAGGGTCGTTCGAGACCAGGACGTTGATAGGTGGGGTGTGGAAGCGCGGTAACG


  CGTGAAGCTAACCCATACTAATTGCCCGTGAGGCTTGACTCT






RNA: SEQ ID NO: 325









UGAAAUGAUAGAGUCAAGUGAAUAAGUGCAUCAGGCGGAUGCCUUGGCGAUG


  AUAGGCGACGAAGGACGUGUAAGCCUGCGAAAAGCGCGGGGGAGCUGGCAAU


  AAAGCAAUGAUCCCGCGGUGUCCGAAUGGGGAAACCCACUGCAUUCUGUGCA


  GUAUCCUAAGUUGAAUACAUAGGCUUAGAGAAGCGAACCCGGAGAACUGAAC


  CAUCUAAGUACCCGGAGGAAAAGAAAUCAACCGAGAUUCCGCAAGUAGUGGC


  GAGCGAACGCGGAGGAGCCUGUACGUAAUAACUGUCGAGGUAGAAGAACAAG


  CUGGGAAGCUUGACCAUAGCGGGUGACAGUCCCGUAUUCGAAAUCUCAACAG


  CGGUACUAAGCGUACGAAAAGUAGGGCGGGACACGUGAAAUCCUGUCUGAAU


  AUGGGGGGACCAUCCUCCAAGGCUAAAUACUCAUCAUCGACCGAUAGUGAACC


  AGUACCGUGAGGGAAAGGCGAAAAGAACCCCGGGAGGGGAGUGAAACAGAAC


  CUGAAACCUGAUGCAUACAAACAGUGGGAGCGCCCUAGUGGUGUGACUGCGU


  ACCUUUUGUAUAAUGGGUCAACGACUUACAUUCAGUAGCGAGCUUAACCGGA


  UAGGGGAGGCGUAGGGAAACCGAGUCUUAAUAGGGCGAUGAGUUGCUGGGUG


  UAGACCCGAAACCGAGUGAUCUAUCCAUGGCCAGGUUGAAGGUGCCGUAACA


  GGUACUGGAGGACCGAACCCACGCAUGUUGCAAAAUGCGGGGAUGAGCUGUG


  GGUAGGGGUGAAAGGCUAAACAAACUCGGAGAUAGCUGGUUCUCCCCGAAAA


  CUAUUUAGGUAGUGCCUCGAGCAAGACACUGAUGGGGGUAAAGCACUGUUAU


  GGCUAGGGGGUUAUUGCAACUUACCAACCCAUGGCAAACUCAGAAUACCAUC


  AAGUGGUUCCUCGGGAGACAGACAGCGGGUGCUAACGUCCGUUGUCAAGAGG


  GAAACAACCCAGACCGCCGGCUAAGGUCCCAAAUGAUAGAUUAAGUGGUAAA


  CGAAGUGGGAAGGCACAGACAGCCAGGAUGUUGGCUUAGAAGCAGCCAUCAU


  UUAAAGAAAGCGUAAUAGCUCACUGGUCGAGUCGUCCUGCGCGGAAGAUGUA


  ACGGGGCUCAAAUCUAUAACCGAAGCUGCGGAUGCCGGUUUACCGGCAUGGU


  AGGGGAGCGUUCUGUAGGCUGAUGAAGGUGCAUUGUAAAGUGUGCUGGAGGU


  AUCAGAAGUGCGAAUGUUGACAUGAGUAGCGAUAAAGCGGGUGAAAAGCCCG


  CUCGCCGAAAGCCCAAGGUUUCCUACGCAACGUUCAUCGGCGUAGGGUGAGUC


  GGCCCCUAAGGCGAGGCAGAAAUGCGUAGUCGAUGGGAAACAGGUUAAUAUU


  CCUGUACUUGAUUCAAAUGCGAUGUGGGGACGGAGAAGGUUAGGUUGGCAAG


  CUGUUGGAAUAGCUUGUUUAAGCCGGUAGGUGGAAGACUUAGGCAAAUCCGG


  GUUUUCUUAACACCGAAGAAGUGAUGACGAGUGUUUACGGACACGAAGCAAC


  CGAUACCACGCUUCCAGGAAAAGCCACUAAGCUUCAGUUUGAAUCGAACCGUA


  CCGCAAACCGACACAGGUGGGCAGGAUGAGAAUUCUAAGGCGCUUGAGAGAA


  CUCGGGAGAAGGAACUCGGCAAAUUGAUACCGUAACUUCGGGAGAAGGUAUG


  CCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCGGAGGGUCGCAGAGAAUA


  GGUGGCUGCGACUUGUUUAUUAAAAACACGAGCACUCUUGCCAACACGAAAG


  UGGACGUAUAGGGUGUAACGCCUGCCCGGUGCCGGAAGGUUAAUUGAAGAUG


  UGCAAGCAUCGGAUCGAAGCCCCGGUAAACGGCGGCCGUAACUAUAACGGUCC


  UAAGGUAGCGAAAUUCCUUGUCGGGUAAGUUCCGACCCGCACGAAUGGCGUA


  ACGAUGGCCACACUGUCUCCUCCCGAGACUCAGCGAAGUUGAAGUGGUUGUG


  AAGAUGCAAUCUACCCGCUGCUAGACGGAAAGACCCCGUGAACCUUUACUGUA


  GCUUUGCAUUGGACUUUGAAGUCACUUGUGUAGGAUAGGUGGAAGGCUUGGA


  AGCAAAGACGCCAGUCUCUGUGGAGUCGUCCUUGAAAAUACCACCCUGGUGUC


  UUUGAGGUUCUAACCCAGACCCGUCAUCCGGGUCGGGGACCGUGCAUGGUAG


  GCAGUUUGACUGGGGCGGUCUCCUCCCAAAGCGUAACGGAGGAGUUCGAAGG


  UUACCUAGGUCCGGUCGGAAAUCGGACUGAUAGUGCAAUGGCAAAAGGUAGC


  UUAACUGCGAGACCGACAAGUCGGGCAGGUGCGAAAGCAGGACAUAGUGAUC


  CGGUGGUUCUGUAUGGAAGGGCCAUCGCUCAACGGAUAAAAGGUACUCCGGG


  GAUAACAGGCUUGAUUCCGCCCAAGAGUUCAUAUCGACGGCGGAGUUUGGCA


  CCUCGAUGUCGGCUCAUCACAUCCUGGGGCUGUAGUCGGUCCCAAGGGUAUGG


  CUGUUCGCCAUUUUAAAGUGGUACGUGAGUUGGGUUUAAAACGUCGUGAGAC


  AGUUUGGUCCCUAUCUGCAGUGGGCGUUGGAAGUUUGACGGGGGCUGCUCCU


  AGUACGAGAGGACCGGAGUGGACGAACCUCUGGUGUACCGGUUGUAACGCCA


  GUUGCAUAGCCGGGUAGCUAAGUUCGGAAGAGAUAAGCGCUGAAAGCAUCUA


  AGCGCGAAACUCGCCUGAAGAUGAGACUUCCCUUGCGGUUUAACCGCACUAAA


  GGGUCGUUCGAGACCAGGACGUUGAUAGGUGGGGUGUGGAAGCGCGGUAACG


  CGUGAAGCUAACCCAUACUAAUUGCCCGUGAGGCUUGACUCU






cDNA: SEQ ID NO: 326









AGAGTCAAGCCTCACGGGCAATTAGTATGGGTTAGCTTCACGCGTTACCGCGCTT


  CCACACCCCACCTATCAACGTCCTGGTCTCGAACGACCCTTTAGTGCGGTTAAAC


  CGCAAGGGAAGTCTCATCTTCAGGCGAGTTTCGCGCTTAGATGCTTTCAGCGCTT


  ATCTCTTCCGAACTTAGCTACCCGGCTATGCAACTGGCGTTACAACCGGTACACC


  AGAGGTTCGTCCACTCCGGTCCTCTCGTACTAGGAGCAGCCCCCGTCAAACTTCC


  AACGCCCACTGCAGATAGGGACCAAACTGTCTCACGACGTTTTAAACCCAACTC


  ACGTACCACTTTAAAATGGCGAACAGCCATACCCTTGGGACCGACTACAGCCCC


  AGGATGTGATGAGCCGACATCGAGGTGCCAAACTCCGCCGTCGATATGAACTCT


  TGGGCGGAATCAAGCCTGTTATCCCCGGAGTACCTTTTATCCGTTGAGCGATGGC


  CCTTCCATACAGAACCACCGGATCACTATGTCCTGCTTTCGCACCTGCCCGACTT


  GTCGGTCTCGCAGTTAAGCTACCTTTTGCCATTGCACTATCAGTCCGATTTCCGAC


  CGGACCTAGGTAACCTTCGAACTCCTCCGTTACGCTTTGGGAGGAGACCGCCCCA


  GTCAAACTGCCTACCATGCACGGTCCCCGACCCGGATGACGGGTCTGGGTTAGA


  ACCTCAAAGACACCAGGGTGGTATTTTCAAGGACGACTCCACAGAGACTGGCGT


  CTTTGCTTCCAAGCCTTCCACCTATCCTACACAAGTGACTTCAAAGTCCAATGCA


  AAGCTACAGTAAAGGTTCACGGGGTCTTTCCGTCTAGCAGCGGGTAGATTGCATC


  TTCACAACCACTTCAACTTCGCTGAGTCTCGGGAGGAGACAGTGTGGCCATCGTT


  ACGCCATTCGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAGGA


  CCGTTATAGTTACGGCCGCCGTTTACCGGGGCTTCGATCCGATGCTTGCACATCT


  TCAATTAACCTTCCGGCACCGGGCAGGCGTTACACCCTATACGTCCACTTTCGTG


  TTGGCAAGAGTGCTCGTGTTTTTAATAAACAAGTCGCAGCCACCTATTCTCTGCG


  ACCCTCCGGGGCTTACGGAGCAAGTCCTTAACCTTAGAGGGCATACCTTCTCCCG


  AAGTTACGGTATCAATTTGCCGAGTTCCTTCTCCCGAGTTCTCTCAAGCGCCTTA


  GAATTCTCATCCTGCCCACCTGTGTCGGTTTGCGGTACGGTTCGATTCAAACTGA


  AGCTTAGTGGCTTTTCCTGGAAGCGTGGTATCGGTTGCTTCGTGTCCGTAAACAC


  TCGTCATCACTTCTTCGGTGTTAAGAAAACCCGGATTTGCCTAAGTCTTCCACCT


  ACCGGCTTAAACAAGCTATTCCAACAGCTTGCCAACCTAACCTTCTCCGTCCCCA


  CATCGCATTTGAATCAAGTACAGGAATATTAACCTGTTTCCCATCGACTACGCAT


  TTCTGCCTCGCCTTAGGGGCCGACTCACCCTACGCCGATGAACGTTGCGTAGGAA


  ACCTTGGGCTTTCGGCGAGCGGGCTTTTCACCCGCTTTATCGCTACTCATGTCAA


  CATTCGCACTTCTGATACCTCCAGCACACTTTACAATGCACCTTCATCAGCCTAC


  AGAACGCTCCCCTACCATGCCGGTAAACCGGCATCCGCAGCTTCGGTTATAGATT


  TGAGCCCCGTTACATCTTCCGCGCAGGACGACTCGACCAGTGAGCTATTACGCTT


  TCTTTAAATGATGGCTGCTTCTAAGCCAACATCCTGGCTGTCTGTGCCTTCCCACT


  TCGTTTACCACTTAATCTATCATTTGGGACCTTAGCCGGCGGTCTGGGTTGTTTCC


  CTCTTGACAACGGACGTTAGCACCCGCTGTCTGTCTCCCGAGGAACCACTTGATG


  GTATTCTGAGTTTGCCATGGGTTGGTAAGTTGCAATAACCCCCTAGCCATAACAG


  TGCTTTACCCCCATCAGTGTCTTGCTCGAGGCACTACCTAAATAGTTTTCGGGGA


  GAACCAGCTATCTCCGAGTTTGTTTAGCCTTTCACCCCTACCCACAGCTCATCCC


  CGCATTTTGCAACATGCGTGGGTTCGGTCCTCCAGTACCTGTTACGGCACCTTCA


  ACCTGGCCATGGATAGATCACTCGGTTTCGGGTCTACACCCAGCAACTCATCGCC


  CTATTAAGACTCGGTTTCCCTACGCCTCCCCTATCCGGTTAAGCTCGCTACTGAA


  TGTAAGTCGTTGACCCATTATACAAAAGGTACGCAGTCACACCACTAGGGCGCT


  CCCACTGTTTGTATGCATCAGGTTTCAGGTTCTGTTTCACTCCCCTCCCGGGGTTC


  TTTTCGCCTTTCCCTCACGGTACTGGTTCACTATCGGTCGATGATGAGTATTTAGC


  CTTGGAGGATGGTCCCCCCATATTCAGACAGGATTTCACGTGTCCCGCCCTACTT


  TTCGTACGCTTAGTACCGCTGTTGAGATTTCGAATACGGGACTGTCACCCGCTAT


  GGTCAAGCTTCCCAGCTTGTTCTTCTACCTCGACAGTTATTACGTACAGGCTCCTC


  CGCGTTCGCTCGCCACTACTTGCGGAATCTCGGTTGATTTCTTTTCCTCCGGGTAC


  TTAGATGGTTCAGTTCTCCGGGTTCGCTTCTCTAAGCCTATGTATTCAACTTAGGA


  TACTGCACAGAATGCAGTGGGTTTCCCCATTCGGACACCGCGGGATCATTGCTTT


  ATTGCCAGCTCCCCCGCGCTTTTCGCAGGCTTACACGTCCTTCGTCGCCTATCATC


  GCCAAGGCATCCGCCTGATGCACTTATTCACTTGACTCTATCATTTCA






2. NGO_r03: NC_002946.2:c1121298-1119754

DNA (- strand): SEQ ID NO: 327









TGAACATAAGAGTTTGATCCTGGCTCAGATTGAACGCTGGCGGCATGCTTTACAC


  ATGCAAGTCGGACGGCAGCACAGGGAAGCTTGCTTCTCGGGTGGCGAGTGGCGA


  ACGGGTGAGTAACATATCGGAACGTACCGGGTAGCGGGGGATAACTGATCGAAA


  GATCAGCTAATACCGCATACGTCTTGAGAGGGAAAGCAGGGGACCTTCGGGCCT


  TGCGCTATCCGAGCGGCCGATATCTGATTAGCTGGTTGGCGGGGTAAAGGCCCA


  CCAAGGCGACGATCAGTAGCGGGTCTGAGAGGATGATCCGCCACACTGGGACTG


  AGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGG


  CGCAAGCCTGATCCAGCCATGCCGCGTGTCTGAAGAAGGCCTTCGGGTTGTAAA


  GGACTTTTGTCAGGGAAGAAAAGGCCGTTGCCAATATCGGCGGCCGATGACGGT


  ACCTGAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG


  GGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGGGCGCAGACGGTTACTT


  AAGCAGGATGTGAAATCCCCGGGCTCAACCCGGGAACTGCGTTCTGAACTGGGT


  GACTCGAGTGTGTCAGAGGGAGGTGGAATTCCACGTGTAGCAGTGAAATGCGTA


  GAGATGTGGAGGAATACCGATGGCGAAGGCAGCCTCCTGGGATAACACTGACGT


  TCATGTCCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGC


  CCTAAACGATGTCAATTAGCTGTTGGGCAACTTGATTGCTTGGTAGCGTAGCTAA


  CGCGTGAAATTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAA


  TTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTCGATGCAACGCG


  AAGAACCTTACCTGGTTTTGACATGTGCGGAATCCTCCGGAGACGGAGGAGTGC


  CTTCGGGAGCCGTAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGA


  TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCCATCATTCG


  GTTGGGCACTCTAATGAGACTGCCGGTGACAAGCCGGAGGAAGGTGGGGATGAC


  GTCAAGTCCTCATGGCCCTTATGACCAGGGCTTCACACGTCATACAATGGTCGGT


  ACAGAGGGTAGCCAAGCCGCGAGGCGGAGCCAATCTCACAAAACCGATCGTAG


  TCCGGATTGCACTCTGCAACTCGAGTGCATGAAGTCGGAATCGCTAGTAATCGCA


  GGTCAGCATACTGCGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACA


  CCATGGGAGTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGAGTCCGCTT


  ACCACGGTATGCTTCATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAGGGGA


  ACCTGCGGCTGGATCACCTCCTTTCTA






RNA: SEQ ID NO: 328









UGAACAUAAGAGUUUGAUCCUGGCUCAGAUUGAACGCUGGCGGCAUGCUUUA


  CACAUGCAAGUCGGACGGCAGCACAGGGAAGCUUGCUUCUCGGGUGGCGAGU


  GGCGAACGGGUGAGUAACAUAUCGGAACGUACCGGGUAGCGGGGGAUAACUG


  AUCGAAAGAUCAGCUAAUACCGCAUACGUCUUGAGAGGGAAAGCAGGGGACC


  UUCGGGCCUUGCGCUAUCCGAGCGGCCGAUAUCUGAUUAGCUGGUUGGCGGG


  GUAAAGGCCCACCAAGGCGACGAUCAGUAGCGGGUCUGAGAGGAUGAUCCGC


  CACACUGGGACUGAGACACGGCCCAGACUCCUACGGGAGGCAGCAGUGGGGAA


  UUUUGGACAAUGGGCGCAAGCCUGAUCCAGCCAUGCCGCGUGUCUGAAGAAG


  GCCUUCGGGUUGUAAAGGACUUUUGUCAGGGAAGAAAAGGCCGUUGCCAAUA


  UCGGCGGCCGAUGACGGUACCUGAAGAAUAAGCACCGGCUAACUACGUGCCAG


  CAGCCGCGGUAAUACGUAGGGUGCGAGCGUUAAUCGGAAUUACUGGGCGUAA


  AGCGGGCGCAGACGGUUACUUAAGCAGGAUGUGAAAUCCCCGGGCUCAACCCG


  GGAACUGCGUUCUGAACUGGGUGACUCGAGUGUGUCAGAGGGAGGUGGAAUU


  CCACGUGUAGCAGUGAAAUGCGUAGAGAUGUGGAGGAAUACCGAUGGCGAAG


  GCAGCCUCCUGGGAUAACACUGACGUUCAUGUCCGAAAGCGUGGGUAGCAAA


  CAGGAUUAGAUACCCUGGUAGUCCACGCCCUAAACGAUGUCAAUUAGCUGUU


  GGGCAACUUGAUUGCUUGGUAGCGUAGCUAACGCGUGAAAUUGACCGCCUGG


  GGAGUACGGUCGCAAGAUUAAAACUCAAAGGAAUUGACGGGGACCCGCACAA


  GCGGUGGAUGAUGUGGAUUAAUUCGAUGCAACGCGAAGAACCUUACCUGGUU


  UUGACAUGUGCGGAAUCCUCCGGAGACGGAGGAGUGCCUUCGGGAGCCGUAA


  CACAGGUGCUGCAUGGCUGUCGUCAGCUCGUGUCGUGAGAUGUUGGGUUAAG


  UCCCGCAACGAGCGCAACCCUUGUCAUUAGUUGCCAUCAUUCGGUUGGGCACU


  CUAAUGAGACUGCCGGUGACAAGCCGGAGGAAGGUGGGGAUGACGUCAAGUC


  CUCAUGGCCCUUAUGACCAGGGCUUCACACGUCAUACAAUGGUCGGUACAGAG


  GGUAGCCAAGCCGCGAGGCGGAGCCAAUCUCACAAAACCGAUCGUAGUCCGGA


  UUGCACUCUGCAACUCGAGUGCAUGAAGUCGGAAUCGCUAGUAAUCGCAGGU


  CAGCAUACUGCGGUGAAUACGUUCCCGGGUCUUGUACACACCGCCCGUCACAC


  CAUGGGAGUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCU


  UACCACGGUAUGCUUCAUGACUGGGGUGAAGUCGUAACAAGGUAGCCGUAGG


  GGAACCUGCGGCUGGAUCACCUCCUUUCUA






cDNA: SEQ ID NO: 329









TAGAAAGGAGGTGATCCAGCCGCAGGTTCCCCTACGGCTACCTTGTTACGACTTC


  ACCCCAGTCATGAAGCATACCGTGGTAAGCGGACTCCTTGCGGTTACCCTACCTA


  CTTCTGGTATCCCCCACTCCCATGGTGTGACGGGCGGTGTGTACAAGACCCGGGA


  ACGTATTCACCGCAGTATGCTGACCTGCGATTACTAGCGATTCCGACTTCATGCA


  CTCGAGTTGCAGAGTGCAATCCGGACTACGATCGGTTTTGTGAGATTGGCTCCGC


  CTCGCGGCTTGGCTACCCTCTGTACCGACCATTGTATGACGTGTGAAGCCCTGGT


  CATAAGGGCCATGAGGACTTGACGTCATCCCCACCTTCCTCCGGCTTGTCACCGG


  CAGTCTCATTAGAGTGCCCAACCGAATGATGGCAACTAATGACAAGGGTTGCGC


  TCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCA


  GCACCTGTGTTACGGCTCCCGAAGGCACTCCTCCGTCTCCGGAGGATTCCGCACA


  TGTCAAAACCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATCATCCAC


  CGCTTGTGCGGGTCCCCGTCAATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCC


  CAGGCGGTCAATTTCACGCGTTAGCTACGCTACCAAGCAATCAAGTTGCCCAAC


  AGCTAATTGACATCGTTTAGGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCT


  ACCCACGCTTTCGGACATGAACGTCAGTGTTATCCCAGGAGGCTGCCTTCGCCAT


  CGGTATTCCTCCACATCTCTACGCATTTCACTGCTACACGTGGAATTCCACCTCCC


  TCTGACACACTCGAGTCACCCAGTTCAGAACGCAGTTCCCGGGTTGAGCCCGGG


  GATTTCACATCCTGCTTAAGTAACCGTCTGCGCCCGCTTTACGCCCAGTAATTCC


  GATTAACGCTCGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGGT


  GCTTATTCTTCAGGTACCGTCATCGGCCGCCGATATTGGCAACGGCCTTTTCTTCC


  CTGACAAAAGTCCTTTACAACCCGAAGGCCTTCTTCAGACACGCGGCATGGCTG


  GATCAGGCTTGCGCCCATTGTCCAAAATTCCCCACTGCTGCCTCCCGTAGGAGTC


  TGGGCCGTGTCTCAGTCCCAGTGTGGCGGATCATCCTCTCAGACCCGCTACTGAT


  CGTCGCCTTGGTGGGCCTTTACCCCGCCAACCAGCTAATCAGATATCGGCCGCTC


  GGATAGCGCAAGGCCCGAAGGTCCCCTGCTTTCCCTCTCAAGACGTATGCGGTAT


  TAGCTGATCTTTCGATCAGTTATCCCCCGCTACCCGGTACGTTCCGATATGTTACT


  CACCCGTTCGCCACTCGCCACCCGAGAAGCAAGCTTCCCTGTGCTGCCGTCCGAC


  TTGCATGTGTAAAGCATGCCGCCAGCGTTCAATCTGAGCCAGGATCAAACTCTTA


  TGTTCA






3. NGO_r05: NC_002946.2:c1261255-1258352

DNA (- strand): SEQ ID NO: 330









TGAAATGATAGAGTCAAGTGAATAAGTGCATCAGGCGGATGCCTTGGCGATGAT


  AGGCGACGAAGGACGTGTAAGCCTGCGAAAAGCGCGGGGGAGCTGGCAATAAA


  GCAATGATCCCGCGGTGTCCGAATGGGGAAACCCACTGCATTCTGTGCAGTATC


  CTAAGTTGAATACATAGGCTTAGAGAAGCGAACCCGGAGAACTGAACCATCTAA


  GTACCCGGAGGAAAAGAAATCAACCGAGATTCCGCAAGTAGTGGCGAGCGAAC


  GCGGAGGAGCCTGTACGTAATAACTGTCGAGGTAGAAGAACAAGCTGGGAAGCT


  TGACCATAGCGGGTGACAGTCCCGTATTCGAAATCTCAACAGCGGTACTAAGCG


  TACGAAAAGTAGGGCGGGACACGTGAAATCCTGTCTGAATATGGGGGGACCATC


  CTCCAAGGCTAAATACTCATCATCGACCGATAGTGAACCAGTACCGTGAGGGAA


  AGGCGAAAAGAACCCCGGGAGGGGAGTGAAACAGAACCTGAAACCTGATGCAT


  ACAAACAGTGGGAGCGCCCTAGTGGTGTGACTGCGTACCTTTTGTATAATGGGTC


  AACGACTTACATTCAGTAGCGAGCTTAACCGGATAGGGGAGGCGTAGGGAAACC


  GAGTCTTAATAGGGCGATGAGTTGCTGGGTGTAGACCCGAAACCGAGTGATCTA


  TCCATGGCCAGGTTGAAGGTGCCGTAACAGGTACTGGAGGACCGAACCCACGCA


  TGTTGCAAAATGCGGGGATGAGCTGTGGGTAGGGGTGAAAGGCTAAACAAACTC


  GGAGATAGCTGGTTCTCCCCGAAAACTATTTAGGTAGTGCCTCGAGCAAGACAC


  TGATGGGGGTAAAGCACTGTTATGGCTAGGGGGTTATTGCAACTTACCAACCCAT


  GGCAAACTCAGAATACCATCAAGTGGTTCCTCGGGAGACAGACAGCGGGTGCTA


  ACGTCCGTTGTCAAGAGGGAAACAACCCAGACCGCCGGCTAAGGTCCCAAATGA


  TAGATTAAGTGGTAAACGAAGTGGGAAGGCACAGACAGCCAGGATGTTGGCTTA


  GAAGCAGCCATCATTTAAAGAAAGCGTAATAGCTCACTGGTCGAGTCGTCCTGC


  GCGGAAGATGTAACGGGGCTCAAATCTATAACCCAAGCTGCGTATGCCGGTTTA


  CCGGCATGGTAGGGGAGCGTTCTGTAGGCTGATGAAGGTGCATTGTAAAGTGTG


  CTGGAGGTATCAGAAGTGCGAATGTTGACATGAGTAGCGATAAAGCGGGTGAAA


  AGCCCGCTCGCCGCAAAGCCCAAGGTTTCCTACGCAACGTTCATCGGCGTAGGG


  TGAGTCGGCCCCTAAGGCGAGGCAGAAATGCGTAGTCGATGGGAAACAGGTTAA


  TATTCCTGTACTTGATTCAAATGCGATGTGGGGACGGAGAAGGTTAGGTTGGCA


  AGCTGTTGGAATAGCTTGTTTAAGCCGGTAGGTGGAAGACTTAGGCAAATCCGG


  GTTTTCTTAACACCGAGAAGTGATGACGAGTGTCTACGGACACGAAGCAACCGA


  TACCACGCTTCCAGGAAAAGCCACTAAGCTTCAGTTTGAATCGAACCGTACCGC


  AAACCGACACAGGTGGGCAGGATGAGAATTCTAAGGCGCTTGAGAGAACTCGG


  GAGAAGGAACTCGGCAAATTGATACCGTAACTTCGGGAGAAGGTATGCCCTCTA


  AGGTTAAGGACTTGCTCCGTAAGCCCCGGAGGGTCGCAGAGAATAGGTGGCTGC


  GACTGTTTATTAAAAACACAGCACTCTGCCAACACGAAAGTGGACGTATAGGGT


  GTGACGCCTGCCCGGTGCCGGAAGGTTAATTGAAGATGTGCAAGCATCGGATCG


  AAGCCCCGGTAAACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAATTCC


  TTGTCGGGTAAGTTCCGACCCGCACGAATGGCGTAACGATGGCCACACTGTCTCC


  TCCCGAGACTCAGCGAAGTTGAAGTGGTTGTGAAGATGCAATCTACCCGCTGCT


  AGACGGAAAGACCCCGTGAACCTTTACTGTAGCTTTGCATTGGACTTTGAAGTCA


  CTTGTGTAGGATAGGTGGGAGGCTTGGAAGCAGAGACGCCAGTCTCTGTGGAGT


  CGTCCTTGAAATACCACCCTGGTGTCTTTGAGGTTCTAACCCAGACCCGTCATCC


  GGGTCGGGGACCGTGCATGGTAGGCAGTTTGACTGGGGCGGTCTCCTCCCAAAG


  CGTAACGGAGGAGTTCGAAGGTTACCTAGGTCCGGTCGGAAATCGGACTGATAG


  TGCAATGGCAAAAGGTAGCTTAACTGCGAGACCGACAAGTCGGGCAGGTGCGAA


  AGCAGGACATAGTGATCCGGTGGTTCTGTATGGAAGGGCCATCGCTCAACGGAT


  AAAAGGTACTCCGGGGATAACAGGCTGATTCCGCCCAAGAGTTCATATCGACGG


  CGGAGTTTGGCACCTCGATGTCGGCTCATCACATCCTGGGGCTGTAGTCGGTCCC


  AAGGGTATGGCTGTTCGCCATTTAAAGTGGTACGTGAGCTGGGTTTAAAACGTCG


  TGAGACAGTTTGGTCCCTATCTGCAGTGGGCGTTGGAAGTTTGACGGGGGCTGCT


  CCTAGTACGAGAGGACCGGAGTGGACGAACCTCTGGTGTACCGGTTGTAACGCC


  AGTTGCATAGCCGGGTAGCTAAGTTCGGAAGAGATAAGCGCTGAAAGCATCTAA


  GCGCGAAACTCGCCTGAAGATGAGACTTCCCTTGCGGTTTAACCGCACTAAAGG


  GTCGTTCGAGACCAGGACGTTGATAGGTGGGGTGTGGAAGCGCGGTAACGCGTG


  AAGCTAACCCATACTAATTGCCCGTGAGGCTTGACTCT






RNA: SEQ ID NO: 331









UGAAAUGAUAGAGUCAAGUGAAUAAGUGCAUCAGGCGGAUGCCUUGGCGAUG


  AUAGGCGACGAAGGACGUGUAAGCCUGCGAAAAGCGCGGGGGAGCUGGCAAU


  AAAGCAAUGAUCCCGCGGUGUCCGAAUGGGGAAACCCACUGCAUUCUGUGCA


  GUAUCCUAAGUUGAAUACAUAGGCUUAGAGAAGCGAACCCGGAGAACUGAAC


  CAUCUAAGUACCCGGAGGAAAAGAAAUCAACCGAGAUUCCGCAAGUAGUGGC


  GAGCGAACGCGGAGGAGCCUGUACGUAAUAACUGUCGAGGUAGAAGAACAAG


  CUGGGAAGCUUGACCAUAGCGGGUGACAGUCCCGUAUUCGAAAUCUCAACAG


  CGGUACUAAGCGUACGAAAAGUAGGGCGGGACACGUGAAAUCCUGUCUGAAU


  AUGGGGGGACCAUCCUCCAAGGCUAAAUACUCAUCAUCGACCGAUAGUGAACC


  AGUACCGUGAGGGAAAGGCGAAAAGAACCCCGGGAGGGGAGUGAAACAGAAC


  CUGAAACCUGAUGCAUACAAACAGUGGGAGCGCCCUAGUGGUGUGACUGCGU


  ACCUUUUGUAUAAUGGGUCAACGACUUACAUUCAGUAGCGAGCUUAACCGGA


  UAGGGGAGGCGUAGGGAAACCGAGUCUUAAUAGGGCGAUGAGUUGCUGGGUG


  UAGACCCGAAACCGAGUGAUCUAUCCAUGGCCAGGUUGAAGGUGCCGUAACA


  GGUACUGGAGGACCGAACCCACGCAUGUUGCAAAAUGCGGGGAUGAGCUGUG


  GGUAGGGGUGAAAGGCUAAACAAACUCGGAGAUAGCUGGUUCUCCCCGAAAA


  CUAUUUAGGUAGUGCCUCGAGCAAGACACUGAUGGGGGUAAAGCACUGUUAU


  GGCUAGGGGGUUAUUGCAACUUACCAACCCAUGGCAAACUCAGAAUACCAUC


  AAGUGGUUCCUCGGGAGACAGACAGCGGGUGCUAACGUCCGUUGUCAAGAGG


  GAAACAACCCAGACCGCCGGCUAAGGUCCCAAAUGAUAGAUUAAGUGGUAAA


  CGAAGUGGGAAGGCACAGACAGCCAGGAUGUUGGCUUAGAAGCAGCCAUCAU


  UUAAAGAAAGCGUAAUAGCUCACUGGUCGAGUCGUCCUGCGCGGAAGAUGUA


  ACGGGGCUCAAAUCUAUAACCCAAGCUGCGUAUGCCGGUUUACCGGCAUGGU


  AGGGGAGCGUUCUGUAGGCUGAUGAAGGUGCAUUGUAAAGUGUGCUGGAGGU


  AUCAGAAGUGCGAAUGUUGACAUGAGUAGCGAUAAAGCGGGUGAAAAGCCCG


  CUCGCCGCAAAGCCCAAGGUUUCCUACGCAACGUUCAUCGGCGUAGGGUGAGU


  CGGCCCCUAAGGCGAGGCAGAAAUGCGUAGUCGAUGGGAAACAGGUUAAUAU


  UCCUGUACUUGAUUCAAAUGCGAUGUGGGGACGGAGAAGGUUAGGUUGGCAA


  GCUGUUGGAAUAGCUUGUUUAAGCCGGUAGGUGGAAGACUUAGGCAAAUCCG


  GGUUUUCUUAACACCGAGAAGUGAUGACGAGUGUCUACGGACACGAAGCAAC


  CGAUACCACGCUUCCAGGAAAAGCCACUAAGCUUCAGUUUGAAUCGAACCGUA


  CCGCAAACCGACACAGGUGGGCAGGAUGAGAAUUCUAAGGCGCUUGAGAGAA


  CUCGGGAGAAGGAACUCGGCAAAUUGAUACCGUAACUUCGGGAGAAGGUAUG


  CCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCGGAGGGUCGCAGAGAAUA


  GGUGGCUGCGACUGUUUAUUAAAAACACAGCACUCUGCCAACACGAAAGUGG


  ACGUAUAGGGUGUGACGCCUGCCCGGUGCCGGAAGGUUAAUUGAAGAUGUGC


  AAGCAUCGGAUCGAAGCCCCGGUAAACGGCGGCCGUAACUAUAACGGUCCUAA


  GGUAGCGAAAUUCCUUGUCGGGUAAGUUCCGACCCGCACGAAUGGCGUAACG


  AUGGCCACACUGUCUCCUCCCGAGACUCAGCGAAGUUGAAGUGGUUGUGAAG


  AUGCAAUCUACCCGCUGCUAGACGGAAAGACCCCGUGAACCUUUACUGUAGCU


  UUGCAUUGGACUUUGAAGUCACUUGUGUAGGAUAGGUGGGAGGCUUGGAAGC


  AGAGACGCCAGUCUCUGUGGAGUCGUCCUUGAAAUACCACCCUGGUGUCUUU


  GAGGUUCUAACCCAGACCCGUCAUCCGGGUCGGGGACCGUGCAUGGUAGGCAG


  UUUGACUGGGGCGGUCUCCUCCCAAAGCGUAACGGAGGAGUUCGAAGGUUAC


  CUAGGUCCGGUCGGAAAUCGGACUGAUAGUGCAAUGGCAAAAGGUAGCUUAA


  CUGCGAGACCGACAAGUCGGGCAGGUGCGAAAGCAGGACAUAGUGAUCCGGU


  GGUUCUGUAUGGAAGGGCCAUCGCUCAACGGAUAAAAGGUACUCCGGGGAUA


  ACAGGCUGAUUCCGCCCAAGAGUUCAUAUCGACGGCGGAGUUUGGCACCUCGA


  UGUCGGCUCAUCACAUCCUGGGGCUGUAGUCGGUCCCAAGGGUAUGGCUGUU


  CGCCAUUUAAAGUGGUACGUGAGCUGGGUUUAAAACGUCGUGAGACAGUUUG


  GUCCCUAUCUGCAGUGGGCGUUGGAAGUUUGACGGGGGCUGCUCCUAGUACG


  AGAGGACCGGAGUGGACGAACCUCUGGUGUACCGGUUGUAACGCCAGUUGCA


  UAGCCGGGUAGCUAAGUUCGGAAGAGAUAAGCGCUGAAAGCAUCUAAGCGCG


  AAACUCGCCUGAAGAUGAGACUUCCCUUGCGGUUUAACCGCACUAAAGGGUC


  GUUCGAGACCAGGACGUUGAUAGGUGGGGUGUGGAAGCGCGGUAACGCGUGA


  AGCUAACCCAUACUAAUUGCCCGUGAGGCUUGACUCU






cDNA: SEQ ID NO: 332









AGAGTCAAGCCTCACGGGCAATTAGTATGGGTTAGCTTCACGCGTTACCGCGCTT


  CCACACCCCACCTATCAACGTCCTGGTCTCGAACGACCCTTTAGTGCGGTTAAAC


  CGCAAGGGAAGTCTCATCTTCAGGCGAGTTTCGCGCTTAGATGCTTTCAGCGCTT


  ATCTCTTCCGAACTTAGCTACCCGGCTATGCAACTGGCGTTACAACCGGTACACC


  AGAGGTTCGTCCACTCCGGTCCTCTCGTACTAGGAGCAGCCCCCGTCAAACTTCC


  AACGCCCACTGCAGATAGGGACCAAACTGTCTCACGACGTTTTAAACCCAGCTC


  ACGTACCACTTTAAATGGCGAACAGCCATACCCTTGGGACCGACTACAGCCCCA


  GGATGTGATGAGCCGACATCGAGGTGCCAAACTCCGCCGTCGATATGAACTCTT


  GGGCGGAATCAGCCTGTTATCCCCGGAGTACCTTTTATCCGTTGAGCGATGGCCC


  TTCCATACAGAACCACCGGATCACTATGTCCTGCTTTCGCACCTGCCCGACTTGT


  CGGTCTCGCAGTTAAGCTACCTTTTGCCATTGCACTATCAGTCCGATTTCCGACC


  GGACCTAGGTAACCTTCGAACTCCTCCGTTACGCTTTGGGAGGAGACCGCCCCA


  GTCAAACTGCCTACCATGCACGGTCCCCGACCCGGATGACGGGTCTGGGTTAGA


  ACCTCAAAGACACCAGGGTGGTATTTCAAGGACGACTCCACAGAGACTGGCGTC


  TCTGCTTCCAAGCCTCCCACCTATCCTACACAAGTGACTTCAAAGTCCAATGCAA


  AGCTACAGTAAAGGTTCACGGGGTCTTTCCGTCTAGCAGCGGGTAGATTGCATCT


  TCACAACCACTTCAACTTCGCTGAGTCTCGGGAGGAGACAGTGTGGCCATCGTTA


  CGCCATTCGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAGGACC


  GTTATAGTTACGGCCGCCGTTTACCGGGGCTTCGATCCGATGCTTGCACATCTTC


  AATTAACCTTCCGGCACCGGGCAGGCGTCACACCCTATACGTCCACTTTCGTGTT


  GGCAGAGTGCTGTGTTTTTAATAAACAGTCGCAGCCACCTATTCTCTGCGACCCT


  CCGGGGCTTACGGAGCAAGTCCTTAACCTTAGAGGGCATACCTTCTCCCGAAGTT


  ACGGTATCAATTTGCCGAGTTCCTTCTCCCGAGTTCTCTCAAGCGCCTTAGAATTC


  TCATCCTGCCCACCTGTGTCGGTTTGCGGTACGGTTCGATTCAAACTGAAGCTTA


  GTGGCTTTTCCTGGAAGCGTGGTATCGGTTGCTTCGTGTCCGTAGACACTCGTCA


  TCACTTCTCGGTGTTAAGAAAACCCGGATTTGCCTAAGTCTTCCACCTACCGGCT


  TAAACAAGCTATTCCAACAGCTTGCCAACCTAACCTTCTCCGTCCCCACATCGCA


  TTTGAATCAAGTACAGGAATATTAACCTGTTTCCCATCGACTACGCATTTCTGCC


  TCGCCTTAGGGGCCGACTCACCCTACGCCGATGAACGTTGCGTAGGAAACCTTG


  GGCTTTGCGGCGAGCGGGCTTTTCACCCGCTTTATCGCTACTCATGTCAACATTC


  GCACTTCTGATACCTCCAGCACACTTTACAATGCACCTTCATCAGCCTACAGAAC


  GCTCCCCTACCATGCCGGTAAACCGGCATACGCAGCTTGGGTTATAGATTTGAGC


  CCCGTTACATCTTCCGCGCAGGACGACTCGACCAGTGAGCTATTACGCTTTCTTT


  AAATGATGGCTGCTTCTAAGCCAACATCCTGGCTGTCTGTGCCTTCCCACTTCGTT


  TACCACTTAATCTATCATTTGGGACCTTAGCCGGCGGTCTGGGTTGTTTCCCTCTT


  GACAACGGACGTTAGCACCCGCTGTCTGTCTCCCGAGGAACCACTTGATGGTATT


  CTGAGTTTGCCATGGGTTGGTAAGTTGCAATAACCCCCTAGCCATAACAGTGCTT


  TACCCCCATCAGTGTCTTGCTCGAGGCACTACCTAAATAGTTTTCGGGGAGAACC


  AGCTATCTCCGAGTTTGTTTAGCCTTTCACCCCTACCCACAGCTCATCCCCGCATT


  TTGCAACATGCGTGGGTTCGGTCCTCCAGTACCTGTTACGGCACCTTCAACCTGG


  CCATGGATAGATCACTCGGTTTCGGGTCTACACCCAGCAACTCATCGCCCTATTA


  AGACTCGGTTTCCCTACGCCTCCCCTATCCGGTTAAGCTCGCTACTGAATGTAAG


  TCGTTGACCCATTATACAAAAGGTACGCAGTCACACCACTAGGGCGCTCCCACT


  GTTTGTATGCATCAGGTTTCAGGTTCTGTTTCACTCCCCTCCCGGGGTTCTTTTCG


  CCTTTCCCTCACGGTACTGGTTCACTATCGGTCGATGATGAGTATTTAGCCTTGG


  AGGATGGTCCCCCCATATTCAGACAGGATTTCACGTGTCCCGCCCTACTTTTCGT


  ACGCTTAGTACCGCTGTTGAGATTTCGAATACGGGACTGTCACCCGCTATGGTCA


  AGCTTCCCAGCTTGTTCTTCTACCTCGACAGTTATTACGTACAGGCTCCTCCGCGT


  TCGCTCGCCACTACTTGCGGAATCTCGGTTGATTTCTTTTCCTCCGGGTACTTAGA


  TGGTTCAGTTCTCCGGGTTCGCTTCTCTAAGCCTATGTATTCAACTTAGGATACTG


  CACAGAATGCAGTGGGTTTCCCCATTCGGACACCGCGGGATCATTGCTTTATTGC


  CAGCTCCCCCGCGCTTTTCGCAGGCTTACACGTCCTTCGTCGCCTATCATCGCCA


  AGGCATCCGCCTGATGCACTTATTCACTTGACTCTATCATTTCA






4. NGO_r06: NC_002946.2:c1263390-1261846

DNA (- strand): SEQ ID NO: 333









TGAACATAAGAGTTTGATCCTGGCTCAGATTGAACGCTGGCGGCATGCTTTACAC


  ATGCAAGTCGGACGGCAGCACAGGGAAGCTTGCTTCTCGGGTGGCGAGTGGCGA


  ACGGGTGAGTAACATATCGGAACGTACCGGGTAGCGGGGGATAACTGATCGAAA


  GATCAGCTAATACCGCATACGTCTTGAGAGGGAAAGCAGGGGACCTTCGGGCCT


  TGCGCTATCCGAGCGGCCGATATCTGATTAGCTGGTTGGCGGGGTAAAGGCCCA


  CCAAGGCGACGATCAGTAGCGGGTCTGAGAGGATGATCCGCCACACTGGGACTG


  AGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGG


  CGCAAGCCTGATCCAGCCATGCCGCGTGTCTGAAGAAGGCCTTCGGGTTGTAAA


  GGACTTTTGTCAGGGAAGAAAAGGCCGTTGCCAATATCGGCGGCCGATGACGGT


  ACCTGAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG


  GGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGGGCGCAGACGGTTACTT


  AAGCAGGATGTGAAATCCCCGGGCTCAACCCGGGAACTGCGTTCTGAACTGGGT


  GACTCGAGTGTGTCAGAGGGAGGTGGAATTCCACGTGTAGCAGTGAAATGCGTA


  GAGATGTGGAGGAATACCGATGGCGAAGGCAGCCTCCTGGGATAACACTGACGT


  TCATGTCCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGC


  CCTAAACGATGTCAATTAGCTGTTGGGCAACTTGATTGCTTGGTAGCGTAGCTAA


  CGCGTGAAATTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAA


  TTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTCGATGCAACGCG


  AAGAACCTTACCTGGTTTTGACATGTGCGGAATCCTCCGGAGACGGAGGAGTGC


  CTTCGGGAGCCGTAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGA


  TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCCATCATTCG


  GTTGGGCACTCTAATGAGACTGCCGGTGACAAGCCGGAGGAAGGTGGGGATGAC


  GTCAAGTCCTCATGGCCCTTATGACCAGGGCTTCACACGTCATACAATGGTCGGT


  ACAGAGGGTAGCCAAGCCGCGAGGCGGAGCCAATCTCACAAAACCGATCGTAG


  TCCGGATTGCACTCTGCAACTCGAGTGCATGAAGTCGGAATCGCTAGTAATCGCA


  GGTCAGCATACTGCGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACA


  CCATGGGAGTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGAGTCCGCTT


  ACCACGGTATGCTTCATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAGGGGA


  ACCTGCGGCTGGATCACCTCCTTTCTA






RNA: SEQ ID NO: 334









UGAACAUAAGAGUUUGAUCCUGGCUCAGAUUGAACGCUGGCGGCAUGCUUUA


  CACAUGCAAGUCGGACGGCAGCACAGGGAAGCUUGCUUCUCGGGUGGCGAGU


  GGCGAACGGGUGAGUAACAUAUCGGAACGUACCGGGUAGCGGGGGAUAACUG


  AUCGAAAGAUCAGCUAAUACCGCAUACGUCUUGAGAGGGAAAGCAGGGGACC


  UUCGGGCCUUGCGCUAUCCGAGCGGCCGAUAUCUGAUUAGCUGGUUGGCGGG


  GUAAAGGCCCACCAAGGCGACGAUCAGUAGCGGGUCUGAGAGGAUGAUCCGC


  CACACUGGGACUGAGACACGGCCCAGACUCCUACGGGAGGCAGCAGUGGGGAA


  UUUUGGACAAUGGGCGCAAGCCUGAUCCAGCCAUGCCGCGUGUCUGAAGAAG


  GCCUUCGGGUUGUAAAGGACUUUUGUCAGGGAAGAAAAGGCCGUUGCCAAUA


  UCGGCGGCCGAUGACGGUACCUGAAGAAUAAGCACCGGCUAACUACGUGCCAG


  CAGCCGCGGUAAUACGUAGGGUGCGAGCGUUAAUCGGAAUUACUGGGCGUAA


  AGCGGGCGCAGACGGUUACUUAAGCAGGAUGUGAAAUCCCCGGGCUCAACCCG


  GGAACUGCGUUCUGAACUGGGUGACUCGAGUGUGUCAGAGGGAGGUGGAAUU


  CCACGUGUAGCAGUGAAAUGCGUAGAGAUGUGGAGGAAUACCGAUGGCGAAG


  GCAGCCUCCUGGGAUAACACUGACGUUCAUGUCCGAAAGCGUGGGUAGCAAA


  CAGGAUUAGAUACCCUGGUAGUCCACGCCCUAAACGAUGUCAAUUAGCUGUU


  GGGCAACUUGAUUGCUUGGUAGCGUAGCUAACGCGUGAAAUUGACCGCCUGG


  GGAGUACGGUCGCAAGAUUAAAACUCAAAGGAAUUGACGGGGACCCGCACAA


  GCGGUGGAUGAUGUGGAUUAAUUCGAUGCAACGCGAAGAACCUUACCUGGUU


  UUGACAUGUGCGGAAUCCUCCGGAGACGGAGGAGUGCCUUCGGGAGCCGUAA


  CACAGGUGCUGCAUGGCUGUCGUCAGCUCGUGUCGUGAGAUGUUGGGUUAAG


  UCCCGCAACGAGCGCAACCCUUGUCAUUAGUUGCCAUCAUUCGGUUGGGCACU


  CUAAUGAGACUGCCGGUGACAAGCCGGAGGAAGGUGGGGAUGACGUCAAGUC


  CUCAUGGCCCUUAUGACCAGGGCUUCACACGUCAUACAAUGGUCGGUACAGAG


  GGUAGCCAAGCCGCGAGGCGGAGCCAAUCUCACAAAACCGAUCGUAGUCCGGA


  UUGCACUCUGCAACUCGAGUGCAUGAAGUCGGAAUCGCUAGUAAUCGCAGGU


  CAGCAUACUGCGGUGAAUACGUUCCCGGGUCUUGUACACACCGCCCGUCACAC


  CAUGGGAGUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCU


  UACCACGGUAUGCUUCAUGACUGGGGUGAAGUCGUAACAAGGUAGCCGUAGG


  GGAACCUGCGGCUGGAUCACCUCCUUUCUA






cDNA: SEQ ID NO: 335









TAGAAAGGAGGTGATCCAGCCGCAGGTTCCCCTACGGCTACCTTGTTACGACTTC


  ACCCCAGTCATGAAGCATACCGTGGTAAGCGGACTCCTTGCGGTTACCCTACCTA


  CTTCTGGTATCCCCCACTCCCATGGTGTGACGGGCGGTGTGTACAAGACCCGGGA


  ACGTATTCACCGCAGTATGCTGACCTGCGATTACTAGCGATTCCGACTTCATGCA


  CTCGAGTTGCAGAGTGCAATCCGGACTACGATCGGTTTTGTGAGATTGGCTCCGC


  CTCGCGGCTTGGCTACCCTCTGTACCGACCATTGTATGACGTGTGAAGCCCTGGT


  CATAAGGGCCATGAGGACTTGACGTCATCCCCACCTTCCTCCGGCTTGTCACCGG


  CAGTCTCATTAGAGTGCCCAACCGAATGATGGCAACTAATGACAAGGGTTGCGC


  TCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCA


  GCACCTGTGTTACGGCTCCCGAAGGCACTCCTCCGTCTCCGGAGGATTCCGCACA


  TGTCAAAACCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATCATCCAC


  CGCTTGTGCGGGTCCCCGTCAATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCC


  CAGGCGGTCAATTTCACGCGTTAGCTACGCTACCAAGCAATCAAGTTGCCCAAC


  AGCTAATTGACATCGTTTAGGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCT


  ACCCACGCTTTCGGACATGAACGTCAGTGTTATCCCAGGAGGCTGCCTTCGCCAT


  CGGTATTCCTCCACATCTCTACGCATTTCACTGCTACACGTGGAATTCCACCTCCC


  TCTGACACACTCGAGTCACCCAGTTCAGAACGCAGTTCCCGGGTTGAGCCCGGG


  GATTTCACATCCTGCTTAAGTAACCGTCTGCGCCCGCTTTACGCCCAGTAATTCC


  GATTAACGCTCGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGGT


  GCTTATTCTTCAGGTACCGTCATCGGCCGCCGATATTGGCAACGGCCTTTTCTTCC


  CTGACAAAAGTCCTTTACAACCCGAAGGCCTTCTTCAGACACGCGGCATGGCTG


  GATCAGGCTTGCGCCCATTGTCCAAAATTCCCCACTGCTGCCTCCCGTAGGAGTC


  TGGGCCGTGTCTCAGTCCCAGTGTGGCGGATCATCCTCTCAGACCCGCTACTGAT


  CGTCGCCTTGGTGGGCCTTTACCCCGCCAACCAGCTAATCAGATATCGGCCGCTC


  GGATAGCGCAAGGCCCGAAGGTCCCCTGCTTTCCCTCTCAAGACGTATGCGGTAT


  TAGCTGATCTTTCGATCAGTTATCCCCCGCTACCCGGTACGTTCCGATATGTTACT


  CACCCGTTCGCCACTCGCCACCCGAGAAGCAAGCTTCCCTGTGCTGCCGTCCGAC


  TTGCATGTGTAAAGCATGCCGCCAGCGTTCAATCTGAGCCAGGATCAAACTCTTA


  TGTTCA






5. NGO_r08: NC_002946.2:c1652830-1649928

DNA (- strand): SEQ ID NO: 336









TGAAATGATAGAGTCAAGTGAATAAGTGCATCAGGCGGATGCCTTGGCGATGAT


  AGGCGACGAAGGACGTGTAAGCCTGCGAAAAGCGCGGGGGAGCTGGCAATAAA


  GCAATGATCCCGCGGTGTCCGAATGGGGAAACCCACTGCATTCTGTGCAGTATC


  CTAAGTTGAATACATAGGCTTAGAGAAGCGAACCCGGAGAACTGAACCATCTAA


  GTACCCGGAGGAAAAGAAATCAACCGAGATTCCGCAAGTAGTGGCGAGCGAAC


  GCGGAGGAGCCTGTACGTAATAACTGTCGAGGTAGAAGAACAAGCTGGGAAGCT


  TGACCATAGCGGGTGACAGTCCCGTATTCGAAATCTCAACAGCGGTACTAAGCG


  TACGAAAAGTAGGGCGGGACACGTGAAATCCTGTCTGAATATGGGGGGACCATC


  CTCCAAGGCTAAATACTCATCATCGACCGATAGTGAACCAGTACCGTGAGGGAA


  AGGCGAAAAGAACCCCGGGAGGGGAGTGAAACAGAACCTGAAACCTGATGCAT


  ACAAACAGTGGGAGCGCCCTAGTGGTGTGACTGCGTACCTTTTGTATAATGGGTC


  AACGACTTACATTCAGTAGCGAGCTTAACCGGATAGGGGAGGCGTAGGGAAACC


  GAGTCTTAATAGGGCGATGAGTTGCTGGGTGTAGACCCGAAACCGAGTGATCTA


  TCCATGGCCAGGTTGAAGGTGCCGTAACAGGTACTGGAGGACCGAACCCACGCA


  TGTTGCAAAATGCGGGGATGAGCTGTGGGTAGGGGTGAAAGGCTAAACAAACTC


  GGAGATAGCTGGTTCTCCCCGAAAACTATTTAGGTAGTGCCTCGAGCAAGACAC


  TGATGGGGGTAAAGCACTGTTATGGCTAGGGGGTTATTGCAACTTACCAACCCAT


  GGCAAACTCAGAATACCATCAAGTGGTTCCTCGGGAGACAGACAGCGGGTGCTA


  ACGTCCGTTGTCAAGAGGGAAACAACCCAGACCGCCGGCTAAGGTCCCAAATGA


  TAGATTAAGTGGTAAACGAAGTGGGAAGGCACAGACAGCCAGGATGTTGGCTTA


  GAAGCAGCCATCATTTAAAGAAAGCGTAATAGCTCACTGGTCGAGTCGTCCTGC


  GCGGAAGATGTAACGGGGCTCAAATCTATAACCGAAGCTGCGGATGCCGGTTTA


  CCGGCATGGTAGGGGAGCGTTCTGTAGGCTGATGAAGGTGCATTGTAAAGTGTG


  CTGGAGGTATCAGAAGTGCGAATGTTGACATGAGTAGCGATAAAGCGGGTGAAA


  AGCCCGCTCGCCGAAAGCCCAAGGTTTCCTACGCAACGTTCATCGGCGTAGGGT


  GAGTCGGCCCCTAAGGCGAGGCAGAAATGCGTAGTCGATGGGAAACAGGTTAAT


  ATTCCTGTACTTGATTCAAATGCGATGTGGGGACGGAGAAGGTTAGGTTGGCAA


  GCTGTTGGAATAGCTTGTTTAAGCCGGTAGGTGGAAGACTTAGGCAAATCCGGG


  TTTTCTTAACACCGAGAAGTGATGACGAGTGTCTACGGACACGAAGCAACCGAT


  ACCACGCTTCCAGGAAAAGCCACTAAGCTTCAGTTTGAATCGAACCGTACCGCA


  AACCGACACAGGTGGGCAGGATGAGAATTCTAAGGCGCTTGAGAGAACTCGGG


  AGAAGGAACTCGGCAAATTGATACCGTAACTTCGGGAGAAGGTATGCCCTCTAA


  GGTTAAGGACTTGCTCCGTAAGCCCCGGAGGGTCGCAGAGAATAGGTGGCTGCG


  ACTGTTTATTAAAAACACAGCACTCTGCCAACACGAAAGTGGACGTATAGGGTG


  TGACGCCTGCCCGGTGCCGGAAGGTTAATTGAAGATGTGCAAGCATCGGATCGA


  AGCCCCGGTAAACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAATTCCT


  TGTCGGGTAAGTTCCGACCCGCACGAATGGCGTAACGATGGCCACACTGTCTCCT


  CCCGAGACTCAGCGAAGTTGAAGTGGTTGTGAAGATGCAATCTACCCGCTGCTA


  GACGGAAAGACCCCGTGAACCTTTACTGTAGCTTTGCATTGGACTTTGAAGTCAC


  TTGTGTAGGATAGGTGGGAGGCTTGGAAGCAGAGACGCCAGTCTCTGTGGAGTC


  GTCCTTGAAATACCACCCTGGTGTCTTTGAGGTTCTAACCCAGACCCGTCATCCG


  GGTCGGGGACCGTGCATGGTAGGCAGTTTGACTGGGGCGGTCTCCTCCCAAAGC


  GTAACGGAGGAGTTCGAAGGTTACCTAGGTCCGGTCGGAAATCGGACTGATAGT


  GCAATGGCAAAAGGTAGCTTAACTGCGAGACCGACAAGTCGGGCAGGTGCGAA


  AGCAGGACATAGTGATCCGGTGGTTCTGTATGGAAGGGCCATCGCTCAACGGAT


  AAAAGGTACTCCGGGGATAACAGGCTGATTCCGCCCAAGAGTTCATATCGACGG


  CGGAGTTTGGCACCTCGATGTCGGCTCATCACATCCTGGGGCTGTAGTCGGTCCC


  AAGGGTATGGCTGTTCGCCATTTAAAGTGGTACGTGAGCTGGGTTTAAAACGTCG


  TGAGACAGTTTGGTCCCTATCTGCAGTGGGCGTTGGAAGTTTGACGGGGGCTGCT


  CCTAGTACGAGAGGACCGGAGTGGACGAACCTCTGGTGTACCGGTTGTAACGCC


  AGTTGCATAGCCGGGTAGCTAAGTTCGGAAGAGATAAGCGCTGAAAGCATCTAA


  GCGCGAAACTCGCCTGAAGATGAGACTTCCCTTGCGGTTTAACCGCACTAAAGG


  GTCGTTCGAGACCAGGACGTTGATAGGTGGGGTGTGGAAGCGCGGTAACGCGTG


  AAGCTAACCCATACTAATTGCCCGTGAGGCTTGACTCT






RNA: SEQ ID NO: 337









UGAAAUGAUAGAGUCAAGUGAAUAAGUGCAUCAGGCGGAUGCCUUGGCGAUG


  AUAGGCGACGAAGGACGUGUAAGCCUGCGAAAAGCGCGGGGGAGCUGGCAAU


  AAAGCAAUGAUCCCGCGGUGUCCGAAUGGGGAAACCCACUGCAUUCUGUGCA


  GUAUCCUAAGUUGAAUACAUAGGCUUAGAGAAGCGAACCCGGAGAACUGAAC


  CAUCUAAGUACCCGGAGGAAAAGAAAUCAACCGAGAUUCCGCAAGUAGUGGC


  GAGCGAACGCGGAGGAGCCUGUACGUAAUAACUGUCGAGGUAGAAGAACAAG


  CUGGGAAGCUUGACCAUAGCGGGUGACAGUCCCGUAUUCGAAAUCUCAACAG


  CGGUACUAAGCGUACGAAAAGUAGGGCGGGACACGUGAAAUCCUGUCUGAAU


  AUGGGGGGACCAUCCUCCAAGGCUAAAUACUCAUCAUCGACCGAUAGUGAACC


  AGUACCGUGAGGGAAAGGCGAAAAGAACCCCGGGAGGGGAGUGAAACAGAAC


  CUGAAACCUGAUGCAUACAAACAGUGGGAGCGCCCUAGUGGUGUGACUGCGU


  ACCUUUUGUAUAAUGGGUCAACGACUUACAUUCAGUAGCGAGCUUAACCGGA


  UAGGGGAGGCGUAGGGAAACCGAGUCUUAAUAGGGCGAUGAGUUGCUGGGUG


  UAGACCCGAAACCGAGUGAUCUAUCCAUGGCCAGGUUGAAGGUGCCGUAACA


  GGUACUGGAGGACCGAACCCACGCAUGUUGCAAAAUGCGGGGAUGAGCUGUG


  GGUAGGGGUGAAAGGCUAAACAAACUCGGAGAUAGCUGGUUCUCCCCGAAAA


  CUAUUUAGGUAGUGCCUCGAGCAAGACACUGAUGGGGGUAAAGCACUGUUAU


  GGCUAGGGGGUUAUUGCAACUUACCAACCCAUGGCAAACUCAGAAUACCAUC


  AAGUGGUUCCUCGGGAGACAGACAGCGGGUGCUAACGUCCGUUGUCAAGAGG


  GAAACAACCCAGACCGCCGGCUAAGGUCCCAAAUGAUAGAUUAAGUGGUAAA


  CGAAGUGGGAAGGCACAGACAGCCAGGAUGUUGGCUUAGAAGCAGCCAUCAU


  UUAAAGAAAGCGUAAUAGCUCACUGGUCGAGUCGUCCUGCGCGGAAGAUGUA


  ACGGGGCUCAAAUCUAUAACCGAAGCUGCGGAUGCCGGUUUACCGGCAUGGU


  AGGGGAGCGUUCUGUAGGCUGAUGAAGGUGCAUUGUAAAGUGUGCUGGAGGU


  AUCAGAAGUGCGAAUGUUGACAUGAGUAGCGAUAAAGCGGGUGAAAAGCCCG


  CUCGCCGAAAGCCCAAGGUUUCCUACGCAACGUUCAUCGGCGUAGGGUGAGUC


  GGCCCCUAAGGCGAGGCAGAAAUGCGUAGUCGAUGGGAAACAGGUUAAUAUU


  CCUGUACUUGAUUCAAAUGCGAUGUGGGGACGGAGAAGGUUAGGUUGGCAAG


  CUGUUGGAAUAGCUUGUUUAAGCCGGUAGGUGGAAGACUUAGGCAAAUCCGG


  GUUUUCUUAACACCGAGAAGUGAUGACGAGUGUCUACGGACACGAAGCAACC


  GAUACCACGCUUCCAGGAAAAGCCACUAAGCUUCAGUUUGAAUCGAACCGUAC


  CGCAAACCGACACAGGUGGGCAGGAUGAGAAUUCUAAGGCGCUUGAGAGAAC


  UCGGGAGAAGGAACUCGGCAAAUUGAUACCGUAACUUCGGGAGAAGGUAUGC


  CCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCGGAGGGUCGCAGAGAAUAG


  GUGGCUGCGACUGUUUAUUAAAAACACAGCACUCUGCCAACACGAAAGUGGA


  CGUAUAGGGUGUGACGCCUGCCCGGUGCCGGAAGGUUAAUUGAAGAUGUGCA


  AGCAUCGGAUCGAAGCCCCGGUAAACGGCGGCCGUAACUAUAACGGUCCUAAG


  GUAGCGAAAUUCCUUGUCGGGUAAGUUCCGACCCGCACGAAUGGCGUAACGA


  UGGCCACACUGUCUCCUCCCGAGACUCAGCGAAGUUGAAGUGGUUGUGAAGA


  UGCAAUCUACCCGCUGCUAGACGGAAAGACCCCGUGAACCUUUACUGUAGCUU


  UGCAUUGGACUUUGAAGUCACUUGUGUAGGAUAGGUGGGAGGCUUGGAAGCA


  GAGACGCCAGUCUCUGUGGAGUCGUCCUUGAAAUACCACCCUGGUGUCUUUG


  AGGUUCUAACCCAGACCCGUCAUCCGGGUCGGGGACCGUGCAUGGUAGGCAGU


  UUGACUGGGGCGGUCUCCUCCCAAAGCGUAACGGAGGAGUUCGAAGGUUACC


  UAGGUCCGGUCGGAAAUCGGACUGAUAGUGCAAUGGCAAAAGGUAGCUUAAC


  UGCGAGACCGACAAGUCGGGCAGGUGCGAAAGCAGGACAUAGUGAUCCGGUG


  GUUCUGUAUGGAAGGGCCAUCGCUCAACGGAUAAAAGGUACUCCGGGGAUAA


  CAGGCUGAUUCCGCCCAAGAGUUCAUAUCGACGGCGGAGUUUGGCACCUCGAU


  GUCGGCUCAUCACAUCCUGGGGCUGUAGUCGGUCCCAAGGGUAUGGCUGUUC


  GCCAUUUAAAGUGGUACGUGAGCUGGGUUUAAAACGUCGUGAGACAGUUUGG


  UCCCUAUCUGCAGUGGGCGUUGGAAGUUUGACGGGGGCUGCUCCUAGUACGA


  GAGGACCGGAGUGGACGAACCUCUGGUGUACCGGUUGUAACGCCAGUUGCAU


  AGCCGGGUAGCUAAGUUCGGAAGAGAUAAGCGCUGAAAGCAUCUAAGCGCGA


  AACUCGCCUGAAGAUGAGACUUCCCUUGCGGUUUAACCGCACUAAAGGGUCG


  UUCGAGACCAGGACGUUGAUAGGUGGGGUGUGGAAGCGCGGUAACGCGUGAA


  GCUAACCCAUACUAAUUGCCCGUGAGGCUUGACUCU






cDNA: SEQ ID NO: 338









AGAGTCAAGCCTCACGGGCAATTAGTATGGGTTAGCTTCACGCGTTACCGCGCTT


  CCACACCCCACCTATCAACGTCCTGGTCTCGAACGACCCTTTAGTGCGGTTAAAC


  CGCAAGGGAAGTCTCATCTTCAGGCGAGTTTCGCGCTTAGATGCTTTCAGCGCTT


  ATCTCTTCCGAACTTAGCTACCCGGCTATGCAACTGGCGTTACAACCGGTACACC


  AGAGGTTCGTCCACTCCGGTCCTCTCGTACTAGGAGCAGCCCCCGTCAAACTTCC


  AACGCCCACTGCAGATAGGGACCAAACTGTCTCACGACGTTTTAAACCCAGCTC


  ACGTACCACTTTAAATGGCGAACAGCCATACCCTTGGGACCGACTACAGCCCCA


  GGATGTGATGAGCCGACATCGAGGTGCCAAACTCCGCCGTCGATATGAACTCTT


  GGGCGGAATCAGCCTGTTATCCCCGGAGTACCTTTTATCCGTTGAGCGATGGCCC


  TTCCATACAGAACCACCGGATCACTATGTCCTGCTTTCGCACCTGCCCGACTTGT


  CGGTCTCGCAGTTAAGCTACCTTTTGCCATTGCACTATCAGTCCGATTTCCGACC


  GGACCTAGGTAACCTTCGAACTCCTCCGTTACGCTTTGGGAGGAGACCGCCCCA


  GTCAAACTGCCTACCATGCACGGTCCCCGACCCGGATGACGGGTCTGGGTTAGA


  ACCTCAAAGACACCAGGGTGGTATTTCAAGGACGACTCCACAGAGACTGGCGTC


  TCTGCTTCCAAGCCTCCCACCTATCCTACACAAGTGACTTCAAAGTCCAATGCAA


  AGCTACAGTAAAGGTTCACGGGGTCTTTCCGTCTAGCAGCGGGTAGATTGCATCT


  TCACAACCACTTCAACTTCGCTGAGTCTCGGGAGGAGACAGTGTGGCCATCGTTA


  CGCCATTCGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAGGACC


  GTTATAGTTACGGCCGCCGTTTACCGGGGCTTCGATCCGATGCTTGCACATCTTC


  AATTAACCTTCCGGCACCGGGCAGGCGTCACACCCTATACGTCCACTTTCGTGTT


  GGCAGAGTGCTGTGTTTTTAATAAACAGTCGCAGCCACCTATTCTCTGCGACCCT


  CCGGGGCTTACGGAGCAAGTCCTTAACCTTAGAGGGCATACCTTCTCCCGAAGTT


  ACGGTATCAATTTGCCGAGTTCCTTCTCCCGAGTTCTCTCAAGCGCCTTAGAATTC


  TCATCCTGCCCACCTGTGTCGGTTTGCGGTACGGTTCGATTCAAACTGAAGCTTA


  GTGGCTTTTCCTGGAAGCGTGGTATCGGTTGCTTCGTGTCCGTAGACACTCGTCA


  TCACTTCTCGGTGTTAAGAAAACCCGGATTTGCCTAAGTCTTCCACCTACCGGCT


  TAAACAAGCTATTCCAACAGCTTGCCAACCTAACCTTCTCCGTCCCCACATCGCA


  TTTGAATCAAGTACAGGAATATTAACCTGTTTCCCATCGACTACGCATTTCTGCC


  TCGCCTTAGGGGCCGACTCACCCTACGCCGATGAACGTTGCGTAGGAAACCTTG


  GGCTTTCGGCGAGCGGGCTTTTCACCCGCTTTATCGCTACTCATGTCAACATTCG


  CACTTCTGATACCTCCAGCACACTTTACAATGCACCTTCATCAGCCTACAGAACG


  CTCCCCTACCATGCCGGTAAACCGGCATCCGCAGCTTCGGTTATAGATTTGAGCC


  CCGTTACATCTTCCGCGCAGGACGACTCGACCAGTGAGCTATTACGCTTTCTTTA


  AATGATGGCTGCTTCTAAGCCAACATCCTGGCTGTCTGTGCCTTCCCACTTCGTTT


  ACCACTTAATCTATCATTTGGGACCTTAGCCGGCGGTCTGGGTTGTTTCCCTCTTG


  ACAACGGACGTTAGCACCCGCTGTCTGTCTCCCGAGGAACCACTTGATGGTATTC


  TGAGTTTGCCATGGGTTGGTAAGTTGCAATAACCCCCTAGCCATAACAGTGCTTT


  ACCCCCATCAGTGTCTTGCTCGAGGCACTACCTAAATAGTTTTCGGGGAGAACCA


  GCTATCTCCGAGTTTGTTTAGCCTTTCACCCCTACCCACAGCTCATCCCCGCATTT


  TGCAACATGCGTGGGTTCGGTCCTCCAGTACCTGTTACGGCACCTTCAACCTGGC


  CATGGATAGATCACTCGGTTTCGGGTCTACACCCAGCAACTCATCGCCCTATTAA


  GACTCGGTTTCCCTACGCCTCCCCTATCCGGTTAAGCTCGCTACTGAATGTAAGT


  CGTTGACCCATTATACAAAAGGTACGCAGTCACACCACTAGGGCGCTCCCACTG


  TTTGTATGCATCAGGTTTCAGGTTCTGTTTCACTCCCCTCCCGGGGTTCTTTTCGC


  CTTTCCCTCACGGTACTGGTTCACTATCGGTCGATGATGAGTATTTAGCCTTGGA


  GGATGGTCCCCCCATATTCAGACAGGATTTCACGTGTCCCGCCCTACTTTTCGTA


  CGCTTAGTACCGCTGTTGAGATTTCGAATACGGGACTGTCACCCGCTATGGTCAA


  GCTTCCCAGCTTGTTCTTCTACCTCGACAGTTATTACGTACAGGCTCCTCCGCGTT


  CGCTCGCCACTACTTGCGGAATCTCGGTTGATTTCTTTTCCTCCGGGTACTTAGAT


  GGTTCAGTTCTCCGGGTTCGCTTCTCTAAGCCTATGTATTCAACTTAGGATACTGC


  ACAGAATGCAGTGGGTTTCCCCATTCGGACACCGCGGGATCATTGCTTTATTGCC


  AGCTCCCCCGCGCTTTTCGCAGGCTTACACGTCCTTCGTCGCCTATCATCGCCAA


  GGCATCCGCCTGATGCACTTATTCACTTGACTCTATCATTTCA






6. NGO_r09: NC_002946.2:c1654965-1653421

DNA (- strand): SEQ ID NO: 339









TGAACATAAGAGTTTGATCCTGGCTCAGATTGAACGCTGGCGGCATGCTTTACAC


  ATGCAAGTCGGACGGCAGCACAGGGAAGCTTGCTTCTCGGGTGGCGAGTGGCGA


  ACGGGTGAGTAACATATCGGAACGTACCGGGTAGCGGGGGATAACTGATCGAAA


  GATCAGCTAATACCGCATACGTCTTGAGAGGGAAAGCAGGGGACCTTCGGGCCT


  TGCGCTATCCGAGCGGCCGATATCTGATTAGCTGGTTGGCGGGGTAAAGGCCCA


  CCAAGGCGACGATCAGTAGCGGGTCTGAGAGGATGATCCGCCACACTGGGACTG


  AGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGG


  CGCAAGCCTGATCCAGCCATGCCGCGTGTCTGAAGAAGGCCTTCGGGTTGTAAA


  GGACTTTTGTCAGGGAAGAAAAGGCCGTTGCCAATATCGGCGGCCGATGACGGT


  ACCTGAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG


  GGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGGGCGCAGACGGTTACTT


  AAGCAGGATGTGAAATCCCCGGGCTCAACCCGGGAACTGCGTTCTGAACTGGGT


  GACTCGAGTGTGTCAGAGGGAGGTGGAATTCCACGTGTAGCAGTGAAATGCGTA


  GAGATGTGGAGGAATACCGATGGCGAAGGCAGCCTCCTGGGATAACACTGACGT


  TCATGTCCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGC


  CCTAAACGATGTCAATTAGCTGTTGGGCAACTTGATTGCTTGGTAGCGTAGCTAA


  CGCGTGAAATTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAA


  TTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTCGATGCAACGCG


  AAGAACCTTACCTGGTTTTGACATGTGCGGAATCCTCCGGAGACGGAGGAGTGC


  CTTCGGGAGCCGTAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGA


  TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCCATCATTCG


  GTTGGGCACTCTAATGAGACTGCCGGTGACAAGCCGGAGGAAGGTGGGGATGAC


  GTCAAGTCCTCATGGCCCTTATGACCAGGGCTTCACACGTCATACAATGGTCGGT


  ACAGAGGGTAGCCAAGCCGCGAGGCGGAGCCAATCTCACAAAACCGATCGTAG


  TCCGGATTGCACTCTGCAACTCGAGTGCATGAAGTCGGAATCGCTAGTAATCGCA


  GGTCAGCATACTGCGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACA


  CCATGGGAGTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGAGTCCGCTT


  ACCACGGTATGCTTCATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAGGGGA


  ACCTGCGGCTGGATCACCTCCTTTCTA






RNA: SEQ ID NO: 340









UGAACAUAAGAGUUUGAUCCUGGCUCAGAUUGAACGCUGGCGGCAUGCUUUA


  CACAUGCAAGUCGGACGGCAGCACAGGGAAGCUUGCUUCUCGGGUGGCGAGU


  GGCGAACGGGUGAGUAACAUAUCGGAACGUACCGGGUAGCGGGGGAUAACUG


  AUCGAAAGAUCAGCUAAUACCGCAUACGUCUUGAGAGGGAAAGCAGGGGACC


  UUCGGGCCUUGCGCUAUCCGAGCGGCCGAUAUCUGAUUAGCUGGUUGGCGGG


  GUAAAGGCCCACCAAGGCGACGAUCAGUAGCGGGUCUGAGAGGAUGAUCCGC


  CACACUGGGACUGAGACACGGCCCAGACUCCUACGGGAGGCAGCAGUGGGGAA


  UUUUGGACAAUGGGCGCAAGCCUGAUCCAGCCAUGCCGCGUGUCUGAAGAAG


  GCCUUCGGGUUGUAAAGGACUUUUGUCAGGGAAGAAAAGGCCGUUGCCAAUA


  UCGGCGGCCGAUGACGGUACCUGAAGAAUAAGCACCGGCUAACUACGUGCCAG


  CAGCCGCGGUAAUACGUAGGGUGCGAGCGUUAAUCGGAAUUACUGGGCGUAA


  AGCGGGCGCAGACGGUUACUUAAGCAGGAUGUGAAAUCCCCGGGCUCAACCCG


  GGAACUGCGUUCUGAACUGGGUGACUCGAGUGUGUCAGAGGGAGGUGGAAUU


  CCACGUGUAGCAGUGAAAUGCGUAGAGAUGUGGAGGAAUACCGAUGGCGAAG


  GCAGCCUCCUGGGAUAACACUGACGUUCAUGUCCGAAAGCGUGGGUAGCAAA


  CAGGAUUAGAUACCCUGGUAGUCCACGCCCUAAACGAUGUCAAUUAGCUGUU


  GGGCAACUUGAUUGCUUGGUAGCGUAGCUAACGCGUGAAAUUGACCGCCUGG


  GGAGUACGGUCGCAAGAUUAAAACUCAAAGGAAUUGACGGGGACCCGCACAA


  GCGGUGGAUGAUGUGGAUUAAUUCGAUGCAACGCGAAGAACCUUACCUGGUU


  UUGACAUGUGCGGAAUCCUCCGGAGACGGAGGAGUGCCUUCGGGAGCCGUAA


  CACAGGUGCUGCAUGGCUGUCGUCAGCUCGUGUCGUGAGAUGUUGGGUUAAG


  UCCCGCAACGAGCGCAACCCUUGUCAUUAGUUGCCAUCAUUCGGUUGGGCACU


  CUAAUGAGACUGCCGGUGACAAGCCGGAGGAAGGUGGGGAUGACGUCAAGUC


  CUCAUGGCCCUUAUGACCAGGGCUUCACACGUCAUACAAUGGUCGGUACAGAG


  GGUAGCCAAGCCGCGAGGCGGAGCCAAUCUCACAAAACCGAUCGUAGUCCGGA


  UUGCACUCUGCAACUCGAGUGCAUGAAGUCGGAAUCGCUAGUAAUCGCAGGU


  CAGCAUACUGCGGUGAAUACGUUCCCGGGUCUUGUACACACCGCCCGUCACAC


  CAUGGGAGUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCU


  UACCACGGUAUGCUUCAUGACUGGGGUGAAGUCGUAACAAGGUAGCCGUAGG


  GGAACCUGCGGCUGGAUCACCUCCUUUCUA






cDNA: SEQ ID NO: 341









TAGAAAGGAGGTGATCCAGCCGCAGGTTCCCCTACGGCTACCTTGTTACGACTTC


  ACCCCAGTCATGAAGCATACCGTGGTAAGCGGACTCCTTGCGGTTACCCTACCTA


  CTTCTGGTATCCCCCACTCCCATGGTGTGACGGGCGGTGTGTACAAGACCCGGGA


  ACGTATTCACCGCAGTATGCTGACCTGCGATTACTAGCGATTCCGACTTCATGCA


  CTCGAGTTGCAGAGTGCAATCCGGACTACGATCGGTTTTGTGAGATTGGCTCCGC


  CTCGCGGCTTGGCTACCCTCTGTACCGACCATTGTATGACGTGTGAAGCCCTGGT


  CATAAGGGCCATGAGGACTTGACGTCATCCCCACCTTCCTCCGGCTTGTCACCGG


  CAGTCTCATTAGAGTGCCCAACCGAATGATGGCAACTAATGACAAGGGTTGCGC


  TCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCA


  GCACCTGTGTTACGGCTCCCGAAGGCACTCCTCCGTCTCCGGAGGATTCCGCACA


  TGTCAAAACCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATCATCCAC


  CGCTTGTGCGGGTCCCCGTCAATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCC


  CAGGCGGTCAATTTCACGCGTTAGCTACGCTACCAAGCAATCAAGTTGCCCAAC


  AGCTAATTGACATCGTTTAGGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCT


  ACCCACGCTTTCGGACATGAACGTCAGTGTTATCCCAGGAGGCTGCCTTCGCCAT


  CGGTATTCCTCCACATCTCTACGCATTTCACTGCTACACGTGGAATTCCACCTCCC


  TCTGACACACTCGAGTCACCCAGTTCAGAACGCAGTTCCCGGGTTGAGCCCGGG


  GATTTCACATCCTGCTTAAGTAACCGTCTGCGCCCGCTTTACGCCCAGTAATTCC


  GATTAACGCTCGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGGT


  GCTTATTCTTCAGGTACCGTCATCGGCCGCCGATATTGGCAACGGCCTTTTCTTCC


  CTGACAAAAGTCCTTTACAACCCGAAGGCCTTCTTCAGACACGCGGCATGGCTG


  GATCAGGCTTGCGCCCATTGTCCAAAATTCCCCACTGCTGCCTCCCGTAGGAGTC


  TGGGCCGTGTCTCAGTCCCAGTGTGGCGGATCATCCTCTCAGACCCGCTACTGAT


  CGTCGCCTTGGTGGGCCTTTACCCCGCCAACCAGCTAATCAGATATCGGCCGCTC


  GGATAGCGCAAGGCCCGAAGGTCCCCTGCTTTCCCTCTCAAGACGTATGCGGTAT


  TAGCTGATCTTTCGATCAGTTATCCCCCGCTACCCGGTACGTTCCGATATGTTACT


  CACCCGTTCGCCACTCGCCACCCGAGAAGCAAGCTTCCCTGTGCTGCCGTCCGAC


  TTGCATGTGTAAAGCATGCCGCCAGCGTTCAATCTGAGCCAGGATCAAACTCTTA


  TGTTCA






7. NGO_r11: NC_002946.2:c1875982-1873080

DNA (- strand): SEQ ID NO: 342









TGAAATGATAGAGTCAAGTGAATAAGTGCATCAGGCGGATGCCTTGGCGATGAT


  AGGCGACGAAGGACGTGTAAGCCTGCGAAAAGCGCGGGGGAGCTGGCAATAAA


  GCAATGATCCCGCGGTGTCCGAATGGGGAAACCCACTGCATTCTGTGCAGTATC


  CTAAGTTGAATACATAGGCTTAGAGAAGCGAACCCGGAGAACTGACCCATCTAA


  GTACCCGGAGGAAAAGAAATCAACCGAGATTCCGCAAGTAGTGGCGAGCGAAC


  GCGGAGGAGCCTGTACGTAATAACTGTCGAGGTAGAAGAACAAGCTGGGAAGCT


  TGACCATAGCGGGTGACAGTCCCGTATTCGAAATCTCAACAGCGGTACTAAGCG


  TACGAAAAGTAGGGCGGGACACGTGAAATCCTGTCTGAATATGGGGGGACCATC


  CTCCAAGGCTAAATACTCATCATCGACCGATAGTGAACCAGTACCGTGAGGGAA


  AGGCGAAAAGAACCCCGGGAGGGGAGTGAAACAGAACCTGAAACCTGATGCAT


  ACAAACAGTGGGAGCGCCCTAGTGGTGTGACTGCGTACCTTTTGTATAATGGGTC


  AACGACTTACATTCAGTAGCGAGCTTAACCGGATAGGGGAGGCGTAGGGAAACC


  GAGTCTTAATAGGGCGATGAGTTGCTGGGTGTAGACCCGAAACCGAGTGATCTA


  TCCATGGCCAGGTTGAAGGTGCCGTAACAGGTACTGGAGGACCGAACCCACGCA


  TGTTGCAAAATGCGGGGATGAGCTGTGGGTAGGGGTGAAAGGCTAAACAAACTC


  GGAGATAGCTGGTTCTCCCCGAAAACTATTTAGGTAGTGCCTCGAGCAAGACAC


  TGATGGGGGTAAAGCACTGTTATGGCTAGGGGGTTATTGCAACTTACCAACCCAT


  GGCAAACTCAGAATACCATCAAGTGGTTCCTCGGGAGACAGACAGCGGGTGCTA


  ACGTCCGTTGTCAAGAGGGAAACAACCCAGACCGCCGGCTAAGGTCCCAAATGA


  TAGATTAAGTGGTAAACGAAGTGGGAAGGCACAGACAGCCAGGATGTTGGCTTA


  GAAGCAGCCATCATTTAAAGAAAGCGTAATAGCTCACTGGTCGAGTCGTCCTGC


  GCGGAAGATGTAACGGGGCTCAAATCTATAACCGAAGCTGCGGATGCCGGTTTA


  CCGGCATGGTAGGGGAGCGTTCTGTAGGCTGATGAAGGTGCATTGTAAAGTGTG


  CTGGAGGTATCAGAAGTGCGAATGTTGACATGAGTAGCGATAAAGCGGGTGAAA


  AGCCCGCTCGCCGAAAGCCCAAGGTTTCCTACGCAACGTTCATCGGCGTAGGGT


  GAGTCGGCCCCTAAGGCGAGGCAGAAATGCGTAGTCGATGGGAAACAGGTTAAT


  ATTCCTGTACTTGATTCAAATGCGATGTGGGGACGGAGAAGGTTAGGTTGGCAA


  GCTGTTGGAATAGCTTGTTTAAGCCGGTAGGTGGAAGACTTAGGCAAATCCGGG


  TTTTCTTAACACCGAGAAGTGATGACGAGTGTCTACGGACACGAAGCAACCGAT


  ACCACGCTTCCAGGAAAAGCCACTAAGCTTCAGTTTGAATCGAACCGTACCGCA


  AACCGACACAGGTGGGCAGGATGAGAATTCTAAGGCGCTTGAGAGAACTCGGG


  AGAAGGAACTCGGCAAATTGATACCGTAACTTCGGGAGAAGGTATGCCCTCTAA


  GGTTAAGGACTTGCTCCGTAAGCCCCGGAGGGTCGCAGAGAATAGGTGGCTGCG


  ACTGTTTATTAAAAACACAGCACTCTGCCAACACGAAAGTGGACGTATAGGGTG


  TGACGCCTGCCCGGTGCCGGAAGGTTAATTGAAGATGTGCAAGCATCGGATCGA


  AGCCCCGGTAAACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAATTCCT


  TGTCGGGTAAGTTCCGACCCGCACGAATGGCGTAACGATGGCCACACTGTCTCCT


  CCCGAGACTCAGCGAAGTTGAAGTGGTTGTGAAGATGCAATCTACCCGCTGCTA


  GACGGAAAGACCCCGTGAACCTTTACTGTAGCTTTGCATTGGACTTTGAAGTCAC


  TTGTGTAGGATAGGTGGGAGGCTTGGAAGCAGAGACGCCAGTCTCTGTGGAGTC


  GTCCTTGAAATACCACCCTGGTGTCTTTGAGGTTCTAACCCAGACCCGTCATCCG


  GGTCGGGGACCGTGCATGGTAGGCAGTTTGACTGGGGCGGTCTCCTCCCAAAGC


  GTAACGGAGGAGTTCGAAGGTTACCTAGGTCCGGTCGGAAATCGGACTGATAGT


  GCAATGGCAAAAGGTAGCTTAACTGCGAGACCGACAAGTCGGGCAGGTGCGAA


  AGCAGGACATAGTGATCCGGTGGTTCTGTATGGAAGGGCCATCGCTCAACGGAT


  AAAAGGTACTCCGGGGATAACAGGCTGATTCCGCCCAAGAGTTCATATCGACGG


  CGGAGTTTGGCACCTCGATGTCGGCTCATCACATCCTGGGGCTGTAGTCGGTCCC


  AAGGGTATGGCTGTTCGCCATTTAAAGTGGTACGTGAGCTGGGTTTAAAACGTCG


  TGAGACAGTTTGGTCCCTATCTGCAGTGGGCGTTGGAAGTTTGACGGGGGCTGCT


  CCTAGTACGAGAGGACCGGAGTGGACGAACCTCTGGTGTACCGGTTGTAACGCC


  AGTTGCATAGCCGGGTAGCTAAGTTCGGAAGAGATAAGCGCTGAAAGCATCTAA


  GCGCGAAACTCGCCTGAAGATGAGACTTCCCTTGCGGTTTAACCGCACTAAAGG


  GTCGTTCGAGACCAGGACGTTGATAGGTGGGGTGTGGAAGCGCGGTAACGCGTG


  AAGCTAACCCATACTAATTGCCCGTGAGGCTTGACTCT






RNA: SEQ ID NO: 343









UGAAAUGAUAGAGUCAAGUGAAUAAGUGCAUCAGGCGGAUGCCUUGGCGAUG


  AUAGGCGACGAAGGACGUGUAAGCCUGCGAAAAGCGCGGGGGAGCUGGCAAU


  AAAGCAAUGAUCCCGCGGUGUCCGAAUGGGGAAACCCACUGCAUUCUGUGCA


  GUAUCCUAAGUUGAAUACAUAGGCUUAGAGAAGCGAACCCGGAGAACUGACC


  CAUCUAAGUACCCGGAGGAAAAGAAAUCAACCGAGAUUCCGCAAGUAGUGGC


  GAGCGAACGCGGAGGAGCCUGUACGUAAUAACUGUCGAGGUAGAAGAACAAG


  CUGGGAAGCUUGACCAUAGCGGGUGACAGUCCCGUAUUCGAAAUCUCAACAG


  CGGUACUAAGCGUACGAAAAGUAGGGCGGGACACGUGAAAUCCUGUCUGAAU


  AUGGGGGGACCAUCCUCCAAGGCUAAAUACUCAUCAUCGACCGAUAGUGAACC


  AGUACCGUGAGGGAAAGGCGAAAAGAACCCCGGGAGGGGAGUGAAACAGAAC


  CUGAAACCUGAUGCAUACAAACAGUGGGAGCGCCCUAGUGGUGUGACUGCGU


  ACCUUUUGUAUAAUGGGUCAACGACUUACAUUCAGUAGCGAGCUUAACCGGA


  UAGGGGAGGCGUAGGGAAACCGAGUCUUAAUAGGGCGAUGAGUUGCUGGGUG


  UAGACCCGAAACCGAGUGAUCUAUCCAUGGCCAGGUUGAAGGUGCCGUAACA


  GGUACUGGAGGACCGAACCCACGCAUGUUGCAAAAUGCGGGGAUGAGCUGUG


  GGUAGGGGUGAAAGGCUAAACAAACUCGGAGAUAGCUGGUUCUCCCCGAAAA


  CUAUUUAGGUAGUGCCUCGAGCAAGACACUGAUGGGGGUAAAGCACUGUUAU


  GGCUAGGGGGUUAUUGCAACUUACCAACCCAUGGCAAACUCAGAAUACCAUC


  AAGUGGUUCCUCGGGAGACAGACAGCGGGUGCUAACGUCCGUUGUCAAGAGG


  GAAACAACCCAGACCGCCGGCUAAGGUCCCAAAUGAUAGAUUAAGUGGUAAA


  CGAAGUGGGAAGGCACAGACAGCCAGGAUGUUGGCUUAGAAGCAGCCAUCAU


  UUAAAGAAAGCGUAAUAGCUCACUGGUCGAGUCGUCCUGCGCGGAAGAUGUA


  ACGGGGCUCAAAUCUAUAACCGAAGCUGCGGAUGCCGGUUUACCGGCAUGGU


  AGGGGAGCGUUCUGUAGGCUGAUGAAGGUGCAUUGUAAAGUGUGCUGGAGGU


  AUCAGAAGUGCGAAUGUUGACAUGAGUAGCGAUAAAGCGGGUGAAAAGCCCG


  CUCGCCGAAAGCCCAAGGUUUCCUACGCAACGUUCAUCGGCGUAGGGUGAGUC


  GGCCCCUAAGGCGAGGCAGAAAUGCGUAGUCGAUGGGAAACAGGUUAAUAUU


  CCUGUACUUGAUUCAAAUGCGAUGUGGGGACGGAGAAGGUUAGGUUGGCAAG


  CUGUUGGAAUAGCUUGUUUAAGCCGGUAGGUGGAAGACUUAGGCAAAUCCGG


  GUUUUCUUAACACCGAGAAGUGAUGACGAGUGUCUACGGACACGAAGCAACC


  GAUACCACGCUUCCAGGAAAAGCCACUAAGCUUCAGUUUGAAUCGAACCGUAC


  CGCAAACCGACACAGGUGGGCAGGAUGAGAAUUCUAAGGCGCUUGAGAGAAC


  UCGGGAGAAGGAACUCGGCAAAUUGAUACCGUAACUUCGGGAGAAGGUAUGC


  CCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCGGAGGGUCGCAGAGAAUAG


  GUGGCUGCGACUGUUUAUUAAAAACACAGCACUCUGCCAACACGAAAGUGGA


  CGUAUAGGGUGUGACGCCUGCCCGGUGCCGGAAGGUUAAUUGAAGAUGUGCA


  AGCAUCGGAUCGAAGCCCCGGUAAACGGCGGCCGUAACUAUAACGGUCCUAAG


  GUAGCGAAAUUCCUUGUCGGGUAAGUUCCGACCCGCACGAAUGGCGUAACGA


  UGGCCACACUGUCUCCUCCCGAGACUCAGCGAAGUUGAAGUGGUUGUGAAGA


  UGCAAUCUACCCGCUGCUAGACGGAAAGACCCCGUGAACCUUUACUGUAGCUU


  UGCAUUGGACUUUGAAGUCACUUGUGUAGGAUAGGUGGGAGGCUUGGAAGCA


  GAGACGCCAGUCUCUGUGGAGUCGUCCUUGAAAUACCACCCUGGUGUCUUUG


  AGGUUCUAACCCAGACCCGUCAUCCGGGUCGGGGACCGUGCAUGGUAGGCAGU


  UUGACUGGGGCGGUCUCCUCCCAAAGCGUAACGGAGGAGUUCGAAGGUUACC


  UAGGUCCGGUCGGAAAUCGGACUGAUAGUGCAAUGGCAAAAGGUAGCUUAAC


  UGCGAGACCGACAAGUCGGGCAGGUGCGAAAGCAGGACAUAGUGAUCCGGUG


  GUUCUGUAUGGAAGGGCCAUCGCUCAACGGAUAAAAGGUACUCCGGGGAUAA


  CAGGCUGAUUCCGCCCAAGAGUUCAUAUCGACGGCGGAGUUUGGCACCUCGAU


  GUCGGCUCAUCACAUCCUGGGGCUGUAGUCGGUCCCAAGGGUAUGGCUGUUC


  GCCAUUUAAAGUGGUACGUGAGCUGGGUUUAAAACGUCGUGAGACAGUUUGG


  UCCCUAUCUGCAGUGGGCGUUGGAAGUUUGACGGGGGCUGCUCCUAGUACGA


  GAGGACCGGAGUGGACGAACCUCUGGUGUACCGGUUGUAACGCCAGUUGCAU


  AGCCGGGUAGCUAAGUUCGGAAGAGAUAAGCGCUGAAAGCAUCUAAGCGCGA


  AACUCGCCUGAAGAUGAGACUUCCCUUGCGGUUUAACCGCACUAAAGGGUCG


  UUCGAGACCAGGACGUUGAUAGGUGGGGUGUGGAAGCGCGGUAACGCGUGAA


  GCUAACCCAUACUAAUUGCCCGUGAGGCUUGACUCU






cDNA: SEQ ID NO: 344









AGAGTCAAGCCTCACGGGCAATTAGTATGGGTTAGCTTCACGCGTTACCGCGCTT


  CCACACCCCACCTATCAACGTCCTGGTCTCGAACGACCCTTTAGTGCGGTTAAAC


  CGCAAGGGAAGTCTCATCTTCAGGCGAGTTTCGCGCTTAGATGCTTTCAGCGCTT


  ATCTCTTCCGAACTTAGCTACCCGGCTATGCAACTGGCGTTACAACCGGTACACC


  AGAGGTTCGTCCACTCCGGTCCTCTCGTACTAGGAGCAGCCCCCGTCAAACTTCC


  AACGCCCACTGCAGATAGGGACCAAACTGTCTCACGACGTTTTAAACCCAGCTC


  ACGTACCACTTTAAATGGCGAACAGCCATACCCTTGGGACCGACTACAGCCCCA


  GGATGTGATGAGCCGACATCGAGGTGCCAAACTCCGCCGTCGATATGAACTCTT


  GGGCGGAATCAGCCTGTTATCCCCGGAGTACCTTTTATCCGTTGAGCGATGGCCC


  TTCCATACAGAACCACCGGATCACTATGTCCTGCTTTCGCACCTGCCCGACTTGT


  CGGTCTCGCAGTTAAGCTACCTTTTGCCATTGCACTATCAGTCCGATTTCCGACC


  GGACCTAGGTAACCTTCGAACTCCTCCGTTACGCTTTGGGAGGAGACCGCCCCA


  GTCAAACTGCCTACCATGCACGGTCCCCGACCCGGATGACGGGTCTGGGTTAGA


  ACCTCAAAGACACCAGGGTGGTATTTCAAGGACGACTCCACAGAGACTGGCGTC


  TCTGCTTCCAAGCCTCCCACCTATCCTACACAAGTGACTTCAAAGTCCAATGCAA


  AGCTACAGTAAAGGTTCACGGGGTCTTTCCGTCTAGCAGCGGGTAGATTGCATCT


  TCACAACCACTTCAACTTCGCTGAGTCTCGGGAGGAGACAGTGTGGCCATCGTTA


  CGCCATTCGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAGGACC


  GTTATAGTTACGGCCGCCGTTTACCGGGGCTTCGATCCGATGCTTGCACATCTTC


  AATTAACCTTCCGGCACCGGGCAGGCGTCACACCCTATACGTCCACTTTCGTGTT


  GGCAGAGTGCTGTGTTTTTAATAAACAGTCGCAGCCACCTATTCTCTGCGACCCT


  CCGGGGCTTACGGAGCAAGTCCTTAACCTTAGAGGGCATACCTTCTCCCGAAGTT


  ACGGTATCAATTTGCCGAGTTCCTTCTCCCGAGTTCTCTCAAGCGCCTTAGAATTC


  TCATCCTGCCCACCTGTGTCGGTTTGCGGTACGGTTCGATTCAAACTGAAGCTTA


  GTGGCTTTTCCTGGAAGCGTGGTATCGGTTGCTTCGTGTCCGTAGACACTCGTCA


  TCACTTCTCGGTGTTAAGAAAACCCGGATTTGCCTAAGTCTTCCACCTACCGGCT


  TAAACAAGCTATTCCAACAGCTTGCCAACCTAACCTTCTCCGTCCCCACATCGCA


  TTTGAATCAAGTACAGGAATATTAACCTGTTTCCCATCGACTACGCATTTCTGCC


  TCGCCTTAGGGGCCGACTCACCCTACGCCGATGAACGTTGCGTAGGAAACCTTG


  GGCTTTCGGCGAGCGGGCTTTTCACCCGCTTTATCGCTACTCATGTCAACATTCG


  CACTTCTGATACCTCCAGCACACTTTACAATGCACCTTCATCAGCCTACAGAACG


  CTCCCCTACCATGCCGGTAAACCGGCATCCGCAGCTTCGGTTATAGATTTGAGCC


  CCGTTACATCTTCCGCGCAGGACGACTCGACCAGTGAGCTATTACGCTTTCTTTA


  AATGATGGCTGCTTCTAAGCCAACATCCTGGCTGTCTGTGCCTTCCCACTTCGTTT


  ACCACTTAATCTATCATTTGGGACCTTAGCCGGCGGTCTGGGTTGTTTCCCTCTTG


  ACAACGGACGTTAGCACCCGCTGTCTGTCTCCCGAGGAACCACTTGATGGTATTC


  TGAGTTTGCCATGGGTTGGTAAGTTGCAATAACCCCCTAGCCATAACAGTGCTTT


  ACCCCCATCAGTGTCTTGCTCGAGGCACTACCTAAATAGTTTTCGGGGAGAACCA


  GCTATCTCCGAGTTTGTTTAGCCTTTCACCCCTACCCACAGCTCATCCCCGCATTT


  TGCAACATGCGTGGGTTCGGTCCTCCAGTACCTGTTACGGCACCTTCAACCTGGC


  CATGGATAGATCACTCGGTTTCGGGTCTACACCCAGCAACTCATCGCCCTATTAA


  GACTCGGTTTCCCTACGCCTCCCCTATCCGGTTAAGCTCGCTACTGAATGTAAGT


  CGTTGACCCATTATACAAAAGGTACGCAGTCACACCACTAGGGCGCTCCCACTG


  TTTGTATGCATCAGGTTTCAGGTTCTGTTTCACTCCCCTCCCGGGGTTCTTTTCGC


  CTTTCCCTCACGGTACTGGTTCACTATCGGTCGATGATGAGTATTTAGCCTTGGA


  GGATGGTCCCCCCATATTCAGACAGGATTTCACGTGTCCCGCCCTACTTTTCGTA


  CGCTTAGTACCGCTGTTGAGATTTCGAATACGGGACTGTCACCCGCTATGGTCAA


  GCTTCCCAGCTTGTTCTTCTACCTCGACAGTTATTACGTACAGGCTCCTCCGCGTT


  CGCTCGCCACTACTTGCGGAATCTCGGTTGATTTCTTTTCCTCCGGGTACTTAGAT


  GGGTCAGTTCTCCGGGTTCGCTTCTCTAAGCCTATGTATTCAACTTAGGATACTG


  CACAGAATGCAGTGGGTTTCCCCATTCGGACACCGCGGGATCATTGCTTTATTGC


  CAGCTCCCCCGCGCTTTTCGCAGGCTTACACGTCCTTCGTCGCCTATCATCGCCA


  AGGCATCCGCCTGATGCACTTATTCACTTGACTCTATCATTTCA






8. NGO_r12: NC_002946.2:c1878117-1876573

DNA (- strand): SEQ ID NO: 10









TGAACATAAGAGTTTGATCCTGGCTCAGATTGAACGCTGGCGGCATGCTTTACAC


  ATGCAAGTCGGACGGCAGCACAGGGAAGCTTGCTTCTCGGGTGGCGAGTGGCGA


  ACGGGTGAGTAACATATCGGAACGTACCGGGTAGCGGGGGATAACTGATCGAAA


  GATCAGCTAATACCGCATACGTCTTGAGAGGGAAAGCAGGGGACCTTCGGGCCT


  TGCGCTATCCGAGCGGCCGATATCTGATTAGCTGGTTGGCGGGGTAAAGGCCCA


  CCAAGGCGACGATCAGTAGCGGGTCTGAGAGGATGATCCGCCACACTGGGACTG


  AGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGG


  CGCAAGCCTGATCCAGCCATGCCGCGTGTCTGAAGAAGGCCTTCGGGTTGTAAA


  GGACTTTTGTCAGGGAAGAAAAGGCCGTTGCCAATATCGGCGGCCGATGACGGT


  ACCTGAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG


  GGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGGGCGCAGACGGTTACTT


  AAGCAGGATGTGAAATCCCCGGGCTCAACCCGGGAACTGCGTTCTGAACTGGGT


  GACTCGAGTGTGTCAGAGGGAGGTGGAATTCCACGTGTAGCAGTGAAATGCGTA


  GAGATGTGGAGGAATACCGATGGCGAAGGCAGCCTCCTGGGATAACACTGACGT


  TCATGTCCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGC


  CCTAAACGATGTCAATTAGCTGTTGGGCAACTTGATTGCTTGGTAGCGTAGCTAA


  CGCGTGAAATTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAA


  TTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTCGATGCAACGCG


  AAGAACCTTACCTGGTTTTGACATGTGCGGAATCCTCCGGAGACGGAGGAGTGC


  CTTCGGGAGCCGTAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGA


  TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCCATCATTCG


  GTTGGGCACTCTAATGAGACTGCCGGTGACAAGCCGGAGGAAGGTGGGGATGAC


  GTCAAGTCCTCATGGCCCTTATGACCAGGGCTTCACACGTCATACAATGGTCGGT


  ACAGAGGGTAGCCAAGCCGCGAGGCGGAGCCAATCTCACAAAACCGATCGTAG


  TCCGGATTGCACTCTGCAACTCGAGTGCATGAAGTCGGAATCGCTAGTAATCGCA


  GGTCAGCATACTGCGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACA


  CCATGGGAGTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGAGTCCGCTT


  ACCACGGTATGCTTCATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAGGGGA


  ACCTGCGGCTGGATCACCTCCTTTCTA






RNA: SEQ ID NO: 11









UGAACAUAAGAGUUUGAUCCUGGCUCAGAUUGAACGCUGGCGGCAUGCUUUA


  CACAUGCAAGUCGGACGGCAGCACAGGGAAGCUUGCUUCUCGGGUGGCGAGU


  GGCGAACGGGUGAGUAACAUAUCGGAACGUACCGGGUAGCGGGGGAUAACUG


  AUCGAAAGAUCAGCUAAUACCGCAUACGUCUUGAGAGGGAAAGCAGGGGACC


  UUCGGGCCUUGCGCUAUCCGAGCGGCCGAUAUCUGAUUAGCUGGUUGGCGGG


  GUAAAGGCCCACCAAGGCGACGAUCAGUAGCGGGUCUGAGAGGAUGAUCCGC


  CACACUGGGACUGAGACACGGCCCAGACUCCUACGGGAGGCAGCAGUGGGGAA


  UUUUGGACAAUGGGCGCAAGCCUGAUCCAGCCAUGCCGCGUGUCUGAAGAAG


  GCCUUCGGGUUGUAAAGGACUUUUGUCAGGGAAGAAAAGGCCGUUGCCAAUA


  UCGGCGGCCGAUGACGGUACCUGAAGAAUAAGCACCGGCUAACUACGUGCCAG


  CAGCCGCGGUAAUACGUAGGGUGCGAGCGUUAAUCGGAAUUACUGGGCGUAA


  AGCGGGCGCAGACGGUUACUUAAGCAGGAUGUGAAAUCCCCGGGCUCAACCCG


  GGAACUGCGUUCUGAACUGGGUGACUCGAGUGUGUCAGAGGGAGGUGGAAUU


  CCACGUGUAGCAGUGAAAUGCGUAGAGAUGUGGAGGAAUACCGAUGGCGAAG


  GCAGCCUCCUGGGAUAACACUGACGUUCAUGUCCGAAAGCGUGGGUAGCAAA


  CAGGAUUAGAUACCCUGGUAGUCCACGCCCUAAACGAUGUCAAUUAGCUGUU


  GGGCAACUUGAUUGCUUGGUAGCGUAGCUAACGCGUGAAAUUGACCGCCUGG


  GGAGUACGGUCGCAAGAUUAAAACUCAAAGGAAUUGACGGGGACCCGCACAA


  GCGGUGGAUGAUGUGGAUUAAUUCGAUGCAACGCGAAGAACCUUACCUGGUU


  UUGACAUGUGCGGAAUCCUCCGGAGACGGAGGAGUGCCUUCGGGAGCCGUAA


  CACAGGUGCUGCAUGGCUGUCGUCAGCUCGUGUCGUGAGAUGUUGGGUUAAG


  UCCCGCAACGAGCGCAACCCUUGUCAUUAGUUGCCAUCAUUCGGUUGGGCACU


  CUAAUGAGACUGCCGGUGACAAGCCGGAGGAAGGUGGGGAUGACGUCAAGUC


  CUCAUGGCCCUUAUGACCAGGGCUUCACACGUCAUACAAUGGUCGGUACAGAG


  GGUAGCCAAGCCGCGAGGCGGAGCCAAUCUCACAAAACCGAUCGUAGUCCGGA


  UUGCACUCUGCAACUCGAGUGCAUGAAGUCGGAAUCGCUAGUAAUCGCAGGU


  CAGCAUACUGCGGUGAAUACGUUCCCGGGUCUUGUACACACCGCCCGUCACAC


  CAUGGGAGUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCU


  UACCACGGUAUGCUUCAUGACUGGGGUGAAGUCGUAACAAGGUAGCCGUAGG


  GGAACCUGCGGCUGGAUCACCUCCUUUCUA






cDNA: SEQ ID NO: 12









TAGAAAGGAGGTGATCCAGCCGCAGGTTCCCCTACGGCTACCTTGTTACGACTTC


  ACCCCAGTCATGAAGCATACCGTGGTAAGCGGACTCCTTGCGGTTACCCTACCTA


  CTTCTGGTATCCCCCACTCCCATGGTGTGACGGGCGGTGTGTACAAGACCCGGGA


  ACGTATTCACCGCAGTATGCTGACCTGCGATTACTAGCGATTCCGACTTCATGCA


  CTCGAGTTGCAGAGTGCAATCCGGACTACGATCGGTTTTGTGAGATTGGCTCCGC


  CTCGCGGCTTGGCTACCCTCTGTACCGACCATTGTATGACGTGTGAAGCCCTGGT


  CATAAGGGCCATGAGGACTTGACGTCATCCCCACCTTCCTCCGGCTTGTCACCGG


  CAGTCTCATTAGAGTGCCCAACCGAATGATGGCAACTAATGACAAGGGTTGCGC


  TCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCA


  GCACCTGTGTTACGGCTCCCGAAGGCACTCCTCCGTCTCCGGAGGATTCCGCACA


  TGTCAAAACCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATCATCCAC


  CGCTTGTGCGGGTCCCCGTCAATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCC


  CAGGCGGTCAATTTCACGCGTTAGCTACGCTACCAAGCAATCAAGTTGCCCAAC


  AGCTAATTGACATCGTTTAGGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCT


  ACCCACGCTTTCGGACATGAACGTCAGTGTTATCCCAGGAGGCTGCCTTCGCCAT


  CGGTATTCCTCCACATCTCTACGCATTTCACTGCTACACGTGGAATTCCACCTCCC


  TCTGACACACTCGAGTCACCCAGTTCAGAACGCAGTTCCCGGGTTGAGCCCGGG


  GATTTCACATCCTGCTTAAGTAACCGTCTGCGCCCGCTTTACGCCCAGTAATTCC


  GATTAACGCTCGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGGT


  GCTTATTCTTCAGGTACCGTCATCGGCCGCCGATATTGGCAACGGCCTTTTCTTCC


  CTGACAAAAGTCCTTTACAACCCGAAGGCCTTCTTCAGACACGCGGCATGGCTG


  GATCAGGCTTGCGCCCATTGTCCAAAATTCCCCACTGCTGCCTCCCGTAGGAGTC


  TGGGCCGTGTCTCAGTCCCAGTGTGGCGGATCATCCTCTCAGACCCGCTACTGAT


  CGTCGCCTTGGTGGGCCTTTACCCCGCCAACCAGCTAATCAGATATCGGCCGCTC


  GGATAGCGCAAGGCCCGAAGGTCCCCTGCTTTCCCTCTCAAGACGTATGCGGTAT


  TAGCTGATCTTTCGATCAGTTATCCCCCGCTACCCGGTACGTTCCGATATGTTACT


  CACCCGTTCGCCACTCGCCACCCGAGAAGCAAGCTTCCCTGTGCTGCCGTCCGAC


  TTGCATGTGTAAAGCATGCCGCCAGCGTTCAATCTGAGCCAGGATCAAACTCTTA


  TGTTCA





Claims
  • 1-52. (canceled)
  • 53. A method to detect a transcript of an N. gonorrhoeae, the method comprises quantitatively detecting a transcript expression value of an RNA marker of N. gonorrhoeae , in the N. gonorrhoeae following contacting of the N. gonorrhoeae with an antibiotic to obtain an antibiotic treated transcript expression value for the RNA marker of N. gonorrhoeae,wherein the RNA marker of N. gonorrhoeae is selected from:a transcript of N. gonorrhoeae gene having locus tag NGO0340,a transcript of N. gonorrhoeae gene having locus tag NGO1837,a transcript of N. gonorrhoeae gene having locus tag NGO1843,a transcript of N. gonorrhoeae gene having locus tag NGO2024,a transcript of N. gonorrhoeae gene having locus tag NGO1845,a transcript of N. gonorrhoeae gene having locus tag NGO1677,a transcript of N. gonorrhoeae gene having locus tag NGO1844,a transcript of N. gonorrhoeae gene having locus tag NGO0171 ,a transcript of N. gonorrhoeae gene having locus tag NGO1834,a transcript of N. gonorrhoeae gene having locus tag NGO0172,a transcript of N. gonorrhoeae gene having locus tag NGO1835,a transcript of N. gonorrhoeae gene having locus tag NGO1673,a transcript of N. gonorrhoeae gene having locus tag NGO1833,a transcript of N. gonorrhoeae gene having locus tag NGO2173,a transcript of N. gonorrhoeae gene having locus tag NGO0604,a transcript of N. gonorrhoeae gene having locus tag NGO0016,a transcript of N. gonorrhoeae gene having locus tag NGO2174,a transcript of N. gonorrhoeae gene having locus tag NGO2164,a transcript of N. gonorrhoeae gene having locus tag NGO1676,a transcript of N. gonorrhoeae gene having locus tag NGO1679,a transcript of N. gonorrhoeae gene having locus tag NGO1658,a transcript of N. gonorrhoeae gene having locus tag NGO1440,a transcript of N. gonorrhoeae gene having locus tag NGO0174,a transcript of N. gonorrhoeae gene having locus tag NGO0173,a transcript of N. gonorrhoeae gene having locus tag NGO0592,a transcript of N. gonorrhoeae gene having locus tag NGO1680,a transcript of N. gonorrhoeae gene having locus tag NGO0620,a transcript of N. gonorrhoeae gene having locus tag NGO1659,a transcript of N. gonorrhoeae gene having locus tag NGO1291,a transcript of N. gonorrhoeae gene having locus tag NGO0648,a transcript of N. gonorrhoeae gene having locus tag NGO0593,a transcript of N. gonorrhoeae gene having locus tag NGO1804,a transcript of N. gonorrhoeae gene having locus tag NGO0618,a transcript of N. gonorrhoeae gene having locus tag NGO0619,a transcript of N. gonorrhoeae gene having locus tag NGO1812,a transcript of N. gonorrhoeae gene having locus tag NGO1890,a transcript of N. gonorrhoeae gene having locus tag NGO2098,a transcript of N. gonorrhoeae gene having locus tag NGO2100,a transcript tRNA having a GenelD A9Y61 RS02445 or NGO t12,a transcript tRNA having a GenelD A9Y61 RS04515 or NGO t15,a transcript tRNA having a GenelD A9Y61 RS04510 or NGO t14,a transcript tRNA having a GenelD A9Y61 RS09170 or NGO t37,a transcript tRNA having a GenelD A9Y61 RS00075 or NGO t01, anda sequence having at least 80% identity with any one of the transcripts.
  • 54. The method of claim 53, the method further comprising detecting whether there is a downshift in the transcript expression value of the RNA marker of N. gonorrhoeae following the contacting by comparing the antibiotic treated transcript expression value with an untreated marker expression value of the RNA marker of N. gonorrhoeae.
  • 55. The method of claim 54, wherein the reference expression value of the RNA marker of N. gonorrhoeae is a control transcript expression value obtained by quantitatively detecting the RNA of N. gonorrhoeae in a control sample of the isolate or specimen not treated with the antibiotic.
  • 56. The method of claim 55, wherein the quantitatively detecting a transcript expression value of an RNA marker of N. gonorrhoeae is performed by contacting a sample of an isolate or specimen comprising the N. gonorrhoeae with an antibiotic to obtain an antibiotic treated sample,quantitatively detecting a transcript expression value of a RNA marker of N. gonorrhoeae in the antibiotic treated sample, to provide an antibiotic treated transcript expression value for the RNA marker of N. gonorrhoeae,quantitatively detecting the transcript expression value of the RNA marker of N. gonorrhoeae in a control sample of the isolate or specimen comprising the N. gonorrhoeae, to provide a control transcript expression value of the RNA marker of N. gonorrhoeae herein described; anddetecting whether there is a downshift of the transcript of the RNA marker of N. gonorrhoeae herein described in the treated sample with respect to the control sample.
  • 57. The method of claim 54, further comprising normalizing the antibiotic treated transcript expression value, the control transcript expression value and/or the related ratio, before detecting whether there is a downshift.
  • 58. The method of claim 57, wherein the normalizing is performed with a reference measurement selected from expression value of a reference RNA, preferably a low variability and/or highly expressed RNA, DNA, number of cells, number of samples, effective amount of sample used and/or a related ratio.
  • 59. The method of claim 54, wherein the downshift of the transcript presence is at least 1.5-fold.
  • 60. The method of claim 54 , wherein the downshift of the transcript presence is at least 4-fold.
  • 61. The method of claim 54 , wherein the downshift of the transcript presence is 6-fold or higher.
  • 62. The method of claim 54, wherein contacting the sample with an antibiotic is performed for up to 15 minutes.
  • 63. The method of claim 54, wherein contacting the sample with an antibiotic is performed for up to 10 minutes.
  • 64. The method of claim 54, wherein contacting the sample with an antibiotic is performed for up to 5 minutes.
  • 65. The method of claim 54, wherein the quantitatively detecting is performed by using a probe specific for any one of the RNA markers and/or a corresponding cDNA marker and/or a probe specific for a cDNA marker corresponding to any one of the RNA markers.
  • 66. The method of claim 54, wherein the quantitatively detecting is performed in sample pretreated to enrich the RNA of N. gonorrhoeae and/or to remove of human RNA or RNA of other microorganisms in the sample.
  • 67-124. (canceled)
  • 125. A system for performing the method of claim 53, the system comprising a probe specific for an RNA marker, corresponding marker gene and/or corresponding cDNA and reagents for detecting said probe, wherein the RNA marker is selected from a transcript of N. gonorrhoeae gene having locus tag NGO0340,a transcript of N. gonorrhoeae gene having locus tag NGO1837,a transcript of N. gonorrhoeae gene having locus tag NGO1843,a transcript of N. gonorrhoeae gene having locus tag NGO2024,a transcript of N. gonorrhoeae gene having locus tag NGO1845,a transcript of N. gonorrhoeae gene having locus tag NGO1677,a transcript of N. gonorrhoeae gene having locus tag NGO1844,a transcript of N. gonorrhoeae gene having locus tag NGO0171,a transcript of N. gonorrhoeae gene having locus tag NGO1834,a transcript of N. gonorrhoeae gene having locus tag NGO0172,a transcript of N. gonorrhoeae gene having locus tag NGO1835,a transcript of N. gonorrhoeae gene having locus tag NGO1673,a transcript of N. gonorrhoeae gene having locus tag NGO1833,a transcript of N. gonorrhoeae gene having locus tag NGO2173,a transcript of N. gonorrhoeae gene having locus tag NGO0604,a transcript of N. gonorrhoeae gene having locus tag NGO0016,a transcript of N. gonorrhoeae gene having locus tag NGO2174,a transcript of N. gonorrhoeae gene having locus tag NGO2164,a transcript of N. gonorrhoeae gene having locus tag NGO1676,a transcript of N. gonorrhoeae gene having locus tag NGO1679,a transcript of N. gonorrhoeae gene having locus tag NGO1658,a transcript of N. gonorrhoeae gene having locus tag NGO1440,a transcript of N. gonorrhoeae gene having locus tag NGO0174,a transcript of N. gonorrhoeae gene having locus tag NGO0173,a transcript of N. gonorrhoeae gene having locus tag NGO0592,a transcript of N. gonorrhoeae gene having locus tag NGO1680,a transcript of N. gonorrhoeae gene having locus tag NGO0620,a transcript of N. gonorrhoeae gene having locus tag NGO1659,a transcript of N. gonorrhoeae gene having locus tag NGO1291 ,a transcript of N. gonorrhoeae gene having locus tag NGO0648,a transcript of N. gonorrhoeae gene having locus tag NGO0593,a transcript of N. gonorrhoeae gene having locus tag NGO1804,a transcript of N. gonorrhoeae gene having locus tag NGO0618,a transcript of N. gonorrhoeae gene having locus tag NGO0619,a transcript of N. gonorrhoeae gene having locus tag NGO1812,a transcript of N. gonorrhoeae gene having locus tag NGO1890,a transcript of N. gonorrhoeae gene having locus tag NGO2098,a transcript of N. gonorrhoeae gene having locus tag NGO2100,a transcript tRNA having a GenelD A9Y61 RS02445 or NGO t12,a transcript tRNA having a GenelD A9Y61 RS04515 or NGO t15,a transcript tRNA having a GenelD A9Y61 RS04510 or NGO t14,a transcript tRNA having a GenelD A9Y61 RS09170 or NGO t37,a transcript tRNA having a GenelD A9Y61 RS00075 or NGO t01 anda sequence having at least 80% identity with any one of the transcripts.
  • 126. The system of claim 125, wherein the probe comprises a probe specific for a transcript selected from any one of the RNA markers and/or a cDNA corresponding thereto, and a probe specific for a cDNA of any one of the RNA markers.
  • 127. The system of claim 125, wherein the system comprises at least one probe specific for a transcript selected from N. gonorrhoeae gene having locus tag NGO1812,N. gonorrhoeae gene having locus tag NGO1680,N. gonorrhoeae gene having locus tag NGO1291,N. gonorrhoeae gene having locus tag NGO1673,N. gonorrhoeae gene having locus tag NGO0592, andN. gonorrhoeae gene having locus tag NGO0340 or for a corresponding cDNA.
  • 128. The system of claim 125, wherein the system comprises at least one probe specific for a transcript selected from N. gonorrhoeae gene having locus tag NGO1812, and/orN. gonorrhoeae gene having locus tag NGO1680 or for a corresponding cDNA.
  • 129. The system of claim 125, wherein the probe comprises primers configured to specifically hybridize with the transcript and/or the corresponding cDNA.
  • 130. The system of claim 129, wherein the system comprises a probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO1812, the probe comprises a pair of primers having sequence GCTACGATTCTCCCGAATTTGCC (SEQ ID NO: 160) (CCGCCKACCAAACGGTGAAC (SEQ ID NO: 161),a probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO1680, the probe comprises a pair of primers having sequence TTGCCCAACTTGCAATCACG (SEQ ID NO: 162) and AGCACGCAAATCAGCCAATAC (SEQ ID NO: 163),a probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO1291, the probe comprises a pair of primers having sequence GCTTTGGAAAAAGCAGCCG (SEQ ID NO: 164) and GGTTTTGTTGTCGGTCAGGC (SEQ ID NO: 165),a probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO1673, the probe comprises a pair of primers having sequence GACTTTTGCCGCTGCTTTG (SEQ ID NO: 166) and GCGCATTATTCGTGTGCAG (SEQ ID NO: 167),a probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO0592, the probe comprises a pair of primers having sequence AAAGCCTTGGGTATTGCGG (SEQ ID NO: 168) and TGACCAAAGCAACCGGAAC (SEQ ID NO: 169), and/ora probe specific for a transcript of N. gonorrhoeae gene having locus tag NGO0340, the probe comprises a pair of primers having sequence GAGGCTTCCCCCGTATTGAG (SEQ ID NO: 170) and TTCAAAAGCCGCTTCGTTCG (SEQ ID NO: 171).
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is the U.S. National Stage of International Patent Application No. PCT/US2019/044748, entitled “Antibiotic Susceptibility of Microorganisms and Related Markers, Compositions, methods and Systems,” filed on Aug. 1, 2019 which claims priority to U.S. Provisional Application No. 62/713,412, entitled “Antibiotic Susceptibility of Microorganisms and Related Markers, Compositions, methods and Systems” filed on Aug. 1, 2018 with docket number P2255-USP, the content of which is incorporated herein by reference in its entirety.

STATEMENT OF GOVERNMENT GRANT

This invention was made with government support under Federal Award No. IDSEP160030-02awarded by the Department of Health and Human Services (HHS) Office of the Assistant Secretary for Preparedness and Response (ASPR) and the Wellcome Trust under the CARB-X program. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/044748 8/1/2019 WO
Provisional Applications (1)
Number Date Country
62713412 Aug 2018 US