ANTIBODIES AGAINST DISEASE CAUSING AGENTS OF POULTRY AND USES THEREOF

Information

  • Patent Application
  • 20210269512
  • Publication Number
    20210269512
  • Date Filed
    January 04, 2021
    3 years ago
  • Date Published
    September 02, 2021
    3 years ago
Abstract
Described herein are methods and antibodies useful for reducing, eliminating, or preventing infection with a bacterial population in an animal. Also described herein are antigens useful for targeting by heavy chain antibodies and VHH fragments for reducing a bacterial population in an animal.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Feb. 5, 2020, is named 48647_706_301_SL.txt and is 344,000 bytes in size.


FIELD OF THE INVENTION

This invention relates to methods and compositions for the control of microorganisms associated with necrotic enteritis and uses thereof.


BACKGROUND OF THE INVENTION

Losses to the agriculture industry following contamination of livestock with pathogens are a global burden. With a growing global population and no significant increase in the amount of farmland available to agriculture, there is a need to produce larger quantities of food without using more space. Traditional treatment of animals with antibiotics is a major contributor to the emergence of multi-drug resistant organisms and is widely recognised as an unsustainable solution to controlling contamination of livestock. There is a need for the development of pathogen-specific molecules that inhibit infection or association of the pathogen with the host, without encouraging resistance. Global losses to the poultry industry due to the pathogenic organisms that cause necrotic enteritis has been estimated to be $6 billion(1) USD per annum. The bacterium Clostridium perfringens is the causative agent of necrotic enteritis in poultry in conjunction with a variety of predisposing factors(2).


SUMMARY OF THE INVENTION

With reference to the definitions set out below, described herein are polypeptides comprising heavy chain variable region fragments (VHHs) whose intended use includes but is not limited to the following applications in agriculture or an unrelated field: diagnostics, in vitro assays, feed, therapeutics, substrate identification, nutritional supplementation, bioscientific and medical research, and companion diagnostics. Also described herein are polypeptides comprising VHHs that bind and decrease the virulence of disease-causing agents in agriculture. Further to these descriptions, set out below are the uses of polypeptides that comprise VHHs in methods of reducing transmission and severity of disease in host animals, including their use as an ingredient in a product. Further described are the means to produce, characterise, refine and modify VHHs for this purpose.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIGS. 1A-1B: Panel A shows a schematic of camelid heavy chain only antibodies and their relationship to VHH domains. Panel B illustrates the framework regions (FRs) and complementarity determining regions (CDRs) of the VHH domain.



FIGS. 2A-2F: Shows phage ELISA binding data for VHH antibodies of this disclosure.



FIG. 3: Shows that unlabeled CnaA can outcompete labeled CnaA for collagen binding





DEFINITIONS

In describing the present invention, the following terminology is used in accordance with the definitions below.


In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments. However, one skilled in the art will understand that the embodiments provided may be practiced without these details. Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to.” As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise. Further, headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed embodiments.


1) Host

As referred to herein, “host”, “host organism”, “recipient animal”, “host animal” and variations thereof refer to the intended recipient of the product when the product constitutes a feed. In certain embodiments, the host is from the superorder Galloanserae. In certain embodiments, the host is a poultry animal. In certain embodiments, the poultry animal is a chicken, turkey, duck, quail, pigeon, squab or goose. In certain embodiments, the poultry animal is a chicken.


2) Pathogens

As referred to herein, “pathogen”, “pathogenic”, and variations thereof refer to virulent microorganisms, that can be associated with host organisms, that give rise to a symptom or set of symptoms in that organism that are not present in uninfected host organisms, including the reduction in ability to survive, thrive, reproduce. Without limitation, pathogens encompass parasites, bacteria, viruses, prions, protists, fungi and algae. In certain embodiments, the pathogen is a bacterium belonging to the Clostridium genus.


“Virulence”, “virulent” and variations thereof refer to a pathogen's ability to cause symptoms in a host organism. “Virulence factor” refers to nucleic acids, plasmids, genomic islands, genes, peptides, proteins, toxins, lipids, macromolecular machineries or complexes thereof that have a demonstrated or putative role in infection.


“Disease-causing agent” refers to a microorganism, pathogen or virulence factor with a demonstrated or putative role in infection.


3) Bacteria

As referred to herein, “bacteria”, “bacterial” and variations thereof refer, without limitation, to Clostridium species, or any other bacterial species associated with host organisms. In certain embodiments, bacteria may not be virulent in all host organisms it is associated with.


4) Antibodies

A schematic of camelid heavy chain only antibodies and their relationship to VHH domains and complementarity determining regions (CDRs) is shown in FIG. 1. (Panel A). A camelid heavy chain only antibody consists of two heavy chains linked by a disulphide bridge. Each heavy chain contains two constant immunoglobulin domains (CH2 and CH3) linked through a hinge region to a variable immunoglobulin domain (VHH). (Panel B) are derived from single VHH domains. Each VHH domain contains an amino acid sequence of approximately 110-130 amino acids. The VHH domain consists of the following regions starting at the N-terminus (N): framework region 1 (FR1), complementarity-determining region 1 (CDR1), framework region 2 (FR2), complementarity-determining region 2 (CDR2), framework region 3 (FR3), complementarity-determining region 3 (CDR3), and framework region 4 (FR4). The domain ends at the C-terminus (C). The complementarity-determining regions are highly variable, determine antigen binding by the antibody, and are held together in a scaffold by the framework regions of the VHH domain. The framework regions consist of more conserved amino acid sequences; however, some variability exists in these regions.


As referred to herein “VHH” refers to an antibody or antibody fragment comprising a single heavy chain variable region which may be derived from natural or synthetic sources. NBXs referred to herein are an example of a VHH. In a certain aspect a VHH may lack a portion of a heavy chain constant region (CH2 or CH3), or an entire heavy chain constant region.


As referred to herein “heavy chain antibody” refers to an antibody that comprises two heavy chains and lacks the two light chains normally found in a conventional antibody. The heavy chain antibody may originate from a species of the Camelidae family or Chondrichthyes class. Heavy chain antibodies retain specific binding to an antigen in the absence of any light chain.


As referred to herein “specific binding”, “specifically binds” or variations thereof refer to binding that occurs between an antibody and its target molecule that is mediated by at least one complementarity determining region (CDR) of the antibody's variable region. Binding that is between the constant region and another molecule, such as Protein A or G, for example, does not constitute specific binding.


As referred to herein “antibody fragment” refers to any portion of a conventional or heavy chain antibody that retains a capacity to specifically bind a target antigen and may include a single chain antibody, a variable region fragment of a heavy chain antibody, a nanobody, a polypeptide or an immunoglobulin new antigen receptor (IgNAR).


As referred to herein an “antibody originates from a species” when any of the CDR regions of the antibody were raised in an animal of said species. Antibodies that are raised in a certain species and then optimized by an in vitro method (e.g., phage display) are considered to have originated from that species.


As referred to herein “conventional antibody” refers to any full-sized immunoglobulin that comprises two heavy chain molecules and two light chain molecules joined together by a disulfide bond. In certain embodiments, the antibodies, compositions, feeds, products, and methods described herein do not utilize conventional antibodies.


5) Production System

As referred to herein, “production system” and variations thereof refer to any system that can be used to produce any physical embodiment of the invention or modified forms of the invention. Without limitation, this includes but is not limited to biological production by any of the following: bacteria, yeast, algae, arthropods, arthropod cells, plants, mammalian cells. Without limitation, biological production can give rise to antibodies that can be intracellular, periplasmic, membrane-associated, secreted, or phage-associated. Without limitation, “production system” and variations thereof also include, without limitation, any synthetic production system. This includes, without limitation, de novo protein synthesis, protein synthesis in the presence of cell extracts, protein synthesis in the presence of purified enzymes, and any other alternative protein synthesis system.


6) Product

As referred to herein, “product” refers to any physical embodiment of the invention or modified forms of the invention, wherein the binding of the VHH to any molecule, including itself, defines its use. Without limitation, this includes a feed, a feed additive, a nutritional supplement, a premix, a medicine, a therapeutic, a drug, a diagnostic tool, a component or entirety of an in vitro assay, a component or the entirety of a diagnostic assay (including companion diagnostic assays).


7) Feed Product

As referred to herein, “feed product” refers to any physical embodiment of the invention or modified forms of the invention, wherein the binding of the VHH to any molecule, including itself, defines its intended use as a product that is taken up by a host organism. Without limitation, this includes a feed, a pellet, a feed additive, a nutritional supplement, a premix, a medicine, a therapeutic or a drug.


DETAILED DESCRIPTION OF THE INVENTION

Descriptions of the invention provided are to be interpreted in conjunction with the definitions and caveats provided herein.


For many years, the agriculture industry has utilized antibiotics to control pathogenic bacteria. These antibiotics also acted as growth promoters. This approach has contributed greatly to the spread of antibiotic resistance amongst pathogenic organisms. To phase out antibiotics for non-medicinal purposes and limit antimicrobial resistance, the use of antibiotics as growth promoters in animal feed has already been banned in Europe (effective from 2006). Widespread protection of farmed animals through vaccination has failed due to the short lifespan of many agriculturally important animals, logistical challenges with vaccination of industrial-sized flocks, and high costs. The withdrawal of prophylactic antibiotics in animal feed and the failure of vaccination to offer widespread protection underpins the need for the development of non-antibiotic products to administer to agricultural animals to prevent infection and promote growth.


Significant pathogens affecting poultry animals include bacteria, such as members of the Clostridium and Salmonella genera, among others, as well as parasites, such as members of the Eimeria genus.


Losses due to Clostridium perfringens, the causative agent of necrotic enteritis are estimated at $6 billion(1) USD per annum. Necrotic enteritis can lead to significant mortality in chicken flocks(3). At subclinical levels, damage to the intestinal mucosa caused by C. perfringens leads to decreased digestion and absorption, reduced weight gain and increased feed conversion ratio(3). Typically, necrotic enteritis occurs after some other predisposing factor causes mucosal damage to the chicken(2) C. perfringens virulence factors associated with necrotic enteritis have been shown to include production of toxins and adherence to collagen(4).


Subclinical infection by Eimeria parasites is one of the most common predisposing factors for necrotic enteritis(2). These parasites can physically damage the epithelial layer and induce mucose generation(5). In addition, Eimeria parasites are also the causative agent of coccidiosis in chickens, a disease that is estimated to cause €10 billion in poultry losses globally(6). Coccidiosis is characterized by reduced weight gain and feed conversion, malabsorption, cell lysis of cells linking, and diarrhea(7).


Changes to the gastrointestinal tract microbiota can also serve to induce necrotic enteritis. For example, early infections early of chicks by Salmonella enterica can result in the development of necrotic enteritis in experimental models, possibly through alteration of the host immune response(8).


Other proposed predisposing factors for the development of necrotic enteritis include immune suppression by viral infections, physical changes to the gut caused by alterations to the diet, and poor animal husbandry(2).


Earlier efforts in the field of this invention rely on the host organism to generate protection against disease-causing agents. This approach is often limited by the short lifespan of the host organisms affected by the pathogens listed above, which do allow the host organism's immune system enough time to generate long-lasting immunity. Furthermore, the effectiveness of prior arts is limited by technical challenges associated with widespread vaccination of large flocks of host organisms. These problems are circumvented by introducing exogenous peptides that neutralise the virulence and spread of the disease-causing agent into the host via feed without eliciting the host immune response. Moreover, the methods described herein provide scope for the adaptation and refinement of neutralising peptides, which provides synthetic functionality beyond what the host is naturally able to produce.


Antibody heavy chain variable region fragments (VHHs) are small (12-15 kDa) proteins that comprise specific binding regions to antigens. When introduced into an animal, VHHs bind and neutralise the effect of disease-causing agents in situ. Owing to their smaller mass, they are less susceptible than conventional antibodies, such as previously documented IgYs, to cleavage by enzymes found in host organisms, more resilient to temperature and pH changes, more soluble, have low systemic absorption and are easier to recombinantly produce on a large scale, making them more suitable for use in animal therapeutics than conventional antibodies.


Antibodies for Preventing or Reducing Virulence (Summary)

In one aspect, the present invention provides a polypeptide or pluralities thereof comprising a VHH or VHHs that bind disease-causing agents to reduce the severity and transmission of disease between and across species. In certain embodiments, the VHH is supplied to host animals. In certain embodiments, the VHH is an ingredient of a product.


Binding to Reduce Virulence

In another aspect, the present invention provides a polypeptide or pluralities thereof comprising a VHH or VHHs that bind disease-causing agents, and in doing so, reduce the ability of the disease-causing agent to exert a pathological function or contribute to a disease phenotype. In certain embodiments, binding of the VHH(s) to the disease-causing agent reduces the rate of replication of the disease-causing agent. In certain embodiments, binding of the VHH(s) to the disease-causing agent reduces the ability of the disease-causing agent to bind to its cognate receptor. In certain embodiments, binding of the VHH(s) to the disease-causing agent reduces the ability of the disease-causing agent to interact with another molecule or molecules. In certain embodiments, binding of the VHH(s) to the disease-causing agent reduces the mobility or motility of the disease-causing agent. In certain embodiments, binding of the VHH(s) to the disease-causing agent reduces the ability of the disease-causing agent to reach the site of infection. In certain embodiments, binding of the VHH(s) to the disease-causing agent reduces the ability of the disease-causing agent to cause cell death.


Antibodies Derived from Llamas


In a further aspect, the present invention provides a method for the inoculation of Camelid or other species with recombinant virulence factors, the retrieval of mRNA encoding VHH domains from lymphocytes of the inoculated organism, the reverse transcription of mRNA encoding VHH domains to produce cDNA, the cloning of cDNA into a suitable vector and the recombinant expression of the VHH from the vector. In certain embodiments, the camelid can be a dromedary, camel, llama, alpaca, vicuna or guacano, without limitation. In certain embodiments, the inoculated species can be, without limitation, any organism that can produce single domain antibodies, including cartilaginous fish, such as a member of the Chondrichthyes class of organisms, which includes for example sharks, rays, skates and sawfish. In certain embodiments, the heavy chain antibody comprises a sequence set forth in Table 1. In certain embodiments, the heavy chain antibody comprises an amino acid sequence with at least 80%, 90%, 95%, 97%, or 99% identity to any sequence disclosed in Table 1. In certain embodiments, the heavy chain antibody possess a CDR1 set forth in Table 2. In certain embodiments, the heavy chain antibody possess a CDR2 set forth in Table 2. In certain embodiments, the heavy chain antibody possess a CDR3 set forth in Table 2.









TABLE 1







Unique SEQ IDs for VHH antibodies of this disclosure










SEQ





ID





NO:
NBX
Amino acid sequence
Antigen





  1
NBX0301
QVQLQESGGGVVQAGGSLSLSCSPYQRASSLFAMGWFRQSPGKEREFVAGI
NetB




SWNGDKSQYADSVKDRFTISRDNDKNTVFLQMNSLKPEDTAVYYCAAHRAS





FELGFATHDYDFWGQGTQVTVSS






  2
NBX0302
QVQLQESGGGLVQTGGSLRLSCVASGSIFSISSAVWSRQAPGKQREWVASIFS
NetB




DGSTNYATSVKGRFTISRDHAKNTVYLQMNSLKPEDTGVYYCAVDGYRGQGT





QVTVSS






  3
NBX0303
QVQLQESGGGLVQAGGSLRLSCTASGRTLSYWTMGWFRQAPGKEREFVAAI
NetB




NWSSGTRYSDSVRDRFTIDGDTDKTTVYLEMNKMNLDDSAVYYCAAHRASF





GLGYQTHEYDFWGQGTQVTVSS






  4
NBX0304
QVQLQESGGGLVQTGDSLRLSCTASGGTFSSYTMGWYRQAPGKGREFVGSI
NetB




TWNSEVTYYADSVKGRFTISRDNAKNMMNLQMNSLKPEDTAVYYCAAGRA





GSGFTSWGQGTQVTVSS






  5
NBX0305
QVQLQESGGGLVQPGGSLRLSCTASGFTLDKYAVGWFRQAPGKEREGVSCIS
NetB




SIDDSTDYVDSVKGRFTISRDNAKNAVYLQMNSLKPEDTAVYNCMTIPLPYGS





TCDIPSRSDLLAINYWGKGTLVTVSS






  6
NBX0306
QVQLQQSGGGLVQPGGSLRLSCTASGFTVPYYYIGWFRQAPGKEREGISCIAS
NetB




SSGKAYYADSVKGRFTLSKDNAKNTAYLQMDSLKPEDTAVYYCAALRKYGSTC





YLHVLEYDYWGQGTQVNVSS






  7
NBX0307
QVQLQESGGGLVQAGGSLRLSCTASGRTLSYWTMGWFRQVPGKEREFVAAI
NetB




NWSSGTRYSESVRDRFTIDGDTDKTTVYLEMNKMNLDDSAVYYCAAHRASF





GLGYQTHEYDFWGQGTQVTVSS






  8
NBX0308
QVQLQQSGGGLVQAGGSLRLSCTASGRTLSYWTMGWFRQVPGKEREFVAA
NetB




INWSSGTRYSESVRDRFTIDGDTDKTTVYLEMNKMNLDDSAVYYCAAHRASF





GLGYQTHEYDFWGQGTQVTVSS






  9
NBX0309
QVQLQQSGGGLVQAGGSLRLSCAASGSTFNNYMIGWFRQAPGKEREFVATI
NetB




SGSGAGTFYADSVRGRFTISRDNAKNTVYLQMNSLKLEDTAGYYCARRMSRS





GIFGLRDYDSWGQGTQVTVSS






 10
NBX0310
QVQLQQSGGGVVQAGGSLSLSCSPYQRASSLFAMGWFRQSPGKEREFVAGI
NetB




SWNGDKSQYADSVKDRFTISRDNDKNTVFLQMNSLKPEDTAVYYCAAHRAS





FELGFATHDYDFWGQGTQVTVSS






 11
NBX0311
QVQLQESGGGLVQAGGSLRLSCAASGRTFSNADMAWFRQSPGKERESVAAI
NetB




SWSGGRTYYADSVKGRATISRDIAKDTVYLQMNSLKPEDTAVYYCAAGGYSN





LPTSYGYWGQGTQVTVSS






 12
NBX0316
QVQLQESGGGLVQTGGSLRLSCAASGRAFSTYGMGWFRQAPGKEREFVAGI
CnaA




SSSGAGSAYVDSVKHRFTVSRDNAKNTMYLQMNSLKPEDTAVYYCAASTTS





WGKFAHYIYWGQGTQVTVSS






 13
NBX0317
QVQLQESGGGLVQAGGSLRLSCAASGGTFSSYIMGWFRQAPGKDREFVGAI
CnaA




SWSGGVTHYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAADSRIS





AGGSYYEADFGSWGQGTQVTVSS






 14
NBX0318
QVQLQESGGGLVQAGGSLRLSCVVSGSIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGNTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTDVYYCAALLDSYY





WGQGTQVTVSS






 15
NBX0319
QVQLQESGGGLVQAGGSLRLSCAASASIISIRVMGWYRQAPGKQRELVATM
NetB




SRGGTINYADSVRGRFTISRDNAKSTVFLEMNSLKPEDTAVYYCTALLDSYYW





GQGTQVTVSS






 16
NBX0320
QVQLQESGGGLVQAGGSLRLSCAASGSIFSIRVMGWYRQAPGKQRELVATM
NetB




SRGGTINYADSVRGRFTISRDNAKITVYLQMTSLKPEDTAVYYCAALLDSYYW





GQGTQVTVSS






 17
NBX0321
QVQLQESGGGLVQPGGSLRLSCTASGFTLDKYAVGWFRQAPGKEREGVSCIS
NetB




SIDDSTDYVDSVKGRFTISRDNAKNAVYLQMNSLKPEDTAVYDCMTIPLPYGS





TCRIPSRSDLLAINYWGKGTLVTVSS






 18
NBX0322
QVQLQESGGGLVQAGGSLRLSCQGSGRTFSTYAMGWYRQAPGKEREFVAAI
NetB




TRGGNTIYADSVKGRFTISRVSDKNTVYLQMSSLKPEDTAVYYCAADRIIVPRD





PMDYWGKGTLVTVSS






 19
NBX0323
QVQLQQSGGGLVQAGGSLRLSCTASGRTLSYWTMGWFRQAPGKEREFVAA
NetB




INWSSGTRYSDSVRDRFTIDGDTDKTTVYLEMNKMNLDDSAVYYCAAHRASF





GLGYQTHEYDFWGQGTQVTVSS






 20
NBX0324
QVQLQESGGGLVQAGGSLRLTCTASGRTLSYWTMGWFRQAPGKEREFVAAI
NetB




NWSSGTRYSDSVKDRFTIDGDSDKTTVYLQMNSLNLDDSAVYYCAAHRASFG





LGYQTHEYDFWGQGTQVTVSS






 21
NBX0325
QVQLQESGGGLVQAGDSLRLSCLASGGTFSSYIMGWFRQAPGKDREFVGAIS
CnaA




WSGGVTHYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAADSRISA





GGSYYEADFGSWGQGTQVTVSS






 22
NBX0326
QVQLQESGGGLVQAGGSLRLTCAVSGRTFSAIHMGWFRQAPGKEREFVAGI
CnaA




SWSGGGTAYGGTVKGRFTISRDNAKNTVSLQMNSLKSEDTAVYYCAASDTD





WGRSASYDYWGQGTQVTVSA






 23
NBX0327
QVQLQQSGGGLVQAGGSLRLSCAASGGTFSSYVMGWFRQAPGKDREFVGA
CnaA




ISWSGGVTHYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAADSRIS





AGGSYYEADFGSWGQGTQVTVSS






 24
NBX0328
QVQLQQSGGGLVQAGDSLRLSCATSGRTFSSYTMGWFRQTPGKEREFVAAI
Cpa




SWSGTYYTDSVKGRFTISRDTAKNTVYLQMNSLKPEDTAVYYCAVGSRRLYYS





SDINYWGQGTQVTVSS






 25
NBX0329
QVQLQESGGGLVQAGGSLRLSCATSGLTVSRYTMGWFRQTPGKDREFVAAI
Cpa




SWSGTYYTDSVKGRFTISVDNAKNMVYLQMNSLKPEDTAVYYCAAGSRRLYY





SNDINYWGQGTQVTVSS






 26
NBX0330
QVQLQESGGGLVQAGGSLRLSCAASSRTFSNYAMAWFRQTPGKEREFLATIN
Cpa




GDTTFTIYADSVKGRFTISRDNAKNTLYLQMNSLKAEDTAVYYCAARQWNPT





MRERDYGYWGQGTEVTVSS






 27
NBX0331
QVQLQESGGGLVQAGGSLRLSCAASGRVFENYFMGWFRQAPGKEREFVAA
Cpb2




TNWNTATNWNTYYAAFVKARFTISRDKAKNTLYLQMNSLKPEDTAVYYCAA





TGSRTYDVVDYYDYWGQGTQVTVSS






 28
NBX0332
QVQLQESGGGLVQAGGSLRLSCAASGRTFSSYSMAWFRQAPGKERESVAAIT
Cpb2




YSGITTAYTDSVKGRFTIWRDNAKNTVYLQMNSLKPEDTAVYYCAASYSASRS





YPFGEYDYWGQGTQVTVSS






 29
NBX0333
QVQLQESGGGLVQAGGSLRLSCAASGRTFSSYSMAWFRQAPGKERESVAAIT
Cpb2




YSGISTAYTDSVKGRFTISRDNAKNTVYLYMNSLKPEDTAVYYCAASYSASRSY





PFGEYDYWGQGTQVTVSS






 30
NBX0334
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSAMSWMRQAPGKAVEWVSS
Cpb2




INIGGDSRRYAESVAGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCAKGLASTI





RGQGTQVTVSS






 31
NBX0335
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSAMSWMRQAPGKGVEWVS
Cpb2




SIEVGGGRRYAESVAGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCSKGLASTI





RGQGTQVTVSS






 32
NBX0336
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSAMSWMRQAPGKGVEWVS
Cpb2




SIGIDGGRRYAEAVAGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCAKGLASTI





RGQGTQVTVSS






 33
NBX0337
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSAMSWMRQAPGKGVEWVS
Cpb2




SIGIGGGTTRYADSVAGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCAKGLAST





IRGQGTQVTVSS






 34
NBX0338
QVQLQESGGGLVQAGDSLRLSCATSGRSFSSYTMGWFRQTPGKEREFVAAIS
Cpa




WSGTYYTDSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVGSRRLYYSS





DINYWGQGTQVTVSS






 35
NBX0339
QVQLQESGGGLVQAGDSLRLSCATSGLTVSRYTMGWFRQTPGKEREFVAAIS
Cpa




WSGTYYTDSVKGRFTISRDNAKNMVYLQMNSLKPEDTAVYYCAAGSRRLHYS





SDINYWGQGTQVTVSS






 36
NBX0340
QVQLQESGGGLVQAGESLRLSCLAAGRTFSTSTLGWFRQAPGLEREFVAAIRY
Cpa




TSDYTARTTDYADSVKGRFAISRDYIKQAVYLQMNNLKPEDTAVYYCAAAKYG





MGYSDPSGYTYWGQGTQVTVSS






 37
NBX0341
QVQLQESGGGLVQAGGSLRLSCAASSRTFSNYAMAWFRQTPGKEREFLAAIT
Cpa




GDTAFTIYADSVKGRFTISRDNPKNTLYLQMNSLKAEDTAVYYCAARQWNPT





MRERDYGYWGQGTEVTVSS






 38
NBX0342
QVQLQESGGGLVQAGGSLRLSCAASGRRFRLYHMGWFRQAPGKEREFVAVI
Cpb2




SWSGGTTVYADSVKGRFTISRDNEKNAGYLQMNSLKPEDTAVYYCAVDRLIE





SFSDPTAWPRMDYWGKGALVTVSS






 39
NBX0343
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSAMSWMRQAPGKGVEWVS
Cpb2




SINIGGGTTSYADSVAGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCAKGLAST





IRGQGTQVTVSS






 40
NBX0344
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSAMSWMRQAPGKGVEWVS
Cpb2




SINIGGGTRRYAESVAGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCAKGLAST





IRGQGTQVTVSS






 41
NBX0345
QVQLQESGGGLVQAGGSLRLSCAASGRKFRLYHMGWFRQAPGKEREFVAVI
Cpb2




SWSGGSTVYADSVKGRFTISRDNEKNAGYLQMNSLKPEDTAVYYCAVDRLIES





FSDPTAWPRMDYWGKGALVTVSS






 42
NBX0346
QVQLQQSGGGLVQPGGSLRLSCAASGFTFSNSAMSWMRQAPGKGVEWVS
Cpb2




SINIGGGTRYADSVAGRFTIYRDNAKNTLYLQMNSLKSEDTAVYYCAKGLASTI





RGQGTQVTVSS






 43
NBX0347
QVQLQESGGGSVQAGGSLRLSCAASGRTFSSYDMGWFRQAPGKEREWVAS
Cpb2




ISYNIYYADFVKGRFTISKDNAKNTVSLQMNSLKPEDTAVYYCAAVQRRGSYSY





DRAQSYDYWGQGTQVTVSS






 44
NBX0348
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSAMSWMRQAPGKGVEWVS
Cpb2




SIEIGGTRRYAESVAGRFTISRDNAKNTLYLQMNSLKAEDTAVYYCAKGLASTI





RGQGTQVTVSS






 45
NBX0349
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSPMSWMRQAPGKGVEWVSS
Cpb2




INIGAGTTRYAESVAGRFTIARDNAKNTLYLQMNSLKPEDTAVYYCAKGLASTI





RGQGTQVIVSS






 46
NBX0350
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSAMSWMRQAPGKGVEWVS
Cpb2




SINIGGGDKRYAESVAGRFTISRDNAKNTLYLQMNSLKFEDTAVYYCAKGLAST





IRGQGTQVTVSS






 47
NBX0351
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSAMSWMRQAPGKGVEWVS
Cpb2




SIETGGTKRYAESVAGRFTISRDNAKNTLNLQMNSLKPEDTAVYYCAKGLASTI





RGQGTQVTVSS






 48
NBX0352
QVQLQQSGGGLVQPGGSLRLSCAASGFTFSNSPMSWMRQAPGKGVEWVS
Cpb2




SINIGEGTTRYAESVAGRFTISRDNVKNTLYLQMNSLKPEDTAVYYCAKGLASTI





RGQGTQVTVSS






 49
NBX0353
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSPMSWMRQAPGKGVEWVSS
Cpb2




INIGGDTRRYAESVAGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKGLASTI





RGQGTQVTVSS






 50
NBX0354
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSAMSWMRQAPGNGVEWVS
Cpb2




SVNIDGGRRYAEAVAGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCAKGLAST





IRGQGTQVTVSS






 51
NBX0355
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSAMAWMRQAPGKGVEWVS
Cpb2




SISIDGGRRYAEAVAGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCAKGLASTI





RGQGTQVTVSS






 52
NBX0356
QVQLQESGGGLVQAGGSLRLSCAASGGKFTLYHMGWFRQTPGKEREFVAVI
Cpb2




SWSGRSTVYADSVKGRFTISRDNDKNAGYLQMNSLKPEDTAIYYCAVDRLIEK





FSDPTAWPRMDSWGRGTLVTVSS






 53
NBX0357
QVQLQESGGGLVQAGDSLRLSCAASGRTASMGWFRQAPGTQREFVATITRS
Cpb2




SIYTDYSDSVKGRFAISRDNAKNTVYLQMNSLKPEDTAVYYCAADSTMSGSSR





YSSDYAYWGQGTQVTVSS






 54
NBX0358
QVQLQESGGGLVQPGGSLRLSCAASGFTFSNSPMSWMRQAPGKGVEWVSS
Cpb2




IDIGGNRRYAEAVAGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCAKGLASTIR





GQGTQVTVSS






 55
NBX0359
QVQLQESGGGLVQAGGSLRLSCAVSGRRFTLYHMGWFRQRPGKEREFVAVI
Cpb2




SWSGGSTVYADSVKGRFTISRDNEKNAGYLQMNSLKPEDTAVYYCAVDRLIES





FSDPTAWPRMDYWGKGALVTVSS






 56
NBX0360
QVQLQQSGGGLVQAGGSLRLSCAASGRRFSLYHMGWFRQAPGKEREFVAVI
Cpb2




SWSGGTTVYADSVKGRFTISRDNEKNAGYLQMNSLKPEDTAVYYCAVDRLIE





SFSDPTAWPRMDYWGKGALVTVSS






212
NBX0361
QVQLQESGGGLVQAGGSLRLSCAASGSIFSIRVMGWYRQAPGKQRELVATM
NetB




SRGGTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTAVYYCAALLDSYYW





GQGTQVTVSS






213
NBX0362
QVQLQESGGGLVQAGGSLRLSCVVSGSIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGNTINYADSVRGRFTISRDNAKSTVFLEMNSLKPEDTAVYYCAALLDSYY





WGQGTQVTVSS






214
NBX0363
QVQLQESGGGLVQAGGSLRLSCAASASIISIRVMGWYRQAPGKQRELVATM
NetB




SRGGTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTDVYYCAALLDSYYW





GQGTQVTVSS






215
NBX0364
QVQLQESGGGLVQAGGSLRLSCVVSGSIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGGTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTAVYYCTALLDSYY





WGQGTQVTVSS






216
NBX0365
QVQLQESGGGLVQAGGSLRLSCAASGSIFSIRVMGWYRQAPGKQRELVATM
NetB




SRGGTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTAVYYCTALLDSYYW





GQGTQVTVSS






217
NBX0366
QVQLQESGGGLVQAGGSLRLSCVVSGSIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGGTINYADSVRGRFTISRDNAKNTVYLQMTSLKPEDTAVYYCTALLDSYY





WGQGTQVTVSS






218
NBX0367
QVQLQESGGGLVQAGGSLRLSCAASGSIFSIRVMGWYRQAPGKQRELVATM
NetB




SRGGTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTDVYYCAALLDSYYW





GQGTQVTVSS






219
NBX0368
QVQLQESGGGLVQAGGSLRLSCVVSGSIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGNTINYADSVRGRFTISRDNAKNTVYLQMTSLKPEDTAVYYCAALLDSYY





WGQGTQVTVSS






220
NBX0369
QVQLQESGGGLVQAGGSLRLSCAASASIFSIRVMGWYRQAPGKQRELVATM
NetB




SRGNTINYADSVRGRFTISRDNAKSTVYLQMTSLKPEDTAVYYCAALLDSYYW





GQGTQVTVSS






221
NBX0370
QVQLQESGGGLVQAGGSLRLSCVVSGSIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGGTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTAVYYCAALLDSYY





WGQGTQVTVSS






222
NBX0371
QVQLQESGGGLVQAGGSLRLSCAASASIISIRVMGWYRQAPGKQRELVATM
NetB




SRGGTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTAVYYCTALLDSYYW





GQGTQVTVSS






223
NBX0372
QVQLQESGGGLVQAGGSLRLSCAASASIISIRVMGWYRQAPGKQRELVATM
NetB




SRGGTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTAVYYCAALLDSYYW





GQGTQVTVSS






224
NBX0373
QVQLQESGGGLVQAGGSLRLSCAASASIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGNTINYADSVRGRFTISRDNAKSTVFLEMNSLKPEDTAVYYCAALLDSYY





WGQGTQVTVSS






225
NBX0374
QVQLQESGGGLVQAGGSLRLSCAASASIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGGTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTDVYYCAALLDSYY





WGQGTQVTVSS






226
NBX0375
QVQLQESGGGLVQAGGSLRLSCVVSGSIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGGTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTDVYYCAALLDSYY





WGQGTQVTVSS






227
NBX0376
QVQLQESGGGLVQAGGSLRLSCAASASIISIRVMGWYRQAPGKQRELVATM
NetB




SRGGTINYADSVRGRFTISRDNAKSTVYLQMTSLKPEDTAVYYCAALLDSYYW





GQGTQVTVSS






228
NBX0377
QVQLQESGGGLVQAGGSLRLSCVVSGSIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGNTINYADSVKGRFTISRDNAKSTVFLQMNSLKPEDTDVYYCAALLDSYY





WGQGTQVTVSS






229
NBX0378
QVQLQESGGGLVQAGGSLRLSCAASASIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGNTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTAVYYCAALLDSYY





WGQGTQVTVSS






230
NBX0379
QVQLQESGGGLVQAGGSLRLSCVVSGSIMSIRVMGWYRQAPGKQRELVAT
NetB




MSRGNTINYADSVRGRFTISRDNAKSTVYLQMNSLKPEDTAVYYCAALLDSYY





WGQGTQVTVSS






231
NBX0380
QVQLQESGGGLVQAGGSLRLSCVVSGSIISIRVMGWYRQAPGKQRELVATM
NetB




SRGGTINYADSVRGRFTISRDNAKSTVFLEMNSLKPEDTAVYYCAALLDSYYW





GQGTQVTVSS






232
NBX0381
QVQLQESGGGLVQAGGSLRLSCAASASIISIRVMGWYRQAPGKQRELVATM
NetB




SRGNTINYADSVRGRFTISRDDAKNTVYLQMNSLRPDDTAVYYCAALLDSYY





WGQGTQVTVSS






233
NBX0501
QVQLQESGGGLVQAGGSLRLSCAASGSIFSINVMGWYRQAPGKQRDLVALIT
NetB




SGGSTTYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNAAQSRTSW





LFPDEYDYWGQGTQVTVSS






234
NBX0502
QVQLQESGGGLVQAGGSLRLSCAASGRTFSIYAMGWFRQAPGKEREFVAVI
NetB




NRGGGTTTYADSVKGRFTISRDNTKNTVSLQMNSLKPDDTAVYYCAADRVTD





TYYYLNPESYDYWGQGTQVTVSS






235
NBX0503
QVQLQESGGGLVQAGGSLRLSCAASGSGRRVGYMAWYRQTPGKQRESVAT
NetB




ISRAGATKYADSVKDRFTISRDNAKDTVYLQMNSLKPDDTAVYYCFASLIDAG





TYWGQGTQVTVSS






236
NBX0504
QVQLQESGGGLVQAGGSLRLSCAASGRTFSIYAMGWFRQAPGKEREFVAVI
NetB




NRSGGTTTYADSVKGRFTISRDNTKNTVSLQMNSLKPDDTAVYYCAADRVTD





TYYYLNPESYDYWGQGTQVTVSS






237
NBX0505
QVQLQESGGGLVQAGGSLRLSCAASGMSFSLGTIYWYRQAPGKQREFVAFIT
NetB




NADTTMYANSVKGRFTISRDNGKNTVFLLMNNLKPEDSAVYYCNTATSWGQ





GTQVTVSS






238
NBX0506
QVQLQESGGGLVQAGGSLRVSCAASGSGRRVGYMAWYRQTPGKQRELVAT
NetB




ISRAGATNYADSVKDRFTISRDNAKNTVYLQMNSLKPDDTAVYYCFASVFDA





GTYWGQGTQVTVSS






239
NBX0507
QVQLQESGGGLVQAGGSLRLSCAASGSGRRVGYMAWYRQTPGKQRELVATI
NetB




SRAGATNYADSVKDRFTISRDNAKNTVYLQMNSLKPDDTAVYYCFASIFDAGT





YWGQGTQVTVSS






240
NBX0508
QVQLQESGGGLVQAGGSLRLSCVASGSGSRINYMAWHRQTPGRQRELVAVI
NetB




NRTGAANYARSVKDRFTISRDNAKNTVYLQMNDLKPDDTAIYYCFASYLGAG





AYWGQGTQVTVSS






241
NBX0509
QVQLQESGGGLVQAGGSLRLSCAASGRTFSTYTVGWFRQAPGKEREFVASIT
NetB




WNGGTILYADSVKGRFTISRDNAKNTVLLQMNSLKPEDTAVYYCVMGAAGQ





GWRYWGQGTQVTVSS






242
NBX0510
QVQLQESGGGLVQAGGSLRLSCVASGSGSRINYMAWHRQTPGRQRELVAVI
NetB




NRTGAAKYADSVKDRFTVSRDNAENTVYLQMNDLKPDDTAVYYCWASYLGA





GTYWGQGIQVTVSS






243
NBX0511
QVQLQESGGGLVQPGGSLRLSCAASGFTFSRNYMSWVRQAPGKGLEWVGSI
NetB




YSDDSTNYAPSVKGRFTISRDNAANTLYLQMNSLKSEDTAVYYCSKEGGLRGQ





GTQVTVSS






244
NBX0512
QVQLQQSGGGLVQAGGSLRLSCAASGSGRRVGYMAWYRQTPGKQRELVAT
NetB




ISRAGATNYADSVKDRFTISRDNAKNTVYLQMNSLKPDDTAVYYCFASVFDA





GTYWGQGTQVTVSS






245
NBX0513
QVQLQESGGGLVQAGGSLRLSCAASGSGRRVGYMAWYRQTPGKQRELVATI
NetB




SRAGATNYADSVKDRFTISRDNAKNTVYLQMNSLKPDDTAVYYCFASLFDAG





TYWGQGTQVTVSS






246
NBX0514
QVQLQESGGGLVQAGGSLRLSCAASGRTFSGRTMAWFRQAPGKEREFVAAI
CnaA




TWSGGTTYYPDSVKGRFTISRDIPKNTLYLQMNSLKSEDTAVYYCASDGPWR





ATTPDAYDYWGQGTQVTVSS






247
NBX0515
QVQLQESGGGLVQAGGSLRLSCAASGSIGTIDSMGWYREAPGKRRELVAFIM
CnaA




FSGRTIYQDSVKGRFSISGDNAKKTVSLQMTSLKPEDTGVYYCYSNQYWGQG





TQVTVSS






248
NBX0517
QVQLQQSGGGLVQPGGSLRLSCAASEFSLLFGTIGWFRQAPGKEREGVSCVS
CnaA




SSDGSTYYADSVKGRFTISRDKAKNTWYLQMHSLKPEDTAVYYCATRCTVVP





GITWGQGTQVTVSS






249
NBX0518
QVQLQESGGGVVQAGGSLRLSCVAPGSITRVGGMGWYRQPPGKERELVALI
CnaA




NEVGNTNYGDSVKGRFTISRDNAKKTVYLEMNSLKPEDTAVYYCWIPPIPWG





QGTQVTVSS






250
NBX0519
QVQLQESGGGLVQPGGSLRLSCATSPFSLRLGVVGWFRQAPGREREGVSCIS
CnaA




SSEGSTHYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCATRCTVVPG





ITWGQGTQVTVSS






251
NBX0520
QVQLQESGGGLVQAGDSLRLSCAASARTSSSRAMGWFRQTPVREREFVAAIS
CnaA




WSGGRTAYADSVKGRFTLSKYDKDTVSLTMNSLKPEDTAVYYCAARRSDFTG





DYAYSGRSAYDYWGQGTQVTVSS






252
NBX0521
QVQLQESGGGSVQAGGSLRLSCAASGSTFIFDKMDWYRQTPEKSRELVATL
CnaA




MSRGDPYYLDSVKGRFTITRDNAKNTVYLQMNSLKPEDTAVYVCRGRAGERV





YWGQGTQVTVSS






253
NBX0522
QVQLQESGGGLVQPGGSLRLSCAASGRTFSGVIVGWFRQAPGKEREFLATTL
CnaA




WSGGSTYYTDSVKGRFTISRDVAKNMVYLQMNSLKPEDAAIYYCAAKYGGSL





SYMHPTGYTYWGQGTQVTVSS






254
NBX0523
QVQLQESGGGLVQAGGSLRLSCAASRIVFTISTMAWFRQAPGKEREFVASIN
CnaA




RSGALTSHANSVKGRFTISRDAAKNTVYLQMNSLKDEDTAIYYCAASKANMP





ALPANYDYWGQGTQVTVSS






255
NBX0524
QVQLQESGGGVVQAGGSLRLSCVAPGSITRLGSMGWYRQPPGKQRELVALI
CnaA




TAVGNTNYGDSVKGRFTISRDNAKKMVYLEMNSLKPEDTAVYYCWIPPIPW





GQGTQVTVSS






256
NBX0525
QVQLQESGGGVVQAGGSLRLSCVAPGSITRLGGMGWYRQTPGKQRELVALI
CnaA




DTVGNTNYGESVKGRFTISRDNAKKMVYLEMNSLKPEDTAVYYCWIPPIPWG





QGTQVTVSS






257
NBX0526
QVQLQESGGGLVQAGDSLTLSCVASERAFMYNMAWFRQAPGKERDFVAVR
CnaA




NWNVERTNYADFAKGRFTISRDAAKKVMYLKMNNLKPEDTAVYYCATTRV





WPTQHQMGQIEYWGQGTQVTVSS






258
NBX0527
QVQLQESGGGLVQAGGSLRLSCAASSSFNTMGWYRQAPGKQRELVAGITSG
CnaA




GTIKYGDSVKGRFTISGDNAKNTVYLQMDSLKPEDTAVYYCVADWQYGSTW





NYWGQGTQVTVSS






259
NBX0528
QVQLQESGGGLVQAGDSLRLSCAASGRNFDYYSMGWFRQAPGNERIFVAAI
CnaA




NWRGAVIDYPDSVKGRFTISRDNAKNRVYLQMNSLKPEDTAVYYCAAASSSS





RLLEPIGYNYWGQGTQVTVSS






260
NBX0529
QVQLQESGGGLVQAGGSLRLSCAASGSMFSINDMTWYRQAPGKQREMVA
CnaA




TISSGGTTDYTESVKGRFFVIRDNAKITVYLQMNKLRPEDSGVYYCAGNLKRSE





TSYYWKTGQGIQVTVSS






261
NBX0530
QVQLQESGGGLVQTGGSLKLSCATSGRTFSRYHMGWFRQAPGKEREFVAAI
CnaA




SLSGGGTAFANFVEGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCTADRHEW





GRLMKGDYWGQGTQVTVSS






262
NBX0531
QVQLQESGGGSVQAGGSLTVSCSASGRTSNSYNMAWFRQGPGKERELVAAI
CnaA




SWTGGFTSYTNSVKDRFTISRENAKNTVYLQMNSLKPEDTAVYYCAATSRSLT





SAMTREIRAYDYWGQGTQVTVSS






263
NBX0532
QVQLQESGGGLVQAGGSLRLSCAASGSTFSFNKMDWYRQAPEKQRELVATF
CnaA




MNDGNTYYVDSVKGRFTISRDNAKNTVYLQMNSLKFEDTAVYYCRGRAGME





VYWGQGTQVTVSS






264
NBX0533
QVQLQESGGGLVQPGGSLTLSCATSPLTLRLGPIGWFRQAPGKEREGVSCISS
CnaA




RDDKNYAESVKGRFTISRDNAKNMVYLQMNSLKPEDTAVYYCATRCTVVPGI





SWGQGTQVTVSS






265
NBX0534
QVQLQESGGGLVQAGDSLRLSCAASGRNFGYYTMGWFRQAPGNERIFVAAI
CnaA




TWRGVIHHADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAASSSSR





PLEPIGYNYWGQGTQVTVSS






266
NBX0535
QVQLQESGGGLVQAGGSLRLSCTASGDIFSAAGMAWFRQTPGKERDLVAYV
CnaA




TWDGGTTRYKDSVKGRFTISRDNAKNTVLLQMNSLKPEDTAVYYCAAGNTG





PFNLLHSSAQYAYWGQGTQVTVSS






267
NBX0536
QVQLQESGGGLVQAGGSLRLSCATSPLTLRLGAIGWFRQAPGKEREMVSCIT
CnaA




STEDKNYADSVKGRFTISRDNAKTMVYLQMNSLKLEDTAVYYCATRCTVVPGI





SWGQGTQVTVSS






268
NBX0537
QVQLQESGGGVVQAGGSLRLSCVAPGSITRIGGMGWYRQPPGKQRELVALI
CnaA




NTVGNTNYGDSVKGRFTISRDNAKKTVYLEMNSLKPEDTAVYYCWIPPLPWG





QGTQVTVSS






269
NBX0538
QVQLQQSGGGLVQAGGSLRLSCTASGRSFSRYIMGWFRQAPGKERESVARI
NetB




APSGGSAYYADSVKGRFTISRDNAKNIVYLQMNNLKSEDTAVYHCAARYDM





DYEYKTWGPGTQVTVSS






270
NBX0539
QVQLQESGGGLVQAGGSLRLSCVASGSGSRIGFMAWHRQTPGRQRELVAVI
NetB




NRTGATRYADSVKDRFTISRDNAKNTVYLQMNDLKPDDTALYYCFASVVDAG





TYWGQGTQVTVSS






271
NBX0540
QVQLQESGGGLVQPGGSLRVSCAASGLTFSDYAMGWFRQAPGQEREFVARI
NetB




SLTAASTLYADSVRGRFTISRDNAKNTVYLQMNSLRPDDTAVYYCAAQGRILR





GRGLFKASDYDYWGQGTQVTVSS






272
NBX0541
QVQLQQSGGGSVQTGGSLALSCAASGTISIFDPMGWYRQAPGKQRELVASIS
NetB




EGSTNYANSVKGRFTISRDNAKKTVSLQMNSLEPADTAVYYCRLSRYYNSNIY





WGQGTQVTVSS






273
NBX0542
QVQLQESGGGLVQAGGSLRLSCAASRNIYGINVIAWYRQAPGKQREMVARS
NetB




ANGGTTRYADSVKGRFTISRDNVKNIVYLQMSSLKPEDTAAYYCKAELYTLQH





NYEYWGQGTQVTVSS






274
NBX0543
QVQLQESGGGSVQTGGSLALSCVASGTLSLFDPMGWYRQAPGKQRELVASI
NetB




SGLSTNYANSVKGRFTISRDDAKKTVSLQMNSLEPADTAVYYCHLSRYYNSNIY





WGQGTQVTVSS






275
NBX0544
QVQLQESGGGLVQAGGSLRLSCAASGRVLSINAMGWYRQAPGKRREMVAR
NetB




ITNGGSTNYAGSVKGRFTISRENTKNTMYLQMNSLKPEDTAVYYCLAEERPYY





GGPLEYWGQGTQVTVSQ






276
NBX0545
QVQLQESGGGLVQAGGSLRLSCAASRTTFRVGTMAWFRQDPGKQRELVAGI
NetB




TSGGSTNYADSVKGRFTISRDNAKNTIYLQMNSLKPEDTGIYVCFANIVDRPVS





WGQGTQVTVSS






277
NBX0546
QVQLQQSGGGAVQAGGSLTLSCVASGSGSRIGLMAWYRQTPGRQRELVAVI
NetB




KGTGTTRYADSVKDRFTISRDNAKNTMYLQMNDLKPDDTALYYCFASVLGAG





TYWGQGTQVTVSS






278
NBX0547
QVQLQESGGGSVQTGGSLALSCAASGTISLFDSMGWYRQAPGKQRELVASIT
NetB




EGSTNYANSVKGRFTISRDNAKKTVSLQMNSLEPADTAVYYCRLSRYYNSNIY





WGQGTQVTVSS






279
NBX0548
QVQLQQSGGGLVQSGGSLRLSCAASETSLNFDDMRWYRQTPGKRREWVAII
NetB




NTFPAGTTASYADSVKGRFTISKVNGENTVHLQMNRLKPEDTAVYYCNAGDY





WGQGTQVTVSS






280
NBX0549
QVQLQESGGGLVQAGGSLRLSCTASGSDSSINYMGWYRQAPGKQRVLLAAI
NetB




SRDGRSNYADSVRGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCYVDPLGRV





PRWGQGTQVTVSS






281
NBX0550
QVQLQESGGGAVQAGGSLTLSCVASGTVNLMAWYRQTPGRQRELVAVIKG
NetB




TGTTRYADSVKDRFTISRDNAKNTMYLQMNDLKPDDTALYYCFASVLGAGTY





WGQGTQVTVSS






282
NBX0551
QVQLQESGGGLVQAGGSLRLSCAASGSIFSRNIILWHRQAPGKQRELVGGINT
NetB




GGRTNYESSVKGRFTISRDNAKNTVYLQMDRLKPEDTAVYYCNAPSLGYWG





QGTQVTVSS






283
NBX0552
QVQLQQSGGGLVQAGGSLRLSCVASGSGSINYMAWHRQTPGRQRELVAVI
NetB




NRTGAARYADSVKDRFTISRDNAENTMYLQMNDLKPDDTAVYYCFASALGA





GVYWGQGTQVTVSS






284
NBX0553
QVQLQESGGGLVQPGGSLRLSCAASGSGWRVGYMAWYRQTPGKQRELVA
NetB




TISRAGATRYEDSVKDRFTISRDNAKNTVYLQMNSLKPDDTAVYYCFASIIDAG





TYWGQGTPVTVSS






285
NBX0561
QVQLQESGGGLVQAGGSLRLSCTASGENFSTYVMGWFRQAPGKEREFVAA
CnaA




HNWRGGGTYYADSVKGRFTISRDHAKNTVYLEMNSLKPEDTAVYYCAARSG





GSYTYTGSYHYWGQGTQVTVSS






286
NBX0801
QVQLQESGGGLVQAGDSLRLSCAAAGRTFSSYAMGWFRQAPGKEREFVATI
CnaA




SRSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAANRYGSS





SYQGQYASWGQGTQVTVSS






287
NBX0802
QVQLQESGGGLVQAGGSLRLSCAASGRTFSSYHMGWFRQAPGKEREFVATI
CnaA




SRSGGFTSYADSVKGRFTISRDNAKNTVWLQMNSLKPEDTAVYYCAAQQWP





DPRNPNGYDYWGQGTQVTVSS






288
NBX0803
QVQLQESGGGLVQAGGSLRLACAASGRTFINYGMAWFRQSPGKEREFVAAV
CnaA




SISGAGTAYVEPVKDRFTISRDNTKNTLYLQMNTLKPEDTALYYCAAAKAGH





WGRDANYDYWGQGTQVTVSS






289
NBX0804
QVQLQQSGGGLVQAGGSLRLSCSASGRTLTAYGMAWFRQSPGKEREFVAA
CnaA




VSLSGASTAYVEPVKDRFTISRDNTQNTVYLQMNSLKPEDTALYYCAAAKAG





QWGRDAKYDYWGQGTQVTVSS






290
NBX0805
QVQLQQSGGGLVQAGGSLRLSCAASGRTFSTYAMGWFRQAPGKEREFVAGI
CnaA




SWSGGRISYTDSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCTADLKGL





WALGLPGHYASWDSWGQGTQVTVSS






291
NBX0806
QVQLQESGGGLVQPGGSLRLSCAASGSIGSINIMDWYRQAPGKQRDLVATFT
CnaA




SGGSTVYADSVKGRFTISRDNAKDTVYLQMNSLKPEDTAVYYCRARRGWAIY





WGQGTQVTVSS






292
NBX0807
QVQLQQSGGGLVQAGDSLRLSCAASGRTFSSYGMGWFRQATGKEREFVAGI
CnaA




SRTGSGTAYADSVKSRFTISRDNAKNTVYLQMNSLKAEDTAVYYCAADSGGS





WGRGTTYDYWGQGTQVTVSS






293
NBX0808
QVQLQQSGGGSVQAGGSLRLSCRASARASSIGAMAWFRQAPGKDRELVAA
CnaA




VTAGADTTYYRDFVKGRFTLSRDNAKNTVYLQMNSLKLDDTAVYYCAAYNTA





GWGEPHQSYRYWGQGTQVTVSS






294
NBX0809
QVQLQESGGGLVQAGGSLKLSCVASGLTFGNYDMAWFRQAPGKEREFVTHI
CnaA




SSSGAYTSYAYFVKGRFTISRDIAKNTVYLQMNSLKPEDTAIYYCAGRRSVVVR





SFDYDYWGQGTQVTVSS






295
NBX0810
QVQLQQSGGGLVHPGGSLRLSCAASGRIFNANGMYWYRQAPGKQRELVAS
CnaA




LYRSGSTNYLDSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVNWALH





DSWGQGTQVTVSS






296
NBX0811
QVQLQESGGGLVQAGDSLRLSCAASERTFSSDGMAWFRQATGKEREFVAGI
CnaA




SRTGSATAYAEFVKSRFTISRDNAKNTVYLQMNSLKAEDTAVYYCAANSGGH





WWRGATYDYWGQGTQVTVSS






297
NBX0812
QVQLQESGGGLVQAGGSLRLSCTASGTIFSANGMYWYRQALGQRRELVASL
CnaA




YRDGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVNWALH





DSWGQGTQVTVSS






298
NBX0847
QVQLQESGGGVVQAGDSLRLSCTASTRASIVGAMAWFRQAPGRNRDIVAAI
CnaA




AAGSPSTPYYADSVKGRFAISRDNAKNTVYLQMNSLKSEDTAIYYCAAYNTAN





WGQPHQSYRHWGQGIQVTVSS






299
NBX0866
QVQLQESGGGLVQPGGSLRLSAAASGSILNINVMAWFRQAPGKQREWVASI
CnaA




YRDGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVVTYGSN





RRDFWGQGTQVTVST






300
NBX0867
QVQLQESGGGLVQAGDSLRLSCAASGRTFSSYAMGWFRQAPGKDREFVSTI
CnaA




SRSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAANRYGSS





SYQGQYGSWGQGTQVTVSS






301
NBX0868
QVQLQQSGGGLVQAGDSLRLSCAASGRTFSSYAMGWFRQAPGKEREFVASI
CnaA




SRSGGSTYYADSVKVRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAANRYGSS





SYQGQYDYWGQGTQVTVSS






302
NBX0869
QVQLQESGGGLVQAGGSLRLSCTASGTIFSINGMYWYRQALGKRRELVASLY
CnaA




RGGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVNWALQD





SWGQGTQVTVSS






303
NBX0870
QVQLQESGGGLVQAGGSLRLSCAASTSDGSINVMDWYRQTPGKQRDLVATI
CnaA




TSLGSQVYADSVKGRFTISRDNAKDTVYLQMNSLKPEDTAVYYCRARRGWAI





YWGQGTQVTVSS






304
NBX0871
QVQLQQSGGGLVQAGGSLRLSCAASGRTFNIYAMGWFRQAPGKEREFVAGI
CnaA




SDSGGSANYADSVKDRFTISMDNAKNTVYLQMNSLKPEDTAVYYCAADLTGL





WALGLPGHYASWDSWGQGTQVTVSS






305
NBX0872
QVQLQESGGGLVQPGGSLRLSCAASGFTFRSSAMSWVRQVPGKGLEWVSSI
CnaA




GSDGENIYYADAVKGRFTISRDNAKNTMYLQMNSLKLEDTAVYYCQLGRTVL





DYFKGQGTQVTVSS






306
NBX0873
QVQLQESGGGLVQPGGSLRLSCAASGRTFINYGMAWFRQSPGKEREFVAAV
CnaA




SSSGAGTAYVEPVKDRFTISRNNTKNTVYLQMNSLKPEDTALYYCAAAKAGQ





WGRYANYDYWGQGTQVTVSS






307
NBX0874
QVQLQQSGGGLVQAGDSLRLSCAASGRTFSSYAMGWFRQAPGKEREFVAAI
CnaA




SRSGGTTYYADSVKGRFTISRDNAKNTVYLQMNTLKPEDTAVYYCAANPYGSS





SYQGQYGSWGQGTQVTVSS






308
NBX0875
QVQLQQSGGGLVQAGDSLRLSCAASGRAFSGYAMGWFRQAPGREREFVAA
CnaA




ISRGGGTTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAANRYGS





SSYQGQYGSWGQGTQVTVSS






309
NBX0876
QVQLQESGGGLVQAGGSLRLSCAASGRTFINYGMAWFRQSPGKEREFVAAV
CnaA




SSSGAGTAYVEPVKDRFTISRDNTKNTVYLQMDTLKPEDTALYYCAAAKAGH





WGRDANYDYWGQGTQVTVSS






310
NBX0877
QVQLQESGGGMVEPGGSLRLSCAASGSISSITFMGWHRQAPGKEGEFVALIA
NetB




RSGTTTYADSVKGRFSISRDNAKNTVYLQMNNLKPEDTALYYCYVDRRGAVP





TWGQGTQVTVSS






311
NBX0878
QVQLQQSGGGLVEPGGSLRLSCAASGSISSITFMGWHRQAPGEQGELVALIA
NetB




RSGTTTYADSVKGRFTISRDNAKNTVYLQMNNLKPEDTALYYCYVDRRDVVP





TWGQGTQVTVSS






312
NBX0879
QVQLQESGGGLVQAGGSLRLSCAASGTGFPIITFMGYYRQAPGNQRELVAIIS
NetB




RGGVAKYGDSVKDRFTISRDNAKNTVYLEMNSLKPDDTAVYYCYADRFSGSP





TWGQGTQVTVSS






313
NBX0880
QVQLQESGGGLVQPGGSLRLSCAASVSSIGTMGWFRQAPGKQPELVASISRV
NetB




GTTNYANSVKGRFTVSRDNAQNTMYLQMNSLKPEDTAVYLCFANVISGPVY





WGQGTQVTVSS






314
NBX0881
QVQLQESGGGLVQAGGSLRLSCAASTRFFSNYAMGWFRQAPGKEREFVAAI
NetB




SRDGAVPLSGNSVPGRFTISRDNAKNTLYLQMNSLKPEDSAVYYCAASRQGN





PYAQTSYDYWGQGTQVTVSS






315
NBX0883
QVQLQESGGEVVAPGGSLSLSCVASGSADSIKIMGWYRQAPGKQRELVATIT
NetB




SGGTTEFAESVKGRFTISRDNAKNTLYMQMNSLSPEDTAVYYCNALVSRRDS





AAYFAWGQGTQVTVSS






316
NBX0884
QVQLQESGGGLVQPGGSLRLSCAASESIVSITPMMWYRQAPGKQREWVAIT
NetB




TRDGAPAYADSVKGRFTISRDSAKNTVYLQMNYLKPEDTAVYFCKARKDSHD





YWGQGTQVTVSS






317
NBX0885
QVQLQESGGGLVQAGGSLRLSCAASETIGSIQRMGWYRQAPGKQRELVATR
NetB




TNGGTTNYGDSVRGRFTISVDVAKNTVYLQMNSLKPEDTAVYYCNAHIREYY





STYDYWGQGTQVTVSS






318
NBX0886
QVQLQESGGGLVQPGGSLRLSCSASGSISRIRDMAWHRQVPGKQRELVASIS
NetB




SGGSTNVADSLKGRFTISRDNGKNTMYLQMDSLKSEDTAVYYCNALFNPIDG





PARYYWGQGTQVTVSS






319
NBX0887
QVQLQESGGGLVQPGGSLRLSCSASGSISRIYDMAWHRQVPGKQRELVAGIS
NetB




RGGSTNVADSLKGRFTISRDNGKNTVYLQMDNLKSEDTAVYYCTALFNPVDG





TARYYWGQGTQVTVSS






320
NBX0888
QVQLQESGGGLVQAGGSLRLSCAASGTIFSINVMGWYRQAPGKQRELVASIT
NetB




SGGQIKYADSVKGRFTTSRDNAKNTVYLQMNSLKPEDTAVYYCNAASSTWPP





RDYDYWGQGTQVTVSS






321
NBX0889
QVQLQESGGGLVQPGGSLRLSCAASRSISSIAAMGWYRQAPGKQRELVARIT
NetB




NGGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNADERPYYG





DSVLSWGQGTQVTVSS






322
NBX0890
QVQLQQSGGGLVQAGGSLRLSCAASGTGFPIITFMGYYRQTPGNQREEVALI
NetB




NRGGVAKYGDSVKDRFTISRDNAKNTVYLEMNNLKPDDTAVYYCYADRFSGS





PTWGQGTQVTVSS






323
NBX0891
QVQLQESGGGLVQAGGSLRLSCAASGRTFSNYHMAWFRQAPGKEREFVAAI
NetB




SRGTSTTFYRDSVRDRFTISRDNAKNTAYLQMNSLKPEDTAVYYCAADADRST





TIYSRDIYDYWGQGTQVTVSS






324
NBX0892
QVQLQESGGGLVQAGDSLRLSCAASEGTFSNYRMGWFRQAPGKEREFVAAI
NetB




SRDGAVPLSGNSPLGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCAASRQGLP





YVETSYDYWGQGTQVTVSS






325
NBX0893
QVQLQESGGGLVQPGGSLRLSCVASGSISSITFMGWYRQVLGEQRELVALSA
NetB




RRGTTTYADSVKGRFTISRDNAKNTVYLQMNNLKPEDTALYYCYVDRRDEVP





TWGQGTQVTVSS






326
NBX0894
QVQLQQSGGGLVQAGGSLRLSCAASGGTFSSYVMAWFRQAPGKEREFLAAI
NetB




RWSRGSTYYADSVKGRFTVFRDTVENTVYLQMNSLKPEDTAVYYCAADGNP





AKLVLDQYGMDYWGKGTLVTVSS






327
NBX0895
QVQLQQSGGGLVEPGGSLRLSCAASGSISEITYMGWHRQAPGEQRELVALIA
NetB




RVGTTRYADSVKGRFTISRDNAKNTVYLQMNNLKPEDTALYYCYVDQRGVVP





TWGQGTQVTVSS






328
NBX0896
QVQLQESGGGSVQAGGSLRLSCRASARASSIGAMAWFRQAPGKDRELVAAV
CnaA




NAGADTTYYRDFVKGRFTISRDNAKNTVYLQMNSLKLDDTAVYYCAAYNTAG





WGEPHQSYRYWGQGIQVTVSS






329
NBX0897
QVQLQESGGGLVQPGGSLSLSCAASGSIFIISTMGWYRQAPGKQRELVATITS
CnaA




GGSTNYADPVKGRFTISRDNAKNMVYLQMNSLKPEDTAVYYCNAEVHVWG





VPGPRDYWGQGTQVTVSS






330
NBX0898
QVQLQESGGGLVQAGDSLRLSCAASGRTFSSYAMGWFRQAPGKEREFVATI
CnaA




SRSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAANPYGSS





SYQGQYASWGQGTQVTVSS






331
NBX0899
QVQLQQSGGGLVQAGGSLRLSCAASGSIFSSNGMYWYRQAPGKQRELVASL
CnaA




YRSGSTNYADSVKGRFIISRDNAKNTVYLQMNSLKPEDTAVYYCNVNWALHD





SWGQGTQVTVSS






332
NBX08100
QVQLQESGGGLVQAGGSLRLSCAASGRTFSAYGMAWFRQSPGKEREFVAAV
CnaA




SGGGGGTAYAEPVKDRFTISRDNAKNTVYLQMNTLKPEDTALYYCAAATAGH





WGRDANYDYWGQGTQVTVSS






333
NBX08101
QVQLQESGGGLVQAGGSLRLSCAASGSIFSSNGMYWYRQAPGKQRELVASL
CnaA




FRSGSTNYADSVKGRFTISRDNAQNTVYLRMNSLKPEDTAVYYCNVNWALH





DSWGPGTQVTVSS






334
NBX08102
QVQLQESGGGLVQAGDSLRLSCAASGRTFSSYAMGWFRQAPGKEREFVAAI
CnaA




SRSGGTTYYADSVKGRFTISRDNAKNTVYLQMNTLKPEDTAVYYCAANPYGSS





SYQGQYGSWGQGTQVTVSS






335
NBX08103
QVQLQESGGGLVQPGGSLRLSCAASGIIHSINVMGWYRQAPGKQRELVAIISS
CnaA




GGRTTYADSVKGRSTITGDNDKNTVYLQMNSLKPEDTAVYYCTMVWGLRYY





WGQGTQVTVSS






336
NBX08104
QVQLQQSGGGFVRPGESLTLSCAASTSIFSSNGMYWYRQAPGKRRELVASLF
CnaA




RSGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVNWALHD





SWGQGTQVTVSS






337
NBX08105
QVQLQESGGGLVQAGDSLRLSCAASGRTFSSYAMAWFRQAPGKEREFVAAI
CnaA




SRGGGTTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAANPYGS





SSYQGQYGSWGQGTQVTVSS






338
NBX08106
QVQLQESGGGLVQAGGSLRLSCAASGSIFSSNGMYWYRQAPGKQRELVASL
CnaA




YRSGSTNYADSVKGRFIISRDNAKNTVYLQMNSLKPEDTAVYYCNVNWALHD





SWGQGTQVTVSS






339
NBX08107
QVQLQQSGGGEVQPGGSLRLSCAASGSIFSSNGMYWYRQAPGKQRELVASL
CnaA




YRSGSTNYADSVKGRFIISRDNAKNTVYLQMNSLKPEDTAVYYCNVNWALHD





SWGQGTQVTVSS






340
NBX08108
QVQLQESGGGLVQAGGSLRLSCAASRSILSANGMYWYRQAPGKQRELVASL
CnaA




YRSGSTDYADSVKGRFTISRDDSRDTMYLQMNSLKPEDTAVYYCNVNWALH





DSWGQGTQVTVSS
















TABLE 2







Unique SEQ IDs for VHH CDRs of this disclosure















CDR1
CDR1
CDR2
CDR2
CDR3
CDR3




Amino
SEQ
Amino
SEQ
Amino
SEQ




Acid
ID
Acid
ID
Acid
ID



NBX
Sequence
NO:
Sequence
NO:
Sequence
NO:
Antigen





NBX0301
QRASSLFAM
 57
ISWNGDKS
107
AAHRASFELGF
157
NetB







ATHDYDF







NBX0302
GSIFSISSA
 58
IFSDGST
108
AVDGY
158
NetB





NBX0303
GRTLSYWTM
 59
INWSSGT
109
AAHRASFGLGY
159
NetB







QTHEYDF







NBX0304
GGTFSSYTM
 60
ITWNSEVT
110
AAGRAGSGFTS
160
NetB





NBX0305
GFTLDKYAV
 61
ISSIDDST
111
MTIPLPYGSTCD
161
NetB







IPSRSDLLAINY







NBX0306
GFTVPYYYI
 62
IASSSGKA
112
AALRKYGSTCYL
162
NetB







HVLEYDY







NBX0309
GSTFNNYMI
 63
ISGSGAGT
113
ARRMSRSGIFGL
163
NetB







RDYDS







NBX0311
GRTFSNADM
 64
ISWSGGRT
114
AAGGYSNLPTS
164
NetB







YGY







NBX0316
GRAFSTYGM
 65
ISSSGAGS
115
AASTTSWGKFA
165
CnaA







HYIY







NBX0317
GGTFSSYIM
 66
ISWSGGVT
116
AADSRISAGGSY
166
CnaA







YEADFGS







NBX0318
GSIMSIRVM
 67
MSRGNTI
117
AALLDSYY
167
NetB





NBX0319
ASIISIRVM
 68
MSRGGTI
118
TALLDSYY
168
NetB





NBX0320
GSIFSIRVM
 69
MSRGGTI
119
AALLDSYY
169
NetB





NBX0321
GFTLDKYAV
 70
ISSIDDST
120
MTIPLPYGSTCR
170
NetB







IPSRSDLLAINY







NBX0322
GRTFSTYAM
 71
ITRGGNT
121
AADRIIVPRDPMDY
171
NetB





NBX0326
GRTFSAIHM
 72
ISWSGGGT
122
AASDTDWGRS
172
CnaA







ASYDY







NBX0327
GGTFSSYVM
 73
ISWSGGVT
123
AADSRISAGGSY
173
CnaA







YEADFGS







NBX0328
GRTFSSYTM
 74
ISWSGT
124
AVGSRRLYYSSDINY
174
Cpa





NBX0329
GLTVSRYTM
 75
ISWSGT
125
AAGSRRLYYSN
175
Cpa







DINY







NBX0330
SRTFSNYAM
 76
INGDTTFT
126
AARQWNPTMR
176
Cpa







ERDYGY







NBX0331
GRVFENYFM
 77
TNWNTATNWNT
127
AATGSRTYDVV
177
Cpb2







DYYDY







NBX0332
GRTFSSYSM
 78
ITYSGITT
128
AASYSASRSYPF
178
Cpb2







GEYDY







NBX0333
GRTFSSYSM
 79
ITYSGIST
129
AASYSASRSYPF
179
Cpb2







GEYDY







NBX0334
GFTFSNSAM
 80
INIGGDSR
130
AKGLASTI
180
Cpb2





NBX0335
GFTFSNSAM
 81
IEVGGGR
131
SKGLASTI
181
Cpb2





NBX0336
GFTFSNSAM
 82
IGIDGGR
132
AKGLASTI
182
Cpb2





NBX0337
GFTFSNSAM
 83
IGIGGGTT
133
AKGLASTI
183
Cpb2





NBX0338
GRSFSSYTM
 84
ISWSGT
134
AVGSRRLYYSSDINY
184
Cpa





NBX0339
GLTVSRYTM
 85
ISWSGT
135
AAGSRRLHYSS
185
Cpa







DINY







NBX0340
GRTFSTSTL
 86
IRYTSDYTAR
136
AAAKYGMGYS
186
Cpa





TT

DPSGYTY







NBX0341
SRTFSNYAM
 87
ITGDTAFT
137
AARQWNPTMR
187
Cpa







ERDYGY







NBX0342
GRRFRLYHM
 88
ISWSGGTT
138
AVDRLIESFSDP
188
Cpb2







TAWPRM







NBX0343
GFTFSNSAM
 89
INIGGGTT
139
AKGLASTI
189
Cpb2





NBX0344
GFTFSNSAM
 90
INIGGGTR
140
AKGLASTI
190
Cpb2





NBX0345
GRKFRLYHM
 91
ISWSGGST
141
AVDRLIESFSDP
191
Cpb2







TAWPRM







NBX0346
GFTFSNSAM
 92
INIGGGT
142
AKGLASTI
192
Cpb2





NBX0347
GRTFSSYDM
 93
ISYNI
143
AAVQRRGSYSY
193
Cpb2







DRAQSYDY







NBX0348
GFTFSNSAM
 94
IEIGGTR
144
AKGLASTI
194
Cpb2





NBX0349
GFTFSNSPM
 95
INIGAGTT
145
AKGLASTI
195
Cpb2





NBX0350
GFTFSNSAM
 96
INIGGGDK
146
AKGLASTI
196
Cpb2





NBX0351
GFTFSNSAM
 97
IETGGTK
147
AKGLASTI
197
Cpb2





NBX0352
GFTFSNSPM
 98
INIGEGTT
148
AKGLASTI
198
Cpb2





NBX0353
GFTFSNSPM
 99
INIGGDTR
149
AKGLASTI
199
Cpb2





NBX0354
GFTFSNSAM
100
VNIDGGR
150
AKGLASTI
200
Cpb2





NBX0355
GFTFSNSAM
101
ISIDGGR
151
AKGLASTI
201
Cpb2





NBX0356
GGKFTLYHM
102
ISWSGRST
152
AVDRLIEKFSDP
202
Cpb2







TAWPRMDS







NBX0357
GRTASM
103
ITRSSIYT
153
AADSTMSGSSR
203
Cpb2







YSSDYAY







NBX0358
GFTFSNSPM
104
IDIGGNR
154
AKGLASTI
204
Cpb2





NBX0359
GRRFTLYHM
105
ISWSGGST
155
AVDRLIESFSDP
205
Cpb2







TAWPRMDY







NBX0360
GRRFSLYHM
106
ISWSGGTT
156
AVDRLIESFSDP
206
Cpb2







TAWPRMDY







NBX0363
ASIISIRVM
341
MSRGGTI
459
AALLDSYY
577
NetB





NBX0364
GSIMSIRVM
342
MSRGGTI
460
TALLDSYY
578
NetB





NBX0365
GSIFSIRVM
343
MSRGGTI
461
TALLDSYY
579
NetB





NBX0369
ASIFSIRVM
344
MSRGNTI
462
AALLDSYY
580
NetB





NBX0370
GSIMSIRVM
345
MSRGGTI
463
AALLDSYY
581
NetB





NBX0373
ASIMSIRVM
346
MSRGNTI
464
AALLDSYY
582
NetB





NBX0374
ASIMSIRVM
347
MSRGGTI
465
AALLDSYY
583
NetB





NBX0379
GSIMSIRVM
348
MSRGNTI
466
AALLDSYY
584
NetB





NBX0380
GSIISIRVM
349
MSRGGTI
467
AALLDSYY
585
NetB





NBX0381
ASIISIRVM
350
MSRGNTI
468
AALLDSYY
586
NetB





NBX0501
GSIFSINVM
351
ITSGGST
469
NAAQSRTSWLF
587
NetB







PDEYDY







NBX0502
GRTFSIYAM
352
INRGGGTT
470
AADRVTDTYYYL
588
NetB







NPESYDY







NBX0503
GSGRRVGYM
353
ISRAGAT
471
FASLIDAGTY
589
NetB





NBX0504
GRTFSIYAM
354
INRSGGTT
472
AADRVTDTYYYL
590
NetB







NPESYDY







NBX0505
GMSFSLGTI
355
ITNADTT
473
NTATS
591
NetB





NBX0506
GSGRRVGYM
356
ISRAGAT
474
FASVFDAGTY
592
NetB





NBX0507
GSGRRVGYM
357
ISRAGAT
475
FASIFDAGTY
593
NetB





NBX0508
GSGSRINYM
358
INRTGAA
476
FASYLGAGAY
594
NetB





NBX0509
GRTFSTYTV
359
ITWNGGTI
477
VMGAAGQGWRY
595
NetB





NBX0510
GSGSRINYM
360
INRTGAA
478
WASYLGAGTY
596
NetB





NBX0511
GFTFSRNYM
361
IYSDDST
479
SKEGGL
597
NetB





NBX0512
GSGRRVGYM
362
ISRAGAT
480
FASVFDAGTY
598
NetB





NBX0513
GSGRRVGYM
363
ISRAGAT
481
FASLFDAGTY
599
NetB





NBX0514
GRTFSGRTM
364
ITWSGGTT
482
ASDGPWRATTP
600
CnaA







DAYDY







NBX0515
GSIGTIDSM
365
IMFSGRT
483
YSNQY
601
CnaA





NBX0517
EFSLLFGTI
366
VSSSDGST
484
ATRCTVVPGIT
602
CnaA





NBX0518
GSITRVGGM
367
INEVGNT
485
WIPPIP
603
CnaA





NBX0519
PFSLRLGVV
368
ISSSEGST
486
ATRCTVVPGIT
604
CnaA





NBX0520
ARTSSSRAM
369
ISWSGGRT
487
AARRSDFTGDY
605
CnaA







AYSGRSAYDY







NBX0521
GSTFIFDKM
370
LMSRGDP
488
RGRAGERVY
606
CnaA





NBX0522
GRTFSGVIV
371
TLWSGGST
489
AAKYGGSLSYM
607
CnaA







HPTGYTY







NBX0523
RIVFTISTM
372
INRSGALT
490
AASKANMPALP
608
CnaA







ANYDY







NBX0524
GSITRLGSM
373
ITAVGNT
491
WIPPIP
609
CnaA





NBX0525
GSITRLGGM
374
IDTVGNT
492
WIPPIP
610
CnaA





NBX0526
ERAFMYNM
375
RNWNVERT
493
ATTRVWPTQH
611
CnaA







QMGQIEY







NBX0527
SSFNTM
376
ITSGGTI
494
VADWQYGSTWNY
612
CnaA





NBX0528
GRNFDYYSM
377
INWRGAVI
495
AAASSSSRLLEPI
613
CnaA







GYNY







NBX0529
GSMFSINDM
378
ISSGGTT
496
AGNLKRSETSYYWK
614
CnaA





NBX0530
GRTFSRYHM
379
ISLSGGGT
497
TADRHEWGRL
615
CnaA







MKGDY







NBX0531
GRTSNSYNM
380
ISWTGGFT
498
AATSRSLTSAM
616
CnaA







TREIRAYDY







NBX0532
GSTFSFNKM
381
FMNDGNT
499
RGRAGMEVY
617
CnaA





NBX0533
PLTLRLGPI
382
ISSRDDK
500
ATRCTVVPGIS
618
CnaA





NBX0534
GRNFGYYTM
383
ITWRGVI
501
AAASSSSRPLEPI
619
CnaA







GYNY







NBX0535
GDIFSAAGM
384
VTWDGGTT
502
AAGNTGPFNLL
620
CnaA







HSSAQYAY







NBX0536
PLTLRLGAI
385
ITSTEDK
503
ATRCTVVPGIS
621
CnaA





NBX0537
GSITRIGGM
386
INTVGNT
504
WIPPLP
622
CnaA





NBX0538
GRSFSRYIM
387
IAPSGGSA
505
AARYDMDYEYKT
623
NetB





NBX0539
GSGSRIGFM
388
INRTGAT
506
FASVVDAGTY
624
NetB





NBX0540
GLTFSDYAM
389
ISLTAAST
507
AAQGRILRGRG
625
NetB







LFKASDYDY







NBX0541
GTISIFDPM
390
ISEGST
508
RLSRYYNSNIY
626
NetB





NBX0542
RNIYGINVI
391
SANGGTT
509
KAELYTLQHNYEY
627
NetB





NBX0543
GTLSLFDPM
392
ISGLST
510
HLSRYYNSNIY
628
NetB





NBX0544
GRVLSINAM
393
ITNGGST
511
LAEERPYYGGPLEY
629
NetB





NBX0545
RTTFRVGTM
394
ITSGGST
512
FANIVDRPVS
630
NetB





NBX0546
GSGSRIGLM
395
IKGTGTT
513
FASVLGAGTY
631
NetB





NBX0547
GTISLFDSM
396
ITEGST
514
RLSRYYNSNIY
632
NetB





NBX0548
ETSLNFDDM
397
INTFPAGTTA
515
NAGDY
633
NetB





NBX0549
GSDSSINYM
398
ISRDGRS
516
YVDPLGRVPR
634
NetB





NBX0550
GTVNLM
399
IKGTGTT
517
FASVLGAGTY
635
NetB





NBX0551
GSIFSRNII
400
INTGGRT
518
NAPSLGY
636
NetB





NBX0552
GSGSINYM
401
INRTGAA
519
FASALGAGVY
637
NetB





NBX0553
GSGWRVGYM
402
ISRAGAT
520
FASIIDAGTY
638
NetB





NBX0561
GENFSTYVM
403
HNWRGGGT
521
AARSGGSYTYT
639
CnaA







GSYHY







NBX0801
GRTFSSYAM
404
ISRSGGST
522
AANRYGSSSYQ
640
CnaA







GQYAS







NBX0802
GRTFSSYHM
405
ISRSGGFT
523
AAQQWPDPRN
641
CnaA







PNGYDY







NBX0803
GRTFINYGM
406
VSISGAGT
524
AAAKAGHWGR
642
CnaA







DANYDY







NBX0804
GRTLTAYGM
407
VSLSGAST
525
AAAKAGQWGR
643
CnaA







DAKYDY







NBX0805
GRTFSTYAM
408
ISWSGGRI
526
TADLKGLWALG
644
CnaA







LPGHYASWDS







NBX0806
GSIGSINIM
409
FTSGGST
527
RARRGWAIY
645
CnaA





NBX0807
GRTFSSYGM
410
ISRTGSGT
528
AADSGGSWGR
646
CnaA







GTTYDY







NBX0808
ARASSIGAM
411
VTAGADTT
529
AAYNTAGWGE
647
CnaA







PHQSYRY







NBX0809
GLTFGNYDM
412
ISSSGAYT
530
AGRRSVVVRSF
648
CnaA







DYDY







NBX0810
GRIFNANGM
413
LYRSGST
531
NVNWALHDS
649
CnaA





NBX0811
ERTFSSDGM
414
ISRTGSAT
532
AANSGGHWW
650
CnaA







RGATYDY







NBX0812
GTIFSANGM
415
LYRDGST
533
NVNWALHDS
651
CnaA





NBX0847
TRASIVGAM
416
IAAGSPSTP
534
AAYNTANWGQ
652
CnaA







PHQSYRH







NBX0866
GSILNINVM
417
IYRDGST
535
NVVTYGSNRRDF
653
CnaA





NBX0867
GRTFSSYAM
418
ISRSGGST
536
AANRYGSSSYQ
654
CnaA







GQYGS







NBX0868
GRTFSSYAM
419
ISRSGGST
537
AANRYGSSSYQ
655
CnaA







GQYDY







NBX0869
GTIFSINGM
420
LYRGGST
538
NVNWALQDS
656
CnaA





NBX0870
TSDGSINVM
421
ITSLGSQ
539
RARRGWAIY
657
CnaA





NBX0871
GRTFNIYAM
422
ISDSGGSA
540
AADLTGLWALG
658
CnaA







LPGHYASWDS







NBX0872
GFTFRSSAM
423
IGSDGENI
541
QLGRTVLDYF
659
CnaA





NBX0873
GRTFINYGM
424
VSSSGAGT
542
AAAKAGQWGR
660
CnaA







YANYDY







NBX0874
GRTFSSYAM
425
ISRSGGTT
543
AANPYGSSSYQ
661
CnaA







GQYGS







NBX0875
GRAFSGYAM
426
ISRGGGTT
544
AANRYGSSSYQ
662
CnaA







GQYGS







NBX0876
GRTFINYGM
427
VSSSGAGT
545
AAAKAGHWGR
663
CnaA







DANYDY







NBX0877
GSISSITFM
428
IARSGTT
546
YVDRRGAVPT
664
NetB





NBX0878
GSISSITFM
429
IARSGTT
547
YVDRRDVVPT
665
NetB





NBX0879
GTGFPIITFM
430
ISRGGVA
548
YADRFSGSPT
666
NetB





NBX0880
VSSIGTM
431
ISRVGTT
549
FANVISGPVY
667
NetB





NBX0881
TRFFSNYAM
432
ISRDGAVP
550
AASRQGNPYAQ
668
NetB







TSYDY







NBX0883
GSADSIKIM
433
ITSGGTT
551
NALVSRRDSAAYFA
669
NetB





NBX0884
ESIVSITPM
434
TTRDGAP
552
KARKDSHDY
670
NetB





NBX0885
ETIGSIQRM
435
RTNGGTT
553
NAHIREYYSTYDY
671
NetB





NBX0886
GSISRIRDM
436
ISSGGST
554
NALFNPIDGPARYY
672
NetB





NBX0887
GSISRIYDM
437
ISRGGST
555
TALFNPVDGTARYY
673
NetB





NBX0888
GTIFSINVM
438
ITSGGQI
556
NAASSTWPPRDYDY
674
NetB





NBX0889
RSISSIAAM
439
ITNGGST
557
NADERPYYGDSVLS
675
NetB





NBX0890
GTGFPIITFM
440
INRGGVA
558
YADRFSGSPT
676
NetB





NBX0891
GRTFSNYHM
441
ISRGTSTT
559
AADADRSTTIYS
677
NetB







RDIYDY







NBX0892
EGTFSNYRM
442
ISRDGAVP
560
AASRQGLPYVE
678
NetB







TSYDY







NBX0893
GSISSITFM
443
SARRGTT
561
YVDRRDEVPT
679
NetB





NBX0894
GGTFSSYVM
444
IRWSRGST
562
AADGNPAKLVL
680
NetB







DQYGMDY







NBX0895
GSISEITYM
445
IARVGTT
563
YVDQRGVVPT
681
NetB





NBX0896
ARASSIGAM
446
VNAGADTT
564
AAYNTAGWGE
682
CnaA







PHQSYRY







NBX0897
GSIFIISTM
447
ITSGGST
565
NAEVHVWGVP
683
CnaA







GPRDY







NBX0898
GRTFSSYAM
448
ISRSGGST
566
AANPYGSSSYQ
684
CnaA







GQYAS







NBX0899
GSIFSSNGM
449
LYRSGST
567
NVNWALHDS
685
CnaA





NBX08100
GRTFSAYGM
450
VSGGGGGT
568
AAATAGHWGR
686
CnaA







DANYDY







NBX08101
GSIFSSNGM
451
LFRSGST
569
NVNWALHDS
687
CnaA





NBX08102
GRTFSSYAM
452
ISRSGGTT
570
AANPYGSSSYQ
688
CnaA







GQYGS







NBX08103
GIIHSINVM
453
ISSGGRT
571
TMVWGLRYY
689
CnaA





NBX08104
TSIFSSNGM
454
LFRSGST
572
NVNWALHDS
690
CnaA





NBX08105
GRTFSSYAM
455
ISRGGGTT
573
AANPYGSSSYQ
691
CnaA







GQYGS







NBX08106
GSIFSSNGM
456
LYRSGST
574
NVNWALHDS
692
CnaA





NBX08107
GSIFSSNGM
457
LYRSGST
575
NVNWALHDS
693
CnaA





NBX08108
RSILSANGM
458
LYRSGST
576
NVNWALHDS
694
CnaA









Antibodies Recombinantly Expressed

In another aspect, the present invention provides a method for producing VHH in a suitable producing organism. Suitable producing organisms include, without limitation, bacteria, yeast and algae. In certain embodiments, the producing bacterium is Escherichia coli. In certain embodiments, the producing bacterium is a member of the Bacillus genus. In certain embodiments, the producing bacterium is a probiotic. In certain embodiments, the yeast is Pichia pastoris. In certain embodiments, the yeast is Saccharomyces cerevisiae. In certain embodiments, the alga is a member of the Chlamydomonas or Phaeodactylum genera.


Antibodies Added to Feed

In yet another aspect, the present invention provides a polypeptide or pluralities thereof comprising a VHH or VHHs that bind disease-causing agents and are administered to host animals via any suitable route as part of a feed product. In certain embodiments, the animal is selected from the list of host animals described, with that list being representative but not limiting. In certain embodiments, the route of administration to a recipient animal can be, but is not limited to: introduction to the alimentary canal orally or rectally, provided to the exterior surface (for example, as a spray or submersion), provided to the medium in which the animal dwells (including air based media), provided by injection, provided intravenously, provided via the respiratory system, provided via diffusion, provided via absorption by the endothelium or epithelium, or provided via a secondary organism such as a yeast, bacterium, algae, bacteriophages, plants and insects. In certain embodiments, the host is from the superorder Galloanserae. In certain embodiments, the host is a poultry animal. In certain embodiments, the poultry animal is a chicken, turkey, duck, quail, pigeon, squab or goose. In certain embodiments, the poultry animal is a chicken.


Feed Product

In a further aspect, the present invention provides a polypeptide or pluralities thereof comprising a VHH or VHHs that bind disease-causing agents and are administered to host animals in the form of a product. The form of the product is not limited, so long as it retains binding to the disease-causing agent in the desired form. In certain embodiments, the product is feed, pellet, nutritional supplement, premix, therapeutic, medicine, or feed additive, but is not limited to these forms.


Feeding Dosage

In a further aspect, the present invention provides a polypeptide or pluralities thereof comprising a VHH or VHHs that bind disease-causing agents and are administered to host animals as part of a product at any suitable dosage regime. In practice, the suitable dosage is the dosage at which the product offers any degree of protection against a disease-causing agent, and depends on the delivery method, delivery schedule, the environment of the recipient animal, the size of the recipient animal, the age of the recipient animal and the health condition of the recipient animal among other factors. In certain embodiments, VHHs are administered to recipient animals at a concentration in excess of 1 mg/kg of body weight. In certain embodiments, VHHs are administered to recipient animals at a concentration in excess of 5 mg/kg of body weight. In certain embodiments, VHHs are administered to recipient animals at a concentration in excess of 10 mg/kg of body weight. In certain embodiments, VHHs are administered to recipient animals at a concentration in excess of 50 mg/kg of body weight. In certain embodiments, VHHs are administered to recipient animals at a concentration in excess of 100 mg/kg of body weight. In certain embodiments, VHHs are administered to recipient animals at a concentration less than 1 mg/kg of body weight. In certain embodiments, VHHs are administered to recipient animals at a concentration less than 500 mg/kg of body weight. In certain embodiments, VHHs are administered to recipient animals at a concentration less than 100 mg/kg of body weight. In certain embodiments, VHHs are administered to recipient animal at a concentration less than 50 mg/kg of body weight. In certain embodiments, VHHs are administered to recipient animals at a concentration less than 10 mg/kg of body weight.


Feeding Frequency

In a further aspect, the present invention provides a polypeptide or pluralities thereof comprising a VHH or VHHs that bind disease-causing agents and are administered to host animals as part of a product at any suitable dosage frequency. In practice, the suitable dosage frequency is that at which the product offers any protection against a disease-causing agent, and depends on the delivery method, delivery schedule, the environment of the recipient animal, the size of the recipient animal, the age of the recipient animal and the health condition of the recipient animal, among other factors. In certain embodiments, the dosage frequency can be but is not limited to: constantly, at consistent specified frequencies under an hour, hourly, at specified frequencies throughout a 24-hour cycle, daily, at specified frequencies throughout a week, weekly, at specified frequencies throughout a month, monthly, at specified frequencies throughout a year, annually, and at any other specified frequency greater than 1 year.


Feed Additives

In a further aspect, the present invention provides a polypeptide or pluralities thereof comprising a VHH or VHHs that bind disease-causing agents and are administered to host animals as part of a product that also comprises other additives or coatings. In practice, the most suitable coating or additive depends on the method of delivery, the recipient animal, the environment of the recipient, the dietary requirements of the recipient animal, the frequency of delivery, the age of the recipient animal, the size of the recipient animal, the health condition of the recipient animal In certain embodiments, these additives and coatings can include but are not limited to the following list and mixtures thereof: a vitamin, an antibiotic, a hormone, an antimicrobial peptide, a steroid, a probiotic, a probiotic, a bacteriophage, chitin, chitosan, B-1,3-glucan, vegetable extracts, peptone, shrimp meal, krill, algae, B-cyclodextran, alginate, gum, tragacanth, pectin, gelatin, an additive spray, a toxin binder, a short chain fatty acid, a medium chain fatty acid, yeast, a yeast extract, sugar, a digestive enzyme, a digestive compound, an essential mineral, an essential salt, or fibre.


Non-Feed Uses

In a further aspect, the present invention provides a polypeptide or pluralities thereof comprising a VHH or VHHs that bind disease-causing agents, and can be used in a non-feed use, such as but not limited to: a diagnostic kit, an enzyme-linked immunosorbent assay (ELISA), a western blot assay, an immunofluorescence assay, or a fluorescence resonance energy transfer (FRET) assay, in its current form and/or as a polypeptide conjugated to another molecule. In certain embodiments, the conjugated molecule is can be but is not limited to: a fluorophore, a chemiluminescent substrate, an antimicrobial peptide, a nucleic acid or a lipid.


Antigens

In a further aspect, the present invention provides a polypeptide or pluralities thereof comprising a VHH or VHHs that bind disease-causing agents, including toxins, produced by a species of Clostridium. In certain embodiments, the species does not belong to the Clostridium genus but is capable of harbouring disease-causing agents shared by Clostridium species. In certain embodiments, the Clostridium species refers to both current and reclassified organisms. In certain embodiments, the Clostridium species is Clostridium perfringens.


In certain embodiments, the VHH or plurality thereof is capable of binding to one or more disease-causing agents, originating from the same or different species. In certain embodiments, the disease-causing agent is a polypeptide with 80% or greater amino acid sequence identity to NetB (SEQ ID 207). In certain embodiments, the disease-causing agent is a polypeptide with 80% or greater amino acid sequence identity to Cpa (SEQ ID 208). In certain embodiments, the disease-causing agent is a polypeptide with 80% or greater amino acid sequence identity to Cpb2 (SEQ ID 209). In certain embodiments, the disease-causing agent is a polypeptide with 80% or greater amino acid sequence identity to CnaA (SEQ ID 210). In certain embodiments, the disease-causing agent is a polypeptide with 80% or greater amino acid sequence identity to the collagen-binding domain of CnaA (SEQ ID 211). In certain embodiments, the disease-causing agent is an exposed peptide, protein, protein complex, nucleic acid, lipid, or combination thereof, that is associated to the surface of the Clostridium bacterium. In certain embodiments, the disease-causing agent is a pilus, fimbria, flagellum, secretion system or porin. In certain embodiments, the disease-causing agent is the Clostridium bacterium.


In certain embodiments, the disease-causing agent or a derivative thereof can be provided in excess and outcompete the activity of the pathogen expressed disease-causing agent. In certain embodiments, a polypeptide with 80% or greater amino acid sequence identity to CnaA (SEQ ID 210) or the collagen-binding domain of CnaA (SEQ ID 211) can be provided in excess to outcompete the activity of CnaA expressed by the Clostridium perfringens bacterium.









Antigen Sequences





NetB 


>ABW71134.1 necrotic enteritis toxin B precursor 


[Clostridium perfringens]


(SEQ ID NO: 207)


MKRLKIISITLVLTSVISTSLFSTQTQVFASELNDINKIELKNLSGEIIK





ENGKEAIKYTSSDTASHKGWKATLSGTFIEDPHSDKKTALLNLEGFIPSD





KQIFGSKYYGKMKWPETYRINVKSADVNNNIKIANSIPKNTIDKKDVSNS





IGYSIGGNISVEGKTAGAGINASYNVQNTISYEQPDFRTIQRKDDANLAS





WDIKFVETKDGYNIDSYHAIYGNQLFMKSRLYNNGDKNFTDDRDLSTLIS





GGFSPNMALALTAPKNAKESVIIVEYQRFDNDYILNWETTQWRGTNKLSS





TSEYNEFMFKINWQDHKIEYYL





Cpa


>WP_057230321.1 phospholipase [Clostridium 



perfringens]



(SEQ ID NO: 208)


MKRKICKALICAALATSLWAGASTKVYAWDGKIDGTGTHAMIVTQGVSIL





ENDLSKNEPESVRKNLEILKENMHELQLGSTYPDYDKNAYDLYQDHFWDP





DTDNNFSKDNSWYLAYSIPDTGESQIRKFSALARYEWQRGNYKQATFYLG





EAMHYFGDIDTPYHPANVTAVDSAGHVKFETFAEERKEQYKINTAGCKTN





EDFYADILKNKDFNAWSKEYARGFAKTGKSIYYSHASMSHSWDDWDYAAK





VTLANSQKGTAGYIYRFLHDVSEGNDPSVGKNVKELVAYISTSGEKDAGT





DDYMYFGIKTKDGKTQEWEMDNPGNDFMTGSKDTYTFKLKDENLKIDDIQ





NMWIRKRKYTAFPDAYKPENIKIIANGKVVVDKDINEWISGNSTYNIK





Cpb2


>AEP94971.1 Beta2-toxin (plasmid) [Clostridium 



perfringens]



(SEQ ID NO: 209)


MKKLIVKSTMMLLFSCLLCLGIQLPNTVKANEVNKYQSVMVQYLEAFKNY





DIDTIVDISKDSRTVTKEEYKNMLMEFKYDPNQKLKSYEITGSRKIDNGE





IFSVKTEFLNGAIYNMEFTVSYIDNKLMVSNMNRISIVNEGKCIPTPSFR





TQVCTWDDELSQYIGDAVSFTRSSKFQYSSNTITLNFRQYATSGSRSLKV





KYSVVDHWMWGDDIRASQWVYGENPDYARQIKLYLGSGETFKNYRIKVEN





YTPASIKVFGEGYCY





CnaA


>ALJ54440.1 putative collagen adhesin [Clostridium 



perfringens]



(SEQ ID NO: 210)


MKINKKIFSMLFMVIVLFTCISSNFSVSASSIQRGRDISNEVVTSLVATP





NSINDGGNVQVRLEFKENHQRNIQSGDTITVKWTNSGEVFFEGYEKTIPL





YIKDQNVGQAVIEKTGATLTFNDKIDKLDDVGGWATFTLQGRNITSGNHE





HTGIAYIISGSKRADVNITKPESGTTSVFYYKTGSMYTNDTNHVNWWLLV





NPSKVYSEKNVYIQDEIQGGQTLEPDSFEIVVTWYDGYVEKFKGKEAIRE





FHNKYPNSNISVSENKITVNISQEDSTQKFINIFYKTKITNPKQKEFVNN





TKAWFKEYNKPAVNGESFNHSVQNINADAGVNGTVKGELKIIKTLKDKSI





PIKDVQFKMRRVDNTVIKDGKKELLLTTDDKGIANVKGLPVGKYEVKEIS





APEWIAFNPLIAPKLEFTISDQDTEGKLWAVENELKTISIPVEKVWVGQT





SERAEIKLFADGIEVDKVILNADNNWKHTFENKPEYNSETKQKINYSVSE





TTISGYESNITGDAKNGFIVTNTELPDLTIGKEVIGELGDKTKVFNFELT





LKQADGKPINGKFNYIGSVDDRYKKESIKPSDGEITFIEGKATITLSHGQ





EITIKDLPYGVTYKVMEKEANENGYLTTYNGNNEVTTGELKQDTKVQVVN





NKEFVPTTGISTTTEQGTMVGMVIFSIGILMVMIVVLLQLNKGLKR





CnaA Collagen Binding Domain


(SEQ ID NO: 211)


GRDISNEVVTSLVATPNSINDGGNVQVRLEFKENHQRNIQSGDTITVKWT





NSGEVFFEGYEKTIPLYIKDQNVGQAVIEKTGATLTFNDKIDKLDDVGGW





ATFTLQGRNITSGNHEHTGIAYIISGSKRADVNITKPESGTTSVFYYKTG





SMYTNDTNHVNWWLLVNPSKVYSEKNVYIQDEIQGGQTLEPDSFEIVVTW





YDGYVEKFKGKEAIREFHNKYPNSNISVSENKITVNISQEDSTQKFINIF





YKTKITNPKQKEFVNNTKAWFKEYNKPAVNGESFNHSVQNINADAGVNGT





VK






Examples

The following illustrative examples are representative of the embodiments of the applications, systems and methods described herein and are not meant to be limiting in any way.


While preferred embodiments of the present invention are shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention.


1. Production of Antigens

Recombinant antigens can be purified from an E. coli expression system. For example, an antigen can be expressed at 18° C. in E. coli BL21 (DE3) cells grown overnight in autoinducing media (Formedium). Cells are then lysed by sonication in buffer A (250 mM NaCl, 50 mM CaCl2), 20 mM Imidazole and 10 mM HEPES, pH 7.4) with 12.5 μg/ml DNase I, and 1× Protease inhibitor cocktail (Bioshop). The lysate is cleared by centrifugation at 22000×g for 30 minutes at 4° C., applied to a 5 ml HisTrap HP column (GE Healthcare) pre-equilibrated with buffer A, washed with ten column volumes of buffer A and eluted with a gradient of 0% to 60% (vol/vol) buffer B (250 mM NaCl, 50 mM CaCl2), 500 mM imidazole and 10 mM HEPES, pH 7.4). The protein is then dialyzed overnight in the presence of TEV against buffer C (250 mM NaCl, 10 mM HEPES, pH 7.4 and 5 mM β-mercaptoethanol) at 4° C. The dialyzed protein is applied to a HisTrap HP column (GE Biosciences) pre-equilibrated with buffer C. 6×His-tagged TEV (“6×His” disclosed as SEQ ID NO: 695) and 6×His-tag (SEQ ID NO: 695) are bound to the column and the antigen is collected in the flowthrough. The sample is dialyzed overnight against buffer D (5 mM NaCl and 10 mM Tris pH 8.8) and then applied to a 5 ml HiTrap Q HP column (GE Healthcare). The protein is eluted with a gradient of 0% to 50% (vol/vol) buffer E (1.0 M NaCl and 10 mM Tris pH 8.8). Lastly, the eluate is loaded onto a Superdex 75 Increase 10/300 GL gel filtration column (GE Healthcare) using buffer F (400 mM NaCl and 20 mM HEPES pH 7.4). The protein sample is then concentrated to 1 mg/mL using Amicon concentrators with appropriate molecular weight cut-off (MWCO; Millipore). The purified protein is stored at −80° C.


2. Production of NBXs and Panning
Llama Immunisation

A single llama is immunized with purified disease-causing agents, such as the antigens listed, which may be accompanied by adjuvants. The llama immunization is performed using 100 μg of each antigen that are pooled and injected for a total of four injections. At the time of injection, the antigens are thawed, and the volume increased to 1 ml with PBS. The 1 ml antigen-PBS mixture is then mixed with 1 ml of Complete Freund's adjuvant (CFA) or Incomplete Freund's adjuvant (IFA) for a total of 2 ml. A total of 2 ml is immunized per injection. Whole llama blood and sera are then collected from the immunized animal on days 0, 28, 49, 70. Sera from days 28, 49 and 70 are then fractionated to separate VHH from conventional antibodies. ELISA can be used to measure reactivity against target antigens in polyclonal and VHH-enriched fractions. Lymphocytes are collected from sera taken at days 28, 49, and 70.


Panning

RNA isolated from purified llama lymphocytes is used to generate cDNA for cloning into phagemids. The resulting phagemids are used to transform E. coli TG-1 cells to generate a library of expressed VHH genes. The phagemid library size can be ˜2.5×107 total transformants and the estimated number of phagemid containing VHH inserts can be estimated to be ˜100%. High affinity antibodies are then selected by panning against the antigens used for llama immunization. Two rounds of panning are performed and antigen-binding clones arising from round 2 are identified using phage ELISA. Antigen-binding clones are sequenced, grouped according to their CDR regions, and prioritized for soluble expression in E. coli and antibody purification.



FIG. 2 shows the phage ELISA results for antibodies of this disclosure. Black bars show binding to wells coated with the antigen specified in Tables 1 and 2 dissolved in phosphate-buffered saline (PBS). Grey bars are negative controls that show binding to wells coated with PBS only. In all cases binding to the antigen target is at least twice above binding to the PBS-coated wells. Data for NBX0301 to NBX0332 are shown in panel A. Data for NBX0333-NBX0360 are shown in panel B. Data for NBX0501-NBX0515 and NBX0517-NBX0528 are shown in panel C. Data for NBX0529-NBX0553 are shown in panel D. Data for NBX0561, NBX0801-NBX0812, NBX0847, and NBX0866-NBX0880 are shown in panel E. Data for NBX0881 and NBX0883-NBX08108 are shown in panel F.


Purification of VHHs from E. coli


TEV protease-cleavable, 6×His-thioredoxin-NBX fusion proteins (“6×His” disclosed as SEQ ID NO: 695) are expressed in the cytoplasm of E. coli grown in autoinducing media (Formedium) for 24 hours at 30° C. Bacteria are collected by centrifugation, resuspended in buffer A (10 mM HEPES, pH 7.5, 250 mM NaCl, 20 mM Imidazole) and lysed using sonication. Insoluble material is removed by centrifugation and the remaining soluble fraction is applied to a HisTrap column (GE Biosciences) pre-equilibrated with buffer A. The protein is eluted from the column using an FPLC with a linear gradient between buffer A and buffer B (10 mM HEPES, pH 7.5, 500 mM NaCl, 500 mM Imidazole). The eluted protein is dialyzed overnight in the presence of TEV protease to buffer C (10 mM HEPES, pH 7.5, 500 mM NaCl). The dialyzed protein is applied to a HisTrap column (GE Biosciences) pre-equilibrated with buffer C. 6×His-tagged TEV and 6×His-tagged thioredoxin (“6×His” disclosed as SEQ ID NO: 695) are bound to the column and highly purified NBX is collected in the flowthrough. NBX proteins are dialyzed overnight to PBS and concentrated to ˜10 mg/ml.



Pichia pastoris strain GS115 with constructs for the expression and secretion of 6×His-tagged VHH (“6×His” disclosed as SEQ ID NO: 695) are grown for 5 days at 30° C. with daily induction of 0.5% (vol/vol) methanol. Yeast cells are removed by centrifugation and the NBX-containing supernatant is spiked with 10 mM imidazole. The supernatant is applied to a HisTrap column (GE Biosciences) pre-equilibrated with buffer A (10 mM HEPES, pH 7.5, 500 mM NaCl). The protein is eluted from the column using an FPLC with a linear gradient between buffer A and buffer B (10 mM HEPES, pH 7.5, 500 mM NaCl, 500 mM Imidazole). NBX proteins are dialyzed overnight to PBS and concentrated to ˜10 mg/ml.


3. NBX Neutralization of NetB Cytotoxicity

Hepatocellular carcinoma-derived epithelial cells (LMH cells) from Gallus gallus strain Leghorn are adhered to the surface of a tissue-culture treated and gelatin-coated 96-well microtitre plate at 64,000 cells/well overnight at 37° C. and 5% CO2. Recombinantly expressed NetB is preincubated with NBX at a range of concentrations or the buffer in which the NBXs are dissolved (20 mM HEPES pH 7.4, 150 mM NaCl) for 15 minutes at 37° C. and 5% CO2. After 15 minutes the toxin/NBX mixtures are added to triplicate wells of LMH cells. The final concentration of NetB is 5 nM. The final concentrations of NBXs are 1, 3, 9, 27, 81, 243, 729, and 2187 nM. LMH cells with toxin/NBX mixtures are incubated for 5 hours at 37° C. and 5% CO2. Cytotoxicity induced by NetB is measured using the Pierce LDH Cytotoxicity Assay Kit (Thermo Scientific) following the manufacturer's instructions. NetB percent cytotoxicity in the presence of NBX is determined relative to NetB cytotoxicity in the absence of NBX. A non-linear fit of the inhibitor concentration versus response is determined using GraphPad Prism 8 which generates the 50% inhibitory concentration (IC50) which approximates the NBX concentration required to block 50% of the cytotoxicity of 5 nM NetB.


Table 3 indicates, for all NBXs tested, whether the NBX can neutralize the activity of NetB against LMH cells with an IC50-value less than 1 μM and/or less than 50 nM.









TABLE 3







Summary table for NBXs that neutralize NetB











NBX Number
IC50 < 1 μM
IC50 < 50 nM







NBX0301
Yes
No



NBX0303
Yes
Yes



NBX0304
No
No



NBX0305
Yes
Yes



NBX0307
Yes
Yes



NBX0308
Yes
No



NBX0309
Yes
Yes



NBX0310
Yes
Yes



NBX0311
Yes
No



NBX0318
Yes
Yes



NBX0319
Yes
Yes



NBX0322
Yes
No



NBX0323
Yes
No



NBX0324
Yes
Yes



NBX0362
Yes
No



NBX0364
Yes
Yes



NBX0365
Yes
Yes



NBX0366
Yes
Yes



NBX0370
Yes
No



NBX0371
Yes
Yes



NBX0372
Yes
No



NBX0373
Yes
No



NBX0375
Yes
Yes



NBX0376
Yes
No



NBX0378
Yes
No



NBX0379
Yes
No



NBX0501
Yes
Yes



NBX0502
No
No



NBX0503
Yes
Yes



NBX0504
No
No



NBX0505
Yes
Yes



NBX0506
Yes
Yes



NBX0507
Yes
Yes



NBX0508
Yes
No



NBX0509
No
No



NBX0510
Yes
Yes



NBX0511
Yes
Yes



NBX0512
Yes
No



NBX0513
Yes
No



NBX0538
Yes
Yes



NBX0539
Yes
Yes



NBX0540
Yes
Yes



NBX0541
Yes
No



NBX0542
Yes
Yes



NBX0543
Yes
No



NBX0544
Yes
Yes



NBX0545
Yes
Yes



NBX0546
Yes
Yes



NBX0547
Yes
No



NBX0548
Yes
Yes



NBX0549
Yes
Yes



NBX0550
Yes
Yes



NBX0551
Yes
Yes



NBX0552
Yes
Yes



NBX0553
Yes
Yes










4. NBX Reduction of CnaA Collagen Binding

In a 96-well microtiter plate, 2 μg of collagen is incubated in 100 μl of PBS per well overnight at 4° C. The plate is washed with 200 μl of PBS and then blocked with 200 μl of 5% skim milk in PBS for 2 hours at 37° C. During the blocking step, 200 nM or 2 μM of individual NBXs are mixed with or without 100 nM of 6×-Histidine (SEQ ID NO: 695) and Maltose-binding-protein (MBP) tagged CnaA in PBS for 30 minutes at 37° C. The plate is washed with 200 μl of PBS three times, and 100 μl of NBXs or NBX/MBP-CnaA mixture is added to each well for a 2-hour incubation at 37° C. After washing with 200 μl of PBS three times, 100 μl of 0.125 μg/ml of anti-His conjugated with HRP is added to each well and incubated for 1 hour at room temperature. The plate is then washed with 200 μl of PBS three times, and 100 μl of TMB substrate is added to each well and allowed to develop for 30 minutes. To stop the reaction, 50 μl of 1 M HCl is added to each well. Absorbance of the plate at 450 nm is read to quantify binding. To quantify the reduction of CnaA binding to collagen in the presence of NBX, a percent reduction is calculated relative to the binding of CnaA in the absence of NBX (100% binding).


Table 4 indicates, for all NBXs tested, whether the NBX can reduce binding of CnaA to collagen by more than 50% when the NBX is supplied at 2 μM and/or at 200 nM.









TABLE 4







Summary table for NBXs that neutralize CnaA












Collagen-binding
Collagen-binding



NBX
reduced by >50%
reduced by >50%



Number
at 2 μM
at 200 nM







NBX0316
Yes
Yes



NBX0317
Yes
Yes



NBX0325
Yes
Yes



NBX0326
Yes
Yes



NBX0327
No
No



NBX0514
No
No



NBX0515
No
No



NBX0518
No
No



NBX0520
Yes
No



NBX0521
No
No



NBX0522
Yes
Yes



NBX0523
No
No



NBX0524
No
No



NBX0526
No
No



NBX0527
No
No



NBX0528
Yes
Yes



NBX0529
No
No



NBX0530
Yes
Yes



NBX0531
Yes
Yes



NBX0532
No
No



NBX0533
No
No



NBX0534
Yes
Yes



NBX0535
Yes
Yes



NBX0537
No
No



NBX0801
Yes
No



NBX0802
Yes
No



NBX0803
Yes
Yes



NBX0804
Yes
Yes



NBX0805
No
No



NBX0806
No
No



NBX0807
Yes
Yes



NBX0808
Yes
No



NBX0809
Yes
Yes



NBX0811
Yes
Yes



NBX0812
Yes
Yes



NBX0847
Yes
No



NBX0866
Yes
Yes



NBX0867
Yes
No



NBX0868
Yes
No



NBX0869
Yes
Yes



NBX0870
No
No



NBX0871
No
No



NBX0872
Yes
No



NBX0873
Yes
Yes



NBX0874
Yes
Yes



NBX0875
Yes
Yes



NBX0876
Yes
Yes



NBX0896
Yes
No



NBX0897
Yes
No



NBX0898
Yes
No



NBX0899
Yes
Yes



NBX08100
Yes
Yes



NBX08101
Yes
Yes



NBX08102
Yes
Yes



NBX08103
Yes
No



NBX08104
Yes
Yes



NBX08105
Yes
Yes



NBX08106
Yes
Yes



NBX08107
Yes
Yes



NBX08108
Yes
Yes










5. NBX Neutralization of Cpa Lecithinase Activity

Cpa is mixed with NBX or PBS to achieve a final concentration of 100 nM (Cpa) and 1 uM (NBX) in a total store-bought, free-range eggs by separation from the white. The yolk is punctured carefully then 5 ml is removed and mixed thoroughly with 45 ml PBS to create a 10% solution. The solution is centrifuged at 500 g to remove large aggregates and then passed through a 0.45 um GD/X syringe filter. 60 ul of the filtered yolk solution is added to the Cpa or Cpa/NBX wells to achieve a final concentration of 5% v/v egg yolk. The plate is incubated for 1 hr at 37° C. after which the optical density of the plate is measured at 620 nm. NBX neutralization of Cpa lecithinase activity is determined relative to Cpa lecithinase activity in the absence of NBX (100%).


Table 5 indicates, for all NBXs tested, whether the NBX can reduce Cpa lecithinase activity by more than 40% when the NBX is supplied at 1 μM.









TABLE 5







Summary table for NBXs that neutralize Cpa











Cpa lecithinase activity



NBX Number
reduced by >40% at 1 μM







NBX0329
Yes



NBX0330
No



NBX0338
Yes



NBX0339
Yes



NBX0340
No



NBX0341
No










6. Untagged CnaA Provided in Excess Outcompetes Tagged CnaA for Collagen Binding

In a 96-well microtiter plate, 2 μg of collagen is incubated in 100 μl of PBS per well overnight at 4° C. The plate is washed with 200 μl of PBS and then blocked with 200 μl of 5% skim milk in PBS for 2 hours at 37° C. During the blocking step, 100 nM of 6×-Histidine (SEQ ID NO: 695) and Maltose-binding-protein (MBP) tagged CnaA is mixed with between 0 and 2000 nM untagged CnaA in PBS for 30 minutes at 37° C. The plate is washed with 200 μl of PBS three times, and 100 μl of MBP-CnaA or MBP-CnaA/untagged CnaA mixture is added to each well for a 2-hour incubation at 37° C. After washing with 200 μl of PBS three times, 100 μl of 0.125 μg/ml of anti-His conjugated with HRP is added to each well and incubated for 1 hour at room temperature. The plate is then washed with 200 μl of PBS three times, and 100 μl of TMB substrate is added to each well and allowed to develop for 30 minutes. To stop the reaction, 50 μl of 1 M HCl is added to each well. Absorbance of the plate at 450 nm is read to quantify binding.



FIG. 3 shows the reduction of binding of MBP-CnaA to collagen in the presence of increasing concentrations of untagged CnaA.


All publications, patent applications, issued patents, and other documents referred to in this specification are herein incorporated by reference as if each individual publication, patent application, issued patent, or other document is specifically and individually indicated to be incorporated by reference in its entirety. Definitions that are contained in text incorporated by reference are excluded to the extent that they contradict definitions in this disclosure.


The following references are incorporated by reference in their entirety.

  • 1. Wade, B. & Keyburn, A. (2015). The true cost of necrotic enteritis. World Poultry, 31, pp. 16-17
  • 2. Moore, R. J. (2016). Necrotic enteritis predisposing factors in broiler chickens. Avian Pathology, 45(3), pp. 275-281.
  • 3. Abid, S. A. et al. (2016). Emerging threat of necrotic enteritis in poultry and its control without use of antibiotics: a review. The Journal of Animal and Plant Sciences, 26(6), pp. 1556-1567.
  • 4. Prescott, J. F. et al. (2011). The pathogenesis of necrotic enteritis in chickens: what we know and what we need to know: a review. Avian Pathology, 45(3), pp. 288-294.
  • 5. Collier, C. T. et al. (2008) Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Veterinary Immunology and Immunopathology, 122(1-2), pp. 104-115.
  • 6. Van Meirhaeghe, H. & De Gussem, M. (2014). Coccidiosis a major threat to the chicken gut. Retrieved on May 25, 2018 from: https://www.poultryworld.net/Home/General/2014/9/Coccidiosis-a-major-threat-to-the-chicken-gut-1568808W/?dossier=35765&widgetid=1.
  • 7. Chapman, H. D. (2014). Milestones in avian coccidiosis research: a review. Poultry Science, 93(3), pp. 501-511.
  • 8. Shivaramaiah, S. et al. (2011). The role of an early Salmonella Typhimurium infection as a predisposing factor for necrotic enteritis in a laboratory challenge model. Avian Diseases, 55(2), pp. 319-323.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A polypeptide capable of: a) reducing the cytotoxicity of NetB against LMH cells with an IC50 value less than 1 mM; b) reducing the binding of nM CnaA to collagen by greater than 50% at 2 uM; or c) reducing Cpa lecithinase activity by greater than 40% at 1 uM.
  • 2.-6. (canceled)
  • 7. The polypeptide of claim 1, wherein the polypeptide comprises a plurality of VHHs.
  • 8. The polypeptide of claim 7, wherein the polypeptide comprises at least three VHHs.
  • 9. The polypeptide of claim 7, wherein any one of the plurality of VHHs is identical to another VHH of the plurality of VHHs.
  • 10. The polypeptide of claim 7, wherein the plurality of VHHs are covalently coupled to one another by a linker, the linker comprising one or more amino acids.
  • 11. The polypeptide of claim 1, wherein the polypeptide comprises a variable region fragment of a heavy chain antibody that comprises an amino acid sequence at least 80% identical to any one of SEQ ID Nos: 1 to 56 or 212 to 340.
  • 12. The polypeptide of claim 1, wherein the polypeptide comprises a variable region fragment of a heavy chain antibody that comprises a complementarity determining region 1 (CDR1) as set forth in any one of SEQ ID Nos: 57 to 106 or 341 to 458, a complementarity determining region 2 (CDR2) as set forth in any one of SEQ ID Nos: 107 to 156 or 459 to 576, and a complementarity determining region 3 (CDR3) as set forth in any one of SEQ ID Nos: 157 to 206 or 577 to 694.
  • 13.-15. (canceled)
  • 16. The polypeptide of claim 1, wherein the species of Clostridium is Clostridium perfringens.
  • 17. The polypeptide of claim 16, wherein the VHH specifically binds a Clostridium virulence factor.
  • 18. The polypeptide of claim 16, wherein the VHH specifically binds an antigen or polypeptide at least 60% identical to SEQ IDs Nos: 207 to 211 or combinations thereof.
  • 19.-39. (canceled)
  • 40. A method of reducing or preventing a poultry-associated bacterial infection in a poultry animal, another animal species, or human individual comprising administering the polypeptide of claim 1 to the poultry animal, another animal species, or human individual.
  • 41. A method of reducing transmission or preventing transmission of a poultry-associated bacterial from a poultry species to another poultry animal, another animal species, or a human individual comprising administering the polypeptide of claim 1 to the poultry species to another poultry animal, another animal species, or the human individual.
  • 42. The method of claim 40, wherein the poultry animal is a species of a chicken, turkey, duck, quail, pigeon, squab, ostrich, or goose.
  • 43. The method of claim 40, wherein the non-poultry animal species is a pig, sheep, goat, horse, cow, llama, alpaca, mink, rabbit, dog, cat, or human
  • 44. The method of claim 40, wherein the polypeptide is adapted for introduction to the alimentary canal orally or rectally, provided to the exterior surface (for example, as a spray or submersion), provided to the medium in which the animal dwells (including air based media), provided by injection, provided intravenously, provided via the respiratory system, provided via diffusion, provided via absorption by the endothelium or epithelium, or provided via a secondary organism such as a yeast, bacterium, algae, bacteriophages, plants and insects to a host.
  • 45. The method of claim 41, wherein the poultry animal is a species of a chicken, turkey, duck, quail, pigeon, squab, ostrich, or goose.
  • 46. The method of claim 41, wherein the non-poultry animal species is a pig, sheep, goat, horse, cow, llama, alpaca, mink, rabbit, dog, cat, or human
  • 47. The method of claim 41, wherein the polypeptide is adapted for introduction to the alimentary canal orally or rectally, provided to the exterior surface (for example, as a spray or submersion), provided to the medium in which the animal dwells (including air based media), provided by injection, provided intravenously, provided via the respiratory system, provided via diffusion, provided via absorption by the endothelium or epithelium, or provided via a secondary organism such as a yeast, bacterium, algae, bacteriophages, plants and insects to a host.
CROSS-REFERENCE

This application claims the benefit of U.S. Provisional Application No. 62/694,164, filed Jul. 5, 2018, which application is incorporated herein by reference. Priority is claimed pursuant to 35 U.S.C. § 119. The above noted patent application is incorporated by reference as if set forth fully herein.

Provisional Applications (1)
Number Date Country
62694164 Jul 2018 US
Continuations (1)
Number Date Country
Parent PCT/IB2019/001198 Jul 2019 US
Child 17141052 US