ANTIBODIES OR ANTIBODY-FRAGMENTS THEREOF TARGETING ALPHAVIRUSES, AND COMPOSITIONS AND METHODS COMPRISING SAME

Information

  • Patent Application
  • 20220265806
  • Publication Number
    20220265806
  • Date Filed
    June 06, 2019
    5 years ago
  • Date Published
    August 25, 2022
    2 years ago
Abstract
Provided are high affinity anti-alphavirus antibodies or alphavirus-binding fragments thereof, as well as methods of use and devices employing such antibodies and/or fragments. Further provided are complementarity determining region (CDR) sequences of variable domain light chain (VL) and variable domain heavy chain (VH) sequences, and the methods of using the high affinity anti-alphavirus antibodies for treating different types of alphavirus infections.
Description
BACKGROUND OF THE INVENTION

The disclosures of all publications, patents, patent application publications and books referred to herein, are hereby incorporated by reference in their entirety into the subject application to more fully describe the art to which the subject invention pertains.


Chikungunya (CHIKV) is a member of the alphavirus genus. These positive-strand RNA viruses are generally disseminated by mosquito vectors and cause severe human and animal illness (1). Human CHIKV infection causes a painful polyarthritis that can persist for years after infection and is associated with a mortality rate of ˜0.1% (2,3). Other alphaviruses such as Venezuelan, eastern, and western encephalitis viruses (VEEV, EEV, and WEEV) cause severe encephalitis with human case fatality rates of up to 30%. VEEV, EEV, WEEV, and CHIKV are prioritized as NIAID categories B or C emerging pathogens.


CHIKV was discovered in Africa where it is endemic and caused large but sporadic outbreaks. Beginning in 2004, CHIKV emerged to cause a multi-year pandemic in countries around the Indian Ocean, with millions of reported cases and a number of deaths (3). CHIKV was first reported in the Americas in 2013, and rapidly spread to over 43 countries, causing more than a million cases (4). Given the spread of mosquito vectors into new regions and the adaptation of CHIKV to new vectors, continued spread of CHIKV is likely.


There are three genotypes of CHIKV (Asian, East/Central/South African (ECSA), and West African) that are ˜92.5-98% identical at the amino acid level; recent epidemics have been caused by CHIKV strains of the ECSA genotype. Global spread of CHIKV was precipitated by adaptation of the envelope glycoprotein to allow human infection from both Aedes aegypti (Yellow Fever mosquito) and Aedes albopictus (Asian Tiger mosquito) (5). These two mosquitos also harbor globally significant flaviviruses such as Dengue virus (serotypes 1-4, DENV-1 to -4), Yellow Fever virus (YFV), and Zika virus (ZIKV) with the latter two being most efficiently transmitted by A. aegypti (6). Both mosquitos are found in the continental US, with A. albopictus reaching as far north as New York. A complication that has impeded ZIKV response to the epidemic in Brazil and other regions is a lack of diagnostics that can distinguish among these pathogens.


SUMMARY OF THE INVENTION

An anti-alphavirus antibody or alphavirus-binding fragment thereof, wherein said antibody or fragment thereof comprises:

  • (1) a heavy chain comprising (i) the CDRS set forth in GFGVNNNY (SEQ ID NO:166), IYAGGNT (SEQ ID NO:167), AREVVPTAMGGFDL (SEQ ID NO:168), or (ii) GGSISNYY (SEQ ID NO:169), MYYSGST (SEQ ID NO:170), ARSYCDIANCYTFDL (SEQ ID NO:171);


    and a light chain comprising the CDRS set forth in QVTSGY (SEQ ID NO:172), AAS (SEQ ID NO:173), and QQLNSNPLVYT (SEQ ID NO:174);
  • (2) a heavy chain comprising the CDRS set forth in GFSFDDYV (SEQ ID NO:199), ISWDGDST (SEQ ID NO:200), ARSLADYLNYYHYTMDV (SEQ ID NO:201);


    and a light chain comprising the CDRS set forth in QSVLYSSSNKSY (SEQ ID NO:202), WAS (SEQ ID NO:203), and QQYYSTPYT (SEQ ID NO:204);
  • (3) a heavy chain comprising the CDRs set forth in GVSFGSYS (SEQ ID NO:46), ISSSSSRI (SEQ ID NO:47), ARLDDFWSGYIVD (SEQ ID NO:48); and a light chain comprising the CDRs set forth in QSVDSN (SEQ ID NO:49); RAS (SEQ ID NO:50), QEYNTWPPYT (SEQ ID NO:51);
  • (4) a heavy chain comprising the CDRs set forth in GYTFHRYG (SEQ ID NO:1), ISVYTGNT (SEQ ID NO:2), ATEPNIILSYFHH (SEQ ID NO:3); and a light chain comprising the CDRs set forth in QEISAN (SEQ ID NO:4), AAS (SEQ ID NO:5), QQSYNTPRT (SEQ ID NO:6);
  • (5) a heavy chain comprising the CDRs set forth in GFTFSSYW (SEQ ID NO:175), INSDGSSI (SEQ ID NO:176), LTTSRFGAFDM (SEQ ID NO:177); and a light chain comprising the CDRs set forth in QSLLHSNGYNY (SEQ ID NO:178), LGS (SEQ ID NO:179), MQALQTPYT (SEQ ID NO:180);
  • (6) a heavy chain comprising the CDRs set forth in GFSLNTSGVT (SEQ ID NO:130), IYWDGDK (SEQ ID NO:131), SYTSYKYFDVDV (SEQ ID NO:132); and a light chain comprising the CDRs set forth in QSGNNY (SEQ ID NO:133), DTS (SEQ ID NO:134), QQRSNWPRT (SEQ ID NO:135);
  • (7) a heavy chain comprising the CDRs set forth in GFSLTTPGVG (SEQ ID NO:538), IFWNDEK (SEQ ID NO:539), AHSRLDLWNGYK (SEQ ID NO:540); and a light chain comprising the CDRs set forth in QSLLHINGYTY (SEQ ID NO:541), LGS (SEQ ID NO:542), MQALQTPRT (SEQ ID NO:543); or
  • (8) a heavy chain comprising the CDRs set forth in GFTFSDYY (SEQ ID NO:725), ISTSGSTM (SEQ ID NO:726), ARGIYYQSDAFDI (SEQ ID NO:727); and a light chain comprising the CDRs set forth in QGISNS (SEQ ID NO:728), AAS (SEQ ID NO:729), QQYYSTPPMT (SEQ ID NO:730)


An anti-alphavirus antibody or alphavirus-binding fragment thereof, wherein said antibody or fragment thereof comprises:

  • (1) a heavy chain comprising (i) a CDR1, CDR2, and CDR3 as set forth in any one heavy chain row of Table 1;
  • (2) and a light chain comprising (i) a CDR1, CDR2, and CDR3 as set forth in any one light chain row of Table 1, which light chain row belongs to the same laboratory designated antibody as the heavy chain row in (1).


A method for treating an alphavirus infection in a subject, wherein the alphavirus is a Chikungunya virus, Mayaro virus or O'nyong'nyong virus, comprising administering an antibody or antigen-binding fragment thereof as described herein in an amount effective to treat a Chikungunya virus, Mayaro virus or O'nyong'nyong virus infection in a subject.


A method for inhibiting an alphavirus infection in a subject, wherein the alphavirus is a Chikungunya virus, Mayaro virus or O'nyong'nyong virus, comprising administering an antibody or antigen-binding fragment thereof as described herein in an amount effective to inhibit a Chikungunya virus, Mayaro virus or O'nyong'nyong virus infection in a subject.


An isolated nucleic acid molecule encoding the antibody, or binding fragment thereof, as described herein.


A vector comprising the nucleic acid molecule as described herein.


A host cell comprising the nucleic acid molecule as described herein, or the vector as described herein.


A method of producing an anti-alphavirus antibody comprising culturing the host cell of as described herein, under conditions wherein the anti-alphavirus antibody is produced by the host cell.


A pharmaceutical composition comprising an anti-alphavirus antibody, or alphavirus-binding fragment thereof, as described herein, and a pharmaceutically acceptable excipient.


A method of reducing an activity of alphavirus in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of the anti-alphavirus antibody, or alphavirus-binding fragment thereof, as described herein, or the pharmaceutical composition as described herein.


A method of treating a disease, disorder, or condition mediated by, or related to increased activity of an alphavirus in a subject a therapeutically effective amount of the anti-alphavirus antibody, or alphavirus-binding fragment thereof, as described herein, or the pharmaceutical composition as described herein.


An assay device is provided for selectively detecting an alphavirus in a biological sample comprising:

  • a first portion comprising a first plurality of anti-alphavirus antibodies as described herein, wherein the antibodies are each attached to their own reporting entity;
  • a second portion comprising a second plurality of anti-alphavirus antibodies.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 contains two panels, FIGS. 1A-1B, showing sample human mAb isolation from donor DC1. FIG. 1A depicts serum ELISA showing reactivity for both p62-E1 glycoprotein and VSV-CHIKV but not blank wells. FIG. 1B shows that, for B-cell sorting, the following markers were used CD20 (Pacific Blue channel); CD27 (APC); p62-E1 (RFP); IgG (FITC). This figure shows ELISA of three human mAbs, as well as negative and positive (CHK-152) controls for binding to both p62-E1 and rVSV-CHIKV. Single-point rVSV-CHIKV neutralization assay with human mAbs.



FIG. 2 shows neutralization of authentic CHIKV by DC2.271B (two different independent batches, 1 and 2) and DC2.429. These results were obtained by Dr. Courtney Cohen in Dr. John Dye's lab at USAMRIID



FIG. 3 shows neutralization of MAYV by human CHIKV mAbs. CHK-265 is a positive control murine mAb with reported cross neutralizing activity toward MAYV, and F4 is a negative control.



FIG. 4 shows breakdown of binding for 39 of the human CHIKV mAbs (DC2.429 did not bind to either protein).



FIG. 5 contains eleven panels, FIGS. 5A-5K, showing Chikungunya virus Glycoprotein Architecture and Overview of Human Monoclonal Antibodies. FIG. 5A shows the CHIKV glycoprotein spike consists of three copies each of E1 and E2 each in the prefusion form (modified from (Sanchez-San Martin C, et al. Trends Microbiol. 2009; 17(11):514-21)). The inset shows the arrangement of E1 (comprised of DI, DII, and DIII) and E2 (comprised of domains A, B, and C). The location of E3 and the furin cleavage site are also shown. The hybrid protein “p62-E1”, consisting of p62 ectodomain linked to the E1 ectodomain by a polypeptide linker, was used for binding and sorting experiments. FIG. 5B show X-ray crystallographic structure of CHIKV p62-E1 (PDB ID: 3N40) (Sanchez-San Martin C, et al. Trends Microbiol. 2009; 17(11):514-21) with domains colored and labeled according to panel FIG. 5A, and with the (β-connector colored magenta (identified at end of black line). FIG. 5C depicts reactivity of plasma from convalescent patients DC1 and DC2 toward CHIKV p62-E1 in comparison to negative control wells (3% BSA). A representative dataset is shown for the DC2 ELISA from two experiments, each performed in triplicate (points represent mean±SD). Sera for DC1 were limited and thus data presented here are from a single experiment with no replicates. FIG. 5D shows Volcano plot of ELISA (OD450) for 46 of the isolated mAbs at 30 nM and 300 nM. Each data point represents the mean from 2 or more replicates. Distribution of IGHV families (FIG. 5E), CDR-H3 lengths (FIG. 5F), and IGKV families (FIG. 5G) for the mAbs. FIG. 5H-5K shows representative FACS sort of patient-derived PBMCs. Cells were filtered for size and granularity (FIG. 5H), then (in this case) CD3+/CD8+/CD14+cells eliminated (FIG. 5I). The CD27+/CD20hi/IgG+/p62-E1+B cells (FIGS. 5J and 5K) were collected in individual wells. In some samples, both CD20hi/lo populations were carried forward.



FIG. 6 contains eight panels, FIGS. 6A-6H, showing MAb Binding Profiles and Epitope Binning. FIG. 6A shows distribution of specificities for mAbs isolated from DC1 and DC2, based on IP, ELISA and/or BLI studies. “p62-E1” specificity refers to mAbs that were confirmed to bind p62-E1 by ELISA and/or BLI, or that immunoprecipitated p62-E1 or E2. These mAbs likely have epitopes contained in E2 or shared epitopes across E1 and E2. “E1” specificity refers to mAbs that were confirmed to bind bacterially expressed E1′ by ELISA and/or BLI. FIG. 6B shows binding of E1 mAbs to E1′ by BLI. A representative dataset from two experiments is shown. FIG. 6C shows full ELISA binding curves for DC2.271B and DC2.429 against p62-E1; a representative dataset 829 from two experiments each performed in triplicate is shown (points represent mean±SD). FIG. 6D shows two-phase binding by BLI of E1 mAbs DC1.56, DC2.82, and DC2.85 against E1 mAb chCHK-166pMAZ. In all cases, the human mAbs were able to engage p62-E1 simultaneously as CHK-166, regardless of order of addition, thus indicating that they do not share epitopes with CHK-166. A representative dataset from two experiments is shown. FIG. 6E shows immunoprecipitation of viral proteins from infected cells. BHKs were infected with CHIK 181/25 for 8 h, labeled with [35S]methionine/cysteine for 2 h, and lysed on ice. Approximately 1 μg of the indicated mAbs or 2 μL of a control SFV polyclonal antibody (Sanchez-San Martin et al., 2013 Journal of virology 87, 7680-7687) was incubated with lysate for 1 h in the presence of 0.1% SDS. The immunoprecipitate was retrieved with Protein A agarose and the samples were reduced and alkylated and analyzed by SDS-PAGE and fluorography. The lower migrating immunoprecipitated protein is E2, the middle is E1, and the upper is p62 (arrows) as demonstrated by control antibodies (chCHK-166pMAZ:E1, chCHK-265pMAZ:E2/p62, and SFV polyclonal antibody:E2/p62). FIGS. 6F-6G shows binding of E1-Specific mAbs. FIG. 6F shows BLI analysis of interactions between E1-specific mAbs and p62-E1. A representative dataset from two independent experiments is shown. FIG. 6G shows ELISA analysis of binding of E1-specific mAbs to E1′, p62-E1, or BSA. For p62-E1 ELISA, only DC1.7, DC2.284, DC2.315, and DC2.415 were analyzed. A representative dataset from two independent experiments performed in triplicate is shown. Each point represents mean±SD. FIG. 6H shows competition studies for E1-Specific mAbs. The ability of chCHK-166pMAZ to engage p62-E1/human mAb complexes was tested in two-phase BLI experiments. SUDV-F4 was included as a negative control.



FIG. 7 contains five panels, FIGS. 7A-7E, showing neutralization of CHIKV by Human mAbs. FIG. 7A shows Volcano plot of 46 human mAbs for their ability to inhibit infection of CHIKV 181/25 at 30 and 300 nM. FIG. 7B shows IC50 values for 19 of the mAbs against CHIKV 181/25. The error bars represent 95% confidence interval from data fitting, all IC50 values were measured twice independently with similar results. FIG. 7C shows neutralization of ESCA African genotype LR2006_OPY1 and Asian genotype AF15561 by human mAbs. FIG. 7D shows cross-neutralization of MAYV by human CHIKV mAbs. A representative dataset from two experiments is shown; points represent mean±SD. FIG. 7E shows full neutralization curves of human mAbs against CHIKV 181/25. For each mAb, a representative dataset performed in triplicate from two or more independent experiments is shown (IC50 values were consistent among experiments). Points represent the mean±SD. Curves are color-coded according to epitope designation (blue (bar columns 1-3), p62-E1 specific; red (bar columns 4-5, 7-8, 10, 12-13, 16-19), E1-specific; gray (bar columns 6, 9, 11, 14-15), undefined). The IC50 value is provided, along with 95% confidence interval from curve fitting (these values are also shown graphically in FIG. 6).



FIG. 8 contains six panels, FIG. 8A-8F, showing viral escape studies for DC2.271B and DC2.429 using rVSV-CHIKV. FIG. 8A shows schematic for the rVSV-CHIKV genome. Infection of Vero cells by rVSV-CHIKV, infection could be tracked by eGFP expression. chCHK-152pMAZ inhibits this infection but SUDV-F4 does not. FIG. 8B shows neutralization assay for rVSV-CHIKV WT and E2 viral escape mutations by DC2.271B, DC2.429, and chCHK-152pMAZ. Data are pooled from two experiments, each performed in duplicate, were (points represent mean±SD). FIG. 8C shows location of rVSV-CHIKV escape mutations for DC2.429 and DC2.271B (orange and red Cα spheres, respectively (circled in figure)) mapped onto the p62-E1 X-ray structure. E2 domains as well as E3 are colored and labeled as in FIG. 5A; E1 is labeled and colored gray. Also 850 shown are previously reported alanine scanning mutations that ablate binding for 4N12 (parent of SVIR001, yellow Cα sphere), 4J21 (green Cα spheres), C9 (magenta Cα sphere), and IMCV-063 (blue Cα sphere). The structural epitope for murine 852 mAb CHK-152, as mapped by cryo-EM is shown as cyan Cα spheres. The alanine scanning mutations that reduced Mxra8 binding are shown as magenta side chains. FIG. 8D shows comparison of neutralizing potency for DC2.271B, DC2.429, C9pMAZ, IM-CKV063pMAZ, and 4N12pMAZ. FIG. 8E shows neutralization of DC2.271B viral escape mutant rVSV-CHIKVE2-K233T by C9pMAZ, IM-CKV063pMAZ, and 4N12pMAZ. For panels FIG. 8B and FIG. 8C, data are pooled from two experiments, each performed in duplicate (points represent mean±SD). For FIG. 8D, two independent experiments were performed in triplicate with similar results; a representative dataset is shown. FIG. 8F shows Characterization of rVSV-CHIKV. Neutralization of rVSV-CHIKV by chCHK-152pMAZ. A representative dataset from two independent experiments each performed in triplicate is shown. Points represent mean±SD.



FIG. 9 contains three panels, FIGS. 9A-9C, showing viral escape studies with E1-targeting mAbs. Location of A286 and R289 on the p62-E1 X-ray structure (FIG. 9A, PDB ID: 3N40) (Voss JE, et al. Nature. 2010; 468(7324):709-12) or on the E1/E2 cryoEM heterohexamer (FIG. 9B, PDB ID: 3J2W) (Sun S, et al. Elife. 2013; 2:e00435). For clarity, p62 or E2 subunits are labeled and colored gray while E1 domains DI, DII, and DIII colored and labeled as per FIG. 5. In FIG. 9B, a complete prefusion E1/E2 hexameric spike (outlined with dotted line) is illustrated, along with an E1/E2 heterodimer from an adjacent spike, to depict relative orientation within adjacent spikes. FIG. 9C shows neutralization studies with WT VSV-CHIKV and viral escape mutants. Data are pooled from two experiments, each performed in duplicate or triplicate (points represent mean ±SD).



FIG. 10 contains three panels, FIG. 10A-10C, showing in vivo properties of human mAbs in mice. FIG. 10A shows protective efficacy against CHIKV LR2006_OPY1 in 3-week old mice rendered immunodeficient with anti-Ifnar1 mAb. Survival curves were compared using the log-rank test with a Bonferroni correction. Results were combined from two independent experiments of five mice per treatment group (n=10). FIG. 10B shows serum mAb levels 48 hours after mAb administration in infected mice from (A) (“I”, closed symbols) 60 hours after mAb administration in uninfected mice (“U”, open symbols). There were three mice per group points represent mean±SD). Serum mAb levels were compared by unpaired t-test. FIG. 10C shows SEC-HPLC analysis of mAbs. Antibodies were characterized by SEC-HPLC using a ProSEC 300S 300×7.5 mm column (Agilent Technologies) on a LC 1260Infinity Series HPLC (Agilent Technologies). Column was equilibrated with 50 mM phosphatebuffer, 150 mM NaCl, Ph 7.0 at 1.00 mL/min. Chromatographs and peak area percent are reported using Agilent Openlabs software.



FIG. 11 contains three panels, FIG. 11A-11C, showing recognition requirements for DC2.271B. CryoEM visualization (FIG. 11A) and single particle three-dimensional reconstruction (FIG. 11B) of p62-E1 alone and in complex with DC2.271B Fab. FIG. 11C shows neutralization of CHIKV 181/25 by DC2.271B IgG1 and Fab. Data are pooled from two experiments each performed in triplicate (points represent mean±SD).



FIG. 12 shows that CHIKV patient DC2 sera reacts with VSV-MAYV. ELISA binding curve of patient sera to VSV-CHIKV and VSV-MAYV pseudotyped viruses. Negative control serum was used from uninfected patient.



FIG. 13 shoes DC2 sera binds MAYV p62-E1. ELISA binding curve of DC2 sera to CHIKV and MAYV p62-E1 glycoprotein. Negative control serum was used from uninfected patient.



FIG. 14 shows sorting MAYV-reactive B cells from DC2. (Top) Gating strategy for isolation of antigen-reactive IgG memory B cells. (Bottom) Distribution of IGHV and IGKV families of 20 isolated mAbs.



FIG. 15 shows MAYV p62-E1 ELISA of mAbs from DC2. Binding ELISA of immobilized MAYV p62-E1 to mAb panel at 300 nM and 30 nM. Reactivity of mAbs to BSA is shown as a negative control.



FIG. 16 shows neutralization of MAYV and CHIKV 181/25 by cross-reactive human mAbs. Focus Reduction Neutralization Test assay performed with 300 nM and 30 nM of each mAb with MAYV (top) and CHIKV 181/25 vaccine strain (bottom). CHK265 and F4 are positive and negative control mAbs, respectively.



FIG. 17 shows MAYV neutralization curve by DC2 M16. Focus Reduction Neutralization Test assay was performed for DC2 M16 mAb against MAYV and the IC50 determined. CHK265 and F4 are positive and negative control mAbs, respectively.



FIG. 18 shows DC2 M16 binding kinetics by BLI. Binding kinetics of mAb DC2 M16 to MAYV p62-E1 were determined by bio-layer interferometry (BLI).



FIG. 19 shows epitope binning of cross-neutralizing mAbs. Two-phase binding by BLI of DC2 M16 and M17 against CHK265 bound to immobilized MAYV p62-E1 antigen.





DETAILED DESCRIPTION OF THE INVENTION

An anti-alphavirus antibody or alphavirus-binding fragment thereof, wherein said antibody or fragment thereof comprises:

  • (1) a heavy chain comprising (i) the CDRS set forth in GFGVNNNY (SEQ ID NO:166), IYAGGNT (SEQ ID NO:167), AREVVPTAMGGFDL (SEQ ID NO:168), or (ii) GGSISNYY (SEQ ID NO:169), MYYSGST (SEQ ID NO:170), ARSYCDIANCYTFDL (SEQ ID NO:171);


    and a light chain comprising the CDRS set forth in QVTSGY (SEQ ID NO:172), AAS (SEQ ID NO:173), and QQLNSNPLVYT (SEQ ID NO:174);


    or
  • (2) a heavy chain comprising the CDRS set forth in GFSFDDYV (SEQ ID NO:199), ISWDGDST (SEQ ID NO:200), ARSLADYLNYYHYTMDV (SEQ ID NO:201);


    and a light chain comprising the CDRS set forth in QSVLYSSSNKSY (SEQ ID NO:202), WAS (SEQ ID NO:203), and QQYYSTPYT (SEQ ID NO:204).


An anti-alphavirus antibody or alphavirus-binding fragment thereof, wherein said antibody or fragment thereof comprises:

  • (1) a heavy chain comprising (i) a CDR1, CDR2, and CDR3 as set forth in any one heavy chain row of Table 1;
  • (2) and a light chain comprising (i) a CDR1, CDR2, and CDR3 as set forth in any one light chain row of Table 1, which light chain row belongs to the same laboratory designated antibody as the heavy chain row in (1). For example, an anti-alphavirus antibody is provided which has the laboratory designation DC1-59, with the heavy chain (HC) CDR1, 2 and 3 of SEQ ID NOS: 28, 29 and 30, respectively, and light chain (LC) CDR1, 2 and 3 of SEQ ID NOS: 31, 32 and 33, respectively, as set forth in Table 1. All antibodies, and alphavirus-binding fragments thereof, of Table 1 are individually provided.


In embodiments, the antibody comprises a non-naturally occurring Fc region. In embodiments, the antibody comprises a mutated human Fc region. In embodiments, the antibody is an Immunoglobulin G type antibody.


In embodiments, the antibody comprises antibody, or alphavirus-binding fragment thereof, binds an alphavirus with a binding affinity (KD) of from about 0.005 nM to 100 nM.


In embodiments, the antibody comprises antibody, or alphavirus-binding fragment thereof, is a monoclonal antibody.


In embodiments, the antibody comprises antibody, or alphavirus-binding fragment thereof, is a recombinant antibody.


In embodiments, the alphavirus-binding fragment comprises an Fab, F(ab)2 or scFv.


A method for treating an alphavirus infection in a subject, wherein the alphavirus is a Chikungunya virus, Mayaro virus or O'nyong'nyong virus, comprising administering an antibody or antigen-binding fragment thereof as described herein in an amount effective to treat a Chikungunya virus, Mayaro virus or O'nyong'nyong virus infection in a subject.


A method for inhibiting an alphavirus infection in a subject, wherein the alphavirus is a Chikungunya virus, Mayaro virus or O'nyong'nyong virus, comprising administering an antibody or antigen-binding fragment thereof as described herein in an amount effective to inhibit a Chikungunya virus, Mayaro virus or O'nyong'nyong virus infection in a subject.


In embodiments, the antibody binds a Chikungunya virus E2, p62, E1, p62-E1 hybrid protein, or E1-E2 glycoprotein.


In embodiments, the method is for treating or inhibiting Chikungunya virus infection.


In embodiments, the method is for treating or inhibiting Mayaro virus infection.


In embodiments, the method is for treating or inhibiting O'nyong'nyong virus infection.


An isolated nucleic acid molecule encoding the antibody, or binding fragment thereof, as described herein. In embodiments, the isolated nucleic acid molecule is DNA. n embodiments, the isolated nucleic acid molecule is cDNA.


A vector comprising the nucleic acid molecule as described herein.


A host cell comprising the nucleic acid molecule as described herein, or the vector as described herein.


A method of producing an anti-alphavirus antibody comprising culturing the host cell of as described herein, under conditions wherein the anti-alphavirus antibody is produced by the host cell.


A pharmaceutical composition comprising an anti-alphavirus antibody, or alphavirus-binding fragment thereof, as described herein, and a pharmaceutically acceptable excipient.


A method of reducing an activity of alphavirus in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of the anti-alphavirus antibody, or alphavirus-binding fragment thereof, as described herein, or the pharmaceutical composition as described herein.


A method of treating a disease, disorder, or condition mediated by, or related to increased activity of an alphavirus in a subject a therapeutically effective amount of the anti-alphavirus antibody, or alphavirus-binding fragment thereof, as described herein, or the pharmaceutical composition as described herein.


An assay device is provided for selectively detecting an alphavirus in a biological sample comprising:

  • a first portion comprising a first plurality of anti-alphavirus antibodies as described herein, wherein the antibodies are each attached to their own reporting entity;
  • a second portion comprising a second plurality of anti-alphavirus antibodies. In embodiments, the antibody is a monoclonal antibody, or the fragment thereof is a fragment of a monoclonal antibody.


In embodiments, the reporting entity comprises a gold nanoparticle. In embodiments, the reporting entity comprises an enzyme. In embodiments, the second plurality of anti-alphavirus antibodies is affixed to a solid support of the device. In embodiments, the first plurality of anti-alphavirus antibodies is not affixed to a solid support of the device. In embodiments, the solid support comprises nitrocellulose. In embodiments, the assay device further comprises a fluid sample pad prior in sequential order to the first and second portions. In embodiments, the assay device further comprises a control portion subsequent in sequential order to the first and second portions. In embodiments, the control portion comprises a third plurality of antibodies, immobilized on a solid support of the device, and which third plurality of antibodies are capable of binding the first plurality of anti-alphavirus antibodies each attached to their own reporting molecule. In embodiments, the assay device further comprises a fluid-absorbent wicking pad subsequent in sequential order to the first and second portions, and third portion if present.


A pharmaceutical composition is provided comprising an anti-alphavirus antibody, or alphavirus-binding fragment thereof, as described herein and a pharmaceutically acceptable excipient.


A vaccine composition is provided comprising an anti-alphavirus antibody, or alphavirus-binding fragment thereof, and a carrier. In embodiments, the vaccine further comprises an immunological adjuvant.


A method is provided of detecting an alphavirus in a biological sample comprising contacting the device described herein with the sample and observing if alphavirus-bound antibodies bind to the second plurality of alphavirus-binding antibodies, wherein if such antibodies bind then alphavirus has been detected in the biological sample and wherein if no alphavirus-bound antibodies bind to the second plurality of alphavirus-binding antibodies then alphavirus has not been detected in the biological sample.


In embodiments, the method further comprises obtaining the sample from a subject.


In embodiments, the sample is urine or blood. In embodiments, the subject is human.


As used herein, the term “antibody” refers to an intact antibody, i.e. with complete Fc and Fv regions. “Fragment” refers to any portion of an antibody, or portions of an antibody linked together, such as, in non-limiting examples, a Fab, F(ab)2, a single-chain Fv (scFv), which is less than the whole antibody but which is an antigen-binding portion and which competes with the intact antibody of which it is a fragment for specific binding. In this case, the antigen is locate on the alphavirus.


As such a fragment can be prepared, for example, by cleaving an intact antibody or by recombinant means. See generally, Fundamental Immunology, Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y. (1989), hereby incorporated by reference in its entirety). Antigen-binding fragments may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies or by molecular biology techniques. In some embodiments, a fragment is an Fab, Fab′, F(ab′)2, Fd, Fv, complementarity determining region (CDR) fragment, single-chain antibody (scFv), (a variable domain light chain (VL) and a variable domain heavy chain (VH) linked via a peptide linker. In an embodiment, the scFv comprises a variable domain framework sequence having a sequence identical to a human variable domain FR1, FR2, FR3 or FR4. In an embodiment, the scFv comprises a linker peptide from 5 to 30 amino acid residues long. In an embodiment, the scFv comprises a linker peptide comprising one or more of glycine, serine and threonine residues.


In an embodiment the linker of the scFv is 10-25 amino acids in length. In an embodiment the peptide linker comprises glycine, serine and/or threonine residues. For example, see Bird et al., Science, 242: 423-426 (1988) and Huston et al., Proc. Natl. Acad. Sci. USA, 85:5879-5883 (1988) each of which are hereby incorporated by reference in their entirety), or a polypeptide that contains at least a portion of an antibody that is sufficient to confer Mtb capsular AM-specific antigen binding on the polypeptide, including a diabody. From N-terminus to C-terminus, both the mature light and heavy chain variable domains comprise the regions FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain is in accordance with the definitions of Kabat, Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991)), Chothia & Lesk, J. Mol. Biol. 196:901-917 (1987), or Chothia et al., Nature 342:878-883 (1989), each of which are hereby incorporated by reference in their entirety). As used herein, the term “polypeptide” encompasses native or artificial proteins, protein fragments and polypeptide analogs of a protein sequence. A polypeptide may be monomeric or polymeric. As used herein, an Fd fragment means an antibody fragment that consists of the VH and CH1 domains; an Fv fragment consists of the V1 and VH domains of a single arm of an antibody; and a dAb fragment (Ward et al., Nature 341:544-546 (1989) hereby incorporated by reference in its entirety) consists of a VH domain. In some embodiments, fragments are at least 5, 6, 8 or 10 amino acids long. In other embodiments, the fragments are at least 14, at least 20, at least 50, or at least 70, 80, 90, 100, 150 or 200 amino acids long.


The term “monoclonal antibody” as used herein refers to an antibody member of a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible mutations, e.g., naturally occurring mutations, that may be present in minor amounts. Thus, the modifier “monoclonal” indicates the character of the antibody as not being a mixture of discrete antibodies. In certain embodiments, such a monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target on an alphavirus, wherein the target-binding polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence from a plurality of polypeptide sequences. For example, the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones, or recombinant DNA clones. In contrast to polyclonal antibody preparations, which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen. In addition to their specificity, monoclonal antibody preparations are advantageous in that they are typically uncontaminated by other immunoglobulins. Thus an identified monoclonal antibody can be produced by non-hybridoma techniques, e.g. by appropriate recombinant means once the sequence thereof is identified.


In an embodiment of the inventions described herein, the antibody is isolated. As used herein, the term “isolated antibody” refers to an antibody that by virtue of its origin or source of derivation has one, two, three or four of the following: (1) is not associated with naturally associated components that accompany it in its native state, (2) is free of other proteins from the same species, (3) is expressed by a cell from a different species, and (4) does not occur in nature.


As used herein, a “human antibody” unless otherwise indicated is one whose sequences correspond to (i.e. are identical in sequence to) an antibody that could be produced by a human and/or has been made using any of the techniques for making human antibodies as disclosed herein, but not one which has been made in a human. This definition of a human antibody specifically excludes a humanized antibody. A “human antibody” as used herein can be produced using various techniques known in the art, including phage-display libraries (e.g. Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991), hereby incorporated by reference in its entirety), by methods described in Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) (hereby incorporated by reference in its entirety); Boerner et al., J. Immunol., 147(1):86-95 (1991) (hereby incorporated by reference in its entirety), van Dijk and van de Winkel, Curr. Opin. Pharmacol., 5: 368-74 (2001) (hereby incorporated by reference in its entirety), and by administering the antigen (e.g. an alphavirus protein or glycoprotein or an entity comprising such) to a transgenic animal that has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled, e.g., immunized xenomice (see, e.g., U.S. Pat. Nos. 5,939,598; 6,075,181; 6,114,598; 6,150,584 and 6,162,963 to Kucherlapati et al. regarding XENOMOUSE™ technology, each of which patents are hereby incorporated by reference in their entirety), e.g. Veloclmmune® (Regeneron, Tarrytown, N.Y.), e.g. UltiMab® platform (Medarex, now Bristol Myers Squibb, Princeton, N.J.). See also, for example, Li et al., Proc. Natl. Acad. Sci. USA, 103:3557-3562 (2006) regarding human antibodies generated via a human B-cell hybridoma technology. See also KM Mouse® system, described in PCT Publication WO 02/43478 by Ishida et al., in which the mouse carries a human heavy chain transchromosome and a human light chain transgene, and the TC mouse system, described in Tomizuka et al. (2000) Proc. Natl. Acad. Sci. USA 97:722-727, in which the mouse carries both a human heavy chain transchromosome and a human light chain transchromosome, both of which are hereby incorporated by reference in their entirety. In each of these systems, the transgenes and/or transchromosomes carried by the mice comprise human immunoglobulin variable and constant region sequences.


In an embodiment, the antibody described herein is a recombinant human antibody. The term “recombinant human antibody”, as used herein, includes all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immunoglobulin genes or a hybridoma prepared therefrom, antibodies isolated from a host cell transformed to express the human antibody, e.g., from a transfectoma, antibodies isolated from a recombinant, combinatorial human antibody library, and antibodies prepared, expressed, created or isolated by any other means that involve splicing of all or a portion of a human immunoglobulin gene, sequences to other DNA sequences. Such recombinant human antibodies have variable regions in which the framework and CDR regions are derived from human germline immunoglobulin sequences. In certain embodiments, however, such recombinant human antibodies can be subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo.


Other forms of humanized antibodies have one or more CDRs (CDR L1, CDR L2, CDR L3, CDR H1, CDR H2, or CDR H3) which are altered with respect to the original antibody, which are also termed one or more CDRs “derived from” one or more CDRs from the original antibody.


In an embodiment, the anti-alphavirus antibody described herein is capable of specifically binding or specifically binds an alphavirus. In an embodiment, the anti-alphavirus antibody described herein is capable of specifically binding alphavirus E1. In an embodiment, the anti-alphavirus antibody described herein is capable of specifically binding Chikungunya virus E1. As used herein, the terms “is capable of specifically binding” or “specifically binds” refers to the property of an antibody or fragment of binding to the (specified) antigen with a dissociation constant that is <1 μM, preferably <1 nM and most preferably <10 pM. In an embodiment, the Kd of the antibody (or fragment) for the antigen is better than 1.0 nM. In an embodiment, the Kd of the antibody (or fragment) for the antigen is better than 1.5 nM. An epitope that “specifically binds” to an antibody or a polypeptide is a term well understood in the art, and methods to determine such specific or preferential binding are also well known in the art. A molecular entity is said to exhibit “specific binding” or “preferential binding” if it reacts or associates more frequently, more rapidly, with greater duration and/or with greater affinity with a particular cell or substance than it does with alternative cells or substances. An antibody “specifically binds” or “preferentially binds” to a target if it binds with greater affinity, avidity, more readily, and/or with greater duration than it binds to other substances.


The term “compete”, as used herein with regard to an antibody, means that a first antibody, or an antigen-binding portion thereof, binds to an epitope in a manner sufficiently similar to the binding of a second antibody, or an antigen-binding portion thereof, such that the result of binding of the first antibody with its cognate epitope is detectably decreased in the presence of the second antibody compared to the binding of the first antibody in the absence of the second antibody. The alternative, where the binding of the second antibody to its epitope is also detectably decreased in the presence of the first antibody, can, but need not be the case. That is, a first antibody can inhibit the binding of a second antibody to its epitope without that second antibody inhibiting the binding of the first antibody to its respective epitope. However, where each antibody detectably inhibits the binding of the other antibody with its cognate epitope or ligand, whether to the same, greater, or lesser extent, the antibodies are said to “cross-compete” with each other for binding of their respective epitope(s). Both competing and cross-competing antibodies are encompassed by the present invention. Regardless of the mechanism by which such competition or cross-competition occurs (e.g., steric hindrance, conformational change, or binding to a common epitope, or portion thereof), the skilled artisan would appreciate, based upon the teachings provided herein, that such competing and/or cross-competing antibodies are encompassed and can be useful for the methods disclosed herein.


Depending on the amino acid sequences of the constant domains of their heavy chains, antibodies (immunoglobulins) can be assigned to different classes. The antibody or fragment can be, e.g., any of an IgG, IgD, IgE, IgA or IgM antibody or fragment thereof, respectively. In an embodiment the antibody is an immunoglobulin G. In an embodiment the antibody fragment is a fragment of an immunoglobulin G. In an embodiment the antibody is an IgG1, IgG2, IgG2a, IgG2b, IgG3 or IgG4. In an embodiment the antibody comprises sequences from a human IgG1, human IgG2, human IgG2a, human IgG2b, human IgG3 or human IgG4. A combination of any of these antibodies subtypes can also be used. One consideration in selecting the type of antibody to be used is the desired serum half-life of the antibody. For example, an IgG generally has a serum half-life of 23 days, IgA 6 days, IgM 5 days, IgD 3 days, and IgE 2 days. (Abbas A K, Lichtman A H, Pober J S. Cellular and Molecular Immunology, 4th edition, W.B. Saunders Co., Philadelphia, 2000, hereby incorporated by reference in its entirety).


The “variable region” or “variable domain” of an antibody refers to the amino-terminal domains of the heavy or light chain of the antibody. The variable domain of the heavy chain may be referred to as “VH.” The variable domain of the light chain may be referred to as “VL.” These domains are generally the most variable parts of an antibody and contain the antigen-binding sites. The term “variable” refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called hypervariable regions (HVRs) both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a beta-sheet configuration, connected by three HVRs, which form loops connecting, and in some cases forming part of, the beta-sheet structure. The HVRs in each chain are held together in close proximity by the FR regions and, with the HVRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, Md. (1991)). The constant domains are not involved directly in the binding of an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.


The “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains.


“Framework” or “FR” residues are those variable domain residues other than the HVR residues as herein defined.


The term “hypervariable region” or “HVR” when used herein refers to the regions of an antibody variable domain which are hypervariable in sequence and/or form structurally defined loops. Generally, antibodies comprise six HVRs; three in the VH (H1, H2, H3) and three in the VL (L1, L2, L3). In native antibodies, H3 and L3 display the most diversity of the six HVRs, and H3 in particular is believed to play a unique role in conferring fine specificity to antibodies. See, e.g., Xu et al., Immunity 13:37-45 (2000); Johnson and Wu, in Methods in Molecular Biology 248:1-25 (Lo, ed., Human Press, Totowa, N.J., 2003). Indeed, naturally occurring camelid antibodies consisting of a heavy chain only are functional and stable in the absence of light chain. See, e.g., Hamers-Casterman et al., Nature 363:446-448 (1993); Sheriff et al., Nature Struct. Biol. 3:733-736 (1996). A number of HVR delineations are in use and are encompassed herein. The Kabat Complementarity Determining Regions (CDRs) are based on sequence variability and are the most commonly used (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991) hereby incorporated by reference in its entirety). Chothia refers instead to the location of the structural loops (Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987)). The AbM HVRs represent a compromise between the Kabat HVRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software. The “contact” HVRs are based on an analysis of the available complex crystal structures. HVRs may comprise “extended HVRs” as follows: 24-36 or 24-34 (L1), 46-56 or 50-56 (L2) and 89-97 or 89-96 (L3) in the VL and 26-35 (H1), 50-65 or 49-65 (H2) and 93-102, 94-102, or 95-102 (H3) in the VH. The variable domain residues are numbered according to Kabat et al., supra, for each of these definitions.


The term “Fc region” herein is used to define a C-terminal region of an immunoglobulin heavy chain, including native sequence Fc regions and variant Fc regions. Although the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof. The C-terminal lysine of the Fc region may be removed, for example, during production or purification of the antibody, or by recombinantly engineering the nucleic acid encoding a heavy chain of the antibody. Accordingly, an intact antibody as used herein may be an antibody with or without the otherwise C-terminal lysine.


Compositions or pharmaceutical compositions comprising the antibodies, ScFvs or fragments of antibodies disclosed herein are preferably comprise stabilizers to prevent loss of activity or structural integrity of the protein due to the effects of denaturation, oxidation or aggregation over a period of time during storage and transportation prior to use. The compositions or pharmaceutical compositions can comprise one or more of any combination of salts, surfactants, pH and tonicity agents such as sugars can contribute to overcoming aggregation problems. Where a composition or pharmaceutical composition of the present invention is used as an injection, it is desirable to have a pH value in an approximately neutral pH range, it is also advantageous to minimize surfactant levels to avoid bubbles in the formulation which are detrimental for injection into subjects. In an embodiment, the composition or pharmaceutical composition is in liquid form and stably supports high concentrations of bioactive antibody in solution and is suitable for inhalational or parenteral administration. In an embodiment, the composition or pharmaceutical composition is suitable for intravenous, intramuscular, intraperitoneal, intradermal and/or subcutaneous injection. In an embodiment, the composition or pharmaceutical composition is in liquid form and has minimized risk of bubble formation and anaphylactoid side effects. In an embodiment, the composition or pharmaceutical composition is isotonic. In an embodiment, the composition or pharmaceutical composition has a pH or 6.8 to 7.4.


In an embodiment the ScFvs or fragments of antibodies disclosed herein are lyophilized and/or freeze dried and are reconstituted for use.


Examples of pharmaceutically acceptable carriers include, but are not limited to, phosphate buffered saline solution, sterile water (including water for injection USP), emulsions such as oil/water emulsion, and various types of wetting agents. Preferred diluents for aerosol or parenteral administration are phosphate buffered saline or normal (0.9%) saline, for example 0.9% sodium chloride solution, USP. Compositions comprising such carriers are formulated by well known conventional methods (see, for example, Remington's Pharmaceutical Sciences, 18th edition, A. Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990; and Remington, The Science and Practice of Pharmacy 20th Ed. Mack Publishing, 2000, the content of each of which is hereby incorporated in its entirety). In non-limiting examples, the can comprise one or more of dibasic sodium phosphate, potassium chloride, monobasic potassium phosphate, polysorbate 80 (e.g. 2-[2-[3,5-bis(2-hydroxyethoxy)oxolan-2-yl]-2-(2-hydroxyethoxy)ethoxy]ethyl(E)-octadec-9-enoate), disodium edetate dehydrate, sucrose, monobasic sodium phosphate monohydrate, and dibasic sodium phosphate dihydrate.


The antibodies, or fragments of antibodies, or compositions, or pharmaceutical compositions described herein can also be lyophilized or provided in any suitable forms including, but not limited to, injectable solutions or inhalable solutions, gel forms and tablet forms.


The term “Kd”, as used herein, is intended to refer to the dissociation constant of an antibody-antigen interaction. One way of determining the Kd or binding affinity of antibodies to alphavirus by measuring binding affinity of monofunctional Fab fragments of the antibody. (The affinity constant is the inverted dissociation constant). To obtain monofunctional Fab fragments, an antibody (for example, IgG) can be cleaved with papain or expressed recombinantly. The affinity of a fragment of an anti-alphavirus antibody can be determined by surface plasmon resonance (BIAcore3000™ surface plasmon resonance (SPR) system, BIAcore Inc., Piscataway N.J.). CM5 chips can be activated with N-ethyl-N′-(3-dimethylaminopropyl)-carbodiinide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) according to the supplier's instructions. Alphavirus antigens can be diluted into 10 mM sodium acetate pH 4.0 and injected over the activated chip at a concentration of 0.005 mg/mL. Using variable flow time across the individual chip channels, two ranges of antigen density can be achieved: 100-200 response units (RU) for detailed kinetic studies and 500-600 RU for screening assays. Serial dilutions (0.1-10× estimated Kd) of purified Fab samples are injected for 1 min at 100 microliters/min and dissociation times of up to 2 h are allowed. The concentrations of the Fab proteins are determined by ELISA and/or SDS-PAGE electrophoresis using a Fab of known concentration (as determined by amino acid analysis) as a standard. Kinetic association rates (kon) and dissociation rates (koff) are obtained simultaneously by fitting the data to a 1:1 Langmuir binding model (Karlsson, R. Roos, H. Fagerstam, L. Petersson, B. (1994). Methods Enzymology 6. 99-110, the content of which is hereby incorporated in its entirety) using the BIA evaluation program. Equilibrium dissociation constant (Kd) values are calculated as koff/kon. This protocol is suitable for use in determining binding affinity of an antibody or fragment to any alphavirus antigen. Other protocols known in the art may also be used. For example, ELISA of alphavirus antigen with mAb can be used to determine the kD values. The Kd values reported herein used this ELISA-based protocol.


The term Fc domain or region herein is used to define a C-terminal region of an immunoglobulin heavy chain, including native sequence Fc regions and variant Fc regions. Although the boundaries of the Fc domain of an immunoglobulin heavy chain might vary, the human IgG heavy chain Fc domain is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof. The C-terminal lysine of the Fc domain may be removed, for example, by recombinantly engineering the nucleic acid encoding it.


In embodiments, the antibody comprises an Fc domain. In an embodiment, the Fc domain has the same sequence or 99% or greater sequence similarity with a human IgG1 Fc domain. In an embodiment, the Fc domain has the same sequence or 99% or greater sequence similarity with a human IgG2 Fc domain. In an embodiment, the Fc domain has the same sequence or 99% or greater sequence similarity with a human IgG3 Fc domain. In an embodiment, the Fc domain has the same sequence or 99% or greater sequence similarity with a human IgG4 Fc domain. In an embodiment, the Fc domain is not mutated. In an embodiment, the Fc domain is mutated at the CH2-CH3 domain interface to increase the affinity of IgG for FcRn at acidic but not neutral pH (Dall'Acqua et al, 2006; Yeung et al, 2009). In an embodiment, the Fc domain has the same sequence as a human IgG1 Fc domain.


Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody with an N-terminal methionyl residue or the antibody fused to an epitope tag. Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody of an enzyme or a polypeptide which increases the half-life of the antibody in the blood circulation.












Amino Acid Substitutions











Original
Conservative
Exemplary



Residue
Substitutions
Substitutions







Ala (A)
Val
Val; Leu; Ile



Arg (R)
Lys
Lys; Gln; Asn



Asn (N)
Gln
Gln; His; Asp, Lys; Arg



Asp (D)
Glu
Glu; Asn



Cys (C)
Ser
Ser; Ala



Gln (Q)
Asn
Asn; Glu



Glu (E)
Asp
Asp; Gln



Gly (G)
Ala
Ala



His (H)
Arg
Asn; Gln; Lys; Arg



Ile (I)
Leu
Leu; Val; Met; Ala; Phe;





Norleucine



Leu (L)
Ile
Norleucine; Ile; Val; Met;





Ala; Phe



Lys (K)
Arg
Arg; Gln; Asn



Met (M)
Leu
Leu; Phe; Ile



Phe (F)
Tyr
Leu; Val; Ile; Ala; Tyr



Pro (P)
Ala
Ala



Ser (S)
Thr
Thr



Thr (T)
Ser
Ser



Trp (W)
Tyr
Tyr; Phe



Tyr (Y)
Phe
Trp; Phe; Thr; Ser



Val (V)
Leu
Ile; Leu; Met; Phe; Ala;





Norleucine










Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a β-sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:


(1) Non-polar: Norleucine, Met, Ala, Val, Leu, Ile;


(2) Polar without charge: Cys, Ser, Thr, Asn, Gln;


(3) Acidic (negatively charged): Asp, Glu;


(4) Basic (positively charged): Lys, Arg;


(5) Residues that influence chain orientation: Gly, Pro; and


(6) Aromatic: Trp, Tyr, Phe, His.


Non-conservative substitutions are made by exchanging a member of one of these classes for another class.


One type of substitution, for example, that may be made is to change one or more cysteines in the antibody, which may be chemically reactive, to another residue, such as, without limitation, alanine or serine. For example, there can be a substitution of a non-canonical cysteine. The substitution can be made in a CDR or framework region of a variable domain or in the constant region of an antibody. In some embodiments, the cysteine is canonical. Any cysteine residue not involved in maintaining the proper conformation of the antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant cross-linking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability, particularly where the antibody is an antibody fragment such as an Fv fragment.


A modification or mutation may also be made in a framework region or constant region to increase the half-life of an anti-alphavirus antibody. See, e.g., PCT Publication No. WO 00/09560. A mutation in a framework region or constant region can also be made to alter the immunogenicity of the antibody, to provide a site for covalent or non-covalent binding to another molecule, or to alter such properties as complement fixation, FcR binding and antibody-dependent cell-mediated cytotoxicity. According to the invention, a single antibody may have mutations in any one or more of the CDRs or framework regions of the variable domain or in the constant region.


In an embodiment, an antibody described herein is recombinantly produced. In an embodiment, the antibody is produced in a eukaryotic expression system. In an embodiment, the antibody produced in the eukaryotic expression system comprises glycosylation at a residue on the Fc portion corresponding to Asn297.


This invention also provides a composition comprising an antibody, or antigen-binding fragment thereof, as described herein. In an embodiment, the composition is a pharmaceutical composition. In an embodiment the composition or pharmaceutical composition comprising the antibody, or antigen-binding fragment thereof, described herein is substantially pure with regard to the antibody, or antigen-binding fragment thereof. A composition or pharmaceutical composition comprising the antibody, or antigen-binding fragment thereof, described herein is “substantially pure” with regard to the antibody or fragment when at least 60% to 75% of a sample of the composition or pharmaceutical composition exhibits a single species of the antibody, or antigen-binding fragment thereof. A substantially pure composition or pharmaceutical composition comprising the antibody, or antigen-binding fragment thereof, described herein can comprise, in the portion thereof which is the antibody, or antigen-binding fragment, 60%, 70%, 80% or 90% of the antibody, or antigen-binding fragment, of the single species, more usually about 95%, and preferably over 99%. Purity or homogeneity may be tested by a number of means well known in the art, such as polyacrylamide gel electrophoresis or HPLC.


In a preferred embodiment, the antibody is an IgG1 antibody. In an embodiment, the antibody is an IgG2 antibody. In an embodiment, the antibody is an IgG3 antibody. In an embodiment, the antibody is an IgG4 antibody.


In an embodiment, the antibody comprises the following Fc region sequence:









(SEQ ID NO: 610)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV





EPKSCDKTHTCPPCPAPELLGRPSVFLFPPKPKDTLMISRTPEVTCVVV





DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW





LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ





VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT





VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






In embodiments, the Fc region of the antibody comprises one or more Xtend mutations, for example: M428LN434S.


In embodiments, the Fc region of the antibody comprises one or more YTE mutations, for example: M252Y/S254T/T256E.









TABLE 1







Exemplary CDRs of the antibodies are set forth in the following table:










Laboratory





Designation
CDR1
CDR2
CDR3





DC1-7-HC
GYTFHRYG
ISVYTGNT
ATEPNIILSYFHH



(SEQ ID NO: 1)
(SEQ ID NO: 2)
(SEQ ID NO: 3)





DC1-7-LC
QEISAN
AAS
QQSYNTPRT



(SEQ ID NO: 4)
(SEQ ID NO: 5)
(SEQ ID NO: 6)





DC1_33-HC1
GFTFSSYW
INSDGSSI
LTTSRFGAFDM



(SEQ ID NO: 7)
(SEQ ID NO: 8)
(SEQ ID NO: 9)





DC1_33-HC2
GFTFSDYY
IRDKGNSYIT
VRSYNPGRGGNSDYMDF



(SEQ ID NO: 10)
(SEQ ID NO: 11)
(SEQ ID NO: 12)





DC1_33-LC
QSISNW
KAS
QQYKSYPWT



(SEQ ID NO: 13)
(SEQ ID NO: 14)
(SEQ ID NO: 15)





DC1-43-HC
TGSISSSSYY
MYNSGRP
ARGRVYCDGDCHDDAFDI



(SEQ ID NO: 16)
(SEQ ID NO: 17)
(SEQ ID NO: 18)





DC1-43-LC
QNVLYSSNNKNY
WAS
QQYYSTPYT



(SEQ ID NO: 19)
(SEQ ID NO: 20)
(SEQ ID NO: 21)





DC1-56-HC
EYIFNRYG
ITVSGTTI
VKGPFSNKNFDI



(SEQ ID NO: 22)
(SEQ ID NO: 23)
(SEQ ID NO: 24)





DC1-56-LC
QDISIY
DAS
QQHNSRPYS



(SEQ ID NO: 25)
(SEQ ID NO: 26)
(SEQ ID NO: 27)





DC1-59-HC
GFIFDDYA
ISWNSGNT
AKDTNAVVIATSSHAFDI



(SEQ ID NO: 28)
(SEQ ID NO: 29)
(SEQ ID NO: 30)





DC1-59-LC
QNINNY
AAS
QQSYGSPYT



(SEQ ID NO: 31)
(SEQ ID NO: 32)
(SEQ ID NO: 33)





DC1-353-HC
GFTFDDYA
ISWNSGDI
AKDIDPLVSGATRFDF



(SEQ ID NO: 34)
(SEQ ID NO: 35)
(SEQ ID NO: 36)





DC1-353-LC
QSISNW
KAS
QQYKSYPWT



(SEQ ID NO: 37)
(SEQ ID NO: 38)
(SEQ ID NO: 39)





DC1-355-HC
GYRFISYW
IYPGDSET
ARHSWGMDV



(SEQ ID NO: 40)
(SEQ ID NO: 41)
(SEQ ID NO: 42)





DC1-355-LC
QGISSSF
GAS
FIHYGDSIRP 



(SEQ ID NO: 43)
(SEQ ID NO: 44)
(SEQ ID NO: 45)





DC1-364-HC
GVSFGSYS
ISSSSSRI
ARLDDFWSGYIVD



(SEQ ID NO: 46)
(SEQ ID NO: 47)
(SEQ ID NO: 48)





DC1-364-LC
QSVDSN
RAS
QEYNTWPPYT



(SEQ ID NO: 49)
(SEQ ID NO: 50)
(SEQ ID NO: 51)





DC1-363-HC
GYTFTSYD
MNANNGNT
ARELHNSSSGYNWFDP



(SEQ ID NO: 52)
(SEQ ID NO: 53)
(SEQ ID NO: 54)





DC1-363-LC
QTVLSSSDNKNY
WAS
QQYFNTQT



(SEQ ID NO: 55)
(SEQ ID NO: 56)
(SEQ ID NO: 57)





DC2-9-HC
GFSFSDYY
ISSSGRTI
ARTRPTIAVAGSPLNEDY



(SEQ ID NO: 58)
(SEQ ID NO: 59)
(SEQ ID NO: 60)





DC2-9-LC
QTVSGY
DAS
QQRSNWPPGIT



(SEQ ID NO: 61)
(SEQ ID NO: 62)
(SEQ ID NO: 63)





DC2-12-HC
GGSIKRSNYY
LFYSGST
SRHFVGFAEAPPDGMDV



(SEQ ID NO: 64)
(SEQ ID NO: 65)
(SEQ ID NO: 66)





DC2-12-LC
QDISNH
DAS
QQYDTLPLRFT



(SEQ ID NO: 67)
(SEQ ID NO: 68)
(SEQ ID NO: 69)





DC2-64-HC
GYTFTRYA
INTNTGEP
AQQVIAFDV



(SEQ ID NO: 70)
(SEQ ID NO: 71)
(SEQ ID NO: 72)





DC2-64-LC
QSLLSSSNNKNF
WAS
QQYYSTPPYS



(SEQ ID NO: 73)
(SEQ ID NO: 74)
(SEQ ID NO: 75)





DC2-65-HC
GFTFNVYS
IWYDGVDK
ARGPGWSGYLDS



(SEQ ID NO: 76)
(SEQ ID NO: 77)
(SEQ ID NO: 78)





DC2-65-LC
QSLVYSDGGTY
KVS
MQATHWPHT



(SEQ ID NO: 79)
(SEQ ID NO: 80)
(SEQ ID NO: 81)





DC2-69-HC
GGSMSSGDYY
ISYSGSA
ARVFSGYYYSDY



(SEQ ID NO: 82)
(SEQ ID NO: 83)
(SEQ ID NO: 84)





DC2-69-LC
QSISSW
KAS
QQYNTYPWT



(SEQ ID NO: 85)
(SEQ ID NO: 86)
(SEQ ID NO: 87)





DC2-74-HC
GFTLSNYG
ILYDGGNR
AKDDSVFETDRTGTLNY



(SEQ ID NO: 88)
(SEQ ID NO: 89)
(SEQ ID NO: 90)





DC2-74-LC
QSIGIY
ASS
QQSYSSPPA



(SEQ ID NO: 91)
(SEQ ID NO: 92)
(SEQ ID NO: 93)





DC2-77-HC
GFAVNYYA
IVGYGATT
AKLTHPHDGSSFET



(SEQ ID NO: 94)
(SEQ ID NO: 95)
(SEQ ID NO: 96)





DC2-77-LC
QDVTTA
WAS
QQHYSTPLT



(SEQ ID NO: 97)
(SEQ ID NO: 98)
(SEQ ID NO: 99)





DC2-80-HC
GFSLSTSEVG
IYWDDDK
AHIKSYCSTITCYPTTFDY



(SEQ ID NO: 100)
(SEQ ID NO: 101)
(SEQ ID NO: 102)





DC2-80-LC
QSVLDSSNNNYY
WAS
QQYYSTPWT



(SEQ ID NO: 103)
(SEQ ID NO: 104)
(SEQ ID NO: 105)





DC2-82-HC
GYSFSSYS
IYPGDSYT
VRGMATNN



(SEQ ID NO: 106)
(SEQ ID NO: 107)
(SEQ ID NO: 108)





DC2-82-LC
QTLVHSDGNTY
KIS
MQATHFPWT



(SEQ ID NO: 109)
(SEQ ID NO: 110)
(SEQ ID NO: 111)





DC2-85-HC
GFTFRNYV
ISYDGNNK
ARDTQTQNSDWYLFGA



(SEQ ID NO: 112)
(SEQ ID NO: 113)
(SEQ ID NO: 114)





DC2-85-LC
QSVFIN
GAS
QQYNDWPPIT



(SEQ ID NO: 115)
(SEQ ID NO: 116)
(SEQ ID NO: 117)





DC2-112HC
GYTFNNHY
IAPSGDNT
ARDQLNRHSTNRGFFDL



(SEQ ID NO: 118)
(SEQ ID NO: 119)
(SEQ ID NO: 120)





DC2-112LC
QSVGSY
DAS
HQRGNWPPS



(SEQ ID NO: 121)
(SEQ ID NO: 122)
(SEQ ID NO: 123)





DC2-114HC
GFNFDDYG
ITWNSGLI
AKDMGRLYTVGWYNFHF



(SEQ ID NO: 124)
(SEQ ID NO: 125)
(SEQ ID NO: 126)





DC2-114LC
LNIGTF
AVS
QESYNTPEDLT



(SEQ ID NO: 127)
(SEQ ID NO: 128)
(SEQ ID NO: 129)





DC2-131-HC
GFSLNTSGVT
IYWDGDK
SYTSYKYFDVDV



(SEQ ID NO: 130)
(SEQ ID NO: 131)
(SEQ ID NO: 132)





DC2-131-LC
QSGNNY
DTS
QQRSNWPRT



(SEQ ID NO: 133)
(SEQ ID NO: 134)
(SEQ ID NO: 135)





DC2-134-HC
GYTLTTYP
INTHTGNP
ARDLAVAEYHGY



(SEQ ID NO: 136)
(SEQ ID NO: 137)
(SEQ ID NO: 138)





DC2-134-LC
QDVTTA
WAS
QQHYSTPLT



(SEQ ID NO: 139)
(SEQ ID NO: 140)
(SEQ ID NO: 141)





DC2-148-HC
GFIFDDHA
ISWNSGDI
VKDTPYCGGGGCLNWFDS



(SEQ ID NO: 142)
(SEQ ID NO: 143)
(SEQ ID NO: 144)





DC2-148-LC
QSLLHSNGYNY
LGS
MQTLQTPRT



(SEQ ID NO: 145)
(SEQ ID NO: 146)
(SEQ ID NO: 147)





DC2-159-HC
GFTFDDYA
IKSETYGGTT
SIVVAQVVRGIPLPNVFDI



(SEQ ID NO: 148)
(SEQ ID NO: 149)
(SEQ ID NO: 150)





DC2-159-LC
QGIGNY
SAS
LKYHGAPYT



(SEQ ID NO: 151)
(SEQ ID NO: 152)
(SEQ ID NO: 153)





DC2-160-HC
GFTFSNYV
ISYDGSNK
ARDTQTQSSDYYLFGA



(SEQ ID NO: 154)
(SEQ ID NO: 155)
(SEQ ID NO: 156)





DC2-160-LC
QSVINN
GAS
QQYNDWPPIT



(SEQ ID NO: 157)
(SEQ ID NO: 158)
(SEQ ID NO: 159)





DC2-164-HC
GESFSGYY
INHSGST
ARGYADTPVFRRAAAAGMDV



(SEQ ID NO: 160)
(SEQ ID NO: 161)
(SEQ ID NO: 162)





DC2-164-LC
QYIGTF
DAS
QQGYSPLYS



(SEQ ID NO: 163)
(SEQ ID NO: 164)
(SEQ ID NO: 165)





DC2-271B_HC
GFGVNNNY
IYAGGNT
AREVVPTAMGGFDL



(SEQ ID NO: 166)
(SEQ ID NO: 167)
(SEQ ID NO: 168)





DC2-271A_HC
GGSISNYY
MYYSGST
ARSYCDIANCYTFDL



(SEQ ID NO: 169)
(SEQ ID NO: 170)
(SEQ ID NO: 171)





DC2-271_LC
QVTSGY
AAS
QQLNSNPLVYT



(SEQ ID NO: 172)
(SEQ ID NO: 173)
(SEQ ID NO: 174)





DC2-283-HC
GFTFSSYW
INSDGSSI
LTTSRFGAFDM 



(SEQ ID NO: 175)
(SEQ ID NO: 176)
(SEQ ID NO: 177)





DC2-283-LC
QSLLHSNGYNY
LGS
MQALQTPYT



(SEQ ID NO: 178)
(SEQ ID NO: 179)
(SEQ ID NO: 180)





DC2-284-HC
GYTLTRFA
INTNTGNP
ARDGYNHGYNDL



(SEQ ID NO: 181)
(SEQ ID NO: 182)
(SEQ ID NO: 183)





DC2-284-LC
QSVSSE
DAS
QQRSSWPLFT



(SEQ ID NO: 184)
(SEQ ID NO: 185)
(SEQ ID NO: 186)





DC2-416-HC
GFSLSTNGVG
IYWDDDE
AHKGYYCSSSSCYAGGKAFNI



(SEQ ID NO: 187)
(SEQ ID NO: 188)
(SEQ ID NO: 189)





DC2-416-LC
QGINSY
AAS
QQPSSHPLT



(SEQ ID NO: 190)
(SEQ ID NO: 191)
(SEQ ID NO: 192)





DC2-422-HC
GYTFTDYT
INTKTGNP
ARIRLVHYYGSGNYFKSFQSFGMGB



(SEQ ID NO: 193)
(SEQ ID NO: 194)
(SEQ ID NO: 195)





DC2-422-LC
QTLLHSNGYNY
MGS
MQGLQTPHT



(SEQ ID NO: 196)
(SEQ ID NO: 197)
(SEQ ID NO: 198)





DC2-429-HC
GFSFDDYV
ISWDGDST
ARSLADYLNYYHYTMDV



(SEQ ID NO: 199)
(SEQ ID NO: 200)
(SEQ ID NO: 201)





DC2-429-LC
QSVLYSSSNKSY
WAS
QQYYSTPYT



(SEQ ID NO: 202)
(SEQ ID NO: 203)
(SEQ ID NO: 204)





DC2-432-HC
GFTFSAHY
ISSRGSTI
AGAITWNDVFFWY



(SEQ ID NO: 205)
(SEQ ID NO: 206)
(SEQ ID NO: 207)





DC2-432-LC
QSLVHSDGNTY
KVS
MQATQFLWT



(SEQ ID NO: 208)
(SEQ ID NO: 209)
(SEQ ID NO: 210)





DC2-463-HC
GFSLTTSGMC
IDWDDDK
ARSPPGASVAILPTTKYYFDS



(SEQ ID NO: 211)
(SEQ ID NO: 212)
(SEQ ID NO: 213)





DC2-463-LC
HSVTSSY
GAS
QQYGSSAMYT



(SEQ ID NO: 214)
(SEQ ID NO: 215)
(SEQ ID NO: 216)





SC-91-LC
QDVTTA
WAS
QQHYSTPLT



(SEQ ID NO: 217)
(SEQ ID NO: 218)
(SEQ ID NO: 219)





SC-95-HC
GFTFGNYG
IWFDGSNK
ARADGYCSDDACYDWFDP



(SEQ ID NO: 220)
(SEQ ID NO: 221)
(SEQ ID NO: 222)





DC2-502-HC
GFTFSSYV
ISYDGSNK
ARDTQTQSSDYYLFGA



(SEQ ID NO: 223)
(SEQ ID NO: 224)
(SEQ ID NO: 225)





DC2-502-LC
QSIINN
GAS
QQYNDWPPIT



(SEQ ID NO: 226)
(SEQ ID NO: 227)
(SEQ ID NO: 228)





DC2-507-HC
SGDSMSYY
IFISGNT
AKGSRSFIA



(SEQ ID NO: 229)
(SEQ ID NO: 230)
(SEQ ID NO: 231)





DC2-507-LC
QDVSIY
DAS
QQHDNLPPT



(SEQ ID NO: 232)
(SEQ ID NO: 233)
(SEQ ID NO: 234)





DC2-541-HC
GFTFSSYE
ISGGGDTI
AKFWNDYYNDFEY



(SEQ ID NO: 235)
(SEQ ID NO: 236)
(SEQ ID NO: 237)





DC2-541-LC
QSVSSY
DAS
QQRTNWPPWT



(SEQ ID NO: 238)
(SEQ ID NO: 239)
(SEQ ID NO: 240)





DC2-547-HC
GYSFTSFD
MNPNSGSS
ATITVTGTLGF



(SEQ ID NO: 241)
(SEQ ID NO: 242)
(SEQ ID NO: 243)





DC2-547-LC
QGIRHY
AAS
QQLNSYPPVT



(SEQ ID NO: 244)
(SEQ ID NO: 245)
(SEQ ID NO: 246)





DC2-572-HC
GDTFSSYG
IIPIVDIT
ARISAYYYDGSGSNPGITDYGMDV



(SEQ ID NO: 247)
(SEQ ID NO: 248)
(SEQ ID NO: 249)





DC2-572-LC
QSLLHSNGYNY
LGS
MQGLQTPHT



(SEQ ID NO: 250)
(SEQ ID NO: 251)
(SEQ ID NO: 252)





DC2-580-HC
GFSFSDYY
IYSGGST
ARAPSWGLRVGPFDF



(SEQ ID NO: 253)
(SEQ ID NO: 254)
(SEQ ID NO: 255)





DC2-580-LC
RSINSY
AAS
HQTYTTPPGT



(SEQ ID NO: 256)
(SEQ ID NO: 257)
(SEQ ID NO: 258)





DC1-426-HC
GYTFSDYD
ISTYSGDA
ARAAHLSYDFWNGPKGWYHFMDV



(SEQ ID NO: 259)
(SEQ ID NO: 260)
(SEQ ID NO: 261)





DC1-426-LC
QSITTW
KTS
QQCDSNLWS



(SEQ ID NO: 262)
(SEQ ID NO: 263)
(SEQ ID NO: 264)





DC1-435-HC
GYTFIDYY
INPNSGDT
ARDPLPETMDIDY



(SEQ ID NO: 265)
(SEQ ID NO: 266)
(SEQ ID NO: 267)





DC1-435-LC
QSVSSNY
TAS
QQYGSAPRT



(SEQ ID NO: 268)
(SEQ ID NO: 269)
(SEQ ID NO: 270)





DC1-450-HC 1
GDSISTETYY
IYASGST
AREWYYYNSSGFYLEAFDI



(SEQ ID NO: 271)
(SEQ ID NO: 272)
(SEQ ID NO: 273)





DC1-450-HC 2
GGSFGGYY
INHSGST
ARGPYFDY



(SEQ ID NO: 274)
(SEQ ID NO: 275)
(SEQ ID NO: 276)





DC1-450-LC
QSVSSD
GAS
QQYKSWPYT



(SEQ ID NO: 277)
(SEQ ID NO: 278)
(SEQ ID NO: 279)





DC2-149-HC
GFSLSTSGVG
IYWDDDK
AHLTSYPINAFDI



(SEQ ID NO: 280)
(SEQ ID NO: 281)
(SEQ ID NO: 282)





DC2-149-LC
HTISTN
RAS
QQYNNWPT



(SEQ ID NO: 283)
(SEQ ID NO: 284)
(SEQ ID NO: 285)





DC2-154-HC
GESFSGYY
INHSGST
ARGYADTPVFRRYYYYGMDV



(SEQ ID NO: 286)
(SEQ ID NO: 287)
(SEQ ID NO: 288)





DC2-154-LC
QTVSSK
GAS
QQYDNWPPYT



(SEQ ID NO: 289)
(SEQ ID NO: 290)
(SEQ ID NO: 291)





DC2-158-HC
GFTFSNYG
ISGGGAST
AKGGRWDGSIAEFDY



(SEQ ID NO: 292)
(SEQ ID NO: 293)
(SEQ ID NO: 294)





DC2-158-LC
QSVRGN
GAS
QQYNNWPLYT



(SEQ ID NO: 295)
(SEQ ID NO: 296
(SEQ ID NO: 297)





DC2-121-HC
GASISSGDYY
IYYTGRT
ARDRGVRGGYGIDY



(SEQ ID NO: 298)
(SEQ ID NO: 299)
(SEQ ID NO: 300)





DC2-121-LC
QSVGSSY
GSS
LQYAGTPRT



(SEQ ID NO: 301)
(SEQ ID NO: 302)
(SEQ ID NO: 303)





DC2-129-HC
GYWFTSYW
IYPGDSDA
ARHSVGEAPRQLEF



(SEQ ID NO: 304)
(SEQ ID NO: 305)
(SEQ ID NO: 306)





DC2-129-LC
ASQSVSR DAS
QQYGSTPYT




(SEQ ID NO: 307)
(SEQ ID NO: 308)
(SEQ ID NO: 309)





DC2-618-HC
GFTFSSYS
ISTTSSYI
ARDGVSGAHDI



(SEQ ID NO: 310)
(SEQ ID NO: 311)
(SEQ ID NO: 312)





DC2-618-LC
QSISSY
AAS
QQTYSTLWT



(SEQ ID NO: 313)
(SEQ ID NO: 314)
(SEQ ID NO: 315)





DC2-643-HC
GFTFGTYA
ISGSGAGT
AKDNSASVWDLAY



(SEQ ID NO: 316)
(SEQ ID NO: 317)
(SEQ ID NO: 318)





DC2-643-LC
HSLLHTNGYNY
LGS
MQALQTLYT



(SEQ ID NO: 319)
(SEQ ID NO: 32)
(SEQ ID NO: 321)





DC2-645-HC
GFTFSNYA
MSYDGINT
ARDLQYRGWGSGLDS



(SEQ ID NO: 322)
(SEQ ID NO: 323)
(SEQ ID NO: 324)





DC2-645-LC
QTINTY
AAS
QQTYSTPFT



(SEQ ID NO: 325)
(SEQ ID NO: 326)
(SEQ ID NO: 327)





DC2-647-HC
GYTFTRYA
INTNTGNP
AHIPGIAAGEMFP



(SEQ ID NO: 328)
(SEQ ID NO: 329)
(SEQ ID NO: 330)





DC2-647-LC
QSVGSY
DVS
QHGSNWRVA



(SEQ ID NO: 331)
(SEQ ID NO: 332)
(SEQ ID NO: 333)





DC2-682-HC
GFTFDDYA
ISWNGDTV
AKDMAAGEGDYYNHYFDP



(SEQ ID NO: 334)
(SEQ ID NO: 335)
(SEQ ID NO: 336)





DC2-682-LC
QSISSS
DAV
QQRRSWLFT



(SEQ ID NO: 337)
(SEQ ID NO: 338)
(SEQ ID NO: 339)





DC2-684-HC
GFTFDDSA
ISWNSDTI
AKDHSPYYYGYRGNNWFDS



(SEQ ID NO: 340)
(SEQ ID NO: 341)
(SEQ ID NO: 342)





DC2-684-LC
QGIHNY
AAS
QQSYSTPRT



(SEQ ID NO: 343)
(SEQ ID NO: 344)
(SEQ ID NO: 345)





DC4-7-HC
GLTLSGYW
INSDGSST
TIQKVGEI



(SEQ ID NO: 346)
(SEQ ID NO: 347)
(SEQ ID NO: 348)





DC4-7-LC
QSVSFY
DAS
QQRSNWAWT



(SEQ ID NO: 349)
(SEQ ID NO: 350)
(SEQ ID NO: 351)





DC4-8-HC
GFTFSSYA
ISGSGGST
AFGGRSIPWVLSVADTTALDY



(SEQ ID NO: 352)
(SEQ ID NO: 353)
(SEQ ID NO: 354)





DC4-8-LC
QSVSSSY
GAS
QQYGSSRGT



(SEQ ID NO: 355)
(SEQ ID NO: 356)
(SEQ ID NO: 357)





DC4-10-HC
SNVFTSSGVG
IYGDDDK
AHSNYDFWGGFYIKSYIDY



(SEQ ID NO: 358)
(SEQ ID NO: 359)
(SEQ ID NO: 360)





DC4-10-LC
QSVSSN
GAS
QQYDNWPYT



(SEQ ID NO: 361)
(SEQ ID NO: 362)
(SEQ ID NO: 363)





DC1-366-HC
GGSFGGYY
INHSGST
ARGPYFDY



(SEQ ID NO: 364)
(SEQ ID NO: 365)
(SEQ ID NO: 366)





DC1-366-LC
QSVSSRY
GAS
QQYSSSSYT



(SEQ ID NO: 367)
(SEQ ID NO: 368)
(SEQ ID NO: 369)





DC1-371-HC
GHAFASYY
INPSGGST
ARGLYSNSWSTRGVFDI



(SEQ ID NO: 370)
(SEQ ID NO: 371)
(SEQ ID NO: 372)





DC1-371_LC
QSVSTY
GAS
QQYGGSPFT



(SEQ ID NO: 373)
(SEQ ID NO: 374)
(SEQ ID NO: 375)





DC1-374-HC
GFTFSNYA
ISGSDSST
ATGGYSDY



(SEQ ID NO: 376)
(SEQ ID NO: 377)
(SEQ ID NO: 378)





DC1-374-LC
QGISSW
AAS
QQAYRFPYT



(SEQ ID NO: 379)
(SEQ ID NO: 380)
(SEQ ID NO: 381)





DC1-349-HC
GDSFTNYW
IYPDDSDI
ARHRRTAYQIGDGLDI



(SEQ ID NO: 382)
(SEQ ID NO:  383)
(SEQ ID NO:  384)





DC1-349-LC
TSNYLAW
DAS
QQYRSSPYT



(SEQ ID NO: 385)
(SEQ ID NO: 386)
(SEQ ID NO: 387)





DC1-370-HC
GFLFGSYW
IKQDGSEK
ARDWPLDPLDY



(SEQ ID NO: 388)
(SEQ ID NO: 389)
(SEQ ID NO: 390)





DC1-370-LC
QSISSF
TAS
QQSYTSPRT



(SEQ ID NO: 391)
(SEQ ID NO: 392)
(SEQ ID NO: 393)





DC1-371-HC
GHAFASYY
INPSGGST
ARGLYSNSWSTRGVFDI



(SEQ ID NO: 394)
(SEQ ID NO: 395)
(SEQ ID NO: 396)





DC1-371-LC
QSVSTY
GAS
QQYGGSPFT



(SEQ ID NO: 397)
(SEQ ID NO: 398)
(SEQ ID NO: 399)





DC2-410-HC
GFNFGSYA
ISYLGDNE
ARSLDDYYDTLGYGRGAFDL



(SEQ ID NO: 400)
(SEQ ID NO: 401)
(SEQ ID NO: 402)





DC2-410-LC
QSVLDNSNNKNY
WAS
QQYYSTPDT



(SEQ ID NO: 403)
(SEQ ID NO: 404)
(SEQ ID NO: 405)





DC2-416-HC
GFSLSTNGVG
IYWDDDE
AHKGYYCSSSSCYAGGKAFNI



(SEQ ID NO: 406)
(SEQ ID NO: 407)
(SEQ ID NO: 408)





DC2-416-LC
QGINSY
AAS
QQPSSHPLT



(SEQ ID NO: 409)
(SEQ ID NO: 410)
(SEQ ID NO: 411)





DC2-446-HC
GLTLKNYA
ISFDGTYK
ARGPQLYSHQPAKFGDLLFGAFDI



(SEQ ID NO: 412)
(SEQ ID NO: 413)
(SEQ ID NO: 414)





DC2-446-LC
QDVSHY
DTS
QQYDTLPLT



(SEQ ID NO: 415)
(SEQ ID NO: 416)
 (SEQ ID NO: 417)





DC2-435-HC
GFTFSAHY
ISSRGSTI
AGAITWNDVFFWY



(SEQ ID NO: 418)
(SEQ ID NO: 419)
(SEQ ID NO: 420)





DC2-435-LC
QSVRSY
DAT
QLRSTLGVT



(SEQ ID NO: 421)
(SEQ ID NO: 422)
(SEQ ID NO: 423)





DC2-448-HC
GFTFRNYW
INRNGNEK
VRDSSPSFGPGNYYDAFDI



(SEQ ID NO: 424)
(SEQ ID NO: 425)
(SEQ ID NO: 426)





DC2-448-LC
QDIRNE
AAS
LQDFNYPRT



(SEQ ID NO: 427)
(SEQ ID NO: 428)
(SEQ ID NO: 429)





DC2-456-HC
GFSLTTYSMG
IYGDGVK
AHSSTVDWDVD 



(SEQ ID NO: 430)
(SEQ ID NO: 431)
(SEQ ID NO: 432)





DC2-456-LC
QSVSSF
DAS
HQRSNWPRT



(SEQ ID NO: 433)
(SEQ ID NO: 434)
(SEQ ID NO: 435)





DC2-458-HC
GESFSGYY
INHSGST
ARGYADTPVFRRAAAAGMDV



(SEQ ID NO: 436)
(SEQ ID NO: 437)
(SEQ ID NO: 438)





DC2-458-LC
QRIDSW
QAS
QQYKSFSYT



(SEQ ID NO: 439)
(SEQ ID NO: 440)
(SEQ ID NO: 441)





DC2-463-HC
GFSLTTSGMC
IDWDDDK
ARSPPGASVAILPTTKYYFDS



(SEQ ID NO: 442)
(SEQ ID NO: 443)
(SEQ ID NO: 444)





DC2-463-LC
HSVTSSY
GAS
QQYGSSAMYT



(SEQ ID NO: 445)
(SEQ ID NO: 446)
(SEQ ID NO: 447)





DC2-504-HC
GYIFNRYA
INTNSGDA
ARDRWSSGYQYYGLDA



(SEQ ID NO: 448)
(SEQ ID NO: 449)
(SEQ ID NO: 450)





DC2-504-LC
QGVRNDY
GAS
QQYGRSPMT



(SEQ ID NO: 451)
(SEQ ID NO: 452)
(SEQ ID NO: 453)





DC2-513-HC
GFTFKDYA
VSVDGSLQ
AREFSGTNVRCFDL



(SEQ ID NO: 454)
(SEQ ID NO: 455)
(SEQ ID NO: 456)





DC2-513-LC
QGIHRW
AAS
QQGNSFPLT



(SEQ ID NO: 457)
(SEQ ID NO: 458)
(SEQ ID NO: 459)





DC2-514-HC
GGSIRSHY
IYTSGTT
ARGSSEVTI



(SEQ ID NO: 460)
(SEQ ID NO: 461)
(SEQ ID NO: 462)





DC2-514-LC
QDISNY
AAS
QQYDNLPLT



(SEQ ID NO: 463)
(SEQ ID NO: 464)
(SEQ ID NO: 465)





DC2-524-HC
GFTFSSYE
TNHSGSTI
AREHYDILTGFGGYLDY



(SEQ ID NO: 466)
(SEQ ID NO: 467)
(SEQ ID NO: 468)





DC2-524-LC
QSVSNN
GAS
QQYNDWPRWT



(SEQ ID NO: 469)
(SEQ ID NO: 470)
(SEQ ID NO: 471)





DC2-536-HC
GESFSGYY
INHSGST
ARGYADTPVFRRAAAAG



(SEQ ID NO: 472)
(SEQ ID NO: 473)
MDV(SEQ ID NO: 474)





DC2-536-LC
QSISSY
GAS
LQSYSSWT



(SEQ ID NO: 475)
(SEQ ID NO: 476)
(SEQ ID NO: 477)





DC2-541-HC
GFTFSSYE
ISGGGDTI
AKFWNDYYNDFEY



(SEQ ID NO: 478)
(SEQ ID NO: 479)
(SEQ ID NO: 480)





DC2-541-LC -
QSVSSY
DAS
QQRTNWPPWT



(SEQ ID NO: 481)
(SEQ ID NO: 482)
(SEQ ID NO: 483)





DC2-549-HC
GFTFGTYA
ISGSGAGT
AKDNSASVWDLAY



(SEQ ID NO: 484)
(SEQ ID NO: 485)
(SEQ ID NO: 486)





DC2-549-LC
RSINSY
AAS
HQTYTTPPGT



(SEQ ID NO: 487)
(SEQ ID NO: 488)
(SEQ ID NO: 489)





DC2-555-HC -
GFAFSDYA
ISYAGNNK
ARPFSRGWFEGCDS



(SEQ ID NO: 490)
(SEQ ID NO: 491)
(SEQ ID NO: 492)





DC2-555-LC
QTINDF
SAS
QQSYIAPLT



(SEQ ID NO: 493)
(SEQ ID NO: 494)
(SEQ ID NO: 495)





DC2-550-HC
GFTFRSYA
ISLDGSHK
VRGGWHEVGSFDY



(SEQ ID NO: 496)
(SEQ ID NO: 497)
(SEQ ID NO: 498)





DC2-550-LC
QSINSNY
AAS
QXYGNTPFT



(SEQ ID NO: 499)
(SEQ ID NO: 500)
(SEQ ID NO: 501)





DC2-572-HC
GDTFSSYG
IIPIVDIT
ARISAYYYDGSGSNPGITDYGMDV



(SEQ ID NO: 502)
(SEQ ID NO: 503)
(SEQ ID NO: 504)





DC2-572-LC
QSLLHSNGYNY
LGS
MQGLQTPHT



(SEQ ID NO: 505)
(SEQ ID NO: 506)
(SEQ ID NO: 507)





DC2-307-HC
GFTFSSYD
AWYDGSNK
ARGTHTYTYGYRTDYCMGVWGTHTYTY



(SEQ ID NO: 508)
(SEQ ID NO: 509)
GYRTDYCMGV





(SEQ ID NO: 510)





DC2-307-LC
QGIGNY
SAS
LKYHGAPYI



(SEQ ID NO: 511)
(SEQ ID NO: 512)
(SEQ ID NO: 513)





DC2-324-HC
GYIFTTYT
INAGNGVT
ARAWKYSSTWFYYDY



(SEQ ID NO: 514)
(SEQ ID NO: 515)
(SEQ ID NO: 516)





DC2-324-LC
QTINNY
AAS
QQSYSAPFT



(SEQ ID NO: 517)
(SEQ ID NO: 518)
(SEQ ID NO: 519)





DC2-326-HC
GLTLSTNA
IRGSGEST
AKSGMGELVRCWFDA



(SEQ ID NO: 520)
(SEQ ID NO: 521)
(SEQ ID NO: 522)





DC2-326-LC
QSVLYSSNNKNY
WAS
QQYYSNPPPGT



(SEQ ID NO: 523)
(SEQ ID NO: 524)
(SEQ ID NO: 525)





DC2-345-HC
GFSLTTPGVG
IFWNDEK
AHSRLDLWNGYK



(SEQ ID NO: 526)
(SEQ ID NO: 527)
(SEQ ID NO: 528)





DC2-345-LC
QSLLHINGYTY
LGS
MQALQTPRT



(SEQ ID NO: 529)
(SEQ ID NO: 530)
(SEQ ID NO: 531)





DC2-657-HC
QSLVHRDGNTY
GVS
MQATHWGYT



(SEQ ID NO: 532)
(SEQ ID NO: 533)
(SEQ ID NO: 534)





DC2-657-LC
RFIFSNYG
IRSDGSNT
AKGCCGGVPDFGLDV



(SEQ ID NO: 535)
(SEQ ID NO: 536)
(SEQ ID NO: 537)





DC2-315-HC
GFSLTTPGVG
IFWNDEK
AHSRLDLWNGYK



(SEQ ID NO: 538)
(SEQ ID NO: 539)
(SEQ ID NO: 540)





DC2-315-LC
QSLLHINGYTY
LGS
MQALQTPRT



(SEQ ID NO: 541)
(SEQ ID NO: 542)
(SEQ ID NO: 543)





DC2-316-HC
GYTFTSYD
MSPHTGNT
GRLVGAPLYNYYGFDV



(SEQ ID NO: 544)
(SEQ ID NO: 545)
(SEQ ID NO: 546)





DC2-316-LC
QDISDW
AAS
QQSSSFPLT



(SEQ ID NO: 547)
(SEQ ID NO: 548)
(SEQ ID NO: 549)





DC2-317-HC
GFSFDDYG
ISWNSGTI
AKDFYAGFGGNTAFDI



(SEQ ID NO: 550)
(SEQ ID NO: 551)
(SEQ ID NO: 552)





DC2-317-LC
QGIHNY
AAS
QQSYSVPRNT



(SEQ ID NO: 553)
(SEQ ID NO: 554)
(SEQ ID NO: 555)





DC2-321-HC
GFTFKSYG
ISNHGHNK
AKGLNSDYDNEPFGD



(SEQ ID NO: 556)
(SEQ ID NO: 557)
(SEQ ID NO: 558)





DC2-321-LC
QSFDSSY
GAS
QQYASTPFT



(SEQ ID NO: 559)
(SEQ ID NO: 560)
(SEQ ID NO: 561)





DC2-68-HC
GGSMSSGDYY
ISYSGSA
ARVFSGYYYFDY



(SEQ ID NO: 562)
(SEQ ID NO: 563)
(SEQ ID NO: 564)





DC2-68-LC 1
QSISSW
KAS
QQYNTYPWT



(SEQ ID NO: 565)
(SEQ ID NO: 566)
(SEQ ID NO: 567)





DC2-64-HC
GYTFTRYA
INPGIGNT
ARDLDLGIPTLGY



(SEQ ID NO: 568)
(SEQ ID NO: 569)
(SEQ ID NO: 570)





DC2-64-LC
QSLLSSSNNKNF
WAS
QQYYSTPPYS



(SEQ ID NO: 571)
(SEQ ID NO: 572)
(SEQ ID NO: 573)





DC2-70-HC
GYTFTRYA
INTNTGEP
AQQVIAFDV



(SEQ ID NO: 574)
(SEQ ID NO: 575)
(SEQ ID NO: 576)





DC2-70-LC
QSLLSSSNNKNF
WAS
QQYYSTPPYS



(SEQ ID NO: 577)
(SEQ ID NO: 578)
(SEQ ID NO: 579)





DC2-76-HC
GFTFNDYA
ITWNGGPL
AKVYCSSSTCSNALDV



(SEQ ID NO: 580)
(SEQ ID NO: 581)
(SEQ ID NO: 582)





DC2-76-LC
QDISIY
DAS
QQHNSRPYS



(SEQ ID NO: 583)
(SEQ ID NO: 584)
(SEQ ID NO: 585)





DC2-78-HC
GVSINNYDYY
IIYSGST
VRANLCNVASCYYYFDF



(SEQ ID NO: 586)
(SEQ ID NO: 587)
(SEQ ID NO: 588)





DC2-78-LC
QDVTTA
WAS
QQHYSTPLT



(SEQ ID NO: 589)
(SEQ ID NO: 590)
(SEQ ID NO: 591)





DC2-93-HC
GFTLSRYD
IGTATTG
YC IRAMVRGLDIFDY



(SEQ ID NO: 592)
(SEQ ID NO: 593)
(SEQ ID NO: 594)





DC2-93-LC
QSVSSK
GAS
QQYNSWPMCT



(SEQ ID NO: 595)
(SEQ ID NO: 596)
(SEQ ID NO: 597)





DC2-95-HC
GFTFSHYW
IRPDGTTT
ARDLTPGDDSAWYDFFD



(SEQ ID NO: 598)
(SEQ ID NO: 599)
Y(SEQ ID NO: 600)





DC2-95-LC
QPIRNE
AAS
LQDYRYPRT



(SEQ ID NO: 601)
(SEQ ID NO: 602)
(SEQ ID NO: 603)





DC-415-HC
GFDLSDYY
TARTGSTE
ARDLVSHDVFDI



(SEQ ID NO: 604)
(SEQ ID NO: 605)
(SEQ ID NO: 606)





DC1-415-LC
QRISTN
DAS
QQYINWPRT



(SEQ ID NO: 607)
(SEQ ID NO: 608)
(SEQ ID NO: 609)





DC2_M1_HC
GFTFSSFA
ISYEGKNK
ARPFSMSWFEGFEF



(SEQ ID NO: 611)
(SEQ ID NO: 612)
(SEQ ID NO: 613)





DC2_M1_LC
QNINSF
EAS
QQSYTAPLT



(SEQ ID NO: 614)
(SEQ ID NO: 615)
(SEQ ID NO: 616)





DC2_M10_HC
GYTFTNYY
IYPSGGDT
ARDHLNRDSSSRGFMDY



(SEQ ID NO: 617)
(SEQ ID NO: 618)
(SEQ ID NO: 619)





DC2_M10_LC
QSISHY
DAS
QQRGTWPPS



(SEQ ID NO: 620)
(SEQ ID NO: 621)
(SEQ ID NO: 622)





DC2_M101_HC
GYTFTNYP
INTNTGKP
ARGRGATTVTTYYFDY



(SEQ ID NO: 623)
(SEQ ID NO: 624)
(SEQ ID NO: 625)





DC2_M101_LC
QSVSSN
GAS
QHYINRPGRT



(SEQ ID NO: 626)
(SEQ ID NO: 627)
(SEQ ID NO: 628)





DC2_M105_HC
GYTFIAFY
INPYSGDT
ARTVYVDKGMVMVRRLYQYFGMDV



(SEQ ID NO: 629)
(SEQ ID NO: 630)
(SEQ ID NO: 631)





DC2_M105_LC
QTVSSSY
GAS
QQYGISPEFT



(SEQ ID NO: 632)
(SEQ ID NO: 633)
(SEQ ID NO: 634)





DC2_M106_HC
GFTFSDYY
ISSSGSTL
ARAERIVGSVQTPFI



(SEQ ID NO: 635)
(SEQ ID NO: 636)
(SEQ ID NO: 637)





DC2_M106_LC
QSLVYRDGNTY
KVS
MQGTDSFT



(SEQ ID NO: 638)
(SEQ ID NO: 639)
(SEQ ID NO: 640)





DC2_M108_HC
GFTFSDYF
ISDNGNTI
ARGLYIQSDAFDL



(SEQ ID NO: 641)
(SEQ ID NO: 642)
(SEQ ID NO: 643)





DC2_M108_LC
QGLSNS
AAS
QQYYNTPPIT



(SEQ ID NO: 644)
(SEQ ID NO: 645)
(SEQ ID NO: 646)





DC2_M109_HC
GYNFTNYW
IYPGDSDS
ARRPREQLGRLLLGDVVPHGRNDAFDI



(SEQ ID NO: 647)
(SEQ ID NO: 648)
(SEQ ID NO: 649)





DC2_M109_LC
QSISTY
SAS
QQSYGTLWT



(SEQ ID NO: 650)
(SEQ ID NO: 651)
(SEQ ID NO: 652)





DC2_Mll_HC
GFNFNIFP
ISDDVTKK
ARASGWQRTGTKYYYYGMDV



(SEQ ID NO: 653)
(SEQ ID NO: 654)
(SEQ ID NO: 655)





DC2_Mll_LC
QDISNN
DAS
LQYDNLPYS



(SEQ ID NO: 656)
(SEQ ID NO: 657)
(SEQ ID NO: 658)





DC2_M112_HC
GFIFKTYG
IWYDGSNE
ARDEAVGPYQYAAEYFH



(SEQ ID NO: 659)
(SEQ ID NO: 660)
H(SEQ ID NO: 661)





DC2_M112_LC
KSVTSN
GAS
QQYNNWLT



(SEQ ID NO: 662)
(SEQ ID NO: 663)
(SEQ ID NO: 664)





DC2_M123_HC
GFTFSSSA
ISSDGTYK
AKSGWELHPFGV



(SEQ ID NO: 665)
(SEQ ID NO: 666)
(SEQ ID NO: 667)





DC2_M123_LC
QSVSSN
GAS
QHYINRPGRT



(SEQ ID NO: 668)
(SEQ ID NO: 669)
(SEQ ID NO: 670)





DC2_M124_HC
GGSISGYF
VHYSGST
ARASTSGGFDP



(SEQ ID NO: 671)
(SEQ ID NO: 672)
(SEQ ID NO: 673)





DC2_M124_LC
QSVSSN
GAS
QHYINRPGRT



(SEQ ID NO: 674)
(SEQ ID NO: 675)
(SEQ ID NO: 676)





DC2_M125_HC
GFTFSSYA
ISPSGSTI
VRGVYVQSDAFDI



(SEQ ID NO: 677)
(SEQ ID NO: 678)
(SEQ ID NO: 679)





DC2_M125_LC
QGISYS
AAS
QQYYSTPPIT



(SEQ ID NO: 680)
(SEQ ID NO: 681)
(SEQ ID NO: 682)





DC2_M129_HC
GVTFSDYD
IRSSGGTT
VRDKDGVFDY



(SEQ ID NO: 683)
(SEQ ID NO: 684)
(SEQ ID NO: 685)





DC2_M129_LC
QDISSW
KAS
QQYNTYPHST



(SEQ ID NO: 686)
(SEQ ID NO: 687)
(SEQ ID NO: 688)





DC2_M131_HC
GFTFSDYY
ISISGSTI
ARGIYHQSDAFDI



(SEQ ID NO: 689)
(SEQ ID NO: 690)
(SEQ ID NO: 691)





DC2_M131_LC
QGISNS
AAS
QQYYSTPPIT



(SEQ ID NO: 692)
(SEQ ID NO: 693)
(SEQ ID NO: 694)





DC2_M132_HC
GYTLSTYP
INTYTGDP
VRQKDPFDY



(SEQ ID NO: 695)
(SEQ ID NO: 696)
(SEQ ID NO: 697)





DC2_M132_LC
HTVSSVY
GAS
QQYAISPPPMYT



(SEQ ID NO: 698)
(SEQ ID NO: 699)
(SEQ ID NO: 700)





DC2_M133_HC
GFTFRDYW
INRNGNEK
VRDNSPSFGPGNYYDAFDI



(SEQ ID NO: 701)
(SEQ ID NO: 702)
(SEQ ID NO: 703)





DC2_M133_LC
QDIRNE
AAS
LQDYNYPRT



(SEQ ID NO: 704)
(SEQ ID NO: 705)
(SEQ ID NO: 706)





DC2_M135_HC
GYTFTSYA
INTNTGNP
AREHLVALEYYYYGVDV



(SEQ ID NO: 707)
(SEQ ID NO: 708)
(SEQ ID NO: 709)





DC2_M135_LC
QRISNY
AAS
QQSYSVPLT



(SEQ ID NO: 710)
(SEQ ID NO: 711)
(SEQ ID NO: 712)





DC2_M14_HC
RFIFSNFG
IRSDGSNE
AKGCCGGVPDFGLDV



(SEQ ID NO: 713)
(SEQ ID NO: 714)
(SEQ ID NO: 715)





DC2_M14_LC
QSLVHRDGSTY
QVS
MQATHWGYT



(SEQ ID NO: 716)
(SEQ ID NO: 717)
(SEQ ID NO: 718)





DC2_M15_HC
GYTLSTYP
INTYTGDP
VRQKDPFDY



(SEQ ID NO: 719)
(SEQ ID NO: 720)
(SEQ ID NO: 721)





DC2_M15_LC
QDVTTA
WAS
QQHYSTPLT



(SEQ ID NO: 722)
(SEQ ID NO: 723)
(SEQ ID NO: 724)





DC2_M16_HC
GFTFSDYY
ISTSGSTM
ARGIYYQSDAFDI



(SEQ ID NO: 725)
(SEQ ID NO: 726)
(SEQ ID NO: 727)





DC2_M16_LC
QGISNS
AAS
QQYYSTPPMT



(SEQ ID NO: 728)
(SEQ ID NO: 729)
(SEQ ID NO: 730)





DC2_M2_HC
GFTFSSSA
ISSDGTYK
AKSGWELHPFGV



(SEQ ID NO: 731)
(SEQ ID NO: 732)
(SEQ ID NO: 733)





DC2_M2_LC
QDVTTA
WAS
QQHYSTPLT



(SEQ ID NO: 734)
(SEQ ID NO: 735)
(SEQ ID NO: 736)





DC2_M21_HC
GYTFTSSY
IYPSGGNT
ARDHLNRDSTSRGFIDS



(SEQ ID NO: 737)
(SEQ ID NO: 738)
(SEQ ID NO: 739)





DC2_M21_LC
QSVGNY
DAS
EQRGDWPLT



(SEQ ID NO: 740)
(SEQ ID NO: 741)
(SEQ ID NO: 742)





DC2_M22_HC
GGSISSDIYY
IYYSGST
ARRGEWLRLGYFDY



(SEQ ID NO: 743)
(SEQ ID NO: 744)
(SEQ ID NO: 745)





DC2_M22_LC
QSVSSSY
GAS
QQYGSSPWT



(SEQ ID NO: 746)
(SEQ ID NO: 747)
(SEQ ID NO: 748)





DC2_M24_HC
GGSISGYF
VHYSGST
ARASTSGGFDP



(SEQ ID NO: 749)
(SEQ ID NO: 750)
(SEQ ID NO: 751)





DC2_M24_LC
QGIRND
AAS
LQHNSYPYT



(SEQ ID NO: 752)
(SEQ ID NO: 753)
(SEQ ID NO: 754)





DC2_M137_HC
GFSFSNYE
ISSGSSYR
VRDEDYRNGSRHYDGLHV



(SEQ ID NO: 755)
(SEQ ID NO: 756)
(SEQ ID NO: 757)





DC2_M137_LC
QGIRND
AAS
LQDYNYPRT



(SEQ ID NO: 758)
(SEQ ID NO: 759)
(SEQ ID NO: 760)





DC2_M141_HC
GFTFSSSA
ISSDGTYK
AKSGWELHPFGV



(SEQ ID NO: 761)
(SEQ ID NO: 762)
(SEQ ID NO: 763)





DC2_M141_LC
QSVLYSSNNKNY
WAS
QQYYSTLPLT



(SEQ ID NO: 764)
(SEQ ID NO: 765)
(SEQ ID NO: 766)





DC2_M150_HC
GFTFRDYW
INRNGNEK
VRDNSPPFGPGNYYDALDI



(SEQ ID NO: 767)
(SEQ ID NO: 768)
(SEQ ID NO: 769)





DC2_M150_LC
QDIRNE
AAS
LQDYNYPRT



(SEQ ID NO: 770)
(SEQ ID NO: 771)
(SEQ ID NO: 772)





DC2_M151_HC
GFTFKDYW
INRNGNEK
VRDSSPSFGPGNYYDAFD



(SEQ ID NO: 773)
(SEQ ID NO: 774)
I(SEQ ID NO: 775)





DC2_M151_LC
QDIRNE
AAS
LQDYNYPRT



(SEQ ID NO: 776)
(SEQ ID NO: 777)
(SEQ ID NO: 778)





DC2_M152_HC
GYTFTDYY
ISPKSGGT
TRDNYNSWRGPDFYTGVDV



(SEQ ID NO: 779)
(SEQ ID NO: 780)
(SEQ ID NO: 781)





DC2_M152_LC
QSVSSY
NAS
QQRSSLGLS



(SEQ ID NO: 782)
(SEQ ID NO: 783)
(SEQ ID NO: 784)





DC2_M167_HC
GYTFTGYY
IDPNGGDT
ARDRAGSVWFRGVYFFDA



(SEQ ID NO: 785)
(SEQ ID NO: 786)
(SEQ ID NO: 787)





DC2_M167_LC
QDVHYY
GVS
QQYSNWPPGA



(SEQ ID NO: 788)
(SEQ ID NO: 789)
(SEQ ID NO: 790)





DC2_M171_HC
GFSFSNYG
ISYDGNNI
VKAGGFS



(SEQ ID NO: 791)
(SEQ ID NO: 792)
(SEQ ID NO: 793)





DC2_M171_LC
QGIRSA
DAS
QHFSTYPYT



(SEQ ID NO: 794)
(SEQ ID NO: 795)
(SEQ ID NO: 796)





DC2_M173_HC
GYSLTRYY
ISPSGGGT
ARDACSGGSCYTPFDY



(SEQ ID NO: 797)
(SEQ ID NO: 798)
(SEQ ID NO: 799)





DC2_M173_LC
QSVSSN
GAS
QQYNNWPRT



(SEQ ID NO: 800)
(SEQ ID NO: 801)
(SEQ ID NO: 802)





DC2_M182_HC
GFSFSDHY
IRNKAKDYST
TRVNYYDRSGWSLDAFDI



(SEQ ID NO: 803)
(SEQ ID NO: 804)
(SEQ ID NO: 805)





DC2_M182_LC
QGISNS
AAS
QQYYSTPPIT



(SEQ ID NO: 806)
(SEQ ID NO: 807)
(SEQ ID NO: 808)





DC2_M186_HC
GFSFSNYE
ISSGSSYR
ARRWHGIDI



(SEQ ID NO: 809)
(SEQ ID NO: 810)
(SEQ ID NO: 811)





DC2_M186_LC
QDIRSD
AAS
LQDFNYPRI



(SEQ ID NO: 812)
(SEQ ID NO: 813)
(SEQ ID NO: 814)





DC2_M190_HC
GYTFSRYA
INTNTGEP
ARDGTLRSADGETSAFDI



(SEQ ID NO: 815)
(SEQ ID NO: 816)
(SEQ ID NO: 817)





DC2_M190_LC
QGISNS
AAS
QQYYSTPPIT



(SEQ ID NO: 818)
(SEQ ID NO: 819)
(SEQ ID NO: 820)





DC2_M192_HC
GFTFSSYG
IWLDGTNK
ARRGFHYDSSGYYYYGMDV



(SEQ ID NO: 821)
(SEQ ID NO: 822)
(SEQ ID NO: 823)





DC2_M192_LC
QSLLHSNGYNY
LGS
MQALQTPPFT



(SEQ ID NO: 824)
(SEQ ID NO: 825)
(SEQ ID NO: 826)





DC2_M193_HC
GVTFSDYD
IRSSGGTT
VRDKDGVFDY



(SEQ ID NO: 827)
(SEQ ID NO: 828)
(SEQ ID NO: 829)





DC2_M193_LC
QSVLYSSNNKNY
WAS
QQYYRTPL



(SEQ ID NO: 830)
(SEQ ID NO: 831)
(SEQ ID NO: 832)





DC2_M198_HC
GFTFSSYA
ISPSGSTI
VRGVYVQSDAFDI



(SEQ ID NO: 833)
(SEQ ID NO: 834)
(SEQ ID NO: 835)





DC2_M198_LC
QGISNS
AAS
QQYYSTPPIT



(SEQ ID NO: 836)
(SEQ ID NO: 837)
(SEQ ID NO: 838)





DC2_M199_HC
GYTFTTYA
INTNTGNP
ARDRYSSSWYQFDP 



(SEQ ID NO: 839)
(SEQ ID NO: 840)
(SEQ ID NO: 841)





DC2_M199_LC
QGISNS
AAS
QQYNTYPHST



(SEQ ID NO: 842)
(SEQ ID NO: 843)
(SEQ ID NO: 844)





DC2_M203_HC
GFTFSNYD
IDTSGNT
VRLGGYIGNDRDAFDI



(SEQ ID NO: 845)
(SEQ ID NO: 846)
(SEQ ID NO: 847)





DC2_M203_LC
QDISSW
KAS
QQYNTYPHST



(SEQ ID NO: 848)
(SEQ ID NO: 849)
(SEQ ID NO: 850)





DC2_M204_HC
GYTFISYG
ISAKNGNT
ARDRTGTLDS



(SEQ ID NO: 851)
(SEQ ID NO: 852)
(SEQ ID NO: 853)





DC2_M204_LC
QDIKKFLNWYQQ
DAF
QQYDILPYT



(SEQ ID NO: 854)
(SEQ ID NO: 855)
(SEQ ID NO: 856)





DC2_M208_HC
GYTFISYG
ISAKSGNT
ARDRTGTLDS



(SEQ ID NO: 857)
(SEQ ID NO: 858)
(SEQ ID NO: 859)





DC2_M208_LC
QSIDDY
AAS
QQTYGTSIT



(SEQ ID NO: 860)
(SEQ ID NO: 861)
(SEQ ID NO: 862)





DC2_M209_HC
GFIFGDFA
IRSQAHGGTT
TREGVVVAARYYYYIMDV



(SEQ ID NO: 863)
(SEQ ID NO: 864)
(SEQ ID NO: 865)





DC2_M209_LC
HNISRY
AAS
QQNYRTPRT



(SEQ ID NO: 866)
(SEQ ID NO: 867)
(SEQ ID NO: 868)





DC2_M212_HC
GFAFNYYD
IKPGGGNT
ARQLYGNSFFDY



(SEQ ID NO: 869)
(SEQ ID NO: 870)
(SEQ ID NO: 871)





DC2_M212_LC
QGISNS
AAS
QQYYSTPPIT



(SEQ ID NO: 872)
(SEQ ID NO: 873)
(SEQ ID NO: 874)





DC2_M213_HC
GFTFRDYW
INRNGNEK
VRDSSPSFGPGNYYDAFDI



(SEQ ID NO: 875)
(SEQ ID NO: 876)
(SEQ ID NO: 877)





DC2_M213_LC
QDIRNE
AAS
LQDYNYPRT



(SEQ ID NO: 878)
(SEQ ID NO: 879)
(SEQ ID NO: 880)





DC2_M215_HC
GYTFIDYY
INPKSGAT
STFWDGVDAFDV



(SEQ ID NO: 881)
(SEQ ID NO: 882)
(SEQ ID NO: 883)





DC2_M215_LC
QSVSSY
DTS
LQRRNWPPFT



(SEQ ID NO: 884)
(SEQ ID NO: 885)
(SEQ ID NO: 886)





DC2_M218_HC
GFSFSNYE
ISSGSSYR
ARRWHGLDI



(SEQ ID NO: 887)
(SEQ ID NO: 888)
(SEQ ID NO: 889)





DC2_M218_LC
QSLLHINGYNY
LGS
MQALQTPWT



(SEQ ID NO: 890)
(SEQ ID NO: 891)
(SEQ ID NO: 892)





DC2_M220_HC
GFIFSSTG
IGRDGNYK
ILSSALVPGATFDK



(SEQ ID NO: 893)
(SEQ ID NO: 894)
(SEQ ID NO: 895)





DC2_M220_LC
QSISTS
TAS
CQQSYSVPYT



(SEQ ID NO: 896)
(SEQ ID NO: 897)
(SEQ ID NO: 898)





DC2_M221_HC
GFTFRSFE
ISVGANP
VRKIPGTSHFDY



(SEQ ID NO: 899)
(SEQ ID NO: 900)
(SEQ ID NO: 901)





DC2_M221_LC
QSVSSY
DAS
QHFSTYPYT



(SEQ ID NO: 902)
(SEQ ID NO: 903)
(SEQ ID NO: 904)





DC2_M222_HC
GGIFSNYA
FIPIVNIG
ARDLEAANSVILPRLFY



(SEQ ID NO: 905)
(SEQ ID NO: 906)
(SEQ ID NO: 907)





DC2_M222_LC
QGISNS
AAS
QQYYSTPPIT



(SEQ ID NO: 908)
(SEQ ID NO: 909)
(SEQ ID NO: 910)





DC2_M223_HC
GFTLSDHY
SRNKAKTYTT
TRPGYFDRSGDSFDALDI



(SEQ ID NO: 911)
(SEQ ID NO: 912)
(SEQ ID NO: 913)





DC2_M223_LC
QGIRSA
DAS
QHFSTYPYT



(SEQ ID NO: 914)
(SEQ ID NO: 915)
(SEQ ID NO: 916)





DC2_M229_HC
GFSFSNYE
ISTIRPYI
ARDAFTSTSYDGFSGNFDY



(SEQ ID NO: 917)
(SEQ ID NO: 918)
(SEQ ID NO: 919)





DC2_M229_LC
QGIRSA
DAS
QHFSTYPYT



(SEQ ID NO: 920)
(SEQ ID NO: 921)
(SEQ ID NO: 922)





DC2_M230_HC
GFTFTDYY
ISPSGSTI
ARGIYYQSDAFDT



(SEQ ID NO: 923)
(SEQ ID NO: 924)
(SEQ ID NO: 925)





DC2_M230_LC
QVIRNS
AAS
QQYYSTPPIT



(SEQ ID NO: 926)
(SEQ ID NO: 927)
(SEQ ID NO: 928)





DC2_M233_HC
GFTFTSYA
ISYNGRNK
VRSMGDFDWLLTDY



(SEQ ID NO: 929)
(SEQ ID NO: 930)
(SEQ ID NO: 931)





DC2_M233_LC
QSVSTH
DAS
QQYNTWPR



(SEQ ID NO: 932)
(SEQ ID NO: 933)
(SEQ ID NO: 934)





DC2_M240_HC
GVTFSDYD
IRSSGGTT
VRDKDGVFDY



(SEQ ID NO: 935)
(SEQ ID NO: 936)
(SEQ ID NO: 937)





DC2_M240_LC
QSVTRTF
DAS
QQYGTSPLT



(SEQ ID NO: 938)
(SEQ ID NO: 939)
(SEQ ID NO: 940)





DC2_M241_HC
GFTFSHYW
INGNGGAT
VGGSNDWVGIDY



(SEQ ID NO: 941)
(SEQ ID NO: 942)
(SEQ ID NO: 943)





DC2_M241_LC
QSIRTF
DAS
QQSYSSPLT



(SEQ ID NO: 944)
(SEQ ID NO: 945)
(SEQ ID NO: 946)





DC2_M242_HC
GYTFIDYF
IYPKSGET
ARDIAPTGAWWFDS



(SEQ ID NO: 947)
(SEQ ID NO: 948)
(SEQ ID NO: 949)





DC2_M242_LC
QMLSSSR
GAS
QQYGSPRT



(SEQ ID NO: 950)
(SEQ ID NO: 951)
(SEQ ID NO: 952)





DC2_M243_HC
GYTFISYG
ISAKNGNT
ARDRTGTLDS



(SEQ ID NO: 953)
(SEQ ID NO: 954)
(SEQ ID NO: 955)





DC2_M243_LC
QSISDF
TAS
QQSYSAPLT



(SEQ ID NO: 956)
(SEQ ID NO: 957)
(SEQ ID NO: 958)





DC2_M244_HC
GYTFIAFY
INPYSGDT
ARTVYVDKGMVMVRRLYQYFGMDV



(SEQ ID NO: 959)
(SEQ ID NO: 960)
(SEQ ID NO: 961)





DC2_M244_LC
QSISNNF
ASS
QQYGTSPAT



(SEQ ID NO: 962)
(SEQ ID NO: 963)
(SEQ ID NO: 964)





DC2_M245_HC
GFIFKTYG
IWYDGSNE
ARDEAVGPYQYAAEYFHH



(SEQ ID NO: 965)
(SEQ ID NO: 966)
(SEQ ID NO: 967)





DC2_M245_LC
QSLLHGNGYNF
LGS
MQALQTPWT



(SEQ ID NO: 968)
(SEQ ID NO: 969)
(SEQ ID NO: 970)





DC2_M249_HC
GFTFSGHY
IRDQPHKYST
ARAPFYDTTGYSLDALDI



(SEQ ID NO: 971)
(SEQ ID NO: 972)
(SEQ ID NO: 973)





DC2_M249_LC
QSVSSN
GAS
QHYINRPGRT



(SEQ ID NO: 974)
(SEQ ID NO: 975)
(SEQ ID NO: 976)





DC2_M251_HC
GFSFSNYE
ISSGSSYR
ARQDNSGRPFSH



(SEQ ID NO: 977)
(SEQ ID NO: 978)
(SEQ ID NO: 979)





DC2_M251_LC
QGISNS
AAS
QQYYSTPPIT



(SEQ ID NO: 980)
(SEQ ID NO: 981)
(SEQ ID NO: 982)





DC2_M261_HC
GFTFSSHA
ISYDGSNK
VRWVAYYFDN



(SEQ ID NO: 983)
(SEQ ID NO: 984)
(SEQ ID NO: 985)





DC2_M261_LC
QSVSSSS
GTS
QYYGSLPPIT



(SEQ ID NO: 986)
(SEQ ID NO: 987)
(SEQ ID NO: 988)





DC2_M262_HC
GDSISSYY
ISYTGST
ARLGYSHPYWYFDL



(SEQ ID NO: 989)
(SEQ ID NO: 990)
(SEQ ID NO: 991)





DC2_M262_LC
QSISNF
AAS
QQSYSPPLIT



(SEQ ID NO: 992)
(SEQ ID NO: 993)
(SEQ ID NO: 994)





DC2_M263_HC
GFTFSRYW
IEADGSVK
ARDANYHDGSAYYDAFDV



(SEQ ID NO: 995)
(SEQ ID NO: 996)
(SEQ ID NO: 997)





DC2_M263_LC
QAIRND GAS
LQDYNYPRT




(SEQ ID NO: 998)
(SEQ ID NO: 999)
(SEQ ID NO: 1000)





DC2_M264_HC
GYSFSAHA
INGGNGNT
ARHLPEPWNYYDSSGYFGFDY



(SEQ ID NO: 1001)
(SEQ ID NO: 1002)
(SEQ ID NO: 1001)





DC2_M264_LC
QSVSNY
YTS
QQRYNWPLT



(SEQ ID NO: 1004)
(SEQ ID NO: 1005)
(SEQ ID NO: 1006)





DC2_M266_HC
GFTFSDYY
ISGSGKIT
ARVQGEQWRGLHFDS



(SEQ ID NO: 1007)
(SEQ ID NO: 1008)
(SEQ ID NO: 1009)





DC2_M266_LC
QDISNY
DAS
QHRSNWPA



(SEQ ID NO: 1010)
(SEQ ID NO: 1011)
(SEQ ID NO: 1012)





DC2_M280_HC
GFRFGDYA
INWDSGDI
AKDSGWLRRGDYDTSGFYGPIDY



(SEQ ID NO: 1013)
(SEQ ID NO: 1014)
(SEQ ID NO: 1015)





DC2_M280_LC
QYISTY
SAS
QQSYGTLLT



(SEQ ID NO: 1016)
(SEQ ID NO: 1017)
(SEQ ID NO: 1018)





HC = Heavy chain; LC = Light chain






“And/or” as used herein, for example, with option A and/or option B, encompasses the separate embodiments of (i) option A, (ii) option B, and (iii) option A plus option B.


All combinations of the various elements described herein are within the scope of the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


This invention may be better understood from the Experimental Details, which follow.


EXEMPLIFICATIONS
Example 1
Experimental Details

The alphavirus envelope glycoproteins E1 and E2 are responsible for mediating viral attachment (E2) and membrane fusion (E1) (FIG. 1) (1, 7, 8). The prefusion E1/E2 heterodimer is arranged into trimers with an icosahedral organization on the CHIKV particle (9,10). Mature E1/E2 is generated by furin cleavage of a penultimate precursor that consists of a non-covalent heterodimer of E1 and p62. The p62 polypeptide contains E2 and E3, which is a small domain that accompanies the glycoprotein throughout the viral assembly and prevents premature conformational changes (11). Furin cleavage in the region between E2 and E3 releases E3 and primes the glycoprotein for membrane fusion (1, 7, 8). A hybrid p62-E1 protein is used as “bait” for mAb discovery, in which the ectodomains of p62 and E1 are joined by a polypeptide linker. Rey and coworkers used this construct for X-ray studies of the CHIKV prefusion assembly and provided the DNA used for p62-E1 expression at Einstein (8).


In recent years, advances in human monoclonal antibody (mAb) isolation methods have greatly accelerated the pace and extent of characterization of human responses to viral pathogens. In particular, B-cell sorting and single cell cloning methods have led to the isolation and development of HIV-1 mAbs VRCO1 and 3BNC117 that have exceptional breadth and potency and are undergoing clinical trials as immunotherapies (12-14). In flaviviruses, similar approaches led to the identification of novel human mAbs that target epitopes that span the E glycoprotein prefusion dimer (“envelope dimer epitope”, EDE mAbs) (15, 16). More recently, rapid and high-throughput B-cell sorting was used to profile the antibody response of a human Ebola virus survivor (elaborated below) (17). A common aspect to the work-flow in the above cases is the use of FACS and single-cell sorting to identify antigen-specific B-cells (generally memory B-cells) from seropositive donors. The power of this approach lies in the ability to rapidly isolate and screen hundreds of mAbs from any one patient sample, allowing for a comprehensive set of human mAbs. Thus, rare human mAbs with enhanced properties such as cross-neutralization or that target unique/unusual epitopes can be identified readily.


The characterization of human mAbs from convalescent patients is advantageous for two reasons. While isolation of murine mAbs from inoculations or immunizations can be very insightful for understanding sites of vulnerability on viral glycoproteins, it has been shown in many pathogens that the immunodominant neutralization sites in mice and humans do not correlate. It is only through the isolation and characterization of human mAbs that one can characterize which epitopes are most likely to elicit desirable neutralizing or protective responses for a human vaccine. Second, human mAbs are less likely to elicit anti-idiotypic and rare anaphylactic responses when used therapeutically than murine/human chimeric mAbs. Human mAbs are potentially more clinical useful as immunotherapies than mAbs from other species.


There are no effective therapeutic drugs or licensed vaccines for human alphavirus infections and new antiviral strategies are urgently needed. For CHIKV, two vaccines have entered into Phase II clinical studies (18, 19). In addition, several groups have demonstrated that neutralizing mAbs administered as monotherapies or as a cocktail can provide protection in a lethal mouse model (20-25). Similarly, immunotherapeutic mAbs against other alphaviruses (e.g., VEEV) are under development (26, 27). In a recent study, a cross-protective alphavirus murine mAb (CHK-265) was shown to be effective in murine models of CHIKV, Mayaro virus (MAYV), and O'nyong'nyong virus (ONNV) (28). However, no such cross-protective human mAb has yet been described.


Previous human CHIKV mAb isolation methods provide an incomplete profile of the human response. Both phage display and hybridoma approaches have been previously used to isolate human CHIKV mAbs (23-25, 29). Despite these advances, the most potent and broadly protective CHIKV mAbs are of murine origin (28). While it is possible that species difference or inoculation methods (e.g., natural infection vs. vaccination) belie these discrepancies, a more likely explanation is that the ˜40 human CHIKV mAbs that have been isolated thus far do not provide a comprehensive profile of the human antibody response. Furthermore, these two human mAb methods both suffer from intrinsic biases. Phage display recovery of human V regions from B-cells does not allow for proper heavy and light chain pairing, and is subject to expression biases in non-native bacterial systems. Human hybridoma fusions are low-throughput and are preferential toward B-cell clones with high intrinsic ability to be immortalized with Epstein Barr Virus or to fuse with myeloma partners. Here, we propose to rapidly and comprehensively profile the human antibody response to CHIKV infection using two complementary and nascent strategies: B-cell sorting and de novo antibody sequencing by mass spectrometry.


The human antibody response to CHIKV was examined herein. PBMC samples were obtained from a convalescent patient who was diagnosed with CHIKV 18 months ago in the Dominican Republic (donor Dominican Republic CHIKV 1 or “DC1”). Serum ELISA indicated a strong reactivity toward CHIKV p62-E1 hybrid protein, which represents the immature form of the prefusion E1-E2 glycoprotein assembly (FIG. 3A). From these samples, B-cell sorting experiments were performed pilot. FIG. 3B shows representative data from sorting of the CD20+ CD27+ IgG+ p62-E1(CHIKV)+ population (antigen-specific memory B-cells). From these studies, it was found that ˜0.1% of B-cells are CHIKV-specific. A number of mAbs were cloned from single sequenced B-cells. FIG. 3C shows sample ELISA binding and neutralization data from three cloned mAbs DC1.9, DC1.55, and DC1.56; all three mAbs exhibited specific binding to p62-E1 as well as a recombinant vesicular stomatitis virus particle that bears the CHIKV E1/E2 glycoproteins in place of the native glycoprotein G (rVSV-CHIKV). Furthermore, mAb DC1.56 was found to neutralize rVSV-CHIKV in a single high-point test, DC1.55 was less effective and DC1.9 had no neutralizing activity.


Isolation of a Panel of Human CHIKV mAbs


Human single B-cell sorting was utilized to isolate a total of 108 mAbs from two convalescent donors (DC1 and DC2) who were exposed to CHIKV infection in the Dominican Republic. In general, the sorting procedure involved positive gating of CD19 or CD20+, IgG+ and p62-E1+ B-cells, followed by single cell cloning of variable domains. Recombinant mAbs from this procedure were produced as human IgG1 from HEK293 cells, and purified by protein A chromatography. A focus was placed on mAb containing κ light chains because of their generally favorable stability properties, abundance in human blood, and for technical simplicity during the variable domain PCR recovery. Of the isolated mAbs, 40 have been demonstrated to have functional activity, either binding or neutralization, and an additional 40 mAbs are currently being characterized. Sequences of the 40 functional mAbs showed they were from diverse IGHV and IGKV lineages and contained a wide range of CDR-H3 lengths. Dr. Daniel Hoffman assisted with these experiments. Of the 40 mAbs, two pairs were contained identical light chains paired with unique heavy chains. ELISA at two different antibody concentrations (300 and 30 nM) demonstrated that 28 of the mAbs exhibited strong reactivity toward p62-E1 (OD450>2 at 30 nM) and 8 mAbs had more moderate reactivity. A few of the mAbs did not show any significant binding activity toward p62-E1 in this format, including mAb DC2.429, one of the more potent neutralizing mAbs (see below).


Neutralizing Activity Against the CHIKV Vaccine Strain 181/25 and Authentic CHIKV


mAbs were screened for neutralization of the CHIKV 181/25 vaccine strain at 300 nM and 30 nM by focus reduction neutralization test. A majority of the mAbs exhibited greater than 50% neutralization at 300 nM, but only a handful (5) were active at 30 nM. Based on these results, 8 mAbs were selected for IC50 determination with the CHIKV 181/25 vaccine strain (Table 1).









TABLE 1







IC50 values for human CHIKV mAbs against


CHIKV 181/25 vaccine strain by FRNT










mAb
IC50 (nM)














DC1.7
11



DC1.33
<0.01



DC1.56
72



DC2.1
0.08



DC2.112
78



DC2.118
5.1



DC2.148
11



DC2.271B
<0.01



DC2.315
44



DC2.429
<0.01










As shown, potencies against CHIKV 181/25 ranged from <0.01 to 78 nM. The two most potent mAbs were DC2.429 and DC2.271B. Interestingly, DC2.429 had no observable binding to p62-E1, despite potent neutralizing activity against authentic CHIKV as well as the vaccine strain and ability to bind the E1-E2 glycoprotein presented on vesicular stomatitis virus particles (data not shown), suggesting that binding of this mAb may be dependent on quarternary structures. mAbs DC2.429 and DC2.271B were carried forward for neutralization studies with authentic CHIKV (Asian lineage) under BSL3 conditions in collaboration with the USAMRIID. Both mAbs were found to neutralize authentic virus with high potency (IC50 ˜40 ng/mL or 0.27 nM).


Cross-Neutralizing Activity against Mayaro Virus (MAYV).


The potential cross-neutralizing capacity of human CHIKV mAbs was explored against MAYV. MAYV is a member of the alphavirus family. At present, there are several mAbs that have been reported to harbor cross-neutralizing activity between CHIKV and MAYV, but all of these mAbs are of murine origin (28). Neutralizing activity of 18 CHIKV mAbs was determined against MAYV. DC2.429 was also included in the analysis, since it has the unusual property of neutralizing CHIKV but not binding p62-E1 and has very potent activity. However, DC2.429 did not neutralize MAYV.


Epitope Binning


A previous study described the identification of human CHIKV mAbs by a different mAb isolation method (human hybridoma technology). All of these previously reported mAbs were found by mutational studies to bind the E2 subunit. To determine the location of epitopes for our novel human CHIKV mAbs, immunoprecipitation studies were performed (Table 2).









TABLE 2







Summary of immunoprecipitation (IP) and E1 or p62-E1 ELISA results.








E1-specific
p62-E1 specific (likely E2)













mAb
IP
E1 ELISA
p62-E1 ELISA
mAb
IP
p62-E1 ELISA





DC1.7
E1
++
+
DC1.33
No IP
++


DC1.9
E1
ND
++
DC1.43
E2 + p62
++


DC1.55
No IP
++
++
DC1.55
E2 + p62
++


DC1.56
E1
++
++
DC1.159
E1, E2, p62
ND


DC1.353
E1
ND
ND
DC1.364
E1, E2, p62
ND


DC1.355
E1
ND
ND
DC2.1
E2 + p62
++


DC1.380
E1
ND
ND
DC2.3
E1, E2, p62
++


DC2.23
No IP
ND
+
DC2.12
E2 + p62
++


DC2.74
E1
++
++
DC2.80
ND
++


DC2.82
E1
++
++
DC2.95
ND
+


DC2.112
E1
++
++
DC2.118
ND
+


DC2.131
E1
ND
++
DC2.148
No IP
++


DC2.134
E1
ND
+
DC2.159
E1, E2, p62
++


DC2.284
E1
++
++
DC2.271B
E1, E2
++


DC2.315
E1
ND
++
DC2.422
ND
+






DC2.432
E2 + p62
++






DC2.446
E2 + p62
ND






DC2.502
No IP
++






DC2.507
No IP
++






DC2.541
No IP
++






DC2.547
E1, E2, p62
++






DC2.572
No IP
++






DC2.580
No IP
++





++ Strong binding


+ Moderate binding


ND not determined


Immunoprecipitation data obtained by Dr. Rebecca Brown.






While many of the mAbs immunoprecipitated E2 as well as p62, a number of mAbs appeared specific to E1, a previously undescribed target for the human antibody response. Binding to E1 was confirmed in these cases by ELISA and BLI studies with recombinantly expressed E1 subunit (lacking E2) (Table 2). While human mAbs against E1 have not previously been described, mouse mAbs against E1 have been described, including CHK-166 which has previously been shown to afford protective efficacy in a mouse model. Epitope binning experiments indicate that the human E1-specific mAbs that were isolated do not compete with CHK-166 suggesting an entirely novel epitope (not shown). A summary of the breakdown for binding to p62-E1 or E1 by mAbs obtained from patients DC1 and DC2 is shown in FIG. 4.


Example 2
Materials and Methods (for Example 3)

CHIKV p62-E1 and E1′ production. The CHIKV-115 p62-E1 construct was a gift from Dr. Felix Rey (Institut Pasteur), and the recombinant protein was purified from S2 cells as previously described (Voss JE, et al. Nature. 2010; 468(7324):709-12). The construct contained the p62 and E1 ectodomains joined by a glycine-serine linker with a double strep-tag at the C-terminus (IBA Lifesciences). The p62 furin cleavage site (between E2 and E3) was mutated to prevent furin cleavage (Voss JE, et al. Nature. 2010; 468(7324):709-12). E1′ was expressed in S2 cells and purified as above and as previously described (Sanchez-San Martin C, et al. Journal of virology. 2013; 87(13):7680-7).


Viruses. The Chikungunya 181/25 virus was obtained from Dr. Robert B. Tesh (University of Texas Medical Branch, Galveston, Tex.). The Mayaro Guyane virus (NR-49911) was obtained through BEI Resources, NIAID, NIH, as part of the WRCEVA program. The Chikugunya 181/25 and Mayaro Guyane viruses were propagated and titered on BHK-21 cells.


Study subjects and sample collection. To study naturally acquired antibodies to CHIKV, healthy adult patients were recruited who had a history of symptomatic CHIKV infection. Patients were identified either through the Montefiore Medical Center Microbiology laboratory with a positive CHIKV serology or from the community with a self-reported diagnosis of CHIKV. After informed consent, details of their CHIKV illness was recorded and blood samples were collected. The study protocol was approved by the Institutional Review Board of the Albert Einstein College of Medicine (protocol IRB# 2016-6137). CHIKV immune status was confirmed by serum ELISA.


Forty mL of whole blood was collected from patients using K2EDTA blood collection tubes (BD Vacutainer, Franklin Lakes, N.J.). ˜15 mls of plasma was separated, aliquoted and frozen. To isolate PBMCs using a density gradient separation, blood was mixed with 1:1 ratio of Hanks Balanced Salt Solution (HBSS) and layered over equal volume of Ficoll-Paque™ (GE: 17-5442-02) and centrifuged per the manufacturer's protocol. The PBMC layer was collected, washed with HBSS, centrifuged at 400 g, and frozen at 4×106 cells/m 467 L in heat inactivated FBS (Gibco) and 5% DMSO and then stored in liquid nitrogen.


Isolation of CHIKV mAbs by single B cell sorting. Approximately 8×106 cells/mL were stained using anti-human CD8(PE-Cy7), CD3(PE-Cy7), CD14(PE-Cy7), CD20 (PB), CD27 (APC), IgG (FITC), and biotinylated p62-E1 hybrid protein. p62-E1 was biotinylated using EZ-Link™ Sulfo-NHS-LC-Biotin (Life Technologies) followed by buffer exchange using Amicon® 30,000 MW cut-off spin columns (Millipore) into PBS pH 7.4. Biotinylated p62-E1 was used at a concentration of 100 nM and detected using streptavidin-PE (Invitrogen) at 1:500 dilution. Single B cells were sorted into 8-strip PCR tubes (USA scientific) containing 4 μl/well of lysis buffer [RNasin® Ribonuclease Inhibitors (Promega) 2U/well, 0.005 M DTT (Invitrogen), PBS, nuclease free H2O] using FACS Aria high-speed cell sorter flow cytometer (Becton Dickinson). Tubes were frozen on dry ice and stored at stored at −80° C.


IgH and IgK variable gene transcripts were amplified using an RT-PCR and two-step nested PCR strategy. A primer set specific to IgG leader sequences, constant regions and V-region heavy/light chain families was used for antibody variable region recovery (Tiller T, et al. J Immunol Methods. 2008; 329(1-2):112-24). The second round PCR primer set had 35 base pairs of 5′ and 3′ homology to the heavy and light chain expression vectors pMAZ-IgH and pMAZ-IgL (Mazor Y, et al. J Immunol Methods. 2007; 321(1-2):41-59). Gibson cloning reactions were performed using 100 ng of purified PCR and 50 ng of cut heavy and light chain plasmids containing IgG1 constant-region framework. Chemical transformations were done using 10 μl DH5-α (New England BioLabs) and 1 μl of Gibson reaction mix. Individual colonies were picked and sequenced for downstream analysis and characterization.


Expression and purification of mAbs and Fab fragments. Antibodies used for binding and neutralization screens were expressed in FreeStyle™ 293-F cells by transient co-transfection of 1:1 ratio of heavy and light chain plasmids (ThermoFisher). HEK293 cells were passaged to 5.0×105 cells per ml. A transfection mixture of DNA diluted in PBS (0.67 μg total plasmid DNA per ml of culture) was prepared on day of transfection. Addition of transfection agent Polyethylieneimine “MAX” (PEI) (Polysciences Inc) at a DNA-to-PEI ratio of 1:3 to diluted DNA and incubated at room temperature for 15 min. The transfection mixture was then added to culture via drop-wise addition. At six days post-transfection, cultures were harvested by centrifugation at 4,000 g× for 15 min, and incubated with Protein A agarose (Thermo Scientific) at 4° C. for 90 min. Protein A resin containing bound mAbs was then passed through a protein purification column (BioRad) and washed twice with Pierce™ Gentle Ag/Ab Binding Buffer, pH 8.0 (Thermo Scientific). Antibodies were eluted Pierce™ Gentle Ag/Ab Elution Buffer, pH 6.6 (Thermo Scientific) and desalted into 150 mM Hepes, 200 mM NaCl, pH 7.4 using PD-10 Desalting Columns (GE Healthcare). Fab fragments were generating by digestion of IgG1 using Pierce™ Fab preparation kit (Thermo Scientific) as per manufacturers protocol. Briefly IgG was incubated with papain for 4 h at 37° C. and the Fab and the Fc mixtures were passed over Protein A agarose to remove Fc fragments and undigested Fc. Fab fraction was then buffer exchanged into 150 mM Hepes, 200 mM NaCl, pH 7.4.


Immunoprecipitation of viral proteins from infected cells. BHK-21 cells were cultured at 37° C. in complete media (Dulbecco's modified Eagle's medium (DMEM) with 5% fetal bovine serum, 10% tryptose phosphate broth, 100 U penicillin/mL, and 100 μg streptomycin/ml) and seeded 24 h prior to infection. Cells were infected with CHIKV 181/25 at 10 PFU/cell for 4 h, washed three times, and placed back into complete media. At 8 h post-infection, cells were washed once with minimal essential media (MEM) lacking cysteine and methionine and then labeled with 50 μCi/mL of [35S]methionine/cysteine for 2 h. The cells were washed three times with ice-cold PBS before solubilizing on ice with lysis buffer (50 mM Tris-Cl pH 7.4, 100 mM NaCl, 1% Triton-x-100, 1 mM EDTA, and one complete protease inhibitor tablet/10 ml (Roche)). Cell debris was removed by centrifugation at 20,000 g 4° C. 10 min. The soluble lysate was aliquoted and frozen at −80° C. Approximately 1 μg of each candidate antibody was incubated with an individual lysate aliquot for 1 h in the presence of 0.1% SDS and the immunoprecipitate was retrieved with Protein A agarose (Pierce) for 3 h at 4° C. The beads were washed four times with RIPA buffer and once with PBS. The samples were then boiled in SDS sample buffer supplemented with dithiothreitol, alkylated with iodoacetaminde at 37° C., and analyzed by SDS-PAGE and fluorography.


Biolayer interferometry (BLI). IgG binding to p62-E1 and E1′ was determined by BLI measurements using OctetRed™ system (ForteBio, Pall LLC). For single-phase binding experiments, global data fitting to a 1:1 binding model was used to estimate values for the kon (association rate constant), koff (dissociation rate constant), and KD (equilibrium dissociation constant). IgGs were immobilized on anti-human Fc capture sensors (Pall Life sciences). Data were analyzed using ForteBio Data Analysis Software 9. For double phase binning experiments, biotinylated p62-E1 was first bound to streptavidin-coated sensor, and then the first mAb bound to saturation. The sensor was then transferred to a second well containing equimolar amounts of the first and competing mAbs.


p62-E1 ELISA. Initial antibody binding screening against p62-E1 was performed by coating 250 ng/well diluted in PBS in half-area 96-well high binding plates (Costar). Wells were blocked with 3% BSA at 37° C. for 2 h. Antibody dilutions at 300 nM and 30 nM were performed in PB-T (PBS pH 7.4, 0.5% BSA, 0.05% Tween) and incubated 1 h at 37° C. After antibody binding plates were washed with PBS-T (PBS pH 7.4, 0.005% Tween-20) five times. Horseradish peroxidase conjugated-(HRP)-Protein A (life technologies) diluted at 1:2000 in PB-T was added in for 1 h at 37° C. Plates were washed five times with PBS-T and developed using TMB (Thermo Fischer). Optical density at 450 nm was read on Synergy H4 Hybrid reader (BioTek). Procedures were similar for full (8-point) ELISA curves and serum ELISA, except that initial stock of mAb or serum were serially diluted.


Focus reduction neutralization test with CHIKV 181/25. Serial dilution of mAbs were incubated with 100-150 FFU of CHIKV 181-25 vaccine strain for 1 h at 37° C. Antibody-virus complexes were then added to Vero cell monolayers in 96-well plates. Infection proceeded for 90 min at 37° C. and cells were then overlaid with 0.5% carboxylmethylcellulose in Modified Eagle Media (MEM), supplemented with heat inactivated 2% FBS and 10 mM Hepes pH 7.4. Plates were fixed 16 h post-infection with 1% PFA diluted in PBS. After fixation, plates were incubated with 250 ng/mL of 5G11 (USAMRIID) and horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG in PBS supplemented with 0.1% Saponin and 0.1% BSA. Foci were then visualized using TrueBlue Peroxidase substrate (KPL). Developed foci where quantified on ImmunoSpot® S6 macroanalyzer (Cellular Technologies Ltd.). Infection in wells containing mAb was calculated relative to wells containing CHIKV 181/25 alone. Non-linear regression analysis was performed using Prism 7 software (GraphPad Software, La Jolla Calif.).


CHIKV-AF15561 Microneutralization Assay. Serial dilutions of mAbs were prepared in infection media (2% FBS MEM) and incubated with CHIKV-AF15561 virus for 1 hr at 37° C. Vero E6 cells were then exposed to antibody/virus inoculum at an MOI of 1.5 plaque-forming units (PFUs)/cell for 1 h at 37° C. before it was removed and replaced with fresh culture media (5% FBS MEM). At 24 h post-infection, cells were fixed in 10% formalin for 24 h prior to removal from containment. Cells were permeabilized with 0.2% Triton™ X-100 (Sigma-Aldrich) for 10 min, blocked and incubated with 2 μg/ml CHIKV-specific 5G11 (USAMRIID) for 1 h at RT. Cells were washed with PBS, incubated with anti-mouse IgG 559 conjugated to Alexa488 (Sigma-Aldrich), washed again and counterstained with Hoechst stain (Invitrogen). Infection was quantitated by automated fluorescence microscopy, as described (46).


Focus Reduction Neutralization Test with CHIKV LR2006 OPY1. Focus reduction neutralization tests (FRNT) were performed as previously described (26). Briefly, serial dilutions of mAb were incubated with 100 FFU of CHIKV LR2006_OPY1 for 1 h at 37° C. MAb-virus complexes were added to Vero cells in 96-well plates. After 1 h, cells were overlaid with 1% (w/v) methylcellulose in Modified Eagle Media (MEM) supplemented with 4% FBS. Plates were fixed with 1% PFA in PBS 18 h later. Plates were incubated sequentially with 500 ng/ml of mouse anti-CHK-11 (26) and horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG in PBS supplemented with 0.1% saponin and 0.1% BSA. CHIKV LR2006_OPY1 foci were visualized using TrueBlue peroxidase substrate (KPL) and quantitated on an ImmunoSpot macroanalyzer (Cellular Technologies Ltd). The IC50 was calculated using non-linear regression analysis constraining the bottom to 0 and top to 100 after comparison to wells infected with CHIKV-LR in the absence of antibody.


Generation of recombinant vesicular stomatitis virus (rVSVs) bearing CHIKV glycoproteins (rVSV-CHIKV). Human codon optimized sequence of the CHIKV E3-E2-6K-E1 protein from the African prototype S27 strain (UniProt Accession no. Q8JUX5) was synthesized (Epoch Biosciences) and cloned in the VSV antigenome plasmid to replace its native glycoprotein G as previously reported (Chattopadhyay A, et al. Journal of virology. 2013; 87(1):395-402). The VSV genome also carries an enhanced green fluorescent proteion (eGFP) marker to score infected cells. A plasmid-based rescue system was used to generate rVSV-CHIKV (Whelan SP, et al. Proceedings of the National Academy of Sciences of the United States of America. 1995; 92(18):8388-92.). Rescued virus was grown on Vero cells and Sanger sequencing was used to confirm the glycoprotein gene sequence.


rVSV-CHIKV neutralization assay and escape mutant generation. For antibody neutralization experiments, pre-titrated amounts of rVSV-CHIKV particles were incubated with increasing concentrations of test antibody at 37° C. for 1 h prior to addition to cell monolayers in 96-well plates. After 1 h of infection, 20 mM of NH4Cl was added to halt subsequent rounds of infection. The infection rate of rVSV-CHIKV was measured by automated enumeration of eGFP+cells (infectious units) using a Cell Insight CX5 imager (Thermo Fisher) at 16 h post-infection.


Escape mutant selections were performed by serial passage of rVSV-CHIKV particles in the presence of test mAb. Serial 10-fold dilutions of virus were preincubated with a concentration of mAb corresponding to the IC90 value derived from neutralization assays, and then added to 70% confluent monolayers of Vero cells in 12-well plates, in duplicate. Infection was allowed to proceed to completion (>90% cell death by eye), and supernatants were harvested from the infected wells that received the highest dilution (i.e., the least amount) of viral inoculum.


Following three to four subsequent passages under mAb selection with virus-containing supernatants as above, supernatants were tested for viral neutralization escape. If viral populations demonstrated resistance to test antibody, individual viral clones were plaque-purified on Vero cells, and amplified for sequencing. Viral RNA isolation was performed on each viral clone using Viral RNA Kit ™ (Zymo research) and cDNA synthesis was performed. Glycoprotein gene was amplified by using primers flanking the upstream and downstream of CHIKV glycoprotein and subsequently sequenced.


In vivo challenge with CHIKV LR2006_OPY1. This study was carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocols were approved by the Institutional Animal Care and Use Committee at the Washington University School of Medicine. Footpad injections were performed under anesthesia that was induced and maintained with ketamine hydrochloride and xylazine, and all efforts were made to minimize suffering. MAbs (100 μg in PBS, 6 mg/kg) were administered to 3-week-old male C57BL/6 mice treated with 0.25 mg of an anti-Ifnarl blocking mouse Mab (MARI-5A3) (40) via intraperiontal injection 1 day prior to CHIKV-LR inoculation. Mice were inoculated subcutaneously in the footpad with 103 FFU of CHIKV-LR diluted in PBS and survival followed for 21 days.


Pharmacokinetic studies in uninfected mice. Eight to ten week-old ICR mice (n=3) received 100 μg/mouse of antibody intravenously on Day 0. Blood draws were obtained on Day 3 and then Day 6. Serum collected was then evaluated by ELISA to detect human IgG. Mouse serum samples were tested using a commercial ELISA (Abcam cat No. ab100547) for quantifying human IgG. Data was analyzed and graphed using GraphPad Prism v6.0.


Negative stain electron microscopy (nsEM). 800 pmol of purified DC2.271B Fab was mixed with 100 pmol purified p62/E1 and incubated overnight at 4° C. The resulting complex was recovered by size-exclusion chromatography using an S200i column (GE Healthcare, IL) mounted on a fast protein liquid phase system (Äkta pure; GE Healthcare, IL). Pure antigen alone or purified Fab-antigen complex were deposited on plasma-cleaned (Gatan Solarus 950 Plasma system, CA) carbon-coated 400 mesh copper EM grids (Protochips Inc, NC) and embedded in 2% w/V uranyl formate. The resulting p62/E1 nsEM specimen was introduced into an FEI Tecnai G2 F20 electron microscope mounted with a Tietz TemCamCF416 CMOS camera. Data was collected under low-dose conditions at 200 kV, 60,000× nominal magnification and 1 um nominal underfocus. The resulting data pixel size was 1.79 Å. Similarly, the p62-E1/DC2.271B Fab nsEM specimen was introduced into an FEI Tecnai T12 electron microscope mounted with a Tietz TemCamCF-CMOS camera. Data were collected under low-627 dose conditions at 120 kV, 60,000× nominal magnification and 1 um nominal underfocus. The resulting data pixel size was 2.54 Å.


Contrast transfer functions for each micrograph were modeled using GCTF (Zhang K. Journal of structural biology. 2016; 193(1):1-12). Both data sets were Fourier cropped by a factor of 2. Identification of particles in the micrographs was performed with a difference-of-Gaussian approach (Voss N R, et al. Journal of structural biology. 2009; 166(2):205-13). Particle images were extracted and reference-free 2D class averaging was performed correcting the data for microscope contrast transfer functions by phase flipping (Relion 3.0) (Scheres S H. Journal of structural biology. 2012; 180(3):519-30). Particles contributing to meaningful class averages were selected for further processing. A simulated density map (PDB ID 3N40) (Voss J E, et al. Nature. 2010; 468(7324):709-12) was low-pass filtered to 40 Å and used as reference for iterative Euler angle recovery and 3D object reconstruction of the data (Relion 3.0). Nominal FSC 0.5 resolutions of the resulting density maps were 16 Å (p62/E1) and 16 Å (p62-E1/DC2.271B Fab).


Example 3

Single B-cell cloning and screening of CHIKV human mAbs. As in Example 1, plasma from two convalescent donors (DC1 and DC2) was tested for their capacity to bind recombinant CHIKV p62-E1 protein (FIGS. 5A and 5B). Both donors were exposed to CHIKV in the Dominican Republic (Dominican Republic, Chikungunya) within two years of sample collection and experienced fever, joint pain, and in the case of DC2, persistent arthritis. In both cases, serum reactivity against p62-E1 was observed relative to wells coated with BSA, indicating the presence of circulating CHIKV130 specific antibodies (FIG. 5C).


Peripheral blood mononuclear cells (PBMCs) from both patients were isolated and sorted for individual p62-E1-reactive B cells by fluorescence activated cell sorting (FACS). P62-E1 was chosen as the sorting antigen because it can be efficiently expressed in and purified from Drosophila S2 cells. Furthermore, previous isolation of human CHIKV antibodies via hybridoma methods resulted in the isolation of numerous mAbs that bind in the β-connector region of E2 (Smith SA, et al. Cell host & microbe. 2015; 18(1):86-95), part of which lies underneath E3 in p62-E1. Thus, it was reasoned that use of p62-E1 as a sorting antigen, in which parts of the β-connector were occluded by E3, might favor isolation of antibodies that target previously unrecognized epitopes of the glycoprotein. PBMCs were sorted for viability and size/granularity consistent with single lymphocytes. These populations were then negatively gated for T cells, macrophages, and other lymphocytes (CD3+/CD8+/CD14+); followed by positive gating for CD20hi/lo CD27+ IgG+ p62-E1+ B cells (FIGS. 5H-5K).


B cells that met these criteria were sorted into individual wells (generally less than 0.1% of PBMCs per sorting sample), lysed, and cDNA was generated and used for nested PCR with human-specific degenerate primers to recover variable domains of immunoglobulin heavy and light chains (Tiller T, et al. J Immunol Methods. 2008; 329(1-2):112-24). The κ light chains were focused on due to their high abundance in natural human antibody repertoires and generally favorable biochemical properties. The recovered variable domains were cloned and expressed as recombinant human IgG1 antibodies.


From 108 cloned human mAbs, the analysis was focused on 46 mAbs due to favorable functional and/or expression properties. All 46 of these mAbs were subjected to an ELISA against p62-E1 using 30 and 300 nM concentrations of mAb (FIG. 5D). The mAbs bound p62-E1 with a range of OD450 values from 0 (non-binding) to 3 (high binding), but a number of mAbs exhibited strong reactivity (OD450>1.5) even at the lower concentration (30 nM). The binding was specific as none of the mAbs showed any significant binding toward control wells coated with 3% BSA at 300 nM mAb concentration (data not shown). Sequence analysis revealed that the majority of the mAbs belonged to the IGHV3 family, consistent with the prevalence of this family in human repertoires; other IGHV families (Jose J, et al. Future Microbiol. 2009; 4(7):837-56, Sourisseau M, et al. PLoS Pathog. 2007; 3(6):e89, Morrison T E. Journal of virology. 2014; 88(20): 11644-7, Halstead S B. Emerging infectious diseases. 2015; 21(4):557-61, Tsetsarkin K A, et al. PLoS Pathog. 2007; 3(12):e201, Kraemer M U, et al. Elife. 2015; 4:e08347) comprised the remainder of the mAb population (FIG. 5E). The CDR-H3 lengths ranged from 8-25, with a bimodal distribution at 12 and 17-18 residues (FIG. 5F). The light chains were distributed among IGKV1-4 families, with the IGKV1 family representing almost half (16/42, four light chain sequences were shared by pairs of heavy chains, thus bringing the total to 42 distinct VK sequences) (FIG. 5G). The diversity of IGHV and IGKV families, as well as CDR-H3 lengths suggests a range of potential modes of interaction between mAbs and the CHIKV glycoprotein.


Binding profiles and epitope binning. As in Example 1, a combination of methods was used to bin the epitopes of the 46 mAbs (FIG. 6A, FIG. 6E, and Table 2). Immunoprecipitation (IP) experiments with lysates of radiolabeled virus-infected cells revealed a number of reactivity profiles, with some mAbs targeting E1 alone (11 mAbs) and others targeting a combination of p62 (containing both E2 and E3) and E2, with or without E1 (9 mAbs). For unknown reasons, a number of mAbs did not result in an IP signal. For many of the E1-specific mAbs, binding to the E1 subunit was confirmed by ELISA against an S2-expressed E1 ectodomain construct (E1′). Similarly, the majority of p62-E1-specific mAbs exhibited strong reactivity toward p62-E1 by ELISA, including several mAbs (e.g., DC1.43, DC1.55, DC2.12, DC2.432. and DC2.446) that lacked E1 reactivity and therefore likely engage epitopes completely contained on E2. Although murine mAbs targeting CHIKV E1 have previously been described (Pal P, et al. PLoS Pathog. 2013; 9(4):e1003312), no human E1-specific CHIKV antibodies have been reported. E2 is thought to be the predominant antigenic target of antibodies that arise in response to infection. Cryo-electron microscopy (cryoEM) studies of CHIKV virus-like particles (VLPs) suggest that E1 is not abundantly exposed in the prefusion form (Long F, et al. Proceedings of the National Academy of Sciences of the United States of America. 2015; 112(45):13898-903., Sun S, et al. Elife. 2013; 2:e00435). Nonetheless, it was demonstrated here that E1 antibodies are elicited in response to natural human infection.


The binding affinity of a subset of mAbs was examined by Biolayer Interferometry (BLI) or full 8-point ELISA curves. The E1 mAbs DC1.9, DC1.56, DC1.415, DC2.284, and DC2.112 bound E1′ with subnanomolar affinity, due to slow off-rates (koff ˜10−7-10−4 s) (FIG. 6B and FIGS. 6F-6G). In comparison, binding of DC2.315 to E1 as well as binding of DC2.271B and DC2.429 to p62-E1 was less avid, and binding sensorgrams had poor signal-to-noise ratios (not shown). An ELISA of p62-E1-specific mAbs DC2.271B and DC2.429 confirm that reactivity to p62-E1 is moderate, since the binding curves for DC2.271B and DC2.429 were relatively non-cooperative and had EC50 values in mid-nanomolar range (39 and 140 nM, respectively, FIG. 6C), in comparison to E1-specific mAbs whose EC50 values were in single-digit nanomolar range or below (FIGS. 6F-6G). As DC2.271B and DC2.429 were among the most potent neutralizing mAbs (see below); their binding to the soluble p62-E1 does not directly correlate with neutralizing potency and more likely, these mAbs bind efficiently to infectious virions.


Given that no prior human mAbs against E1 have been reported, it was determined whether E1-specific mAbs had overlapping epitopes with the murine mAb CHK-166, which targets the E1 DII fusion loop. The published variable domain sequences CHK-166 (Pal P, et al. PLoS Pathog. 2013; 9(4):e1003312) were cloned into the pMAZ-IgH (heavy chain) and pMAZ-IgL (light chain) plasmids that were used for expression of all DC1 and DC2-derived mAbs to generate a chimerized isotype-matched variant of CHK-166 (chCHK-166pMAZ) (Mazor Y, et al. J Immunol Methods. 2007; 321(1-2):41-59). Two-phase BLI experiments in which biotinylated p62-E1 was captured on a streptavidin-coated sensor, followed by binding to chCHK-166pMAZ and then binding of a human mAb while in the presence of chCHK-166pMAZ, were used to determine if E1 mAbs compete for binding (FIG. 6D). DC1.56, DC2.82, and 199 DC2.85 yielded a binding signal to the p62-E1/chCHK-166pMAZ complex whereas incubation of the p62-E1/chCHK-166pMAZ complex-loaded sensors in a solution containing equimolar amounts of chCHK-166pMAZ resulted in no additional binding signal. When the order of binding was reversed (human mAb first, then p62-E1, then chCHK-166pMAZ) a similar trend was observed, with chCHK-166pMAZ able to engage all human mAb/p62-E1 complexes (FIG. 6H). Thus, our human E1 mAbs bind to epitopes that differ spatially from CHK-166.


Neutralizing activity. To evaluate capacity of the mAbs to inhibit viral infection, a focus reduction neutralization test (FRNT) using the CHIKV 181/25 vaccine strain was performed at mAb concentrations of 300 nM and 30 nM for all 46 mAbs (FIG. 7A). At 300 nM, the majority of the mAbs could inhibit infection by >50%. These neutralizing mAbs included those binding E1 or p62-E1, and others for which the precise epitope was not identified. However, at 30 nM, only 12 mAbs showed >50% inhibition, including some with E1, p62-E1, or undefined specificities. As a comparative control, the variable domains of murine mAb CHK-152 were expressed onto identical human constant domain background, as described above. The resulting mAb, chCHK-152pMAZ strongly neutralized CHIKV infection at both 30 and 300 nM whereas the negative control mAb SUDV-F4, a Sudan virus-specific mAb with identical constant regions (Chen G, et al. ACS Chemical Biology. 2014; 9(10):2263-73), did not.


Full dose response neutralization curves against CHIKV 181/25 were performed for 19 of the mAbs (FIG. 7B and FIG. 7E). Overall the IC50 values ranged from 0.03 nM to 130 nM, with those mAbs binding p62-E1 (DC2.271B, DC2.429, and DC1.364) among the most potent. A number of E1-specific mAbs (e.g., DC1.7, DC2.283, DC2.131, and DC2.315) also neutralized CHIKV 181/25 with IC50 values in the low/midnanomolar range (2.3-23 nM), indicating that some of the neutralization epitopes identified by our mAbs lie within the E1 subunit. The two most potent p62-E1-specific mAbs (DC2.271B and DC2.429) were tested against pathogenic CHIKV strains AF15561 (Asian genotype) and LR2006_OPY1 (East/Central/South African genotype); they potently neutralized infection of these strains with subnanomolar IC50 values (FIG. 7C), which agreed with results obtained using the CHIKV 181/25 vaccine strain. chCHK-152pMAZ potently neutralized CHIKV LR2006_OPY1, consistent with previous reports on fully murine, chimeric murine/human, or fully humanized CHK-152 variants (Pal P, et al. PLoS Pathog. 2013; 9(4):e1003312 (FIG. 7C). Additionally, two of the E1-specific mAbs (DC1.7 and DC2.315) were tested against CHIKV LR2006 OPY1. DC1.7 neutralized infection with an IC50 of 13 nM, again consistent with results using the CHIKV 181/25 vaccine strain, albeit with a higher value. In contrast, DC2.315 did not neutralize LR2006_OPY1; this mAb was additionally tested against AF15561 and exhibited modest and incomplete neutralization. The basis for the difference in neutralization properties for DC2.315 against CHIKV 181/25 vs. LR2006_OPY1 is unknown.


To explore the potential for cross-neutralization with other alphaviruses, mAbs were screened for their ability to neutralize Mayaro virus (MAYV) at 300 nM and 30 nM in an FRNT. The MAYV p62 and E1 glycoproteins are 58% and 62% identical to CHIKV p62 and E1, respectively, and previous reports have indicated that broadly neutralizing epitopes exist within domain B of E2, as typified by murine mAb CHK-265 (Fox J M, et al. Cell. 2015; 163(5):1095-107). Of the human mAbs, only three neutralized MAYV infection (DC1.55, DC2.536, DC2.555; FIG. 7D), albeit with lower potency relative to a chimerized human constant domain-matched variant of CHK-265 (chCHK-265pMAZ). Negative control mAb SUDV-F4 had no activity against MAYV.


Isolation of neutralization escape viruses. To map the potential epitopes of the two most potent p62-E1-specific mAbs (DC2.271B and DC2.429) as well as two of the E1-specific mAbs (DC1.7 and DC2.315), a replication-competent vesicular stomatitis virus clone was generated bearing CHIKV E3-E2-6K-E1 genes in place of the native glycoprotein G (rVSV-CHIKV) (FIG. 8A). Similar viruses have been generated and evaluated as potential vaccine candidates for CHIKV, ebolaviruses, and arenaviruses (Chattopadhyay A, et al. Journal of virology. 2013; 87(1):395-402; Agnandji S T, et al. N Engl J Med. 2015; Whitt MA, et al. Methods in molecular biology (Clifton, N.J.). 2016; 1403:295-311). The rVSV-CHIKV particle encodes an enhanced green fluorescent protein (eGFP) as an additional transcription unit that allows quantification of infection of Vero cells by automated fluorescence microscopy (FIG. 8A). rVSV-CHIKV was efficiently neutralized by chCHK-152pMAZ but not by SUDV-F4 (FIGS. 8A, 8B, and FIG. 8F). Despite the different morphologies of VSV and CHIKV particles (bullet-shaped and spheroid, respectively) (Sun S, et al Elife. 2013; 2:e00435; Ge P, et al. Science (New York, N.Y.). 2010; 327(5966):689-93), the entry properties of rVSV-CHIKV and the fact that it is efficiently neutralized by chCHK-152pMAZ suggest that it recapitulates the critical features of CHIKV entry.


It was found that DC2.271B and DC2.429 efficiently neutralized rVSV-CHIKV (FIG. 8B). rVSV-CHIKV was serially passaged against each mAb, and individual plaques from the resulting escape populations were isolated, sequenced, and characterized. For DC2.271B and DC2.429, single escape mutations of E2 K233T or E2 N231Y were isolated, respectively (FIGS. 8B and 8C). Both of these residues are located at the junction between the β-connector and B domains of E2 and just outside the region that is occluded by E3 on the p62-E1 hybrid protein. The epitopes for previously reported human neutralizing mAbs against CHIKV E2 1H12, 814, 4J21, and 3N23 include an adjacent residue, K234, as mapped by an alanine scanning library of cell-surface expressed E1/E2 (the 3N23 epitope also includes K233) (FIG. 8C) (Long F, et al. Proceedings of the National Academy of Sciences of the United States of America. 2015; 112(45): 13898-903; Smith S A, et al. Cell host & microbe. 2015; 18(1):86-95). Furthermore, the cryo-electron microscopy-mapped structural epitope of CHK-152 includes residues in this region (H232 and W235) as well as residues on the B domain (Sun S, et al. Elife. 2013; 2:e00435). The epitope of the non-neutralizing human mAb 1M9 includes N231, although DC2.429 is potently neutralizing while likely engaging a similar epitope as 1M9. The viral escape mutations for other human neutralizing mAbs 4N12 (parent of SVIR001), C9, and IM-CKV063 were located on distal regions of the E2 subunit (Jin J, et al. Cell host & microbe. 2018; 24(3):417-28.e5, Jin J, et al. Cell Rep. 2015; 13(11):2553-64). Together, these results indicate that the β-connector and B domain regions constitute epitopes recognized by a number of anti-CHIKV neutralizing antibodies. This region is distal to the putative Mxra8 receptor binding region, as inferred by escape mutations (FIG. 8C).


The viral escape mutations for DC2.271B and DC2.429 on rVSV-CHIKV are proximal to one another and lie in the middle of the cluster of residues identified as the structural epitope of CHK-152 by cryoEM studies (FIG. 8C), suggesting that some or all of the epitopes for these three antibodies may be shared. To further investigate this hypothesis, all three mAbs were tested against both the rVSV-CHIKVE2-K233T (DC2.271B viral escape) and the rVSV-CHIKVKE2-N231Y (DC2.429 viral escape) (FIG. 8C). chCHK-152pMAZ neutralized rVSV-CHIKVE2-N231Y with similar potency as WT rVSV-CHIKV but did not neutralize rVSV-CHIKVE2-K233T. DC2.429 did not neutralize either viral escape mutant, and DC2.271B weakly neutralized rVSV-CHIKVE2-N231Y. These data suggest that the DC2.271B epitope includes residues for binding both DC2.429 and CHK-152, as neither of these mAbs could neutralize the rVSV-CHIKVE2-K233T viral escape mutant that was selected against DC2.271B. In contrast, the epitope for DC2.429 may be only partially shared with DC2.271B and may not be shared at all with CHK-152, since the DC2.429 viral escape mutant (rVSV-CHIKVE2-N231Y) was still neutralized by chCHK-152pMAZ and partially neutralized by DC2.271B. However, these studies do not rule out the possibility that the viral escape mutations described here induce conformational effects, rather than directly ablating binding interactions. Furthermore, these data do not unequivocally demonstrate competition of the three mAbs. Competition ELISA and BLI experiments with DC2.271B, DC2.429, and chCHK-152pMAZ did not yield interpretable results, likely due to the weak binding of the human mAbs toward the monomeric p62-E1 hybrid protein (above).


To compare neutralizing activity of DC2.271B 290 and DC2.429 with the most efficacious of the previously reported human mAbs (Selvarajah S, et al. PLoS neglected tropical diseases. 2013; 7(9):e2423, Smith S A, et al. Cell host & microbe. 2015; 18(1):86-95), versions of C9, IM-CKV063 and 4N12 (parent of SINV001) expressed from the pMAZ platform (C9pMAZ, IM-CKV063pMAZ, and 4N12pMAZ) were generated and their capacity to neutralize CHIKV 181/25 infection were assessed. It was found that C9PpMAZ and 4N12pMAZ neutralized CHIKV 181/25 similarly to DC2.271B and DC2.429, whereas IM-CKV063pMAZ was over 200-fold less potent (FIG. 4D). To further examine the degree to which the DC2.271B epitope overlapped with these three human mAbs, they were tested for their capacity to neutralize rVSV-CHIKVE2-K233T (DC2.271B viral escape mutant, FIG. 8E). Both C9PpMAZ and 4N12pMAZ potently neutralized rVSV-CHIKVE2-K233T; IM-CKV063 was less potent but could nonetheless inhibit infection. These results indicate that the DC2.271B epitope is distinct from those of previously reported human mAbs.


A similar viral escape study was performed with rVSV-CHIKV and E1-specific mAbs D1.7 and DC2.315 (FIG. 9). For E1-specific mAb DC1.7, a single escape mutation of E1 R289K was isolated, which lies in the linker region leading into domain III (DIII) (FIGS. 9A and 9B). For DC2.315, three independent escape mutants at position E1 A286 were identified (A286T, A286V, and A286D, FIG. 9C). This residue is located at the border of domain I (DI), immediately preceding the linker that leads into DIII (FIG. 9A). When considered within the context of the E1/E2 prefusion hexamer, the escape mutations for both DC1.7 and DC2.315 lie near the edge of the triangular spike (FIG. 9B). Topologically, one potential mechanism by which these mAbs could access this site is by engaging the underlying E1 subunit in between adjacent E2 subunits (see FIG. 9B, side view). The observation that this region is targeted by neutralizing mAbs, albeit strain-dependently and with modest potency, is notable since DIII is the most structurally mobile region of E1 during its conformational rearrangements to mediate viral membrane fusion (Sanchez-San Martin C, et al. Journal of virology. 2013; 87(13):7680-7; Gibbons DL, et al. Nature. 2004; 427(6972):320-5). MAbs that bind this region could neutralize infection by preventing the DIII movements required for viral fusion. However, the relatively modest potency as well as the fact the DC1.7 and DC2.315 neutralization varies per strain suggests that this epitope is not a site of universal susceptibility.


Protective capacity of mAbs in mice. Four mAbs (DC2.271B, DC2.429, DC1.7, and DC2.315) were tested for their ability to protect mice from lethal viral challenge with CHIKV LR2006_OPY1, using 3-week old C57BL/6 mice rendered immunodeficient by treatment with the anti-Ifnarl mAb MAR1-5A3 (Sheehan K C, et al. Journal of interferon & cytokine research. 2006; 26(11):804-19). The CHIKV mAbs (100 μg, ˜6 mg/kg) were administered one day prior to virus infection. DC2.271B and DC2.429 were the most potently neutralizing among the E2 mAbs. Although neutralization by DC1.7 was relatively modest, and that by DC2.315 was strain-dependent (non-neutralizing against CHIKV LR2006 OPY1), it was nonetheless determined if mAbs binding E1 in this region could afford protection. In other pathogens, such as ebolaviruses, some non-neutralizing mAbs can afford in vivo protection (Saphire E O, et al. Cell. 2018; 174(4):938-52.e13). Human mAbs targeting E1 DI, DIII, or the DI-DIII linker have not previously been studied for protection against CHIKV in vivo.


All mice receiving the SUDV-F4 negative control mAb succumbed to infection within four days. In contrast, 80% of mice receiving DC2.271B survived the challenge. mAb DC2.429 afforded a lesser but significant survival advantage (30%). Neither DC1.7 nor DC2.315 provided significant in vivo protection from CHIKV infection (FIG. 10A). To gain insight into factors contributing to in vivo efficacy, the serum mAb levels during the challenge were measured by sampling 2 days after IP administration of the mAb and 1 day after infection (FIG. 10B). DC2.271B, DC2.315, and negative control mAb SUDV-F4 were present at average (across mice) serum concentrations of 20±2 μg/mL, 38±3 μg/mL and 32±1 μg/mL, respectively, whereas DC2.429 and DC1.7 were present at >30-fold lower serum concentrations (0.5±0.1 and 0.6±0.1 μg/mL, respectively). Early clearance of mAb could be due to the presence of aggregates. To explore this possibility, mAbs were subjected to SEC-HPLC analysis and 336 a small (n =3) pharmacokinetic study in uninfected mice. All of the DC1.7, DC2.315, and SUDV-F4 were found to be >98% monomeric (FIG. 10C). The serum levels of DC2.271B, DC2.429, and DC1.7 were found to be 26±4, 22±5, and 12±2 μg/mL (average across three mice) when administered at protective doses (FIG. 10B). Together, these results indicate that DC2.429 and DC1.7 are cleared from serum more rapidly during the course of CHIKV infection and treatment than DC2.271B and DC2.315, but that this early clearance is not due to aggregates and depends on the presence of virus. Perhaps related to this effect, the half-life of HIV-1 bNAbs has been found to be reduced in human clinical trials (˜3 days) when used therapeutically for patients coming off antiretroviral therapy (Caskey M, et al. Nature. 2015; 522(7557):487-91). A possible mechanism for this observation is that mAbs bind virus in the bloodstream, and the antibody-virus complex is cleared. However, why this affects DC2.429 and DC1.7 but not DC2.271B or DC2.315 warrants further investigation.


Recognition requirements of DC2.271B. Given the highly protective properties of DC2.271B, we explored the recognition requirements of this mAb in the context of the isolated glycoprotein and viral particle. The antigen-binding fragment (Fab) of DC2.271B was generated by papain digestion, and then the complex of Fab with p62-E1 was purified. Both the p62-E1 hybrid protein alone as well as the p62-E1/DC2.271B complex (1:1) were visualized by negative stain electron microscopy (FIGS. 11A and 11B), with the twisted β-plate architecture of the p62-E1 evident as well as the characteristic “hole” between the heavy and light chains of the DC2.271B Fab. Three-dimensional reconstruction from the p62-E1 and p62-E1/DC2.271B revealed that the Fab density appears offset to E3, near the B domain (FIG. 11B). This structural model is consistent with the location of the viral escape mutation (VSV-CHIKVE2-K233T). Together, these data indicate that the epitope for DC2.271B lies in the loop region between the β-connector and the B domain. This structural epitope is proximal to, but not occluded by E3, and in the reconstruction of the Fab/p62-E1 complex, density corresponding to what is presumably E3 abuts the Fab. Notably, viral escape rVSV-CHIKVE2-K233T is proximal to E3 yet E3 does not sterically block binding of DC2.271B. To examine effects of bivalent binding of IgG, the DC2.271B Fab was tested for neutralization against CHIKV 181/25 and found to have neutralizing activity, but showed a 30-fold reduced potency relative to the intact IgG (FIG. 11C). Thus, bivalent crosslinking of epitopes from adjacent subunits is not a requirement for neutralization by DC2.271B.


The data in FIGS. 12-19 suggest that cross-neutralizing mAbs against distinct alphaviruses can be isolated from human patients with previous alphavirus infection. More specifically, a CHIKV-infected patient was found to have cross-reactive mAbs that could neutralize a related alphavirus, Mayaro. These mAbs come from diverse V gene families and have differential binding and neutralization capacity against CHIKV and MAYV.


REFERENCES



  • 1 Jose, J., Snyder, J. E. & Kuhn, R. J. A structural and functional perspective of alphavirus replication and assembly. Future microbiology 4, 837-856, doi:10.2217/fmb.09.59 (2009).

  • 2 Sourisseau, M. et al. Characterization of reemerging chikungunya virus. PLoS pathogens 3, e89, doi:10.1371/journal.ppat.0030089 (2007).

  • 3 Schuffenecker, I. et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS medicine 3, e263, doi:10.1371/journal.pmed.0030263 (2006).

  • 4 Morrison, T. E. Reemergence of chikungunya virus. Journal of virology 88, 11644-11647, doi:10.1128/jvi.01432-14 (2014).

  • 5 Tsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E. & Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS pathogens 3, e201, doi:10.1371/journal.ppat.0030201 (2007).

  • 6 Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347, doi:10.7554/eLife.08347 (2015).

  • 7 Sanchez-San Martin, C., Liu, C. Y. & Kielian, M. Dealing with low pH: entry and exit of alphaviruses and flaviviruses. Trends in microbiology 17, 514-521, doi:10.1016/j.tim.2009.08.002 (2009).

  • 8 Voss, J. E. et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468, 709-712, doi:10.1038/nature09555 (2010).

  • 9 Long, F. et al. Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity. Proceedings of the National Academy of Sciences of the United States of America 112, 13898-13903, doi:10.1073/pnas.1515558112 (2015).

  • 10 Sun, S. et al. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. eLife 2, e00435, doi:10.7554/eLife.00435 (2013).

  • 11 Uchime, O., Fields, W. & Kielian, M. The role of E3 in pH protection during alphavirus assembly and exit. Journal of virology 87, 10255-10262, doi:10.1128/jvi.01507-13 (2013).

  • 12 Caskey, M. et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522, 487-491, doi:10.1038/nature14411 (2015).

  • 13 Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. Journal of immunological methods 329, 112-124, doi:10.1016/j.jim.2007.09.017 (2008).

  • 14 Ledgerwood, J. E. et al. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clinical and experimental immunology 182, 289-301, doi:10.1111/cei.12692 (2015).

  • 15 Dejnirattisai, W. et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nature immunology 16, 170-177, doi:10.1038/ni.3058 (2015).

  • 16 Rouvinski, A. et al. Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature 520, 109-113, doi:10.1038/nature14130 (2015).

  • 17 Bornholdt, Z. A. et al. Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science (New York, N.Y.) 351, 1078-1083, doi:10.1126/science.aad5788 (2016).

  • 18 Chang, L. J. et al. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet (London, England) 384, 2046-2052, doi:10.1016/s0140-6736(14)61185-5 (2014).

  • 19 Edelman, R. et al. Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. The American journal of tropical medicine and hygiene 62, 681-685 (2000).

  • 20 Fric, J., Bertin-Maghit, S., Wang, C. I., Nardin, A. & Warter, L. Use of human monoclonal antibodies to treat Chikungunya virus infection. The Journal of infectious diseases 207, 319-322, doi:10.1093/infdis/jis674 (2013).

  • 21 Jin, J. et al. Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis. Cell reports 13, 2553-2564, doi:10.1016/j.celrep.2015.11.043 (2015).

  • 22 Pal, P. et al. Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus. PLoS pathogens 9, e1003312, doi:10.1371/journal.ppat.1003312 (2013).

  • 23 Selvarajah, S. et al. A neutralizing monoclonal antibody targeting the acid-sensitive region in chikungunya virus E2 protects from disease. PLoS neglected tropical diseases 7, e2423, doi:10.1371/journal.pntd.0002423 (2013).

  • 24 Smith, S. A. et al. Isolation and Characterization of Broad and Ultrapotent Human Monoclonal Antibodies with Therapeutic Activity against Chikungunya Virus. Cell host & microbe 18, 86-95, doi:10.1016/j.chom.2015.06.009 (2015).

  • 25 Warter, L. et al. Chikungunya virus envelope-specific human monoclonal antibodies with broad neutralization potency. Journal of immunology (Baltimore, Md.: 1950) 186, 3258-3264, doi:10.4049/jimmuno1.1003139 (2011).

  • 26 Hunt, A. R. et al. Treatment of mice with human monoclonal antibody 24h after lethal aerosol challenge with virulent Venezuelan equine encephalitis virus prevents disease but not infection. Virology 414, 146-152, doi:10.1016/j.viro1.2011.03.016 (2011).

  • 27 O'Brien, L. M., Goodchild, S. A., Phillpotts, R. J. & Perkins, S. D. A humanised murine monoclonal antibody protects mice from Venezuelan equine encephalitis virus, Everglades virus and Mucambo virus when administered up to 48 h after airborne challenge. Virology 426, 100-105, doi:10.1016/j.viro1.2012.01.038 (2012).

  • 28 Fox, J. M. et al. Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress. Cell 163, 1095-1107, doi:10.1016/j.ce11.2015.10.050 (2015).

  • 29 Fong, R. H. et al. Exposure of epitope residues on the outer face of the chikungunya virus envelope trimer determines antibody neutralizing efficacy. Journal of virology 88, 14364-14379, doi:10.1128/jvi.01943-14 (2014).

  • 30 Hunt, A. R. & Roehrig, J. T. Biochemical and biological characteristics of epitopes on the E1 glycoprotein of western equine encephalitis virus. Virology 142, 334-346 (1985).


Claims
  • 1. An anti-alphavirus antibody or alphavirus-binding fragment thereof, wherein said antibody or fragment thereof comprises: (1) a heavy chain comprising (i) the CDRS set forth in GFGVNNNY (SEQ ID NO:166), IYAGGNT (SEQ ID NO:167), AREVVPTAMGGFDL (SEQ ID NO:168), or (ii) GGSISNYY (SEQ ID NO:169), MYYSGST (SEQ ID NO:170), ARSYCDIANCYTFDL (SEQ ID NO:171);
  • 2. An anti-alphavirus antibody or alphavirus-binding fragment thereof, wherein said antibody or fragment thereof comprises: (1) a heavy chain comprising (i) a CDR1, CDR2, and CDR3 as set forth in any one heavy chain row of Table 1;(2) and a light chain comprising (i) a CDR1, CDR2, and CDR3 as set forth in any one light chain row of Table 1, which light chain row belongs to the same laboratory designated antibody as the heavy chain row in (1).
  • 3. The antibody of claim 1, comprising a non-naturally occurring Fc region.
  • 4. The antibody of claim 1, comprising a mutated human Fc region.
  • 5. The antibody of claim 1, which is an Immunoglobulin G type antibody.
  • 6. The antibody, or alphavirus-binding fragment thereof, of of claim 1, wherein the antibody, or alphavirus-binding fragment thereof, binds an alphavirus with a binding affinity (KD) of from about 0.005 nM to 100 nM.
  • 7. The antibody, or alphavirus-binding fragment thereof, of claim 1, which is a monoclonal antibody.
  • 8. The antibody, or alphavirus-binding fragment thereof, of claim 1, which is a recombinant antibody.
  • 9. The alphavirus-binding fragment of claim 1, which is an Fab, F(ab)2 or scFv.
  • 10. A method for treating or inhibiting an alphavirus infection in a subject, wherein the alphavirus is a Chikungunya virus, Mayaro virus or O'nyong'nyong virus, comprising administering an antibody or antigen-binding fragment thereof of claim 1, in an amount effective to treat or inhibit a Chikungunya virus, Mayaro virus or O'nyong'nyong virus infection in a subject.
  • 11. (canceled)
  • 12. The method of claim 10, wherein the antibody binds a Chikungunya virus E2, p62, E1, p62-E1 hybrid protein, or E1-E2 glycoprotein.
  • 13. The method of claim 10, wherein the method is for treating or inhibiting Chikungunya virus infection.
  • 14. The method of claim 10, wherein the method is for treating or inhibiting Mayaro virus infection.
  • 15. The method of claim 10, wherein the method is for treating or inhibiting O'nyong'nyong virus infection.
  • 16. An isolated nucleic acid molecule encoding the antibody, or binding fragment thereof, of claim 1.
  • 17. A vector comprising the nucleic acid molecule of claim 16.
  • 18. A host cell comprising the vector of claim 17.
  • 19. A method of producing an anti-alphavirus antibody comprising culturing the host cell of claim 18, under conditions wherein the anti-alphavirus antibody is produced by the host cell.
  • 20. A pharmaceutical composition comprising an anti-alphavirus antibody, or alphavirus-binding fragment thereof, of claim 1, and a pharmaceutically acceptable excipient.
  • 21. A method of reducing an activity of alphavirus in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of the pharmaceutical composition of claim 20.
  • 22. A method of treating a disease, disorder, or condition mediated by, or related to increased activity of an alphavirus in a subject a therapeutically effective amount of the pharmaceutical composition of claim 20.
  • 23. An assay device for selectively detecting an alphavirus in a biological sample comprising: a first portion comprising a first plurality of anti-alphavirus antibodies of claim 1,wherein the antibodies are each attached to their own reporting entity;a second portion comprising a second plurality of anti-alphavirus antibodies.
  • 24. The device of claim 23, wherein the reporting entity comprises a gold nanoparticle.
  • 25. The device of claim 23, wherein the reporting entity comprises an enzyme.
  • 26. The device of claim 23, wherein second plurality of anti-alphavirus antibodies is affixed to a solid support of the device.
  • 27. The device of claim 23, wherein first plurality of anti-alphavirus antibodies is not affixed to a solid support of the device.
  • 28. The device of claim 23, wherein the solid support comprises nitrocellulose.
  • 29. The device of claim 23, further comprising a fluid sample pad prior in sequential order to the first and second portions.
  • 30. The device of claim 23, further comprising a control portion subsequent in sequential order to the first and second portions.
  • 31. The device of claim 30, wherein the control portion comprises a third plurality of antibodies, immobilized on a solid support of the device, and which third plurality of antibodies are capable of binding the first plurality of anti-alphavirus antibodies each attached to their own reporting molecule.
  • 32. The device of claim 32, further comprising a fluid-absorbent wicking pad subsequent in sequential order to the first and second portions, and third portion if present.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/681,247, filed Jun. 6, 2018, the contents of which are hereby incorporated by reference.

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with government support under grant numbers AI125462 and AI075647 awarded by the National Institutes of Health. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US19/35828 6/6/2019 WO
Provisional Applications (1)
Number Date Country
62681247 Jun 2018 US