Antibodies targeting CDH19 for melanoma

Information

  • Patent Grant
  • 11053311
  • Patent Number
    11,053,311
  • Date Filed
    Tuesday, January 23, 2018
    6 years ago
  • Date Issued
    Tuesday, July 6, 2021
    2 years ago
Abstract
The present disclosure provides a human antibody or antigen binding fragment thereof or an antibody construct comprising a human binding domain or antigen binding fragment thereof capable of binding to human CDH19 on the surface of a target cell. The disclosure relates to a nucleic acid sequence encoding the antibody or antigen binding fragment thereof contained in the antibody construct, a vector comprising the nucleic acid sequence and a host cell transformed or transfected with the vector. Furthermore, the disclosure relates to a process for the production of the antibody construct of the disclosure, a medical use or a method of treatment using the antibody construct and a kit comprising the antibody or antigen binding fragment thereof or the antibody construct.
Description
RELATED APPLICATIONS

This application is related to a U.S. provisional application entitled “Antibody constructs for CDH19 and CD3,” filed on Mar. 15, 2013, the same day as the present application is filed. This related application is incorporated in its entirety by reference.


FIELD OF THE INVENTION

The present invention relates to compositions of antigen binding proteins including antibodies capable of binding to human CDH19 on the surface of a target cell, as well as related methods. Moreover, the invention provides a nucleic acid sequence encoding the antibody construct, a vector comprising the nucleic acid sequence and a host cell transformed or transfected with the nucleic acid sequence or a vector comprising the nucleic acid sequence. Furthermore, the invention provides a process for the production of the antibody of the invention, a method of treatment using the antibody and a kit comprising the antibody.


BACKGROUND OF THE INVENTION

Melanoma is a skin cancer that is caused by the oncogenic transformation of melanocytes, which are pigment producing skin cells. As of 2009, Melanoma had a prevalence of more than 870,000 cases in the US alone (US National Institutes of Health). Each year, over 75,000 new cases of melanoma are diagnosed in the US, and approximately 25% of patients have advanced disease at the time of diagnosis. Despite the fact that cases of primary melanoma can be cured by surgery if they are detected early enough, melanoma is the leading cause of death from skin disease in the US, responsible for about 10,000 deaths per year in the US. Once the disease has spread and became metastatic, the prognosis is poor, with a 5 year relative survival of 15%.


There are four basic types of melanomas. Three types are found in the top layers of the skin and the fourth one is invasive and has penetrated deeper into the skin and may have spread to other areas of the body.


Superficial spreading melanoma is the most common type of melanoma which accounts for about 70% of all cases. It grows along the top layer of the skin for a fairly long time before penetrating more deeply. It first appears as a flat or slightly raised discolored patch that has irregular borders and may be somewhat asymmetrical in form. The color varies, and you may see areas of tan, brown, black, red, blue or white. This type of melanoma can occur in a previously benign mole and is found most often in young people.


Lentigo maligna is similar to the superficial spreading type, as it also remains close to the skin surface for quite a while, and usually appears as a flat or mildly elevated mottled tan, brown or dark brown discoloration. It is found most often in the elderly. When this cancer becomes invasive, it is referred to as lentigo maligna melanoma.


Acral lentiginous melanoma also spreads superficially before penetrating more deeply. It is quite different from the others, though, as it usually appears as a black or brown discoloration under the nails or on the soles of the feet or palms of the hands. This type of melanoma is sometimes found on dark-skinned people, and can often advance more quickly than superficial spreading melanoma and lentigo maligna.


Nodular melanoma is usually invasive at the time it is first diagnosed. The malignancy is recognized when it becomes a bump. It is usually black, but occasionally is blue, gray, white, brown, tan, red or skin tone. This is the most aggressive of the melanomas, and is found in 10 to 15 percent of cases.


Common treatments for metastatic melanoma include chemotherapy, targeted therapies for eligible patients (e.g. BRAF inhibitor treatment for patients with BRAF mutations) and immunotherapy. Metastatic melanoma is a tumor type where immunotherapy has been demonstrated to not only slow disease progression, but to lead to cures in late stage patients. Interleukin-2 was approved for the use in metastatic melanoma in 1998, and in 2011 an antibody targeting CTLA4, a member of a new generation of immune checkpoint inhibitors, gained approval by the FDA.


CDH19 is a type II cadherin transmembrane protein of unknown function. The human gene was cloned in 2000 based on its sequence similarity to CDH7 (Kools, P. et al. Genomics. 2000). Expressed Sequence Tags (ESTs) for CDH19 were isolated from melanocyte cDNA libraries, indicating that expression of CDH19 may be limited to cells of neural crest origin (Kools, P. et al. Genomics. 2000). In support of this notion, rat CDH19 was found to be expressed primarily in nerve ganglia and in Schwann cells during rat embryonic development (Takahashi, M. and Osumi, O. Devl Dynamics. 2005.).


Diagnostic antibodies detecting CDH19 in Western Blot, immunohistochemistry or flow cytometry are known in the art and commercially available. Those antibodies comprise poly- and monoclonal antibodies generated in animal hosts.


SUMMARY OF THE INVENTION

The present invention provides an isolated human antibody or antigen binding fragment thereof capable of binding to human CDH19 on the surface of a target cell. In a preferred embodiment the antibody or antigen binding fragment thereof comprises a monoclonal antibody or a fragment thereof.


In one embodiment the human antibody or antigen binding fragment thereof of the invention comprises a human binding domain or antigen binding fragment thereof comprising a VH region comprising CDR-H1, CDR-H2 and CDR-H3 and a VL region comprising CDR-L1, CDR-L2 and CDR-L3 selected from the group consisting of:

  • (a) CDR-H1 as depicted in SEQ ID NO: 52, CDR-H2 as depicted in SEQ ID NO: 53, CDR-H3 as depicted in SEQ ID NO: 54, CDR-L1 as depicted in SEQ ID NO: 220, CDR-L2 as depicted in SEQ ID NO: 221 and CDR-L3 as depicted in SEQ ID NO: 222,
    • CDR-H1 as depicted in SEQ ID NO: 82, CDR-H2 as depicted in SEQ ID NO: 83, CDR-H3 as depicted in SEQ ID NO: 84, CDR-L1 as depicted in SEQ ID NO: 250, CDR-L2 as depicted in SEQ ID NO: 251 and CDR-L3 as depicted in SEQ ID NO: 252,
    • CDR-H1 as depicted in SEQ ID NO: 82, CDR-H2 as depicted in SEQ ID NO: 83, CDR-H3 as depicted in SEQ ID NO: 84, CDR-L1 as depicted in SEQ ID NO: 250, CDR-L2 as depicted in SEQ ID NO: 251 and CDR-L3 as depicted in SEQ ID NO: 927,
    • CDR-H1 as depicted in SEQ ID NO: 82, CDR-H2 as depicted in SEQ ID NO: 83, CDR-H3 as depicted in SEQ ID NO: 909, CDR-L1 as depicted in SEQ ID NO: 250, CDR-L2 as depicted in SEQ ID NO: 251 and CDR-L3 as depicted in SEQ ID NO: 927,
    • CDR-H1 as depicted in SEQ ID NO: 52, CDR-H2 as depicted in SEQ ID NO: 53, CDR-H3 as depicted in SEQ ID NO: 54, CDR-L1 as depicted in SEQ ID NO: 220, CDR-L2 as depicted in SEQ ID NO: 221 and CDR-L3 as depicted in SEQ ID NO: 926, and
    • CDR-H1 as depicted in SEQ ID NO: 52, CDR-H2 as depicted in SEQ ID NO: 53, CDR-H3 as depicted in SEQ ID NO: 904, CDR-L1 as depicted in SEQ ID NO: 220, CDR-L2 as depicted in SEQ ID NO: 221 and CDR-L3 as depicted in SEQ ID NO: 926;
  • (b) CDR-H1 as depicted in SEQ ID NO: 124, CDR-H2 as depicted in SEQ ID NO: 125, CDR-H3 as depicted in SEQ ID NO: 126, CDR-L1 as depicted in SEQ ID NO: 292, CDR-L2 as depicted in SEQ ID NO: 293 and CDR-L3 as depicted in SEQ ID NO: 294,
    • CDR-H1 as depicted in SEQ ID NO: 130, CDR-H2 as depicted in SEQ ID NO: 131, CDR-H3 as depicted in SEQ ID NO: 132, CDR-L1 as depicted in SEQ ID NO: 298, CDR-L2 as depicted in SEQ ID NO: 299 and CDR-L3 as depicted in SEQ ID NO: 300,
    • CDR-H1 as depicted in SEQ ID NO: 136, CDR-H2 as depicted in SEQ ID NO: 137, CDR-H3 as depicted in SEQ ID NO: 138, CDR-L1 as depicted in SEQ ID NO: 304, CDR-L2 as depicted in SEQ ID NO: 305 and CDR-L3 as depicted in SEQ ID NO: 306,
    • CDR-H1 as depicted in SEQ ID NO: 142, CDR-H2 as depicted in SEQ ID NO: 143, CDR-H3 as depicted in SEQ ID NO: 144, CDR-L1 as depicted in SEQ ID NO: 310, CDR-L2 as depicted in SEQ ID NO: 311 and CDR-L3 as depicted in SEQ ID NO: 312,
    • CDR-H1 as depicted in SEQ ID NO: 148, CDR-H2 as depicted in SEQ ID NO: 149, CDR-H3 as depicted in SEQ ID NO: 150, CDR-L1 as depicted in SEQ ID NO: 316, CDR-L2 as depicted in SEQ ID NO: 317 and CDR-L3 as depicted in SEQ ID NO: 318,
    • CDR-H1 as depicted in SEQ ID NO: 166, CDR-H2 as depicted in SEQ ID NO: 167, CDR-H3 as depicted in SEQ ID NO: 168, CDR-L1 as depicted in SEQ ID NO: 334, CDR-L2 as depicted in SEQ ID NO: 335 and CDR-L3 as depicted in SEQ ID NO: 336,
    • CDR-H1 as depicted in SEQ ID NO: 124, CDR-H2 as depicted in SEQ ID NO: 125, CDR-H3 as depicted in SEQ ID NO: 915, CDR-L1 as depicted in SEQ ID NO: 292, CDR-L2 as depicted in SEQ ID NO: 293 and CDR-L3 as depicted in SEQ ID NO: 294,
    • CDR-H1 as depicted in SEQ ID NO: 124, CDR-H2 as depicted in SEQ ID NO: 125, CDR-H3 as depicted in SEQ ID NO: 915, CDR-L1 as depicted in SEQ ID NO: 292, CDR-L2 as depicted in SEQ ID NO: 293 and CDR-L3 as depicted in SEQ ID NO: 928,
    • CDR-H1 as depicted in SEQ ID NO: 124, CDR-H2 as depicted in SEQ ID NO: 125, CDR-H3 as depicted in SEQ ID NO: 915, CDR-L1 as depicted in SEQ ID NO: 292, CDR-L2 as depicted in SEQ ID NO: 293 and CDR-L3 as depicted in SEQ ID NO: 929,
    • CDR-H1 as depicted in SEQ ID NO: 166, CDR-H2 as depicted in SEQ ID NO: 167, CDR-H3 as depicted in SEQ ID NO: 168, CDR-L1 as depicted in SEQ ID NO: 334, CDR-L2 as depicted in SEQ ID NO: 335 and CDR-L3 as depicted in SEQ ID NO: 336,
    • CDR-H1 as depicted in SEQ ID NO: 166, CDR-H2 as depicted in SEQ ID NO: 167, CDR-H3 as depicted in SEQ ID NO: 168, CDR-L1 as depicted in SEQ ID NO: 334, CDR-L2 as depicted in SEQ ID NO: 335 and CDR-L3 as depicted in SEQ ID NO: 942,
    • CDR-H1 as depicted in SEQ ID NO: 166, CDR-H2 as depicted in SEQ ID NO: 167, CDR-H3 as depicted in SEQ ID NO: 168, CDR-L1 as depicted in SEQ ID NO: 334, CDR-L2 as depicted in SEQ ID NO: 335 and CDR-L3 as depicted in SEQ ID NO: 943,
    • CDR-H1 as depicted in SEQ ID NO: 148, CDR-H2 as depicted in SEQ ID NO: 149, CDR-H3 as depicted in SEQ ID NO: 150, CDR-L1 as depicted in SEQ ID NO: 316, CDR-L2 as depicted in SEQ ID NO: 317 and CDR-L3 as depicted in SEQ ID NO: 318,
    • CDR-H1 as depicted in SEQ ID NO: 148, CDR-H2 as depicted in SEQ ID NO: 149, CDR-H3 as depicted in SEQ ID NO: 150, CDR-L1 as depicted in SEQ ID NO: 316, CDR-L2 as depicted in SEQ ID NO: 317 and CDR-L3 as depicted in SEQ ID NO: 937,
    • CDR-H1 as depicted in SEQ ID NO: 148, CDR-H2 as depicted in SEQ ID NO: 149, CDR-H3 as depicted in SEQ ID NO: 150, CDR-L1 as depicted in SEQ ID NO: 316, CDR-L2 as depicted in SEQ ID NO: 317 and CDR-L3 as depicted in SEQ ID NO: 938,
    • CDR-H1 as depicted in SEQ ID NO: 148, CDR-H2 as depicted in SEQ ID NO: 149, CDR-H3 as depicted in SEQ ID NO: 919, CDR-L1 as depicted in SEQ ID NO: 316, CDR-L2 as depicted in SEQ ID NO: 317 and CDR-L3 as depicted in SEQ ID NO: 938,
    • CDR-H1 as depicted in SEQ ID NO: 142, CDR-H2 as depicted in SEQ ID NO: 143, CDR-H3 as depicted in SEQ ID NO: 144, CDR-L1 as depicted in SEQ ID NO: 310, CDR-L2 as depicted in SEQ ID NO: 311 and CDR-L3 as depicted in SEQ ID NO: 935,
    • CDR-H1 as depicted in SEQ ID NO: 142, CDR-H2 as depicted in SEQ ID NO: 143, CDR-H3 as depicted in SEQ ID NO: 918, CDR-L1 as depicted in SEQ ID NO: 310, CDR-L2 as depicted in SEQ ID NO: 311 and CDR-L3 as depicted in SEQ ID NO: 935,
    • CDR-H1 as depicted in SEQ ID NO: 142, CDR-H2 as depicted in SEQ ID NO: 143, CDR-H3 as depicted in SEQ ID NO: 918, CDR-L1 as depicted in SEQ ID NO: 310, CDR-L2 as depicted in SEQ ID NO: 311 and CDR-L3 as depicted in SEQ ID NO: 936,
    • CDR-H1 as depicted in SEQ ID NO: 136, CDR-H2 as depicted in SEQ ID NO: 137, CDR-H3 as depicted in SEQ ID NO: 138, CDR-L1 as depicted in SEQ ID NO: 304, CDR-L2 as depicted in SEQ ID NO: 305 and CDR-L3 as depicted in SEQ ID NO: 933,
    • CDR-H1 as depicted in SEQ ID NO: 136, CDR-H2 as depicted in SEQ ID NO: 137, CDR-H3 as depicted in SEQ ID NO: 917, CDR-L1 as depicted in SEQ ID NO: 304, CDR-L2 as depicted in SEQ ID NO: 305 and CDR-L3 as depicted in SEQ ID NO: 934,
    • CDR-H1 as depicted in SEQ ID NO: 130, CDR-H2 as depicted in SEQ ID NO: 131, CDR-H3 as depicted in SEQ ID NO: 132, CDR-L1 as depicted in SEQ ID NO: 298, CDR-L2 as depicted in SEQ ID NO: 299 and CDR-L3 as depicted in SEQ ID NO: 930,
    • CDR-H1 as depicted in SEQ ID NO: 130, CDR-H2 as depicted in SEQ ID NO: 131, CDR-H3 as depicted in SEQ ID NO: 916, CDR-L1 as depicted in SEQ ID NO: 298, CDR-L2 as depicted in SEQ ID NO: 299 and CDR-L3 as depicted in SEQ ID NO: 931, and
    • CDR-H1 as depicted in SEQ ID NO: 130, CDR-H2 as depicted in SEQ ID NO: 131, CDR-H3 as depicted in SEQ ID NO: 916, CDR-L1 as depicted in SEQ ID NO: 298, CDR-L2 as depicted in SEQ ID NO: 299 and CDR-L3 as depicted in SEQ ID NO: 932;
  • (c) CDR-H1 as depicted in SEQ ID NO: 94, CDR-H2 as depicted in SEQ ID NO: 95, CDR-H3 as depicted in SEQ ID NO: 96, CDR-L1 as depicted in SEQ ID NO: 262, CDR-L2 as depicted in SEQ ID NO: 263 and CDR-L3 as depicted in SEQ ID NO: 264,
    • CDR-H1 as depicted in SEQ ID NO: 100, CDR-H2 as depicted in SEQ ID NO: 101, CDR-H3 as depicted in SEQ ID NO: 102, CDR-L1 as depicted in SEQ ID NO: 268, CDR-L2 as depicted in SEQ ID NO: 269 and CDR-L3 as depicted in SEQ ID NO: 270,
    • CDR-H1 as depicted in SEQ ID NO: 118, CDR-H2 as depicted in SEQ ID NO: 119, CDR-H3 as depicted in SEQ ID NO: 120, CDR-L1 as depicted in SEQ ID NO: 286, CDR-L2 as depicted in SEQ ID NO: 287 and CDR-L3 as depicted in SEQ ID NO: 288,
    • CDR-H1 as depicted in SEQ ID NO: 154, CDR-H2 as depicted in SEQ ID NO: 155, CDR-H3 as depicted in SEQ ID NO: 156, CDR-L1 as depicted in SEQ ID NO: 322, CDR-L2 as depicted in SEQ ID NO: 323 and CDR-L3 as depicted in SEQ ID NO: 324,
    • CDR-H1 as depicted in SEQ ID NO: 100, CDR-H2 as depicted in SEQ ID NO: 101, CDR-H3 as depicted in SEQ ID NO: 912, CDR-L1 as depicted in SEQ ID NO: 268, CDR-L2 as depicted in SEQ ID NO: 269 and CDR-L3 as depicted in SEQ ID NO: 270,
    • CDR-H1 as depicted in SEQ ID NO: 100, CDR-H2 as depicted in SEQ ID NO: 101, CDR-H3 as depicted in SEQ ID NO: 913, CDR-L1 as depicted in SEQ ID NO: 268, CDR-L2 as depicted in SEQ ID NO: 269 and CDR-L3 as depicted in SEQ ID NO: 270,
    • CDR-H1 as depicted in SEQ ID NO: 94, CDR-H2 as depicted in SEQ ID NO: 95, CDR-H3 as depicted in SEQ ID NO: 910, CDR-L1 as depicted in SEQ ID NO: 262, CDR-L2 as depicted in SEQ ID NO: 263 and CDR-L3 as depicted in SEQ ID NO: 264,
    • CDR-H1 as depicted in SEQ ID NO: 94, CDR-H2 as depicted in SEQ ID NO: 95, CDR-H3 as depicted in SEQ ID NO: 911, CDR-L1 as depicted in SEQ ID NO: 262, CDR-L2 as depicted in SEQ ID NO: 263 and CDR-L3 as depicted in SEQ ID NO: 264,
    • CDR-H1 as depicted in SEQ ID NO: 118, CDR-H2 as depicted in SEQ ID NO: 119, CDR-H3 as depicted in SEQ ID NO: 120, CDR-L1 as depicted in SEQ ID NO: 286, CDR-L2 as depicted in SEQ ID NO: 287 and CDR-L3 as depicted in SEQ ID NO: 288,
    • CDR-H1 as depicted in SEQ ID NO: 118, CDR-H2 as depicted in SEQ ID NO: 914, CDR-H3 as depicted in SEQ ID NO: 120, CDR-L1 as depicted in SEQ ID NO: 286, CDR-L2 as depicted in SEQ ID NO: 287 and CDR-L3 as depicted in SEQ ID NO: 288, and
    • CDR-H1 as depicted in SEQ ID NO: 154, CDR-H2 as depicted in SEQ ID NO: 155, CDR-H3 as depicted in SEQ ID NO: 920, CDR-L1 as depicted in SEQ ID NO: 322, CDR-L2 as depicted in SEQ ID NO: 323 and CDR-L3 as depicted in SEQ ID NO: 324;
  • (d) CDR-H1 as depicted in SEQ ID NO: 4, CDR-H2 as depicted in SEQ ID NO: 5, CDR-H3 as depicted in SEQ ID NO: 6, CDR-L1 as depicted in SEQ ID NO: 172, CDR-L2 as depicted in SEQ ID NO: 173 and CDR-L3 as depicted in SEQ ID NO: 174,
    • CDR-H1 as depicted in SEQ ID NO: 10, CDR-H2 as depicted in SEQ ID NO: 11, CDR-H3 as depicted in SEQ ID NO: 12, CDR-L1 as depicted in SEQ ID NO: 178, CDR-L2 as depicted in SEQ ID NO: 179 and CDR-L3 as depicted in SEQ ID NO: 180,
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 29, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 196, CDR-L2 as depicted in SEQ ID NO: 197 and CDR-L3 as depicted in SEQ ID NO: 198,
    • CDR-H1 as depicted in SEQ ID NO: 34, CDR-H2 as depicted in SEQ ID NO: 35, CDR-H3 as depicted in SEQ ID NO: 36, CDR-L1 as depicted in SEQ ID NO: 202, CDR-L2 as depicted in SEQ ID NO: 203 and CDR-L3 as depicted in SEQ ID NO: 204,
    • CDR-H1 as depicted in SEQ ID NO: 46, CDR-H2 as depicted in SEQ ID NO: 47, CDR-H3 as depicted in SEQ ID NO: 48, CDR-L1 as depicted in SEQ ID NO: 214, CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216,
    • CDR-H1 as depicted in SEQ ID NO: 58, CDR-H2 as depicted in SEQ ID NO: 59, CDR-H3 as depicted in SEQ ID NO: 60, CDR-L1 as depicted in SEQ ID NO: 226, CDR-L2 as depicted in SEQ ID NO: 227 and CDR-L3 as depicted in SEQ ID NO: 228,
    • CDR-H1 as depicted in SEQ ID NO: 64, CDR-H2 as depicted in SEQ ID NO: 65, CDR-H3 as depicted in SEQ ID NO: 66, CDR-L1 as depicted in SEQ ID NO: 232, CDR-L2 as depicted in SEQ ID NO: 233 and CDR-L3 as depicted in SEQ ID NO: 234,
    • CDR-H1 as depicted in SEQ ID NO: 70, CDR-H2 as depicted in SEQ ID NO: 71, CDR-H3 as depicted in SEQ ID NO: 72, CDR-L1 as depicted in SEQ ID NO: 238, CDR-L2 as depicted in SEQ ID NO: 239 and CDR-L3 as depicted in SEQ ID NO: 240,
    • CDR-H1 as depicted in SEQ ID NO: 160, CDR-H2 as depicted in SEQ ID NO: 161, CDR-H3 as depicted in SEQ ID NO: 162, CDR-L1 as depicted in SEQ ID NO: 328, CDR-L2 as depicted in SEQ ID NO: 329 and CDR-L3 as depicted in SEQ ID NO: 330,
    • CDR-H1 as depicted in SEQ ID NO: 46, CDR-H2 as depicted in SEQ ID NO: 47, CDR-H3 as depicted in SEQ ID NO: 48, CDR-L1 as depicted in SEQ ID NO: 924, CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216,
    • CDR-H1 as depicted in SEQ ID NO: 46, CDR-H2 as depicted in SEQ ID NO: 47, CDR-H3 as depicted in SEQ ID NO: 902, CDR-L1 as depicted in SEQ ID NO: 924, CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216,
    • CDR-H1 as depicted in SEQ ID NO: 46, CDR-H2 as depicted in SEQ ID NO: 47, CDR-H3 as depicted in SEQ ID NO: 903, CDR-L1 as depicted in SEQ ID NO: 924, CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216,
    • CDR-H1 as depicted in SEQ ID NO: 46, CDR-H2 as depicted in SEQ ID NO: 47, CDR-H3 as depicted in SEQ ID NO: 48, CDR-L1 as depicted in SEQ ID NO: 925, CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216,
    • CDR-H1 as depicted in SEQ ID NO: 70, CDR-H2 as depicted in SEQ ID NO: 907, CDR-H3 as depicted in SEQ ID NO: 72, CDR-L1 as depicted in SEQ ID NO: 238, CDR-L2 as depicted in SEQ ID NO: 239 and CDR-L3 as depicted in SEQ ID NO: 240,
    • CDR-H1 as depicted in SEQ ID NO: 70, CDR-H2 as depicted in SEQ ID NO: 907, CDR-H3 as depicted in SEQ ID NO: 908, CDR-L1 as depicted in SEQ ID NO: 238, CDR-L2 as depicted in SEQ ID NO: 239 and CDR-L3 as depicted in SEQ ID NO: 240,
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 901, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 922, CDR-L2 as depicted in SEQ ID NO: 197 and CDR-L3 as depicted in SEQ ID NO: 923,
    • CDR-H1 as depicted in SEQ ID NO: 58, CDR-H2 as depicted in SEQ ID NO: 905, CDR-H3 as depicted in SEQ ID NO: 906, CDR-L1 as depicted in SEQ ID NO: 226, CDR-L2 as depicted in SEQ ID NO: 227 and CDR-L3 as depicted in SEQ ID NO: 228,
    • CDR-H1 as depicted in SEQ ID NO: 58, CDR-H2 as depicted in SEQ ID NO: 905, CDR-H3 as depicted in SEQ ID NO: 60, CDR-L1 as depicted in SEQ ID NO: 226, CDR-L2 as depicted in SEQ ID NO: 227 and CDR-L3 as depicted in SEQ ID NO: 228,
    • CDR-H1 as depicted in SEQ ID NO: 160, CDR-H2 as depicted in SEQ ID NO: 161, CDR-H3 as depicted in SEQ ID NO: 162, CDR-L1 as depicted in SEQ ID NO: 939, CDR-L2 as depicted in SEQ ID NO: 329 and CDR-L3 as depicted in SEQ ID NO: 330,
    • CDR-H1 as depicted in SEQ ID NO: 160, CDR-H2 as depicted in SEQ ID NO: 921, CDR-H3 as depicted in SEQ ID NO: 162, CDR-L1 as depicted in SEQ ID NO: 939, CDR-L2 as depicted in SEQ ID NO: 329 and CDR-L3 as depicted in SEQ ID NO: 940,
    • CDR-H1 as depicted in SEQ ID NO: 160, CDR-H2 as depicted in SEQ ID NO: 161, CDR-H3 as depicted in SEQ ID NO: 162, CDR-L1 as depicted in SEQ ID NO: 941, CDR-L2 as depicted in SEQ ID NO: 329 and CDR-L3 as depicted in SEQ ID NO: 330,
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 29, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 196, CDR-L2 as depicted in SEQ ID NO: 197 and CDR-L3 as depicted in SEQ ID NO: 923,
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 29, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 922, CDR-L2 as depicted in SEQ ID NO: 197 and CDR-L3 as depicted in SEQ ID NO: 923,
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 901, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 922, CDR-L2 as depicted in SEQ ID NO: 197 and CDR-L3 as depicted in SEQ ID NO: 923, and
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 29, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 939, CDR-L2 as depicted in SEQ ID NO: 329 and CDR-L3 as depicted in SEQ ID NO: 330; and
  • (e) CDR-H1 as depicted in SEQ ID NO: 76, CDR-H2 as depicted in SEQ ID NO: 77, CDR-H3 as depicted in SEQ ID NO: 78, CDR-L1 as depicted in SEQ ID NO: 244, CDR-L2 as depicted in SEQ ID NO: 245 and CDR-L3 as depicted in SEQ ID NO: 246,
    • CDR-H1 as depicted in SEQ ID NO: 88, CDR-H2 as depicted in SEQ ID NO: 89, CDR-H3 as depicted in SEQ ID NO: 90, CDR-L1 as depicted in SEQ ID NO: 256, CDR-L2 as depicted in SEQ ID NO: 257 and CDR-L3 as depicted in SEQ ID NO: 258,
    • CDR-H1 as depicted in SEQ ID NO: 106, CDR-H2 as depicted in SEQ ID NO: 107, CDR-H3 as depicted in SEQ ID NO: 108, CDR-L1 as depicted in SEQ ID NO: 274, CDR-L2 as depicted in SEQ ID NO: 275 and CDR-L3 as depicted in SEQ ID NO: 276,
    • CDR-H1 as depicted in SEQ ID NO: 112, CDR-H2 as depicted in SEQ ID NO: 113, CDR-H3 as depicted in SEQ ID NO: 114, CDR-L1 as depicted in SEQ ID NO: 280, CDR-L2 as depicted in SEQ ID NO: 281 and CDR-L3 as depicted in SEQ ID NO: 282, and
    • CDR-H1 as depicted in SEQ ID NO: 106, CDR-H2 as depicted in SEQ ID NO: 107, CDR-H3 as depicted in SEQ ID NO: 108, CDR-L1 as depicted in SEQ ID NO: 274, CDR-L2 as depicted in SEQ ID NO: 275 and CDR-L3 as depicted in SEQ ID NO: 276.


In a further embodiment of the human antibody or antigen binding fragment thereof of the invention the human binding domain or antigen binding fragment thereof comprises a VH region selected from the group consisting of VH regions

  • (a) as depicted in SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 485, SEQ ID NO: 486, SEQ ID NO: 487, SEQ ID NO: 492, SEQ ID NO: 493, SEQ ID NO: 494, and SEQ ID NO: 495;
  • (b) as depicted in SEQ ID NO: 342, SEQ ID NO: 366, SEQ ID NO: 370, SEQ ID NO: 344, SEQ ID NO: 372, SEQ ID NO: 368, SEQ ID NO: 496, SEQ ID NO: 497, SEQ ID NO: 498, SEQ ID NO: 499, SEQ ID NO: 500, SEQ ID NO: 508, SEQ ID NO: 509, SEQ ID NO: 510, SEQ ID NO: 511, SEQ ID NO: 512, SEQ ID NO: 519, SEQ ID NO: 520, SEQ ID NO: 521, SEQ ID NO: 522, SEQ ID NO: 523, SEQ ID NO: 524, SEQ ID NO: 525, SEQ ID NO: 526, SEQ ID NO: 527, SEQ ID NO: 528, SEQ ID NO: 529, SEQ ID NO: 530, SEQ ID NO: 531, SEQ ID NO: 532, SEQ ID NO: 533, SEQ ID NO: 534, SEQ ID NO: 535, SEQ ID NO: 536, SEQ ID NO: 537, and SEQ ID NO: 538;
  • (c) as depicted in SEQ ID NO: 338, SEQ ID NO: 354, SEQ ID NO: 378, SEQ ID NO: 356, SEQ ID NO: 476, SEQ ID NO: 477, SEQ ID NO: 478, SEQ ID NO: 479, SEQ ID NO: 480, SEQ ID NO: 481, SEQ ID NO: 482, SEQ ID NO: 483, SEQ ID NO: 484, SEQ ID NO: 501, SEQ ID NO: 502, SEQ ID NO: 503, SEQ ID NO: 504, SEQ ID NO: 505, SEQ ID NO: 506, SEQ ID NO: 517, and SEQ ID NO: 518;
  • (d) as depicted in SEQ ID NO: 352, SEQ ID NO: 360, SEQ ID NO: 388, SEQ ID NO: 386, SEQ ID NO: 340, SEQ ID NO: 346, SEQ ID NO: 374, SEQ ID NO: 348, SEQ ID NO: 390, SEQ ID NO: 463, SEQ ID NO: 464, SEQ ID NO: 465, SEQ ID NO: 466, SEQ ID NO: 467, SEQ ID NO: 468, SEQ ID NO: 469, SEQ ID NO: 470, SEQ ID NO: 471, SEQ ID NO: 472, SEQ ID NO: 473, SEQ ID NO: 474, SEQ ID NO: 475, SEQ ID NO: 488, SEQ ID NO: 489, SEQ ID NO: 490, SEQ ID NO: 491, SEQ ID NO: 513, SEQ ID NO: 514, SEQ ID NO: 515, SEQ ID NO: 516, SEQ ID NO: 540, SEQ ID NO: 541, SEQ ID NO: 542, and SEQ ID NO: 543; and
  • (e) as depicted in SEQ ID NO: 376, SEQ ID NO: 392, SEQ ID NO: 358, SEQ ID NO: 350, and SEQ ID NO: 507.


In another embodiment the human antibody or antigen binding fragment thereof of the invention comprises the human binding domain or antigen binding fragment thereof comprising a VL region selected from the group consisting of VL regions

  • (a) as depicted in SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 580, SEQ ID NO: 581, SEQ ID NO: 582, SEQ ID NO: 587, SEQ ID NO: 588, SEQ ID NO: 589, and SEQ ID NO: 590;
  • (b) as depicted in SEQ ID NO: 398, SEQ ID NO: 422, SEQ ID NO: 426, SEQ ID NO: 400, SEQ ID NO: 428, SEQ ID NO: 424, SEQ ID NO: 591, SEQ ID NO: 592, SEQ ID NO: 593, SEQ ID NO: 594, SEQ ID NO: 595, SEQ ID NO: 603, SEQ ID NO: 604, SEQ ID NO: 605, SEQ ID NO: 606, SEQ ID NO: 607, SEQ ID NO: 614, SEQ ID NO: 615, SEQ ID NO: 616, SEQ ID NO: 617, SEQ ID NO: 618, SEQ ID NO: 619, SEQ ID NO: 620, SEQ ID NO: 621, SEQ ID NO: 622, SEQ ID NO: 623, SEQ ID NO: 624, SEQ ID NO: 625, SEQ ID NO: 626, SEQ ID NO: 627, SEQ ID NO: 628, SEQ ID NO: 629, SEQ ID NO: 630, SEQ ID NO: 631, SEQ ID NO: 632, and SEQ ID NO: 633;
  • (c) as depicted in SEQ ID NO: 394, SEQ ID NO: 410, SEQ ID NO: 434, SEQ ID NO: 412, SEQ ID NO: 571, SEQ ID NO: 572, SEQ ID NO: 573, SEQ ID NO: 574, SEQ ID NO: 575, SEQ ID NO: 576, SEQ ID NO: 577, SEQ ID NO: 578, SEQ ID NO: 579, SEQ ID NO: 596, SEQ ID NO: 597, SEQ ID NO: 598, SEQ ID NO: 599, SEQ ID NO: 600, SEQ ID NO: 601, SEQ ID NO: 612, and SEQ ID NO: 613;
  • (d) as depicted in SEQ ID NO: 408, SEQ ID NO: 416, SEQ ID NO: 444, SEQ ID NO: 442, SEQ ID NO: 396, SEQ ID NO: 402, SEQ ID NO: 430, SEQ ID NO: 404, SEQ ID NO: 446, SEQ ID NO: 558, SEQ ID NO: 559, SEQ ID NO: 560, SEQ ID NO: 561, SEQ ID NO: 562, SEQ ID NO: 563, SEQ ID NO: 564, SEQ ID NO: 565, SEQ ID NO: 566, SEQ ID NO: 567, SEQ ID NO: 568, SEQ ID NO: 569, SEQ ID NO: 570, SEQ ID NO: 583, SEQ ID NO: 584, SEQ ID NO: 585, SEQ ID NO: 586, SEQ ID NO: 608, SEQ ID NO: 609, SEQ ID NO: 610, SEQ ID NO: 611, SEQ ID NO: 635, SEQ ID NO: 636, SEQ ID NO: 637, and SEQ ID NO: 638; and
  • (e) as depicted in SEQ ID NO: 432, SEQ ID NO: 448, SEQ ID NO: 414, SEQ ID NO: 406, and SEQ ID NO: 602.


The invention further provides an embodiment of the human antibody or antigen binding fragment thereof of the invention, wherein the human binding domain or antigen binding fragment thereof comprises a VH region and a VL region selected from the group consisting of:

  • (1) pairs of a VH region and a VL region as depicted in SEQ ID NOs: 362+418, SEQ ID NOs: 364+420, SEQ ID NOs: 485+580, SEQ ID NOs: 486+581, SEQ ID NOs: 487+582, SEQ ID NOs: 492+587, SEQ ID NOs: 493+588, SEQ ID NOs: 494+589, and SEQ ID NOs: 495+590;
  • (2) pairs of a VH region and a VL region as depicted in SEQ ID NOs: 342+398, SEQ ID NOs: 366+422, SEQ ID NOs: 370+426, SEQ ID NOs: 344+400, SEQ ID NOs: 372+428, SEQ ID NOs: 368+424, SEQ ID NOs: 496+591, SEQ ID NOs: 497+592, SEQ ID NOs: 498+593, SEQ ID NOs: 499+594, SEQ ID NOs: 500+595, SEQ ID NOs: 508+603, SEQ ID NOs: 509+604, SEQ ID NOs: 510+605, SEQ ID NOs: 511+606, SEQ ID NOs: 512+607, SEQ ID NOs: 519+614, SEQ ID NOs: 520+615, SEQ ID NOs: 521+616, SEQ ID NOs: 522+617, SEQ ID NOs: 523+618, SEQ ID NOs: 524+619, SEQ ID NOs: 525+620, SEQ ID NOs: 526+621, SEQ ID NOs: 527+622, SEQ ID NOs: 528+623, SEQ ID NOs: 529+624, SEQ ID NOs: 530+625, SEQ ID NOs: 531+626, SEQ ID NOs: 532+627, SEQ ID NOs: 533+628, SEQ ID NOs: 534+629, SEQ ID NOs: 535+630, SEQ ID NOs: 536+631, SEQ ID NOs: 537+632, and SEQ ID NOs: 538+633;
  • (3) pairs of a VH region and a VL region as depicted in SEQ ID NOs: 338+394, SEQ ID NOs: 354+410, SEQ ID NOs: 378+434, SEQ ID NOs: 356+412, SEQ ID NOs: 476+571, SEQ ID NOs: 477+572, SEQ ID NOs: 478+573, SEQ ID NOs: 479+574, SEQ ID NOs: 480+575, SEQ ID NOs: 481+576, SEQ ID NOs: 482+577, SEQ ID NOs: 483+578, SEQ ID NOs: 484+579, SEQ ID NOs: 501+596, SEQ ID NOs: 502+597, SEQ ID NOs: 503+598, SEQ ID NOs: 504+599, SEQ ID NOs: 505+600, SEQ ID NOs: 506+601, SEQ ID NOs: 517+612, and SEQ ID NOs: 518+613;
  • (4) pairs of a VH region and a VL region as depicted in SEQ ID NOs: 352+408, SEQ ID NOs: 360+416, SEQ ID NOs: 388+444, SEQ ID NOs: 386+442, SEQ ID NOs: 340+396, SEQ ID NOs: 346+402, SEQ ID NOs: 374+430, SEQ ID NOs: 348+404, SEQ ID NOs: 390+446, SEQ ID NOs: 463+558, SEQ ID NOs: 464+559, SEQ ID NOs: 465+560, SEQ ID NOs: 466+561, SEQ ID NOs: 467+562, SEQ ID NOs: 468+563, SEQ ID NOs: 469+564, SEQ ID NOs: 470+565, SEQ ID NOs: 471+566, SEQ ID NOs: 472+567, SEQ ID NOs: 473+568, SEQ ID NOs: 474+569, SEQ ID NOs: 475+570, SEQ ID NOs: 488+583, SEQ ID NOs: 489+584, SEQ ID NOs: 490+585, SEQ ID NOs: 491+586, SEQ ID NOs: 513+608, SEQ ID NOs: 514+609, SEQ ID NOs: 515+610, SEQ ID NOs: 516+611, SEQ ID NOs: 540+635, SEQ ID NOs: 541+636, SEQ ID NOs: 542+637, and SEQ ID NOs: 543+638; and
  • (5) pairs of a VH region and a VL region as depicted in SEQ ID NOs: 376+432, SEQ ID NOs: 392+448, SEQ ID NOs: 358+414, SEQ ID NOs: 350+406, and SEQ ID NOs: 507+602.


In a further embodiment the human binding domain or antigen binding fragment thereof comprises the groups of heavy and light chains having an amino acid sequence selected from the group consisting of

  • (1) a heavy and light chain as depicted in SEQ ID NOs: 644+680, SEQ ID NOs: 650+686, SEQ ID NOs: 747+842, SEQ ID NOs: 748+843, SEQ ID NOs: 749+844, SEQ ID NOs: 754+849, SEQ ID NOs: 755+850, SEQ ID NOs: 756+851, and SEQ ID NOs: 757+852;
  • (2) a heavy and light chain as depicted in SEQ ID NOs: 660+696, SEQ ID NOs: 662+698, SEQ ID NOs: 668+704, SEQ ID NOs: 674+710, SEQ ID NOs: 672+708, SEQ ID NOs: 658+694, SEQ ID NOs: 758+853, SEQ ID NOs: 759+854, SEQ ID NOs: 760+855, SEQ ID NOs: 761+856, SEQ ID NOs: 762+857, SEQ ID NOs: 770+865, SEQ ID NOs: 771+866, SEQ ID NOs: 772+867, SEQ ID NOs: 773+868, SEQ ID NOs: 774+869, SEQ ID NOs: 781+876, SEQ ID NOs: 782+877, SEQ ID NOs: 783+878, SEQ ID NOs: 784+879, SEQ ID NOs: 785+880, SEQ ID NOs: 786+881, SEQ ID NOs: 787+882, SEQ ID NOs: 788+883, SEQ ID NOs: 789+884, SEQ ID NOs: 790+885, SEQ ID NOs: 791+886, SEQ ID NOs: 792+887, SEQ ID NOs: 793+888, SEQ ID NOs: 794+889, SEQ ID NOs: 795+890, SEQ ID NOs: 796+891, SEQ ID NOs: 797+892, SEQ ID NOs: 798+893, SEQ ID NOs: 799+894, and SEQ ID NOs: 800+895;
  • (3) a heavy and light chain as depicted in SEQ ID NOs: 656+692, SEQ ID NOs: 654+690, SEQ ID NOs: 664+700, SEQ ID NOs: 670+706, SEQ ID NOs: 738+833, SEQ ID NOs: 739+834, SEQ ID NOs: 740+835, SEQ ID NOs: 741+836, SEQ ID NOs: 742+837, SEQ ID NOs: 743+838, SEQ ID NOs: 744+839, SEQ ID NOs: 745+840, SEQ ID NOs: 746+841, SEQ ID NOs: 763+858, SEQ ID NOs: 764+859, SEQ ID NOs: 765+860, SEQ ID NOs: 766+861, SEQ ID NOs: 767+862, SEQ ID NOs: 768+863, SEQ ID NOs: 779+874, and SEQ ID NOs: 780+875;
  • (4) a heavy and light chain as depicted in SEQ ID NOs: 640+676, SEQ ID NOs: 642+678, SEQ ID NOs: 646+682, SEQ ID NOs: 648+684, SEQ ID NOs: 666+702, SEQ ID NOs: 725+820, SEQ ID NOs: 726+821, SEQ ID NOs: 727+822, SEQ ID NOs: 728+823, SEQ ID NOs: 729+824, SEQ ID NOs: 730+825, SEQ ID NOs: 731+826, SEQ ID NOs: 732+827, SEQ ID NOs: 733+828, SEQ ID NOs: 734+829, SEQ ID NOs: 735+830, SEQ ID NOs: 736+831, SEQ ID NOs: 737+832, SEQ ID NOs: 750+845, SEQ ID NOs: 751+846, SEQ ID NOs: 752+847, SEQ ID NOs: 753+848, SEQ ID NOs: 775+870, SEQ ID NOs: 776+871, SEQ ID NOs: 777+872, SEQ ID NOs: 778+873, SEQ ID NOs: 802+897, SEQ ID NOs: 803+898, SEQ ID NOs: 804+899, and SEQ ID NOs: 805+900; and
  • (5) a heavy and light chain as depicted in SEQ ID NOs: 652+688, and SEQ ID NOs: 769+864.


In another embodiment the invention is directed to an antibody construct comprising the human antibody or antigen binding fragment thereof capable of binding to human CDH19 on the surface of a target cell as described above that is conjugated to a chemotherapeutic agent.


In one embodiment of the antibody construct of the invention a linker conjugates the chemotherapeutic agent to the human antibody or antigen binding fragment thereof.


In a preferred embodiment of the antibody construct of the invention the linker is a non-cleavable linker.


It is also preferred that the linker in the antibody construct of the invention comprises MCC. In a further embodiment of the antibody construct of the invention the chemotherapeutic agent is conjugated to one or more lysines contained in the human antibody or antigen binding fragment thereof.


In one embodiment of the antibody construct of the invention the chemotherapeutic agent is DM1.


In a preferred embodiment of the antibody construct of the invention the average number of DM1 molecules per antibody construct is between 1 and 10.


It is also preferred for the antibody construct of the invention that the average number of DM1 molecules per antibody construct is between 3 and 7.


Moreover, it is preferred for the antibody construct of the invention that the average number of DM1 molecules per antibody construct is between 4 and 6.


In a further alternative embodiment of the antibody construct of the invention the average number of DM1 molecules per antibody construct is about 4.0, about 4.1, about 4.2, about 4.3, about 4.4, about 4.5, about 4.6, about 4.7, about 4.8, about 4.9, about 5.0, about 5.1, about 5.2, about 5.3, about 5.4, about 5.5, about 5.6, about 5.7, about 5.8, about 5.9, or about 6.0.


The invention further provides an isolated nucleic acid molecule or sequence encoding a human antibody or antigen binding fragment thereof of the invention.


Furthermore, the invention provides a vector comprising a nucleic acid sequence of the invention. Moreover, the invention provides a host cell transformed or transfected with the nucleic acid sequence of the invention or with a vector comprising the nucleic acid molecule.


In a further embodiment the invention provides a process for the production of a human antibody or an antigen binding fragment thereof of the invention, said process comprising culturing a host cell of the invention under conditions allowing the expression of the human antibody or antigen binding fragment thereof of the invention and recovering the produced antibody or antigen binding fragment thereof from the culture.


In a further embodiment the invention provides a process for the production of an antibody construct comprising a human antibody or an antigen binding fragment thereof of the invention, said process comprising culturing a host cell of the invention under conditions allowing the expression of the human antibody or antigen binding fragment thereof of the invention and recovering the produced antibody or antigen binding fragment thereof from the culture, and conjugating a chemotherapeutic agent to the recovered antibody or antigen binding fragment thereof to produce the antibody conjugate.


Moreover, the invention provides a pharmaceutical composition comprising a human antibody or antigen binding fragment thereof of the invention or an antibody construct of the invention or produced according to the process of the invention in admixture with a pharmaceutically acceptable carrier thereof.


In one embodiment the invention provides the human antibody or antigen binding fragment thereof of the invention, the antibody construct of the invention, or produced according to the process of the invention for use in the prevention, treatment or amelioration of a melanoma disease or metastatic melanoma disease. Preferably, the melanoma disease or metastatic melanoma disease is selected from the group consisting of superficial spreading melanoma, lentigo maligna, lentigo maligna melanoma, acral lentiginous melanoma and nodular melanoma.


The invention also provides a method for the treatment or amelioration of a melanoma disease or metastatic melanoma disease, comprising the step of administering to a subject in need thereof the antibody or antigen binding fragment thereof of the invention, the antibody construct of the invention, an antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention produced according to the process of the invention or a pharmaceutical composition of the invention.


In a preferred embodiment method the invention the melanoma disease or metastatic melanoma disease is selected from the group consisting of superficial spreading melanoma, lentigo maligna, lentigo maligna melanoma, acral lentiginous melanoma and nodular melanoma.


In a further embodiment, the invention provides a kit comprising an antibody or antigen binding fragment thereof of the invention, an antibody construct of the invention, an antibody or antigen binding fragment thereof of the invention or the antibody construct produced according to the process of the invention, a vector of the invention, and/or a host cell of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts cell viability data of Colo-699 cells that have been treated with fully human anti-CDH19 antibodies and a high concentration of a goat anti-human Fc monovalent Fab conjugated with DM1 (DM1-Fab) at a drug-antibody ratio (DAR) (˜1.3).



FIG. 2 depicts the average cell viability data from a CHL-1 assay plotted against the average cell viability data from the Colo-699 assay.



FIG. 3 shows the relative expression of CDH19 mRNA in metastatic and primary melanoma samples.



FIG. 4 shows the expression of CDH19 protein in human tumor samples by IHC.



FIG. 5 shows the results of the analysis of tumor cell lines by flow cytometry and IHC to identify model systems with CDH19 expression similar to human tumors based on the number of CDH19 receptors present on the cell surface.



FIG. 6 shows in vitro activity of a CDH19 ADC against the model tumor cell lines.



FIG. 7 shows in vitro activity of a CDH19 ADC in model tumor cell lines at varying DAR ratios.



FIG. 8 shows in vivo activity of CDH19 ADCs in a xenograft mouse model as compared to naked CDH19 antibodies.



FIG. 9 shows in vivo activity of CDH19 ADCs in a xenograft mouse model. 4B10-DM1 Moderately Inhibited Tumor Growth at 182 μg/kg DM1 in CHL-1 Xenografts



FIG. 10 shows in vivo activity of CDH19 ADCs in a xenograft mouse model. Increasing the DAR Did Not Increase Tumor Growth Inhibition in CHL-1 Xenografts



FIG. 11 shows in vivo activity of CDH19 ADCs in a xenograft mouse model. Anti-CDH19 ADCs Moderately Inhibited Tumor Growth in COLO699 Xenografts





DETAILED DESCRIPTION OF THE INVENTION

Definitions:


It must be noted that as used herein, the singular forms “a”, “an”, and “the”, include plural references unless the context clearly indicates otherwise. Thus, for example, reference to “a reagent” includes one or more of such different reagents and reference to “the method” includes reference to equivalent steps and methods known to those of ordinary skill in the art that could be modified or substituted for the methods described herein.


Unless otherwise indicated, the term “at least” preceding a series of elements is to be understood to refer to every element in the series. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the present invention.


The term “and/or” wherever used herein includes the meaning of “and”, “or” and “all or any other combination of the elements connected by said term”.


The term “about” or “approximately” as used herein means within ±20%, preferably within ±15%, more preferably within ±10%, and most preferably within ±5% of a given value or range.


Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integer or step. When used herein the term “comprising” can be substituted with the term “containing” or “including” or sometimes when used herein with the term “having”.


When used herein “consisting of” excludes any element, step, or ingredient not specified in the claim element. When used herein, “consisting essentially of” does not exclude materials or steps that do not materially affect the basic and novel characteristics of the claim.


In each instance herein any of the terms “comprising”, “consisting essentially of” and “consisting of” may be replaced with either of the other two terms.


The definition of the term “antibody” includes embodiments such as monoclonal, chimeric, single chain, humanized and human antibodies, as well as antibody fragments, like, inter alia, Fab fragments. Antibody fragments or derivatives further comprise F(ab′)2, Fv, scFv fragments or single domain antibodies such as domain antibodies or nanobodies, single variable domain antibodies or immunoglobulin single variable domain comprising merely one variable domain, which might be VHH, VH or VL, that specifically bind an antigen or epitope independently of other V regions or domains; see, for example, Harlow and Lane (1988) and (1999), loc. cit.; Kontermann and Dübel, Antibody Engineering, Springer, 2nd ed. 2010 and Little, Recombinant Antibodies for Immunotherapy, Cambridge University Press 2009. Such immunoglobulin single variable domain encompasses not only an isolated antibody single variable domain polypeptide, but also larger polypeptides that comprise one or more monomers of an antibody single variable domain polypeptide sequence.


In line with this definition all above described embodiments of the term antibody can be subsumed under the term “antibody construct”. Said term also includes diabodies or Dual-Affinity Re-Targeting (DART) antibodies. Further envisaged are (bispecific) single chain diabodies, tandem diabodies (Tandab's), “minibodies” exemplified by a structure which is as follows: (VH-VL-CH3)2, (scFv-CH3)2 or (scFv-CH3-scFv)2, “Fc DART” antibodies and “IgG DART” antibodies, and multibodies such as triabodies. Immunoglobulin single variable domains encompass not only an isolated antibody single variable domain polypeptide, but also larger polypeptides that comprise one or more monomers of an antibody single variable domain polypeptide sequence.


Various procedures are known in the art and may be used for the production of such antibody constructs (antibodies and/or fragments). Thus, (antibody) derivatives can be produced by peptidomimetics. Further, techniques described for the production of single chain antibodies (see, inter alia, U.S. Pat. No. 4,946,778, Kontermann and Dübel (2010), loc. cit. and Little (2009), loc. cit.) can be adapted to produce single chain antibodies specific for elected polypeptide(s). Also, transgenic animals may be used to express humanized antibodies specific for polypeptides and fusion proteins of this invention. For the preparation of monoclonal antibodies, any technique, providing antibodies produced by continuous cell line cultures can be used. Examples for such techniques include the hybridoma technique (Köhler and Milstein Nature 256 (1975), 495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor, Immunology Today 4 (1983), 72) and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985), 77-96). Surface plasmon resonance as employed in the BIAcore system can be used to increase the efficiency of phage antibodies which bind to an epitope of a target polypeptide, such as CDH19 (Schier, Human Antibodies Hybridomas 7 (1996), 97-105; Malmborg, J. Immunol. Methods 183 (1995), 7-13). It is also envisaged in the context of this invention that the term “antibody” comprises antibody constructs, which may be expressed in a host as described herein below, e.g. antibody constructs which may be transfected and/or transduced via, inter alia, viruses or plasmid vectors.


Furthermore, the term “antibody” as employed in the invention also relates to derivatives or variants of the antibodies described herein which display the same specificity as the described antibodies. Accordingly, the term “antibody” also subsumes antibody constructs such as different types of fragments of antibodies, which still are characterized by the feature of specific binding for CDH19.


The terms “antigen-binding domain”, “antigen-binding fragment” and “antibody binding region” when used herein refer to a part of an antibody molecule that comprises amino acids responsible for the specific binding between antibody and antigen. The part of the antigen that is specifically recognized and bound by the antibody is referred to as the “epitope” as described herein above. As mentioned above, an antigen-binding domain may typically comprise an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH); however, it does not have to comprise both. Fd fragments, for example, have two VH regions and often retain some antigen-binding function of the intact antigen-binding domain. Examples of antigen-binding fragments of an antibody include (1) a Fab fragment, a monovalent fragment having the VL, VH, CL and CH1 domains; (2) a F(ab′)2 fragment, a bivalent fragment having two Fab fragments linked by a disulfide bridge at the hinge region; (3) a Fd fragment having the two VH and CH1 domains; (4) a Fv fragment having the VL and VH domains of a single arm of an antibody, (5) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which has a VH domain; (6) an isolated complementarity determining region (CDR), and (7) a single chain Fv (scFv). Although the two domains of the Fv fragment, VL and VH are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Huston et al. (1988) Proc. Natl. Acad. Sci USA 85:5879-5883). These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are evaluated for function in the same manner as are intact antibodies.


The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations and/or post-translation modifications (e.g., isomerizations, amidations) that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature, 256: 495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352: 624-628 (1991) and Marks et al., J. Mol. Biol., 222: 581-597 (1991), for example.


The term “human antibody” includes antibodies having variable and constant regions corresponding substantially to human germline immunoglobulin sequences known in the art, including, for example, those described by Kabat et al. (See Kabat et al. (1991) loc. cit.). The human antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs, and in particular, CDR3. The human antibody can have at least one, two, three, four, five, or more positions replaced with an amino acid residue that is not encoded by the human germline immunoglobulin sequence. It is emphasized that the definition of human antibodies as used herein also contemplates fully human antibodies, which include only non-artificially and/or genetically altered human sequences of antibodies as those can be derived by technologies using systems such as the Xenomice.


Examples of “antibody variants” include humanized variants of non-human antibodies, “affinity matured” antibodies (see, e.g. Hawkins et al. J. Mol. Biol. 254, 889-896 (1992) and Lowman et al., Biochemistry 30, 10832-10837 (1991)) and antibody mutants with altered effector function (s) (see, e.g., U.S. Pat. No. 5,648,260, Kontermann and Dübel (2010), loc. cit. and Little (2009), loc. cit.).


As used herein, “in vitro generated antibody” refers to an antibody where all or part of the variable region (e.g., at least one CDR) is generated in a non-immune cell selection (e.g., an in vitro phage display, protein chip or any other method in which candidate sequences can be tested for their ability to bind to an antigen). This term thus preferably excludes sequences generated by genomic rearrangement in an immune cell.


The pairing of a VH and VL together forms a single antigen-binding site. The CH domain most proximal to VH is designated as CH1. Each L chain is linked to an H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype. The VH and VL domains consist of four regions of relatively conserved sequences called framework regions (FR1, FR2, FR3, and FR4), which form a scaffold for three regions of hypervariable sequences (complementarity determining regions, CDRs). The CDRs contain most of the residues responsible for specific interactions of the antibody with the antigen. CDRs are referred to as CDR 1, CDR2, and CDR3. Accordingly, CDR constituents on the heavy chain are referred to as H1, H2, and H3, while CDR constituents on the light chain are referred to as L1, L2, and L3.


The term “variable” refers to the portions of the immunoglobulin domains that exhibit variability in their sequence and that are involved in determining the specificity and binding affinity of a particular antibody (i.e., the “variable domain(s)”). Variability is not evenly distributed throughout the variable domains of antibodies; it is concentrated in sub-domains of each of the heavy and light chain variable regions. These sub-domains are called “hypervariable” regions or “complementarity determining regions” (CDRs). The more conserved (i.e., non-hypervariable) portions of the variable domains are called the “framework” regions (FRM). The variable domains of naturally occurring heavy and light chains each comprise four FRM regions, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRM and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site (see Kabat et al., loc. cit.). The constant domains are not directly involved in antigen binding, but exhibit various effector functions, such as, for example, antibody-dependent, cell-mediated cytotoxicity and complement activation.


The terms “CDR”, and its plural “CDRs”, refer to a complementarity determining region (CDR) of which three make up the binding character of a light chain variable region (CDRL1, CDRL2 and CDRL3) and three make up the binding character of a heavy chain variable region (CDRH1, CDRH2 and CDRH3). CDRs contribute to the functional activity of an antibody molecule and are separated by amino acid sequences that comprise scaffolding or framework regions. The exact definitional CDR boundaries and lengths are subject to different classification and numbering systems. CDRs may therefore be referred to by Kabat, Chothia, contact or any other boundary definitions, including the numbering system described herein. Despite differing boundaries, each of these systems has some degree of overlap in what constitutes the so called “hypervariable regions” within the variable sequences. CDR definitions according to these systems may therefore differ in length and boundary areas with respect to the adjacent framework region. See for example Kabat, Chothia, and/or MacCallum (Kabat et al., loc. cit.; Chothia et al., J. Mol. Biol, 1987, 196: 901; and MacCallum et al., J. Mol. Biol, 1996, 262: 732). However, the numbering in accordance with the so-called Kabat system is preferred. The CDR3 of the light chain and, particularly, CDR3 of the heavy chain may constitute the most important determinants in antigen binding within the light and heavy chain variable regions. In some antibodies, the heavy chain CDR3 appears to constitute the major area of contact between the antigen and the antibody. In vitro selection schemes in which CDR3 alone is varied can be used to vary the binding properties of an antibody or determine which residues contribute to the binding of an antigen.


In one embodiment, the antibody of the invention may comprise from one to six of the exemplary CDRs described herein. The antibodies of the invention may be of any type including IgM, IgG (including IgG1, IgG2, IgG3, IgG4), IgD, IgA, or IgE antibody. In a specific embodiment the antigen binding protein is an IgG type antibody, e.g., a IgG1 antibody.


In one embodiment, the antibody of the invention may be a multispecific antibody, and notably a bispecific antibody, also sometimes referred to as “diabodies.” These are antibodies that bind to two or more different antigens or different epitopes on a single antigen. In certain embodiments, a bispecific antibody binds CDH19 and an antigen on a human effector cell (e.g., T cell). Such antibodies are useful in targeting an effector cell response against a CDH19 expressing cells, such as a tumor cell. In preferred embodiments, the human effector cell antigen is CD3 (see corresponding formats e.g. in WO 2008/119567. Methods of making bispecific antibodies are known in the art. One such method involves engineering the Fc portion of the heavy chains such as to create “knobs” and “holes” which facilitate heterodimer formation of the heavy chains when co-expressed in a cell. U.S. Pat. No. 7,695,963. Another method also involves engineering the Fc portion of the heavy chain but uses electrostatic steering to encourage heterodimer formation while discouraging homodimer formation of the heavy chains when co-expressed in a cell. WO 2009/089004, which is incorporated herein by reference in its entirety.


In one embodiment, antibody of the invention is a minibody. Minibodies are minimized antibody-like proteins comprising a scFv joined to a CH3 domain. Hu et al., 1996, Cancer Res. 56:3055-3061.


In one embodiment, the antibody of the invention is a domain antibody; see, for example U.S. Pat. No. 6,248,516. Domain antibodies (dAbs) are functional binding domains of antibodies, corresponding to the variable regions of either the heavy (VH) or light (VL) chains of human antibodies. dABs have a molecular weight of approximately 13 kDa, or less than one-tenth the size of a full antibody. dABs are well expressed in a variety of hosts including bacterial, yeast, and mammalian cell systems. In addition, dAbs are highly stable and retain activity even after being subjected to harsh conditions, such as freeze-drying or heat denaturation. See, for example, U.S. Pat. Nos. 6,291,158; 6,582,915; 6,593,081; 6,172,197; US Serial No. 2004/0110941; European Patent 0368684; U.S. Pat. No. 6,696,245, WO04/058821, WO04/003019 and WO03/002609.


In one embodiment, the antibody of the invention is an antibody fragment, that is a fragment of any of the antibodies outlined herein that retain binding specificity to CDH19. In various embodiments, the antibody binding proteins comprise, but are not limited to, a F(ab), F(ab′), F(ab′)2, Fv, or a single chain Fv fragments. At a minimum, an antibody, as meant herein, comprises a polypeptide that can bind specifically to CDH19 comprising all or part of a light or heavy chain variable region, such as one or more CDRs.


Naturally occurring antibodies typically include a signal sequence, which directs the antibody into the cellular pathway for protein secretion and which is typically not present in the mature antibody. A polynucleotide encoding an antibody of the invention may encode a naturally occurring a signal sequence or a heterologous signal sequence as described below.


“Consisting essentially of” means that the amino acid sequence can vary by about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15% relative to the recited SEQ ID NO: sequence and still retain biological activity, as described herein.


In some embodiments, the antibodies of the invention are isolated proteins or substantially pure proteins. An “isolated” protein is unaccompanied by at least some of the material with which it is normally associated in its natural state, for example constituting at least about 5%, or at least about 50% by weight of the total protein in a given sample. It is understood that the isolated protein may constitute from 5 to 99.9% by weight of the total protein content depending on the circumstances. For example, the protein may be made at a significantly higher concentration through the use of an inducible promoter or high expression promoter, such that the protein is made at increased concentration levels. The definition includes the production of an antigen binding protein in a wide variety of organisms and/or host cells that are known in the art.


For amino acid sequences, sequence identity and/or similarity is determined by using standard techniques known in the art, including, but not limited to, the local sequence identity algorithm of Smith and Waterman, 1981, Adv. Appl. Math. 2:482, the sequence identity alignment algorithm of Needleman and Wunsch, 1970, J. Mol. Biol. 48:443, the search for similarity method of Pearson and Lipman, 1988, Proc. Nat. Acad. Sci. U.S.A. 85:2444, computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, Wis.), the Best Fit sequence program described by Devereux et al., 1984, Nucl. Acid Res. 12:387-395, preferably using the default settings, or by inspection. Preferably, percent identity is calculated by FastDB based upon the following parameters: mismatch penalty of 1; gap penalty of 1; gap size penalty of 0.33; and joining penalty of 30, “Current Methods in Sequence Comparison and Analysis,” Macromolecule Sequencing and Synthesis, Selected Methods and Applications, pp 127-149 (1988), Alan R. Liss, Inc.


An example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. It can also plot a tree showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, 1987, J. Mol. Evol. 35:351-360; the method is similar to that described by Higgins and Sharp, 1989, CABIOS 5:151-153. Useful PILEUP parameters including a default gap weight of 3.00, a default gap length weight of 0.10, and weighted end gaps.


Another example of a useful algorithm is the BLAST algorithm, described in: Altschul et al., 1990, J. Mol. Biol. 215:403-410; Altschul et al., 1997, Nucleic Acids Res. 25:3389-3402; and Karin et al., 1993, Proc. Natl. Acad. Sci. U.S.A. 90:5873-5787. A particularly useful BLAST program is the WU-BLAST-2 program which was obtained from Altschul et al., 1996, Methods in Enzymology 266:460-480. WU-BLAST-2 uses several search parameters, most of which are set to the default values. The adjustable parameters are set with the following values: overlap span=1, overlap fraction=0.125, word threshold (T)=II. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched; however, the values may be adjusted to increase sensitivity.


An additional useful algorithm is gapped BLAST as reported by Altschul et al., 1993, Nucl. Acids Res. 25:3389-3402. Gapped BLAST uses BLOSUM-62 substitution scores; threshold T parameter set to 9; the two-hit method to trigger ungapped extensions, charges gap lengths of k a cost of 10+k; Xu set to 16, and Xg set to 40 for database search stage and to 67 for the output stage of the algorithms. Gapped alignments are triggered by a score corresponding to about 22 bits.


Generally, the amino acid homology, similarity, or identity between individual variant CDRs are at least 80% to the sequences depicted herein, and more typically with preferably increasing homologies or identities of at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and almost 100%. In a similar manner, “percent (%) nucleic acid sequence identity” with respect to the nucleic acid sequence of the binding proteins identified herein is defined as the percentage of nucleotide residues in a candidate sequence that are identical with the nucleotide residues in the coding sequence of the antigen binding protein. A specific method utilizes the BLASTN module of WU-BLAST-2 set to the default parameters, with overlap span and overlap fraction set to 1 and 0.125, respectively.


Generally, the nucleic acid sequence homology, similarity, or identity between the nucleotide sequences encoding individual variant CDRs and the nucleotide sequences depicted herein are at least 80%, and more typically with preferably increasing homologies or identities of at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, and almost 100%.


Thus, a “variant CDR” is one with the specified homology, similarity, or identity to the parent CDR of the invention, and shares biological function, including, but not limited to, at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the specificity and/or activity of the parent CDR.


While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed antigen binding protein CDR variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, for example, M13 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of antigen binding protein activities, such as CDH19 binding.


The term “amino acid” or “amino acid residue” typically refers to an amino acid having its art recognized definition such as an amino acid selected from the group consisting of: alanine (Ala or A); arginine (Arg or R); asparagine (Asn or N); aspartic acid (Asp or D); cysteine (Cys or C); glutamine (Gln or Q); glutamic acid (Glu or E); glycine (Gly or G); histidine (His or H); isoleucine (He or I): leucine (Leu or L); lysine (Lys or K); methionine (Met or M); phenylalanine (Phe or F); pro line (Pro or P); serine (Ser or S); threonine (Thr or T); tryptophan (Trp or W); tyrosine (Tyr or Y); and valine (Val or V), although modified, synthetic, or rare amino acids may be used as desired. Generally, amino acids can be grouped as having a nonpolar side chain (e.g., Ala, Cys, He, Leu, Met, Phe, Pro, Val); a negatively charged side chain (e.g., Asp, Glu); a positively charged sidechain (e.g., Arg, His, Lys); or an uncharged polar side chain (e.g., Asn, Cys, Gln, Gly, His, Met, Phe, Ser, Thr, Trp, and Tyr).


The term “hypervariable region” (also known as “complementarity determining regions” or CDRs) when used herein refers to the amino acid residues of an antibody which are (usually three or four short regions of extreme sequence variability) within the V-region domain of an immunoglobulin which form the antigen-binding site and are the main determinants of antigen specificity. There are at least two methods for identifying the CDR residues: (1) An approach based on cross-species sequence variability (i. e., Kabat et al., loc. cit.); and (2) An approach based on crystallographic studies of antigen-antibody complexes (Chothia, C. et al., J. Mol. Biol. 196: 901-917 (1987)). However, to the extent that two residue identification techniques define regions of overlapping, but not identical regions, they can be combined to define a hybrid CDR. However, in general, the CDR residues are preferably identified in accordance with the so-called Kabat (numbering) system.


The term “framework region” refers to the art-recognized portions of an antibody variable region that exist between the more divergent (i.e., hypervariable) CDRs. Such framework regions are typically referred to as frameworks 1 through 4 (FR1, FR2, FR3, and FR4) and provide a scaffold for the presentation of the six CDRs (three from the heavy chain and three from the light chain) in three dimensional space, to form an antigen-binding surface.


Typically, CDRs form a loop structure that can be classified as a canonical structure. The term “canonical structure” refers to the main chain conformation that is adopted by the antigen binding (CDR) loops. From comparative structural studies, it has been found that five of the six antigen binding loops have only a limited repertoire of available conformations. Each canonical structure can be characterized by the torsion angles of the polypeptide backbone. Correspondent loops between antibodies may, therefore, have very similar three dimensional structures, despite high amino acid sequence variability in most parts of the loops (Chothia and Lesk, J. Mol. Biol., 1987, 196: 901; Chothia et al., Nature, 1989, 342: 877; Martin and Thornton, J. Mol. Biol, 1996, 263: 800, each of which is incorporated by reference in its entirety). Furthermore, there is a relationship between the adopted loop structure and the amino acid sequences surrounding it. The conformation of a particular canonical class is determined by the length of the loop and the amino acid residues residing at key positions within the loop, as well as within the conserved framework (i.e., outside of the loop). Assignment to a particular canonical class can therefore be made based on the presence of these key amino acid residues. The term “canonical structure” may also include considerations as to the linear sequence of the antibody, for example, as catalogued by Kabat (Kabat et al., loc. cit.). The Kabat numbering scheme (system) is a widely adopted standard for numbering the amino acid residues of an antibody variable domain in a consistent manner and is the preferred scheme applied in the present invention as also mentioned elsewhere herein. Additional structural considerations can also be used to determine the canonical structure of an antibody. For example, those differences not fully reflected by Kabat numbering can be described by the numbering system of Chothia et al and/or revealed by other techniques, for example, crystallography and two or three-dimensional computational modeling. Accordingly, a given antibody sequence may be placed into a canonical class which allows for, among other things, identifying appropriate chassis sequences (e.g., based on a desire to include a variety of canonical structures in a library). Kabat numbering of antibody amino acid sequences and structural considerations as described by Chothia et al., loc. cit. and their implications for construing canonical aspects of antibody structure, are described in the literature.


CDR3 is typically the greatest source of molecular diversity within the antibody-binding site. H3, for example, can be as short as two amino acid residues or greater than 26 amino acids. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known in the art. For a review of the antibody structure, see Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, eds. Harlow et al., 1988. One of skill in the art will recognize that each subunit structure, e.g., a CH, VH, CL, VL, CDR, FR structure, comprises active fragments, e.g., the portion of the VH, VL, or CDR subunit the binds to the antigen, i.e., the antigen-binding fragment, or, e.g., the portion of the CH subunit that binds to and/or activates, e.g., an Fc receptor and/or complement. The CDRs typically refer to the Kabat CDRs, as described in Sequences of Proteins of immunological Interest, US Department of Health and Human Services (1991), eds. Kabat et al. Another standard for characterizing the antigen binding site is to refer to the hypervariable loops as described by Chothia. See, e.g., Chothia, et al. (1987; J. Mol. Biol. 227:799-817); and Tomlinson et al. (1995) EMBO J. 14: 4628-4638. Still another standard is the AbM definition used by Oxford Molecular's AbM antibody modeling software. See, generally, e.g., Protein Sequence and Structure Analysis of Antibody Variable Domains. In: Antibody Engineering Lab Manual (Ed.: Duebel, S. and Kontermann, R., Springer-Verlag, Heidelberg). Embodiments described with respect to Kabat CDRs can alternatively be implemented using similar described relationships with respect to Chothia hypervariable loops or to the AbM-defined loops.


The sequence of antibody genes after assembly and somatic mutation is highly varied, and these varied genes are estimated to encode 1010 different antibody molecules (Immunoglobulin Genes, 2nd ed., eds. Jonio et al., Academic Press, San Diego, Calif., 1995). Accordingly, the immune system provides a repertoire of immunoglobulins. The term “repertoire” refers to at least one nucleotide sequence derived wholly or partially from at least one sequence encoding at least one immunoglobulin. The sequence(s) may be generated by rearrangement in vivo of the V, D, and J segments of heavy chains, and the V and J segments of light chains. Alternatively, the sequence(s) can be generated from a cell in response to which rearrangement occurs, e.g., in vitro stimulation. Alternatively, part or all of the sequence(s) may be obtained by DNA splicing, nucleotide synthesis, mutagenesis, and other methods, see, e.g., U.S. Pat. No. 5,565,332. A repertoire may include only one sequence or may include a plurality of sequences, including ones in a genetically diverse collection.


The term “binding molecule” or “antibody construct” in the sense of the present disclosure indicates any molecule capable of (specifically) binding to, interacting with or recognizing the target molecule CDH19. Such molecules or constructs may include proteinaceous parts and non-proteinaceous parts (e.g. chemical linkers or chemical cross-linking agents such as glutaraldehyde).


The term “multispecific” as used herein refers to a binding molecule which is an antibody construct and comprises at least a first and a second binding domain, wherein the first binding domain is capable of binding to one antigen or target, and the second binding domain is capable of binding to another antigen or target. Accordingly, antibody constructs according to the invention comprise at least a specificity for CDH19. The “antibody construct” of the invention also comprises multispecific binding molecules such as e.g. trispecific binding molecules, the latter ones including three binding domains.


It is also envisaged that the antibody construct of the invention has, in addition to its function to bind to the target molecules CDH19 and CD3, a further function. In this format, the antibody construct is a bi-, tri- or multifunctional antibody construct by targeting plasma cells through binding to CDH19, mediating cytotoxic T cell activity through CD3 binding and providing a further function such as a fully functional Fc constant domain mediating antibody-dependent cellular cytotoxicity through recruitment of effector cells like NK cells, a label (fluorescent etc.), a therapeutic agent such as, e.g. a toxin or radionuclide, and/or means to enhance serum half-life, etc.


The term “binding domain” characterizes in connection with the present invention a domain which is capable of specifically binding to/interacting with a given target epitope or a given target site on the target molecule CDH19.


Binding domains can be derived from a binding domain donor such as for example an antibody. It is envisaged that a binding domain of the present invention comprises at least said part of any of the aforementioned binding domains that is required for binding to/interacting with a given target epitope or a given target site on the target molecule CDH19.


It is envisaged that the binding domain of the aforementioned binding domain donors is characterized by that part of these donors that is responsible for binding the respective target, i.e. when that part is removed from the binding domain donor, said donor loses its binding capability. “Loses” means a reduction of at least 50% of the binding capability when compared with the binding donor. Methods to map these binding sites are well known in the art—it is therefore within the standard knowledge of the skilled person to locate/map the binding site of a binding domain donor and, thereby, to “derive” said binding domain from the respective binding domain donors.


The term “epitope” refers to a site on an antigen to which a binding domain, such as an antibody or immunoglobulin or derivative or fragment of an antibody or of an immunoglobulin, specifically binds. An “epitope” is antigenic and thus the term epitope is sometimes also referred to herein as “antigenic structure” or “antigenic determinant”. Thus, the binding domain is an “antigen-interaction-site”. Said binding/interaction is also understood to define a “specific recognition”. In one example, said binding domain which (specifically) binds to/interacts with a given target epitope or a given target site on the target molecule CDH19 is an antibody or immunoglobulin, and said binding domain is a VH and/or VL region of an antibody or of an immunoglobulin.


“Epitopes” can be formed both by contiguous amino acids or non-contiguous amino acids juxtaposed by tertiary folding of a protein. A “linear epitope” is an epitope where an amino acid primary sequence comprises the recognized epitope. A linear epitope typically includes at least 3 or at least 4, and more usually, at least 5 or at least 6 or at least 7, for example, about 8 to about 10 amino acids in a unique sequence.


A “conformational epitope”, in contrast to a linear epitope, is an epitope wherein the primary sequence of the amino acids comprising the epitope is not the sole defining component of the epitope recognized (e.g., an epitope wherein the primary sequence of amino acids is not necessarily recognized by the binding domain). Typically a conformational epitope comprises an increased number of amino acids relative to a linear epitope. With regard to recognition of conformational epitopes, the binding domain recognizes a three-dimensional structure of the antigen, preferably a peptide or protein or fragment thereof (in the context of the present invention, the antigen for one of the binding domains is comprised within the CDH19 protein). For example, when a protein molecule folds to form a three-dimensional structure, certain amino acids and/or the polypeptide backbone forming the conformational epitope become juxtaposed enabling the antibody to recognize the epitope. Methods of determining the conformation of epitopes include, but are not limited to, x-ray crystallography, two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy and site-directed spin labelling and electron paramagnetic resonance (EPR) spectroscopy. Moreover, the provided examples describe a further method to characterize a given binding domain by way of binning, which includes a test whether the given binding domain binds to one or more epitope cluster(s) of a given protein, in particular CDH19.


As used herein, the term “epitope cluster” denotes the entirety of epitopes lying in a defined contiguous stretch of an antigen. An epitope cluster can comprise one, two or more epitopes. The concept of epitope cluster is also used in the characterization of the features of the antibody or antigen binding fragment thereof of the invention.


The terms “(capable of) binding to”, “specifically recognizing”, “directed to” and “reacting with” mean in accordance with this invention that a binding domain is capable of specifically interacting with one or more, preferably at least two, more preferably at least three and most preferably at least four amino acids of an epitope.


As used herein, the terms “specifically interacting”, “specifically binding” or “specifically bind(s)” mean that a binding domain exhibits appreciable affinity for a particular protein or antigen and, generally, does not exhibit significant reactivity with proteins or antigens other than CDH19. “Appreciable affinity” includes binding with an affinity of about 10−6M (KD) or stronger. Preferably, binding is considered specific when binding affinity is about 10−12 to 10−8 M, 10−12 to 10−9 M, 10−12 to 10−10 M, 10−11 to 10−8 M, preferably of about 10−11 to 10−9 M. Whether a binding domain specifically reacts with or binds to a target can be tested readily by, inter alia, comparing the reaction of said binding domain with a target protein or antigen with the reaction of said binding domain with proteins or antigens other than CDH19. Preferably, a binding domain of the invention does not essentially bind or is not capable of binding to proteins or antigens other than CDH19.


The term “does not essentially bind”, or “is not capable of binding” means that a binding domain of the present invention does not bind another protein or antigen other than CDH19, i.e., does not show reactivity of more than 30%, preferably not more than 20%, more preferably not more than 10%, particularly preferably not more than 9%, 8%, 7%, 6% or 5% with proteins or antigens other than CDH19, whereby binding to CDH19, respectively, is set to be 100%.


Specific binding is believed to be effected by specific motifs in the amino acid sequence of the binding domain and the antigen. Thus, binding is achieved as a result of their primary, secondary and/or tertiary structure as well as the result of secondary modifications of said structures. The specific interaction of the antigen-interaction-site with its specific antigen may result in a simple binding of said site to the antigen. Moreover, the specific interaction of the antigen-interaction-site with its specific antigen may alternatively or additionally result in the initiation of a signal, e.g. due to the induction of a change of the conformation of the antigen, an oligomerization of the antigen, etc.


Proteins (including fragments thereof, preferably biologically active fragments, and peptides, usually having less than 30 amino acids) comprise one or more amino acids coupled to each other via a covalent peptide bond (resulting in a chain of amino acids). The term “polypeptide” as used herein describes a group of molecules, which consist of more than 30 amino acids. Polypeptides may further form multimers such as dimers, trimers and higher oligomers, i.e. consisting of more than one polypeptide molecule. Polypeptide molecules forming such dimers, trimers etc. may be identical or non-identical. The corresponding higher order structures of such multimers are, consequently, termed homo- or heterodimers, homo- or heterotrimers etc. An example for a heteromultimer is an antibody molecule, which, in its naturally occurring form, consists of two identical light polypeptide chains and two identical heavy polypeptide chains. The terms “polypeptide” and “protein” also refer to naturally modified polypeptides/proteins wherein the modification is effected e.g. by post-translational modifications like glycosylation, acetylation, phosphorylation and the like. A “polypeptide” when referred to herein may also be chemically modified such as pegylated. Such modifications are well known in the art.


“Isolated” when used to describe the antibody or antigen binding fragment thereof or antibody construct disclosed herein, refers to the antibody or antigen binding fragment thereof or antibody construct disclosed herein that has been identified, separated and/or recovered from a component of its production environment. Preferably, the isolated the antibody or antigen binding fragment thereof or antibody construct disclosed herein is free of association with all other components from its production environment. Contaminant components of its production environment, such as that resulting from recombinant transfected cells, are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the antibody or antigen binding fragment thereof or antibody construct will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Ordinarily, however, an isolated antibody will be prepared by at least one purification step.


Amino acid sequence modifications of the antibody or antigen binding fragment thereof or antibody construct described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of the antibody or antigen binding fragment thereof or antibody construct disclosed herein are prepared by introducing appropriate nucleotide changes into the antibody or antigen binding fragment thereof or antibody construct nucleic acid, or by peptide synthesis.


Such modifications include, for example, deletions from, and/or insertions into, and/or substitutions of, residues within the amino acid sequences of the antibody or antigen binding fragment thereof or antibody construct disclosed herein. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the antibody or antigen binding fragment thereof or antibody construct disclosed herein, such as changing the number or position of glycosylation sites. Preferably, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids may be substituted in a CDR, while 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 amino acids may be substituted in the framework regions (FRs). The substitutions are preferably conservative substitutions as described herein. Additionally or alternatively, 1, 2, 3, 4, 5, or 6 amino acids may be inserted or deleted in each of the CDRs (of course, dependent on their length), while 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 amino acids may be inserted or deleted in each of the FRs.


A useful method for identification of certain residues or regions of the antibody or antigen binding fragment thereof or antibody construct disclosed herein that are preferred locations for mutagenesis is called “alanine scanning mutagenesis” as described by Cunningham and Wells in Science, 244: 1081-1085 (1989). Here, a residue or group of target residues within the antibody or antigen binding fragment thereof or antibody construct disclosed herein is/are identified (e.g. charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the epitope.


Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se needs not to be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at a target codon or region and the expressed the antibody or antigen binding fragment thereof or antibody construct disclosed herein variants are screened for the desired activity.


Preferably, amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 residues to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. An insertional variant of the antibody or antigen binding fragment thereof or antibody construct disclosed herein includes the fusion to the N- or C-terminus of the antibody to an enzyme or a fusion to a polypeptide which increases the serum half-life of the antibody.


Another type of variant is an amino acid substitution variant. These variants have preferably at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid residues in the antibody or antigen binding fragment thereof or antibody construct disclosed herein replaced by a different residue. The sites of greatest interest for substitutional mutagenesis include the CDRs of the heavy and/or light chain, in particular the hypervariable regions, but FR alterations in the heavy and/or light chain are also contemplated.


For example, if a CDR sequence encompasses 6 amino acids, it is envisaged that one, two or three of these amino acids are substituted. Similarly, if a CDR sequence encompasses 15 amino acids it is envisaged that one, two, three, four, five or six of these amino acids are substituted.


Generally, if amino acids are substituted in one or more or all of the CDRs of the heavy and/or light chain, it is preferred that the then-obtained “substituted” sequence is at least 60%, more preferably 65%, even more preferably 70%, particularly preferably 75%, more particularly preferably 80% identical to the “original” CDR sequence. This means that it is dependent of the length of the CDR to which degree it is identical to the “substituted” sequence. For example, a CDR having 5 amino acids is preferably 80% identical to its substituted sequence in order to have at least one amino acid substituted. Accordingly, the CDRs of the antibody or antigen binding fragment thereof or antibody construct disclosed herein may have different degrees of identity to their substituted sequences, e.g., CDRL1 may have 80%, while CDRL3 may have 90%.


Preferred substitutions (or replacements) are conservative substitutions. However, any substitution (including non-conservative substitution or one or more from the “exemplary substitutions” listed in Table 1, below) is envisaged as long as the antibody or antigen binding fragment thereof or antibody construct retains its capability to bind to CDH19 v and/or its CDRs have an identity to the then substituted sequence (at least 60%, more preferably 65%, even more preferably 70%, particularly preferably 75%, more particularly preferably 80% identical to the “original” CDR sequence).


Conservative substitutions are shown in Table 1 under the heading of “preferred substitutions”. If such substitutions result in a change in biological activity, then more substantial changes, denominated “exemplary substitutions” in Table 1, or as further described below in reference to amino acid classes, may be introduced and the products screened for a desired characteristic.









TABLE 1







Amino Acid Substitutions









Original
Exemplary Substitutions
Preferred Substitutions





Ala (A)
val, leu, ile
val


Arg (R)
lys, gln, asn
lys


Asn (N)
gln, his, asp, lys, arg
gln


Asp (D)
glu, asn
glu


Cys (C)
ser, ala
ser


Gln (Q)
asn, glu
asn


Glu (E)
asp, gln
Asp


Gly (G)
ala
Ala


His (H)
asn, gln, lys, arg
Arg


Ile (I)
leu, val, met, ala, phe
Leu


Leu (L)
norleucine, ile, val, met, ala
Ile


Lys (K)
arg, gln, asn
Arg


Met (M)
leu, phe, ile
Leu


Phe (F)
leu, val, ile, ala, tyr
Tyr


Pro (P)
ala
Ala


Ser (S)
thr
Thr


Thr (T)
ser
Ser


Trp (W)
tyr, phe
Tyr


Tyr (Y)
trp, phe, thr, ser
Phe


Val (V)
ile, leu, met, phe, ala
Leu









Substantial modifications in the biological properties of the antibody or antigen binding fragment thereof or antibody construct of the present invention are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties: (1) hydrophobic: norleucine, met, ala, val, leu, ile; (2) neutral hydrophilic: cys, ser, thr; (3) acidic: asp, glu; (4) basic: asn, gin, his, lys, arg; (5) residues that influence chain orientation: gly, pro; and (6) aromatic: trp, tyr, phe.


Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Any cysteine residue not involved in maintaining the proper conformation of the antibody or antigen binding fragment thereof or antibody construct may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).


A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e. g. a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e. g. 6-7 sites) are mutated to generate all possible amino acid substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e. g. binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the binding domain and, e.g., human CDH19. Such contact residues and neighbouring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.


Other modifications of the antibody or antigen binding fragment thereof or antibody construct are contemplated herein. For example, the antibody or antigen binding fragment thereof or antibody construct may be linked to one of a variety of non-proteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol. The antibody or antigen binding fragment thereof or antibody construct may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatine-microcapsules and poly (methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).


The antibody or antigen binding fragment thereof or antibody construct disclosed herein may also be formulated as immuno-liposomes. A “liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77: 4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545; and WO 97/38731 published Oct. 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556. Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al. J. Biol. Chem. 257: 286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al. J. National Cancer Inst. 81 (19) 1484 (1989).


When using recombinant techniques, the antibody, antigen binding fragment thereof or antibody construct can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody, antigen binding fragment thereof or antibody construct is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10: 163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli.


The antibody, antigen binding fragment thereof or antibody construct composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique.


The term “agent” is used herein to denote a chemical compound, a mixture of chemical compounds, a biological macromolecule, or an extract made from biological materials.


The term “nucleic acid” is well known to the skilled person and encompasses DNA (such as cDNA) and RNA (such as mRNA). The nucleic acid can be double stranded and single stranded, linear and circular. Said nucleic acid molecule is preferably comprised in a vector which is preferably comprised in a host cell. Said host cell is, e.g. after transformation or transfection with the nucleic acid sequence of the invention, capable of expressing the antibody or antigen binding fragment thereof or antibody construct disclosed herein. For that purpose the nucleic acid molecule is operatively linked with control sequences.


A vector is a nucleic acid molecule used as a vehicle to transfer (foreign) genetic material into a cell. The term “vector” encompasses—but is not restricted to—plasmids, viruses, cosmids and artificial chromosomes. In general, engineered vectors comprise an origin of replication, a multicloning site and a selectable marker. The vector itself is generally a nucleotide sequence, commonly a DNA sequence, that comprises an insert (transgene) and a larger sequence that serves as the “backbone” of the vector. Modern vectors may encompass additional features besides the transgene insert and a backbone: promoter, genetic marker, antibiotic resistance, reporter gene, targeting sequence, protein purification tag. Vectors called expression vectors (expression constructs) specifically are for the expression of the transgene in the target cell, and generally have control sequences such as a promoter sequence that drives expression of the transgene. Insertion of a vector into the target cell is usually called “transformation” for bacteria, “transfection” for eukaryotic cells, although insertion of a viral vector is also called “transduction”.


As used herein, the term “host cell” is intended to refer to a cell into which a nucleic acid encoding the antibody or antigen binding fragment thereof or antibody construct of the invention is introduced by way of transformation, transfection and the like. It should be understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


As used herein, the term “expression” includes any step involved in the production of a the antibody or antigen binding fragment thereof or antibody construct of the invention including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.


The term “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.


A nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.


The terms “host cell,” “target cell” or “recipient cell” are intended to include any individual cell or cell culture that can be or has/have been recipients for vectors or the incorporation of exogenous nucleic acid molecules, polynucleotides and/or proteins. It also is intended to include progeny of a single cell, and the progeny may not necessarily be completely identical (in morphology or in genomic or total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation. The cells may be prokaryotic or eukaryotic, and include but are not limited to bacteria, yeast cells, animal cells, and mammalian cells, e.g., murine, rat, macaque or human.


Suitable host cells include prokaryotes and eukaryotic host cells including yeasts, fungi, insect cells and mammalian cells.


The antibody or antigen binding fragment thereof or antibody construct of the invention can be produced in bacteria. After expression, the antibody or antigen binding fragment thereof or antibody construct of the invention, preferably the antibody or antigen binding fragment thereof or antibody construct is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., affinity chromatography and/or size exclusion. Final purification can be carried out similar to the process for purifying antibody expressed e. g, in CHO cells.


In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for the antibody or antigen binding fragment thereof or antibody construct of the invention. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe, Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12424), K. bulgaricus (ATCC 16045), K. wickeramii (ATCC 24178), K. waltii (ATCC 56500), K. drosophilarum (ATCC 36906), K. thermotolerans, and K. marxianus; yarrowia (EP 402 226); Pichia pastoris (EP 183 070); Candida; Trichoderma reesia (EP 244 234); Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger.


Suitable host cells for the expression of glycosylated the antibody or antigen binding fragment thereof or antibody construct of the invention, preferably antibody derived antibody constructs are derived from multicellular organisms. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruit fly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e. g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.


Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, Arabidopsis and tobacco can also be utilized as hosts. Cloning and expression vectors useful in the production of proteins in plant cell culture are known to those of skill in the art. See e.g. Hiatt et al., Nature (1989) 342: 76-78, Owen et al. (1992) Bio/Technology 10: 790-794, Artsaenko et al. (1995) The Plant J 8: 745-750, and Fecker et al. (1996) Plant Mol Biol 32: 979-986.


However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36: 59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77: 4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23: 243-251 (1980)); monkey kidney cells (CVI ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2,1413 8065); mouse mammary tumor (MMT 060562, ATCC CCLS 1); TRI cells (Mather et al., Annals N. Y Acad. Sci. 383: 44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).


When using recombinant techniques, the antibody or antigen binding fragment thereof or antibody construct of the invention can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody or antigen binding fragment thereof or antibody construct is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10: 163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.


The antibody or antigen binding fragment thereof or antibody construct of the invention prepared from the host cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique.


The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly (styrenedivinyl) benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody or antigen binding fragment thereof or antibody construct of the invention comprises a CH3 domain, the Bakerbond ABXMresin (J. T. Baker, Phillipsburg, N.J.) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromato-focusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.


The term “culturing” refers to the in vitro maintenance, differentiation, growth, proliferation and/or propagation of cells under suitable conditions in a medium.


As used herein, the term “pharmaceutical composition” relates to a composition for administration to a patient, preferably a human patient. The particular preferred pharmaceutical composition of this invention comprises the antibody or antigen binding fragment thereof or antibody construct of the invention. Preferably, the pharmaceutical composition comprises suitable formulations of carriers, stabilizers and/or excipients. In a preferred embodiment, the pharmaceutical composition comprises a composition for parenteral, transdermal, intraluminal, intraarterial, intrathecal and/or intranasal administration or by direct injection into tissue. It is in particular envisaged that said composition is administered to a patient via infusion or injection. Administration of the suitable compositions may be effected by different ways, e.g., by intravenous, intraperitoneal, subcutaneous, intramuscular, topical or intradermal administration. In particular, the present invention provides for an uninterrupted administration of the suitable composition. As a non-limiting example, uninterrupted, i.e. continuous administration may be realized by a small pump system worn by the patient for metering the influx of therapeutic agent into the body of the patient. The pharmaceutical composition comprising the antibody or antigen binding fragment thereof or antibody construct of the invention can be administered by using said pump systems. Such pump systems are generally known in the art, and commonly rely on periodic exchange of cartridges containing the therapeutic agent to be infused. When exchanging the cartridge in such a pump system, a temporary interruption of the otherwise uninterrupted flow of therapeutic agent into the body of the patient may ensue. In such a case, the phase of administration prior to cartridge replacement and the phase of administration following cartridge replacement would still be considered within the meaning of the pharmaceutical means and methods of the invention together make up one “uninterrupted administration” of such therapeutic agent.


The continuous or uninterrupted administration of these antibody or antigen binding fragment thereof or antibody constructs of the invention may be intravenous or subcutaneous by way of a fluid delivery device or small pump system including a fluid driving mechanism for driving fluid out of a reservoir and an actuating mechanism for actuating the driving mechanism. Pump systems for subcutaneous administration may include a needle or a cannula for penetrating the skin of a patient and delivering the suitable composition into the patient's body. Said pump systems may be directly fixed or attached to the skin of the patient independently of a vein, artery or blood vessel, thereby allowing a direct contact between the pump system and the skin of the patient. The pump system can be attached to the skin of the patient for 24 hours up to several days. The pump system may be of small size with a reservoir for small volumes. As a non-limiting example, the volume of the reservoir for the suitable pharmaceutical composition to be administered can be between 0.1 and 50 ml.


The continuous administration may be transdermal by way of a patch worn on the skin and replaced at intervals. One of skill in the art is aware of patch systems for drug delivery suitable for this purpose. It is of note that transdermal administration is especially amenable to uninterrupted administration, as exchange of a first exhausted patch can advantageously be accomplished simultaneously with the placement of a new, second patch, for example on the surface of the skin immediately adjacent to the first exhausted patch and immediately prior to removal of the first exhausted patch. Issues of flow interruption or power cell failure do not arise.


The inventive compositions may further comprise a pharmaceutically acceptable carrier. Examples of suitable pharmaceutical carriers are well known in the art and include solutions, e.g. phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions, liposomes, etc. Compositions comprising such carriers can be formulated by well known conventional methods. Formulations can comprise carbohydrates, buffer solutions, amino acids and/or surfactants. Carbohydrates may be non-reducing sugars, preferably trehalose, sucrose, octasulfate, sorbitol or xylitol. In general, as used herein, “pharmaceutically acceptable carrier” means any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed and include: additional buffering agents; preservatives; co-solvents; antioxidants, including ascorbic acid and methionine; chelating agents such as EDTA; metal complexes (e.g., Zn-protein complexes); biodegradable polymers, such as polyesters; salt-forming counter-ions, such as sodium, polyhydric sugar alcohols; amino acids, such as alanine, glycine, asparagine, 2-phenylalanine, and threonine; sugars or sugar alcohols, such as trehalose, sucrose, octasulfate, sorbitol or xylitol stachyose, mannose, sorbose, xylose, ribose, myoinisitose, galactose, lactitol, ribitol, myoinisitol, galactitol, glycerol, cyclitols (e.g., inositol), polyethylene glycol; sulfur containing reducing agents, such as glutathione, thioctic acid, sodium thioglycolate, thioglycerol, [alpha]-monothioglycerol, and sodium thio sulfate; low molecular weight proteins, such as human serum albumin, bovine serum albumin, gelatin, or other immunoglobulins; and hydrophilic polymers, such as polyvinylpyrrolidone. Such formulations may be used for continuous administrations which may be intravenuous or subcutaneous with and/or without pump systems. Amino acids may be charged amino acids, preferably lysine, lysine acetate, arginine, glutamate and/or histidine. Surfactants may be detergents, preferably with a molecular weight of >1.2 KD and/or a polyether, preferably with a molecular weight of >3 KD. Non-limiting examples for preferred detergents are Tween 20, Tween 40, Tween 60, Tween 80 or Tween 85. Non-limiting examples for preferred polyethers are PEG 3000, PEG 3350, PEG 4000 or PEG 5000. Buffer systems used in the present invention can have a preferred pH of 5-9 and may comprise citrate, succinate, phosphate, histidine and acetate.


The compositions of the present invention can be administered to the subject at a suitable dose which can be determined e.g. by dose escalating studies by administration of increasing doses of the polypeptide of the invention exhibiting cross-species specificity described herein to non-chimpanzee primates, for instance macaques. As set forth above, the antibody or antigen binding fragment thereof or antibody construct of the invention exhibiting cross-species specificity described herein can be advantageously used in identical form in preclinical testing in non-chimpanzee primates and as drug in humans. These compositions can also be administered in combination with other proteinaceous and non-proteinaceous drugs. These drugs may be administered simultaneously with the composition comprising the polypeptide of the invention as defined herein or separately before or after administration of said polypeptide in timely defined intervals and doses. The dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depend upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently. Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, inert gases and the like. In addition, the composition of the present invention might comprise proteinaceous carriers, like, e.g., serum albumin or immunoglobulin, preferably of human origin. It is envisaged that the composition of the invention might comprise, in addition to the polypeptide of the invention defined herein, further biologically active agents, depending on the intended use of the composition. Such agents might be drugs acting on the gastro-intestinal system, drugs acting as cytostatica, drugs preventing hyperurikemia, drugs inhibiting immunoreactions (e.g. corticosteroids), drugs modulating the inflammatory response, drugs acting on the circulatory system and/or agents such as cytokines known in the art. It is also envisaged that the antibody or antigen binding fragment thereof or antibody construct of the present invention is applied in a co-therapy, i.e., in combination with another anti-cancer medicament.


The biological activity of the pharmaceutical composition defined herein can be determined for instance by cytotoxicity assays, as described in the following examples, in WO 99/54440 or by Schlereth et al. (Cancer Immunol. Immunother. 20 (2005), 1-12). “Efficacy” or “in vivo efficacy” as used herein refers to the response to therapy by the pharmaceutical composition of the invention, using e.g. standardized NCI response criteria. The success or in vivo efficacy of the therapy using a pharmaceutical composition of the invention refers to the effectiveness of the composition for its intended purpose, i.e. the ability of the composition to cause its desired effect, i.e. depletion of pathologic cells, e.g. tumor cells. The in vivo efficacy may be monitored by established standard methods for the respective disease entities including, but not limited to white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration. In addition, various disease specific clinical chemistry parameters and other established standard methods may be used. Furthermore, computer-aided tomography, X-ray, nuclear magnetic resonance tomography (e.g. for National Cancer Institute-criteria based response assessment [Cheson B D, Horning S J, Coiffier B, Shipp M A, Fisher R I, Connors J M, Lister T A, Vose J, Grillo-Lopez A, Hagenbeek A, Cabanillas F, Klippensten D, Hiddemann W, Castellino R, Harris N L, Armitage J O, Carter W, Hoppe R, Canellos G P. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999 April; 17(4):1244]), positron-emission tomography scanning, white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration, lymph node biopsies/histologies, and various lymphoma specific clinical chemistry parameters (e.g. lactate dehydrogenase) and other established standard methods may be used.


Another major challenge in the development of drugs such as the pharmaceutical composition of the invention is the predictable modulation of pharmacokinetic properties. To this end, a pharmacokinetic profile of the drug candidate, i.e. a profile of the pharmacokinetic parameters that affect the ability of a particular drug to treat a given condition, can be established. Pharmacokinetic parameters of the drug influencing the ability of a drug for treating a certain disease entity include, but are not limited to: half-life, volume of distribution, hepatic first-pass metabolism and the degree of blood serum binding. The efficacy of a given drug agent can be influenced by each of the parameters mentioned above.


“Half-life” means the time where 50% of an administered drug are eliminated through biological processes, e.g. metabolism, excretion, etc.


By “hepatic first-pass metabolism” is meant the propensity of a drug to be metabolized upon first contact with the liver, i.e. during its first pass through the liver.


“Volume of distribution” means the degree of retention of a drug throughout the various compartments of the body, like e.g. intracellular and extracellular spaces, tissues and organs, etc. and the distribution of the drug within these compartments.


“Degree of blood serum binding” means the propensity of a drug to interact with and bind to blood serum proteins, such as albumin, leading to a reduction or loss of biological activity of the drug.


Pharmacokinetic parameters also include bioavailability, lag time (Tlag), Tmax, absorption rates, more onset and/or Cmax for a given amount of drug administered. “Bioavailability” means the amount of a drug in the blood compartment. “Lag time” means the time delay between the administration of the drug and its detection and measurability in blood or plasma.


“Tmax” is the time after which maximal blood concentration of the drug is reached, and “Cmax” is the blood concentration maximally obtained with a given drug. The time to reach a blood or tissue concentration of the drug which is required for its biological effect is influenced by all parameters. Pharmacokinetic parameters of bispecific single chain antibodies exhibiting cross-species specificity, which may be determined in preclinical animal testing in non-chimpanzee primates as outlined above, are also set forth e.g. in the publication by Schlereth et al. (Cancer Immunol. Immunother. 20 (2005), 1-12).


The term “toxicity” as used herein refers to the toxic effects of a drug manifested in adverse events or severe adverse events. These side events might refer to a lack of tolerability of the drug in general and/or a lack of local tolerance after administration. Toxicity could also include teratogenic or carcinogenic effects caused by the drug.


The term “safety”, “in vivo safety” or “tolerability” as used herein defines the administration of a drug without inducing severe adverse events directly after administration (local tolerance) and during a longer period of application of the drug. “Safety”, “in vivo safety” or “tolerability” can be evaluated e.g. at regular intervals during the treatment and follow-up period. Measurements include clinical evaluation, e.g. organ manifestations, and screening of laboratory abnormalities. Clinical evaluation may be carried out and deviations to normal findings recorded/coded according to NCI-CTC and/or MedDRA standards. Organ manifestations may include criteria such as allergy/immunology, blood/bone marrow, cardiac arrhythmia, coagulation and the like, as set forth e.g. in the Common Terminology Criteria for adverse events v3.0 (CTCAE). Laboratory parameters which may be tested include for instance hematology, clinical chemistry, coagulation profile and urine analysis and examination of other body fluids such as serum, plasma, lymphoid or spinal fluid, liquor and the like. Safety can thus be assessed e.g. by physical examination, imaging techniques (i.e. ultrasound, x-ray, CT scans, Magnetic Resonance Imaging (MRI), other measures with technical devices (i.e. electrocardiogram), vital signs, by measuring laboratory parameters and recording adverse events. For example, adverse events in non-chimpanzee primates in the uses and methods according to the invention may be examined by histopathological and/or histochemical methods.


The term “effective dose” or “effective dosage” is defined as an amount sufficient to achieve or at least partially achieve the desired effect. The term “therapeutically effective dose” is defined as an amount sufficient to cure or at least partially arrest the disease and its complications in a patient already suffering from the disease. Amounts effective for this use will depend upon the severity of the infection and the general state of the subject's own immune system. The term “patient” includes human and other mammalian subjects that receive either prophylactic or therapeutic treatment.


The term “effective and non-toxic dose” as used herein refers to a tolerable dose of an inventive antibody or antigen binding fragment thereof or antibody construct which is high enough to cause depletion of pathologic cells, tumor elimination, tumor shrinkage or stabilization of disease without or essentially without major toxic effects. Such effective and non-toxic doses may be determined e.g. by dose escalation studies described in the art and should be below the dose inducing severe adverse side events (dose limiting toxicity, DLT).


The above terms are also referred to e.g. in the Preclinical safety evaluation of biotechnology-derived pharmaceuticals S6; ICH Harmonised Tripartite Guideline; ICH Steering Committee meeting on Jul. 16, 1997.


The appropriate dosage, or therapeutically effective amount, of the antibody or antigen binding fragment thereof or antibody construct of the invention will depend on the condition to be treated, the severity of the condition, prior therapy, and the patient's clinical history and response to the therapeutic agent. The proper dose can be adjusted according to the judgment of the attending physician such that it can be administered to the patient one time or over a series of administrations. The pharmaceutical composition can be administered as a sole therapeutic or in combination with additional therapies such as anti-cancer therapies as needed.


The pharmaceutical compositions of this invention are particularly useful for parenteral administration, i.e., subcutaneously, intramuscularly, intravenously, intra-articular and/or intra-synovial. Parenteral administration can be by bolus injection or continuous infusion.


If the pharmaceutical composition has been lyophilized, the lyophilized material is first reconstituted in an appropriate liquid prior to administration. The lyophilized material may be reconstituted in, e.g., bacteriostatic water for injection (BWFI), physiological saline, phosphate buffered saline (PBS), or the same formulation the protein had been in prior to lyophilization.


In an internal analysis of proprietary mRNA expression data it has been surprisingly found that CDH19 expression is elevated in both primary and metastatic melanoma tumors compared to normal, untransformed tissues. Internal analysis also confirmed that expression of CDH19 in normal tissues is limited to neural crest derived peripheral nerve ganglia and nerve fibers. The differential CDH19 expression in normal and tumor tissues makes this protein attractive for cell-surface targeting therapeutics. Although CDH 19 was discussed as one marker as part of long lists of markers associated with some cancer types (see e.g. WO2009/055937) or Parkinson's disease (see e.g. WO2005/067391) CDH19 was never discussed as a prognostic marker or a drug target in connection with melanoma tumors.


As stated above, the present invention provides an isolated human antibody or antigen binding fragment thereof capable of binding to human CDH19 on the surface of a target cell. In a preferred embodiment the antibody or antigen binding fragment thereof comprises a monoclonal antibody or a fragment thereof.


The “CDH19 extracellular domain” or “CDH19 ECD” refers to a form of CDH19 which is essentially free of transmembrane and cytoplasmic domains of CDH19. It will be understood by the skilled artisan that the transmembrane domain identified for the CDH19 polypeptide of the present invention is identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain specifically mentioned herein. A preferred human CDH19 ECD is shown in SEQ ID NO: 948 (aa residues 44-596). In this context it is understood that the CDH19 ECD represents the part of CDH19 on the surface of a target cell.


The affinity of the antibody or fragment thereof for human CDH19 is preferably ≤15 nM, more preferably ≤10 nM, even more preferably ≤5 nM, even more preferably ≤1 nM, even more preferably ≤0.5 nM, even more preferably ≤0.1 nM, and most preferably ≤0.05 nM. The affinity of the first binding domain for macaque CDH19 is preferably ≤15 nM, more preferably ≤10 nM, even more preferably ≤5 nM, even more preferably ≤1 nM, even more preferably ≤0.5 nM, even more preferably ≤0.1 nM, and most preferably ≤0.05 nM or even 50.01 nM. The affinity can be measured for example in a Biacore assay or in a Scatchard assay, e.g. as described in the Examples. The affinity gap for binding to macaque CDH19 versus human CDH19 is preferably [1:10-1:5] or [5:1-10:1], more preferably [1:5-5:1], and most preferably [1:2-3:1] or even [1:1-3:1]. Other methods of determining the affinity are well-known to the skilled person.


Human antibodies avoid some of the problems associated with antibodies that possess murine or rat variable and/or constant regions. The presence of such murine or rat derived proteins can lead to the rapid clearance of the antibodies or can lead to the generation of an immune response against the antibody by a patient. In order to avoid the utilization of murine or rat derived antibodies, human or fully human antibodies can be generated through the introduction of human antibody function into a rodent so that the rodent produces fully human antibodies.


The ability to clone and reconstruct megabase-sized human loci in YACs and to introduce them into the mouse germline provides a powerful approach to elucidating the functional components of very large or crudely mapped loci as well as generating useful models of human disease. Furthermore, the utilization of such technology for substitution of mouse loci with their human equivalents could provide unique insights into the expression and regulation of human gene products during development, their communication with other systems, and their involvement in disease induction and progression.


An important practical application of such a strategy is the “humanization” of the mouse humoral immune system. Introduction of human immunoglobulin (Ig) loci into mice in which the endogenous Ig genes have been inactivated offers the opportunity to study the mechanisms underlying programmed expression and assembly of antibodies as well as their role in B-cell development. Furthermore, such a strategy could provide an ideal source for production of fully human monoclonal antibodies (mAbs)—an important milestone towards fulfilling the promise of antibody therapy in human disease. Fully human antibodies are expected to minimize the immunogenic and allergic responses intrinsic to mouse or mouse-derivatized mAbs and thus to increase the efficacy and safety of the administered antibodies. The use of fully human antibodies can be expected to provide a substantial advantage in the treatment of chronic and recurring human diseases, such as inflammation, autoimmunity, and cancer, which require repeated antibody administrations.


One approach towards this goal was to engineer mouse strains deficient in mouse antibody production with large fragments of the human Ig loci in anticipation that such mice would produce a large repertoire of human antibodies in the absence of mouse antibodies. Large human Ig fragments would preserve the large variable gene diversity as well as the proper regulation of antibody production and expression. By exploiting the mouse machinery for antibody diversification and selection and the lack of immunological tolerance to human proteins, the reproduced human antibody repertoire in these mouse strains should yield high affinity antibodies against any antigen of interest, including human antigens. Using the hybridoma technology, antigen-specific human mAbs with the desired specificity could be readily produced and selected. This general strategy was demonstrated in connection with our generation of the first XenoMouse mouse strains, as published in 1994. (See Green et al. Nature Genetics 7:13-21 (1994)) The XenoMouse strains were engineered with yeast artificial chromosomes (YACs) containing 245 kb and 190 kb-sized germline configuration fragments of the human heavy chain locus and kappa light chain locus, respectively, which contained core variable and constant region sequences. Id. The human Ig containing YACs proved to be compatible with the mouse system for both rearrangement and expression of antibodies and were capable of substituting for the inactivated mouse Ig genes. This was demonstrated by their ability to induce B-cell development, to produce an adult-like human repertoire of fully human antibodies, and to generate antigen-specific human mAbs. These results also suggested that introduction of larger portions of the human Ig loci containing greater numbers of V genes, additional regulatory elements, and human Ig constant regions might recapitulate substantially the full repertoire that is characteristic of the human humoral response to infection and immunization. The work of Green et al. was recently extended to the introduction of greater than approximately 80% of the human antibody repertoire through introduction of megabase sized, germline configuration YAC fragments of the human heavy chain loci and kappa light chain loci, respectively. See Mendez et al. Nature Genetics 15:146-156 (1997) and U.S. patent application Ser. No. 08/759,620, filed Dec. 3, 1996, the disclosures of which are hereby incorporated by reference.


The production of the XenoMouse mice is further discussed and delineated in U.S. patent application Ser. No. 07/466,008, filed Jan. 12, 1990, Ser. No. 07/610,515, filed Nov. 8, 1990, Ser. No. 07/919,297, filed Jul. 24, 1992, Ser. No. 07/922,649, filed Jul. 30, 1992, filed Ser. No. 08/031,801, filed Mar. 15, 1993, Ser. No. 08/112,848, filed Aug. 27, 1993, Ser. No. 08/234,145, filed Apr. 28, 1994, Ser. No. 08/376,279, filed Jan. 20, 1995, Ser. No. 08/430,938, Apr. 27, 1995, Ser. No. 08/464,584, filed Jun. 5, 1995, Ser. No. 08/464,582, filed Jun. 5, 1995, Ser. No. 08/463,191, filed Jun. 5, 1995, Ser. No. 08/462,837, filed Jun. 5, 1995, Ser. No. 08/486,853, filed Jun. 5, 1995, Ser. No. 08/486,857, filed Jun. 5, 1995, Ser. No. 08/486,859, filed Jun. 5, 1995, Ser. No. 08/462,513, filed Jun. 5, 1995, Ser. No. 08/724,752, filed Oct. 2, 1996, and Ser. No. 08/759,620, filed Dec. 3, 1996 and U.S. Pat. Nos. 6,162,963, 6,150,584, 6,114,598, 6,075,181, and 5,939,598 and Japanese Patent Nos. 3 068 180 B2, 3 068 506 B2, and 3 068 507 B2. See also Mendez et al. Nature Genetics 15:146-156 (1997) and Green and Jakobovits J. Exp. Med. 188:483-495 (1998). See also European Patent No., EP 0 463151 B1, grant published Jun. 12, 1996, International Patent Application No., WO 94/02602, published Feb. 3, 1994, International Patent Application No., WO 96/34096, published Oct. 31, 1996, WO 98/24893, published Jun. 11, 1998, WO 00/76310, published Dec. 21, 2000, WO 03/47336. The disclosures of each of the above-cited patents, applications, and references are hereby incorporated by reference in their entirety.


In an alternative approach, others, including GenPharm International, Inc., have utilized a “minilocus” approach. In the minilocus approach, an exogenous Ig locus is mimicked through the inclusion of pieces (individual genes) from the Ig locus. Thus, one or more V.sub.H genes, one or more D.sub.H genes, one or more J.sub.H genes, a mu constant region, and a second constant region (preferably a gamma constant region) are formed into a construct for insertion into an animal. This approach is described in U.S. Pat. No. 5,545,807 to Surani et al. and U.S. Pat. Nos. 5,545,806, 5,625,825, 5,625,126, 5,633,425, 5,661,016, 5,770,429, 5,789,650, 5,814,318, 5,877,397, 5,874,299, and 6,255,458 each to Lonberg and Kay, U.S. Pat. Nos. 5,591,669 and 6,023.010 to Krimpenfort and Berns, U.S. Pat. Nos. 5,612,205, 5,721,367, and 5,789,215 to Berns et al., and U.S. Pat. No. 5,643,763 to Choi and Dunn, and GenPharm International U.S. patent application Ser. No. 07/574,748, filed Aug. 29, 1990, Ser. No. 07/575,962, filed Aug. 31, 1990, Ser. No. 07/810,279, filed Dec. 17, 1991, Ser. No. 07/853,408, filed Mar. 18, 1992, Ser. No. 07/904,068, filed Jun. 23, 1992, Ser. No. 07/990,860, filed Dec. 16, 1992, Ser. No. 08/053,131, filed Apr. 26, 1993, Ser. No. 08/096,762, filed Jul. 22, 1993, Ser. No. 08/155,301, filed Nov. 18, 1993, Ser. No. 08/161,739, filed Dec. 3, 1993, Ser. No. 08/165,699, filed Dec. 10, 1993, Ser. No. 08/209,741, filed Mar. 9, 1994, the disclosures of which are hereby incorporated by reference. See also European Patent No. 0 546 073 B 1, International Patent Application Nos. WO 92/03918, WO 92/22645, WO 92/22647, WO 92/22670, WO 93/12227, WO 94/00569, WO 94/25585, WO 96/14436, WO 97/13852, and WO 98/24884 and U.S. Pat. No. 5,981,175, the disclosures of which are hereby incorporated by reference in their entirety. See further Taylor et al., 1992, Chen et al., 1993, Tuaillon et al., 1993, Choi et al., 1993, Lonberg et al., (1994), Taylor et al., (1994), and Tuaillon et al., (1995), Fishwild et al., (1996), the disclosures of which are hereby incorporated by reference in their entirety.


Kirin has also demonstrated the generation of human antibodies from mice in which, through microcell fusion, large pieces of chromosomes, or entire chromosomes, have been introduced. See European Patent Application Nos. 773 288 and 843 961, the disclosures of which are hereby incorporated by reference. Xenerex Biosciences is developing a technology for the potential generation of human antibodies. In this technology, SCID mice are reconstituted with human lymphatic cells, e.g., B and/or T cells. Mice are then immunized with an antigen and can generate an immune response against the antigen. See U.S. Pat. Nos. 5,476,996, 5,698,767, and 5,958,765.


Human anti-mouse antibody (HAMA) responses have led the industry to prepare chimeric or otherwise humanized antibodies. While chimeric antibodies have a human constant region and a murine variable region, it is expected that certain human anti-chimeric antibody (HACA) responses will be observed, particularly in chronic or multi-dose utilizations of the antibody. Thus, it would be desirable to provide fully human antibodies against EGFRvIII in order to vitiate concerns and/or effects of HAMA or HACA response.


According to one embodiment the antibody of the present invention is a dimer comprising two fusion proteins created by fusing a CDH19 binding fragment of a CDH19 antibody to the Fc region of an antibody. The dimer can be made by, for example, inserting a gene fusion encoding the fusion protein into an appropriate expression vector, expressing the gene fusion in host cells transformed with the recombinant expression vector, and allowing the expressed fusion protein to assemble much like antibody molecules, whereupon interchain disulfide bonds form between the Fc moieties to yield the dimer.


The term “Fc polypeptide” as used herein includes native and mutein forms of polypeptides derived from the Fc region of an antibody. Truncated forms of such polypeptides containing the hinge region that promotes dimerization also are included. Fusion proteins comprising Fc moieties (and oligomers formed therefrom) offer the advantage of facile purification by affinity chromatography over Protein A or Protein G columns.


One suitable Fc polypeptide, described in PCT application WO 93/10151 (hereby incorporated by reference), is a single chain polypeptide extending from the N-terminal hinge region to the native C-terminus of the Fc region of a human IgG antibody. Another useful Fc polypeptide is the Fc mutein described in U.S. Pat. No. 5,457,035 and in Baum et al., 1994, EMBO J. 13:3992-4001. The amino acid sequence of this mutein is identical to that of the native Fc sequence presented in WO 93/10151, except that amino acid 19 has been changed from Leu to Ala, amino acid 20 has been changed from Leu to Glu, and amino acid 22 has been changed from Gly to Ala. The mutein exhibits reduced affinity for Fc receptors.


Alternatively, the antibody of the invention is a fusion protein comprising multiple CDH19 antibody polypeptides, with or without peptide linkers (spacer peptides). Among the suitable peptide linkers are those described in U.S. Pat. Nos. 4,751,180 and 4,935,233 or WO 88/09344.


Another method for preparing oligomeric CDH19 antibody derivatives involves use of a leucine zipper. Leucine zipper domains are peptides that promote oligomerization of the proteins in which they are found. Leucine zippers were originally identified in several DNA-binding proteins (Landschulz et al., 1988, Science 240:1759), and have since been found in a variety of different proteins. Among the known leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize. Examples of leucine zipper domains suitable for producing soluble oligomeric proteins are described in PCT application WO 94/10308, and the leucine zipper derived from lung surfactant protein D (SPD) described in Hoppe et al., 1994, FEBS Letters 344:191, hereby incorporated by reference. The use of a modified leucine zipper that allows for stable trimerization of a heterologous protein fused thereto is described in Fanslow et al., 1994, Semin. Immunol. 6:267-78. In one approach, recombinant fusion proteins comprising CDH19 antibody fragment or derivative fused to a leucine zipper peptide are expressed in suitable host cells, and the soluble oligomeric CDH19 antibody fragments or derivatives that form are recovered from the culture supernatant.


Covalent modifications of antigen binding proteins are included within the scope of this invention, and are generally, but not always, done post-translationally. For example, several types of covalent modifications of the antigen binding protein are introduced into the molecule by reacting specific amino acid residues of the antigen binding protein with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues.


Cysteinyl residues most commonly are reacted with α-haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, α-bromo-β-(5-imidozoyl)propionic acid, chloroacetyl phosphate, N-alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p-chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1,3-diazole.


Histidyl residues are derivatized by reaction with diethylpyrocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain. Para-bromophenacyl bromide also is useful; the reaction is preferably performed in 0.1M sodium cacodylate at pH 6.0.


Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing alpha-amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4-pentanedione; and transaminase-catalyzed reaction with glyoxylate.


Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pKa of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.


The specific modification of tyrosyl residues may be made, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively. Tyrosyl residues are iodinated using 125I or 131I to prepare labeled proteins for use in radioimmunoassay, the chloramine T method described above being suitable.


Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction with carbodiimides (R′—N═C═N—R′), where R and R′ are optionally different alkyl groups, such as 1-cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.


Derivatization with bifunctional agents is useful for crosslinking antigen binding proteins to a water-insoluble support matrix or surface for use in a variety of methods. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3′-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane. Derivatizing agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Pat. Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.


Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues, respectively. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.


Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α-amino groups of lysine, arginine, and histidine side chains (T. E. Creighton, Proteins: Structure and Molecular Properties, W. H. Freeman & Co., San Francisco, 1983, pp. 79-86), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.


Another type of covalent modification of the antigen binding protein included within the scope of this invention comprises altering the glycosylation pattern of the protein. As is known in the art, glycosylation patterns can depend on both the sequence of the protein (e.g., the presence or absence of particular glycosylation amino acid residues, discussed below), or the host cell or organism in which the protein is produced. Particular expression systems are discussed below.


Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tri-peptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tri-peptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.


Addition of glycosylation sites to the antigen binding protein is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tri-peptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the starting sequence (for O-linked glycosylation sites). For ease, the antigen binding protein amino acid sequence is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the target polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.


Another means of increasing the number of carbohydrate moieties on the antigen binding protein is by chemical or enzymatic coupling of glycosides to the protein. These procedures are advantageous in that they do not require production of the protein in a host cell that has glycosylation capabilities for N- and O-linked glycosylation. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in WO 87/05330 published Sep. 11, 1987, and in Aplin and Wriston, 1981, CRC Crit. Rev. Biochem., pp. 259-306.


Removal of carbohydrate moieties present on the starting antigen binding protein may be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the protein to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin et al., 1987, Arch. Biochem. Biophys. 259:52 and by Edge et al., 1981, Anal. Biochem. 118:131. Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., 1987, Meth. Enzymol. 138:350. Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin et al., 1982, J. Biol. Chem. 257:3105. Tunicamycin blocks the formation of protein-N-glycoside linkages.


Another type of covalent modification of the antigen binding protein comprises linking the antigen binding protein to various non-proteinaceous polymers, including, but not limited to, various polyols such as polyethylene glycol, polypropylene glycol or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337. In addition, as is known in the art, amino acid substitutions may be made in various positions within the antigen binding protein to facilitate the addition of polymers such as PEG.


In some embodiments, the covalent modification of the antigen binding proteins of the invention comprises the addition of one or more labels.


The term “labelling group” means any detectable label. Examples of suitable labelling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 90Y, 99Tc, 111In, 125I, 131I), fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, the labelling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labelling proteins are known in the art and may be used in performing the present invention.


In general, labels fall into a variety of classes, depending on the assay in which they are to be detected: a) isotopic labels, which may be radioactive or heavy isotopes; b) magnetic labels (e.g., magnetic particles); c) redox active moieties; d) optical dyes; enzymatic groups (e.g. horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase); e) biotinylated groups; and f) predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags, etc.). In some embodiments, the labelling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labelling proteins are known in the art and may be used in performing the present invention.


Specific labels include optical dyes, including, but not limited to, chromophores, phosphors and fluorophores, with the latter being specific in many instances. Fluorophores can be either “small molecule” fluores, or proteinaceous fluores.


By “fluorescent label” is meant any molecule that may be detected via its inherent fluorescent properties. Suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade BlueJ, Texas Red, IAEDANS, EDANS, BODIPY FL, LC Red 640, Cy 5, Cy 5.5, LC Red 705, Oregon green, the Alexa-Fluor dyes (Alexa Fluor 350, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 660, Alexa Fluor 680), Cascade Blue, Cascade Yellow and R-phycoerythrin (PE) (Molecular Probes, Eugene, Oreg.), FITC, Rhodamine, and Texas Red (Pierce, Rockford, Ill.), Cy5, Cy5.5, Cy7 (Amersham Life Science, Pittsburgh, Pa.). Suitable optical dyes, including fluorophores, are described in Molecular Probes Handbook by Richard P. Haugland, hereby expressly incorporated by reference.


Suitable proteinaceous fluorescent labels also include, but are not limited to, green fluorescent protein, including a Renilla, Ptilosarcus, or Aequorea species of GFP (Chalfie et al., 1994, Science 263:802-805), EGFP (Clontech Laboratories, Inc., Genbank Accession Number U55762), blue fluorescent protein (BFP, Quantum Biotechnologies, Inc. 1801 de Maisonneuve Blvd. West, 8th Floor, Montreal, Quebec, Canada H3H 1J9; Stauber, 1998, Biotechniques 24:462-471; Heim et al., 1996, Curr. Biol. 6:178-182), enhanced yellow fluorescent protein (EYFP, Clontech Laboratories, Inc.), luciferase (Ichiki et al., 1993, J. Immunol. 150:5408-5417), β galactosidase (Nolan et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:2603-2607) and Renilla (WO92/15673, WO95/07463, WO98/14605, WO98/26277, WO99/49019, U.S. Pat. Nos. 5,292,658, 5,418,155, 5,683,888, 5,741,668, 5,777,079, 5,804,387, 5,874,304, 5,876,995, 5,925,558). All of the above-cited references are expressly incorporated herein by reference.


As described in appended example 2 a broad number of CDH19 specific binder has been characterized with respect to identified binding characteristics and those binders were grouped into five different bins, which refers to five different subgroups of CDH19 specific binding domains. Accordingly, in one embodiment the human antibody or antigen binding fragment thereof of the invention comprises a human binding domain or antigen binding fragment thereof comprising a VH region comprising CDR-H1, CDR-H2 and CDR-H3 and a VL region comprising CDR-L1, CDR-L2 and CDR-L3 selected from the group consisting of:

  • (a) CDR-H1 as depicted in SEQ ID NO: 52, CDR-H2 as depicted in SEQ ID NO: 53, CDR-H3 as depicted in SEQ ID NO: 54, CDR-L1 as depicted in SEQ ID NO: 220, CDR-L2 as depicted in SEQ ID NO: 221 and CDR-L3 as depicted in SEQ ID NO: 222,
    • CDR-H1 as depicted in SEQ ID NO: 82, CDR-H2 as depicted in SEQ ID NO: 83, CDR-H3 as depicted in SEQ ID NO: 84, CDR-L1 as depicted in SEQ ID NO: 250, CDR-L2 as depicted in SEQ ID NO: 251 and CDR-L3 as depicted in SEQ ID NO: 252,
    • CDR-H1 as depicted in SEQ ID NO: 82, CDR-H2 as depicted in SEQ ID NO: 83, CDR-H3 as depicted in SEQ ID NO: 84, CDR-L1 as depicted in SEQ ID NO: 250, CDR-L2 as depicted in SEQ ID NO: 251 and CDR-L3 as depicted in SEQ ID NO: 927,
    • CDR-H1 as depicted in SEQ ID NO: 82, CDR-H2 as depicted in SEQ ID NO: 83, CDR-H3 as depicted in SEQ ID NO: 909, CDR-L1 as depicted in SEQ ID NO: 250, CDR-L2 as depicted in SEQ ID NO: 251 and CDR-L3 as depicted in SEQ ID NO: 927,
    • CDR-H1 as depicted in SEQ ID NO: 52, CDR-H2 as depicted in SEQ ID NO: 53, CDR-H3 as depicted in SEQ ID NO: 54, CDR-L1 as depicted in SEQ ID NO: 220, CDR-L2 as depicted in SEQ ID NO: 221 and CDR-L3 as depicted in SEQ ID NO: 926, and
    • CDR-H1 as depicted in SEQ ID NO: 52, CDR-H2 as depicted in SEQ ID NO: 53, CDR-H3 as depicted in SEQ ID NO: 904, CDR-L1 as depicted in SEQ ID NO: 220, CDR-L2 as depicted in SEQ ID NO: 221 and CDR-L3 as depicted in SEQ ID NO: 926;
    • which all characterize binding domains for CDH19 grouped into bin 1;
  • (b) CDR-H1 as depicted in SEQ ID NO: 124, CDR-H2 as depicted in SEQ ID NO: 125, CDR-H3 as depicted in SEQ ID NO: 126, CDR-L1 as depicted in SEQ ID NO: 292, CDR-L2 as depicted in SEQ ID NO: 293 and CDR-L3 as depicted in SEQ ID NO: 294,
    • CDR-H1 as depicted in SEQ ID NO: 130, CDR-H2 as depicted in SEQ ID NO: 131, CDR-H3 as depicted in SEQ ID NO: 132, CDR-L1 as depicted in SEQ ID NO: 298, CDR-L2 as depicted in SEQ ID NO: 299 and CDR-L3 as depicted in SEQ ID NO: 300,
    • CDR-H1 as depicted in SEQ ID NO: 136, CDR-H2 as depicted in SEQ ID NO: 137, CDR-H3 as depicted in SEQ ID NO: 138, CDR-L1 as depicted in SEQ ID NO: 304, CDR-L2 as depicted in SEQ ID NO: 305 and CDR-L3 as depicted in SEQ ID NO: 306,
    • CDR-H1 as depicted in SEQ ID NO: 142, CDR-H2 as depicted in SEQ ID NO: 143, CDR-H3 as depicted in SEQ ID NO: 144, CDR-L1 as depicted in SEQ ID NO: 310, CDR-L2 as depicted in SEQ ID NO: 311 and CDR-L3 as depicted in SEQ ID NO: 312,
    • CDR-H1 as depicted in SEQ ID NO: 148, CDR-H2 as depicted in SEQ ID NO: 149, CDR-H3 as depicted in SEQ ID NO: 150, CDR-L1 as depicted in SEQ ID NO: 316, CDR-L2 as depicted in SEQ ID NO: 317 and CDR-L3 as depicted in SEQ ID NO: 318,
    • CDR-H1 as depicted in SEQ ID NO: 166, CDR-H2 as depicted in SEQ ID NO: 167, CDR-H3 as depicted in SEQ ID NO: 168, CDR-L1 as depicted in SEQ ID NO: 334, CDR-L2 as depicted in SEQ ID NO: 335 and CDR-L3 as depicted in SEQ ID NO: 336,
    • CDR-H1 as depicted in SEQ ID NO: 124, CDR-H2 as depicted in SEQ ID NO: 125, CDR-H3 as depicted in SEQ ID NO: 915, CDR-L1 as depicted in SEQ ID NO: 292, CDR-L2 as depicted in SEQ ID NO: 293 and CDR-L3 as depicted in SEQ ID NO: 294,
    • CDR-H1 as depicted in SEQ ID NO: 124, CDR-H2 as depicted in SEQ ID NO: 125, CDR-H3 as depicted in SEQ ID NO: 915, CDR-L1 as depicted in SEQ ID NO: 292, CDR-L2 as depicted in SEQ ID NO: 293 and CDR-L3 as depicted in SEQ ID NO: 928,
    • CDR-H1 as depicted in SEQ ID NO: 124, CDR-H2 as depicted in SEQ ID NO: 125, CDR-H3 as depicted in SEQ ID NO: 915, CDR-L1 as depicted in SEQ ID NO: 292, CDR-L2 as depicted in SEQ ID NO: 293 and CDR-L3 as depicted in SEQ ID NO: 929,
    • CDR-H1 as depicted in SEQ ID NO: 166, CDR-H2 as depicted in SEQ ID NO: 167, CDR-H3 as depicted in SEQ ID NO: 168, CDR-L1 as depicted in SEQ ID NO: 334, CDR-L2 as depicted in SEQ ID NO: 335 and CDR-L3 as depicted in SEQ ID NO: 336,
    • CDR-H1 as depicted in SEQ ID NO: 166, CDR-H2 as depicted in SEQ ID NO: 167, CDR-H3 as depicted in SEQ ID NO: 168, CDR-L1 as depicted in SEQ ID NO: 334, CDR-L2 as depicted in SEQ ID NO: 335 and CDR-L3 as depicted in SEQ ID NO: 942,
    • CDR-H1 as depicted in SEQ ID NO: 166, CDR-H2 as depicted in SEQ ID NO: 167, CDR-H3 as depicted in SEQ ID NO: 168, CDR-L1 as depicted in SEQ ID NO: 334, CDR-L2 as depicted in SEQ ID NO: 335 and CDR-L3 as depicted in SEQ ID NO: 943,
    • CDR-H1 as depicted in SEQ ID NO: 148, CDR-H2 as depicted in SEQ ID NO: 149, CDR-H3 as depicted in SEQ ID NO: 150, CDR-L1 as depicted in SEQ ID NO: 316, CDR-L2 as depicted in SEQ ID NO: 317 and CDR-L3 as depicted in SEQ ID NO: 318,
    • CDR-H1 as depicted in SEQ ID NO: 148, CDR-H2 as depicted in SEQ ID NO: 149, CDR-H3 as depicted in SEQ ID NO: 150, CDR-L1 as depicted in SEQ ID NO: 316, CDR-L2 as depicted in SEQ ID NO: 317 and CDR-L3 as depicted in SEQ ID NO: 937,
    • CDR-H1 as depicted in SEQ ID NO: 148, CDR-H2 as depicted in SEQ ID NO: 149, CDR-H3 as depicted in SEQ ID NO: 150, CDR-L1 as depicted in SEQ ID NO: 316, CDR-L2 as depicted in SEQ ID NO: 317 and CDR-L3 as depicted in SEQ ID NO: 938,
    • CDR-H1 as depicted in SEQ ID NO: 148, CDR-H2 as depicted in SEQ ID NO: 149, CDR-H3 as depicted in SEQ ID NO: 919, CDR-L1 as depicted in SEQ ID NO: 316, CDR-L2 as depicted in SEQ ID NO: 317 and CDR-L3 as depicted in SEQ ID NO: 938,
    • CDR-H1 as depicted in SEQ ID NO: 142, CDR-H2 as depicted in SEQ ID NO: 143, CDR-H3 as depicted in SEQ ID NO: 144, CDR-L1 as depicted in SEQ ID NO: 310, CDR-L2 as depicted in SEQ ID NO: 311 and CDR-L3 as depicted in SEQ ID NO: 935,
    • CDR-H1 as depicted in SEQ ID NO: 142, CDR-H2 as depicted in SEQ ID NO: 143, CDR-H3 as depicted in SEQ ID NO: 918, CDR-L1 as depicted in SEQ ID NO: 310, CDR-L2 as depicted in SEQ ID NO: 311 and CDR-L3 as depicted in SEQ ID NO: 935,
    • CDR-H1 as depicted in SEQ ID NO: 142, CDR-H2 as depicted in SEQ ID NO: 143, CDR-H3 as depicted in SEQ ID NO: 918, CDR-L1 as depicted in SEQ ID NO: 310, CDR-L2 as depicted in SEQ ID NO: 311 and CDR-L3 as depicted in SEQ ID NO: 936,
    • CDR-H1 as depicted in SEQ ID NO: 136, CDR-H2 as depicted in SEQ ID NO: 137, CDR-H3 as depicted in SEQ ID NO: 138, CDR-L1 as depicted in SEQ ID NO: 304, CDR-L2 as depicted in SEQ ID NO: 305 and CDR-L3 as depicted in SEQ ID NO: 933,
    • CDR-H1 as depicted in SEQ ID NO: 136, CDR-H2 as depicted in SEQ ID NO: 137, CDR-H3 as depicted in SEQ ID NO: 917, CDR-L1 as depicted in SEQ ID NO: 304, CDR-L2 as depicted in SEQ ID NO: 305 and CDR-L3 as depicted in SEQ ID NO: 934,
    • CDR-H1 as depicted in SEQ ID NO: 130, CDR-H2 as depicted in SEQ ID NO: 131, CDR-H3 as depicted in SEQ ID NO: 132, CDR-L1 as depicted in SEQ ID NO: 298, CDR-L2 as depicted in SEQ ID NO: 299 and CDR-L3 as depicted in SEQ ID NO: 930,
    • CDR-H1 as depicted in SEQ ID NO: 130, CDR-H2 as depicted in SEQ ID NO: 131, CDR-H3 as depicted in SEQ ID NO: 916, CDR-L1 as depicted in SEQ ID NO: 298, CDR-L2 as depicted in SEQ ID NO: 299 and CDR-L3 as depicted in SEQ ID NO: 931, and
    • CDR-H1 as depicted in SEQ ID NO: 130, CDR-H2 as depicted in SEQ ID NO: 131, CDR-H3 as depicted in SEQ ID NO: 916, CDR-L1 as depicted in SEQ ID NO: 298, CDR-L2 as depicted in SEQ ID NO: 299 and CDR-L3 as depicted in SEQ ID NO: 932;
    • which all characterize binding domains for CDH19 grouped into bin 2;
  • (c) CDR-H1 as depicted in SEQ ID NO: 94, CDR-H2 as depicted in SEQ ID NO: 95, CDR-H3 as depicted in SEQ ID NO: 96, CDR-L1 as depicted in SEQ ID NO: 262, CDR-L2 as depicted in SEQ ID NO: 263 and CDR-L3 as depicted in SEQ ID NO: 264,
    • CDR-H1 as depicted in SEQ ID NO: 100, CDR-H2 as depicted in SEQ ID NO: 101, CDR-H3 as depicted in SEQ ID NO: 102, CDR-L1 as depicted in SEQ ID NO: 268, CDR-L2 as depicted in SEQ ID NO: 269 and CDR-L3 as depicted in SEQ ID NO: 270,
    • CDR-H1 as depicted in SEQ ID NO: 118, CDR-H2 as depicted in SEQ ID NO: 119, CDR-H3 as depicted in SEQ ID NO: 120, CDR-L1 as depicted in SEQ ID NO: 286, CDR-L2 as depicted in SEQ ID NO: 287 and CDR-L3 as depicted in SEQ ID NO: 288,
    • CDR-H1 as depicted in SEQ ID NO: 154, CDR-H2 as depicted in SEQ ID NO: 155, CDR-H3 as depicted in SEQ ID NO: 156, CDR-L1 as depicted in SEQ ID NO: 322, CDR-L2 as depicted in SEQ ID NO: 323 and CDR-L3 as depicted in SEQ ID NO: 324,
    • CDR-H1 as depicted in SEQ ID NO: 100, CDR-H2 as depicted in SEQ ID NO: 101, CDR-H3 as depicted in SEQ ID NO: 912, CDR-L1 as depicted in SEQ ID NO: 268, CDR-L2 as depicted in SEQ ID NO: 269 and CDR-L3 as depicted in SEQ ID NO: 270,
    • CDR-H1 as depicted in SEQ ID NO: 100, CDR-H2 as depicted in SEQ ID NO: 101, CDR-H3 as depicted in SEQ ID NO: 913, CDR-L1 as depicted in SEQ ID NO: 268, CDR-L2 as depicted in SEQ ID NO: 269 and CDR-L3 as depicted in SEQ ID NO: 270,
    • CDR-H1 as depicted in SEQ ID NO: 94, CDR-H2 as depicted in SEQ ID NO: 95, CDR-H3 as depicted in SEQ ID NO: 910, CDR-L1 as depicted in SEQ ID NO: 262, CDR-L2 as depicted in SEQ ID NO: 263 and CDR-L3 as depicted in SEQ ID NO: 264,
    • CDR-H1 as depicted in SEQ ID NO: 94, CDR-H2 as depicted in SEQ ID NO: 95, CDR-H3 as depicted in SEQ ID NO: 911, CDR-L1 as depicted in SEQ ID NO: 262, CDR-L2 as depicted in SEQ ID NO: 263 and CDR-L3 as depicted in SEQ ID NO: 264,
    • CDR-H1 as depicted in SEQ ID NO: 118, CDR-H2 as depicted in SEQ ID NO: 119, CDR-H3 as depicted in SEQ ID NO: 120, CDR-L1 as depicted in SEQ ID NO: 286, CDR-L2 as depicted in SEQ ID NO: 287 and CDR-L3 as depicted in SEQ ID NO: 288,
    • CDR-H1 as depicted in SEQ ID NO: 118, CDR-H2 as depicted in SEQ ID NO: 914, CDR-H3 as depicted in SEQ ID NO: 120, CDR-L1 as depicted in SEQ ID NO: 286, CDR-L2 as depicted in SEQ ID NO: 287 and CDR-L3 as depicted in SEQ ID NO: 288, and
    • CDR-H1 as depicted in SEQ ID NO: 154, CDR-H2 as depicted in SEQ ID NO: 155, CDR-H3 as depicted in SEQ ID NO: 920, CDR-L1 as depicted in SEQ ID NO: 322, CDR-L2 as depicted in SEQ ID NO: 323 and CDR-L3 as depicted in SEQ ID NO: 324;
    • which all characterize binding domains for CDH19 grouped into bin 3;
  • (d) CDR-H1 as depicted in SEQ ID NO: 4, CDR-H2 as depicted in SEQ ID NO: 5, CDR-H3 as depicted in SEQ ID NO: 6, CDR-L1 as depicted in SEQ ID NO: 172, CDR-L2 as depicted in SEQ ID NO: 173 and CDR-L3 as depicted in SEQ ID NO: 174,
    • CDR-H1 as depicted in SEQ ID NO: 10, CDR-H2 as depicted in SEQ ID NO: 11, CDR-H3 as depicted in SEQ ID NO: 12, CDR-L1 as depicted in SEQ ID NO: 178, CDR-L2 as depicted in SEQ ID NO: 179 and CDR-L3 as depicted in SEQ ID NO: 180,
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 29, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 196, CDR-L2 as depicted in SEQ ID NO: 197 and CDR-L3 as depicted in SEQ ID NO: 198,
    • CDR-H1 as depicted in SEQ ID NO: 34, CDR-H2 as depicted in SEQ ID NO: 35, CDR-H3 as depicted in SEQ ID NO: 36, CDR-L1 as depicted in SEQ ID NO: 202, CDR-L2 as depicted in SEQ ID NO: 203 and CDR-L3 as depicted in SEQ ID NO: 204,
    • CDR-H1 as depicted in SEQ ID NO: 46, CDR-H2 as depicted in SEQ ID NO: 47, CDR-H3 as depicted in SEQ ID NO: 48, CDR-L1 as depicted in SEQ ID NO: 214, CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216,
    • CDR-H1 as depicted in SEQ ID NO: 58, CDR-H2 as depicted in SEQ ID NO: 59, CDR-H3 as depicted in SEQ ID NO: 60, CDR-L1 as depicted in SEQ ID NO: 226, CDR-L2 as depicted in SEQ ID NO: 227 and CDR-L3 as depicted in SEQ ID NO: 228,
    • CDR-H1 as depicted in SEQ ID NO: 64, CDR-H2 as depicted in SEQ ID NO: 65, CDR-H3 as depicted in SEQ ID NO: 66, CDR-L1 as depicted in SEQ ID NO: 232, CDR-L2 as depicted in SEQ ID NO: 233 and CDR-L3 as depicted in SEQ ID NO: 234,
    • CDR-H1 as depicted in SEQ ID NO: 70, CDR-H2 as depicted in SEQ ID NO: 71, CDR-H3 as depicted in SEQ ID NO: 72, CDR-L1 as depicted in SEQ ID NO: 238, CDR-L2 as depicted in SEQ ID NO: 239 and CDR-L3 as depicted in SEQ ID NO: 240,
    • CDR-H1 as depicted in SEQ ID NO: 160, CDR-H2 as depicted in SEQ ID NO: 161, CDR-H3 as depicted in SEQ ID NO: 162, CDR-L1 as depicted in SEQ ID NO: 328, CDR-L2 as depicted in SEQ ID NO: 329 and CDR-L3 as depicted in SEQ ID NO: 330,
    • CDR-H1 as depicted in SEQ ID NO: 46, CDR-H2 as depicted in SEQ ID NO: 47, CDR-H3 as depicted in SEQ ID NO: 48, CDR-L1 as depicted in SEQ ID NO: 924, CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216,
    • CDR-H1 as depicted in SEQ ID NO: 46, CDR-H2 as depicted in SEQ ID NO: 47, CDR-H3 as depicted in SEQ ID NO: 902, CDR-L1 as depicted in SEQ ID NO: 924, CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216,
    • CDR-H1 as depicted in SEQ ID NO: 46, CDR-H2 as depicted in SEQ ID NO: 47, CDR-H3 as depicted in SEQ ID NO: 903, CDR-L1 as depicted in SEQ ID NO: 924, CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216,
    • CDR-H1 as depicted in SEQ ID NO: 46, CDR-H2 as depicted in SEQ ID NO: 47, CDR-H3 as depicted in SEQ ID NO: 48, CDR-L1 as depicted in SEQ ID NO: 925, CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216,
    • CDR-H1 as depicted in SEQ ID NO: 70, CDR-H2 as depicted in SEQ ID NO: 907, CDR-H3 as depicted in SEQ ID NO: 72, CDR-L1 as depicted in SEQ ID NO: 238, CDR-L2 as depicted in SEQ ID NO: 239 and CDR-L3 as depicted in SEQ ID NO: 240,
    • CDR-H1 as depicted in SEQ ID NO: 70, CDR-H2 as depicted in SEQ ID NO: 907, CDR-H3 as depicted in SEQ ID NO: 908, CDR-L1 as depicted in SEQ ID NO: 238, CDR-L2 as depicted in SEQ ID NO: 239 and CDR-L3 as depicted in SEQ ID NO: 240,
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 901, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 922, CDR-L2 as depicted in SEQ ID NO: 197 and CDR-L3 as depicted in SEQ ID NO: 923,
    • CDR-H1 as depicted in SEQ ID NO: 58, CDR-H2 as depicted in SEQ ID NO: 905, CDR-H3 as depicted in SEQ ID NO: 906, CDR-L1 as depicted in SEQ ID NO: 226, CDR-L2 as depicted in SEQ ID NO: 227 and CDR-L3 as depicted in SEQ ID NO: 228,
    • CDR-H1 as depicted in SEQ ID NO: 58, CDR-H2 as depicted in SEQ ID NO: 905, CDR-H3 as depicted in SEQ ID NO: 60, CDR-L1 as depicted in SEQ ID NO: 226, CDR-L2 as depicted in SEQ ID NO: 227 and CDR-L3 as depicted in SEQ ID NO: 228,
    • CDR-H1 as depicted in SEQ ID NO: 160, CDR-H2 as depicted in SEQ ID NO: 161, CDR-H3 as depicted in SEQ ID NO: 162, CDR-L1 as depicted in SEQ ID NO: 939, CDR-L2 as depicted in SEQ ID NO: 329 and CDR-L3 as depicted in SEQ ID NO: 330,
    • CDR-H1 as depicted in SEQ ID NO: 160, CDR-H2 as depicted in SEQ ID NO: 921, CDR-H3 as depicted in SEQ ID NO: 162, CDR-L1 as depicted in SEQ ID NO: 939, CDR-L2 as depicted in SEQ ID NO: 329 and CDR-L3 as depicted in SEQ ID NO: 940,
    • CDR-H1 as depicted in SEQ ID NO: 160, CDR-H2 as depicted in SEQ ID NO: 161, CDR-H3 as depicted in SEQ ID NO: 162, CDR-L1 as depicted in SEQ ID NO: 941, CDR-L2 as depicted in SEQ ID NO: 329 and CDR-L3 as depicted in SEQ ID NO: 330,
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 29, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 196, CDR-L2 as depicted in SEQ ID NO: 197 and CDR-L3 as depicted in SEQ ID NO: 923,
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 29, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 922, CDR-L2 as depicted in SEQ ID NO: 197 and CDR-L3 as depicted in SEQ ID NO: 923,
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 901, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 922, CDR-L2 as depicted in SEQ ID NO: 197 and CDR-L3 as depicted in SEQ ID NO: 923, and
    • CDR-H1 as depicted in SEQ ID NO: 28, CDR-H2 as depicted in SEQ ID NO: 29, CDR-H3 as depicted in SEQ ID NO: 30, CDR-L1 as depicted in SEQ ID NO: 939, CDR-L2 as depicted in SEQ ID NO: 329 and CDR-L3 as depicted in SEQ ID NO: 330;
    • which all characterize binding domains for CDH19 grouped into bin 4; and
  • (e) CDR-H1 as depicted in SEQ ID NO: 76, CDR-H2 as depicted in SEQ ID NO: 77, CDR-H3 as depicted in SEQ ID NO: 78, CDR-L1 as depicted in SEQ ID NO: 244, CDR-L2 as depicted in SEQ ID NO: 245 and CDR-L3 as depicted in SEQ ID NO: 246,
    • CDR-H1 as depicted in SEQ ID NO: 88, CDR-H2 as depicted in SEQ ID NO: 89, CDR-H3 as depicted in SEQ ID NO: 90, CDR-L1 as depicted in SEQ ID NO: 256, CDR-L2 as depicted in SEQ ID NO: 257 and CDR-L3 as depicted in SEQ ID NO: 258,
    • CDR-H1 as depicted in SEQ ID NO: 106, CDR-H2 as depicted in SEQ ID NO: 107, CDR-H3 as depicted in SEQ ID NO: 108, CDR-L1 as depicted in SEQ ID NO: 274, CDR-L2 as depicted in SEQ ID NO: 275 and CDR-L3 as depicted in SEQ ID NO: 276,
    • CDR-H1 as depicted in SEQ ID NO: 112, CDR-H2 as depicted in SEQ ID NO: 113, CDR-H3 as depicted in SEQ ID NO: 114, CDR-L1 as depicted in SEQ ID NO: 280, CDR-L2 as depicted in SEQ ID NO: 281 and CDR-L3 as depicted in SEQ ID NO: 282, and
    • CDR-H1 as depicted in SEQ ID NO: 106, CDR-H2 as depicted in SEQ ID NO: 107, CDR-H3 as depicted in SEQ ID NO: 108, CDR-L1 as depicted in SEQ ID NO: 274, CDR-L2 as depicted in SEQ ID NO: 275 and CDR-L3 as depicted in SEQ ID NO: 276
    • which all characterize binding domains for CDH19 grouped into bin 5;


In a further embodiment of the human antibody or antigen binding fragment thereof of the invention the human binding domain or antigen binding fragment thereof comprises a VH region selected from the group consisting of VH regions

  • (a) as depicted in SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 485, SEQ ID NO: 486, SEQ ID NO: 487, SEQ ID NO: 492, SEQ ID NO: 493, SEQ ID NO: 494, and SEQ ID NO: 495;
    • which all characterize binding domains for CDH19 grouped into bin 1;
  • (b) as depicted in SEQ ID NO: 342, SEQ ID NO: 366, SEQ ID NO: 370, SEQ ID NO: 344, SEQ ID NO: 372, SEQ ID NO: 368, SEQ ID NO: 496, SEQ ID NO: 497, SEQ ID NO: 498, SEQ ID NO: 499, SEQ ID NO: 500, SEQ ID NO: 508, SEQ ID NO: 509, SEQ ID NO: 510, SEQ ID NO: 511, SEQ ID NO: 512, SEQ ID NO: 519, SEQ ID NO: 520, SEQ ID NO: 521, SEQ ID NO: 522, SEQ ID NO: 523, SEQ ID NO: 524, SEQ ID NO: 525, SEQ ID NO: 526, SEQ ID NO: 527, SEQ ID NO: 528, SEQ ID NO: 529, SEQ ID NO: 530, SEQ ID NO: 531, SEQ ID NO: 532, SEQ ID NO: 533, SEQ ID NO: 534, SEQ ID NO: 535, SEQ ID NO: 536, SEQ ID NO: 537, and SEQ ID NO: 538;
    • which all characterize binding domains for CDH19 grouped into bin 2;
  • (c) as depicted in SEQ ID NO: 338, SEQ ID NO: 354, SEQ ID NO: 378, SEQ ID NO: 356, SEQ ID NO: 476, SEQ ID NO: 477, SEQ ID NO: 478, SEQ ID NO: 479, SEQ ID NO: 480, SEQ ID NO: 481, SEQ ID NO: 482, SEQ ID NO: 483, SEQ ID NO: 484, SEQ ID NO: 501, SEQ ID NO: 502, SEQ ID NO: 503, SEQ ID NO: 504, SEQ ID NO: 505, SEQ ID NO: 506, SEQ ID NO: 517, and SEQ ID NO: 518;
    • which all characterize binding domains for CDH19 grouped into bin 3;
  • (d) as depicted in SEQ ID NO: 352, SEQ ID NO: 360, SEQ ID NO: 388, SEQ ID NO: 386, SEQ ID NO: 340, SEQ ID NO: 346, SEQ ID NO: 374, SEQ ID NO: 348, SEQ ID NO: 390, SEQ ID NO: 463, SEQ ID NO: 464, SEQ ID NO: 465, SEQ ID NO: 466, SEQ ID NO: 467, SEQ ID NO: 468, SEQ ID NO: 469, SEQ ID NO: 470, SEQ ID NO: 471, SEQ ID NO: 472, SEQ ID NO: 473, SEQ ID NO: 474, SEQ ID NO: 475, SEQ ID NO: 488, SEQ ID NO: 489, SEQ ID NO: 490, SEQ ID NO: 491, SEQ ID NO: 513, SEQ ID NO: 514, SEQ ID NO: 515, SEQ ID NO: 516, SEQ ID NO: 540, SEQ ID NO: 541, SEQ ID NO: 542, and SEQ ID NO: 543;
    • which all characterize binding domains for CDH19 grouped into bin 4; and
  • (e) as depicted in SEQ ID NO: 376, SEQ ID NO: 392, SEQ ID NO: 358, SEQ ID NO: 350, and SEQ ID NO: 507;
    • which all characterize binding domains for CDH19 grouped into bin 5.


In another embodiment the human antibody or antigen binding fragment thereof of the invention comprises the human binding domain or antigen binding fragment thereof comprising a VL region selected from the group consisting of VL regions

  • (a) as depicted in SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 580, SEQ ID NO: 581, SEQ ID NO: 582, SEQ ID NO: 587, SEQ ID NO: 588, SEQ ID NO: 589, and SEQ ID NO: 590;
    • which all characterize binding domains for CDH19 grouped into bin 1;
  • (b) as depicted in SEQ ID NO: 398, SEQ ID NO: 422, SEQ ID NO: 426, SEQ ID NO: 400, SEQ ID NO: 428, SEQ ID NO: 424, SEQ ID NO: 591, SEQ ID NO: 592, SEQ ID NO: 593, SEQ ID NO: 594, SEQ ID NO: 595, SEQ ID NO: 603, SEQ ID NO: 604, SEQ ID NO: 605, SEQ ID NO: 606, SEQ ID NO: 607, SEQ ID NO: 614, SEQ ID NO: 615, SEQ ID NO: 616, SEQ ID NO: 617, SEQ ID NO: 618, SEQ ID NO: 619, SEQ ID NO: 620, SEQ ID NO: 621, SEQ ID NO: 622, SEQ ID NO: 623, SEQ ID NO: 624, SEQ ID NO: 625, SEQ ID NO: 626, SEQ ID NO: 627, SEQ ID NO: 628, SEQ ID NO: 629, SEQ ID NO: 630, SEQ ID NO: 631, SEQ ID NO: 632, and SEQ ID NO: 633;
    • which all characterize binding domains for CDH19 grouped into bin 2;
  • (c) as depicted in SEQ ID NO: 394, SEQ ID NO: 410, SEQ ID NO: 434, SEQ ID NO: 412, SEQ ID NO: 571, SEQ ID NO: 572, SEQ ID NO: 573, SEQ ID NO: 574, SEQ ID NO: 575, SEQ ID NO: 576, SEQ ID NO: 577, SEQ ID NO: 578, SEQ ID NO: 579, SEQ ID NO: 596, SEQ ID NO: 597, SEQ ID NO: 598, SEQ ID NO: 599, SEQ ID NO: 600, SEQ ID NO: 601, SEQ ID NO: 612, and SEQ ID NO: 613;
    • which all characterize binding domains for CDH19 grouped into bin 3;
  • (d) as depicted in SEQ ID NO: 408, SEQ ID NO: 416, SEQ ID NO: 444, SEQ ID NO: 442, SEQ ID NO: 396, SEQ ID NO: 402, SEQ ID NO: 430, SEQ ID NO: 404, SEQ ID NO: 446, SEQ ID NO: 558, SEQ ID NO: 559, SEQ ID NO: 560, SEQ ID NO: 561, SEQ ID NO: 562, SEQ ID NO: 563, SEQ ID NO: 564, SEQ ID NO: 565, SEQ ID NO: 566, SEQ ID NO: 567, SEQ ID NO: 568, SEQ ID NO: 569, SEQ ID NO: 570, SEQ ID NO: 583, SEQ ID NO: 584, SEQ ID NO: 585, SEQ ID NO: 586, SEQ ID NO: 608, SEQ ID NO: 609, SEQ ID NO: 610, SEQ ID NO: 611, SEQ ID NO: 635, SEQ ID NO: 636, SEQ ID NO: 637, and SEQ ID NO: 638;
    • which all characterize binding domains for CDH19 grouped into bin 4; and
  • (e) as depicted in SEQ ID NO: 432, SEQ ID NO: 448, SEQ ID NO: 414, SEQ ID NO: 406, and SEQ ID NO: 602;
    • which all characterize binding domains for CDH19 grouped into bin 5.


The invention further provides an embodiment of the human antibody or antigen binding fragment thereof of the invention, wherein the human binding domain or antigen binding fragment thereof comprises a VH region and a VL region selected from the group consisting of:

  • (1) pairs of a VH region and a VL region as depicted in SEQ ID NOs: 362+418, SEQ ID NOs: 364+420, SEQ ID NOs: 485+580, SEQ ID NOs: 486+581, SEQ ID NOs: 487+582, SEQ ID NOs: 492+587, SEQ ID NOs: 493+588, SEQ ID NOs: 494+589, and SEQ ID NOs: 495+590;
    • all pairs grouped into bin 1;
  • (2) pairs of a VH region and a VL region as depicted in SEQ ID NOs: 342+398, SEQ ID NOs: 366+422, SEQ ID NOs: 370+426, SEQ ID NOs: 344+400, SEQ ID NOs: 372+428, SEQ ID NOs: 368+424, SEQ ID NOs: 496+591, SEQ ID NOs: 497+592, SEQ ID NOs: 498+593, SEQ ID NOs: 499+594, SEQ ID NOs: 500+595, SEQ ID NOs: 508+603, SEQ ID NOs: 509+604, SEQ ID NOs: 510+605, SEQ ID NOs: 511+606, SEQ ID NOs: 512+607, SEQ ID NOs: 519+614, SEQ ID NOs: 520+615, SEQ ID NOs: 521+616, SEQ ID NOs: 522+617, SEQ ID NOs: 523+618, SEQ ID NOs: 524+619, SEQ ID NOs: 525+620, SEQ ID NOs: 526+621, SEQ ID NOs: 527+622, SEQ ID NOs: 528+623, SEQ ID NOs: 529+624, SEQ ID NOs: 530+625, SEQ ID NOs: 531+626, SEQ ID NOs: 532+627, SEQ ID NOs: 533+628, SEQ ID NOs: 534+629, SEQ ID NOs: 535+630, SEQ ID NOs: 536+631, SEQ ID NOs: 537+632, and SEQ ID NOs: 538+633;
    • all pairs grouped into bin 2;
  • (3) pairs of a VH region and a VL region as depicted in SEQ ID NOs: 338+394, SEQ ID NOs: 354+410, SEQ ID NOs: 378+434, SEQ ID NOs: 356+412, SEQ ID NOs: 476+571, SEQ ID NOs: 477+572, SEQ ID NOs: 478+573, SEQ ID NOs: 479+574, SEQ ID NOs: 480+575, SEQ ID NOs: 481+576, SEQ ID NOs: 482+577, SEQ ID NOs: 483+578, SEQ ID NOs: 484+579, SEQ ID NOs: 501+596, SEQ ID NOs: 502+597, SEQ ID NOs: 503+598, SEQ ID NOs: 504+599, SEQ ID NOs: 505+600, SEQ ID NOs: 506+601, SEQ ID NOs: 517+612, and SEQ ID NOs: 518+613;
    • all pairs grouped into bin 3;
  • (4) pairs of a VH region and a VL region as depicted in SEQ ID NOs: 352+408, SEQ ID NOs: 360+416, SEQ ID NOs: 388+444, SEQ ID NOs: 386+442, SEQ ID NOs: 340+396, SEQ ID NOs: 346+402, SEQ ID NOs: 374+430, SEQ ID NOs: 348+404, SEQ ID NOs: 390+446, SEQ ID NOs: 463+558, SEQ ID NOs: 464+559, SEQ ID NOs: 465+560, SEQ ID NOs: 466+561, SEQ ID NOs: 467+562, SEQ ID NOs: 468+563, SEQ ID NOs: 469+564, SEQ ID NOs: 470+565, SEQ ID NOs: 471+566, SEQ ID NOs: 472+567, SEQ ID NOs: 473+568, SEQ ID NOs: 474+569, SEQ ID NOs: 475+570, SEQ ID NOs: 488+583, SEQ ID NOs: 489+584, SEQ ID NOs: 490+585, SEQ ID NOs: 491+586, SEQ ID NOs: 513+608, SEQ ID NOs: 514+609, SEQ ID NOs: 515+610, SEQ ID NOs: 516+611, SEQ ID NOs: 540+635, SEQ ID NOs: 541+636, SEQ ID NOs: 542+637, and SEQ ID NOs: 543+638;
    • all pairs grouped into bin 4; and
  • (5) pairs of a VH region and a VL region as depicted in SEQ ID NOs: 376+432, SEQ ID NOs: 392+448, SEQ ID NOs: 358+414, SEQ ID NOs: 350+406, and SEQ ID NOs: 507+602;
    • all pairs grouped into bin 5.


In a further embodiment the human binding domain or antigen binding fragment thereof comprises the groups of heavy and light chains having an amino acid sequence selected from the group consisting of

  • (1) a heavy and light chain as depicted in SEQ ID NOs: 644+680, SEQ ID NOs: 650+686, SEQ ID NOs: 747+842, SEQ ID NOs: 748+843, SEQ ID NOs: 749+844, SEQ ID NOs: 754+849, SEQ ID NOs: 755+850, SEQ ID NOs: 756+851, and SEQ ID NOs: 757+852;
    • all pairs grouped into bin 1;
  • (2) a heavy and light chain as depicted in SEQ ID NOs: 660+696, SEQ ID NOs: 662+698, SEQ ID NOs: 668+704, SEQ ID NOs: 674+710, SEQ ID NOs: 672+708, SEQ ID NOs: 658+694, SEQ ID NOs: 758+853, SEQ ID NOs: 759+854, SEQ ID NOs: 760+855, SEQ ID NOs: 761+856, SEQ ID NOs: 762+857, SEQ ID NOs: 770+865, SEQ ID NOs: 771+866, SEQ ID NOs: 772+867, SEQ ID NOs: 773+868, SEQ ID NOs: 774+869, SEQ ID NOs: 781+876, SEQ ID NOs: 782+877, SEQ ID NOs: 783+878, SEQ ID NOs: 784+879, SEQ ID NOs: 785+880, SEQ ID NOs: 786+881, SEQ ID NOs: 787+882, SEQ ID NOs: 788+883, SEQ ID NOs: 789+884, SEQ ID NOs: 790+885, SEQ ID NOs: 791+886, SEQ ID NOs: 792+887, SEQ ID NOs: 793+888, SEQ ID NOs: 794+889, SEQ ID NOs: 795+890, SEQ ID NOs: 796+891, SEQ ID NOs: 797+892, SEQ ID NOs: 798+893, SEQ ID NOs: 799+894, and SEQ ID NOs: 800+895;
    • all pairs grouped into bin 2;
  • (3) a heavy and light chain as depicted in SEQ ID NOs: 656+692, SEQ ID NOs: 654+690, SEQ ID NOs: 664+700, SEQ ID NOs: 670+706, SEQ ID NOs: 738+833, SEQ ID NOs: 739+834, SEQ ID NOs: 740+835, SEQ ID NOs: 741+836, SEQ ID NOs: 742+837, SEQ ID NOs: 743+838, SEQ ID NOs: 744+839, SEQ ID NOs: 745+840, SEQ ID NOs: 746+841, SEQ ID NOs: 763+858, SEQ ID NOs: 764+859, SEQ ID NOs: 765+860, SEQ ID NOs: 766+861, SEQ ID NOs: 767+862, SEQ ID NOs: 768+863, SEQ ID NOs: 779+874, and SEQ ID NOs: 780+875;
    • all pairs grouped into bin 3;
  • (4) a heavy and light chain as depicted in SEQ ID NOs: 640+676, SEQ ID NOs: 642+678, SEQ ID NOs: 646+682, SEQ ID NOs: 648+684, SEQ ID NOs: 666+702, SEQ ID NOs: 725+820, SEQ ID NOs: 726+821, SEQ ID NOs: 727+822, SEQ ID NOs: 728+823, SEQ ID NOs: 729+824, SEQ ID NOs: 730+825, SEQ ID NOs: 731+826, SEQ ID NOs: 732+827, SEQ ID NOs: 733+828, SEQ ID NOs: 734+829, SEQ ID NOs: 735+830, SEQ ID NOs: 736+831, SEQ ID NOs: 737+832, SEQ ID NOs: 750+845, SEQ ID NOs: 751+846, SEQ ID NOs: 752+847, SEQ ID NOs: 753+848, SEQ ID NOs: 775+870, SEQ ID NOs: 776+871, SEQ ID NOs: 777+872, SEQ ID NOs: 778+873, SEQ ID NOs: 802+897, SEQ ID NOs: 803+898, SEQ ID NOs: 804+899, and SEQ ID NOs: 805+900;
    • all pairs grouped into bin 4; and
  • (5) a heavy and light chain as depicted in SEQ ID NOs: 652+688, and SEQ ID NOs: 769+864
    • all pairs grouped into bin 5.


In another embodiment the invention is directed to an antibody construct comprising the human antibody or antigen binding fragment thereof capable of binding to human CDH19 on the surface of a target cell as described above that is conjugated to a chemotherapeutic agent.


In one embodiment of the antibody construct of the invention a linker conjugates the chemotherapeutic agent to the human antibody or antigen binding fragment thereof. Accordingly, embodiments of the antibody construct comprising of the invention include antibody drug conjugates (ADCs). Generally the antibody construct comprising of the invention comprises an antibody conjugated to a chemotherapeutic agent, e.g., a cytotoxic agent, a cytostatic agent, a toxin, or a radioactive agent. A linker molecule can be used to conjugate the drug to the antibody. A wide variety of linkers and drugs useful e.g. in ADC technology are known in the art and may be used in embodiments of the present invention. (See US20090028856; US2009/0274713; US2007/0031402; WO2005/084390; WO2009/099728; U.S. Pat. Nos. 5,208,020; 5,416,064; 5,475,092; 5,585,499; 6,436,931; 6,372,738; and 6,340,701, all incorporated herein by reference).


In certain embodiments, the antibody construct comprising of the invention comprises a linker made up of one or more linker components. Exemplary linker components include 6-maleimidocaproyl, maleimidopropanoyl, valine-citrulline, alanine-phenylalanine, p-aminobenzyloxycarbonyl, and those resulting from conjugation with linker reagents, including, but not limited to, N-succinimidyl 4-(2-pyridylthio) pentanoate (“SPP”), N-succinimidyl 4-(N-maleimidomethyl) cyclohexane-1 carboxylate (“SMCC,” also referred to herein also as “MCC”), and N-succinimidyl (4-iodo-acetyl) aminobenzoate (“SIAB”). Linkers may be a “cleavable” linker or a “non-cleavable” linker (Ducry and Stump, Bioconjugate Chem. 2010, 21, 5-13; incorporated herein by reference in its entirety) Cleavable linkers are designed to release the drug when subjected to certain environment factors, e.g., when internalized into the target cell. Cleavable linkers include acid labile linkers, protease sensitive linkers, photolabile linkers, dimethyl linker or disulfide-containing linkers. Non-cleavable linkers tend to remain covalently associated with at least one amino acid of the antibody and the drug upon internalization by and degradation within the target cell. An exemplary non-cleavable linker is MCC.


In a preferred embodiment of the antibody construct of the invention the linker is a non-cleavable linker.


It is also preferred that the linker in the antibody construct of the invention comprises MCC.


In a further embodiment of the antibody construct of the invention the chemotherapeutic agent is conjugated to one or more lysines contained in the human antibody or antigen binding fragment thereof.


In certain embodiments, the antibody of the invention is conjugated to a chemotherapeutic agent. Examples of chemotherapeutic agents include alkylating agents, such as thiotepa and cyclophosphamide (CYTOXAN™); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines, such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenethiophosphaoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CBI-TMI); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlomaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; antibiotics, such as the enediyne antibiotics (e.g. calicheamicin, especially calicheamicin .gamma1 and calicheamicin theta I, see, e.g., Angew Chem. Intl. Ed. Engl. 33:183-186 (1994); dynemicin, including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromomophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, caminomycin, carzinophilin; chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, nitomycins, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites, such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues, such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs, such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as, ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine, 5-FU; androgens, such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals, such as aminoglutethimide, mitotane, trilostane; folic acid replenisher, such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfomithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; maytansinoids, such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK®; razoxane; rhizoxin; sizofuran; spirogermanium; tenuazonic acid; triaziquone; 2,2′,2″-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; thiotepa; taxoids, e.g. paclitaxel (TAXOL™, Bristol-Myers Squibb Oncology, Princeton, N.J.) and doxetaxel (TAXOTERE®, Rhone-Poulenc Rorer, Antony, France); chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; 65 daunomycin; aminopterin; xeloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluoromethylomithine (DMFO); retinoic acid; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors, such as anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (Fareston); and anti-androgens, such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; siRNA and pharmaceutically acceptable salts, acids or derivatives of any of the above. Other chemotherapeutic agents that can be used with the present invention are disclosed in US Publication No. 20080171040 or US Publication No. 20080305044 and are incorporated in their entirety by reference.


It is contemplated that an antibody may be conjugated to two or more different chemotherapeutic agents or a pharmaceutical composition may comprise a mixture of antibodies wherein the antibody component is identical except for being conjugated to a different chemotherapeutic agent. Such embodiments may be useful for targeting multiple biological pathways with a target cell.


In preferred embodiments, the antibody construct comprising of the invention comprises an antibody conjugated to one or more maytansinoid molecules, which are mitotic inhibitors that act by inhibiting tubulin polymerization. Maytansinoids, including various modifications, are described in U.S. Pat. Nos. 3,896,111; 4,151,042; 4,137,230; 4,248,870; 4,256,746; 4,260,608; 4,265,814; 4,294,757; 4,307,016; 4,308,268; 4,309,428; 4,313,946; 4,315,929; 4,317,821; 4,322,348; 4,331,598; 4,361,650; 4,364,866; 4,424,219; 4,450,254; 4,362,663; 4,371,533; and WO 2009/099728. Maytansinoid drug moieties may be isolated from natural sources, produced using recombinant technology, or prepared synthetically. Exemplary maytansinoids include C-19-dechloro (U.S. Pat. No. 4,256,746), C-20-hydroxy (or C-20-demethyl)+/−C-19-dechloro (U.S. Pat. Nos. 4,307,016 and 4,361,650), C-20-demethoxy (or C-20-acyloxy (—OCOR), +/−dechloro (U.S. Pat. No. 4,294,757), C-9-SH (U.S. Pat. No. 4,424,219), C-14-alkoxymethyl (demethoxy/CH2OR) (U.S. Pat. No. 4,331,598), C-14-hydroxymethyl or acyloxymethyl (CH2OH or CH2OAc) (U.S. Pat. No. 4,450,254), C-15-hydroxy/acyloxy (U.S. Pat. No. 4,364,866), C-15-methoxy (U.S. Pat. Nos. 4,313,946 and 4,315,929), C-18-N-demethyl (U.S. Pat. Nos. 4,362,663 and 4,322,348), and 4,5-deoxy (U.S. Pat. No. 4,371,533).


Various positions on maytansinoid compounds may be used as the linkage position, depending upon the type of link desired. For example, for forming an ester linkage, the C-3 position having a hydroxyl group, the C-14 position modified with hydroxymethyl, the C-15 position modified with a hydroxyl a group, and the C-20 position having a hydroxyl group are all suitable (U.S. Pat. Nos. 5,208,020, RE39151, and 6,913,748; US Patent Appl. Pub. Nos. 20060167245 and 20070037972, and WO 2009099728).


Preferred maytansinoids include those known in the art as DM1, DM3, and DM4 (US Pat. Appl. Pub. Nos. 2009030924 and 20050276812, incorporated herein by reference).


In one embodiment of the antibody construct of the invention the chemotherapeutic agent is DM1. Accordingly, in a preferred embodiment the antibody construct of the invention is an the human antibody or antigen binding fragment thereof conjugated to one or more DM1 molecules.


ADCs containing maytansinoids, methods of making such ADCs, and their therapeutic use are disclosed in U.S. Pat. Nos. 5,208,020 and 5,416,064, US Pat. Appl. Pub. No. 20050276812, and WO 2009099728 (all incorporated by reference herein). Linkers that are useful for making maytansinoid ADCs are know in the art (U.S. Pat. No. 5,208,020 and US Pat. Appl. Pub. Nos. 2005016993 and 20090274713; all incorporated herein by reference). Maytansinoid ADCs comprising an SMCC linker may be prepared as disclosed in US Pat. Publ. No. 2005/0276812.


In certain embodiments, the antibody construct comprising of the invention comprises an antibody conjugated to DM1 with an SMCC linker.


An antibody construct comprising of the invention may have 1 to 20 chemotherapeutic agents per antibody. Compositions of ADCs may be characterized by the average number of drug moieties per antibody molecule in the composition. The average number of drug moieties may be determined by conventional means such as mass spectrometry, immunoassay, and HPLC. In some instances, a homogeneous ADC population may be separated and purified by means of reverse phase HPLC or electrophoresis. Thus, pharmaceutical ADC compositions may contain a heterogeneous or homogeneous population of antibodies linked to 1, 2, 3, 4, 5, 6, 7 or more drug moieties.


Thus, in a preferred embodiment of the antibody construct of the invention the average number of DM1 molecules per antibody construct is between 1 and 10.


It is also preferred for the antibody construct of the invention that the average number of DM1 molecules per antibody construct is between 3 and 7.


Moreover, it is preferred for the antibody construct of the invention that the average number of DM1 molecules per antibody construct is between 4 and 6.


Embodiments of the invention include antibody constructs comprising an average of about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, or about 20 DM1 molecules per antibody.


In a further alternative embodiment of the antibody construct of the invention the average number of DM1 molecules per antibody construct is about 4.0, about 4.1, about 4.2, about 4.3, about 4.4, about 4.5, about 4.6, about 4.7, about 4.8, about 4.9, about 5.0, about 5.1, about 5.2, about 5.3, about 5.4, about 5.5, about 5.6, about 5.7, about 5.8, about 5.9, or about 6.0.


In one embodiment the antibody respectively the antibody construct of the invention comprises an effector function-enhanced antibody. One of the functions of the Fc portion of an antibody is to communicate to the immune system when the antibody binds its target. This is considered “effector function”. Communication leads to antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and/or complement dependent cytotoxicity (CDC). ADCC and ADCP are mediated through the binding of the Fc to Fc receptors on the surface of cells of the immune system. CDC is mediated through the binding of the Fc with proteins of the complement system, e.g., C1q.


The IgG subclasses vary in their ability to mediate effector functions. For example IgG1 is much superior to IgG2 and IgG4 at mediating ADCC and CDC. Thus, in embodiments wherein a cell expressing CDH19 is targeted for destruction, an anti-CDH19 IgG1 antibody would be preferred.


The effector function of an antibody can be increased, or decreased, by introducing one or more mutations into the Fc. Embodiments of the invention include antigen binding proteins, e.g., antibodies, having an Fc engineered to increase effector function (U.S. Pat. No. 7,317,091 and Strohl, Curr. Opin. Biotech., 20:685-691, 2009; both incorporated herein by reference in its entirety). Exemplary IgG1 Fc molecules having increased effector function include (based on the Kabat numbering scheme) those have the following substitutions:


S239D/I332E


S239D/A330S/I332E


S239D/A330L/I332E


S298A/D333A/K334A


P247I/A339D


P247I/A339Q


D280H/K290S


D280H/K290S/S298D


D280H/K290S/S298V


F243L/R292P/Y300L


F243L/R292P/Y300L/P396L


F243L/R292P/Y300L/V3051/P396L


G236A/S239D/I332E


K326A/E333A


K326W/E333S


K290E/S298G/T299A


K290N/S298G/T299A


K290E/5298G/T299A/K326E


K290N/S298G/T299A/K326E


Further embodiments of the invention include antibodies, having an Fc engineered to decrease effector function. Exemplary Fc molecules having decreased effector function include (based on the Kabat numbering scheme) those have the following substitutions:


N297A (IgG1)


L234A/L235A (IgG1)


V234A/G237A (IgG2)


L235A/G237A/E318A (IgG4)


H268Q/V309L/A330S/A331S (IgG2)


C220S/C226S/C229S/P238S (IgG1)


C226S/C229S/E233P/L234V/L235A (IgG1)


L234F/L235E/P331S (IgG1)


S267E/L328F (IgG1)


Another method of increasing effector function of IgG Fc-containing proteins is by reducing the fucosylation of the Fc. Removal of the core fucose from the biantennary complex-type oligosaccharides attached to the Fc greatly increased ADCC effector function without altering antigen binding or CDC effector function. Several ways are known for reducing or abolishing fucosylation of Fc-containing molecules, e.g., antibodies. These include recombinant expression in certain mammalian cell lines including a FUT8 knockout cell line, variant CHO line Lec13, rat hybridoma cell line YB2/0, a cell line comprising a small interfering RNA specifically against the FUT8 gene, and a cell line coexpressing B-1,4-N-acetylglucosaminyltransferase III and Golgi α-mannosidase II. Alternatively, the Fc-containing molecule may be expressed in a non-mammalian cell such as a plant cell, yeast, or prokaryotic cell, e.g., E. coli. Thus, in certain embodiments of the invention, a composition comprises an antibody, e.g., Ab1, Ab2, Ab3, Ab4, Ab5, Ab6, Ab7, or Ab8, having reduced fucosylation or lacking fucosylation altogether.


The invention further provides an isolated nucleic acid molecule or sequence encoding a human antibody or antigen binding fragment thereof of the invention.


Furthermore, the invention provides a vector comprising a nucleic acid sequence of the invention. Moreover, the invention provides a host cell transformed or transfected with the nucleic acid sequence of the invention or with a vector comprising the nucleic acid molecule.


In a further embodiment the invention provides a process for the production of a human antibody or an antigen binding fragment thereof of the invention, said process comprising culturing a host cell of the invention under conditions allowing the expression of the human antibody or antigen binding fragment thereof of the invention and recovering the produced antibody or antigen binding fragment thereof from the culture.


In a further embodiment the invention provides a process for the production of an antibody construct comprising a human antibody or an antigen binding fragment thereof of the invention, said process comprising culturing a host cell of the invention under conditions allowing the expression of the human antibody or antigen binding fragment thereof of the invention and recovering the produced antibody or antigen binding fragment thereof from the culture, and conjugating a chemotherapeutic agent to the recovered antibody or antigen binding fragment thereof to produce the antibody conjugate.


Moreover, the invention provides a pharmaceutical composition comprising a human antibody or antigen binding fragment thereof of the invention or an antibody construct of the invention or produced according to the process of the invention in admixture with a pharmaceutically acceptable carrier thereof.


The formulations described herein are useful as pharmaceutical compositions in the treatment, amelioration and/or prevention of the pathological medical condition as described herein in a patient in need thereof. The term “treatment” refers to both therapeutic treatment and prophylactic or preventative measures. Treatment includes the application or administration of the formulation to the body, an isolated tissue, or cell from a patient who has a disease/disorder, a symptom of a disease/disorder, or a predisposition toward a disease/disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptom of the disease, or the predisposition toward the disease.


Those “in need of treatment” include those already with the disorder, as well as those in which the disorder is to be prevented. The term “disease” is any condition that would benefit from treatment with the protein formulation described herein. This includes chronic and acute disorders or diseases including those pathological conditions that predispose the mammal to the disease in question. Non-limiting examples of diseases/disorders to be treated herein include proliferative disease, a tumorous disease, or an immunological disorder.


In some embodiments, the invention provides a pharmaceutical composition comprising a therapeutically effective amount of one or a plurality of the a human antibody or antigen binding fragment thereof of the invention or an antibody construct of the invention together with a pharmaceutically effective diluents, carrier, solubilizer, emulsifier, preservative, and/or adjuvant. In certain embodiments, the antigen binding protein is an antibody, including a drug-conjugated antibody or a bispecific antibody. Pharmaceutical compositions of the invention include, but are not limited to, liquid, frozen, and lyophilized compositions.


Preferably, formulation materials are nontoxic to recipients at the dosages and concentrations employed. In specific embodiments, pharmaceutical compositions comprising a therapeutically effective amount of a human antibody or antigen binding fragment thereof of the invention or an antibody construct of the invention.


In certain embodiments, the pharmaceutical composition may contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition. In such embodiments, suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine, proline, or lysine); antimicrobials; antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates or other organic acids); bulking agents (such as mannitol or glycine); chelating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin); fillers; monosaccharides; disaccharides; and other carbohydrates (such as glucose, mannose or dextrins); proteins (such as serum albumin, gelatin or immunoglobulins); coloring, flavoring and diluting agents; emulsifying agents; hydrophilic polymers (such as polyvinylpyrrolidone); low molecular weight polypeptides; salt-forming counterions (such as sodium); preservatives (such as benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide); solvents (such as glycerin, propylene glycol or polyethylene glycol); sugar alcohols (such as mannitol or sorbitol); suspending agents; surfactants or wetting agents (such as pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate, triton, tromethamine, lecithin, cholesterol, tyloxapal); stability enhancing agents (such as sucrose or sorbitol); tonicity enhancing agents (such as alkali metal halides, preferably sodium or potassium chloride, mannitol sorbitol); delivery vehicles; diluents; excipients and/or pharmaceutical adjuvants. See, REMINGTON'S PHARMACEUTICAL SCIENCES, 18″ Edition, (A. R. Genrmo, ed.), 1990, Mack Publishing Company.


In certain embodiments, the optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format and desired dosage. See, for example, REMINGTON'S PHARMACEUTICAL SCIENCES, supra. In certain embodiments, such compositions may influence the physical state, stability, rate of in vivo release and rate of in vivo clearance of the antigen binding proteins of the invention. In certain embodiments, the primary vehicle or carrier in a pharmaceutical composition may be either aqueous or non-aqueous in nature. For example, a suitable vehicle or carrier may be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles. In specific embodiments, pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, and may further include sorbitol or a suitable substitute therefore. In certain embodiments of the invention, human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention compositions may be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (REMINGTON'S PHARMACEUTICAL SCIENCES, supra) in the form of a lyophilized cake or an aqueous solution. Further, in certain embodiments, the human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention may be formulated as a lyophilizate using appropriate excipients such as sucrose.


The pharmaceutical compositions of the invention can be selected for parenteral delivery. Alternatively, the compositions may be selected for inhalation or for delivery through the digestive tract, such as orally. Preparation of such pharmaceutically acceptable compositions is within the skill of the art. The formulation components are present preferably in concentrations that are acceptable to the site of administration. In certain embodiments, buffers are used to maintain the composition at physiological pH or at a slightly lower pH, typically within a pH range of from about 5 to about 8.


When parenteral administration is contemplated, the therapeutic compositions for use in this invention may be provided in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention in a pharmaceutically acceptable vehicle. A particularly suitable vehicle for parenteral injection is sterile distilled water in which the human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention is formulated as a sterile, isotonic solution, properly preserved. In certain embodiments, the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that may provide controlled or sustained release of the product which can be delivered via depot injection. In certain embodiments, hyaluronic acid may also be used, having the effect of promoting sustained duration in the circulation. In certain embodiments, implantable drug delivery devices may be used to introduce the desired antigen binding protein.


Additional pharmaceutical compositions will be evident to those skilled in the art, including formulations involving human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention in sustained- or controlled-delivery formulations. Techniques for formulating a variety of other sustained- or controlled-delivery means, such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See, for example, International Patent Application No. PCT/US93/00829, which is incorporated by reference and describes controlled release of porous polymeric microparticles for delivery of pharmaceutical compositions. Sustained-release preparations may include semipermeable polymer matrices in the form of shaped articles, e.g., films, or microcapsules. Sustained release matrices may include polyesters, hydrogels, polylactides (as disclosed in U.S. Pat. No. 3,773,919 and European Patent Application Publication No. EP 058481, each of which is incorporated by reference), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., 1983, Biopolymers 2:547-556), poly (2-hydroxyethyl-methacrylate) (Langer et al., 1981, J. Biomed. Mater. Res. 15:167-277 and Langer, 1982, Chem. Tech. 12:98-105), ethylene vinyl acetate (Langer et al., 1981, supra) or poly-D(−)-3-hydroxybutyric acid (European Patent Application Publication No. EP 133,988). Sustained release compositions may also include liposomes that can be prepared by any of several methods known in the art. See, e.g., Eppstein et al., 1985, Proc. Natl. Acad. Sci. U.S.A. 82:3688-3692; European Patent Application Publication Nos. EP 036,676; EP 088,046 and EP 143,949, incorporated by reference.


Pharmaceutical compositions used for in vivo administration are typically provided as sterile preparations. Sterilization can be accomplished by filtration through sterile filtration membranes. When the composition is lyophilized, sterilization using this method may be conducted either prior to or following lyophilization and reconstitution. Compositions for parenteral administration can be stored in lyophilized form or in a solution. Parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.


Aspects of the invention includes self-buffering human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention formulations, which can be used as pharmaceutical compositions, as described in international patent application WO 06138181A2 (PCT/US2006/022599), which is incorporated by reference in its entirety herein.


As discussed above, certain embodiments provide human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention protein compositions, particularly pharmaceutical compositions of the invention, that comprise, in addition to the human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention, one or more excipients such as those illustratively described in this section and elsewhere herein. Excipients can be used in the invention in this regard for a wide variety of purposes, such as adjusting physical, chemical, or biological properties of formulations, such as adjustment of viscosity, and or processes of the invention to improve effectiveness and or to stabilize such formulations and processes against degradation and spoilage due to, for instance, stresses that occur during manufacturing, shipping, storage, pre-use preparation, administration, and thereafter.


A variety of expositions are available on protein stabilization and formulation materials and methods useful in this regard, such as Arakawa et al., “Solvent interactions in pharmaceutical formulations,” Pharm Res. 8(3): 285-91 (1991); Kendrick et al., “Physical stabilization of proteins in aqueous solution,” in: RATIONAL DESIGN OF STABLE PROTEIN FORMULATIONS: THEORY AND PRACTICE, Carpenter and Manning, eds. Pharmaceutical Biotechnology. 13: 61-84 (2002), and Randolph et al., “Surfactant-protein interactions,” Pharm Biotechnol. 13: 159-75 (2002), each of which is herein incorporated by reference in its entirety, particularly in parts pertinent to excipients and processes of the same for self-buffering protein formulations in accordance with the current invention, especially as to protein pharmaceutical products and processes for veterinary and/or human medical uses.


Salts may be used in accordance with certain embodiments of the invention to, for example, adjust the ionic strength and/or the isotonicity of a formulation and/or to improve the solubility and/or physical stability of a protein or other ingredient of a composition in accordance with the invention.


As is well known, ions can stabilize the native state of proteins by binding to charged residues on the protein's surface and by shielding charged and polar groups in the protein and reducing the strength of their electrostatic interactions, attractive, and repulsive interactions. Ions also can stabilize the denatured state of a protein by binding to, in particular, the denatured peptide linkages (—CONN) of the protein. Furthermore, ionic interaction with charged and polar groups in a protein also can reduce intermolecular electrostatic interactions and, thereby, prevent or reduce protein aggregation and insolubility.


Ionic species differ significantly in their effects on proteins. A number of categorical rankings of ions and their effects on proteins have been developed that can be used in formulating pharmaceutical compositions in accordance with the invention. One example is the Hofmeister series, which ranks ionic and polar non-ionic solutes by their effect on the conformational stability of proteins in solution. Stabilizing solutes are referred to as “kosmotropic.” Destabilizing solutes are referred to as “chaotropic.” Kosmotropes commonly are used at high concentrations (e.g., >1 molar ammonium sulfate) to precipitate proteins from solution (“salting-out”). Chaotropes commonly are used to denture and/or to solubilize proteins (“salting-in”). The relative effectiveness of ions to “salt-in” and “salt-out” defines their position in the Hofmeister series.


Free amino acids can be used in human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention formulations in accordance with various embodiments of the invention as bulking agents, stabilizers, and antioxidants, as well as other standard uses. Lysine, proline, serine, and alanine can be used for stabilizing proteins in a formulation. Glycine is useful in lyophilization to ensure correct cake structure and properties. Arginine may be useful to inhibit protein aggregation, in both liquid and lyophilized formulations. Methionine is useful as an antioxidant.


Polyols include sugars, e.g., mannitol, sucrose, and sorbitol and polyhydric alcohols such as, for instance, glycerol and propylene glycol, and, for purposes of discussion herein, polyethylene glycol (PEG) and related substances. Polyols are kosmotropic. They are useful stabilizing agents in both liquid and lyophilized formulations to protect proteins from physical and chemical degradation processes. Polyols also are useful for adjusting the tonicity of formulations.


Among polyols useful in select embodiments of the invention is mannitol, commonly used to ensure structural stability of the cake in lyophilized formulations. It ensures structural stability to the cake. It is generally used with a lyoprotectant, e.g., sucrose. Sorbitol and sucrose are among preferred agents for adjusting tonicity and as stabilizers to protect against freeze-thaw stresses during transport or the preparation of bulks during the manufacturing process. Reducing sugars (which contain free aldehyde or ketone groups), such as glucose and lactose, can glycate surface lysine and arginine residues. Therefore, they generally are not among preferred polyols for use in accordance with the invention. In addition, sugars that form such reactive species, such as sucrose, which is hydrolyzed to fructose and glucose under acidic conditions, and consequently engenders glycation, also is not among preferred polyols of the invention in this regard. PEG is useful to stabilize proteins and as a cryoprotectant and can be used in the invention in this regard.


Embodiments of the human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention formulations further comprise surfactants. Protein molecules may be susceptible to adsorption on surfaces and to denaturation and consequent aggregation at air-liquid, solid-liquid, and liquid-liquid interfaces. These effects generally scale inversely with protein concentration. These deleterious interactions generally scale inversely with protein concentration and typically are exacerbated by physical agitation, such as that generated during the shipping and handling of a product.


Surfactants routinely are used to prevent, minimize, or reduce surface adsorption. Useful surfactants in the invention in this regard include polysorbate 20, polysorbate 80, other fatty acid esters of sorbitan polyethoxylates, and poloxamer 188.


Surfactants also are commonly used to control protein conformational stability. The use of surfactants in this regard is protein-specific since, any given surfactant typically will stabilize some proteins and destabilize others.


Polysorbates are susceptible to oxidative degradation and often, as supplied, contain sufficient quantities of peroxides to cause oxidation of protein residue side-chains, especially methionine. Consequently, polysorbates should be used carefully, and when used, should be employed at their lowest effective concentration. In this regard, polysorbates exemplify the general rule that excipients should be used in their lowest effective concentrations.


Embodiments of human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention formulations further comprise one or more antioxidants. To some extent deleterious oxidation of proteins can be prevented in pharmaceutical formulations by maintaining proper levels of ambient oxygen and temperature and by avoiding exposure to light. Antioxidant excipients can be used as well to prevent oxidative degradation of proteins. Among useful antioxidants in this regard are reducing agents, oxygen/free-radical scavengers, and chelating agents. Antioxidants for use in therapeutic protein formulations in accordance with the invention preferably are water-soluble and maintain their activity throughout the shelf life of a product. EDTA is a preferred antioxidant in accordance with the invention in this regard.


Antioxidants can damage proteins. For instance, reducing agents, such as glutathione in particular, can disrupt intramolecular disulfide linkages. Thus, antioxidants for use in the invention are selected to, among other things, eliminate or sufficiently reduce the possibility of themselves damaging proteins in the formulation.


Formulations in accordance with the invention may include metal ions that are protein co-factors and that are necessary to form protein coordination complexes, such as zinc necessary to form certain insulin suspensions. Metal ions also can inhibit some processes that degrade proteins. However, metal ions also catalyze physical and chemical processes that degrade proteins.


Magnesium ions (10-120 mM) can be used to inhibit isomerization of aspartic acid to isoaspartic acid. Ca+2 ions (up to 100 mM) can increase the stability of human deoxyribonuclease. Mg+2, Mn+2, and Zn+2, however, can destabilize rhDNase. Similarly, Ca+2 and Sr+2 can stabilize Factor VIII, it can be destabilized by Mg+2, Mn+2 and Zn+2, Cu+2 and Fe+2, and its aggregation can be increased by Al+3 ions.


Embodiments of the human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention formulations further comprise one or more preservatives. Preservatives are necessary when developing multi-dose parenteral formulations that involve more than one extraction from the same container. Their primary function is to inhibit microbial growth and ensure product sterility throughout the shelf-life or term of use of the drug product. Commonly used preservatives include benzyl alcohol, phenol and m-cresol. Although preservatives have a long history of use with small-molecule parenterals, the development of protein formulations that includes preservatives can be challenging. Preservatives almost always have a destabilizing effect (aggregation) on proteins, and this has become a major factor in limiting their use in multi-dose protein formulations. To date, most protein drugs have been formulated for single-use only. However, when multi-dose formulations are possible, they have the added advantage of enabling patient convenience, and increased marketability. A good example is that of human growth hormone (hGH) where the development of preserved formulations has led to commercialization of more convenient, multi-use injection pen presentations. At least four such pen devices containing preserved formulations of hGH are currently available on the market. Norditropin (liquid, Novo Nordisk), Nutropin AQ (liquid, Genentech) & Genotropin (lyophilized—dual chamber cartridge, Pharmacia & Upjohn) contain phenol while Somatrope (Eli Lilly) is formulated with m-cresol. Several aspects need to be considered during the formulation and development of preserved dosage forms. The effective preservative concentration in the drug product must be optimized. This requires testing a given preservative in the dosage form with concentration ranges that confer anti-microbial effectiveness without compromising protein stability.


As might be expected, development of liquid formulations containing preservatives are more challenging than lyophilized formulations. Freeze-dried products can be lyophilized without the preservative and reconstituted with a preservative containing diluent at the time of use. This shortens the time for which a preservative is in contact with the protein, significantly minimizing the associated stability risks. With liquid formulations, preservative effectiveness and stability should be maintained over the entire product shelf-life (about 18 to 24 months). An important point to note is that preservative effectiveness should be demonstrated in the final formulation containing the active drug and all excipient components.


Human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention generally will be designed for specific routes and methods of administration, for specific administration dosages and frequencies of administration, for specific treatments of specific diseases, with ranges of bio-availability and persistence, among other things. Formulations thus may be designed in accordance with the invention for delivery by any suitable route, including but not limited to orally, aurally, opthalmically, rectally, and vaginally, and by parenteral routes, including intravenous and intraarterial injection, intramuscular injection, and subcutaneous injection.


Once the pharmaceutical composition has been formulated, it may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, crystal, or as a dehydrated or lyophilized powder. Such formulations may be stored either in a ready-to-use form or in a form (e.g., lyophilized) that is reconstituted prior to administration. The invention also provides kits for producing a single-dose administration unit. The kits of the invention may each contain both a first container having a dried protein and a second container having an aqueous formulation. In certain embodiments of this invention, kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes) are provided. The therapeutically effective amount of a human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention protein-containing pharmaceutical composition to be employed will depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment will vary depending, in part, upon the molecule delivered, the indication for which the human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention is being used, the route of administration, and the size (body weight, body surface or organ size) and/or condition (the age and general health) of the patient. In certain embodiments, the clinician may titer the dosage and modify the route of administration to obtain the optimal therapeutic effect. A typical dosage may range from about 0.1 μg/kg to up to about 30 mg/kg or more, depending on the factors mentioned above. In specific embodiments, the dosage may range from 1.0 μg/kg up to about 20 mg/kg, optionally from 10 μg/kg up to about 10 mg/kg or from 100 μg/kg up to about 5 mg/kg.


A therapeutic effective amount of a human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention preferably results in a decrease in severity of disease symptoms, in increase in frequency or duration of disease symptom-free periods or a prevention of impairment or disability due to the disease affliction. For treating CDH19-expressing tumors, a therapeutically effective amount of human antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention, e.g. an anti-CDH19 antibody construct (ADC construct), preferably inhibits cell growth or tumor growth by at least about 20%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90% relative to untreated patients. The ability of a compound to inhibit tumor growth may be evaluated in an animal model predictive of efficacy in human tumors.


Pharmaceutical compositions may be administered using a medical device. Examples of medical devices for administering pharmaceutical compositions are described in U.S. Pat. Nos. 4,475,196; 4,439,196; 4,447,224; 4,447, 233; 4,486,194; 4,487,603; 4,596,556; 4,790,824; 4,941,880; 5,064,413; 5,312,335; 5,312,335; 5,383,851; and 5,399,163, all incorporated by reference herein.


In one embodiment the invention provides the human antibody or antigen binding fragment thereof of the invention, the antibody construct of the invention, or produced according to the process of the invention for use in the prevention, treatment or amelioration of a melanoma disease or metastatic melanoma disease. Preferably, the melanoma disease or metastatic melanoma disease is selected from the group consisting of superficial spreading melanoma, lentigo maligna, lentigo maligna melanoma, acral lentiginous melanoma and nodular melanoma.


The invention also provides a method for the treatment or amelioration of a melanoma disease or metastatic melanoma disease, comprising the step of administering to a subject in need thereof the antibody or antigen binding fragment thereof of the invention, the antibody construct of the invention, an antibody or antigen binding fragment thereof of the invention or the antibody construct of the invention produced according to the process of the invention or a pharmaceutical composition of the invention.


In a preferred embodiment method the invention the melanoma disease or metastatic melanoma disease is selected from the group consisting of superficial spreading melanoma, lentigo maligna, lentigo maligna melanoma, acral lentiginous melanoma and nodular melanoma.


In a further embodiment, the invention provides a kit comprising an antibody or antigen binding fragment thereof of the invention, an antibody construct of the invention, an antibody or antigen binding fragment thereof of the invention or the antibody construct produced according to the process of the invention, a vector of the invention, and/or a host cell of the invention.


It should be understood that the inventions herein are not limited to particular methodology, protocols, or reagents, as such can vary. The discussion and examples provided herein are presented for the purpose of describing particular embodiments only and are not intended to limit the scope of the present invention, which is defined solely by the claims.


All publications and patents cited throughout the text of this specification (including all patents, patent applications, scientific publications, manufacturer's specifications, instructions, etc.), whether supra or infra, are hereby incorporated by reference in their entirety. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. To the extent the material incorporated by reference contradicts or is inconsistent with this specification, the specification will supersede any such material.


EXAMPLES

The following examples illustrate the invention. These examples should not be construed as to limit the scope of this invention. The examples are included for purposes of illustration, and the present invention is limited only by the claims.


Example 1—Fully Human Monoclonal Antibodies Against CDH19

1.1 Immunization:


Fully human antibodies to Cadherin-19 (CDH19) were generated using XENOMOUSE® technology, transgenic mice engineered to express diverse repertoires of fully human IgGκ and IgGλ antibodies of the corresponding isotype. (U.S. Pat. Nos. 6,114,598; 6,162,963; 6,833,268; 7,049,426; 7,064,244, which are incorporated herein by reference in their entirety; Green et al., 1994, Nature Genetics 7:13-21; Mendez et al., 1997, Nature Genetics 15:146-156; Green and Jakobovitis, 1998, J. Ex. Med. 188:483-495; Kellermann and Green, Current Opinion in Biotechnology 13, 593-597, 2002).


Mice were immunized with multiple forms of Cadherin-19 immunogen, including: (1) full length human and cynomologous (“cyno”) monkey cadherin-19, (2) secreted Cadherin-19 ecto-domain (amino acids 1-596), and (3) a truncated membrane bound form of human cadherin-19 (amino acids 1-624). Mice were immunized over a period of 8 to 10 weeks with a range of 16-18 boosts.


Sera were collected at approximately 5 and 9 weeks after the first injection and specific titers were determined by FACs staining of recombinant Cadherin-19 receptor transiently expressed on CHO-S cells. A total of 37 animals were identified with specific immune responses, these animals were pooled into 3 groups and advanced to antibody generation.


1.2 Preparation of Monoclonal Antibodies


Animals exhibiting suitable titers were identified, and lymphocytes were obtained from draining lymph nodes and, if necessary, pooled for each cohort. Lymphocytes were dissociated from lymphoid tissue by grinding in a suitable medium (for example, Dulbecco's Modified Eagle Medium (DMEM); obtainable from Invitrogen, Carlsbad, Calif.) to release the cells from the tissues, and suspended in DMEM. B cells were selected and/or expanded using standard methods, and fused with suitable fusion partner using techniques that were known in the art.


After several days of culture, the hybridoma supernatants were collected and subjected to screening assays as detailed in the examples below, including confirmation of binding to human and cynomologous monkey as well as the ability to kill cell lines in secondary antibody-drug conjugate Bioassays. Hybridoma lines that were identified to have the binding and functional properties of interest were then further selected and subjected to standard cloning and subcloning techniques. Clonal lines were expanded in vitro, and the secreted human antibodies obtained for analysis and V gene sequencing was performed.


1.3 Selection of Cadherin-19 Receptor Specific Binding Antibodies by FMAT


After 14 days of culture, hybridoma supernatants were screened for CDH19-specific monoclonal antibodies by Fluorometric Microvolume Assay Technology (FMAT) (Applied Biosystems, Foster City, Calif.). The supernatants were screened against adherent CHO cells transiently transfected with human Cadherin-19 and counter screened against CHO cells transiently transfected with the same expression plasmid that did not contain the Cadherin-19 gene.


After multiple screening campaigns, a panel of 1570 anti-Cadherin-19 binding hybridoma lines were identified and advanced to further characterization assays.


Example 2—Assessment of Fully Human Monoclonal Antibodies Against CDH19

2.1 Additional Binding Characterization by Flow Cytometry (FACs)


FACS binding assays were performed to evaluate the binding of the anti-Cadherin-19 receptor specific antibodies to endogenous Cadherin-19 receptor expressed on the CHL-1 tumor cell lines. In addition, cross-reactive binding to murine and cynomologous monkey Cadherin-19 orthologues was also evaluated by FACs using recombinant forms of the various receptors transiently expressed on 293T cells.


FACs assays were performed by incubating hybridoma supernatants with 10,000 to 25,000 cells in PBS/2% Fetal bovine serum/2 mM Calcium Chloride at 4° C. for one hour followed by two washes with PBS/2% Fetal bovine serum/2 mM Calcium Chloride. Cells were then treated with florochrome-labeled secondary antibodies at 4° C. followed by one wash. The cells were resuspended in 50 μl of PBS/2% FBS and antibody binding was analyzed using a FACSCalibur™ instrument.


2.2 Antibody Drug Conjugate Screening of Fully Human Antibodies Derived from XenoMouse® Hybridomas


Cell killing through antibody drug conjugates requires the delivery of the conjugate into a cell through internalization and the catabolism of the drug-conjugate into a form that it is toxic to the cell. To identify antibodies with these properties, CDH19-positive cell lines (Colo-699 or CHL-1) were seeded at low cell densities and allowed to adhere overnight in a 384 well plate. XENOMOUSE® hybridoma samples containing fully human anti-CDH19 antibodies were then added to these cells in the presence of a high concentration of a goat anti-human Fc monovalent Fab conjugated with DM1 (DM1-Fab) at a relatively low drug-antibody ratio (DAR) (˜1.3). The cells were incubated for 96 hours at 37° C. and 5% CO2 in the presence of the antibody samples and the DM1-Fab. At the end of this time, the cell viability was assessed using the CellTiter-Glo® Luminescent Cell Viability reagent (Promega) according to manufacturer's recommendations.


An example of the cell viability data with the Colo-699 cells is shown in FIG. 1 and FIG. 2. The antibodies capable of delivering the DM1-Fab to the cells and inhibiting the cell growth read out with a lower luminescent signal (RLU). The top antibodies of interest from this screen are observed in the lower left corner of FIG. 1 and are denoted as open circles. These antibodies were taken forward into a cell viability assay on CHL-1 cells. The average cell viability data from the CHL-1 assay is plotted against the average cell viability data from the Colo-699 assay (FIG. 2). The antibodies that had activity on both the Colo-699 and the CHL-1 cells are denoted as open circles on the left-hand side of the FIG. 2.


This assay was run concurrently with the FACs antibody binding assay above (2.2), and the results from these two studies were used to select the antibodies for further characterization. In total, 1570 antibodies were run through these cell based viability assays and approximately 44 antibodies were selected on the bases of in vitro cell killing and/or antibody binding for sub-cloning, V gene sequencing and expressed in recombinant form for further characterization assays as described below.


These 44 antibodies were again assayed as in Example 2 and 19 antibodies were selected that contained unique sequences. Of these 19 antibodies, 18 antibodies were analyzed and their properties characterized in Table 2 below. The data in this table was generated using FACs binding on recombinant human and cynomologous CDH-19, +/−Calcium (Ca+2) binding data on 293/CDH-19 transfectants, binding to endogenous CDH-19 on CHL-1 and Colo699 tumor cells and competition with the antibody designated as 4A9 in the table. These experiments provided the further characterizations for the grouping of these antibodies into 5 groups or bins.









TABLE 2







Binning of Lead panel using Antibody Binding Information











LMR




Bin
Sequence/
Clone


ID
Ab ID
ID
Bin Characteristics





1
13589
4A9
High Endogenous binding,



13591
4F7
Calcium insensitive,





sequence clustered, moderate





cyno complete 4A9 competitor


2
13885
19B5
High Endogenous binding,



13880
25F8
Calcium insensitive,



13882
26D1
sequence clustered, Good



13881
26F12 = 27B3
cyno, partial 4A9 competitor



13878
16H2 = 20D3 =




23E7



13879
22D1


3
13877
22G10
High Endogenous binding,



13874
17H8 = 23B6 =
moderate 293 binding,




28D10
Calcium insensitive, 2



13883
25G10
sequence clusters, moderate



13875
16C1
cyno, partial 4A9





competitor, 22G10 best





binder in bin.


4
13590
4B10
Low Endogenous and



13586
4F3
recombinant binding, Calcium



13592
4A2
sensitive, sequence diverse



13884
23A10
group, comparable cyno, No



13588
2G6
4A9 competition


5
13876
16A4
Best endogenous binder, moderate





recombinant binder, calcium





insensitive, very weak cyno, No





4A9 competition.









Of these 18 antibodies. 8 antibodies were selected for further analysis of their epitope binding as described below. At least one representative antibody from each bin was selected for further analysis.


Example 3—Epitope Prediction

Epitope Prediction by 4A9 Antibody Competition and by Human/Mouse Cadherin-19 Chimeras


A 4A9 binding competition method was developed to identify antibodies that compete with 4A9 binding. In 96-well V-bottom plates (Sarstedt #82.1583.001), 50,000 transiently transfected 293T cells were incubated with 5 ug/ml of purified anti-CDH19 antibodies for 1 hr at 4° C. followed by one wash with PBS/2% FBS. 25 μl of 5 μg/ml Alexa647-labelled 4A9 was then added to each well and the plates incubated for 1 hour at 4° C. Cells were then washed two times and the amount of cell associated Alexa647-labelled 4A9 was quantitated by flow cytometry.


The experiments included negative controls consisting of PBS/2% FBS only. The average signal observed in these negative control experiments was adopted as the maximum possible signal for the assay. Antibodies were compared to this maximum signal and a percent inhibition was calculated for each well (% Inhibition=(1−(FL4 Geomean with the anti-CDH19 antibodies/Maximum FL4 Geomean signal)).


Domain binding was determined by flow cytometry as above on 293T cells transiently transfected with plasmids consisting of single or dual human CDH19 cadherin repeat domain replacements into the mouse Cadherin19 backbone cloned into the pTT5 expression vector immediately preceded by native human or murine CDH19 leader sequences and a Flag tag (SEQ ID NO: 968). The experiment included assaying the anti-CDH19 antibodies against mouse Cadherin19 to determine suitability for binning on these human/mouse chimeras. The data from these experiments are presented in the Table below entitled as follows:









TABLE 3







Calcium Sensitive Binding and Epitope Prediction Summary
























Ca2+
Competes
Hu
Hu
Hu
Hu
Hu
Hu
Hu
Hu
Mu
Predicted





Sensitive
with 4A9
EC1-5
EC1
EC1-2
EC2
EC2-3
EC3
EC4-5
EC5
EC1-5
Epitope


Clone ID
Ab ID
Bin
Binding
(13589)
A
B
C
D
E
F
G
H
I
Region





4A9
13589
1
No
Yes
+
+
+






 44-141



14056
1
No
Yes
+
+
+









14057
1
No
Yes
+
+
+








25F8
13880
2
No
Yes
+
+
+









14094
2
No
Yes
+
+
+









14096
2
No
Yes
+
+
+








26D1
13882
2
No
Yes
+
+
+









14088
2
No
Yes
+
+
+








17H8
13874
3
No
Yes
+
+
+









14045
3
No
Yes
+
+
+









14048
3
No
Yes
+
+
+








4A2
13592
4
Yes
No
+



+
+



250-364



14026
4
Yes
No
+



+
+





4B10
13590
4
Yes
No
+



+
+






14055
4
Yes
No
+



+
+






14054
4
Yes
No
+



+
+





2G6
13588
4
Yes
No
+
+
+
+
+
+
+
+
+
un-



14304
4
Yes
No
+
+
+
+
+
+
+
+
+
assignable



14039
4
Yes
No
+
+
+
+
+
+
+
+
+


16A4
13876
5
No
No
+
+
+






Unassigned



14071
5
No
No
+
+
+






complex
















epitope




















Rat anti-FLAG



+
+
+
+
+
+
+
+
+





Legend Table 3


Human and/or murine chimera constructs


A = huCDH19(44-772) (see SEQ ID NO: 944)


B = huCDH19(44-141)::muCDH19(140-770) (see SEQ ID NO: 952)


C = huCDH19(44-249)::muCDH19(248-770) (see SEQ ID NO: 954)


D = muCDH19(44-139)::huCDH19(142-249)::muCDH19(248-770) (see SEQ ID NO: 956)


E = muCDH19(44-139)::huCDH19(142-364)::muCDH19(363-770) (see SEQ ID NO: 958)


F = muCDH19(44-247)::huCDH19(250-364)::muCDH19(363-770) (see SEQ ID NO: 960)


G = muCDH19(44-362)::huCDH19(365-772) (see SEQ ID NO: 962)


H = muCDH19(44-461)::huCDH19(464-772) (see SEQ ID NO: 964)


I = muCDH19(44-770) (see SEQ ID NO: 966)






Epitope Prediction by Human/Chicken Cadherin-19 Chimeras


Domain binding was determined by flow cytometry on 293T cells transiently transfected with plasmids consisting of single human CDH19 cadherin repeat domain replacements into the chicken Cadherin19 backbone cloned into the pTT5 expression vector immediately preceded by native human or chicken CDH19 leader sequences and a Flag tag. The experiment included assaying a subset of anti-CDH19 antibodies against chicken Cadherin19 to determine suitability for binning on these human/chicken chimeras.


The following binding assay was completed in presence of 2 mM CaCl2. In 96-well V-bottom plates (Costar 3897), 50,000 transiently transfected 293T cells were incubated with 5 ug/ml of purified anti-CDH19 antibodies for 1 hr at 4° C. followed by two washes with PBS/2% FBS. 50 μl of 5 μg/ml Alexa647-labelled anti-human IgG secondary antibody (Jackson Immuno 109-605-098) and 2 ug/ml 7AAD (Sigma A9400) was then added to each well and the plates incubated for 15 minutes at 4° C. Cells were then washed one time and the amount of cell associated Alexa647-labelled Ab was quantitated by flow cytometry. The experiments included mock transfected controls. The data from these experiments are presented in the Table below, n.d.=not determined.









TABLE 4







Antibody Bin C Epitope Prediction Summary



















Hu
Ck
Hu
Hu
Hu
Hu
Predicted





EC1-5
EC1-5
EC1
EC2
EC3
EC5
Epitope


Clone ID
Ab. ID
Bin
A
J
K
L
M
O
Region





4A9
13589
1
+

+



44-141


26F12
13881
2
+

+



Bin A


25F8
14096
2
+

+





26D1
13882
2
+

+





17H8
13874
3
+

+





16A4
14071
5
+

+





4A2
13592
4
+



+

250-364


4B10
13590
4
+



+

Bin B


2G6
13588
4
+



+



23A10
14077
4
+



+
















Rat anti-FLAG

+
+
+
+
+
+
control





Positive Binding (+)


Negative Binding (−)


Legend Table 4


Human and/or chicken chimera constructs


A = huCDH19(44-772) (see SEQ ID NO: 944)


J = ckCDH19(44-776) (see SEQ ID NO: 970)


K = huCDH19(44-141)::ckCDH19(142-776) (see SEQ ID NO: 971)


L = ckCDH19(44-141)::huCDH19(142-249)::ckCDH19(250-776) (see SEQ ID NO: 972)


M = ckCDH19(44-249)::huCDH19(250-364)::ckCDH19(365-776) (see SEQ ID NO: 973)


N = ckCDH19(44-364)::huCDH19(365-463)::ckCDH19(469-776) (see SEQ ID NO: 974)


O = ckCDH19(44-468)::huCDH19(464-772) (see SEQ ID NO: 975)






Epitope Prediction by Macaque/Dog or Rat/Macaque Cadherin-19 Chimeras


Domain binding was determined by flow cytometry on 293T cells transiently transfected with plasmids consisting of rhesus macaque CDH19 cadherin repeat domain 1 or segments domain 1 (designated EC1a, EC1b, EC1c) replacements into the dog Cadherin19 backbone, or rat CDH19 cadherin repeat domain 2 replacement into the rhesus Cadherin19 backbone cloned into the pTT5 expression vector immediately preceded by native rhesus or canine CDH19 leader sequences and a Flag tag. The experiment included assaying a subset of anti-CDH19 antibodies against dog, rat and macaque Cadherin19 to determine suitability for binning on these macaque/dog and rat/rhesus chimeras.


The following binding assay was completed in presence of 2 mM CaCl2. In 96-well V-bottom plates (Costar 3897), 50,000 transiently transfected 293T cells were incubated with 5 ug/ml of purified anti-CDH19 antibodies for 1 hr at 4° C. followed by two washes with PBS/2% FBS. 50 μl of 5 μg/ml Alexa647-labelled anti-human IgG secondary antibody (Jackson Immuno 109-605-098) and 2 ug/ml 7AAD (Sigma A9400) was then added to each well and the plates incubated for 15 minutes at 4° C. Cells were then washed one time and the amount of cell associated Alexa647-labelled Ab was quantitated by flow cytometry. The experiments included mock transfected controls. The data from these experiments are presented in the Table below, n.d.=not determined.









TABLE 5







Antibody BinA Epitope prediction Summary




















Rh
Ca
rh
rh
rh
ra
Ra
Predicted





EC1-5
EC1-5
EC1
EC1a
EC1b
EC2
EC1-5
Epitope


Clone ID
Ab. ID
Bin
P
Q
R
S
T
V
W
Region





4A9
13589
1
+

+




44-141












Bin A.1


26F12
13881
2
+

+
+
+


44-141


25F8
14096
2
+

+
+
+


Bin A.2


26D1
13882
2
+

+
+
+


(44-114)


17H8
13874
3
+

+
+



44-141


16A4
14071
5
+

+
+

n.d.
+
Bin A.3












(44-65)


4A2
13592
4
+

n.d.
n.d.
n.d.
n.d.
+
250-364


4B10
13590
4
+
+
n.d.
n.d.
n.d.
n.d.
+
Bin B


2G6
13588
4
+
+
n.d.
n.d.
n.d.
n.d.
+


23A10
14077
4
+
+
n.d.
n.d.
n.d.
n.d.
+
















Rat anti-FLAG

+
+
+
+
+
+
+





Positive Binding (+)


Negative Binding (−)


Not Determined (n.d.)


Legend Table 5


Rhesus macaque, dog, and/or rat chimera constructs


P = rhCDH19(44-772) (see SEQ ID NO: 976)


Q = caCDH19(44-770) (see SEQ ID NO: 977)


R = rhCDH19(44-141)::caCDH19(141-770) (see SEQ ID NO: 978)


S = rhCDH19(44-65)::caCDH19(65-770) (see SEQ ID NO: 979)


T = caCDH19(44-87)::rhCDH19(89-114)::caCDH19(115-770) (see SEQ ID NO: 980)


U = caCDH19(44-120)::rhCDH19(122-137)::caCDH19(137-770) (see SEQ ID NO: 981)


V = rhCDH19(44-141)::raCDH19(140-247)::rhCDH19(250-772) (see SEQ ID NO: 982)


W = raCDH19(44-770) (see SEQ ID NO: 983)






The data summarized in table 5 allowed for segregating the binder of Bin A 44-141 into the following subgroups:


Bin A.1 44-141


Bin A.2 44-141 (44-114)


Bin A.3 44-141 (44-65)


Epitope Prediction by Rat/Mouse or Human/Mouse Cadherin-19 Chimeras


Domain binding was determined by flow cytometry on 293T cells transiently transfected with plasmids consisting of rat CDH19 cadherin repeat domain 3 substitutions (designated EC3a, EC3b) or human CDH19 cadherin repeat domain 3 substitution (designated EC3c) into the mouse Cadherin19 backbone cloned into the pTT5 expression vector immediately preceded by native mouse CDH19 leader sequence and a Flag tag. The experiment included assaying a subset of anti-CDH19 antibodies against human, rat and mouse Cadherin19 to determine suitability for binning on these rat/mouse and human/mouse chimeras.


The following binding assay was completed in presence of 2 mM CaCl2. In 96-well V-bottom plates (Costar 3897), 50,000 transiently transfected 293T cells were incubated with 5 ug/ml of purified anti-CDH19 antibodies for 1 hr at 4° C. followed by two washes with PBS/2% FBS. 50 μl of 5 μg/ml Alexa647-labelled anti-human IgG secondary antibody (Jackson Immuno 109-605-098) and 2 ug/ml 7AAD (Sigma A9400) was then added to each well and the plates incubated for 15 minutes at 4° C. Cells were then washed one time and the amount of cell associated Alexa647-labelled Ab was quantitated by flow cytometry. The experiments included mock transfected controls. The data from these experiments are presented in the Table below, n.d.=not determined.









TABLE 6







Antibody Bin B Epitope Prediction Summary



















Hu
Mo
Ra
Ra
Ra
Hu
Predicted





EC1-5
EC1-5
EC1-5
EC3c
EC3b
EC3a
Epitope


Clone ID
Ab. ID
Bin
A
I
W
X
Y
Z
Region





4A9
13589
1
+


n.d.
n.d.
n.d.
44-141


26F12
13881
2
+


n.d.
n.d.
n.d.
Bin A


25F8
14096
2
+


n.d.
n.d.
n.d.


26D1
13882
2
+


n.d.
n.d.
n.d.


17H8
13874
3
+


n.d.
n.d.
n.d.


16A4
14071
5
+

+
n.d.
n.d.
n.d.


4A2
13592
4
+

+
+


250-364


4B10
13590
4
+

+
+


(324-327)











Bin B.2


2G6
13588
4
+
+
+
+
+
+
250-364


23A10
14077
4
+
+
+
n.d.
n.d.
n.d.
Bin B.1















Rat anti-FLAG

+
+
+
+
+
+
control





Positive Binding (+)


Negative Binding (−)


Not Determined (n.d.)


Legend Table 6


Rat/mouse or human/mouse chimera constructs


A = huCDH19(44-772) (see SEQ ID NO: 944)


I = muCDH19(44-770) (see SEQ ID NO: 966)


W = raCDH19(44-770) (see SEQ ID NO: 983)


X = muCDH19(44-323)::raCDH19(324-327)::muCDH19(328-770) (see SEQ ID NO: 984)


Y = muCDH19(44-770)::raCDH19(290, 299, 308) (see SEQ ID NO: 985)


Z = muCDH19(44-770)::huCDH19(271) (see SEQ ID NO: 986)






The data summarized in table 4 allowed for segregating the binder of Bin B 250-364 into the following subgroups:


Bin B.1 250-364


Bin B.2 250-364 (324-327) by rodent numeration as referenced in table 6, corresponding to residues (326-329) within human and macaque CDH19.


Example 4—Hotspot/Covariant Mutants

A total of 18 antibodies were analyzed for potential hotspots and covariance violations. The designed variants (shown below) outline amino acid substitutions capable of reducing and/or avoiding isomerization, deamidation, oxidation, covariance violations, and the like. The 80 engineered variants together with the 15 parental antibodies, thus totaling 95 sequences, were taken forward to the cloning, expression, and purification processes. Site-directed mutagenesis was performed on the engineered variants in a 96-well format. The parental antibodies and engineered variants were expressed by high throughput transient transfection in HEK 293-6E cells, purified using a modified AKTA auto-sampler and assayed for activity and biophysical characteristics. The 3 parental antibodies that had either free (unpaired) Cys or N-glycosylation site were not taken forward in this process. Those were replaced with the engineered version of the parental antibodies. The designed variants outline amino acid substitutions capable of reducing and/or avoiding isomerization, deamidation, oxidation, covariance violations, immunogenicity and the like. It will be appreciated that these variant sequences are examples of engineered antibodies within the meaning of the present application but single point and/or multiple point mutations can be combined in any combinatorial manner in order to arrive at a final desired antigen binding molecule or antibody.


Example 5—CDH19 mRNA Expression Pattern

RNA was extracted from individual patient tissues representing tumor (>70% tumor content by cell count) or normal (0% tumor content by cell count). Individual tissues were homogenized using TisssueLyzer (Qiagen, Valencia, Calif.) and total RNA extracted and purified by the mirVana total RNA extraction kit (Life Technologies, Foster City, Calif.). RNA quality and quantity checked by NanoDrop (NanoDrop, Wilmington, Del.) spectrophotometer readings and Bioanalyzer RNA profiling (Agilient Technologies, Santa Clara, Calif.). RNA was DNAse treated with DNA-free kit (Life Technologies, Foster City, Calif.) and reverse transcribed according to manufacturer's specifications using random hexamers in the High Capacity cDNA Reverse Transcription Kit (Life Technologies, Foster City, Calif.). Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) was performed on cDNA using primers to CDH19, probeset Hs00253534_m1, (Life Technologies, Foster City, Calif.) or the housekeeping gene human ACTB (primers CCT GGC ACC CAG CAC AA; GCC GAT CCA CAC GGA GTA CT; probe ATC AAG ATC ATT GCT CCT CCT GAG CG). 10 μL qRT-PCR reaction components; 1.0 ng/μL cDNA, 2×Universal PCR Master Mix (Life Technologies, Foster City, Calif.), gene expression assay (ACTB; 75 nM primers, 150 nM probe. EPOR; 300 nM primers, 250 nM probe) Following the qRT-PCR amplification program: (1) activation at 50° C. for 2 min; (2) denaturation at 95° C. for 10 min; (3) amplification 40 cycles at 95° C. for 15 s and 60° C. for 1 min with fluorescence capture at each step (ABI PRISM 7900HT Sequence Detection Systems, Applied Biosystems). Threshold cycle values (CT) were determined, using Sequence Detector software version 2.3 (Applied Biosystems) and transformed to 2−ΔCT for relative expression of CDH19 specific transcript to ACTB. The results are shown in FIG. 3. Of 54 unique metastatic and primary melanoma samples, the majority can be seen to overexpress CDH19 mRNA relative to the expression in samples from normal tissue.


Example 6—CDH19 Protein Expression

Expression of CDH19 protein was analyzed in human tumor samples by IHC and the results are shown in FIG. 4. Samples were fixed in 10% neutral buffered formalin for 24 hours, dehydrated and paraffin embedded. 4 μm sections were cut. Sections were deparaffinized first and then heated in DIVA Decloaker solution (Biocare) for 40 minutes for antigen retrieval. Remaining IHC steps were performed at room temperature in a DAKO Autostainer. Sections were incubated for 10 minutes with Peroxidazed 1 (Biocare) to block endogenous peroxidase, followed by incubation for 10 minutes with background sniper (Biocare) to reduce nonspecific background. Section were incubated for 60 minutes with CDH19 antibody (Novo Biologicals, Catalog #H00028513-B01P) at 5 μg/ml, then incubated for 30 minutes with Envision+ HRP anti-mouse polymer (DAKO), followed by DAB+ (DAKO) for 5 minutes. Sections were counterstained with hematoxylin (DAKO) approximately for 1 minute. CDH19 expression could be detected in 62% of tumors examined (staining intensity 1+ in 101 of 162 samples). 51% of the tumor samples demonstrated medium to high expression (staining intensity of 2+ to 3+ in 83 of 162 samples). CDH19 showed dense and distinct membrane staining in many samples, although in some tumors heterogeneity was noted.


Example 7—Selection of Model Cell Lines

Tumor cell lines were analyzed by flow cytometry and IHC to identify model systems with CDH19 expression similar to human tumors. Human anti-huCDH19 IgG4 antibody 4A2 was purified directly from hybridoma conditioned media. For flow cytometry, 2×105 cells were incubated with 200 nM of the CDH19 4A2 antibody that was conjugated to PE at a 1:1 ratio. The incubation and subsequent wash steps were performed in the presence of 1.2 mM calcium. A tube of QuantiBRITE PE lyophilized beads with four levels of PE (BD, cat #340495) was simultaneously prepared according to the manufacturer's instructions. The beads were analyzed by flow cytometry to generate a standard curve. The PE median values obtained from the melanoma lines after FACS analysis were then calibrated against the standard curve to calculate the antibodies bound per cell (ABC), which provides an estimate of the number of receptors on each cell. IHC was performed as described in Example 6 and the results are provided in FIG. 5. The melanoma cell line CHL-1 expresses about 10,000 CDH19 molecules on the cell surface, while Colo699 cells express about 5,000 receptors. Both cell lines represent tumors with medium to high expression levels based on IHC. Expression in A2058 is very low, while LOX cells do not express any detectable CDH19 protein.


Example 8—Preparation of Antibody Drug Conjugates

DNA sequences encoding the heavy chain and light chain components of anti-CDH19 antibodies were subcloned into mammalian expression vector pTT5 and transiently co-transfected into 293-6E cells, as described in published US2005/0170450 which is incorporated in its entirety by reference. Antibodies were purified from conditioned media by protein A affinity and ion exchange chromatography. Antibodies were incubated at 3 to 5 mg/ml with 4 to 13 equivalents of SMCC-DM1 in neutral to slightly basic buffered solutions containing 50 mM sodium chloride, 2 mM EDTA, and from 5 to 15% dimethylacetamide at room temperature for up to 5 hours or at 4° C. for up to 18 hours. Conjugation to DM1 and DAR determination for conjugates, is described in U.S. Pat. No. 7,368,565 and related U.S. Pat. No. 7,851,432, which are herein incorporated in their entirety by reference. Resultant antibody drug conjugates (ADCs) were purified from solutes and unconjugated drug by gel permeation or ion exchange chromatography. UV spectrophotometric measurements at 252 nm and 280 nm combined with respective molar extinction coefficients of SMCC-DM1 and antibody as defined by amino acid composition were used to algebraically determine the concentration of drug (CD) and antibody (CAb) components of ADC preparations which could be used to calculate a drug to antibody ratio (DAR) as described in U.S. Pat. No. 7,368,565. DAR determinations of ADCs were more accurately made by similar algebraic calculations based on integrated peaks measured at 252 nm and 280 nm in analytical size exclusion chromatography. Orthogonal LC/MS methods were also used to qualitatively assess random drug distribution profiles by mass. The table below describes ADCs used in the experiments for which the results are provided in FIG. 6 (lots 1, 2), FIG. 7 (lots 3-10), and FIG. 8 (lots 11-14), which are representative of typical ADC preparations.
















Example
ADC lot
ID
hu anti-huCDH19 IgG1 antibody
DAR



















FIG. 6
1
13590
4B10
3.6


FIG. 6
2
1462
anti-SA (anti-streptavidin
4.5





control)


FIG. 7
3
13590
4B10
2.5


FIG. 7
4
13590
4B10
4.1


FIG. 7
5
13590
4B10
5.1


FIG. 7
6
13590
4B10
5.8


FIG. 7
7
13590
4B10
5


FIG. 7
8
13590
4B10
6.3


FIG. 7
9
13590
4B10
7.4


FIG. 7
10
1462
anti-SA (anti-streptavidin
6.5





control)


FIG. 8
11
14096
25F8.1 (K45Q, S102A, D111E)
5.6





VL + (F90Y) VH


FIG. 8
12
14045
17H8.2 (G149R) VL
4.7


FIG. 8
13
14054
4B10 (H45Q, A90T) VL +
5.2





(R17G) VH


FIG. 8
14
1462
anti-SA (anti-streptavidin
5.3





control)









Example 9—Activity of CDH19 Targeting ADCs in Model Cell Lines

The CDH19 recognizing parental antibody 4B10 (Ab ID 13590) was covalently coupled to the toxin DM1 as described in Example 8. The tumor cells were plated in 384-well microtiter plates on Day 1, and on Day 2, the ADC was titrated on the cells and incubated for additional 72 h. Cell viability was determined at the end of the experiment with CellTiterGlo reagent (Promega) according to the manufacturer's instructions. Unconjugated, free DM1 served as a positive control, and a streptavidin recognizing antibody/DM1 conjugate served as a negative control to detect non specific binding. IC50s were determined with a non-linear, 4 parameter curve fit and are shown in FIG. 6.


Example 10—Effect of Drug to Antibody Ratio (DAR) on ADC Potency

In order to assess the effect of the drug antibody ratio on the potency of the ADC molecule, the CDH19 recognizing parental antibody 4B10 (Ab ID 13590) was coupled with different amounts of DM1 as indicated in FIG. 7. The effect of DARs on ADC potency was determined in cell viability assays as described in Example 9. An increased DAR leads to increases in potency for a given DM1 concentration. This effect is more pronounced on tumor cells with lower CDH19 expression.


Example 11—Efficacy of CDH19 Targeting ADCs In Vivo

Three CDH19 recognizing engineered variant antibodies (Ab IDs 14096, 14045, 14054) were coupled to DM1 and tested in xenograft experiments. CHL-1 cells were suspended in a solution of 50% serum free medium and 50% Matrigel, and implanted subcutaneously in the flank of female athymic nude mice. Each mouse received five million cells in a volume of 200 μl. When tumors reached approximately 200 mm3, mice were sorted into seven groups of 10 mice each with equivalent mean and SD tumor size per group, and dosed with test agents or controls. All treatments were administered IV in a volume of 200 μl. Tumors were measured two times per week using calipers. Length, width and height measurements were taken A repeated measures ANOVA with Dunnett's post-hoc test was used to compare the difference in tumor volume between each CDH19 targeting ADC and a non-specific control ADC (anti-streptavidin coupled to DM1). The percentage of tumor growth inhibition was calculated for each CDH19 targeting ADC compared to the corresponding unconjugated antibody. All three reagents demonstrate significant inhibition of tumor growth in mice as shown in FIG. 8.


Example 12—Internalization of CDH19 Following ADC Binding

Human anti-huCDH19 IgG4 antibody 4A2 was purified directly from hybridoma conditioned media and conjugated with SMCC-DM1 as described in example 8. Because the exact sequence of parental 4A2 was unknown at the time, the DAR of this IgG4 ADC was estimated to be 4.4 using a molecular weight of 150,000 Da and an extinction coefficient of 225,000 at 280 nm. CHL-1 melanoma cells were incubated with either unconjugated or DM1 conjugated CDH19 recognizing parental antibody 4A2 in complete medium at 4° C. or for 2 h at 37° C. After a brief wash in PBS, cells were fixed in 3% formaldehyde/PBS for 20 min. Fixed cells were washed, blocked and permeabilized in TBST/1% BSA/5% normal donkey serum/0.3% TX-100 and incubated with rabbit anti-EEA1 (CST #3288). Following another wash step, the samples were incubated with donkey anti mouse Alexa 488 and donkey anti rabbit Alexa 554. Images were taken with a 63× oil lens on a Zeiss LSM 510 confocal microscope. A review of the images demonstrate that both the parental and DM1 conjugated antibody detect the membrane bound CDH19 at 4° C. but get quickly internalized and co-localize with endosome markers at 37° C. Thus, both the unconjugated and DM1 conjugated CDH19 antibodies are internalized by melanoma cells, and the conjugation of the drug does not appear to interfere with the internalization of the CDH19 antibody.


Example 13—Efficacy of CDH19 Targeting ADCs In Vivo

13.1: 4B10-DM1 Moderately Inhibited Tumor Growth at 182 μg/kg DM1 in CHL-1 Xenografts


A study was conducted to examine the effect of the anti-CDH19 ADC 4B10-DM1 administered once per week for two weeks in CHL-1 xenografts. CHL-1 cells were suspended in a solution of 50% serum free medium and 50% Matrigel, and implanted subcutaneously in the flank of female athymic nude mice. Each mouse received five million cells in a volume of 200 μl. When tumors reached approximately 150 mm3, mice were sorted into groups of 10 mice each with equivalent mean and SD tumor size per group and dosed with test agents or controls. All treatments were administered IV in a volume of 200 μl. Tumors were measured two times per week using calipers (length, width and height measurement). Body weights were recorded at each measurement. A repeated measures ANOVA with Dunnett's post-hoc test was used to compare the difference in tumor volume between mice treated with 4B10-DM1 and the ADC control. The percentage of tumor growth inhibition was calculated against the ADC control. The results are shown in FIG. 9.


13.2: Increasing the DAR Did not Increase Tumor Growth Inhibition in CHL-1 Xenografts


A study was conducted to examine the effect of drug:antibody ratio (DAR) on efficacy of the anti-CDH19 ADC 4B10-DM1 administered once per week for two weeks in CHL-1 xenografts. CHL-1 cells were suspended in a solution of 50% serum free medium and 50% Matrigel, and implanted subcutaneously in the flank of female athymic nude mice. Each mouse received five million cells in a volume of 200 μl. When tumors reached approximately 200 mm3, mice were sorted into groups of 10 mice each with equivalent mean and SD tumor size per group and dosed with test agents or controls. All treatments were administered IV in a volume of 200 μl. Tumors were measured two times per week using calipers (length, width and height measurement). Body weights were recorded at each measurement. A repeated measures ANOVA with Dunnett's post-hoc test was used to compare the difference in tumor volume between mice treated with 4B10-DM1 and the ADC control. The percentage of tumor growth inhibition was calculated against the ADC control. The results are shown in FIG. 10.


13.3: Anti-CDH19 ADCs Moderately Inhibited Tumor Growth in COLO699 Xenografts


A study was conducted to examine the effects of anti-CDH19 ADC 4B10-DM1 and an optimized variant administered once per week for two weeks on COLO699 xenografts. COLO699 cells were suspended in a solution of 50% serum free medium and 50% Matrigel, and implanted subcutaneously in the flank of female athymic nude mice. Each mouse received five million cells in a volume of 200 μl. When tumors reached approximately 200 mm3, mice were sorted into groups of 10 mice each with equivalent mean and SD tumor size per group, and dosed with test agents or controls. All treatments were administered IV in a volume of 200 μl. Tumors were measured two times per week using calipers (length, width and height measurement). Body weights were recorded at each measurement. A repeated measures ANOVA with Dunnett's post-hoc test was used to compare the difference in tumor volume between mice treated with 4B10-DM1 and the ADC control. The percentage of tumor growth inhibition was calculated against the ADC control. A similar study was conducted as described above (data not shown) that resulted in the same trends for tumor growth inhibition, however, that study did not reach statistical significance. The results are shown in FIG. 11.


Sequence Table:









TABLE Ia







HEAVY CHAIN CDRs











Ab
Type
CDR 1
CDR 2
CDR 3





1D10
NA
AGCTATGGCATGCAC
GTTATATGGTATGATGGAAGT
AGGGCCGGTATAATAGGAAC


2C12


AATAAATACTATGCAGACTCC
TACAGGCTACTACTACGGTA





GTGAAGGGC
TGGACGTC




SEQ ID NO: 1
SEQ ID NO: 2
SEQ ID NO: 3



AA
SYGMH
VIWYDGSNKYYADSVKG
RAGIIGTTGYYYGMDV




SEQ ID NO: 4
SEQ ID NO: 5
SEQ ID NO: 6





1F10
NA
AGTGGTGGTTACTACT
TACATCTATTACAGTGGGAGC
GATGGAAGCAGTGGCTGGTA




GGAGC
ACCTACTACAACCCGTCCCTC
CTTCCAGCAC





ACGAGT




SEQ ID NO: 7
SEQ ID NO: 8
SEQ ID NO: 9



AA
SGGYYWS
YIYYSGSTYYNPSLTS
DGSSGWYFQH




SEQ ID NO: 10
SEQ ID NO: 11
SEQ ID NO: 12





2C12_LC#1
NA
AGCTATGGCATGCAC
GTTATATGGTATGATGGAAGT
AGGGCCGGTATAATAGGAAC





AATAAATACTATGCAGACTCC
TACAGGCTACTACTACGGTA





GTGAAGGGC
TGGACGTC




SEQ ID NO: 13
SEQ ID NO: 14
SEQ ID NO: 15



AA
SYGMH
VIWYDGSNKYYADSVKG
RAGIIGTTGYYYGMDV




SEQ ID NO: 16
SEQ ID NO: 17
SEQ ID NO: 18





2G6_LC#1
NA
AGCTATGGCATGCAC
TTTATATGGTATGATGGAAGT
AGGGCCGGTATAATAGGAAC





AATAAATACTATGCAGACTCC
TATAGGCTACTACTACGGTA





GTGAAGGAC
TGGACGTC




SEQ ID NO: 19
SEQ ID NO: 20
SEQ ID NO: 21



AA
SYGMH
FIWYDGSNKYYADSVKD
RAGIIGTIGYYYGMDV




SEQ ID NO: 22
SEQ ID NO: 23
SEQ ID NO: 24





2G6
NA
AGCTATGGCATGCAC
TTTATATGGTATGATGGAAGT
AGGGCCGGTATAATAGGAAC





AATAAATACTATGCAGACTCC
TATAGGCTACTACTACGGTA





GTGAAGGAC
TGGACGTC




SEQ ID NO: 25
SEQ ID NO: 26
SEQ ID NO: 27



AA
SYGMH
FIWYDGSNKYYADSVKD
RAGIIGTIGYYYGMDV




SEQ ID NO: 28
SEQ ID NO: 29
SEQ ID NO: 30





2H12
NA
AGCTATGGCATGCAC
GTTATATGGTATGATGGAAGT
AGGGCCGGTATAATAGGAAC





AATAAATACTATACAGACTCC
TACAGGCTACTACTACGGTA





GTGAAGGGC
TGGACGTC




SEQ ID NO: 31
SEQ ID NO: 32
SEQ ID NO: 33



AA
SYGMH
VIWYDGSNKYYTDSVKG
RAGIIGTTGYYYGMDV




SEQ ID NO: 34
SEQ ID NO: 35
SEQ ID NO: 36





2H12_LC#2
NA
AGCTATGGCATGCAC
GTTATATGGTATGATGGAAGT
AGGGCCGGTATAATAGGAAC





AATAAATACTATACAGACTCC
TACAGGCTACTACTACGGTA





GTGAAGGGC
TGGACGTC




SEQ ID NO: 37
SEQ ID NO: 38
SEQ ID NO: 39



AA
SYGMH
VIWYDGSNKYYTDSVKG
RAGIIGTTGYYYGMDV




SEQ ID NO: 40
SEQ ID NO: 41
SEQ ID NO: 42





4A2
NA
AGTAGTGGTTACTACT
TACATCTATTACACTGGGAGC
GATGGAAGCAGTGGCTGGTA


5B4

GGAGC
GCCTACTACAACCCGTCCCTC
CTTCCAGTAT


5C5


AAGAGT




SEQ ID NO: 43
SEQ ID NO: 44
SEQ ID NO: 45



AA
SSGYYWS
YIYYTGSAYYNPSLKS
DGSSGWYFQY




SEQ ID NO: 46
SEQ ID NO: 47
SEQ ID NO: 48





4A9
NA
GGTTACTACTGGAGC
TATTTCTCTTACAGTGGGAGC
AACTGGGCCTTCCACTTTGA





ACCAACTACAACCCCTCCCTC
CTTC





AAGAGT




SEQ ID NO: 49
SEQ ID NO: 50
SEQ ID NO: 51



AA
GYYWS
YFSYSGSTNYNPSLKS
NWAFHFDF




SEQ ID NO: 52
SEQ ID NO: 53
SEQ ID NO: 54





4B10
NA
AGCTATGACATGCAC
GTTATATCATATGATGGAACT
GAACGATATTTTGACTGGTC


4C2


AATGAATACTATGCAGACTCC
TTTTGACTAC





GTGAAGGGC




SEQ ID NO: 55
SEQ ID NO: 56
SEQ ID NO: 57



AA
SYDMH
VISYDGTNEYYADSVKG
ERYFDWSFDY




SEQ ID NO: 58
SEQ ID NO: 59
SEQ ID NO: 60





4D2
NA
AGTTATGACATGCAC
GTTATATCATATGATGGAACT
GAACGATATTTTGACTGGTC





AATGAATACTATGCAGACTCC
TTTTGACTAC





GTGAAGGGC




SEQ ID NO: 61
SEQ ID NO: 62
SEQ ID NO: 63



AA
SYDMH
VISYDGTNEYYADSVKG
ERYFDWSFDY




SEQ ID NO: 64
SEQ ID NO: 65
SEQ ID NO: 66





4D3
NA
AGCTATGACATGGAC
GTTATATGGTATGATGGAAGT
GAAACTGGGGAGGgCTGGTA


4F3


AATAAAtacTATGCAGACTCC
CTTCGAtctc





GTGAGGGGC




SEQ ID NO: 67
SEQ ID NO: 68
SEQ ID NO: 69



AA
SYDMD
VIWYDGSNKYYADSVRG
ETGEGWYFDL




SEQ ID NO: 70
SEQ ID NO: 71
SEQ ID NO: 72





4E10
NA
AGCTATGACATGCAC
GTTATATGGTATGATGGAAGT
GAGTATAGGTACAGCTGGTA





AATAAATACTATGCAGACTCC
CTTTGACTAC





GTGAAGGGC




SEQ ID NO: 73
SEQ ID NO: 74
SEQ ID NO: 75



AA
SYDMH
VIWYDGSNKYYADSVKG
EYRYSWYFDY




SEQ ID NO: 76
SEQ ID NO: 77
SEQ ID NO: 78





4F7
NA
AGTTACTCCTGGAGC
TATATCTATTACAGTGGGAGC
AACTGGGCCTTCCACTTTGA





ACCAACTACAACCCCTCCCTC
CTAC





AAGAGT




SEQ ID NO: 79
SEQ ID NO: 80
SEQ ID NO: 81



AA
SYSWS
YIYYSGSTNYNPSLKS
NWAFHFDY




SEQ ID NO: 82
SEQ ID NO: 83
SEQ ID NO: 84





5E3
NA
AGCTATAGCATGCAC
TCCATTAGTAGTAGTAGTAGT
GGGGAAACTGGAACTAACTA





TACATATACTACGCAGACTCA
CTACTACTACGGTATGGACG





GTGAAGGGC
TC




SEQ ID NO: 85
SEQ ID NO: 86
SEQ ID NO: 87



AA
SYSMH
SISSSSSYIYYADSVKG
GETGTNYYYYGMDV




SEQ ID NO: 88
SEQ ID NO: 89
SEQ ID NO: 90





17H8
NA
AGTTACTACTGGAGC
TATATCTATTACATTGGGAGC
GATTCCCGGTATAGAAGTGG


23B6


ACCAACTACAACCCCTCCCTC
CTGGTACGATGCTTTTGATA


28D10


AAGAGT
TC




SEQ ID NO: 91
SEQ ID NO: 92
SEQ ID NO: 93



AA
SYYWS
YIYYIGSTNYNPSLKS
DSRYRSGWYDAFDI




SEQ ID NO: 94
SEQ ID NO: 95
SEQ ID NO: 96





16C1
NA
GGTTACTACTGGAGC
TATATCTATTACATTGGGAGC
GATGGGAGCAGTGGCTGGTA





ACCAACTACAACCCCTCCCTC
CCGGTGGTTCGACCCC





AAGAGT




SEQ ID NO: 97
SEQ ID NO: 98
SEQ ID NO: 99



AA
GYYWS
YIYYIGSTNYNPSLKS
DGSSGWYRWFDP




SEQ ID NO: 100
SEQ ID NO: 101
SEQ ID NO: 102





16A4
NA
AGTTACTACTGGAGC
TATATCTATTACAGTGGGAGC
GATCAAAGGCGGATAGCAGC





ACCAATTACAACCCCTCCCTC
AGCTGGTACCCACTTCTACG





AAGAGT
GTATGGACGTC




SEQ ID NO: 103
SEQ ID NO: 104
SEQ ID NO: 105



AA
SYYWS
YIYYSGSTNYNPSLKS
DQRRIAAAGTHFYGMDV




SEQ ID NO: 106
SEQ ID NO: 107
SEQ ID NO: 108





16E2
NA
AGCTATGGCATGCAC
GTGATATGGTATGATGGAAGT
GACGGGTGGGAGCTGTCCTT


17E10


AATAAATACTATGCAGACTCC
TGACTAC


20B12


GTGAAGGGC




SEQ ID NO: 109
SEQ ID NO: 110
SEQ ID NO: 111



AA
SYGMH
VIWYDGSNKYYADSVKG
DGWELSFDY




SEQ ID NO: 112
SEQ ID NO: 113
SEQ ID NO: 114





22G10
NA
AGTTATGCCATGAAC
ACTATTAGTGGTGGTGGTGCT
GGGGGAATGGGGGGATACTA





AACACATACTACGCAGACTCC
CTACGGTATGGACGTC





GTGAAGGGC




SEQ ID NO: 115
SEQ ID NO: 116
SEQ ID NO: 117



AA
SYAMN
TISGGGANTYYADSVKG
GGMGGYYYGMDV




SEQ ID NO: 118
SEQ ID NO: 119
SEQ ID NO: 120





16H2
NA
AGCTACTTTATTCAC
ATAATCAACCCTATTAGTGTT
GGGGGGATACAGCTATGGTT


20D3


AGCACAAGCTACGCACAGAAG
ACATTTTGACTAC


23E7


TTCCAGGGC




SEQ ID NO: 121
SEQ ID NO: 122
SEQ ID NO: 123



AA
SYFIH
IINPISVSTSYAQKFQG
GGIQLWLHFDY




SEQ ID NO: 124
SEQ ID NO: 125
SEQ ID NO: 126





22D1
NA
AGCTACTTTATTCAC
ATAATCAACCCTATTAGTGTT
GGGGGGATACAGCTATGGTT





AGCACAAGCTACGCACAGAAG
ACATTTGGACTAC





TTCCAGGGC




SEQ ID NO: 127
SEQ ID NO: 128
SEQ ID NO: 129



AA
SYFIH
IINPISVSTSYAQKFQG
GGIQLWLHLDY




SEQ ID NO: 130
SEQ ID NO: 131
SEQ ID NO: 132





25F8
NA
AGCTACTATATTCAC
ATAATCAACCCCAGTGGTGGT
GGGGGAATACAGCTATGGTT





AGCACAAGGTACGCACAGAAG
ACATTttGACTAC





TTCCAGGGC




SEQ ID NO: 133
SEQ ID NO: 134
SEQ ID NO: 135



AA
SYYIH
IINPSGGSTRYAQKFQG
GGIQLWLHFDY




SEQ ID NO: 136
SEQ ID NO: 137
SEQ ID NO: 138





26F12
NA
AACTACTATATGTCC
ATAATCAACCCTAGTGGTGGT
GGGGGGATACAACTATGGTT


27B3


GACTCAACCTACGCACAGAAG
ACATTTTGACTAC





TTCCAGGGC




SEQ ID NO: 139
SEQ ID NO: 140
SEQ ID NO: 141



AA
NYYMS
IINPSGGDSTYAQKFQG
GGIQLWLHFDY




SEQ ID NO: 142
SEQ ID NO: 143
SEQ ID NO: 144





26D1
NA
AGCTACTATATGTCC
ATAATCCACCCTAGTGGTGGT
GGGGGGATAAAACTATGGTT





GACACAACCTACGCACAGAAG
ACATTTTGACTAT





TTCCAGGGC




SEQ ID NO: 145
SEQ ID NO: 146
SEQ ID NO: 147



AA
SYYMS
IIHPSGGDTTYAQKFQG
GGIKLWLHFDY




SEQ ID NO: 148
SEQ ID NO: 149
SEQ ID NO: 150





25G10
NA
GGTTACTACTGGAGC
TATATCTATTACATTGGGAGC
GATGGGAGCAGTGGCTGGTA





ACCAACTACAACCCCTCCCTC
CCGGTGGTTCGACCCC





AAGAGT




SEQ ID NO: 151
SEQ ID NO: 152
SEQ ID NO: 153



AA
GYYWS
YIYYIGSTNYNPSLKS
DGSSGWYRWFDP




SEQ ID NO: 154
SEQ ID NO: 155
SEQ ID NO: 156





23A10
NA
CGCTATGGCATACAC
GTTATATGGTATGATGGAAGT
AGGGCCGGTATACCTGGAAC





AATAAATACTATGCAGACTCC
TACGGGCTACTACTATGGTA





GTGAAGGGC
TGGACGTC




SEQ ID NO: 157
SEQ ID NO: 158
SEQ ID NO: 159



AA
RYGIH
VIWYDGSNKYYADSVKG
RAGIPGTTGYYYGMDV




SEQ ID NO: 160
SEQ ID NO: 161
SEQ ID NO: 162





19B5
NA
AGCTACTTTATTCAC
ATTATCAACCCTATTAGTGTT
GGGGGGATACAGCTATGGTT





AGCACAAGCTACGCACAGAAG
ACATTTGGACTAC





TTCCAGGGC




SEQ ID NO: 163
SEQ ID NO: 164
SEQ ID NO: 165



AA
SYFIH
IINPISVSTSYAQKFQG
GGIQLWLHLDY




SEQ ID NO: 166
SEQ ID NO: 167
SEQ ID NO: 168
















TABLE Ib







LIGHT CHAIN CDRs











Ab
Type
CDR 1
CDR 2
CDR 3





1D10
NA
TCTGGAGATAGATTGG
CAAGATACCAAGCGGCCCTCA
CAGGCGTGGGACAGCAGCAC


2C12

GGGAAAAATATACTTGC

TGTGGTA




SEQ ID NO: 169
SEQ ID NO: 170
SEQ ID NO: 171



AA
SGDRLGEKYTC
QDTKRPS
QAWDSSTVV




SEQ ID NO: 172
SEQ ID NO: 173
SEQ ID NO: 174





1F10
NA
AGGGCCAGTCGGAGTA
GGTCCATCCAGCAGGGCCACT
CAGCAGTATGGTAGCTCATT




TTAGCAGCAGCTACTT

CACT




AGCC




SEQ ID NO: 175
SEQ ID NO: 176
SEQ ID NO: 177



AA
RASRSISSSYLA
GPSSRAT
QQYGSSFT




SEQ ID NO: 178
SEQ ID NO: 179
SEQ ID NO: 180





2C12_LC#1
NA
AGGtCTAGTCAAAGcc
AAGGTTTCTAACTGGGactct
ATGCAAGGTATAGTGTGGCC




tcgtaTACAGTGATGG

GTGCAGT




AAACAcctACTTGAAT




SEQ ID NO: 181
SEQ ID NO: 182
SEQ ID NO: 183



AA
RSSQSLVYSDGNTYLN
KVSNWDS
MQGIVWPCS




SEQ ID NO: 184
SEQ ID NO: 185
SEQ ID NO: 186





2G6_LC#1
NA
AGGTCTAGTCAAAGCC
CAGGTTTCTAACTGGGACTCT
ATGCAAGATACACTGTGGCC




TCGTATACAGTGATGG

GTGCAGT




AAACACCTACTTGAAT




SEQ ID NO: 187
SEQ ID NO: 188
SEQ ID NO: 189



AA
RSSQSLVYSDGNTYLN
QVSNWDS
MQDTLWPCS




SEQ ID NO: 190
SEQ ID NO: 191
SEQ ID NO: 192





2G6
NA
TCTGGAGATAGGTTGG
CAAGATACCAAGCGGCCCTCA
CAGGCGTGGGACAGCAGCAC




GGGAAAAATATACTTGC

TGTGGTA




SEQ ID NO: 193
SEQ ID NO: 194
SEQ ID NO: 195



AA
SGDRLGEKYTC
QDTKRPS
QAWDSSTVV




SEQ ID NO: 196
SEQ ID NO: 197
SEQ ID NO: 198





2H12
NA
TCTGGAGATAGATTGG
CAAGATACCAAGCGGCCCTCA
CAGGCGTGGGACAGCAGCAC




GGGAAAAATATACTTGC

TGTGGTA




SEQ ID NO: 199
SEQ ID NO: 200
SEQ ID NO: 201



AA
SGDRLGEKYTC
QDTKRPS
QAWDSSTVV




SEQ ID NO: 202
SEQ ID NO: 203
SEQ ID NO: 204





2H12_LC#2
NA
AGGTCTAGTCAAAGCC
AAGGTTTCTAACTGGGACTCT
ATGCAAGATACACTGTGGCC




TCGTATACAGTGATGG

GTGCAGT




AAACACCTACTTGAAT




SEQ ID NO: 205
SEQ ID NO: 206
SEQ ID NO: 207



AA
RSSQSLVYSDGNTYLN
KVSNWDS
MQDTLWPCS




SEQ ID NO: 208
SEQ ID NO: 209
SEQ ID NO: 210





4A2
NA
AGGgcCAGTCGGAATA
GGTCCATCCAGCAGGGccaCT
CAGCAGTATGGtagctCATT


5B4

TTAGCAGCAGCTACtt

CACT


5C5

aGCC




SEQ ID NO: 211
SEQ ID NO: 212
SEQ ID NO: 213



AA
RASRNISSSYLA
GPSSRAT
QQYGSSFT




SEQ ID NO: 214
SEQ ID NO: 215
SEQ ID NO: 216





4A9
NA
ACTGGGAGCAGCTCCA
GGTAACAACAATCGGCCCTCA
CAGTCCTATGACAGCagACT




ACATCGGGACAGGTTA

GAGTGGTTGGGTG




TGCTGTACAC




SEQ ID NO: 217
SEQ ID NO: 218
SEQ ID NO: 219



AA
TGSSSNIGTGYAVH
GNNNRPS
QSYDSRLSGWV




SEQ ID NO: 220
SEQ ID NO: 221
SEQ ID NO: 222





4B10
NA
AGGGCCAGTCAGAGTG
GGTGCATCCAGCAGGGCCACT
CAGCAGTACAGTAACTCgtg


4C2

TTAGCAACACCTACTT

GACG




AGCC




SEQ ID NO: 223
SEQ ID NO: 224
SEQ ID NO: 225



AA
RASQSVSNTYLA
GASSRAT
QQYSNSWT




SEQ ID NO: 226
SEQ ID NO: 227
SEQ ID NO: 228





4D2
NA
AGGGCCAGTCAGAGTG
GGTGCATCCAGCAGGGCCGCT
CagcagTATAGTAacTcgtg




TTAGCAACACCTACTT

GACG




AGCC




SEQ ID NO: 229
SEQ ID NO: 230
SEQ ID NO: 231



AA
RASQSVSNTYLA
GASSRAA
QQYSNSWT




SEQ ID NO: 232
SEQ ID NO: 233
SEQ ID NO: 234





4D3
NA
AGGGCCAGTCAGAGTG
GGTGCATCCAGCAGGGCCACT
CAGCAGTATGGTAGCTCGTG


4F3

TTAGCAGCAGCTACTT

GACG




AGCC




SEQ ID NO: 235
SEQ ID NO: 236
SEQ ID NO: 237



AA
RASQSVSSSYLA
GASSRAT
QQYGSSWT




SEQ ID NO: 238
SEQ ID NO: 239
SEQ ID NO: 240





4E10
NA
AGGGCCAGTCAGAGTG
GGTGCATCCAGCAGGGTCACT
CAGCAATATAGTAACTCGTG




TTGGCAGCAGCTACTT

GACG




AGCC




SEQ ID NO: 241
SEQ ID NO: 242
SEQ ID NO: 243



AA
RASQSVGSSYLA
GASSRVT
QQYSNSWT




SEQ ID NO: 244
SEQ ID NO: 245
SEQ ID NO: 246





4F7
NA
ACTGGGAGCAGCTCCA
GGTAACAGCAATCGGCCCTCA
CAGTCCTATGACAGCAGTCT




ATATCGGGACAGGTTA

GAGTGGTTGGGTG




TGATGTACAC




SEQ ID NO: 247
SEQ ID NO: 248
SEQ ID NO: 249



AA
TGSSSNIGTGYDVH
GNSNRPS
QSYDSSLSGWV




SEQ ID NO: 250
SEQ ID NO: 251
SEQ ID NO: 252





5E3
NA
TCTGGAGATAAATTGG
CAAGATAGCAAGCGGCCCTCA
CAGGCGTGGGACAGCAGCAC




GGGATGAATATGCTTGC

TGTGGTA




SEQ ID NO: 253
SEQ ID NO: 254
SEQ ID NO: 255



AA
SGDKLGDEYAC
QDSKRPS
QAWDSSTVV




SEQ ID NO: 256
SEQ ID NO: 257
SEQ ID NO: 258





17H8
NA
AGGGCCAGTCAGAGTG
GGTGCATCCAGCAGGGCCACT
CAGCAGTATGGTAAATCACC


23B6

TTGCCGGCAGCTACCT

GATCACC


28D10

AGCC




SEQ ID NO: 259
SEQ ID NO: 260
SEQ ID NO: 261



AA
RASQSVAGSYLA
GASSRAT
QQYGKSPIT




SEQ ID NO: 262
SEQ ID NO: 263
SEQ ID NO: 264





16C1
NA
AGGGCCAGCCAGAGTG
GGTGCATCCAGCAGGGCCACT
CAGCAGTATGGTAACTCACC




TTAGCAGCAGCTACTT

GCTCACT




AGCC




SEQ ID NO: 265
SEQ ID NO: 266
SEQ ID NO: 267



AA
RASQSVSSSYLA
GASSRAT
QQYGNSPLT




SEQ ID NO: 268
SEQ ID NO: 269
SEQ ID NO: 270





16A4
NA
AGGGCCAGTCAGAGTG
GGTACATCCAGCAGGGCCACT
CAGCAGTACGGTAGCTCACC




TTAGCAGCAGTTATTT

TTTCACT




AGCC




SEQ ID NO: 271
SEQ ID NO: 272
SEQ ID NO: 273



AA
RASQSVSSSYLA
GTSSRAT
QQYGSSPFT




SEQ ID NO: 274
SEQ ID NO: 275
SEQ ID NO: ***276





16E2
NA
CGGGCGAGTCAGGGCA
GCTGCATCCAGTTTGCAAAGT
CAACACTATTTTACTTACCC


17E10

TTAGCAATTATTTAGCC

TCGGACG


20B12

SEQ ID NO: 277
SEQ ID NO: 278
SEQ ID NO: 279



AA
RASQGISNYLA
AASSLQS
QHYFTYPRT




SEQ ID NO: 280
SEQ ID NO: 281
SEQ ID NO: 282





22G10
NA
AGGGCCAGTCAGAGTA
GGTGCATTTACCAGGGCCACT
CAGCAGTATAATTACTGGCC




TTAGCAGCAACTTAGCC

GCTCACT




SEQ ID NO: 283
SEQ ID NO: 284
SEQ ID NO: 285



AA
RASQSISSNLA
GAFTRAT
QQYNYWPLT




SEQ ID NO: 286
SEQ ID NO: 287
SEQ ID NO: 288





16H2
NA
TCTGGAAGCAGCTCCA
ACTAATAATCAGCGGCCCTCA
GCAACATGGGATGACAGCCT


20D3

ACATCGGAAGTAATTT

GAATGGTTGGGTG


23E7

TGTAAAC




SEQ ID NO: 289
SEQ ID NO: 290
SEQ ID NO: 291



AA
SGSSSNIGSNFVN
TNNQRPS
ATWDDSLNGWV




SEQ ID NO: 292
SEQ ID NO: 293
SEQ ID NO: 294





22D1
NA
TCTGGAAGCAGCTCCA
ACTAATAATCAGCGGCCCTCA
GCAACATGGGATGACAGTAT




ACATCGGAAGCAATTT

GAATGGTTGGGTG




TGTAAAC




SEQ ID NO: 295
SEQ ID NO: 296
SEQ ID NO: 297



AA
SGSSSNIGSNFVN
TNNQRPS
ATWDDSMNGWV




SEQ ID NO: 298
SEQ ID NO: 299
SEQ ID NO: 300





25F8
NA
TCTGGAAGCAGCTCCA
ACTAATAATCAGCGGCCCTCA
GCAGCATGGGATGACAGCCT




ACATCGGAAGGAATTT

GAATGGTTGGGTG




TGTAAAC




SEQ ID NO: 301
SEQ ID NO: 302
SEQ ID NO: 303



AA
SGSSSNIGRNFVN
TNNQRPS
AAWDDSLNGWV




SEQ ID NO: 304
SEQ ID NO: 305
SEQ ID NO: 306





26F12
NA
TCTGGAAGCCGCTCCA
ACTAATTATCAGCGGCCCTCA
GCAGTATGGGATGACAGCCT


27B3

ACATCGGAAGTAATTT

GAATGGTTGGGTG




TGTAAAC




SEQ ID NO: 307
SEQ ID NO: 308
SEQ ID NO: 309



AA
SGSRSNIGSNFVN
TNYQRPS
AVWDDSLNGWV




SEQ ID NO: 310
SEQ ID NO: 311
SEQ ID NO: 312





26D1
NA
TCTGGAAGCCGCTCCA
ACTAATAATCAGCGGCCCTCA
GCAGTATGGGATGACAGCCT




ACATCGGAAGTAATTT

GAATGGTTGGGTG




TGTAAAC




SEQ ID NO: 313
SEQ ID NO: 314
SEQ ID NO: 315



AA
SGSRSNIGSNFVN
TNNQRPS
AVWDDSLNGWV




SEQ ID NO: 316
SEQ ID NO: 317
SEQ ID NO: 318





25G10
NA
AGGGCCAGTCAGAGTG
GGTGCATCCAGCAGGGCCACT
CAGCAGTATGGTAACTCACC




TTAGCAGCAGCTACTT

GCTCACT




AGCC




SEQ ID NO: 319
SEQ ID NO: 320
SEQ ID NO: 321



AA
RASQSVSSSYLA
GASSRAT
QQYGNSPLT




SEQ ID NO: 322
SEQ ID NO: 323
SEQ ID NO: 324





23A10
NA
TCTGGAGATAGATTGG
CAAGATAATAAGTGGCCCTCA
CAGGCGTGGGACAGCAGcac




GGGAGAAATATGTTTGC

TGTGGTA




SEQ ID NO: 325
SEQ ID NO: 326
SEQ ID NO: 327



AA
SGDRLGEKYVC
QDNKWPS
QAWDSSTVV




SEQ ID NO: 328
SEQ ID NO: 329
SEQ ID NO: 330





19B5
NA
TCTGGAAGCAGGTCCA
ACTAATAATCAGCGGCCCTCA
GCAACATGGGATGACAGTAT




ACATCGGAAGCAATTT

GAATGGTTGGGTG




TGTAAAC




SEQ ID NO: 331
SEQ ID NO: 332
SEQ ID NO: 333



AA
SGSRSNIGSNFVN
TNNQRPS
ATWDDSMNGWV




SEQ ID NO: 334
SEQ ID NO: 335
SEQ ID NO: 336









Anti-CDH19 Variable Region Amino Acid Sequences and Polynucleotide Sequences









TABLE IIa







Heavy Chain Variable Region Polynucleotide and Amino acid Sequences











SEQ ID






NO.
DESIGNATION
SOURCE
TYPE
SEQUENCE





337
17H8
artificial
nt
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT



23B6


CGGAGACCCTGTCCCTCACGTGCACTGTCTCTGGTGGCTCCAT



28D10


CAATAGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAG






GGACTGGAGTGGATTGGGTATATCTATTACATTGGGAGCACCA






ACTACAACCCCTCCCTCAAGAGTCGCGTCACCATATCAGTAGA






CACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACC






GCTGCGGACACGGCCCTGTATTACTGTGCGAGAGATTCCCGGT






ATAGAAGTGGCTGGTACGATGCTTTTGATATCTGGGGCCAAGG






GACAATGGTCACCGTCTCTTCA





338
17H8
artificial
aa
QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGK



23B6


GLEWIGYIYYIGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVT



28D10


AADTALYYCARDSRYRSGWYDAFDIWGQGTMVTVSS





339
4A2
artificial
nt
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT



5B4


CACAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCAT



5C5


CAGCAGTAGTGGTTACTACTGGAGCTGGATCCGCCAGCACCCA






GGGAAGGGCCTGGAGTGGATTGGGTACATCTATTACACTGGGA






GCGCCTACTACAACCCGTCCCTCAAGAGTCGAGTTACCATATC






AGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGCTCT






GTGACTGCCGCGGACACGGCCGTGTATTACTGTGCGAGAGATG






GAAGCAGTGGCTGGTACTTCCAGTATTGGGGCCAGGGCACCCT






GGTCACCGTCTCCTCA





340
4A2
artificial
aa
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSGYYWSWIRQHP



5B4


GKGLEWIGYIYYTGSAYYNPSLKSRVTISVDTSKNQFSLKLSS



5C5


VTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSS





341
16H2
artificial
nt
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTG



20D3


GGGCCTCAGTGAAGGTTTCCTGCAAGGTTTCTGGATACACCTT



23E7


CACCAGCTACTTTATTCACTGGGTGCGCCAGGCCCCTGGACAA






GGGCTTGAGTGGATGGGAATAATCAACCCTATTAGTGTTAGCA






CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG






GGACACGTCCACGAGCACAGTCTTCATGGAGCTGAGCAGCCTG






AGATCTGAGGACACGGCCGTGTATTACTGTGCGCGAGGGGGGA






TACAGCTATGGTTACATTTTGACTACTGGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA





342
16H2
artificial
aa
QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQ



20D3


GLEWMGIINPISVSTSYAQKFQGRVTMTRDTSTSTVFMELSSL



23E7


RSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS





343
26F12
artificial
nt
CAGGTGCAGTTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTG



27B3


GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTAGATACACCTT






CACCAACTACTATATGTCCTGGGTGCGACAGGCCCCTGGACAA






GGGCTTGAGTGGATGGGAATAATCAACCCTAGTGGTGGTGACT






CAACCTACGCACAGAAGTTCCAGGGCAGACTCACCATGACCGG






GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG






AGATCTGAGGACACGGCCGTGTATTACTGTGCGAGAGGGGGGA






TACAACTATGGTTACATTTTGACTACTGGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA





344
26F12
artificial
aa
QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQ



27B3


GLEWMGIINPSGGDSTYAQKFQGRLTMTGDTSTSTVYMELSSL






RSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS





345
4B10
artificial
nt
CAGGTGCAGTTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG



4C2


GGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT






CAGTAGCTATGACATGCACTGGGTCCGCCAGGCTCCAGGCAAG






GGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAACTAATG






AATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAG






AGACACTTCCAAGAACACGCTGTATTTGCAAATGAACAGCCTG






AGAGCTGAGGACACGGCTGTATATTACTGTGCGAGAGAACGAT






ATTTTGACTGGTCTTTTGACTACTGGGGCCAGGGAACCCTGGT






CAGTGTCTCCTCA





346
4B10
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGK



4C2


GLEWVAVISYDGTNEYYADSVKGRFTISRDTSKNTLYLQMNSL






RAEDTAVYYCARERYFDWSFDYWGQGTLVSVSS





347
4D3
artificial
nt
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG



4F3


GGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCTCCTT






CAGTAGCTATGACATGGACTGGGTCCGCCAGACTCCAGGCAAG






GGGCTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTAATA






AATACTATGCAGACTCCGTGAGGGGCCGATTCACCATCTCCAG






AGACAATTCCAAGAACACGCTGTTTCTGCAAATGAACAGCCTG






AGAGTCGAGGACACGGCTGTGTATTACTGTGCGAGAGAAACTG






GGGAGGGCTGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGT






CACTGTCTCCTCA





348
4D3
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFSFSSYDMDWVRQTPGK



4F3


GLEWVAVIWYDGSNKYYADSVRGRFTISRDNSKNTLFLQMNSL






RVEDTAVYYCARETGEGWYFDLWGRGTLVTVSS





349
16E2
artificial
nt
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG



17E10


GGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCATCTT



20B12


CAGTAGCTATGGCATGCACTGGGTCCGCCAGACTCCAGGCAAG






GGGCTGGAGTGGGTGGCAGTGATATGGTATGATGGAAGTAATA






AATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAG






AGACATTTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTG






AGAGTCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGGT






GGGAGCTGTCCTTTGACTACTGGGGCCAGGGAACCCTGGTCAC






CGTCTCCTCA





350
16E2
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFIFSSYGMHWVRQTPGK



17E10


GLEWVAVIWYDGSNKYYADSVKGRFTISRDISKNTLYLQMNSL



20B12


RVEDTAVYYCARDGWELSFDYWGQGTLVTVSS





351
1D10
artificial
nt
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG



2C12


GGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTT






CAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAG






GGGCTGGAGTGGGTGTCAGTTATATGGTATGATGGAAGTAATA






AATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAG






AGACAATTCCAAGAACACGCTGTATCTGCAAATGAATAGCCTG






AGAGCTGAGGACACGGCTGTGTATTACTGCGCGAGAAGGGCCG






GTATAATAGGAACTACAGGCTACTACTACGGTATGGACGTCTG






GGGCCAAGGGACCACGGTCACCGTCTCCTCA





352
1D10
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGK



2C12


GLEWVSVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSL






RAEDTAVYYCARRAGIIGTTGYYYGMDVWGQGTTVTVSS





353
16C1
artificial
nt
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT






CGGAGACCCTGTCCCTCACTTGTACTGTCTCTGGTGGCTCCAT






CAGTGGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAG






GGACTGGAGTGGATTGGGTATATCTATTACATTGGGAGCACCA






ACTACAACCCCTCCCTCAAGAGTCGAGTCACCATGTCAATAGA






CACGTCCAAGAACCAGTTCTCCCTGACGCTGAGCTCTTTGACC






GCTGCGGACACGGCCGTGTATTTCTGTGCGAGAGATGGGAGCA






GTGGCTGGTACCGGTGGTTCGACCCCTGGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA





354
16C1
artificial
aa
QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGK






GLEWIGYIYYIGSTNYNPSLKSRVTMSIDTSKNQFSLTLSSLT






AADTAVYFCARDGSSGWYRWFDPWGQGTLVTVSS





355
25G10
artificial
nt
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT






CGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCAT






CAGTGGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAG






GGACTGGAGTGGATTGGGTATATCTATTACATTGGGAGCACCA






ACTACAACCCCTCCCTCAAGAGTCGAGTCACCATGTCAGTAGA






CACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACC






GCTGCGGACACGGCCGTGTATTACTGTGCGAGAGATGGGAGCA






GTGGCTGGTACCGGTGGTTCGACCCCTGGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA





356
25G10
artificial
aa
QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGK






GLEWIGYIYYIGSTNYNPSLKSRVTMSVDTSKNQFSLKLSSVT






AADTAVYYCARDGSSGWYRWFDPWGQGTLVTVSS





357
16A4
artificial
nt
CAGGTGCAGCTGCAGGAGTCgGGCCCAGGACTGGCGAAgcctt






cGGAGACcctgtccctcacctgCACTGTCTCTGGTGACTCCAT






CACTAGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAG






GGACTGGAGTGGATTGGGTATATCTATTACAGTGGGAGCACCA






ATTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGA






CACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACC






GCTGCGGACACGGCCGTGTATTACTGTGCGAGAGATCAAAGGC






GGATAGCAGCAGCTGGTACCCACTTCTACGGTATGGACGTCTG






GGGCCAAGGGACCACGGTCACCGTCTCCTCA





358
16A4
artificial
aa
QVQLQESGPGLAKPSETLSLTCTVSGDSITSYYWSWIRQPPGK






GLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVT






AADTAVYYCARDQRRIAAAGTHFYGMDVWGQGTTVTVSS





359
1F10
artificial
nt
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT






CACAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCAT






CAGCAGTGGTGGTTACTACTGGAGCTGGATCCGCCAGCACCCA






GGGAAGGGCCTGGAGTGGATTGGGTACATCTATTACAGTGGGA






GCACCTACTACAACCCGTCCCTCACGAGTCGAGTTACCATATC






AGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGCTCT






GTGACTGCCGCGGACACGGCCGTGTATTACTGTGCGAGAGATG






GAAGCAGTGGCTGGTACTTCCAGCACTGGGGCCAGGGCACCCT






GGTCACCGTCTCCTCA





360
1F10
artificial
aa
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHP






GKGLEWIGYIYYSGSTYYNPSLTSRVTISVDTSKNQFSLKLSS






VTAADTAVYYCARDGSSGWYFQHWGQGTLVTVSS





361
4A9
artificial
nt
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT






CGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCAT






CAGTGGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGAAAG






GGACTGGAGTGGTTTGCATATTTCTCTTACAGTGGGAGCACCA






ACTACAACCCCTCCCTCAAGAGTCGAGTCACCTTATCAGTAGA






CACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACC






GCTGCGGACACGGCCGTGTATTACTGTGCGAGGAACTGGGCCT






TCCACTTTGACTTCTGGGGCCAGGGAACCCTGGTCACCGTCTC






CTCA





362
4A9
artificial
aa
QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGK






GLEWFAYFSYSGSTNYNPSLKSRVTLSVDTSKNQFSLKLSSVT






AADTAVYYCARNWAFHFDFWGQGTLVTVSS





363
4F7
artificial
nt
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTT






CGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCAT






CAGTAGTTACTCCTGGAGCTGGATCCGGCAGCCCCCAGGGAAG






GGACTGGAGTGGATTGGGTATATCTATTACAGTGGGAGCACCA






ACTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCATTAGA






CACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACC






GCTGCGGACACGGCCGTGTATTACTGTGCGAGGAACTGGGCCT






TCCACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC






CTCA





364
4F7
artificial
aa
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYSWSWIRQPPGK






GLEWIGYIYYSGSTNYNPSLKSRVTISLDTSKNQFSLKLSSVT






AADTAVYYCARNWAFHFDYWGQGTLVTVSS





365
22D1
artificial
nt
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTG






GGGCCTCAGTGAGGGTTTCCTGCAAGGTTTCTGGATACACCTT






CACCAGCTACTTTATTCACTGGGTACGCCAGGCCCCTGGACAA






GGGCTTGAGTGGATGGGAATAATCAACCCTATTAGTGTTAGCA






CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG






GGACACGTCCACGAGCACAGTCTTCATGGAGCTGAGCAGCCTG






AGATCTGAGGACACGGCCGTGTATTACTGTGCGCGAGGGGGGA






TACAGCTATGGTTACATTTGGACTACTGGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA





366
22D1
artificial
aa
QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQ






GLEWMGIINPISVSTSYAQKFQGRVTMTRDTSTSTVFMELSSL






RSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSS





367
19B5
artificial
nt
CAGGTGCAGTTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTG






GGGCCTCAGTGAAGGTTTCCTGCAAGGTTTCTGGATACACCTT






CACCAGCTACTTTATTCACTGGGTGCGCCAGGCCCCTGGACAA






GGGCTTGAATGGATGGGAATTATCAACCCTATTAGTGTTAGCA






CAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG






GGACACGTCCACGAGCACAGTCTTCATGGAGCTGAGCAGcCTG






AGATCTGAGGACACGGCCGTGTATTACTGTGCGCGAGGGGGGA






TACAGCTATGGTTACATTTGGACTACTGGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA





368
19B5
artificial
aa
QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQ






GLEWMGIINPISVSTSYAQKFQGRVTMTRDTSTSTVFMELSSL






RSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSS





369
25F8
artificial
nt
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTG






GGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTT






CACCAGCTACTATATTCACTGGGTGCGCCAGGCCCCTGGACAA






GGACTTGAGTGGATGGGAATAATCAACCCCAGTGGTGGTAGCA






CAAGGTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAG






GGACACGTCCACGAGCACAGTCTTCATGGAGCTGAGCagcctG






AGATCTGAGGACACGGCCGTGTATTACTGTGCGCGAGGGGGAA






TACAGCTATGGTTACATTttGACTACTGGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA





370
25F8
artificial
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQ






GLEWMGIINPSGGSTRYAQKFQGRVTMTRDTSTSTVFMELSSL






RSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS





371
26D1
artificial
nt
CAGGTGCAGTTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTG






GGGCCTCAGTGAAGGTTTCCTGTAAGGCATCTAGATACACCTT






CACCAGCTACTATATGTCCTGGGTGCGACAGGCCCCTGGACAA






GGGCTTGAGTGGATGGGAATAATCCACCCTAGTGGTGGTGACA






CAACCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCGG






GGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTG






AGATCTGAGGACACGGCCGTGTATTACTGTGCGAGAGGGGGGA






TAAAACTATGGTTACATTTTGACTATTGGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA





372
26D1
artificial
aa
QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQ






GLEWMGIIHPSGGDTTYAQKFQGRVTMTGDTSTSTVYMELSSL






RSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSS





373
4D2
artificial
nt
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG






GGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT






CAGTAGTTATGACATGCACTGGGTCCGCCAGGCTCCAGGCAAG






GGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAACTAATG






AATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAG






AGACACTTCCAAGAACACGCTGTATTTGCAAATGAACAGCCTG






AGAGCTGAGGACACGGCTGTATATTACTGTGCGAGAGAACGAT






ATTTTGACTGGTCTTTTGACTACTGGGGCCAGGGAACCCTGGT






CAGTGTCTCCTCA





374
4D2
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGK






GLEWVAVISYDGTNEYYADSVKGRFTISRDTSKNTLYLQMNSL






RAEDTAVYYCARERYFDWSFDYWGQGTLVSVSS





375
4E10
artificial
nt
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG






GGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTT






CAGTAGCTATGACATGCACTGGGTCCGCCAGGCTCCAGGCAAG






GGGCTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTAATA






AATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAG






AGACAATTCCACGAACACGCTGCATCTGCAAATGAACAGCCCG






AGAGCCGAGGACACGGCTGTGTACTACTGTGCGAGAGAGTATA






GGTACAGCTGGTACTTTGACTACTGGGGCCAGGGAACCCTGGT






CACCGTCTCCTCA





376
4E10
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGK






GLEWVAVIWYDGSNKYYADSVKGRFTISRDNSTNTLHLQMNSP






RAEDTAVYYCAREYRYSWYFDYWGQGTLVTVSS





377
22G10
artificial
nt
GAGGTGCAACTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTG






GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT






TAGCAGTTATGCCATGAACTGGGTCCGCCAGGCTCCAGGGAAG






GGGCTGGAGTGGGTCTCAACTATTAGTGGTGGTGGTGCTAACA






CATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAG






TGACAATTCCAAGAGCACGCTGTATCTGCAAATGAACAGCCTG






AGAGCCGCGGACACGGCCGTATATCACTGTGCGAAAGGGGGAA






TGGGGGGATACTACTACGGTATGGACGTCTGGGGCCAAGGGAC






CACGGTCACCGTCTCCTCA





378
22G10
artificial
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGK






GLEWVSTISGGGANTYYADSVKGRFTISSDNSKSTLYLQMNSL






RAADTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSS





379
2C12_LC#1
artificial
nt
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG






GGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTT






CAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAG






GGGCTGGAGTGGGTGTCAGTTATATGGTATGATGGAAGTAATA






AATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAG






AGACAATTCCAAGAACACGCTGTATCTGCAAATGAATAGCCTG






AGAGCTGAGGACACGGCTGTGTATTACTGCGCGAGAAGGGCCG






GTATAATAGGAACTACAGGCTACTACTACGGTATGGACGTCTG






GGGCCAAGGGACCACGGTCACCGTCTCCTCA





380
2C12_LC#1
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGK






GLEWVSVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSL






RAEDTAVYYCARRAGIIGTTGYYYGMDVWGQGTTVTVSS





381
2H12_LC#2
artificial
nt
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG






GGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTT






CAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAG






GGGCTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTAATA






AATACTATACAGACTCCGTGAAGGGCCGATTCACCATCTCCAG






AGACAATTCCAAGAACACGCTGTATCTGCAAATGAATAGCCTG






AGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAAGGGCCG






GTATAATAGGAACTACAGGCTACTACTACGGTATGGACGTCTG






GGGCCAAGGGACCACGGTCACCGTCTCCTCA





382
2H12_LC#2
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGK






GLEWVAVIWYDGSNKYYTDSVKGRFTISRDNSKNTLYLQMNSL






RAEDTAVYYCARRAGIIGTTGYYYGMDVWGQGTTVTVSS





383
2G6_LC#1
artificial
nt
CAGGTGCAGTTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG






GGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTT






CAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAG






GGGCTGGAGTGGGTGGCATTTATATGGTATGATGGAAGTAATA






AATACTATGCAGACTCCGTGAAGGACCGATTCACCATCTCCAG






AGACAATTCCAAGAACACGCTGTATCTGCAAATGAAAAGCCTG






AGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAAGGGCCG






GTATAATAGGAACTATAGGCTACTACTACGGTATGGACGTCTG






GGGCCAAGGGACCACGGTCACCGTCTCCTCA





384
2G6_LC#1
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGK






GLEWVAFIWYDGSNKYYADSVKDRFTISRDNSKNTLYLQMKSL






RAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSS





385
2H12
artificial
nt
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG






GGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTT






CAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAG






GGGCTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTAATA






AATACTATACAGACTCCGTGAAGGGCCGATTCACCATCTCCAG






AGACAATTCCAAGAACACGCTGTATCTGCAAATGAATAGCCTG






AGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAAGGGCCG






GTATAATAGGAACTACAGGCTACTACTACGGTATGGACGTCTG






GGGCCAAGGGACCACGGTCACCGTCTCCTCA





386
2H12
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGK






GLEWVAVIWYDGSNKYYTDSVKGRFTISRDNSKNTLYLQMNSL






RAEDTAVYYCARRAGIIGTTGYYYGMDVWGQGTTVTVSS





387
2G6
artificial
nt
CAGGTGCAGTTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG






GGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTT






CAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAG






GGGCTGGAGTGGGTGGCATTTATATGGTATGATGGAAGTAATA






AATACTATGCAGACTCCGTGAAGGACCGATTCACCATCTCCAG






AGACAATTCCAAGAACACGCTGTATCTGCAAATGAAAAGCCTG






AGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAAGGGCCG






GTATAATAGGAACTATAGGCTACTACTACGGTATGGACGTCTG






GGGCCAAGGGACCACGGTCACCGTCTCCTCA





388
2G6
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGK






GLEWVAFIWYDGSNKYYADSVKDRFTISRDNSKNTLYLQMKSL






RAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSS





389
23A10
artificial
nt
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTG






GGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTT






CAGTCGCTATGGCATACACTGGGTCCGCCAGGCTCCAGGCAAG






GGGCTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTAATA






AATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAG






AGACAATTCCAAGAACACGCTGTATCTGCTAATGAACAGCCTG






AGAGCCGAGGACTCGGCTGTGTATTACTGTGCGAGAAGGGCCG






GTATACCTGGAACTACGGGCTACTACTATGGTATGGACGTCTG






GGGCCAAGGGACCACGGTCACCGTCTCCTCA





390
23A10
artificial
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYGIHWVRQAPGK






GLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLLMNSL






RAEDSAVYYCARRAGIPGTTGYYYGMDVWGQGTTVTVSS





391
5E3
artificial
nt
GAGGTGCAGTTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTG






GGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTT






CAGTAGCTATAGCATGCACTGGGTCCGCCAGGCTCCAGGGAAG






GGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACA






TATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAG






AGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTG






AGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGGGGAAA






CTGGAACTAACTACTACTACTACGGTATGGACGTCTGGGGCCA






AGGGACCACGGTCACCGTCTCCTCA





392
5E3
artificial
aa
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMHWVRQAPGK






GLEWVSSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSL






RAEDTAVYYCARGETGTNYYYYGMDVWGQGTTVTVSS
















TABLE IIB







Light Chain Variable Region Polynucleotide and Amino acid Sequences











SEQ ID






NO.
DESIGNATION
SOURCE
TYPE
SEQUENCE





393
17H8
artificial
nt
GACATTGTATTGACGCAGtctCCAGGCACCCTGTCTTTGTCTC



23B6


CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT



28D10


TGCCGGCAGCTACCTAGCCTGGTACCAGCAGAAACCTGGCCAG






GCTCCCAGGCTCCTCATCTCTGGTGCATCCAGCAGGGCCACTG






GCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTT






CACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTG






TATTACTGTCAGCAGTATGGTAAATCACCGATCACCTTCGGCC






AAGGGACACGACTGGAGATGAAAGGA





394
17H8
artificial
aa
DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQ



23B6


APRLLISGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAV



28D10


YYCQQYGKSPITFGQGTRLEMKG





395
4A2
artificial
nt
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTC



5B4


CAGGGGAAAGAGCCACCCTCTCTTGCAGGGCCAGTCGGAATAT



5C5


TAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAG






GCTCCCAGGCTCCTCATCTATGGTCCATCCAGCAGGGCCACTG






GCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTT






CACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTACAGTG






TATTACTGTCAGCAGTATGGTAGCTCATTCACTTTCGGCCCTG






GGACCAAAGTGGATATCAAACGA





396
4A2
artificial
aa
EIVLTQSPGTLSLSPGERATLSCRASRNISSSYLAWYQQKPGQ



5B4


APRLLIYGPSSRATGIPDRFSGSGSGTDFTLTISRLEPEDFTV



5C5


YYCQQYGSSFTFGPGTKVDIKR





397
16H2
artificial
nt
CAGTCTGCGCTGACTCAGCCACCCTCAGCGACTGGGACCCCCG



20D3


GGCAGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTCCAACAT



23E7


CGGAAGTAATTTTGTAAACTGGTACAAACAACTCCCAGGAACG






GCCCCCAAAGTCCTCATCTATACTAATAATCAGCGGCCCTCAG






GGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGC






CTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGTCTGAT






TATTACTGTGCAACATGGGATGACAGCCTGAATGGTTGGGTGT






TCGGCGGAGGGACCAAGCTGACCGTCCTAGGT





398
16H2
artificial
aa
QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGT



20D3


APKVLIYTNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDESD



23E7


YYCATWDDSLNGWVFGGGTKLTVLG





399
26F12
artificial
nt
CAGTCTGTGCTGACTCAGTCACCCTCAGCGTCTGGGACCCCCG



27B3


GGCAGAAGGTCACCATCTCTTGTTCTGGAAGCCGCTCCAACAT






CGGAAGTAATTTTGTAAACTGGTACCAGCAGCTCCCAGGAACG






GCCCCCAAACTCCTCATCTATACTAATTATCAGCGGCCCTCAG






GGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGC






CTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGGCTGAT






TATTACTGTGCAGTATGGGATGACAGCCTGAATGGTTGGGTGT






TCGGCGGAGGGACCAAGCTGACCGTCCTAGGT





400
26F12
artificial
aa
QSVLTQSPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGT



27B3


APKLLIYTNYQRPSGVPDRFSGSKSGTSASLAISGLQSEDEAD






YYCAVWDDSLNGWVFGGGTKLTVLG





401
4B10
artificial
nt
GAAATTGTATTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTC



4C2


CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT






TAGCAACACCTACTTAGCCTGGTACCATCAGAGACCTGGCCAG






GCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTG






GCATCCCAGACAGATTCAGTGGCAGTGGGTCTGGGACAGACTT






CGCTCTCACCATCAGCAGTCTGGAGCCTGAAGATTTTGCAGTG






TATTACTGTCAGCAGTACAGTAACTCgtgGACGTTCGGCCAAG






GGACCAAGGTGGAAATCAaacGA





402
4B10
artificial
aa
EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYHQRPGQ



4C2


APRLLIYGASSRATGIPDRFSGSGSGTDFALTISSLEPEDFAV






YYCQQYSNSWTFGQGTKVEIKR





403
4D3
artificial
nt
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTC



4F3


CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT






TAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAG






GCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTG






GCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTT






CACTCTCACCATCAGCAGACTGGAACCTGAGGATTTTGCAGTG






TATTACTGTCAGCAGTATGGTAGCTCGTGGACGTTCGGCCAAG






GGACCAAGGTGGAAATCAAACGA





404
4D3
artificial
aa
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQ



4F3


APRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAV






YYCQQYGSSWTFGQGTKVEIKR





405
16E2
artificial
nt
GACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCTG



17E10


TAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGCAT



20B12


TAGCAATTATTTAGCCTGGTTACAGCAGAAACCAGGGAAAGCC






CCTAAGTCCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGG






TCCCATCAAAGTTCAGCGGCAGTGGATCTGGGACAGATTTCAC






TCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTAT






TACTGCCAACACTATTTTACTTACCCTCGGACGTTCGGCCAAG






GGACCAAGGTGGAAATCAAACGA





406
16E2
artificial
aa
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWLQQKPGKA



17E10


PKSLIYAASSLQSGVPSKFSGSGSGTDFTLTISSLQPEDFATY



20B12


YCQHYFTYPRTFGQGTKVEIKR





407
1D10
artificial
nt
TCCTATGCGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAG



2C12


GACAGACAGCCAGCCTCACCTGCTCTGGAGATAGATTGGGGGA






AAAATATACTTGCTGGTATCAGCAGAGGCCAGGCCAGTCCCCT






TTGCTGGTCATCTATCAAGATACCAAGCGGCCCTCAGGGATCC






CTGAGCGATTCTCTGGCTCCACCTCTGGTAACACAGCCACTCT






GACCATCAGCGGGACCCAGGCTATGGATGAGGCTGACTATTAC






TGTCAGGCGTGGGACAGCAGCACTGTGGTATTCGGCGGAGGGA






CCAAGCTGACCGTCCTAGGT





408
1D10
artificial
aa
SYALTQPPSVSVSPGQTASLTCSGDRLGEKYTCWYQQRPGQSP



2C12


LLVIYQDTKRPSGIPERFSGSTSGNTATLTISGTQAMDEADYY






CQAWDSSTVVFGGGTKLTVLG





409
16C1
artificial
nt
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTC






CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGCCAGAGTGT






TAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAG






GCTCCCAGGCTCCTCATCTTTGGTGCATCCAGCAGGGCCACTG






GCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTT






CACTCTCACCATCAGCGGACTGGAGCCTGAAGATTTTGCAGTG






TATCACTGTCAGCAGTATGGTAACTCACCGCTCACTTTCGGCG






GAGGGACCAAGGTGGAGATCAAACGA





410
16C1
artificial
aa
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQ






APRLLIFGASSRATGIPDRFSGSGSGTDFTLTISGLEPEDFAV






YHCQQYGNSPLTFGGGTKVEIKR





411
25G10
artificial
nt
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTC






CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT






TAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAG






GCTCCCAGGCTCCTCATCTTTGGTGCATCCAGCAGGGCCACTG






GCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGactT






CACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTG






TATCACTGTCAGCAGTATGGTAACTCACCGCTCACTTTCGGCG






GAGGGACCAAGGTGGAGATCAAACGA





412
25G10
artificial
aa
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQ






APRLLIFGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAV






YHCQQYGNSPLTFGGGTKVEIKR





413
16A4
artificial
nt
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTC






CAGGGGAAAGAGCCACCCtCTCCTGCAGGGCCAGTCAGAGTGT






TAGCAGCAGTTATTTAGCCTGGTACCAGCAGAAACCTGGCCAG






GCTCCCAGGCTCCTCATCTATGGTACATCCAGCAGGGCCACTG






GCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTT






CACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTG






TATTATTGTCAGCAGTACGGTAGCTCACCTTTCACTTTCGGCG






GAGGGACCAAGGTGGAGATCAAACGA





414
16A4
artificial
aa
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQ






APRLLIYGTSSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAV






YYCQQYGSSPFTFGGGTKVEIKR





415
1F10
artificial
nt
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTC






CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCGGAGTAT






TAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAG






GCTCCCAGGCTCCTCATCTATGGTCCATCCAGCAGGGCCACTG






GCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTT






CACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTG






TATTACTGTCAGCAGTATGGTAGCTCATTCACTTTCGGCCCTG






GGACCAAAGTGGATATCAAACGA





416
1F10
artificial
aa
EIVLTQSPGTLSLSPGERATLSCRASRSISSSYLAWYQQKPGQ






APRLLIYGPSSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAV






YYCQQYGSSFTFGPGTKVDIKR





417
4A9
artificial
nt
CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAG






GACAGAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACAT






CGGGACAGGTTATGCTGTACACTGGTACCAGCAGTTTCCAGGA






ACAGCCCCCAAACTCCTCATCTATGGTAACAACAATCGGCCCT






CAGGGGTTCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTC






AGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCT






GATTATTACTGCCAGTCCTATGACAGCAGACTGAGTGGTTGGG






TGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGGT





418
4A9
artificial
aa
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQFPG






TAPKLLIYGNNNRPSGVPDRFSGSKSGTSASLAITGLQAEDEA






DYYCQSYDSRLSGWVFGGGTKLTVLG





419
4F7
artificial
nt
CAGTCTGTgcTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAG






GGCAGAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAATAT






CGGGACAGGTTATGATGTACACTGGTATCAGCAGcttcCAGGA






ACAGCCCCCAAACTCCTCATCCATGGTAACAGCAATCGGCCCT






CAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTC






AGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCT






GATTATTACTGCCAGTCCTATGACAGCAGTCTGAGTGGTTGGG






TGTTCGGCGGAGGGACCAGGTTGACCGTCCTAGGT





420
4F7
artificial
aa
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYDVHWYQQLPG






TAPKLLIHGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEA






DYYCQSYDSSLSGWVFGGGTRLTVLG





421
22D1
artificial
nt
CAGTCTGCGCTGACTCAGCCACCCTCAGCGACTGGGACCCCCG






GGCAGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTCCAACAT






CGGAAGCAATTTTGTAAACTGGTACAAGCAGCTCCCAGGAACG






GCCCCCAAAGTCCTCATCTATACTAATAATCAGCGGCCCTCAG






GGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGC






CTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGTCTGAT






TATTACTGTGCAACATGGGATGACAGTATGAATGGTTGGGTGT






TCGGCGGAGGGACCAAGCTGACCGTCCTAGGT





422
22D1
artificial
aa
QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGT






APKVLIYTNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDESD






YYCATWDDSMNGWVFGGGTKLTVLG





423
19B5
artificial
nt
CAGTCTGCGCTGACTCAGCCACCCTCAACGACTGGGACCCCCG






GGCAGAGGGTCACCATCTCTTGTTCTGGAAGCAGGTCCAACAT






CGGAAGCAATTTTGTAAACTGGTACAAGCAGCTCCCAGGAACG






GCCCCCAAAGTCCTCATCTATACTAATAATCAGCGGCCCTCAG






GGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGC






CTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGTCTGAT






TATTACTGCGCAACATGGGATGACAGTATGAATGGTTGGGTGT






TCGGCGGAGGGACCAAACTGACCGTCCTAGGT





424
19B5
artificial
aa
QSALTQPPSTTGTPGQRVTISCSGSRSNIGSNFVNWYKQLPGT






APKVLIYTNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDESD






YYCATWDDSMNGWVFGGGTKLTVLG





425
25F8
artificial
nt
CAGTCTGCGCTGactCAGCCACCCTCAGCGACTGGGACCCCCG






GGCAGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTCCAACAT






CGGAAGGAATTTTGTAAACTGGTATAAGCAGCTCCCAGGAACG






GCCCCCAAAGTCCTCATTTATACTAATAATCAGCGGCCCTCAG






GGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGC






CTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGTCTGAT






TATTACTGTGCAGCATGGGATGACAGCCTGAATGGTTGGGTGT






TCGGCGGAGGGACCAAGCTGACCGTCCTAGGT





426
25F8
artificial
aa
QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYKQLPGT






APKVLIYTNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDESD






YYCAAWDDSLNGWVFGGGTKLTVLG





427
26D1
artificial
nt
CACTCTGTGCTGACTCAGTCACCCTCAGCGTCTGGGACCCCCG






GACAGAGGGTCACCATCTCTTGTTCTGGAAGCCGCTCCAACAT






CGGAAGTAATTTTGTAAACTGGTACCAGCAGCTCCCAGGAACG






GCCCCCAAACTCCTCATCTATACTAATAATCAGCGGCCCTCAG






GGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGC






CTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGGCTGAT






TATTACTGTGCAGTATGGGATGACAGCCTGAATGGTTGGGTGT






TCGGCGGAGGGACCAAGCTGACCGTCCTAGGT





428
26D1
artificial
aa
HSVLTQSPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGT






APKLLIYTNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEAD






YYCAVWDDSLNGWVFGGGTKLTVLG





429
4D2
artificial
nt
GAAATTGTATTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTC






CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT






TAGCAACACCTACTTAGCCTGGTACCATCAGAGACCTGGCCAG






GCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCGCTG






GCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTT






CACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTG






TATTACTGTCAGCAGTATAGTAACTCGTGGACGTTCGGCCAAG






GGACCAAGGTGGAAATCAAACGA





430
4D2
artificial
aa
EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYHQRPGQ






APRLLIYGASSRAAGIPDRFSGSGSGTDFTLTISRLEPEDFAV






YYCQQYSNSWTFGQGTKVEIKR





431
4E10
artificial
nt
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTC






CAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGT






TGGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAG






GCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGTCACTG






GCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGATTT






CACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTG






TATTACTGTCAGCAATATAGTAACTCGTGGACGTTCGGCCAAG






GGACCAAGGTGGAAATCAAACGA





432
4E10
artificial
aa
EIVLTQSPGTLSLSPGERATLSCRASQSVGSSYLAWYQQKPGQ






APRLLIYGASSRVTGIPDRFSGSGSGTDFTLTISRLEPEDFAV






YYCQQYSNSWTFGQGTKVEIKR





433
22G10
artificial
nt
GAAATAGTGATGACGCAGTCTCCAGTCACCCTGTCTCTGTCTC






TAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTAT






TAGCAGCAACTTAGCCTGGTTCCAGCAGAAACCTGGCCAGGCT






CCCAGACTCCTCATCTATGGTGCATTTACCAGGGCCACTGGTA






TCCCAGCCAGGGTCAGTGGCAGTGGGTCTGGGACAGAGTTCAC






TCTCACCATCAGCAGCCTGCAGTCTGAAGATTTTGCAGTTTAT






TACTGTCAGCAGTATAATTACTGGCCGCTCACTTTCGGCGGAG






GGACCAAGGTGGAGATCAAGCGA





434
22G10
artificial
aa
EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQA






PRLLIYGAFTRATGIPARVSGSGSGTEFTLTISSLQSEDFAVY






YCQQYNYWPLTFGGGTKVEIKR





435
2C12_LC#1
artificial
nt
GATGTTGTGATGactCAGtCTccActctccctgcCCGTCACCC






TTGGACAGCCGGcctCCAtctcctgCAGGtCTAGTCAAAGcct






cgtaTACAGTGATGGAAACAcctACTTGAATTGGTTTCAGCAG






AGGCCAGGCCAATCTCCAAGGcgcctaATTTATAAGGTTTCTA






ACTGGGactctGGGGtCCCAGACAGATTCAGCgGCAGTGGGTC






AGGCActGATTTCACactGAAAAtCAGCAGGGTGGaggctgaG






GATGTTGGGGTTTATTactgCATGCAAGGTATAGTGTGGCCGT






GCAGTTTTGGCCAGGGGACCAAGCTGGAGATCAAaCgA





436
2C12_LC#1
artificial
aa
DVVMTQSPLSLPVTLGQPASISCRSSQSLVYSDGNTYLNWFQQ






RPGQSPRRLIYKVSNWDSGVPDRFSGSGSGTDFTLKISRVEAE






DVGVYYCMQGIVWPCSFGQGTKLEIKR





437
2H12_LC#2
artificial
nt
GATGTTGTGATGACTCAGTCTCCACTCTCCCTGCCCGTCACCC






TTGGACAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAAAGCCT






CGTATACAGTGATGGAAACACCTACTTGAATTGGTTTCAGCAG






AGGCCAGGCCAATCTCCAAGGCGCCTAATTTATAAGGTTTCTA






ACTGGGACTCTGGGGTCCCAGACAGAATCAGCGGCAGTGGGTC






AGGCACCGATTTCACACTGAAAATCAGCAGGGTGGAGGCTGAG






GATGTTGGGGTTTATTACTGCATGCAAGATACACTGTGGCCGT






GCAGTTTTGGCCAGGGGACCAAGCTGGAGATCAAACGA





438
2H12_LC#2
artificial
aa
DVVMTQSPLSLPVTLGQPASISCRSSQSLVYSDGNTYLNWFQQ






RPGQSPRRLIYKVSNWDSGVPDRISGSGSGTDFTLKISRVEAE






DVGVYYCMQDTLWPCSFGQGTKLEIKR





439
2G6_LC#1
artificial
nt
GaTGTTGTGATGACTCagtctccACTCTCCCTGCCCGTCACCC






ttggacaGCCGGCCTccaTCTCCTGCAGGTCTAGTCAAAGCCT






CGTATACAGTGATGGAAACACCTACTTGAATTGGTTTCAGCAG






AGGCCAGGCCAATCTCCACGGCGCCTAATTTATCAGGTTTCTA






ACTGGGACTCTGGGGTCCCAGACAGATTCAGCGGCAGTGGGTC






AGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGGCTGAG






GATGTTGGGATTTATTACTGCATGCAAGATACACTGTGGCCGT






GCAGTTTTGGCCAGGGGACCAAGCTGGAGATCAAACGA





440
2G6_LC#1
artificial
aa
DVVMTQSPLSLPVTLGQPASISCRSSQSLVYSDGNTYLNWFQQ






RPGQSPRRLIYQVSNWDSGVPDRFSGSGSGTDFTLKISRVEAE






DVGIYYCMQDTLWPCSFGQGTKLEIKR





441
2H12
artificial
nt
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAG






GACAGACAGCCAGCATCACCTGCTCTGGAGATAGATTGGGGGA






AAAATATACTTGCTGGTATCAGCAGAGGCCAGGCCAGTCCCCT






TTGCTGGTCATCTATCAAGATACCAAGCGGCCCTCAGGGATCC






CTGAGCGATTCTCTGGCTCCAACTCTGGTAACACAGCCACTCT






GACCATCAGCGGGACCCAGCCTATGGATGAGGCTGACTATTAC






TGTCAGGCGTGGGACAGCAGCACTGTGGTATTCGGCGGAGGGA






CCAAGCTGACCGTCCtAGGT





442
2H12
artificial
aa
SYELTQPPSVSVSPGQTASITCSGDRLGEKYTCWYQQRPGQSP






LLVIYQDTKRPSGIPERFSGSNSGNTATLTISGTQPMDEADYY






CQAWDSSTVVFGGGTKLTVLG





443
2G6
artificial
nt
TCCTATGAACTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAG






GACAGACAGCCAGCATCACCTGCTCTGGAGATAGGTTGGGGGA






AAAATATACTTGCTGGTATCAGCAGAGGCCAGGCCAGTCCCCT






TTGCTGGTCATCTATCAAGATACCAAGCGGCCCTCAGGGATCC






CTGAGCGATTCTCTGGCTCCAACTCTGGTAACACAGCCACTCT






GACCATCAGCGGGACCCAGGCTATGGATGAGGCTGACTATTAC






TGTCAGGCGTGGGACAGCAGCACTGTGGTATTCGGCGGAGGGA






CCAAGCTGACCGTCCTAGGT





444
2G6
artificial
aa
SYELTQPPSVSVSPGQTASITCSGDRLGEKYTCWYQQRPGQSP






LLVIYQDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYY






CQAWDSSTVVFGGGTKLTVLG





445
23A10
artificial
nt
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAG






GACAGACAGCCAGCATCACCTGCTCTGGAGATAGATTGGGGGA






GAAATATGTTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCT






ATACTGGTCATCTATCAAGATAATAAGTGGCCCTCAGGGATCC






CTGAGCGATTCTCTGGCTCCAACTCTGGGAACACAGCCACTCT






GACCATCAGCGGGACCCAGGCTATGGATGAGGCTGACTATTAC






TGTCAGGCGTGGGACAGCAGCACTGTGGTATTCGGCGGGGGGA






CCAAGCTGACCGTCCTAGGT





446
23A10
artificial
aa
SYELTQPPSVSVSPGQTASITCSGDRLGEKYVCWYQQKPGQSP






ILVIYQDNKWPSGIPERFSGSNSGNTATLTISGTQAMDEADYY






CQAWDSSTVVFGGGTKLTVLG





447
5E3
artificial
nt
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAG






GACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGA






TGAATATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCT






GTGCTGGTCATCTATCAAGATAGCAAGCGGCCCTCAGGGATCC






CTGAGCGATTCTCTGGCTCCAACTCTGGGAACACAGCCACTCT






GACCATCAGCGGGACCCAGGCTATGGATGAGGCTGACTATTAC






TGTCAGGCGTGGGACAGCAGCACTGTGGTATTCGGCGGAGGGA






CCAAGCTGACCGTCCTAGGT





448
5E3
artificial
aa
SYELTQPPSVSVSPGQTASITCSGDKLGDEYACWYQQKPGQSP






VLVIYQDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYY






CQAWDSSTVVFGGGTKLTVLG
















TABLE IIC





Heavy Chain Variable Region Polynucleotide and Amino acid Sequences















13586_HC [hu anti-<huCDH19> 4F3 VH]


QVQLVESGGGVVQPGRSLRLSCAASGFSFSSYDMDWVRQTPGKGLEWVAVIWYDGSNKYYADSVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGWYFDLWGRGTLVTVSS


SEQ ID NO: 449





13589_HC [hu anti-<huCDH19> 4A9 VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWFAYFSYSGSTNYNPSLKSRVTLS


VDTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDFWGQGTLVTVSS


SEQ ID NO: 450





13590_HC [hu anti-<huCDH19> 4B10 VH]


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVISYDGTNEYYADSVKGR


FTISRDTSKNTLYLQMNSLRAEDTAVYYCARERYFDWSFDYWGQGTLVSVSS


SEQ ID NO: 451





13874_HC [hu anti-<huCDH19> 17H8.2 VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTALYYCARDSRYRSGWYDAFDIWGQGTMVTVSS


SEQ ID NO: 452





13875_HC [hu anti-<huCDH19> 16C1.1 VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLTLSSLTAADTAVYFCARDGSSGWYRWFDPWGQGTLVTVSS


SEQ ID NO: 453





13876_HC [hu anti-<huCDH19> 16A4.1 VH]


QVQLQESGPGLAKPSETLSLTCTVSGDSITSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTAVYYCARDQRRIAAAGTHFYGMDVWGQGTTVTVSS


SEQ ID NO: 454





13877_HC [hu anti-<huCDH19> 22G10.1 VH]


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISSDNSKSTLYLQMNSLRAADTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 455





13878_HC [hu anti-<huCDH19> 20D3.1 VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS


SEQ ID NO: 456





13879_HC [hu anti-<huCDH19> 22D1.1 VH]


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSS


SEQ ID NO: 457





13880_HC [hu anti-<huCDH19> 25F8.1 VH]


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYTHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS


SEQ ID NO: 458





13881_HC [hu anti-<huCDH19> 26F12.1 VH]


QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQGLEWMGIINPSGGDSTYAQKFQG


RLTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS


SEQ ID NO: 459





13882_HC [hu anti-<huCDH19> 26D1.1 VH]


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSS


SEQ ID NO: 460





13883_HC [hu anti-<huCDH19> 25G10.1 VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


VDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYRWFDPWGQGTLVTVSS


SEQ ID NO: 461





13885_HC [hu anti-<huCDH19> 19B5.1 VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSS


SEQ ID NO: 462





14022_HC [hu anti-<huCDH19> 4A2 VH]


QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSGYYWSWIRQHPGKGLEWIGYIYYTGSAYYNPSLKSRV


TISVDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSS


SEQ ID NO: 463





14024_HC [hu anti-<huCDH19> 4A2 (1-472)(Q17E,H47P) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISSSGYYWSWIRQPPGKGLEWIGYIYYTGSAYYNPSLKSRVT


ISVDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSS


SEQ ID NO: 464





14025_HC [hu anti-<huCDH19> 4A2 VH]


QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSGYYWSWIRQHPGKGLEWIGYIYYTGSAYYNPSLKSRV


TISVDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSS


SEQ ID NO: 465





14026_HC [hu anti-<huCDH19> 4A2 (1-472)(Q17E,H47P) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISSSGYYWSWIRQPPGKGLEWIGYIYYTGSAYYNPSLKSRVT


ISVDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSS


SEQ ID NO: 466





14027_HC [hu anti-<huCDH19> 4A2 (1-472)(Q17E,H47P,D111E) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISSSGYYWSWIRQPPGKGLEWIGYIYYTGSAYYNPSLKSRVT


ISVDTSKNQFSLKLSSVTAADTAVYYCAREGSSGWYFQYWGQGTLVTVSS


SEQ ID NO: 467





14028_HC [hu anti-<huCDH19> 4A2 (1-472)(Q17E,H47P,D111E,W134Y) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISSSGYYWSWIRQPPGKGLEWIGYIYYTGSAYYNPSLKSRVT


ISVDTSKNQFSLKLSSVTAADTAVYYCAREGSSGYYFQYWGQGTLVTVSS


SEQ ID NO: 468





14029_HC [hu anti-<huCDH19> 4A2 VH]


QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSGYYWSWIRQHPGKGLEWIGYIYYTGSAYYNPSLKSRV


TISVDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSS


SEQ ID NO: 469





14030_HC [hu anti-<huCDH19> 4F3 (1-471)(R17G) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFSFSSYDMDWVRQTPGKGLEWVAVIWYDGSNKYYADSVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGWYFDLWGRGTLVTVSS


SEQ ID NO: 470





14031_HC [hu anti-<huCDH19> 4F3 (1-471)(R17G,T47A) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFSFSSYDMDWVRQAPGKGLEWVAVIWYDGSNKYYADSVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGWYFDLWGRGTLVTVSS


SEQ ID NO: 471





14032_HC [hu anti-<huCDH19> 4F3 (1-471)(R17G,T47A,R141Q) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFSFSSYDMDWVRQAPGKGLEWVAVIWYDGSNKYYADSVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGWYFDLWGQGTLVTVSS


SEQ ID NO: 472





14033_HC [hu anti-<huCDH19> 4F3 (1-471)(R17G,T47A,D61E,D72E,R141Q) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFSFSSYDMDWVRQAPGKGLEWVAVIWYEGSNKYYAESVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGWYFDLWGQGTLVTVSS


SEQ ID NO: 473





14034_HC [hu anti-<huCDH19> 4F3 (1-471)(R17G,T47A,D61E,D72E,W134Y,R141Q) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFSFSSYDMDWVRQAPGKGLEWVAVIWYEGSNKYYAESVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGYYFDLWGQGTLVTVSS


SEQ ID NO: 474





14039_HC [hu anti-<huCDH19> 2G6 (1-477)(R17G,D61E,D72E,K94N) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIWYEGSNKYYAESVKD


RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 475





14040_HC [hu anti-<huCDH19> 16C1.1 VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLTLSSLTAADTAVYFCARDGSSGWYRWFDPWGQGTLVTVSS


SEQ ID NO: 476





14041_HC [hu anti-<huCDH19> 16C1.1 (1-469)(T92K) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLKLSSLTAADTAVYFCARDGSSGWYRWFDPWGQGTLVTVSS


SEQ ID NO: 477





14042_HC [hu anti-<huCDH19> 16C1.1 (1-469)(T92K,D109E) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLKLSSLTAADTAVYFCAREGSSGWYRWFDPWGQGTLVTVSS


SEQ ID NO: 478





14043_HC [hu anti-<huCDH19> 16C1.1 (1-469)(T92K,W132Y,W135Y) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLKLSSLTAADTAVYFCARDGSSGYYRYFDPWGQGTLVTVSS


SEQ ID NO: 479





14044_HC [hu anti-<huCDH19> 16C1.1 (1-469)(T92K) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLKLSSLTAADTAVYFCARDGSSGWYRWFDPWGQGTLVTVSS


SEQ ID NO: 480





14045_HC [hu anti-<huCDH19> 17H8.2 VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTALYYCARDSRYRSGWYDAFDIWGQGTMVTVSS


SEQ ID NO: 481





14046_HC [hu anti-<huCDH19> 17H8.2 (1-471)(D109E) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTALYYCARESRYRSGWYDAFDIWGQGTMVTVSS


SEQ ID NO: 482





14047_HC [hu anti-<huCDH19> 17H8.2 (1-471)(D109E,W132Y) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTALYYCARESRYRSGYYDAFDIWGQGTMVTVSS


SEQ ID NO: 483





14048_HC [hu anti-<huCDH19> 17H8.2 (1-471)(D109E) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTALYYCARESRYRSGWYDAFDIWGQGTMVTVSS


SEQ ID NO: 484





14049_HC [hu anti-<huCDH19> 4F7 VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISSYSWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISL


DTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDYWGQGTLVTVSS


SEQ ID NO: 485





14050_HC [hu anti-<huCDH19> 4F7 VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISSYSWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISL


DTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDYWGQGTLVTVSS


SEQ ID NO: 486





14051_HC [hu anti-<huCDH19> 4F7 (1-468)(W113Y) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISSYSWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISL


DTSKNQFSLKLSSVTAADTAVYYCARNYAFHFDYWGQGTLVTVSS


SEQ ID NO: 487





14052_HC [hu anti-<huCDH19> 4B10 (1-471)(R17G,D61E,D72E,W134Y) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVISYEGTNEYYAESVKGR


FTISRDTSKNTLYLQMNSLRAEDTAVYYCARERYFDYSFDYWGQGTLVSVSS


SEQ ID NO: 488





14053_HC [hu anti-<huCDH19> 4B10 VH]


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVISYDGTNEYYADSVKGR


FTISRDTSKNTLYLQMNSLRAEDTAVYYCARERYFDWSFDYWGQGTLVSVSS


SEQ ID NO: 489





14054_HC [hu anti-<huCDH19> 4B10 (1-471)(R17G) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVISYDGTNEYYADSVKG


RFTISRDTSKNTLYLQMNSLRAEDTAVYYCARERYFDWSFDYWGQGTLVSVSS


SEQ ID NO: 490





14055_HC [hu anti-<huCDH19> 4B10 (1-471)(R17G,D61E,D72E) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVISYEGTNEYYAESVKGR


FTISRDTSKNTLYLQMNSLRAEDTAVYYCARERYFDWSFDYWGQGTLVSVSS


SEQ ID NO: 491





14056_HC [hu anti-<huCDH19> 4A9 VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWFAYFSYSGSTNYNPSLKSRVTLS


VDTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDFWGQGTLVTVSS


SEQ ID NO: 492





14057_HC [hu anti-<huCDH19> 4A9 (1-468)(F55I,A56G) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYFSYSGSTNYNPSLKSRVTLS


VDTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDFWGQGTLVTVSS


SEQ ID NO: 493





14058_HC [hu anti-<huCDH19> 4A9 (1-468)(F55I,A56G) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYFSYSGSTNYNPSLKSRVTLS


VDTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDFWGQGTLVTVSS


SEQ ID NO: 494





14059_HC [hu anti-<huCDH19> 4A9 (1-468)(F551,A56G,W113Y) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYFSYSGSTNYNPSLKSRVTLS


VDTSKNQFSLKLSSVTAADTAVYYCARNYAFHFDFWGQGTLVTVSS


SEQ ID NO: 495





14060_HC [hu anti-<huCDH19> 20D3.1 VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS


SEQ ID NO: 496





14061_HC [hu anti-<huCDH19> 20D3.1 VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS


SEQ ID NO: 497





14062_HC [hu anti-<huCDH19> 20D3.1 (1-469)(W133Y) VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSS


SEQ ID NO: 498





14063_HC [hu anti-<huCDH19> 20D3.1 (1-469)(W133Y) VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSS


SEQ ID NO: 499





14064_HC [hu anti-<huCDH19> 20D3.1 (1-469)(W133Y) VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSS


SEQ ID NO: 500





14065_HC [hu anti-<huCDH19> 22G10.1 (1-470)(S82R,A99E) VH]


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISRDNSKSTLYLQMNSLRAEDTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 501





14066_HC [hu anti-<huCDH19> 22G10.1 (1-470)(A99E,H105Y) VH]


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISSDNSKSTLYLQMNSLRAEDTAVYYCAKGGMGGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 502





14067_HC [hu anti-<huCDH19> 22G10.1 (1-470)(A99E) VH]


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISSDNSKSTLYLQMNSLRAEDTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 503





14068_HC [hu anti-<huCDH19> 22G10.1 (1-470)(A99E) VH]


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISSDNSKSTLYLQMNSLRAEDTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 504





14069_HC [hu anti-<huCDH19> 22G10.1 (1-470)(D72E,A99E) VH]


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYAESVKGRF


TISSDNSKSTLYLQMNSLRAEDTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 505





14070_HC [hu anti-<huCDH19> 22G10.1 (1-470)(H105Y) VH]


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISSDNSKSTLYLQMNSLRAADTAVYYCAKGGMGGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 506





14071_HC [hu anti-<huCDH19> 16A4.1 (1-474)(T144L) VH]


QVQLQESGPGLAKPSETLSLTCTVSGDSITSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTAVYYCARDQRRIAAAGTHFYGMDVWGQGTLVTVSS


SEQ ID NO: 507





14072_HC [hu anti-<huCDH19> 19B5.1 VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSS


SEQ ID NO: 508





14073_HC [hu anti-<huCDH19> 19B5.1 (1-469)(W133Y) VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHLDYWGQGTLVTVSS


SEQ ID NO: 509





14074_HC [hu anti-<huCDH19> 19B5.1 VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSS


SEQ ID NO: 510





14075_HC [hu anti-<huCDH19> 19B5.1 VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSS


SEQ ID NO: 511





14076_HC [hu anti-<huCDH19> 19B5.1 (1-469)(W133Y) VH]


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHLDYWGQGTLVTVSS


SEQ ID NO: 512





14077_HC [hu anti-<huCDH19> 23A10.3 (1-474)(L92Q) VH]


QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYGIHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGR


FTISRDNSKNTLYLQMNSLRAEDSAVYYCARRAGIPGTTGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 513





14078_HC [hu anti-<huCDH19> 23A10.3 (1-474)(R17G,L92Q) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFTFSRYGIHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKG


RFTISRDNSKNTLYLQMNSLRAEDSAVYYCARRAGIPGTTGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 514





14079_HC [hu anti-<huCDH19> 23A10.3 (1-474)(R17G,D61E,D72E,L92Q) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFTFSRYGIHWVRQAPGKGLEWVAVIWYEGSNKYYAESVKGR


FTISRDNSKNTLYLQMNSLRAEDSAVYYCARRAGIPGTTGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 515





14080_HC [hu anti-<huCDH19> 23A10.3 VH]


QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYGIHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGR


FTISRDNSKNTLYLLMNSLRAEDSAVYYCARRAGIPGTTGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 516





14081_HC [hu anti-<huCDH19> 25G10.1 VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


VDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYRWFDPWGQGTLVTVSS


SEQ ID NO: 517





14082_HC [hu anti-<huCDH19> 25G10.1 (1-469)(D109E,W132Y,W135Y) VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


VDTSKNQFSLKLSSVTAADTAVYYCAREGSSGYYRYFDPWGQGTLVTVSS


SEQ ID NO: 518





14083_HC [hu anti-<huCDH19> 26D1.1 VH]


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSS


SEQ ID NO: 519





14084_HC [hu anti-<huCDH19> 26D1.1 VH]


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSS


SEQ ID NO: 520





14085_HC [hu anti-<huCDH19> 26D1.1 VH]


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSS


SEQ ID NO: 521





14086_HC [hu anti-<huCDH19> 26D1.1 VH]


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSS


SEQ ID NO: 522





14087_HC [hu anti-<huCDH19> 26D1.1 (1-469)(W133Y) VH]


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLYLHFDYWGQGTLVTVSS


SEQ ID NO: 523





14088_HC [hu anti-<huCDH19> 26D1.1 (1-469)(R27G,G82R) VH]


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTRDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSS


SEQ ID NO: 524





14089_HC [hu anti-<huCDH19> 26F12.1 VH]


QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQGLEWMGIINPSGGDSTYAQKFQG


RLTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS


SEQ ID NO: 525





14090_HC [hu anti-<huCDH19> 26F12.1 VH]


QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQGLEWMGIINPSGGDSTYAQKFQG


RLTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS


SEQ ID NO: 526





14091_HC [hu anti-<huCDH19> 26F12.1 (1-469)(W133Y) VH]


QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQGLEWMGIINPSGGDSTYAQKFQG


RLTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSS


SEQ ID NO: 527





14092_HC [hu anti-<huCDH19> 26F12.1 (1-469)(W133Y) VH]


QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQGLEWMGIINPSGGDSTYAQKFQG


RLTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSS


SEQ ID NO: 528





14093_HC [hu anti-<huCDH19> 25F8.1 VH]


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS


SEQ ID NO: 529





14094_HC [hu anti-<huCDH19> 25F8.1 VH]


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS


SEQ ID NO: 530





14095_HC [hu anti-<huCDH19> 25F8.1 (1-469)(F90Y) VH]


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS


SEQ ID NO: 531





14096_HC [hu anti-<huCDH19> 25F8.1 (1-469)(F90Y) VH]


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSS


SEQ ID NO: 532





14097_HC [hu anti-<huCDH19> 25F8.1 (1-469)(F90Y,W133Y) VH]


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVYMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSS


SEQ ID NO: 533





14098_HC [hu anti-<huCDH19> 22D1.1 VH]


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSS


SEQ ID NO: 534





14099_HC [hu anti-<huCDH19> 22D1.1 VH]


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSS


SEQ ID NO: 535





14100_HC [hu anti-<huCDH19> 22D1.1 (1-469)(W133Y) VH]


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHLDYWGQGTLVTVSS


SEQ ID NO: 536





14101_HC [hu anti-<huCDH19> 22D1.1 (1-469)(W133Y) VH]


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHLDYWGQGTLVTVSS


SEQ ID NO: 537





14102_HC [hu anti-<huCDH19> 22D1.1 (1-469)(F90Y) VH]


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSS


SEQ ID NO: 538





13591_HC [hu anti-<huCDH19> 4F7 VH]


QVQLQESGPGLVKPSETLSLTCTVSGGSISSYSWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISL


DTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDYWGQGTLVTVSS


SEQ ID NO: 539





14301_HC [hu anti-<huCDH19> 2G6 VH]


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIWYDGSNKYYADSVKD


RFTISRDNSKNTLYLQMKSLRAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 540





14302_HC [hu anti-<huCDH19> 2G6 (1-477)(R17G,K94N) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIWYDGSNKYYADSVKD


RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 541





14303_HC [hu anti-<huCDH19> 2G6 (1-477)(D61E,D72E) VH]


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIWYEGSNKYYAESVKD


RFTISRDNSKNTLYLQMKSLRAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 542





14304_HC [hu anti-<huCDH19> 2G6 (1-477)(R17G) VH]


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIWYDGSNKYYADSVKD


RFTISRDNSKNTLYLQMKSLRAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSS


SEQ ID NO: 543
















TABLE IId





Light Chain Variable Region Amino acid Sequences















13586_LC [hu anti-<huCDH19> 4F3 VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKR


SEQ ID NO: 544





13589_LC [hu anti-<huCDH19> 4A9 VL]


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQFPGTAPKLLIYGNNNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSRLSGWVFGGGTKLTVLG


SEQ ID NO: 545





13590_LC [hu anti-<huCDH19> 4B10 VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYHQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FALTISSLEPEDFAVYYCQQYSNSWTFGQGTKVEIKR


SEQ ID NO: 546





13874_LC [hu anti-<huCDH19> 17H8.2 VL]


DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQAPRLLISGASSRATGIPDRFSGSGSGT


DFTLTISRLEPEDFAVYYCQQYGKSPITFGQGTRLEMKG


SEQ ID NO: 547





13875_LC [hu anti-<huCDH19> 16C1.1 VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISGLEPEDFAVYHCQQYGNSPLTFGGGTKVEIKR


SEQ ID NO: 548





13876_LC [hu anti-<huCDH19> 16A4.1 VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGTSSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSPFTFGGGTKVEIKR


SEQ ID NO: 549





13877_LC [hu anti-<huCDH19> 22G10.1 VL]


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARVSGSGSGTEF


TLTISSLQSEDFAVYYCQQYNYWPLTFGGGTKVEIKR


SEQ ID NO: 552





13878_LC [hu anti-<huCDH19> 20D3.1 VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDESDYYCATWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 554





13879_LC [hu anti-<huCDH19> 22D1.1 VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDESDYYCATWDDSMNGWVFGGGTKLTVLG


SEQ ID NO: 555





13880_LC [hu anti-<huCDH19> 25F8.1 VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDESDYYCAAWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 556





13881_LC [hu anti-<huCDH19> 26F12.1 VL]


QSVLTQSPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNYQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 557





13882_LC [hu anti-<huCDH19> 26D1.1 VL]


HSVLTQSPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 555





13883_LC [hu anti-<huCDH19> 25G10.1 VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYHCQQYGNSPLTFGGGTKVEIKR


SEQ ID NO: 556





13885_LC [hu anti-<huCDH19> 19B5.1 VL]


QSALTQPPSTTGTPGQRVTISCSGSRSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDESDYYCATWDDSMNGWVFGGGTKLTVLG


SEQ ID NO: 557





14022_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q) VL]


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFTVYYCQQYGSSFTFGPGTKVDIKR


SEQ ID NO: 558





14024_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q,T102A,P141Q) VL]


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFAVYYCQQYGSSFTFGQGTKVDIKR


SEQ ID NO: 559





14025_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q,T102A) VL]


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFAVYYCQQYGSSFTFGPGTKVDIKR


SEQ ID NO: 560





14026_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q,T102A) VL]


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFAVYYCQQYGSSFTFGPGTKVDIKR


SEQ ID NO: 561





14027_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q,T102A,P141Q) VL]


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFAVYYCQQYGSSFTFGQGTKVDIKR


SEQ ID NO: 562





14028_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q,T102A,P141Q) VL]


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFAVYYCQQYGSSFTFGQGTKVDIKR


SEQ ID NO: 563





14029_LC [hu anti-<huCDH19> 4A2 (1-236)(R29Q,N30S) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFTVYYCQQYGSSFTFGPGTKVDIKR


SEQ ID NO: 564





14030_LC [hu anti-<huCDH19> 4F3 VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKR


SEQ ID NO: 565





14031_LC [hu anti-<huCDH19> 4F3 VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKR


SEQ ID NO: 566





14032_LC [hu anti-<huCDH19> 4F3 VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKR


SEQ ID NO: 567





14033_LC [hu anti-<huCDH19> 4F3 VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKR


SEQ ID NO: 568





14034_LC [hu anti-<huCDH19> 4F3 VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKR


SEQ ID NO: 569





14039_LC [hu anti-<huCDH19> 2G6 (1-234)(C42S,D110E) VL]


SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIYQDTKRPSGIPERFSGSNSGNTAT


LTISGTQAMDEADYYCQAWESSTVVFGGGTKLTVLG


SEQ ID NO: 570





14040_LC [hu anti-<huCDH19> 16C1.1 (1-235)(H105Y) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISGLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKR


SEQ ID NO: 571





14041_LC [hu anti-<huCDH19> 16C1.1 (1-235)(H105Y) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISGLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKR


SEQ ID NO: 572





14042_LC [hu anti-<huCDH19> 16C1.1 (1-235)(H105Y) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISGLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKR


SEQ ID NO: 573





14043_LC [hu anti-<huCDH19> 16C1.1 (1-235)(H105Y) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISGLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKR


SEQ ID NO: 574





14044_LC [hu anti-<huCDH19> 16C1.1 (1-235)(G95R,H105Y,G141Q) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGNSPLTFGQGTKVEIKR


SEQ ID NO: 575





14045_LC [hu anti-<huCDH19> 17H8.2 (1-235)(G149R) VL]


DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQAPRLLISGASSRATGIPDRFSGSGSGT


DFTLTISRLEPEDFAVYYCQQYGKSPITFGQGTRLEMKR


SEQ ID NO: 576





14046_LC [hu anti-<huCDH19> 17H8.2 (1-235)(G149R) VL]


DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQAPRLLISGASSRATGIPDRFSGSGSGT


DFTLTISRLEPEDFAVYYCQQYGKSPITFGQGTRLEMKR


SEQ ID NO: 577





14047_LC [hu anti-<huCDH19> 17H8.2 (1-235)(G149R) VL]


DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQAPRLLISGASSRATGIPDRFSGSGSGT


DFTLTISRLEPEDFAVYYCQQYGKSPITFGQGTRLEMKR


SEQ ID NO: 578





14048_LC [hu anti-<huCDH19> 17H8.2 (1-235)(S57Y,G149R) VL]


DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGT


DFTLTISRLEPEDFAVYYCQQYGKSPITFGQGTRLEMKR


SEQ ID NO: 579





14049_LC [hu anti-<huCDH19> 4F7 (1-239)(H57Y) VL]


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYDVHWYQQLPGTAPKLLIYGNSNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSSLSGWVFGGGTRLTVLG


SEQ ID NO: 580





14050_LC [hu anti-<huCDH19> 4F7 (1-239)(H57Y,D110E) VL]


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYDVHWYQQLPGTAPKLLIYGNSNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYESSLSGWVFGGGTRLTVLG


SEQ ID NO: 581





14051_LC [hu anti-<huCDH19> 4F7 (1-239)(D110E) VL]


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYDVHWYQQLPGTAPKLLIHGNSNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYESSLSGWVFGGGTRLTVLG


SEQ ID NO: 582





14052_LC [hu anti-<huCDH19> 4B10 (1-236)(H45Q,A90T) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISSLEPEDFAVYYCQQYSNSWTFGQGTKVEIKR


SEQ ID NO: 583





14053_LC [hu anti-<huCDH19> 4B10 (1-236)(H45Q,A90T) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISSLEPEDFAVYYCQQYSNSWTFGQGTKVEIKR


SEQ ID NO: 584





14054_LC [hu anti-<huCDH19> 4B10 (1-236)(H45Q,A90T) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISSLEPEDFAVYYCQQYSNSWTFGQGTKVEIKR


SEQ ID NO: 585





14055_LC [hu anti-<huCDH19> 4B10 (1-236)(H45Q,A90T) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISSLEPEDFAVYYCQQYSNSWTFGQGTKVEIKR


SEQ ID NO: 586





14056_LC [hu anti-<huCDH19> 4A9 (1-239)(F47L) VL]


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQLPGTAPKLLIYGNNNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSRLSGWVFGGGTKLTVLG


SEQ ID NO: 587





14057_LC [hu anti-<huCDH19> 4A9 (1-239)(F47L) VL]


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQLPGTAPKLLIYGNNNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSRLSGWVFGGGTKLTVLG


SEQ ID NO: 588





14058_LC [hu anti-<huCDH19> 4A9 (1-239)(F47L,D110E) VL]


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQLPGTAPKLLIYGNNNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYESRLSGWVFGGGTKLTVLG


SEQ ID NO: 589





14059_LC [hu anti-<huCDH19> 4A9 (1-239)(F47L,D110E) VL]


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQLPGTAPKLLIYGNNNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYESRLSGWVFGGGTKLTVLG


SEQ ID NO: 590





14060_LC [hu anti-<huCDH19> 20D3.1 (1-235)(S102A) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 591





14061_LC [hu anti-<huCDH19> 20D3.1 (1-235)(K45Q,S102A) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 592





14062_LC [hu anti-<huCDH19> 20D3.1 (1-235)(K45Q,S102A) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 593





14063_LC [hu anti-<huCDH19> 20D3.1 (1-235)(K45Q,S102A,D111E,N135Q) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDESLQGWVFGGGTKLTVLG


SEQ ID NO: 594





14064_LC [hu anti-<huCDH19> 20D3.1 (1-235)(W109Y) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDESDYYCATYDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 595





14065_LC [hu anti-<huCDH19> 22G10.1 VL]


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARVSGSGSGTEF


TLTISSLQSEDFAVYYCQQYNYWPLTFGGGTKVEIKR


SEQ ID NO: 596





14066_LC [hu anti-<huCDH19> 22G10.1 VL]


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARVSGSGSGTEF


TLTISSLQSEDFAVYYCQQYNYWPLTFGGGTKVEIKR


SEQ ID NO: 597





14067_LC [hu anti-<huCDH19> 22G10.1 (1-234)(Q97E,S98P) VL]


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARVSGSGSGTEF


TLTISSLEPEDFAVYYCQQYNYWPLTFGGGTKVEIKR


SEQ ID NO: 598





14068_LC [hu anti-<huCDH19> 22G10.1 (1-234)(V78F,Q97E,S98P) VL]


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARFSGSGSGTEF


TLTISSLEPEDFAVYYCQQYNYWPLTFGGGTKVEIKR


SEQ ID NO: 599





14069_LC [hu anti-<huCDH19> 22G10.1 (1-234)(V78F,Q97E,S98P) VL]


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARFSGSGSGTEF


TLTISSLEPEDFAVYYCQQYNYWPLTFGGGTKVEIKR


SEQ ID NO: 600





14070_LC [hu anti-<huCDH19> 22G10.1 VL]


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARVSGSGSGTEF


TLTISSLQSEDFAVYYCQQYNYWPLTFGGGTKVEIKR


SEQ ID NO: 601





14071_LC [hu anti-<huCDH19> 16A4.1 (1-235)(G141Q) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGTSSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSPFTFGQGTKVEIKR


SEQ ID NO: 602





14072_LC [hu anti-<huCDH19> 19B5.1 (1-235)(K45Q,S102A) VL]


QSALTQPPSTTGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSMNGWVFGGGTKLTVLG


SEQ ID NO: 603





14073_LC [hu anti-<huCDH19> 19B5.1 (1-235)(K45Q,S102A) VL]


QSALTQPPSTTGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSMNGWVFGGGTKLTVLG


SEQ ID NO: 604





14074_LC [hu anti-<huCDH19> 19B5.1 (1-235)(T11V,K45Q,S102A) VL]


QSALTQPPSVTGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCATWDDSMNGWVFGGGTKLTVLG


SEQ ID NO: 605





14075_LC [hu anti-<huCDH19> 19B5.1 (1-235)(T11V,K45Q,S102A,D111E,N135Q) VL]


QSALTQPPSVTGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCATWDESMQGWVFGGGTKLTVLG


SEQ ID NO: 606





14076_LC [hu anti-<huCDH19> 19B5.1 (1-235)(T11V,K45Q,S102A,W109Y,D111E,N135Q) VL]


QSALTQPPSVTGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCATYDESMQGWVFGGGTKLTVLG


SEQ ID NO: 607





14077_LC [hu anti-<huCDH19> 23A10.3 (1-231)(C42S) VL]


SYELTQPPSVSVSPGQTASITCSGDRLGEKYVSWYQQKPGQSPILVIYQDNKWPSGIPERFSGSNSGNTA


TLTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVLG


SEQ ID NO: 608





14078_LC [hu anti-<huCDH19> 23A10.3 (1-231)(C42S) VL]


SYELTQPPSVSVSPGQTASITCSGDRLGEKYVSWYQQKPGQSPILVIYQDNKWPSGIPERFSGSNSGNTA


TLTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVLG


SEQ ID NO: 609





14079_LC [hu anti-<huCDH19> 23A10.3 (1-231)(C42S,D110E) VL]


SYELTQPPSVSVSPGQTASITCSGDRLGEKYVSWYQQKPGQSPILVIYQDNKWPSGIPERFSGSNSGNTA


TLTISGTQAMDEADYYCQAWESSTVVFGGGTKLTVLG


SEQ ID NO: 610





14080_LC [hu anti-<huCDH19> 23A10.3 (1-231)(C42Y) VL]


SYELTQPPSVSVSPGQTASITCSGDRLGEKYVYWYQQKPGQSPILVIYQDNKWPSGIPERFSGSNSGNTA


TLTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVLG


SEQ ID NO: 611





14081_LC [hu anti-<huCDH19> 25G10.1 (1-235)(H105Y) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKR


SEQ ID NO: 612





14082_LC [hu anti-<huCDH19> 25G10.1 (1-235)(H105Y) VL]


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKR


SEQ ID NO: 613





14083_LC [hu anti-<huCDH19> 26D1.1 (1-235)(S7P) VL]


HSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 614





14084_LC [hu anti-<huCDH19> 26D1.1 (1-235)(H1Q,S7P) VL]


QSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 615





14085_LC [hu anti-<huCDH19> 26D1.1 (1-235)(H1Q,S7P,W109Y) VL]


QSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVYDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 616





14086_LC [hu anti-<huCDH19> 26D1.1 (1-235)(H1Q,S7P,W109Y,D111E,N135Q) VL]


QSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVYDESLQGWVFGGGTKLTVLG


SEQ ID NO: 617





14087_LC [hu anti-<huCDH19> 26D1.1 (1-235)(H1Q,S7P,W109Y,D111E,N135Q) VL]


QSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVYDESLQGWVFGGGTKLTVLG


SEQ ID NO: 618





14088_LC [hu anti-<huCDH19> 26D1.1 (1-235)(H1Q,S7P) VL]


QSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 619





14089_LC [hu anti-<huCDH19> 26F12.1 (1-235)(S7P) VL]


QSVLTQPPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNYQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 620





14090_LC [hu anti-<huCDH19> 26F12.1 (1-235)(S7P,D111E) VL]


QSVLTQPPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNYQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDESLNGWVFGGGTKLTVLG


SEQ ID NO: 621





14091_LC [hu anti-<huCDH19> 26F12.1 (1-235)(S7P,D111E) VL]


QSVLTQPPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNYQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDESLNGWVFGGGTKLTVLG


SEQ ID NO: 622





14092_LC [hu anti-<huCDH19> 26F12.1 (1-235)(S7P,W109Y,D111E,N135Q) VL]


QSVLTQPPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNYQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVYDESLQGWVFGGGTKLTVLG


SEQ ID NO: 623





14093_LC [hu anti-<huCDH19> 25F8.1 (1-235)(K45Q) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDESDYYCAAWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 624





14094_LC [hu anti-<huCDH19> 25F8.1 (1-235)(K45Q,S102A) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCAAWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 625





14095_LC [hu anti-<huCDH19> 25F8.1 (1-235)(K45Q,S102A) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCAAWDDSLNGWVFGGGTKLTVLG


SEQ ID NO: 626





14096_LC [hu anti-<huCDH19> 25F8.1 (1-235)(K45Q,S102A,D111E) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCAAWDESLNGWVFGGGTKLTVLG


SEQ ID NO: 627





14097_LC [hu anti-<huCDH19> 25F8.1 (1-235)(K45Q,S102A,D111E,N135Q) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCAAWDESLQGWVFGGGTKLTVLG


SEQ ID NO: 628





14098_LC [hu anti-<huCDH19> 22D1.1 (1-235)(K45Q,S102A) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSMNGWVFGGGTKLTVLG


SEQ ID NO: 629





14099_LC [hu anti-<huCDH19> 22D1.1 (1-235)(K45Q,S102A,D111E,N135Q) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDESMQGWVFGGGTKLTVLG


SEQ ID NO: 630





14100_LC [hu anti-<huCDH19> 22D1.1 (1-235)(K45Q,S102A,W109Y,D111E,N135Q) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATYDESMQGWVFGGGTKLTVLG


SEQ ID NO: 631





14101_LC [hu anti-<huCDH19> 22D1.1 (1-235)(K45Q,S102A,W109Y) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATYDDSMNGWVFGGGTKLTVLG


SEQ ID NO: 632





14102_LC [hu anti-<huCDH19> 22D1.1 (1-235)(K45Q,S102A) VL]


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSMNGWVFGGGTKLTVLG


SEQ ID NO: 633





13591_LC [hu anti-<huCDH19> 4F7 VL]


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYDVHWYQQLPGTAPKLLIHGNSNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSSLSGWVFGGGTRLTVLG


SEQ ID NO: 634





14301_LC [hu anti-<huCDH19> 2G6 (1-234)(D110E) VL]


SYELTQPPSVSVSPGQTASITCSGDRLGEKYTCWYQQRPGQSPLLVIYQDTKRPSGIPERFSGSNSGNTAT


LTISGTQAMDEADYYCQAWESSTVVFGGGTKLTVLG


SEQ ID NO: 635





14302_LC [hu anti-<huCDH19> 2G6 (1-234)(C42S,D110E) VL]


SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIYQDTKRPSGIPERFSGSNSGNTAT


LTISGTQAMDEADYYCQAWESSTVVFGGGTKLTVLG


SEQ ID NO: 636





14303_LC [hu anti-<huCDH19> 2G6 (1-234)(C42S,D110E) VL]


SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIYQDTKRPSGIPERFSGSNSGNTAT


LTISGTQAMDEADYYCQAWESSTVVFGGGTKLTVLG


SEQ ID NO: 637





14304_LC [hu anti-<huCDH19> 23A10.3 (1-231)(C42S) VL]


SYELTQPPSVSVSPGQTASITCSGDRLGEKYVSWYQQKPGQSPILVIYQDNKWPSGIPERFSGSNSGNTA


TLTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVLG


SEQ ID NO: 638









Anti-CDH19 Variable and Constant Region Polynucleotide and Amino Acid Sequences









TABLE IIIa





Heavy Chain Variable and Contant Region Polynucleotide and Amino


acid Sequences















2G6


CAGGTGCAGTTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT


GCAGCGTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG


CTGGAGTGGGTGGCATTTATATGGTATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGAC


CGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAAAAGCCTGAGAGCT


GAGGACACGGCTGTGTATTACTGTGCGAGAAGGGCCGGTATAATAGGAACTATAGGCTACTACTAC


GGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCTAGTGCCTCCACCAAGGGCCCATCG


GTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTC


AAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCAC


ACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCA


GCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGAC


AAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTC


CTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC


CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC


GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGT


ACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA


AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC


CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCT


GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC


CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCA


AGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAG


GCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 639





QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIWYDGSNKYYADSVKD


RFTISRDNSKNTLYLQMKSLRAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSSASTKGPSVFP


LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT


YICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 640





4A2


CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACAGACCCTGTCCCTCACCTGC


ACTGTCTCTGGTGGCTCCATCAGCAGTAGTGGTTACTACTGGAGCTGGATCCGCCAGCACCCAGGG


AAGGGCCTGGAGTGGATTGGGTACATCTATTACACTGGGAGCGCCTACTACAACCCGTCCCTCAAG


AGTCGAGTTACCATATCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACT


GCCGCGGACACGGCCGTGTATTACTGTGCGAGAGATGGAAGCAGTGGCTGGTACTTCCAGTATTGG


GGCCAGGGCACCCTGGTCACCGTCTCTAGTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCA


CCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCC


GAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTC


CTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACC


CAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCC


CAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTC


AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGC


GTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA


GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCG


TCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA


GCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT


GTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAA


AGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACA


AGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACA


AGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT


ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 641





QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSGYYWSWIRQHPGKGLEWIGYIYYTGSAYYNPSLKSRV


TISVDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSSASTKGPSVFPLAPSSKST


SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH


KPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK


FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 642





4A9


CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC


ACTGTCTCTGGTGGCTCCATCAGTGGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGAAAGGGA


CTGGAGTGGTTTGCATATTTCTCTTACAGTGGGAGCACCAACTACAACCCCTCCCTCAAGAGTCGA


GTCACCTTATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCG


GACACGGCCGTGTATTACTGTGCGAGGAACTGGGCCTTCCACTTTGACTTCTGGGGCCAGGGAACC


CTGGTCACCGTCTCTAGTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGA


GCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGG


TGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAG


GACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCT


GCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGAC


AAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC


CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC


GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGC


CAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCC


TGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCC


CCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCC


CCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCC


CAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTC


CCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGC


AGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA


GCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 643





QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWFAYFSYSGSTNYNPSLKSRVTLS


VDTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDFWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT


AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSN


TKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW


YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR


EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD


KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 644





4B10


CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT


GCAGCCTCTGGATTCACCTTCAGTAGCTATGACATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG


CTGGAGTGGGTGGCAGTTATATCATATGATGGAACTAATGAATACTATGCAGACTCCGTGAAGGGC


CGATTCACCATCTCCAGAGACACTTCCAAGAACACGCTGTATTTGCAAATGAACAGCCTGAGAGCT


GAGGACACGGCTGTATATTACTGTGCGAGAGAACGATATTTTGACTGGTCTTTTGACTACTGGGGC


CAGGGAACCCTGGTCAGCGTCTCTAGTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCC


TCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAA


CCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTA


CAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAG


ACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAA


ATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGT


CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTG


GTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGT


GCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCC


TCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCC


CTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTA


CACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAG


GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG


ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAG


AGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTAC


ACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 645





QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVISYDGTNEYYADSVKGR


FTISRDTSKNTLYLQMNSLRAEDTAVYYCARERYFDWSFDYWGQGTLVSVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 646





4F3


CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT


GCAGCGTCTGGATTCTCCTTCAGTAGCTATGACATGGACTGGGTCCGCCAGACTCCAGGCAAGGGG


CTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTAATAAATACTATGCAGACTCCGTGAGGGGC


CGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTTTCTGCAAATGAACAGCCTGAGAGTC


GAGGACACGGCTGTGTATTACTGTGCGAGAGAAACTGGGGAGGGCTGGTACTTCGATCTCTGGGGC


CGTGGCACCCTGGTCACCGTCTCTAGTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCT


CCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAAC


CGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTAC


AGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGA


CCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAA


TCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTC


TTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTG


GTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGT


GCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCC


TCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCC


CTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTA


CACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAG


GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG


ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAG


AGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTAC


ACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 647





QVQLVESGGGVVQPGRSLRLSCAASGFSFSSYDMDWVRQTPGKGLEWVAVIWYDGSNKYYADSVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGWYFDLWGRGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 648





4F7


CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC


ACTGTCTCTGGTGGCTCCATCAGTAGTTACTCCTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGA


CTGGAGTGGATTGGGTATATCTATTACAGTGGGAGCACCAACTACAACCCCTCCCTCAAGAGTCGA


GTCACCATATCATTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCG


GACACGGCCGTGTATTACTGTGCGAGGAACTGGGCCTTCCACTTTGACTACTGGGGCCAGGGAACC


CTGGTCACCGTCTCTAGTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGA


GCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGG


TGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAG


GACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCT


GCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGAC


AAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC


CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC


GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGC


CAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCC


TGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCC


CCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCC


CCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCC


CAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTC


CCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGC


AGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA


GCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 649





QVQLQESGPGLVKPSETLSLTCTVSGGSISSYSWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISL


DTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA


ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT


KVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY


VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP


QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS


RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 650





16A4


CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGCGAAGCCTTCGGAGACCCTGTCCCTCACCTGC


ACTGTCTCTGGTGACTCCATCACTAGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGA


CTGGAGTGGATTGGGTATATCTATTACAGCGGGAGCACCAATTACAACCCCTCCCTCAAGAGTCGA


GTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGCTGCG


GACACGGCCGTGTATTACTGTGCGAGAGATCAAAGGCGGATAGCAGCAGCTGGTACCCACTTCTAC


GGTATGGACGTCTGGGGCCAAGGGACCACGGTCACTGTCTCCTCAGCTTCCACCAAGGGCCCATCC


GTCTTCCCCCTGGCGCCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTC


AAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCA


CACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC


AGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGA


CAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACT


CCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGAC


CCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTA


CGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGT


ACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA


AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC


CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCT


GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC


CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCA


AGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAG


GCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 651





QVQLQESGPGLAKPSETLSLTCTVSGDSITSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTAVYYCARDQRRIAAAGTHFYGMDVWGQGTTVTVSSASTKGPSVFPLAPS


SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICN


VNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP


EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK


AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY


SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 652





16C1


CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACTTGT


ACTGTCTCTGGTGGCTCCATCAGTGGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGA


CTGGAGTGGATTGGGTATATCTATTACATTGGGAGCACCAACTACAACCCCTCCCTCAAGAGTCGA


GTCACCATGTCAATAGACACGTCCAAGAACCAGTTCTCCCTGACGCTGAGCTCTTTGACCGCTGCG


GACACGGCCGTGTATTTCTGTGCGAGAGATGGGAGCAGTGGCTGGTACCGGTGGTTCGACCCCTGG


GGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCTGGCG


CCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCC


GAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTC


CTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACC


CAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCC


CAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTC


AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGC


GTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA


GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCG


TCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA


GCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT


GTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAA


AGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACA


AGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACA


AGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT


ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 653





QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLTLSSLTAADTAVYFCARDGSSGWYRWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTS


GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK


PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF


NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 654





17H8


CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACGTGC


ACTGTCTCTGGTGGCTCCATCAATAGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGA


CTGGAGTGGATTGGGTATATCTATTACATTGGGAGCACCAACTACAACCCCTCCCTCAAGAGTCGC


GTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCG


GACACGGCCCTGTATTACTGTGCGAGAGATTCCCGGTATAGAAGTGGCTGGTACGATGCTTTTGAT


ATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCC


CTGGCGCCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTAC


TTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCACACCTTCCCG


GCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGG


GCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTT


GAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGA


CCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCA


CATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGC


GTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT


CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAA


CAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC


AGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG


GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAA


CTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTG


GACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAA


CCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 655





QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTALYYCARDSRYRSGWYDAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 656





19B5


CAGGTGCAGTTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTTTCCTGC


AAGGTTTCTGGATACACCTTCACCAGCTACTTTATTCACTGGGTGCGCCAGGCCCCTGGACAAGGG


CTTGAATGGATGGGAATTATCAACCCTATTAGTGTTAGCACAAGCTACGCACAGAAGTTCCAGGGC


AGAGTCACCATGACCAGGGACACGTCCACGAGCACAGTCTTCATGGAGCTGAGCAGCCTGAGATC


TGAGGACACGGCCGTGTATTACTGTGCGCGAGGGGGGATACAGCTATGGTTACATTTGGACTACTG


GGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCTGGC


GCCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCC


CGAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT


CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC


CCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGC


CCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT


CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATG


CGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG


AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC


GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA


AGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG


TGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA


AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC


AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGAC


AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC


TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 657





QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 658





20D3


CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTTTCCTGC


AAGGTTTCTGGATACACCTTCACCAGCTACTTTATTCACTGGGTGCGCCAGGCCCCTGGACAAGGG


CTTGAGTGGATGGGAATAATCAACCCTATTAGTGTTAGCACAAGCTACGCACAGAAGTTCCAGGGC


AGAGTCACCATGACCAGGGACACGTCCACGAGCACAGTCTTCATGGAGCTGAGCAGCCTGAGATC


TGAGGACACGGCCGTGTATTACTGTGCGCGAGGGGGGATACAGCTATGGTTACATTTTGACTACTG


GGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCTGGC


GCCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCC


CGAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT


CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC


CCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGC


CCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT


CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATG


CGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG


AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC


GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA


AGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG


TGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA


AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC


AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGAC


AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC


TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 659





QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 660





22D1


CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAGGGTTTCCTGC


AAGGTTTCTGGATACACCTTCACCAGCTACTTTATTCACTGGGTACGCCAGGCCCCTGGACAAGGG


CTTGAGTGGATGGGAATAATCAACCCTATTAGTGTTAGCACAAGCTACGCACAGAAGTTCCAGGGC


AGAGTCACCATGACCAGGGACACGTCCACGAGCACAGTCTTCATGGAGCTGAGCAGCCTGAGATC


TGAGGACACGGCCGTGTATTACTGTGCGCGAGGGGGGATACAGCTATGGTTACATTTGGACTACTG


GGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCTGGC


GCCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCC


CGAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT


CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC


CCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGC


CCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT


CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATG


CGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG


AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC


GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA


AGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG


TGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA


AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC


AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGAC


AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC


TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 661





QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 662





22G10


GAGGTGCAACTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT


GCAGCCTCTGGATTCACCTTTAGCAGTTATGCCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGG


CTGGAGTGGGTCTCAACTATTAGTGGTGGTGGTGCTAACACATACTACGCAGACTCCGTGAAGGGC


CGGTTCACCATCTCCAGTGACAATTCCAAGAGCACGCTGTATCTGCAAATGAACAGCCTGAGAGCC


GCGGACACGGCCGTATATCACTGTGCGAAAGGGGGAATGGGGGGATACTACTACGGTATGGACGT


CTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCT


GGCGCCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTT


CCCCGAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCACACCTTCCCGGC


TGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGC


ACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGA


GCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACC


GTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA


TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT


GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCA


GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACA


AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG


GTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTC


AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTA


CAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGAC


AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC


TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 663





EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISSDNSKSTLYLQMNSLRAADTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSSASTKGPSVFPLAP


SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC


NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE


DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI


SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF


LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 664





23A10


CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT


GCAGCGTCTGGATTCACCTTCAGTCGCTATGGCATACACTGGGTCCGCCAGGCTCCAGGCAAGGGG


CTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGC


CGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCTAATGAACAGCCTGAGAGCC


GAGGACTCGGCTGTGTATTACTGTGCGAGAAGGGCCGGTATACCTGGAACTACGGGCTACTACTAT


GGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTTCCACCAAGGGCCCATCC


GTCTTCCCCCTGGCGCCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTC


AAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCA


CACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC


AGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGA


CAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACT


CCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGAC


CCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTA


CGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGT


ACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA


AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC


CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCT


GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC


CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCA


AGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAG


GCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 665





QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYGIHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGR


FTISRDNSKNTLYLLMNSLRAEDSAVYYCARRAGIPGTTGYYYGMDVWGQGTTVTVSSASTKGPSVFP


LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT


YICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 666





25F8


CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTTTCCTGC


AAGGCATCTGGATACACCTTCACCAGCTACTATATTCACTGGGTGCGCCAGGCCCCTGGACAAGGA


CTTGAGTGGATGGGAATAATCAACCCCAGTGGTGGTAGCACAAGGTACGCACAGAAGTTCCAGGG


CAGAGTCACCATGACCAGGGACACGTCCACGAGCACAGTCTTCATGGAGCTGAGCAGCCTGAGAT


CTGAGGACACGGCCGTGTATTACTGTGCGCGAGGGGGAATACAGCTATGGTTACATTTTGACTACT


GGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCTGG


CGCCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCC


CCGAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTG


TCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCA


CCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAG


CCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCG


TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACAT


GCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG


GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAG


CGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA


AGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG


TGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA


AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC


AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGAC


AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC


TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 667





QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYTHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 668





25G10


CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC


ACTGTCTCTGGTGGCTCCATCAGTGGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGA


CTGGAGTGGATTGGGTATATCTATTACATTGGGAGCACCAACTACAACCCCTCCCTCAAGAGTCGA


GTCACCATGTCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCG


GACACGGCCGTGTATTACTGTGCGAGAGATGGGAGCAGTGGCTGGTACCGGTGGTTCGACCCCTGG


GGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCTGGCG


CCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCC


GAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTC


CTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACC


CAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCC


CAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTC


AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGC


GTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA


GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCG


TCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA


GCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT


GTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAA


AGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACA


AGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACA


AGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT


ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 669





QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


VDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYRWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKST


SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH


KPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK


FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG


SEQ ID NO: 670





26D1


CAGGTGCAGTTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTTTCCTGT


AAGGCATCTAGATACACCTTCACCAGCTACTATATGTCCTGGGTGCGACAGGCCCCTGGACAAGGG


CTTGAGTGGATGGGAATAATCCACCCTAGTGGTGGTGACACAACCTACGCACAGAAGTTCCAGGGC


AGAGTCACCATGACCGGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATC


TGAGGACACGGCCGTGTATTACTGTGCGAGAGGGGGGATAAAACTATGGTTACATTTTGACTATTG


GGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCTGGC


GCCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCC


CGAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT


CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC


CCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGC


CCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT


CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATG


CGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG


AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC


GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA


AGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG


TGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA


AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC


AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGAC


AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC


TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 671





QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 672





26F12


CAGGTGCAGTTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTTTCCTGC


AAGGCATCTAGATACACCTTCACCAACTACTATATGTCCTGGGTGCGACAGGCCCCTGGACAAGGG


CTTGAGTGGATGGGAATAATCAACCCTAGTGGTGGTGACTCAACCTACGCACAGAAGTTCCAGGGC


AGACTCACCATGACCGGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATC


TGAGGACACGGCCGTGTATTACTGTGCGAGAGGGGGGATACAACTATGGTTACATTTTGACTACTG


GGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCTGGC


GCCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCC


CGAACCGGTGACGGTGTCGTGGAACTCAGGGGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT


CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC


CCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGC


CCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT


CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATG


CGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG


AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC


GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA


AGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG


TGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA


AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC


AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGAC


AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC


TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA


SEQ ID NO: 673





QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQGLEWMGIINPSGGDSTYAQKFQG


RLTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 674
















TABLE IIIb





Light Chain Variable and Contant Region Polynucleotide and Amino


acid Sequences















2G6


TCCTATGAACTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAGGACAGACAGCCAGCATCACCTGC


TCTGGAGATAGGTTGGGGGAAAAATATACTTGCTGGTATCAGCAGAGGCCAGGCCAGTCCCCTTTG


CTGGTCATCTATCAAGATACCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCT


GGTAACACAGCCACTCTGACCATCAGCGGGACCCAGGCTATGGATGAGGCTGACTATTACTGTCAG


GCGTGGGACAGCAGCACTGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGGTCAGCCCAA


GGCCAACCCCACTGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTCCAAGCCAACAAGGCCACACT


AGTGTGTCTGATCAGTGACTTCTACCCGGGAGCTGTGACAGTGGCCTGGAAGGCAGATGGCAGCCC


CGTCAAGGCGGGAGTGGAGACCACCAAACCCTCCAAACAGAGCAACAACAAGTACGCGGCCAGCA


GCTACCTGAGCCTGACGCCCGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCAT


GAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGA


SEQ ID NO: 675





SYELTQPPSVSVSPGQTASITCSGDRLGEKYTCWYQQRPGQSPLLVIYQDTKRPSGIPERFSGSNSGNTAT


LTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFY


PGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVA


PTECS


SEQ ID NO: 676





4A2


GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT


GCAGGGCCAGTCGGAATATTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCT


CCCAGGCTCCTCATCTATGGTCCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGT


GGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTACAGTGTATTAC


TGTCAGCAGTATGGTAGCTCATTCACTTTCGGCCCTGGGACCAAAGTGGATATCAAACGTACGGTG


GCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTG


TGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCC


AATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGC


AGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCA


TCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTGA


SEQ ID NO: 677





EIVLTQSPGTLSLSPGERATLSCRASRNISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFTVYYCQQYGSSFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE


AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR


GEC


SEQ ID NO: 678





4A9


CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGACAGAGGGTCACCATCTCCTGC


ACTGGGAGCAGCTCCAACATCGGGACAGGTTATGCTGTACACTGGTACCAGCAGTTTCCAGGAACA


GCCCCCAAACTCCTCATCTATGGTAACAACAATCGGCCCTCAGGGGTTCCTGACCGATTCTCTGGCT


CCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCTGATTATT


ACTGCCAGTCCTATGACAGCAGACTGAGTGGTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCC


TAGGTCAGCCCAAGGCCAACCCCACTGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTCCAAGCCA


ACAAGGCCACACTAGTGTGTCTGATCAGTGACTTCTACCCGGGAGCTGTGACAGTGGCCTGGAAGG


CAGATGGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCAAACCCTCCAAACAGAGCAACAACAAG


TACGCGGCCAGCAGCTACCTGAGCCTGACGCCCGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG


CCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGA


SEQ ID NO: 679





QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQFPGTAPKLLIYGNNNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSRLSGWVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 680





4B10


GAAATTGTATTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT


GCAGGGCCAGTCAGAGTGTTAGCAACACCTACTTAGCCTGGTACCATCAGAGACCTGGCCAGGCTC


CCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGATTCAGTGGCAGTG


GGTCTGGGACAGACTTCGCTCTCACCATCAGCAGTCTGGAGCCTGAAGATTTTGCAGTGTATTACT


GTCAGCAGTACAGTAACTCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGAACTGTG


GCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTG


TGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCC


AATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGC


AGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCA


TCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTGA


SEQ ID NO: 681





EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYHQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FALTISSLEPEDFAVYYCQQYSNSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 682





4F3


GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT


GCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCT


CCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGT


GGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAACCTGAGGATTTTGCAGTGTATTAC


TGTCAGCAGTATGGTAGCTCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGTACGGT


GGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTT


GTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTC


CAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAG


CAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCC


ATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTGA


SEQ ID NO: 683





EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 684





4F7


CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCACCATCTCCTGC


ACTGGGAGCAGCTCCAATATCGGGACAGGTTATGATGTACACTGGTATCAGCAGCTTCCAGGAACA


GCCCCCAAACTCCTCATCCATGGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGC


TCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCTGATTAT


TACTGCCAGTCCTATGACAGCAGTCTGAGTGGTTGGGTGTTCGGCGGAGGGACCAGGTTGACCGTC


CTAGGTCAGCCCAAGGCCAACCCCACTGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTCCAAGCC


AACAAGGCCACACTAGTGTGTCTGATCAGTGACTTCTACCCGGGAGCTGTGACAGTGGCCTGGAAG


GCAGATGGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCAAACCCTCCAAACAGAGCAACAACAA


GTACGCGGCCAGCAGCTACCTGAGCCTGACGCCCGAGCAGTGGAAGTCCCACAGAAGCTACAGCT


GCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGA


SEQ ID NO: 685





QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYDVHWYQQLPGTAPKLLIHGNSNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSSLSGWVFGGGTRLTVLGQPKANPTVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 686





16A4


GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT


GCAGGGCCAGTCAGAGTGTTAGCAGCAGTTATTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC


CCAGGCTCCTCATCTATGGTACATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTG


GGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTATT


GTCAGCAGTACGGTAGCTCACCTTTCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACGAACTG


TGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGTACCGCCTCTGT


TGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCT


CCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCA


GCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACC


CATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTGA


SEQ ID NO: 687





EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGTSSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSPFTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 688





16C1


GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT


GCAGGGCCAGCCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCT


CCCAGGCTCCTCATCTTTGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGT


GGGTCTGGGACAGACTTCACTCTCACCATCAGCGGACTGGAGCCTGAAGATTTTGCAGTGTATCAC


TGTCAGCAGTATGGTAACTCACCGCTCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACGAACT


GTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGTACCGCCTCTG


TTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCC


TCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTC


AGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCAC


CCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTGA


SEQ ID NO: 689





EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISGLEPEDFAVYHCQQYGNSPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 690





17H8


GACATTGTATTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT


GCAGGGCCAGTCAGAGTGTTGCCGGCAGCTACCTAGCCTGGTACCAGCAGAAACCTGGCCAGGCT


CCCAGGCTCCTCATCTCTGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGT


GGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTAC


TGTCAGCAGTATGGTAAATCACCGATCACCTTCGGCCAAGGGACACGACTGGAGATGAAAGGAAC


TGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGTACCGCCTCT


GTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCC


CTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCT


CAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCA


CCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTGA


SEQ ID NO: 691





DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQAPRLLISGASSRATGIPDRFSGSGSGT


DFTLTISRLEPEDFAVYYCQQYGKSPITFGQGTRLEMKGTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF


YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK


SFNRGEC


SEQ ID NO: 692





19B5


CAGTCTGCGCTGACTCAGCCACCCTCAACGACTGGGACCCCCGGGCAGAGGGTCACCATCTCTTGT


TCTGGAAGCAGGTCCAACATCGGAAGCAATTTTGTAAACTGGTACAAGCAGCTCCCAGGAACGGC


CCCCAAAGTCCTCATCTATACTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCC


AAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGTCTGATTATTACT


GCGCAACATGGGATGACAGTATGAATGGTTGGGTGTTCGGCGGAGGGACCAAACTGACCGTCCTA


GGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCACCCTCCTCTGAGGAGCTTCAAGCCAAC


AAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCA


GATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTA


CGCGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCC


AGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGA


SEQ ID NO: 693





QSALTQPPSTTGTPGQRVTISCSGSRSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDESDYYCATWDDSMNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 694





20D3


CAGTCTGCGCTGACTCAGCCACCCTCAGCGACTGGGACCCCCGGGCAGAGGGTCACCATCTCTTGT


TCTGGAAGCAGCTCCAACATCGGAAGCAATTTTGTAAACTGGTACAAGCAGCTCCCAGGAACGGCC


CCCAAAGTCCTCATCTATACTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA


AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGTCTGATTATTACTG


TGCAACATGGGATGACAGCCTGAATGGTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAG


GTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCACCCTCCTCTGAGGAGCTTCAAGCCAACA


AGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAG


ATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTAC


GCGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCA


GGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGA


SEQ ID NO: 695





QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDESDYYCATWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 696





22D1


CAGTCTGCGCTGACTCAGCCACCCTCAGCGACTGGGACCCCCGGGCAGAGGGTCACCATCTCTTGT


TCTGGAAGCAGCTCCAACATCGGAAGCAATTTTGTAAACTGGTACAAGCAGCTCCCAGGAACGGCC


CCCAAAGTCCTCATCTATACTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA


AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGTCTGATTATTACTG


TGCAACATGGGATGACAGTATGAATGGTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAG


GTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCACCCTCCTCTGAGGAGCTTCAAGCCAACA


AGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAG


ATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTAC


GCGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCA


GGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGA


SEQ ID NO: 697





QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDESDYYCATWDDSMNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 698





22G10


GAAATAGTGATGACGCAGTCTCCAGTCACCCTGTCTCTGTCTCTAGGGGAAAGAGCCACCCTCTCC


TGCAGGGCCAGTCAGAGTATTAGCAGCAACTTAGCCTGGTTCCAGCAGAAACCTGGCCAGGCTCCC


AGACTCCTCATCTATGGTGCATTTACCAGGGCCACTGGTATCCCAGCCAGGGTCAGTGGCAGTGGG


TCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTC


AGCAGTATAATTACTGGCCGCTCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAGCGAACTGTG


GCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGTACCGCCTCTGTTG


TGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCC


AATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGC


AGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCA


TCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTGA


SEQ ID NO: 699





EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARVSGSGSGTEF


TLTISSLQSEDFAVYYCQQYNYWPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 700





23A10


TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAGGACAGACAGCCAGCATCACCTGC


TCTGGAGATAGATTGGGGGAGAAATATGTTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTATA


CTGGTCATCTATCAAGATAATAAGTGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTG


GGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCTATGGATGAGGCTGACTATTACTGTCAGG


CGTGGGACAGCAGCACTGTGGTATTCGGCGGGGGGACCAAGCTGACCGTCCTAGGTCAGCCCAAG


GCTGCCCCCTCGGTCACTCTGTTCCCACCCTCCTCTGAGGAGCTTCAAGCCAACAAGGCCACACTG


GTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCC


GTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAG


CTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGA


AGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGA


SEQ ID NO: 701





SYELTQPPSVSVSPGQTASITCSGDRLGEKYVCWYQQKPGQSPILVIYQDNKWPSGIPERFSGSNSGNTA


TLTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF


YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTV


APTECS


SEQ ID NO: 702





25F8


CAGTCTGCGCTGACTCAGCCACCCTCAGCGACTGGGACCCCCGGGCAGAGGGTCACCATCTCTTGT


TCTGGAAGCAGCTCCAACATCGGAAGGAATTTTGTAAACTGGTATAAGCAGCTCCCAGGAACGGCC


CCCAAAGTCCTCATTTATACTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA


AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGTCTGATTATTACTG


TGCAGCATGGGATGACAGCCTGAATGGTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAG


GTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCACCCTCCTCTGAGGAGCTTCAAGCCAACA


AGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAG


ATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTAC


GCGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCA


GGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGA


SEQ ID NO: 703





QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDESDYYCAAWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 704





25G10


GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT


GCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCT


CCCAGGCTCCTCATCTTTGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGT


GGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATCAC


TGTCAGCAGTATGGTAACTCACCGCTCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACGAACT


GTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGTACCGCCTCTG


TTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCC


TCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTC


AGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCAC


CCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTGA


SEQ ID NO: 705





EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYHCQQYGNSPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 706





26D1


CACTCTGTGCTGACTCAGTCACCCTCAGCGTCTGGGACCCCCGGACAGAGGGTCACCATCTCTTGTT


CTGGAAGCCGCTCCAACATCGGAAGTAATTTTGTAAACTGGTACCAGCAGCTCCCAGGAACGGCCC


CCAAACTCCTCATCTATACTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAA


GTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGGCTGATTATTACTGT


GCAGTATGGGATGACAGCCTGAATGGTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGG


TCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCACCCTCCTCTGAGGAGCTTCAAGCCAACAA


GGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGA


TAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACG


CGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAG


GTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGA


SEQ ID NO: 707





HSVLTQSPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 708





26F12


CAGTCTGTGCTGACTCAGTCACCCTCAGCGTCTGGGACCCCCGGGCAGAAGGTCACCATCTCTTGTT


CTGGAAGCCGCTCCAACATCGGAAGTAATTTTGTAAACTGGTACCAGCAGCTCCCAGGAACGGCCC


CCAAACTCCTCATCTATACTAATTATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAA


GTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGGCTGATTATTACTGT


GCAGTATGGGATGACAGCCTGAATGGTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGG


TCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCACCCTCCTCTGAGGAGCTTCAAGCCAACAA


GGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGA


TAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACG


CGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAG


GTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATGA


SEQ ID NO: 709





QSVLTQSPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNYQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 710
















TABLE IIIc





Heavy Chain Variable and Contant Region Polynucleotide and Amino


acid Sequences















13586_HC [hu anti-<huCDH19> 4F3 VH]::huIgG1z


QVQLVESGGGVVQPGRSLRLSCAASGFSFSSYDMDWVRQTPGKGLEWVAVIWYDGSNKYYADSVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGWYFDLWGRGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 711





13589_HC [hu anti-<huCDH19> 4A9 VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWFAYFSYSGSTNYNPSLKSRVTLS


VDTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDFWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT


AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSN


TKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW


YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR


EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD


KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 712





13590_HC [hu anti-<huCDH19> 4B10 VH]::huIgG1z


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVISYDGTNEYYADSVKGR


FTISRDTSKNTLYLQMNSLRAEDTAVYYCARERYFDWSFDYWGQGTLVSVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 713





13874_HC [hu anti-<huCDH19> 17H8.2 VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTALYYCARDSRYRSGWYDAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 714





13875_HC [hu anti-<huCDH19> 16C1.1 VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLTLSSLTAADTAVYFCARDGSSGWYRWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTS


GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK


PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF


NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 715





13876_HC [hu anti-<huCDH19> 16A4.1 VH]::huIgG1z


QVQLQESGPGLAKPSETLSLTCTVSGDSITSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTAVYYCARDQRRIAAAGTHFYGMDVWGQGTTVTVSSASTKGPSVFPLAPS


SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICN


VNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP


EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK


AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY


SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 716





13877_HC [hu anti-<huCDH19> 22G10.1 VH]::huIgG1z


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISSDNSKSTLYLQMNSLRAADTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSSASTKGPSVFPLAP


SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC


NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE


DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI


SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF


LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 717





13878_HC [hu anti-<huCDH19> 20D3.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 718





13879_HC [hu anti-<huCDH19> 22D1.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 719





13880_HC [hu anti-<huCDH19> 25F8.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 720





13881_HC [hu anti-<huCDH19> 26F12.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQGLEWMGIINPSGGDSTYAQKFQG


RLTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 721





13882_HC [hu anti-<huCDH19> 26D1.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 722





13883_HC [hu anti-<huCDH19> 25G10.1 VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


VDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYRWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKST


SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH


KPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK


FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 723





13885_HC [hu anti-<huCDH19> 19B5.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 724





14022_HC [hu anti-<huCDH19> 4A2 VH]::huIgG1z


QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSGYYWSWIRQHPGKGLEWIGYIYYTGSAYYNPSLKSRV


TISVDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSSASTKGPSVFPLAPSSKST


SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH


KPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK


FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 725





14024_HC [hu anti-<huCDH19> 4A2 (1-472)(Q17E,H47P) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISSSGYYWSWIRQPPGKGLEWIGYIYYTGSAYYNPSLKSRVT


ISVDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS


GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK


PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF


NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 726





14025_HC [hu anti-<huCDH19> 4A2 VH]::huIgG1z


QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSGYYWSWIRQHPGKGLEWIGYIYYTGSAYYNPSLKSRV


TISVDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSSASTKGPSVFPLAPSSKST


SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH


KPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK


FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 727





14026_HC [hu anti-<huCDH19> 4A2 (1-472)(Q17E,H47P) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISSSGYYWSWIRQPPGKGLEWIGYIYYTGSAYYNPSLKSRVT


ISVDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS


GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK


PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF


NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 728





14027_HC [hu anti-<huCDH19> 4A2 (1-472)(Q17E,H47P,D111E) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISSSGYYWSWIRQPPGKGLEWIGYIYYTGSAYYNPSLKSRVT


ISVDTSKNQFSLKLSSVTAADTAVYYCAREGSSGWYFQYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS


GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK


PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF


NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 729





14028_HC [hu anti-<huCDH19> 4A2 (1-472)(Q17E,H47P,D111E,W134Y) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISSSGYYWSWIRQPPGKGLEWIGYIYYTGSAYYNPSLKSRVT


ISVDTSKNQFSLKLSSVTAADTAVYYCAREGSSGYYFQYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS


GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK


PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF


NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 730





14029_HC [hu anti-<huCDH19> 4A2 VH]::huIgG1z


QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSGYYWSWIRQHPGKGLEWIGYIYYTGSAYYNPSLKSRV


TISVDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYFQYWGQGTLVTVSSASTKGPSVFPLAPSSKST


SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH


KPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK


FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 731





14030_HC [hu anti-<huCDH19> 4F3 (1-471)(R17G) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFSFSSYDMDWVRQTPGKGLEWVAVIWYDGSNKYYADSVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGWYFDLWGRGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 732





14031_HC [hu anti-<huCDH19> 4F3 (1-471)(R17G,T47A) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFSFSSYDMDWVRQAPGKGLEWVAVIWYDGSNKYYADSVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGWYFDLWGRGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 733





14032_HC [hu anti-<huCDH19> 4F3 (1-471)(R17G,T47A,R141Q) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFSFSSYDMDWVRQAPGKGLEWVAVIWYDGSNKYYADSVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGWYFDLWGQGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 734





14033_HC


[hu anti-<huCDH19> 4F3 (1-471)(R17G,T47A,D61E,D72E,R141Q) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFSFSSYDMDWVRQAPGKGLEWVAVIWYEGSNKYYAESVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGWYFDLWGQGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 735





14034_HC


[hu anti-<huCDH19> 4F3 (1-471)(R17G,T47A,D61E,D72E,W134Y,R141Q)


VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFSFSSYDMDWVRQAPGKGLEWVAVIWYEGSNKYYAESVRG


RFTISRDNSKNTLFLQMNSLRVEDTAVYYCARETGEGYYFDLWGQGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 736





14039_HC [hu anti-<huCDH19> 2G6 (1-477)(R17G,D61E,D72E,K94N) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIWYEGSNKYYAESVKD


RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSSASTKGPSVFP


LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT


YICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 737





14040_HC [hu anti-<huCDH19> 16C1.1 VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLTLSSLTAADTAVYFCARDGSSGWYRWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTS


GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK


PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF


NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 738





14041_HC [hu anti-<huCDH19> 16C1.1 (1-469)(T92K) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLKLSSLTAADTAVYFCARDGSSGWYRWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTS


GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK


PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF


NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 739





14042_HC [hu anti-<huCDH19> 16C1.1 (1-469)(T92K,D109E) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLKLSSLTAADTAVYFCAREGSSGWYRWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTS


GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK


PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF


NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 740





14043_HC [hu anti-<huCDH19> 16C1.1 (1-469)(T92K,W132Y,W135Y) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLKLSSLTAADTAVYFCARDGSSGYYRYFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG


GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP


SNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN


WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP


REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV


DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 741





14044_HC [hu anti-<huCDH19> 16C1.1 (1-469)(T92K) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


IDTSKNQFSLKLSSLTAADTAVYFCARDGSSGWYRWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTS


GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK


PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF


NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 742





14045_HC [hu anti-<huCDH19> 17H8.2 VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTALYYCARDSRYRSGWYDAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 743





14046_HC [hu anti-<huCDH19> 17H8.2 (1-471)(D109E) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTALYYCARESRYRSGWYDAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKST


SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH


KPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK


FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 744





14047_HC [hu anti-<huCDH19> 17H8.2 (1-471)(D109E,W132Y) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTALYYCARESRYRSGYYDAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKST


SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH


KPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK


FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 745





14048_HC [hu anti-<huCDH19> 17H8.2 (1-471)(D109E) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSINSYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTALYYCARESRYRSGWYDAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKST


SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH


KPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK


FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 746





14049_HC [hu anti-<huCDH19> 4F7 VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISSYSWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISL


DTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA


ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT


KVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY


VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP


QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS


RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 747





14050_HC [hu anti-<huCDH19> 4F7 VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISSYSWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISL


DTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA


ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT


KVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY


VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP


QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS


RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 748





14051_HC [hu anti-<huCDH19> 4F7 (1-468)(W113Y) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISSYSWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISL


DTSKNQFSLKLSSVTAADTAVYYCARNYAFHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA


ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT


KVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY


VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP


QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS


RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 749





14052_HC [hu anti-<huCDH19> 4B10 (1-471)(R17G,D61E,D72E,W134Y) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVISYEGTNEYYAESVKGR


FTISRDTSKNTLYLQMNSLRAEDTAVYYCARERYFDYSFDYWGQGTLVSVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 750





14053_HC [hu anti-<huCDH19> 4B10 VH]::huIgG1z


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVISYDGTNEYYADSVKGR


FTISRDTSKNTLYLQMNSLRAEDTAVYYCARERYFDWSFDYWGQGTLVSVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 751





14054_HC [hu anti-<huCDH19> 4B10 (1-471)(R17G) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVISYDGTNEYYADSVKG


RFTISRDTSKNTLYLQMNSLRAEDTAVYYCARERYFDWSFDYWGQGTLVSVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 752





14055_HC [hu anti-<huCDH19> 4B10 (1-471)(R17G,D61E,D72E) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVISYEGTNEYYAESVKGR


FTISRDTSKNTLYLQMNSLRAEDTAVYYCARERYFDWSFDYWGQGTLVSVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 753





14056_HC [hu anti-<huCDH19> 4A9 VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWFAYFSYSGSTNYNPSLKSRVTLS


VDTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDFWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT


AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSN


TKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW


YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR


EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD


KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 754





14057_HC [hu anti-<huCDH19> 4A9 (1-468)(F55I,A56G) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYFSYSGSTNYNPSLKSRVTLS


VDTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDFWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT


AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSN


TKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW


YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR


EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD


KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 755





14058_HC [hu anti-<huCDH19> 4A9 (1-468)(F55I,A56G) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYFSYSGSTNYNPSLKSRVTLS


VDTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDFWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT


AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSN


TKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW


YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR


EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD


KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 756





14059_HC [hu anti-<huCDH19> 4A9 (1-468)(F55I,A56G,W113Y) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYFSYSGSTNYNPSLKSRVTLS


VDTSKNQFSLKLSSVTAADTAVYYCARNYAFHFDFWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA


ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT


KVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY


VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP


QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS


RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 757





14060_HC [hu anti-<huCDH19> 20D3.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 758





14061_HC [hu anti-<huCDH19> 20D3.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 759





14062_HC [hu anti-<huCDH19> 20D3.1 (1-469)(W133Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 760





14063_HC [hu anti-<huCDH19> 20D3.1 (1-469)(W133Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 761





14064_HC [hu anti-<huCDH19> 20D3.1 (1-469)(W133Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 762





14065_HC [hu anti-<huCDH19> 22G10.1 (1-470)(S82R,A99E) VH]::huIgG1z


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISRDNSKSTLYLQMNSLRAEDTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSSASTKGPSVFPLAP


SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC


NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE


DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI


SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF


LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 763





14066_HC [hu anti-<huCDH19> 22G10.1 (1-470)(A99E,H105Y) VH]::huIgG1z


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISSDNSKSTLYLQMNSLRAEDTAVYYCAKGGMGGYYYGMDVWGQGTTVTVSSASTKGPSVFPLAP


SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC


NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE


DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI


SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF


LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 764





14067_HC [hu anti-<huCDH19> 22G10.1 (1-470)(A99E) VH]::huIgG1z


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISSDNSKSTLYLQMNSLRAEDTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSSASTKGPSVFPLAP


SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC


NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE


DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI


SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF


LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 765





14068_HC [hu anti-<huCDH19> 22G10.1 (1-470)(A99E) VH]::huIgG1z


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISSDNSKSTLYLQMNSLRAEDTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSSASTKGPSVFPLAP


SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC


NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE


DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI


SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF


LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 766





14069_HC [hu anti-<huCDH19> 22G10.1 (1-470)(D72E,A99E) VH]::huIgG1z


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYAESVKGRF


TISSDNSKSTLYLQMNSLRAEDTAVYHCAKGGMGGYYYGMDVWGQGTTVTVSSASTKGPSVFPLAPS


SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICN


VNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP


EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK


AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY


SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 767





14070_HC [hu anti-<huCDH19> 22G10.1 (1-470)(H105Y) VH]::huIgG1z


EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSTISGGGANTYYADSVKGR


FTISSDNSKSTLYLQMNSLRAADTAVYYCAKGGMGGYYYGMDVWGQGTTVTVSSASTKGPSVFPLAP


SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC


NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE


DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI


SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF


LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 768





14071_HC [hu anti-<huCDH19> 16A4.1 (1-474)(T144L) VH]::huIgG1z


QVQLQESGPGLAKPSETLSLTCTVSGDSITSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISV


DTSKNQFSLKLSSVTAADTAVYYCARDQRRIAAAGTHFYGMDVWGQGTLVTVSSASTKGPSVFPLAPS


SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICN


VNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP


EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK


AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY


SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 769





14072_HC [hu anti-<huCDH19> 19B5.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 770





14073_HC [hu anti-<huCDH19> 19B5.1 (1-469)(W133Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 771





14074_HC [hu anti-<huCDH19> 19B5.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 772





14075_HC [hu anti-<huCDH19> 19B5.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 773





14076_HC [hu anti-<huCDH19> 19B5.1 (1-469)(W133Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 774





14077_HC [hu anti-<huCDH19> 23A10.3 (1-474)(L92Q) VH]::huIgG1z


QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYGIHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGR


FTISRDNSKNTLYLQMNSLRAEDSAVYYCARRAGIPGTTGYYYGMDVWGQGTTVTVSSASTKGPSVFP


LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT


YICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 775





14078_HC [hu anti-<huCDH19> 23A10.3 (1-474)(R17G,L92Q) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFTFSRYGIHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKG


RFTISRDNSKNTLYLQMNSLRAEDSAVYYCARRAGIPGTTGYYYGMDVWGQGTTVTVSSASTKGPSVF


PLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ


TYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV


SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 776





14079_HC [hu anti-<huCDH19> 23A10.3 (1-474)(R17G,D61E,D72E,L92Q) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFTFSRYGIHWVRQAPGKGLEWVAVIWYEGSNKYYAESVKGR


FTISRDNSKNTLYLQMNSLRAEDSAVYYCARRAGIPGTTGYYYGMDVWGQGTTVTVSSASTKGPSVFP


LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT


YICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 777





14080_HC [hu anti-<huCDH19> 23A10.3 VH]::huIgG1z


QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYGIHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGR


FTISRDNSKNTLYLLMNSLRAEDSAVYYCARRAGIPGTTGYYYGMDVWGQGTTVTVSSASTKGPSVFP


LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT


YICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 778





14081_HC [hu anti-<huCDH19> 25G10.1 VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


VDTSKNQFSLKLSSVTAADTAVYYCARDGSSGWYRWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKST


SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH


KPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK


FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 779





14082_HC [hu anti-<huCDH19> 25G10.1 (1-469)(D109E,W132Y,W135Y) VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPPGKGLEWIGYIYYIGSTNYNPSLKSRVTMS


VDTSKNQFSLKLSSVTAADTAVYYCAREGSSGYYRYFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTS


GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK


PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF


NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT


VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 780





14083_HC [hu anti-<huCDH19> 26D1.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 781





14084_HC [hu anti-<huCDH19> 26D1.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 782





14085_HC [hu anti-<huCDH19> 26D1.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 783





14086_HC [hu anti-<huCDH19> 26D1.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 784





14087_HC [hu anti-<huCDH19> 26D1.1 (1-469)(W133Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASRYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIKLYLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 785





14088_HC [hu anti-<huCDH19> 26D1.1 (1-469)(R27G,G82R) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMSWVRQAPGQGLEWMGIIHPSGGDTTYAQKFQGR


VTMTRDTSTSTVYMELSSLRSEDTAVYYCARGGIKLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 786





14089_HC [hu anti-<huCDH19> 26F12.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQGLEWMGIINPSGGDSTYAQKFQG


RLTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 787





14090_HC [hu anti-<huCDH19> 26F12.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQGLEWMGIINPSGGDSTYAQKFQG


RLTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 788





14091_HC [hu anti-<huCDH19> 26F12.1 (1-469)(W133Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQGLEWMGIINPSGGDSTYAQKFQG


RLTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 789





14092_HC [hu anti-<huCDH19> 26F12.1 (1-469)(W133Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASRYTFTNYYMSWVRQAPGQGLEWMGIINPSGGDSTYAQKFQG


RLTMTGDTSTSTVYMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 790





14093_HC [hu anti-<huCDH19> 25F8.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 791





14094_HC [hu anti-<huCDH19> 25F8.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 792





14095_HC [hu anti-<huCDH19> 25F8.1 (1-469)(F90Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 793





14096_HC [hu anti-<huCDH19> 25F8.1 (1-469)(F90Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHFDYWGQGTLVTVSSASTKGPSVFPLAPSS


KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV


NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE


VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA


KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 794





14097_HC [hu anti-<huCDH19> 25F8.1 (1-469)(F90Y,W133Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLEWMGIINPSGGSTRYAQKFQGR


VTMTRDTSTSTVYMELSSLRSEDTAVYYCARGGIQLYLHFDYWGQGTLVTVSSASTKGPSVFPLAPSSK


STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 795





14098_HC [hu anti-<huCDH19> 22D1.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 796





14099_HC [hu anti-<huCDH19> 22D1.1 VH]::huIgG1z


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 797





14100_HC [hu anti-<huCDH19> 22D1.1 (1-469)(W133Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 798





14101_HC [hu anti-<huCDH19> 22D1.1 (1-469)(W133Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVFMELSSLRSEDTAVYYCARGGIQLYLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 799





14102_HC [hu anti-<huCDH19> 22D1.1 (1-469)(F90Y) VH]::huIgG1z


QVQLVQSGAEVKKPGASVRVSCKVSGYTFTSYFIHWVRQAPGQGLEWMGIINPISVSTSYAQKFQGRV


TMTRDTSTSTVYMELSSLRSEDTAVYYCARGGIQLWLHLDYWGQGTLVTVSSASTKGPSVFPLAPSSKS


TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN


HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK


LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 800





13591_HC [hu anti-<huCDH19> 4F7 VH]::huIgG1z


QVQLQESGPGLVKPSETLSLTCTVSGGSISSYSWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISL


DTSKNQFSLKLSSVTAADTAVYYCARNWAFHFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA


ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT


KVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY


VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP


QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS


RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 801





14301_HC [hu anti-<huCDH19> 2G6 VH]::huIgG1z


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIWYDGSNKYYADSVKD


RFTISRDNSKNTLYLQMKSLRAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSSASTKGPSVFP


LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT


YICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 802





14302_HC [hu anti-<huCDH19> 2G6 (1-477)(R17G,K94N) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIWYDGSNKYYADSVKD


RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSSASTKGPSVFP


LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT


YICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 803





14303_HC [hu anti-<huCDH19> 2G6 (1-477)(D61E,D72E) VH]::huIgG1z


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIWYEGSNKYYAESVKD


RFTISRDNSKNTLYLQMKSLRAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSSASTKGPSVFP


LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT


YICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 804





14304_HC [hu anti-<huCDH19> 2G6 (1-477)(R17G) VH]::huIgG1z


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIWYDGSNKYYADSVKD


RFTISRDNSKNTLYLQMKSLRAEDTAVYYCARRAGIIGTIGYYYGMDVWGQGTTVTVSSASTKGPSVFP


LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT


YICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG


SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


SEQ ID NO: 805
















TABLE IIId





Light Chain Variable and Contant Region Polynucleotide and Amino


acid Sequences















13586_LC [hu anti-<huCDH19> 4F3 VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 806





13589_LC [hu anti-<huCDH19> 4A9 VL]::huLLC-C1


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQFPGTAPKLLIYGNNNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSRLSGWVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 807





13590_LC [hu anti-<huCDH19> 4B10 VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYHQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FALTISSLEPEDFAVYYCQQYSNSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 808





13874_LC [hu anti-<huCDH19> 17H8.2 VL]::huKLC


DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQAPRLLISGASSRATGIPDRFSGSGSGT


DFTLTISRLEPEDFAVYYCQQYGKSPITFGQGTRLEMKGTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF


YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK


SFNRGEC


SEQ ID NO: 809





13875_LC [hu anti-<huCDH19> 16C1.1 VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISGLEPEDFAVYHCQQYGNSPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 810





13876_LC [hu anti-<huCDH19> 16A4.1 VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGTSSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSPFTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 811





13877_LC [hu anti-<huCDH19> 22G10.1 VL]::huKLC


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARVSGSGSGTEF


TLTISSLQSEDFAVYYCQQYNYWPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 812





13878_LC [hu anti-<huCDH19> 20D3.1 VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDESDYYCATWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 813





13879_LC [hu anti-<huCDH19> 22D1.1 VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDESDYYCATWDDSMNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 814





13880_LC [hu anti-<huCDH19> 25F8.1 VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDESDYYCAAWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 815





13881_LC [hu anti-<huCDH19> 26F12.1 VL]::huLLC-C2


QSVLTQSPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNYQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 816





13882_LC [hu anti-<huCDH19> 26D1.1 VL]::huLLC-C2


HSVLTQSPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 817





13883_LC [hu anti-<huCDH19> 25G10.1 VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYHCQQYGNSPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 818





13885_LC [hu anti-<huCDH19> 19B5.1 VL]::huLLC-C2


QSALTQPPSTTGTPGQRVTISCSGSRSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDESDYYCATWDDSMNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 819





14022_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFTVYYCQQYGSSFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE


AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR


GEC


SEQ ID NO: 820





14024_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q,T102A,P141Q) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFAVYYCQQYGSSFTFGQGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE


AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR


GEC


SEQ ID NO: 821





14025_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q,T102A) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFAVYYCQQYGSSFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE


AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR


GEC


SEQ ID NO: 822





14026_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q,T102A) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFAVYYCQQYGSSFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE


AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR


GEC


SEQ ID NO: 823





14027_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q,T102A,P141Q) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFAVYYCQQYGSSFTFGQGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE


AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR


GEC


SEQ ID NO: 824





14028_LC [hu anti-<huCDH19> 4A2 (1-236)(N30Q,T102A,P141Q) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASRQISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFAVYYCQQYGSSFTFGQGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE


AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR


GEC


SEQ ID NO: 825





14029_LC [hu anti-<huCDH19> 4A2 (1-236)(R29Q,N30S) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSISSSYLAWYQQKPGQAPRLLIYGPSSRATGIPDRFSGSGSGTDF


TLTISRLEPEDFTVYYCQQYGSSFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE


AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR


GEC


SEQ ID NO: 826





14030_LC [hu anti-<huCDH19> 4F3 VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 827





14031_LC [hu anti-<huCDH19> 4F3 VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 828





14032_LC [hu anti-<huCDH19> 4F3 VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 829





14033_LC [hu anti-<huCDH19> 4F3 VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 830





14034_LC [hu anti-<huCDH19> 4F3 VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 831





14039_LC [hu anti-<huCDH19> 2G6 (1-234)(C42S,D110E) VL]::huLLC-C1


SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIYQDTKRPSGIPERFSGSNSGNTAT


LTISGTQAMDEADYYCQAWESSTVVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFY


PGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVA


PTECS


SEQ ID NO: 832





14040_LC [hu anti-<huCDH19> 16C1.1 (1-235)(H105Y) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISGLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 833





14041_LC [hu anti-<huCDH19> 16C1.1 (1-235)(H105Y) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISGLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 834





14042_LC [hu anti-<huCDH19> 16C1.1 (1-235)(H105Y) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISGLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 835





14043_LC [hu anti-<huCDH19> 16C1.1 (1-235)(H105Y) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISGLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 836





14044_LC [hu anti-<huCDH19> 16C1.1 (1-235)(G95R,H105Y,G141Q) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGNSPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 837





14045_LC [hu anti-<huCDH19> 17H8.2 (1-235)(G149R) VL]::huKLC


DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQAPRLLISGASSRATGIPDRFSGSGSGT


DFTLTISRLEPEDFAVYYCQQYGKSPITFGQGTRLEMKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF


YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK


SFNRGEC


SEQ ID NO: 838





14046_LC [hu anti-<huCDH19> 17H8.2 (1-235)(G149R) VL]::huKLC


DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQAPRLLISGASSRATGIPDRFSGSGSGT


DFTLTISRLEPEDFAVYYCQQYGKSPITFGQGTRLEMKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF


YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK


SFNRGEC


SEQ ID NO: 839





14047_LC [hu anti-<huCDH19> 17H8.2 (1-235)(G149R) VL]::huKLC


DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQAPRLLISGASSRATGIPDRFSGSGSGT


DFTLTISRLEPEDFAVYYCQQYGKSPITFGQGTRLEMKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF


YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK


SFNRGEC


SEQ ID NO: 840





14048_LC [hu anti-<huCDH19> 17H8.2 (1-235)(S57Y,G149R) VL]::huKLC


DIVLTQSPGTLSLSPGERATLSCRASQSVAGSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGT


DFTLTISRLEPEDFAVYYCQQYGKSPITFGQGTRLEMKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF


YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK


SFNRGEC


SEQ ID NO: 841





14049_LC [hu anti-<huCDH19> 4F7 (1-239)(H57Y) VL]::huLLC-C2


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYDVHWYQQLPGTAPKLLIYGNSNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSSLSGWVFGGGTRLTVLGQPKANPTVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 842





14050_LC [hu anti-<huCDH19> 4F7 (1-239)(H57Y,D110E) VL]::huLLC-C2


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYDVHWYQQLPGTAPKLLIYGNSNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYESSLSGWVFGGGTRLTVLGQPKANPTVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 843





14051_LC [hu anti-<huCDH19> 4F7 (1-239)(D110E) VL]::huLLC-C2


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYDVHWYQQLPGTAPKLLIHGNSNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYESSLSGWVFGGGTRLTVLGQPKANPTVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 844





14052_LC [hu anti-<huCDH19> 4B10 (1-236)(H45Q,A90T) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISSLEPEDFAVYYCQQYSNSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR


EAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN


RGEC


SEQ ID NO: 845





14053_LC [hu anti-<huCDH19> 4B10 (1-236)(H45Q,A90T) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISSLEPEDFAVYYCQQYSNSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR


EAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN


RGEC


SEQ ID NO: 846





14054_LC [hu anti-<huCDH19> 4B10 (1-236)(H45Q,A90T) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISSLEPEDFAVYYCQQYSNSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR


EAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN


RGEC


SEQ ID NO: 847





14055_LC [hu anti-<huCDH19> 4B10 (1-236)(H45Q,A90T) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSNTYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTD


FTLTISSLEPEDFAVYYCQQYSNSWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR


EAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN


RGEC


SEQ ID NO: 848





14056_LC [hu anti-<huCDH19> 4A9 (1-239)(F47L) VL]::huLLC-C1


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQLPGTAPKLLIYGNNNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSRLSGWVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 849





14057_LC [hu anti-<huCDH19> 4A9 (1-239)(F47L) VL]::huLLC-C1


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQLPGTAPKLLIYGNNNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSRLSGWVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 850





14058_LC [hu anti-<huCDH19> 4A9 (1-239)(F47L,D110E) VL]::huLLC-C1


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQLPGTAPKLLIYGNNNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYESRLSGWVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 851





14059_LC [hu anti-<huCDH19> 4A9 (1-239)(F47L,D110E) VL]::huLLC-C1


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYAVHWYQQLPGTAPKLLIYGNNNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYESRLSGWVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 852





14060_LC [hu anti-<huCDH19> 20D3.1 (1-235)(S102A) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 853





14061_LC [hu anti-<huCDH19> 20D3.1 (1-235)(K45Q,S102A) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 854





14062_LC [hu anti-<huCDH19> 20D3.1 (1-235)(K45Q,S102A) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 855





14063_LC [hu anti-<huCDH19> 20D3.1 (1-235)(K45Q,S102A,D111E,N135Q) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDESLQGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 856





14064_LC [hu anti-<huCDH19> 20D3.1 (1-235)(W109Y) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYKQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDESDYYCATYDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 857





14065_LC [hu anti-<huCDH19> 22G10.1 VL]::huKLC


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARVSGSGSGTEF


TLTISSLQSEDFAVYYCQQYNYWPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 858





14066_LC [hu anti-<huCDH19> 22G10.1 VL]::huKLC


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARVSGSGSGTEF


TLTISSLQSEDFAVYYCQQYNYWPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 859





14067_LC [hu anti-<huCDH19> 22G10.1 (1-234)(Q97E,S98P) VL]::huKLC


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARVSGSGSGTEF


TLTISSLEPEDFAVYYCQQYNYWPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 860





14068_LC [hu anti-<huCDH19> 22G10.1 (1-234)(V78F,Q97E,S98P) VL]::huKLC


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARFSGSGSGTEF


TLTISSLEPEDFAVYYCQQYNYWPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 861





14069_LC [hu anti-<huCDH19> 22G10.1 (1-234)(V78F,Q97E,S98P) VL]::huKLC


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARFSGSGSGTEF


TLTISSLEPEDFAVYYCQQYNYWPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 862





14070_LC [hu anti-<huCDH19> 22G10.1 VL]::huKLC


EIVMTQSPVTLSLSLGERATLSCRASQSISSNLAWFQQKPGQAPRLLIYGAFTRATGIPARVSGSGSGTEF


TLTISSLQSEDFAVYYCQQYNYWPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 863





14071_LC [hu anti-<huCDH19> 16A4.1 (1-235)(G141Q) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGTSSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGSSPFTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 864





14072_LC [hu anti-<huCDH19> 19B5.1 (1-235)(K45Q,S102A) VL]::huLLC-C2


QSALTQPPSTTGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSMNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCL


ISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE


KTVAPTECS


SEQ ID NO: 865





14073_LC [hu anti-<huCDH19> 19B5.1 (1-235)(K45Q,S102A) VL]::huLLC-C2


QSALTQPPSTTGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSMNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCL


ISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE


KTVAPTECS


SEQ ID NO: 866





14074_LC [hu anti-<huCDH19> 19B5.1 (1-235)(T11V,K45Q,S102A) VL]::huLLC-C2


QSALTQPPSVTGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCATWDDSMNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 867





14075_LC [hu anti-<huCDH19> 19B5.1 (1-235)(T11V,K45Q,S102A,D111E,N135Q) VL]::huLLC-C2


QSALTQPPSVTGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCATWDESMQGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 868





14076_LC [hu anti-<huCDH19> 19B5.1


(1-235)(T11V,K45Q,S102A,W109Y,D111E,N135Q) VL]::huLLC-C2


QSALTQPPSVTGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCATYDESMQGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 869





14077_LC [hu anti-<huCDH19> 23A10.3 (1-231)(C42S) VL]::huLLC-C2


SYELTQPPSVSVSPGQTASITCSGDRLGEKYVSWYQQKPGQSPILVIYQDNKWPSGIPERFSGSNSGNTA


TLTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF


YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTV


APTECS


SEQ ID NO: 870





14078_LC [hu anti-<huCDH19> 23A10.3 (1-231)(C42S) VL]::huLLC-C2


SYELTQPPSVSVSPGQTASITCSGDRLGEKYVSWYQQKPGQSPILVIYQDNKWPSGIPERFSGSNSGNTA


TLTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF


YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTV


APTECS


SEQ ID NO: 871





14079_LC [hu anti-<huCDH19> 23A10.3 (1-231)(C42S,D110E) VL]::huLLC-C2


SYELTQPPSVSVSPGQTASITCSGDRLGEKYVSWYQQKPGQSPILVIYQDNKWPSGIPERFSGSNSGNTA


TLTISGTQAMDEADYYCQAWESSTVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF


YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTV


APTECS


SEQ ID NO: 872





14080_LC [hu anti-<huCDH19> 23A10.3 (1-231)(C42Y) VL]::huLLC-C2


SYELTQPPSVSVSPGQTASITCSGDRLGEKYVYWYQQKPGQSPILVIYQDNKWPSGIPERFSGSNSGNTA


TLTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF


YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTV


APTECS


SEQ ID NO: 873





14081_LC [hu anti-<huCDH19> 25G10.1 (1-235)(H105Y) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 874





14082_LC [hu anti-<huCDH19> 25G10.1 (1-235)(H105Y) VL]::huKLC


EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIFGASSRATGIPDRFSGSGSGTD


FTLTISRLEPEDFAVYYCQQYGNSPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP


REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF


NRGEC


SEQ ID NO: 875





14083_LC [hu anti-<huCDH19> 26D1.1 (1-235)(S7P) VL]::huLLC-C2


HSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 876





14084_LC [hu anti-<huCDH19> 26D1.1 (1-235)(H1Q,S7P) VL]::huLLC-C2


QSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 877





14085_LC [hu anti-<huCDH19> 26D1.1 (1-235)(H1Q,S7P,W109Y) VL]::huLLC-C2


QSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVYDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 878





14086_LC [hu anti-<huCDH19> 26D1.1 (1-235)(H1Q,S7P,W109Y,D111E,N135Q) VL]::huLLC-C2


QSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVYDESLQGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 879





14087_LC [hu anti-<huCDH19> 26D1.1 (1-235)(H1Q,S7P,W109Y,D111E,N135Q) VL]::huLLC-C2


QSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVYDESLQGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 880





14088_LC [hu anti-<huCDH19> 26D1.1 (1-235)(H1Q,S7P) VL]::huLLC-C2


QSVLTQPPSASGTPGQRVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 881





14089_LC [hu anti-<huCDH19> 26F12.1 (1-235)(S7P) VL]::huLLC-C2


QSVLTQPPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNYQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 882





14090_LC [hu anti-<huCDH19> 26F12.1 (1-235)(S7P,D111E) VL]::huLLC-C2


QSVLTQPPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNYQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDESLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 883





14091_LC [hu anti-<huCDH19> 26F12.1 (1-235)(S7P,D111E) VL]::huLLC-C2


QSVLTQPPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNYQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVWDESLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 884





14092_LC [hu anti-<huCDH19> 26F12.1 (1-235)(S7P,W109Y,D111E,N135Q) VL]::huLLC-C2


QSVLTQPPSASGTPGQKVTISCSGSRSNIGSNFVNWYQQLPGTAPKLLIYTNYQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCAVYDESLQGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 885





14093_LC [hu anti-<huCDH19> 25F8.1 (1-235)(K45Q) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDESDYYCAAWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 886





14094_LC [hu anti-<huCDH19> 25F8.1 (1-235)(K45Q,S102A) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCAAWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 887





14095_LC [hu anti-<huCDH19> 25F8.1 (1-235)(K45Q,S102A) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCAAWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 888





14096_LC [hu anti-<huCDH19> 25F8.1 (1-235)(K45Q,S102A,D111E) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCAAWDESLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 889





14097_LC [hu anti-<huCDH19> 25F8.1 (1-235)(K45Q,S102A,D111E,N135Q) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGRNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGT


SASLAISGLQSEDEADYYCAAWDESLQGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 890





14098_LC [hu anti-<huCDH19> 22D1.1 (1-235)(K45Q,S102A) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSMNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCL


ISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE


KTVAPTECS


SEQ ID NO: 891





14099_LC [hu anti-<huCDH19> 22D1.1 (1-235)(K45Q,S102A,D111E,N135Q) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDESMQGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCL


ISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE


KTVAPTECS


SEQ ID NO: 892





14100_LC [hu anti-<huCDH19> 22D1.1 (1-235)(K45Q,S102A,W109Y,D111E,N135Q) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATYDESMQGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 893





14101_LC [hu anti-<huCDH19> 22D1.1 (1-235)(K45Q,S102A,W109Y) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATYDDSMNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI


SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK


TVAPTECS


SEQ ID NO: 894





14102_LC [hu anti-<huCDH19> 22D1.1 (1-235)(K45Q,S102A) VL]::huLLC-C2


QSALTQPPSATGTPGQRVTISCSGSSSNIGSNFVNWYQQLPGTAPKVLIYTNNQRPSGVPDRFSGSKSGTS


ASLAISGLQSEDEADYYCATWDDSMNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCL


ISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE


KTVAPTECS


SEQ ID NO: 895





13591_LC [hu anti-<huCDH19> 4F7 VL]::huLLC-C1


QSVLTQPPSVSGAPGQRVTISCTGSSSNIGTGYDVHWYQQLPGTAPKLLIHGNSNRPSGVPDRFSGSKSG


TSASLAITGLQAEDEADYYCQSYDSSLSGWVFGGGTRLTVLGQPKANPTVTLFPPSSEELQANKATLVC


LISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTV


EKTVAPTECS


SEQ ID NO: 896





14301_LC [hu anti-<huCDH19> 2G6 (1-234)(D110E) VL]::huLLC-C1


SYELTQPPSVSVSPGQTASITCSGDRLGEKYTCWYQQRPGQSPLLVIYQDTKRPSGIPERFSGSNSGNTAT


LTISGTQAMDEADYYCQAWESSTVVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFY


PGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVA


PTECS


SEQ ID NO: 897





14302_LC [hu anti-<huCDH19> 2G6 (1-234)(C42S,D110E) VL]::huLLC-C1


SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIYQDTKRPSGIPERFSGSNSGNTAT


LTISGTQAMDEADYYCQAWESSTVVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFY


PGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVA


PTECS


SEQ ID NO: 898





14303_LC [hu anti-<huCDH19> 2G6 (1-234)(C42S,D110E) VL]::huLLC-C1


SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIYQDTKRPSGIPERFSGSNSGNTAT


LTISGTQAMDEADYYCQAWESSTVVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFY


PGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVA


PTECS


SEQ ID NO: 899





14304_LC [hu anti-<huCDH19> 23A10.3 (1-231)(C42S) VL]::huLLC-C2


SYELTQPPSVSVSPGQTASITCSGDRLGEKYVSWYQQKPGQSPILVIYQDNKWPSGIPERFSGSNSGNTA


TLTISGTQAMDEADYYCQAWDSSTVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF


YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTV


APTECS


SEQ ID NO: 900
















TABLE IVa







HEAVY CHAIN CDRs











Ab
Type
CDR 1
CDR 2
CDR 3





14039
AA
SYGMH
FIWYEGSNKYYAESVKD
RAGIIGTIGYYYGMDV


14303

SEQ ID NO: 28
SEQ ID NO: 901
SEQ ID NO: 30





14027
AA
SSGYYWS
YIYYTGSAYYNPSLKS
EGSSGWYFQY




SEQ ID NO: 46
SEQ ID NO: 47
SEQ ID NO: 902





14028
AA
SSGYYWS
YIYYTGSAYYNPSLKS
EGSSGYYFQY




SEQ ID NO: 46
SEQ ID NO: 47
SEQ ID NO: 903





14059
AA
GYYWS
YFSYSGSTNYNPSLKS
NYAFHFDF




SEQ ID NO: 52
SEQ ID NO: 53
SEQ ID NO: 904





14052
AA
SYDMH
VISYEGTNEYYAESVKG
ERYFDYSFDY




SEQ ID NO: 58
SEQ ID NO: 905
SEQ ID NO: 906





14055
AA
SYDMH
VISYEGTNEYYAESVKG
ERYFDWSFDY




SEQ ID NO: 58
SEQ ID NO: 905
SEQ ID NO: 60





14033
AA
SYDMD
VIWYEGSNKYYAESVRG
ETGEGWYFDL




SEQ ID NO: 70
SEQ ID NO: 907
SEQ ID NO: 72





14034
AA
SYDMD
VIWYEGSNKYYAESVRG
ETGEGYYFDL




SEQ ID NO: 70
SEQ ID NO: 907
SEQ ID NO: 908





14051
AA
SYSWS
YIYYSGSTNYNPSLKS
NYAFHFDY




SEQ ID NO: 82
SEQ ID NO: 83
SEQ ID NO: 909





14046
AA
SYYWS
YIYYIGSTNYNPSLKS
ESRYRSGWYDAFDI


14048

SEQ ID NO: 94
SEQ ID NO: 95
SEQ ID NO: 910





14047
AA
SYYWS
YIYYIGSTNYNPSLKS
ESRYRSGYYDAFDI




SEQ ID NO: 94
SEQ ID NO: 95
SEQ ID NO: 911





14042
AA
GYYWS
YIYYIGSTNYNPSLKS
EGSSGWYRWFDP




SEQ ID NO: 100
SEQ ID NO: 101
SEQ ID NO: 912





14043
AA
GYYWS
YIYYIGSTNYNPSLKS
DGSSGYYRYFDP




SEQ ID NO: 100
SEQ ID NO: 101
SEQ ID NO: 913





14069
AA
SYAMN
TISGGGANTYYAESVKG
GGMGGYYYGMDV




SEQ ID NO: 118
SEQ ID NO: 914
SEQ ID NO: 120





14062
AA
SYFIH
IINPISVSTSYAQKFQG
GGIQLYLHFDY


14063

SEQ ID NO: 124
SEQ ID NO: 125
SEQ ID NO: 915


14064





14100
AA
SYFIH
IINPISVSTSYAQKFQG
GGIQLYLHLDY


14101

SEQ ID NO: 130
SEQ ID NO: 131
SEQ ID NO: 916





14097
AA
SYYIH
IINPSGGSTRYAQKFQG
GGIQLYLHFDY




SEQ ID NO: 136
SEQ ID NO: 137
SEQ ID NO: 917





14091
AA
NYYMS
IINPSGGDSTYAQKFQG
GGIQLYLHFDY


14092

SEQ ID NO: 142
SEQ ID NO: 143
SEQ ID NO: 918





14087
AA
SYYMS
IIHPSGGDTTYAQKFQG
GGIKLYLHFDY




SEQ ID NO: 148
SEQ ID NO: 149
SEQ ID NO: 919





14082
AA
GYYWS
YIYYIGSTNYNPSLKS
EGSSGYYRYFDP




SEQ ID NO: 154
SEQ ID NO: 155
SEQ ID NO: 920





14079
AA
RYGIH
VIWYEGSNKYYAESVKG
RAGIPGTTGYYYGMDV




SEQ ID NO: 160
SEQ ID NO: 921
SEQ ID NO: 162





14073
AA
SYFIH
IINPISVSTSYAQKFQG
GGIQLYLHLDY


14076

SEQ ID NO: 1
SEQ ID NO: 2
SEQ ID NO: 3



AA
SYGMH
VIWYDGSNKYYADSVKG
RAGIIGTTGYYYGMDV




SEQ ID NO: 4
SEQ ID NO: 5
SEQ ID NO: 6
















TABLE IVb







LIGHT CHAIN CDRs











Ab
Type
CDR 1
CDR 2
CDR 3





14039
AA
SGDRLGEKYTS
QDTKRPS
QAWESSTVV


14302

SEQ ID NO: 922
SEQ ID NO: 197
SEQ ID NO: 923


14303





14301
AA
SGDRLGEKYTC
QDTKRPS
QAWESSTVV




SEQ ID NO: 196
SEQ ID NO: 197
SEQ ID NO: 923





14022
AA
RASRQISSSYLA
GPSSRAT
QQYGSSFT


14024

SEQ ID NO: 924
SEQ ID NO: 215
SEQ ID NO: 216


14025


14026


14027


14028





14029
AA
RASQSISSSYLA
GPSSRAT
QQYGSSFT




SEQ ID NO: 925
SEQ ID NO: 215
SEQ ID NO: 216





14058
AA
TGSSSNIGTGYAVH
GNNNRPS
QSYESRLSGWV


14059

SEQ ID NO: 220
SEQ ID NO: 221
SEQ ID NO: 926





14050
AA
TGSSSNIGTGYDVH
GNSNRPS
QSYESSLSGWV


14051

SEQ ID NO: 250
SEQ ID NO: 251
SEQ ID NO: 927





14063
AA
SGSSSNIGSNFVN
TNNQRPS
ATWDESLQGWV




SEQ ID NO: 292
SEQ ID NO: 293
SEQ ID NO: 928





14064
AA
SGSSSNIGSNFVN
TNNQRPS
ATYDDSLNGWV




SEQ ID NO: 292
SEQ ID NO: 293
SEQ ID NO: 929





14099
AA
SGSSSNIGSNFVN
TNNQRPS
ATWDESMQGWV




SEQ ID NO: 298
SEQ ID NO: 299
SEQ ID NO: 930





14100
AA
SGSSSNIGSNFVN
TNNQRPS
ATYDESMQGWV




SEQ ID NO: 298
SEQ ID NO: 299
SEQ ID NO: 931





14101
AA
SGSSSNIGSNFVN
TNNQRPS
ATYDDSMNGWV




SEQ ID NO: 298
SEQ ID NO: 299
SEQ ID NO: 932





14096
AA
SGSSSNIGRNFVN
TNNQRPS
AAWDESLNGWV




SEQ ID NO: 304
SEQ ID NO: 305
SEQ ID NO: 933





14097
AA
SGSSSNIGRNFVN
TNNQRPS
AAWDESLQGWV




SEQ ID NO: 304
SEQ ID NO: 305
SEQ ID NO: 934





14090
AA
SGSRSNIGSNFVN
TNYQRPS
AVWDESLNGWV


14091

SEQ ID NO: 310
SEQ ID NO: 311
SEQ ID NO: 935





14092
AA
SGSRSNIGSNFVN
TNYQRPS
AVYDESLQGWV




SEQ ID NO: 310
SEQ ID NO: 311
SEQ ID NO: 936





14085
AA
SGSRSNIGSNFVN
TNNQRPS
AVYDDSLNGWV




SEQ ID NO: 316
SEQ ID NO: 317
SEQ ID NO: 937





14086
AA
SGSRSNIGSNFVN
TNNQRPS
AVYDESLQGWV


14087

SEQ ID NO: 316
SEQ ID NO: 317
SEQ ID NO: 938





14077
AA
SGDRLGEKYVS
QDNKWPS
QAWDSSTVV


14078

SEQ ID NO: 939
SEQ ID NO: 329
SEQ ID NO: 330


14304





14079
AA
SGDRLGEKYVS
QDNKWPS
QAWESSTVV




SEQ ID NO: 939
SEQ ID NO: 329
SEQ ID NO: 940





14080
AA
SGDRLGEKYVY
QDNKWPS
QAWDSSTVV




SEQ ID NO: 941
SEQ ID NO: 329
SEQ ID NO: 330





14075
AA
SGSRSNIGSNFVN
TNNQRPS
ATWDESMQGWV




SEQ ID NO: 334
SEQ ID NO: 335
SEQ ID NO: 942





14076
AA
SGSRSNIGSNFVN
TNNQRPS
ATYDESMQGWV




SEQ ID NO: 334
SEQ ID NO: 335
SEQ ID NO: 943









Human and Cynomologous Monkey Cadherin-19 Sequences













TABLE V





SEQ ID NO.
DESIGNATION
SOURCE
TYPE
SEQUENCE







944
Human
Human
aa
MNCYLLLRFMLGIPLLWPCLGATENSQTKKVKQPVRSHLRVKRGWVWNQFFVPEEMNTTSHHIGQLRSDLDNGNNSFQYKLLGAGA



Cadherin-19


GSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIATGRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTA






SDADDPSSGNNARLLYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSDVNDNKPIFKE






SLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHETQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQ






LMKYHTEASTTFIKIQVEDVDEPPLFLLPYYVFEVFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNINDNGTITTSNSLDR






EISAWYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSQYYETYVCENAGSGQVIQTISAVDRDESIEEHHFYFNLSVEDTNN






SSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIPSLTSTNTLTIHVCDCGDSGSTQTCQYQELVLSMGFKTEVIIAIL






ICIMIIFGFIFLTLGLKQRRKQILFPEKSEDFRENIFQYDDEGGGEEDTEAFDIAELRSSTIMRERKTRKTTSAEIRSLYRQSLQV






GPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLESAVSDQDESYDYLNELGPRFKRLACMFGSAVQSNN





945
Human
Human
nt
atgaactgttatttactgctgcgttttatgttgggaattcctctcctatggccttgtcttggagcaacagaaaactctcaaacaaa



Cadherin-19


gaaagtcaagcagccagtgcgatctcatttgagagtgaagcgtggctgggtgtggaaccaattttttgtaccagaggaaatgaata






cgactagtcatcacatcggccagctaagatctgatttagacaatggaaacaattctttccagtacaagcttttgggagctggagct






ggaagtacttttatcattgatgaaagaacaggtgacatatatgccatacagaagcttgatagagaggagcgatccctctacatctt






aagagcccaggtaatagacatcgctactggaagggctgtggaacctgagtctgagtttgtcatcaaagtttcggatatcaatgaca






atgaaccaaaattcctagatgaaccttatgaggccattgtaccagagatgtctccagaaggaacattagttatccaggtgacagca






agtgatgctgacgatccctcaagtggtaataatgctcgtctcctctacagcttacttcaaggccagccatatttttctgttgaacc






aacaacaggagtcataagaatatcttctaaaatggatagagaactgcaagatgagtattgggtaatcattcaagccaaggacatga






ttggtcagccaggagcgttgtctggaacaacaagtgtattaattaaactttcagatgttaatgacaataagcctatatttaaagaa






agtttataccgcttgactgtctctgaatctgcacccactgggacttctataggaacaatcatggcatatgataatgacataggaga






gaatgcagaaatggattacagcattgaagaggatgattcgcaaacatttgacattattactaatcatgaaactcaagaaggaatag






ttatattaaaaaagaaagtggattttgagcaccagaaccactacggtattagagcaaaagttaaaaaccatcatgttcctgagcag






ctcatgaagtaccacactgaggcttccaccactttcattaagatccaggtggaagatgttgatgagcctcctcttttcctccttcc






atattatgtatttgaagtttttgaagaaaccccacagggatcatttgtaggcgtggtgtctgccacagacccagacaataggaaat






ctcctatcaggtattctattactaggagcaaagtgttcaatatcaatgataatggtacaatcactacaagtaactcactggatcgt






gaaatcagtgcttggtacaacctaagtattacagccacagaaaaatacaatatagaacagatctcttcgatcccactgtatgtgca






agttcttaacatcaatgatcatgctcctgagttctctcaatactatgagacttatgtttgtgaaaatgcaggctctggtcaggtaa






ttcagactatcagtgcagtggatagagatgaatccatagaagagcaccatttttactttaatctatctgtagaagacactaacaat






tcaagttttacaatcatagataatcaagataacacagctgtcattttgactaatagaactggttttaaccttcaagaagaacctgt






cttctacatctccatcttaattgccgacaatggaatcccgtcacttacaagtacaaacacccttaccatccatgtctgtgactgtg






gtgacagtgggagcacacagacctgccagtaccaggagcttgtgctttccatgggattcaagacagaagtcatcattgctattctc






atttgcattatgatcatatttgggtttatttttttgactttgggtttaaaacaacggagaaaacagattctatttcctgagaaaag






tgaagatttcagagagaatatattccaatatgatgatgaagggggtggagaagaagatacagaggcctttgatatagcagagctga






ggagtagtaccataatgcgggaacgcaagactcggaaaaccacaagcgctgagatcaggagcctatacaggcagtctttgcaagtt






ggccccgacagtgccatattcaggaaattcattctggaaaagctcgaagaagctaatactgatccgtgtgcccctccttttgattc






cctccagacctacgcttttgagggaacagggtcattagctggatccctgagctccttagaatcagcagtctctgatcaggatgaaa






gctatgattaccttaatgagttgggacctcgctttaaaagattagcatgcatgtttggttctgcagtgcagtcaaataattag





946
Cyno

Macaca fascicularis

aa
MNCYLLLPFMLGIPLLWPCLGATENSQTKKVQQPVGSHLRVKRGWVWNQFFVPEEMNTTSHHVGRLRSDLDNGNNSFQYKLLGAGA



Cadherin-19


GSTFIIDERTGDIYAIEKLDREERSLYILRAQVIDITTGRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTA






SDADDPSSGNNARLLYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSDVNDNKPIFKE






SLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHETQEGIVILKKKVNFEHQNHYGIRAKVKNHHVDEQ






LMKYHTEASTTFIKIQVEDVDEPPLFLLPYYIFEIFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNIDDNGTITTTNSLDR






EISAWYNLSITATEKYNIEQISSIPVYVQVLNINDHAPEFSQYYESYVCENAGSGQVIQTISAVDRDESIEEHHFYFNLSVEDTNS






SSFTIIDNQDNTAVILTNRTGFNLQEEPIFYISILIADNGIPSLTSTNTLTIHVCDCDDSGSTQTCQYQELMLSMGFKTEVIIAIL






ICIMVIFGFIFLTLGLKQRRKQILFPEKSEDFRENIFRYDDEGGGEEDTEAFDVAALRSSTIMRERKTRKTTSAEIRSLYRQSLQV






GPDSAIFRKFILEKLEEADTDPCAPPFDSLQTYAFEGTGSLAGSLSSLESAVSDQDESYDYLNELGPRFKRLACMFGSAVQSNN





947
Cyno

Macaca fascicularis

nt
ATGAATTGTTATTTACTGCTGCCTTTTATGTTGGGAATTCCTCTCCTATGGCCTTGTCTTGGAGCAACAGAAAACTCTCAAACAAA



Cadherin-19


GAAAGTCCAGCAGCCAGTAGGATCTCATCTGAGAGTGAAGCGTGGCTGGGTGTGGAACCAATTTTTTGTACCAGAGGAAATGAATA






CGACTAGTCATCACGTTGGCCGGCTAAGATCTGATTTAGACAATGGAAACAATTCTTTCCAGTACAAGCTTTTGGGAGCTGGAGCT






GGAAGTACTTTTATCATTGATGAAAGAACAGGTGACATATATGCCATAGAGAAGCTTGATAGAGAGGAGCGATCCCTCTACATCTT






AAGAGCCCAGGTAATAGACATCACTACTGGAAGGGCTGTGGAACCTGAGTCTGAGTTTGTCATCAAAGTTTCGGATATCAATGACA






ATGAACCAAAATTCCTAGATGAACCTTATGAGGCCATTGTACCAGAGATGTCTCCAGAAGGAACATTAGTCATCCAGGTGACAGCA






AGTGATGCTGATGACCCTTCAAGTGGTAATAATGCTCGTCTCCTCTACAGCTTATTACAAGGCCAGCCATATTTTTCTGTTGAACC






AACAACAGGAGTCATAAGAATATCTTCTAAAATGGATAGAGAACTGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGA






TTGGTCAGCCAGGAGCGTTGTCTGGAACAACGAGTGTATTAATTAAACTTTCAGATGTTAATGACAATAAGCCTATATTTAAAGAA






AGTTTATACCGCCTGACGGTCTCTGAATCTGCACCCACTGGGACTTCTATAGGAACAATCATGGCATATGATAATGACATAGGAGA






GAATGCAGAAATGGATTACAGCATTGAAGAGGATGATTCACAGACATTTGACATTATTACTAATCATGAAACTCAAGAAGGAATAG






TTATATTAAAAAAGAAAGTGAATTTTGAGCACCAGAACCACTATGGTATTAGAGCAAAAGTTAAAAACCATCATGTTGATGAGCAG






CTCATGAAATACCACACTGAAGCTTCCACCACTTTCATTAAGATCCAGGTGGAAGATGTTGATGAGCCTCCTCTTTTCCTCCTTCC






GTATTACATATTTGAAATTTTTGAAGAAACCCCACAAGGATCATTTGTAGGCGTGGTGTCTGCCACAGACCCAGACAATAGGAAAT






CTCCTATCAGGTATTCTATTACTAGGAGCAAAGTGTTCAATATCGATGATAATGGTACAATCACTACAACTAACTCACTGGATCGG






GAAATCAGTGCTTGGTACAACCTAAGTATTACAGCCACAGAAAAATACAATATAGAGCAGATCTCTTCGATCCCAGTGTATGTGCA






AGTTCTTAATATCAATGATCATGCTCCTGAGTTCTCTCAATACTATGAGAGTTATGTTTGTGAAAATGCAGGCTCTGGTCAGGTAA






TTCAGACTATCAGTGCAGTGGATAGAGATGAATCCATAGAAGAGCACCATTTTTACTTTAATCTATCTGTAGAAGACACTAACTCT






TCAAGTTTTACAATCATAGACAATCAAGATAACACAGCTGTCATTTTGACTAATAGAACTGGTTTTAACCTTCAAGAAGAGCCCAT






CTTCTACATCTCCATCTTAATTGCCGACAATGGAATCCCGTCACTTACAAGTACAAACACCCTTACCATCCATGTCTGTGACTGTG






ATGACAGTGGGAGCACACAGACCTGCCAGTACCAGGAGCTTATGCTTTCCATGGGATTCAAGACAGAAGTCATCATTGCTATTCTC






ATTTGCATTATGGTAATATTTGGGTTTATTTTTTTGACTTTGGGTTTAAAACAACGGAGAAAACAGATTCTATTTCCTGAGAAAAG






TGAAGATTTCAGAGAGAATATATTCCGATATGATGACGAAGGGGGTGGAGAAGAAGATACAGAGGCCTTTGACGTAGCAGCGCTGA






GGAGTAGCACCATAATGCGGGAACGCAAGACTCGGAAAACCACCAGCGCTGAGATCAGGAGCCTATACAGGCAGTCTTTGCAAGTT






GGCCCCGACAGTGCCATATTCAGGAAGTTCATCCTGGAAAAGCTCGAAGAAGCTGATACTGATCCGTGTGCCCCTCCTTTTGATTC






CCTCCAGACCTACGCTTTTGAGGGAACAGGGTCATTAGCTGGATCCCTGAGCTCCTTAGAATCAGCTGTCTCTGATCAGGATGAAA






GCTATGATTACCTTAACGAGTTGGGACCTCGCTTTAAAAGATTAGCATGCATGTTTGGTTCTGCAGTGCAGTCAAATAATTAG





948
secreted
Human
aa
MNCYLLLRFMLGIPLLWPCLGATENSQTKKVKQPVRSHLRVKRGWVWNQFFVPEEMNTTSHHIGQLRSDLDNGNNSFQYKLLGAGA



Cadherin-19


GSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIATGRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTA



ecto-domain


SDADDPSSGNNARLLYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSDVNDNKPIFKE



(amino acids 1-596)


SLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHETQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQ






LMKYHTEASTTFIKIQVEDVDEPPLFLLPYYVFEVFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNINDNGTITTSNSLDR






EISAWYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSQYYETYVCENAGSGQVIQTISAVDRDESIEEHHFYFNLSVEDTNN






SSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIPSLTSTNTLTIHVCDCGDSGSTQTCQYQELVLSMGFKTE





949
secreted
Human
nt
atgaactgttatttactgctgcgttttatgttgggaattcctctcctatggccttgtcttggagcaacagaaaactctcaaacaaa



Cadherin-19


gaaagtcaagcagccagtgcgatctcatttgagagtgaagcgtggctgggtgtggaaccaattttttgtaccagaggaaatgaata



ecto-domain


cgactagtcatcacatcggccagctaagatctgatttagacaatggaaacaattctttccagtacaagcttttgggagctggagct



(amino acids 1-596)


ggaagtacttttatcattgatgaaagaacaggtgacatatatgccatacagaagcttgatagagaggagcgatccctctacatctt






aagagcccaggtaatagacatcgctactggaagggctgtggaacctgagtctgagtttgtcatcaaagtttcggatatcaatgaca






atgaaccaaaattcctagatgaaccttatgaggccattgtaccagagatgtctccagaaggaacattagttatccaggtgacagca






agtgatgctgacgatccctcaagtggtaataatgctcgtctcctctacagcttacttcaaggccagccatatttttctgttgaacc






aacaacaggagtcataagaatatcttctaaaatggatagagaactgcaagatgagtattgggtaatcattcaagccaaggacatga






ttggtcagccaggagcgttgtctggaacaacaagtgtattaattaaactttcagatgttaatgacaataagcctatatttaaagaa






agtttataccgcttgactgtctctgaatctgcacccactgggacttctataggaacaatcatggcatatgataatgacataggaga






gaatgcagaaatggattacagcattgaagaggatgattcgcaaacatttgacattattactaatcatgaaactcaagaaggaatag






ttatattaaaaaagaaagtggattttgagcaccagaaccactacggtattagagcaaaagttaaaaaccatcatgttcctgagcag






ctcatgaagtaccacactgaggcttccaccactttcattaagatccaggtggaagatgttgatgagcctcctcttttcctccttcc






atattatgtatttgaagtttttgaagaaaccccacagggatcatttgtaggcgtggtgtctgccacagacccagacaataggaaat






ctcctatcaggtattctattactaggagcaaagtgttcaatatcaatgataatggtacaatcactacaagtaactcactggatcgt






gaaatcagtgcttggtacaacctaagtattacagccacagaaaaatacaatatagaacagatctcttcgatcccactgtatgtgca






agttcttaacatcaatgatcatgctcctgagttctctcaatactatgagacttatgtttgtgaaaatgcaggctctggtcaggtaa






ttcagactatcagtgcagtggatagagatgaatccatagaagagcaccatttttactttaatctatctgtagaagacactaacaat






tcaagttttacaatcatagataatcaagataacacagctgtcattttgactaatagaactggttttaaccttcaagaagaacctgt






cttctacatctccatcttaattgccgacaatggaatcccgtcacttacaagtacaaacacccttaccatccatgtctgtgactgtg






gtgacagtgggagcacacagacctgccagtaccaggagcttgtgctttccatgggattcaagacagaa





950
truncated
Human
aa
MNCYLLLRFMLGIPLLWPCLGATENSQTKKVKQPVRSHLRVKRGWVWNQFFVPEEMNTTSHHIGQLRSDLDNGNNSFQYKLLGAGA



membrane


GSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIATGRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTA



bound form of


SDADDPSSGNNARLLYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSDVNDNKPIFKE



human


SLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHETQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQ



cadherin-19


LMKYHTEASTTFIKIQVEDVDEPPLFLLPYYVFEVFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNINDNGTITTSNSLDR



(amino acids 1-624)


EISAWYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSQYYETYVCENAGSGQVIQTISAVDRDESIEEHHFYFNLSVEDTNN






SSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIPSLTSTNTLTIHVCDCGDSGSTQTCQYQELVLSMGFKTEVIIAIL






ICIMIIFGFIFLTLGLKQRRKQ





951
truncated
Humanl
nt
atgaactgttatttactgctgcgttttatgttgggaattcctctcctatggccttgtcttggagcaacagaaaactctcaaacaaa



membrane


gaaagtcaagcagccagtgcgatctcatttgagagtgaagcgtggctgggtgtggaaccaattttttgtaccagaggaaatgaata



bound form of


cgactagtcatcacatcggccagctaagatctgatttagacaatggaaacaattctttccagtacaagcttttgggagctggagct



human


ggaagtacttttatcattgatgaaagaacaggtgacatatatgccatacagaagcttgatagagaggagcgatccctctacatctt



cadherin-19


aagagcccaggtaatagacatcgctactggaagggctgtggaacctgagtctgagtttgtcatcaaagtttcggatatcaatgaca



(amino acids 1-624)


atgaaccaaaattcctagatgaaccttatgaggccattgtaccagagatgtctccagaaggaacattagttatccaggtgacagca






agtgatgctgacgatccctcaagtggtaataatgctcgtctcctctacagcttacttcaaggccagccatatttttctgttgaacc






aacaacaggagtcataagaatatcttctaaaatggatagagaactgcaagatgagtattgggtaatcattcaagccaaggacatga






ttggtcagccaggagcgttgtctggaacaacaagtgtattaattaaactttcagatgttaatgacaataagcctatatttaaagaa






agtttataccgcttgactgtctctgaatctgcacccactgggacttctataggaacaatcatggcatatgataatgacataggaga






gaatgcagaaatggattacagcattgaagaggatgattcgcaaacatttgacattattactaatcatgaaactcaagaaggaatag






ttatattaaaaaagaaagtggattttgagcaccagaaccactacggtattagagcaaaagttaaaaaccatcatgttcctgagcag






ctcatgaagtaccacactgaggcttccaccactttcattaagatccaggtggaagatgttgatgagcctcctcttttcctccttcc






atattatgtatttgaagtttttgaagaaaccccacagggatcatttgtaggcgtggtgtctgccacagacccagacaataggaaat






ctcctatcaggtattctattactaggagcaaagtgttcaatatcaatgataatggtacaatcactacaagtaactcactggatcgt






gaaatcagtgcttggtacaacctaagtattacagccacagaaaaatacaatatagaacagatctcttcgatcccactgtatgtgca






agttcttaacatcaatgatcatgctcctgagttctctcaatactatgagacttatgtttgtgaaaatgcaggctctggtcaggtaa






ttcagactatcagtgcagtggatagagatgaatccatagaagagcaccatttttactttaatctatctgtagaagacactaacaat






tcaagttttacaatcatagataatcaagataacacagctgtcattttgactaatagaactggttttaaccttcaagaagaacctgt






cttctacatctccatcttaattgccgacaatggaatcccgtcacttacaagtacaaacacccttaccatccatgtctgtgactgtg






gtgacagtgggagcacacagacctgccagtaccaggagcttgtgctttccatgggattcaagacagaagtcatcattgctattctc






atttgcattatgatcatatttgggtttatttttttgactttgggtttaaaacaacggagaaaacag





952
C137897
artificial
aa
GWVWNQFFVPEEMNTTSHHIGQLRSDLDNGNNSFQYKLLGAGAGSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIATGRAVE



huCDH19


PESEFVIKVSDINDNEPRFLDEPYEAIVPEMSPEGTFVIKVTANDADDPSTGYHARILYNLERGQPYFSVEPTTGVIRISSKMDRE



(44-141)


LQDTYCVIIQAKDMLGQPGALSGTTTVSIKLSDINDNKPIFKESFYRFTISESAPIGTSIGKIMAYDDDIGENAEMEYSIEDDDSK



muCDH19


IFDIIIDNDTQEGIVILKKKVDFEQQSYYGIRAKVKNCHVDEELAPAHVNASTTYIKVQVEDEDEPPVFLLPYYILEIPEGKPYGT



(140-770)


IVGTVSATDPDRRQSPMRYYLTGSKMFDINDNGTIITTNMLDREVSAWYNLTVTATETYNVQQISSAHVYVQVFNINDNAPEFSQF






YETYVCENAESGEIVQIISAIDRDESIEDHHFYFNHSLEDTNNSSFMLTDNQDNTAVILSNRTGFNLKEEPVFYMIILIADNGIPS






LTSTNTLTIQVCDCGDSRNTETCANKGLLFIMGFRTEAIIAIMICVMVIFGFFFLILALKQRRKETLFPEKTEDFRENIFCYDDEG






GGEEDSEAFDIVELRQSTVMRERKPQRSKSAEIRSLYRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTFAYEGTGSSAG






SLSSLASRDTDQEDDFDYLNDLGPRFKRLASMFGSAVQPNN





953
C137897
artificial
nt
ggctgggtgtggaaccaattttttgtaccagaggaaatgaatacgactagtcatcacatcggccagctaagatctgatttagacaa



huCDH19 (44-141)


tggaaacaattctttccagtacaagcttttgggagctggagctggaagtacttttatcattgatgaaagaacaggtgacatatatg



muCDH19 (140-770)


ccatacagaagcttgatagagaggagcgatccctctacatcttaagagcccaggtaatagacatcgctactggaagggctgtggaa






cctgagtctgagtttgtcatcaaagtttcggatatcaatgacaatgaacccagattcctagatgaaccatatgaggccattgtacc






tgagatgtctccagaaggaacatttgtcatcaaggtgacagccaatgacgcagatgatccttcaactggctatcatgctcgcatcc






tatacaacttagaacgaggtcaaccatacttttctgttgagccaacaacaggagtcataaggatatcttctaagatggatagagag






ttgcaagatacatactgtgtaattattcaagccaaggacatgctcggtcagcctggagccttgtctggaacaacaaccgtatcaat






taagctgtcagatattaatgacaacaagccaatattcaaagaaagtttctaccgcttcactatatctgaatctgcacccattggaa






catcaatagggaaaattatggcatatgatgatgacataggggagaatgcagagatggagtacagcattgaagatgatgattcaaaa






atatttgacataatcattgacaatgacacccaagaagggatagttatacttaaaaagaaagttgattttgagcagcagagctatta






tggcattagagctaaggttaaaaactgccatgtggatgaagagcttgcacctgcccatgttaacgcttccacaacctacattaaag






ttcaagtagaagatgaagatgaacctcctgttttcctcttaccatattacatacttgaaattcctgaaggaaaaccatatggaaca






attgtggggacggtttctgccacagacccagatcgaagacaatctcctatgagatattatctcactggaagcaaaatgtttgatat






caatgacaatggaacaataatcaccactaacatgcttgacagagaggtcagtgcttggtacaacttgactgtcacagctactgaaa






catacaatgtacaacagatctcttcagcccatgtttatgtacaagtctttaacattaacgacaatgctccagagttctctcaattc






tatgagacttatgtttgtgaaaatgctgaatctggtgagatagttcagatcatcagtgcaattgatagagatgagtccatagaaga






tcaccatttttactttaatcactctctggaagacacaaacaactcaagttttatgctaacagacaatcaagataacacagctgtaa






ttctgagtaatagaactggtttcaatcttaaagaagagcctgtcttctacatgatcatcttgattgctgataacgggatcccatct






ctcacaagcacaaacactctcactatccaagtctgtgactgtggagacagtagaaacacagaaacttgtgctaacaagggacttct






ctttatcatgggattcagaacagaggcaataattgccatcatgatatgtgttatggtaatatttgggtttttctttttgattcttg






ctctgaaacagcgaagaaaggagactctatttccagagaagactgaagactttagggagaatatattttgctatgatgatgaaggc






ggcggggaagaagactcggaagcctttgacatcgtagagctgagacaaagtacagtaatgagagaaagaaagcctcagagaagcaa






gagtgcggagatcaggagcttgtacaggcagtccctgcaggtgggcccagacagtgccatatttcgaaaatttatcctagagaagc






ttgaagaagccaacacagacccatgtgctcccccctttgattcactacagacgtttgcctatgagggaacagggtcatcagctggc






tctctgagctccttggcatccagagacactgatcaggaggatgacttcgactaccttaatgacctgggacctcgttttaaaagatt






agcaagcatgtttggctctgcagtacaacccaacaattag





954
C137896
artificial
aa
GWVWNQFFVPEEMNTTSHHIGQLRSDLDNGNNSFQYKLLGAGAGSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIATGRAVE



huCDH19


PESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTASDADDPSSGNNARLLYSLLQGQPYFSVEPTTGVIRISSKMDRE



(44-249)


LQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSDVNDNKPIFKESFYRFTISESAPIGTSIGKIMAYDDDIGENAEMEYSIEDDDSK



muCDH19


IFDIIIDNDTQEGIVILKKKVDFEQQSYYGIRAKVKNCHVDEELAPAHVNASTTYIKVQVEDEDEPPVFLLPYYILEIPEGKPYGT



(248-770)


IVGTVSATDPDRRQSPMRYYLTGSKMFDINDNGTIITTNMLDREVSAWYNLTVTATETYNVQQISSAHVYVQVFNINDNAPEFSQF






YETYVCENAESGEIVQIISAIDRDESIEDHHFYFNHSLEDTNNSSFMLTDNQDNTAVILSNRTGFNLKEEPVFYMIILIADNGIPS






LTSTNTLTIQVCDCGDSRNTETCANKGLLFIMGFRTEAIIAIMICVMVIFGFFFLILALKQRRKETLFPEKTEDFRENIFCYDDEG






GGEEDSEAFDIVELRQSTVMRERKPQRSKSAEIRSLYRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTFAYEGTGSSAG






SLSSLASRDTDQEDDFDYLNDLGPRFKRLASMFGSAVQPNN





955
C137896
artificial
nt
ggctgggtgtggaaccaattttttgtaccagaggaaatgaatacgactagtcatcacatcggccagctaagatctgatttagacaa



huCDH19


tggaaacaattctttccagtacaagcttttgggagctggagctggaagtacttttatcattgatgaaagaacaggtgacatatatg



(44-249)


ccatacagaagcttgatagagaggagcgatccctctacatcttaagagcccaggtaatagacatcgctactggaagggctgtggaa



muCDH19


cctgagtctgagtttgtcatcaaagtttcggatatcaatgacaatgaaccaaaattcctagatgaaccttatgaggccattgtacc



(248-770)


agagatgtctccagaaggaacattagttatccaggtgacagcaagtgatgctgacgatccctcaagtggtaataatgctcgtctcc






tctacagcttacttcaaggccagccatatttttctgttgaaccaacaacaggagtcataagaatatcttctaaaatggatagagaa






ctgcaagatgagtattgggtaatcattcaagccaaggacatgattggtcagccaggagcgttgtctggaacaacaagtgtattaat






taaactttcagatgttaatgacaacaagccaatattcaaagaaagtttctaccgcttcactatatctgaatctgcacccattggaa






catcaatagggaaaattatggcatatgatgatgacataggggagaatgcagagatggagtacagcattgaagatgatgattcaaaa






atatttgacataatcattgacaatgacacccaagaagggatagttatacttaaaaagaaagttgattttgagcagcagagctatta






tggcattagagctaaggttaaaaactgccatgtggatgaagagcttgcacctgcccatgttaacgcttccacaacctacattaaag






ttcaagtagaagatgaagatgaacctcctgttttcctcttaccatattacatacttgaaattcctgaaggaaaaccatatggaaca






attgtggggacggtttctgccacagacccagatcgaagacaatctcctatgagatattatctcactggaagcaaaatgtttgatat






caatgacaatggaacaataatcaccactaacatgcttgacagagaggtcagtgcttggtacaacttgactgtcacagctactgaaa






catacaatgtacaacagatctcttcagcccatgtttatgtacaagtctttaacattaacgacaatgctccagagttctctcaattc






tatgagacttatgtttgtgaaaatgctgaatctggtgagatagttcagatcatcagtgcaattgatagagatgagtccatagaaga






tcaccatttttactttaatcactctctggaagacacaaacaactcaagttttatgctaacagacaatcaagataacacagctgtaa






ttctgagtaatagaactggtttcaatcttaaagaagagcctgtcttctacatgatcatcttgattgctgataacgggatcccatct






ctcacaagcacaaacactctcactatccaagtctgtgactgtggagacagtagaaacacagaaacttgtgctaacaagggacttct






ctttatcatgggattcagaacagaggcaataattgccatcatgatatgtgttatggtaatatttgggtttttctttttgattcttg






ctctgaaacagcgaagaaaggagactctatttccagagaagactgaagactttagggagaatatattttgctatgatgatgaaggc






ggcggggaagaagactcggaagcctttgacatcgtagagctgagacaaagtacagtaatgagagaaagaaagcctcagagaagcaa






gagtgcggagatcaggagcttgtacaggcagtccctgcaggtgggcccagacagtgccatatttcgaaaatttatcctagagaagc






ttgaagaagccaacacagacccatgtgctcccccctttgattcactacagacgtttgcctatgagggaacagggtcatcagctggc






tctctgagctccttggcatccagagacactgatcaggaggatgacttcgactaccttaatgacctgggacctcgttttaaaagatt






agcaagcatgtttggctctgcagtacaacccaacaattag





956
C137913
artificial
aa
AWVWRPFVVLEEMDDIQCVGKLRSDLDNGNNSFQYKLLGIGAGSFSINERTGEICAIQKLDREEKSLYILRAQVIDTTIGKAVETE



muCDH19


SEFVIRVLDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTASDADDPSSGNNARLLYSLLQGQPYFSVEPTTGVIRISSKMDRELQ



(44-139)


DEYWVIIQAKDMIGQPGALSGTTSVLIKLSDVNDNKPIFKESFYRFTISESAPIGTSIGKIMAYDDDIGENAEMEYSIEDDDSKIF



huCDH19


DIIIDNDTQEGIVILKKKVDFEQQSYYGIRAKVKNCHVDEELAPAHVNASTTYIKVQVEDEDEPPVFLLPYYILEIPEGKPYGTIV



(142-249)


GTVSATDPDRRQSPMRYYLTGSKMFDINDNGTIITTNMLDREVSAWYNLTVTATETYNVQQISSAHVYVQVFNINDNAPEFSQFYE



muCDH19


TYVCENAESGEIVQIISAIDRDESIEDHHFYFNHSLEDTNNSSFMLTDNQDNTAVILSNRTGFNLKEEPVFYMIILIADNGIPSLT



(248-770)


STNTLTIQVCDCGDSRNTETCANKGLLFIMGFRTEAIIAIMICVMVIFGFFFLILALKQRRKETLFPEKTEDFRENIFCYDDEGGG






EEDSEAFDIVELRQSTVMRERKPQRSKSAEIRSLYRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTFAYEGTGSSAGSL






SSLASRDTDQEDDFDYLNDLGPRFKRLASMFGSAVQPNN





957
C137913
artificial
nt
gcctgggtgtggagaccatttgttgttctagaagaaatggatgatatacaatgtgttggaaagctaagatctgacttagacaatgg



muCDH19


aaacaactctttccagtacaagctactggggattggcgctggaagctttagcattaatgaaagaacaggtgaaatatgtgccatac



(44-139)


agaagcttgatagagaggaaaaatccctctacattctgagagcccaggtaatagacaccactattgggaaggctgtggaaactgaa



huCDH19


tccgagtttgtcatcagagttttggatatcaatgacaatgaaccaaaattcctagatgaaccttatgaggccattgtaccagagat



(142-249)


gtctccagaaggaacattagttatccaggtgacagcaagtgatgctgacgatccctcaagtggtaataatgctcgtctcctctaca



muCDH19


gcttacttcaaggccagccatatttttctgttgaaccaacaacaggagtcataagaatatcttctaaaatggatagagaactgcaa



(248-770)


gatgagtattgggtaatcattcaagccaaggacatgattggtcagccaggagcgttgtctggaacaacaagtgtattaattaaact






ttcagatgttaatgacaacaagccaatattcaaagaaagtttctaccgcttcactatatctgaatctgcacccattggaacatcaa






tagggaaaattatggcatatgatgatgacataggggagaatgcagagatggagtacagcattgaagatgatgattcaaaaatattt






gacataatcattgacaatgacacccaagaagggatagttatacttaaaaagaaagttgattttgagcagcagagctattatggcat






tagagctaaggttaaaaactgccatgtggatgaagagcttgcacctgcccatgttaacgcttccacaacctacattaaagttcaag






tagaagatgaagatgaacctcctgttttcctcttaccatattacatacttgaaattcctgaaggaaaaccatatggaacaattgtg






gggacggtttctgccacagacccagatcgaagacaatctcctatgagatattatctcactggaagcaaaatgtttgatatcaatga






caatggaacaataatcaccactaacatgcttgacagagaggtcagtgcttggtacaacttgactgtcacagctactgaaacataca






atgtacaacagatctcttcagcccatgtttatgtacaagtctttaacattaacgacaatgctccagagttctctcaattctatgag






acttatgtttgtgaaaatgctgaatctggtgagatagttcagatcatcagtgcaattgatagagatgagtccatagaagatcacca






tttttactttaatcactctctggaagacacaaacaactcaagttttatgctaacagacaatcaagataacacagctgtaattctga






gtaatagaactggtttcaatcttaaagaagagcctgtcttctacatgatcatcttgattgctgataacgggatcccatctctcaca






agcacaaacactctcactatccaagtctgtgactgtggagacagtagaaacacagaaacttgtgctaacaagggacttctctttat






catgggattcagaacagaggcaataattgccatcatgatatgtgttatggtaatatttgggtttttctttttgattcttgctctga






aacagcgaagaaaggagactctatttccagagaagactgaagactttagggagaatatattttgctatgatgatgaaggcggcggg






gaagaagactcggaagcctttgacatcgtagagctgagacaaagtacagtaatgagagaaagaaagcctcagagaagcaagagtgc






ggagatcaggagcttgtacaggcagtccctgcaggtgggcccagacagtgccatatttcgaaaatttatcctagagaagcttgaag






aagccaacacagacccatgtgctcccccctttgattcactacagacgtttgcctatgagggaacagggtcatcagctggctctctg






agctccttggcatccagagacactgatcaggaggatgacttcgactaccttaatgacctgggacctcgttttaaaagattagcaag






catgtttggctctgcagtacaacccaacaattag





958
C137847
artificial
aa
AWVWRPFVVLEEMDDIQCVGKLRSDLDNGNNSFQYKLLGIGAGSFSINERTGEICAIQKLDREEKSLYILRAQVIDTTIGKAVETE



muCDH19


SEFVIRVLDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTASDADDPSSGNNARLLYSLLQGQPYFSVEPTTGVIRISSKMDRELQ



(44-139)


DEYWVIIQAKDMIGQPGALSGTTSVLIKLSDVNDNKPIFKESLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTF



huCDH19


DIITNHETQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQLMKYHTEASTTFIKIQVEDVDEPPVFLLPYYILEIPEGKPYGTIV



(142-364)


GTVSATDPDRRQSPMRYYLTGSKMFDINDNGTIITTNMLDREVSAWYNLTVTATETYNVQQISSAHVYVQVFNINDNAPEFSQFYE



muCDH19


TYVCENAESGEIVQIISAIDRDESIEDHHFYFNHSLEDTNNSSFMLTDNQDNTAVILSNRTGFNLKEEPVFYMIILIADNGIPSLT



(363-770)


STNTLTIQVCDCGDSRNTETCANKGLLFIMGFRTEAIIAIMICVMVIFGFFFLILALKQRRKETLFPEKTEDFRENIFCYDDEGGG






EEDSEAFDIVELRQSTVMRERKPQRSKSAEIRSLYRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTFAYEGTGSSAGSL






SSLASRDTDQEDDFDYLNDLGPRFKRLASMFGSAVQPNN





959
C137847
artificial
nt
gcctgggtgtggagaccatttgttgttctagaagaaatggatgatatacaatgtgttggaaagctaagatctgacttagacaatgg



muCDH19


aaacaactctttccagtacaagctactggggattggcgctggaagctttagcattaatgaaagaacaggtgaaatatgtgccatac



(44-139)


agaagcttgatagagaggaaaaatccctctacattctgagagcccaggtaatagacaccactattgggaaggctgtggaaactgaa



huCDH19


tccgagtttgtcatcagagttttggatatcaatgacaatgaaccaaaattcctagatgaaccttatgaggccattgtaccagagat



(142-364)


gtctccagaaggaacattagttatccaggtgacagcaagtgatgctgacgatccctcaagtggtaataatgctcgtctcctctaca



muCDH19


gcttacttcaaggccagccatatttttctgttgaaccaacaacaggagtcataagaatatcttctaaaatggatagagaactgcaa



(363-770)


gatgagtattgggtaatcattcaagccaaggacatgattggtcagccaggagcgttgtctggaacaacaagtgtattaattaaact






ttcagatgttaatgacaataagcctatatttaaagaaagtttataccgcttgactgtctctgaatctgcacccactgggacttcta






taggaacaatcatggcatatgataatgacataggagagaatgcagaaatggattacagcattgaagaggatgattcgcaaacattt






gacattattactaatcatgaaactcaagaaggaatagttatattaaaaaagaaagtggattttgagcaccagaaccactacggtat






tagagcaaaagttaaaaaccatcatgttcctgagcagctcatgaagtaccacactgaggcttccaccactttcattaagatccagg






tggaagatgttgatgaacctcctgttttcctcttaccatattacatacttgaaattcctgaaggaaaaccatatggaacaattgtg






gggacggtttctgccacagacccagatcgaagacaatctcctatgagatattatctcactggaagcaaaatgtttgatatcaatga






caatggaacaataatcaccactaacatgcttgacagagaggtcagtgcttggtacaacttgactgtcacagctactgaaacataca






atgtacaacagatctcttcagcccatgtttatgtacaagtctttaacattaacgacaatgctccagagttctctcaattctatgag






acttatgtttgtgaaaatgctgaatctggtgagatagttcagatcatcagtgcaattgatagagatgagtccatagaagatcacca






tttttactttaatcactctctggaagacacaaacaactcaagttttatgctaacagacaatcaagataacacagctgtaattctga






gtaatagaactggtttcaatcttaaagaagagcctgtcttctacatgatcatcttgattgctgataacgggatcccatctctcaca






agcacaaacactctcactatccaagtctgtgactgtggagacagtagaaacacagaaacttgtgctaacaagggacttctctttat






catgggattcagaacagaggcaataattgccatcatgatatgtgttatggtaatatttgggtttttctttttgattcttgctctga






aacagcgaagaaaggagactctatttccagagaagactgaagactttagggagaatatattttgctatgatgatgaaggcggcggg






gaagaagactcggaagcctttgacatcgtagagctgagacaaagtacagtaatgagagaaagaaagcctcagagaagcaagagtgc






ggagatcaggagcttgtacaggcagtccctgcaggtgggcccagacagtgccatatttcgaaaatttatcctagagaagcttgaag






aagccaacacagacccatgtgctcccccctttgattcactacagacgtttgcctatgagggaacagggtcatcagctggctctctg






agctccttggcatccagagacactgatcaggaggatgacttcgactaccttaatgacctgggacctcgttttaaaagattagcaag






catgtttggctctgcagtacaacccaacaattag





960
C137911
artificial
aa
AWVWRPFVVLEEMDDIQCVGKLRSDLDNGNNSFQYKLLGIGAGSFSINERTGEICAIQKLDREEKSLYILRAQVIDTTIGKAVETE



muCDH19


SEFVIRVLDINDNEPRFLDEPYEAIVPEMSPEGTFVIKVTANDADDPSTGYHARILYNLERGQPYFSVEPTTGVIRISSKMDRELQ



(44-247)


DTYCVIIQAKDMLGQPGALSGTTTVSIKLSDINDNKPIFKESLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTF



huCDH19


DIITNHETQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQLMKYHTEASTTFIKIQVEDVDEPPVFLLPYYILEIPEGKPYGTIV



(250-364)


GTVSATDPDRRQSPMRYYLTGSKMFDINDNGTIITTNMLDREVSAWYNLTVTATETYNVQQISSAHVYVQVFNINDNAPEFSQFYE



muCDH19


TYVCENAESGEIVQIISAIDRDESIEDHHFYFNHSLEDTNNSSFMLTDNQDNTAVILSNRTGFNLKEEPVFYMIILIADNGIPSLT



(363-770)


STNTLTIQVCDCGDSRNTETCANKGLLFIMGFRTEAIIAIMICVMVIFGFFFLILALKQRRKETLFPEKTEDFRENIFCYDDEGGG






EEDSEAFDIVELRQSTVMRERKPQRSKSAEIRSLYRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTFAYEGTGSSAGSL






SSLASRDTDQEDDFDYLNDLGPRFKRLASMFGSAVQPNN





961
C137911
artificial
nt
gcctgggtgtggagaccatttgttgttctagaagaaatggatgatatacaatgtgttggaaagctaagatctgacttagacaatgg



muCDH19


aaacaactctttccagtacaagctactggggattggcgctggaagctttagcattaatgaaagaacaggtgaaatatgtgccatac



(44-247)


agaagcttgatagagaggaaaaatccctctacattctgagagcccaggtaatagacaccactattgggaaggctgtggaaactgaa



huCDH19


tccgagtttgtcatcagagttttggatatcaatgacaatgaacccagattcctagatgaaccatatgaggccattgtacctgagat



(250-364)


gtctccagaaggaacatttgtcatcaaggtgacagccaatgacgcagatgatccttcaactggctatcatgctcgcatcctataca



muCDH19


acttagaacgaggtcaaccatacttttctgttgagccaacaacaggagtcataaggatatcttctaagatggatagagagttgcaa



(363-770)


gatacatactgtgtaattattcaagccaaggacatgctcggtcagcctggagccttgtctggaacaacaaccgtatcaattaagct






gtcagatattaatgacaataagcctatatttaaagaaagtttataccgcttgactgtctctgaatctgcacccactgggacttcta






taggaacaatcatggcatatgataatgacataggagagaatgcagaaatggattacagcattgaagaggatgattcgcaaacattt






gacattattactaatcatgaaactcaagaaggaatagttatattaaaaaagaaagtggattttgagcaccagaaccactacggtat






tagagcaaaagttaaaaaccatcatgttcctgagcagctcatgaagtaccacactgaggcttccaccactttcattaagatccagg






tggaagatgttgatgaacctcctgttttcctcttaccatattacatacttgaaattcctgaaggaaaaccatatggaacaattgtg






gggacggtttctgccacagacccagatcgaagacaatctcctatgagatattatctcactggaagcaaaatgtttgatatcaatga






caatggaacaataatcaccactaacatgcttgacagagaggtcagtgcttggtacaacttgactgtcacagctactgaaacataca






atgtacaacagatctcttcagcccatgtttatgtacaagtctttaacattaacgacaatgctccagagttctctcaattctatgag






acttatgtttgtgaaaatgctgaatctggtgagatagttcagatcatcagtgcaattgatagagatgagtccatagaagatcacca






tttttactttaatcactctctggaagacacaaacaactcaagttttatgctaacagacaatcaagataacacagctgtaattctga






gtaatagaactggtttcaatcttaaagaagagcctgtcttctacatgatcatcttgattgctgataacgggatcccatctctcaca






agcacaaacactctcactatccaagtctgtgactgtggagacagtagaaacacagaaacttgtgctaacaagggacttctctttat






catgggattcagaacagaggcaataattgccatcatgatatgtgttatggtaatatttgggtttttctttttgattcttgctctga






aacagcgaagaaaggagactctatttccagagaagactgaagactttagggagaatatattttgctatgatgatgaaggcggcggg






gaagaagactcggaagcctttgacatcgtagagctgagacaaagtacagtaatgagagaaagaaagcctcagagaagcaagagtgc






ggagatcaggagcttgtacaggcagtccctgcaggtgggcccagacagtgccatatttcgaaaatttatcctagagaagcttgaag






aagccaacacagacccatgtgctcccccctttgattcactacagacgtttgcctatgagggaacagggtcatcagctggctctctg






agctccttggcatccagagacactgatcaggaggatgacttcgactaccttaatgacctgggacctcgttttaaaagattagcaag






catgtttggctctgcagtacaacccaacaattag





962
C137917
artificial
aa
AWVWRPFVVLEEMDDIQCVGKLRSDLDNGNNSFQYKLLGIGAGSFSINERTGEICAIQKLDREEKSLYILRAQVIDTTIGKAVETE



muCDH19


SEFVIRVLDINDNEPRFLDEPYEAIVPEMSPEGTFVIKVTANDADDPSTGYHARILYNLERGQPYFSVEPTTGVIRISSKMDRELQ



(44-362)


DTYCVIIQAKDMLGQPGALSGTTTVSIKLSDINDNKPIFKESFYRFTISESAPIGTSIGKIMAYDDDIGENAEMEYSIEDDDSKIF



huCDH19


DIIIDNDTQEGIVILKKKVDFEQQSYYGIRAKVKNCHVDEELAPAHVNASTTYIKVQVEDEDEPPLFLLPYYVFEVFEETPQGSFV



(365-772)


GVVSATDPDNRKSPIRYSITRSKVFNINDNGTITTSNSLDREISAWYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSQYYE






TYVCENAGSGQVIQTISAVDRDESIEEHHFYFNLSVEDTNNSSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIPSLT






STNTLTIHVCDCGDSGSTQTCQYQELVLSMGFKTEVIIAILICIMIIFGFIFLTLGLKQRRKQILFPEKSEDFRENIFQYDDEGGG






EEDTEAFDIAELRSSTIMRERKTRKTTSAEIRSLYRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSL






SSLESAVSDQDESYDYLNELGPRFKRLACMFGSAVQSNN





963
C137917
artificial
nt
gcctgggtgtggagaccatttgttgttctagaagaaatggatgatatacaatgtgttggaaagctaagatctgacttagacaatgg



muCDH19


aaacaactctttccagtacaagctactggggattggcgctggaagctttagcattaatgaaagaacaggtgaaatatgtgccatac



(44-362)


agaagcttgatagagaggaaaaatccctctacattctgagagcccaggtaatagacaccactattgggaaggctgtggaaactgaa



huCDH19


tccgagtttgtcatcagagttttggatatcaatgacaatgaacccagattcctagatgaaccatatgaggccattgtacctgagat



(365-772)


gtctccagaaggaacatttgtcatcaaggtgacagccaatgacgcagatgatccttcaactggctatcatgctcgcatcctataca






acttagaacgaggtcaaccatacttttctgttgagccaacaacaggagtcataaggatatcttctaagatggatagagagttgcaa






gatacatactgtgtaattattcaagccaaggacatgctcggtcagcctggagccttgtctggaacaacaaccgtatcaattaagct






gtcagatattaatgacaacaagccaatattcaaagaaagtttctaccgcttcactatatctgaatctgcacccattggaacatcaa






tagggaaaattatggcatatgatgatgacataggggagaatgcagagatggagtacagcattgaagatgatgattcaaaaatattt






gacataatcattgacaatgacacccaagaagggatagttatacttaaaaagaaagttgattttgagcagcagagctattatggcat






tagagctaaggttaaaaactgccatgtggatgaagagcttgcacctgcccatgttaacgcttccacaacctacattaaagttcaag






tagaagatgaagatgagcctcctcttttcctccttccatattatgtatttgaagtttttgaagaaaccccacagggatcatttgta






ggcgtggtgtctgccacagacccagacaataggaaatctcctatcaggtattctattactaggagcaaagtgttcaatatcaatga






taatggtacaatcactacaagtaactcactggatcgtgaaatcagtgcttggtacaacctaagtattacagccacagaaaaataca






atatagaacagatctcttcgatcccactgtatgtgcaagttcttaacatcaatgatcatgctcctgagttctctcaatactatgag






acttatgtttgtgaaaatgcaggctctggtcaggtaattcagactatcagtgcagtggatagagatgaatccatagaagagcacca






tttttactttaatctatctgtagaagacactaacaattcaagttttacaatcatagataatcaagataacacagctgtcattttga






ctaatagaactggttttaaccttcaagaagaacctgtcttctacatctccatcttaattgccgacaatggaatcccgtcacttaca






agtacaaacacccttaccatccatgtctgtgactgtggtgacagtgggagcacacagacctgccagtaccaggagcttgtgctttc






catgggattcaagacagaagtcatcattgctattctcatttgcattatgatcatatttgggtttatttttttgactttgggtttaa






aacaacggagaaaacagattctatttcctgagaaaagtgaagatttcagagagaatatattccaatatgatgatgaagggggtgga






gaagaagatacagaggcctttgatatagcagagctgaggagtagtaccataatgcgggaacgcaagactcggaaaaccacaagcgc






tgagatcaggagcctatacaggcagtctttgcaagttggccccgacagtgccatattcaggaaattcattctggaaaagctcgaag






aagctaatactgatccgtgtgcccctccttttgattccctccagacctacgcttttgagggaacagggtcattagctggatccctg






agctccttagaatcagcagtctctgatcaggatgaaagctatgattaccttaatgagttgggacctcgctttaaaagattagcatg






catgtttggttctgcagtgcagtcaaataattag





964
C137915
artificial
aa
AWVWRPFVVLEEMDDIQCVGKLRSDLDNGNNSFQYKLLGIGAGSFSINERTGEICAIQKLDREEKSLYILRAQVIDTTIGKAVETE



muCDH19


SEFVIRVLDINDNEPRFLDEPYEAIVPEMSPEGTFVIKVTANDADDPSTGYHARILYNLERGQPYFSVEPTTGVIRISSKMDRELQ



(44-461)


DTYCVIIQAKDMLGQPGALSGTTTVSIKLSDINDNKPIFKESFYRFTISESAPIGTSIGKIMAYDDDIGENAEMEYSIEDDDSKIF



huCDH19


DIIIDNDTQEGIVILKKKVDFEQQSYYGIRAKVKNCHVDEELAPAHVNASTTYIKVQVEDEDEPPVFLLPYYILEIPEGKPYGTIV



(464-772)


GTVSATDPDRRQSPMRYYLTGSKMFDINDNGTIITTNMLDREVSAWYNLTVTATETYNVQQISSAHVYVQVFNINDHAPEFSQYYE






TYVCENAGSGQVIQTISAVDRDESIEEHHFYFNLSVEDTNNSSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIPSLT






STNTLTIHVCDCGDSGSTQTCQYQELVLSMGFKTEVIIAILICIMIIFGFIFLTLGLKQRRKQILFPEKSEDFRENIFQYDDEGGG






EEDTEAFDIAELRSSTIMRERKTRKTTSAEIRSLYRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSL






SSLESAVSDQDESYDYLNELGPRFKRLACMFGSAVQSNN





965
C137915
artificial
nt
gcctgggtgtggagaccatttgttgttctagaagaaatggatgatatacaatgtgttggaaagctaagatctgacttagacaatgg



muCDH19


aaacaactctttccagtacaagctactggggattggcgctggaagctttagcattaatgaaagaacaggtgaaatatgtgccatac



(44-461)


agaagcttgatagagaggaaaaatccctctacattctgagagcccaggtaatagacaccactattgggaaggctgtggaaactgaa



huCDH19


tccgagtttgtcatcagagttttggatatcaatgacaatgaacccagattcctagatgaaccatatgaggccattgtacctgagat



(464-772)


gtctccagaaggaacatttgtcatcaaggtgacagccaatgacgcagatgatccttcaactggctatcatgctcgcatcctataca






acttagaacgaggtcaaccatacttttctgttgagccaacaacaggagtcataaggatatcttctaagatggatagagagttgcaa






gatacatactgtgtaattattcaagccaaggacatgctcggtcagcctggagccttgtctggaacaacaaccgtatcaattaagct






gtcagatattaatgacaacaagccaatattcaaagaaagtttctaccgcttcactatatctgaatctgcacccattggaacatcaa






tagggaaaattatggcatatgatgatgacataggggagaatgcagagatggagtacagcattgaagatgatgattcaaaaatattt






gacataatcattgacaatgacacccaagaagggatagttatacttaaaaagaaagttgattttgagcagcagagctattatggcat






tagagctaaggttaaaaactgccatgtggatgaagagcttgcacctgcccatgttaacgcttccacaacctacattaaagttcaag






tagaagatgaagatgaacctcctgttttcctcttaccatattacatacttgaaattcctgaaggaaaaccatatggaacaattgtg






gggacggtttctgccacagacccagatcgaagacaatctcctatgagatattatctcactggaagcaaaatgtttgatatcaatga






caatggaacaataatcaccactaacatgcttgacagagaggtcagtgcttggtacaacttgactgtcacagctactgaaacataca






atgtacaacagatctcttcagcccatgtttatgtacaagtctttaacattaatgatcatgctcctgagttctctcaatactatgag






acttatgtttgtgaaaatgcaggctctggtcaggtaattcagactatcagtgcagtggatagagatgaatccatagaagagcacca






tttttactttaatctatctgtagaagacactaacaattcaagttttacaatcatagataatcaagataacacagctgtcattttga






ctaatagaactggttttaaccttcaagaagaacctgtcttctacatctccatcttaattgccgacaatggaatcccgtcacttaca






agtacaaacacccttaccatccatgtctgtgactgtggtgacagtgggagcacacagacctgccagtaccaggagcttgtgctttc






catgggattcaagacagaagtcatcattgctattctcatttgcattatgatcatatttgggtttatttttttgactttgggtttaa






aacaacggagaaaacagattctatttcctgagaaaagtgaagatttcagagagaatatattccaatatgatgatgaagggggtgga






gaagaagatacagaggcctttgatatagcagagctgaggagtagtaccataatgcgggaacgcaagactcggaaaaccacaagcgc






tgagatcaggagcctatacaggcagtctttgcaagttggccccgacagtgccatattcaggaaattcattctggaaaagctcgaag






aagctaatactgatccgtgtgcccctccttttgattccctccagacctacgcttttgagggaacagggtcattagctggatccctg






agctccttagaatcagcagtctctgatcaggatgaaagctatgattaccttaatgagttgggacctcgctttaaaagattagcatg






catgtttggttctgcagtgcagtcaaataattag





966
C71144
artificial
aa
AWVWRPFVVLEEMDDIQCVGKLRSDLDNGNNSFQYKLLGIGAGSFSINERTGEICAIQKLDREEKSLYILRAQVIDTTIGKAVETE



muCDH19


SEFVIRVLDINDNEPRFLDEPYEAIVPEMSPEGTFVIKVTANDADDPSTGYHARILYNLERGQPYFSVEPTTGVIRISSKMDRELQ



(44-770)


DTYCVIIQAKDMLGQPGALSGTTTVSIKLSDINDNKPIFKESFYRFTISESAPIGTSIGKIMAYDDDIGENAEMEYSIEDDDSKIF






DIIIDNDTQEGIVILKKKVDFEQQSYYGIRAKVKNCHVDEELAPAHVNASTTYIKVQVEDEDEPPVFLLPYYILEIPEGKPYGTIV






GTVSATDPDRRQSPMRYYLTGSKMFDINDNGTIITTNMLDREVSAWYNLTVTATETYNVQQISSAHVYVQVFNINDNAPEFSQFYE






TYVCENAESGEIVQIISAIDRDESIEDHHFYFNHSLEDTNNSSFMLTDNQDNTAVILSNRTGFNLKEEPVFYMIILIADNGIPSLT






STNTLTIQVCDCGDSRNTETCANKGLLFIMGFRTEAIIAIMICVMVIFGFFFLILALKQRRKETLFPEKTEDFRENIFCYDDEGGG






EEDSEAFDIVELRQSTVMRERKPQRSKSAEIRSLYRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTFAYEGTGSSAGSL






SSLASRDTDQEDDFDYLNDLGPRFKRLASMFGSAVQPNN





967
C71144
artificial
nt
gcctgggtgtggagaccatttgttgttctagaagaaatggatgatatacaatgtgttggaaagctaagatctgacttagacaatgg



muCDH19


aaacaactctttccagtacaagctactggggattggcgctggaagctttagcattaatgaaagaacaggtgaaatatgtgccatac



(44-770)


agaagcttgatagagaggaaaaatccctctacattctgagagcccaggtaatagacaccactattgggaaggctgtggaaactgaa






tccgagtttgtcatcagagttttggatatcaatgacaatgaacccagattcctagatgaaccatatgaggccattgtacctgagat






gtctccagaaggaacatttgtcatcaaggtgacagccaatgacgcagatgatccttcaactggctatcatgctcgcatcctataca






acttagaacgaggtcaaccatacttttctgttgagccaacaacaggagtcataaggatatcttctaagatggatagagagttgcaa






gatacatactgtgtaattattcaagccaaggacatgctcggtcagcctggagccttgtctggaacaacaaccgtatcaattaagct






gtcagatattaatgacaacaagccaatattcaaagaaagtttctaccgcttcactatatctgaatctgcacccattggaacatcaa






tagggaaaattatggcatatgatgatgacataggggagaatgcagagatggagtacagcattgaagatgatgattcaaaaatattt






gacataatcattgacaatgacacccaagaagggatagttatacttaaaaagaaagttgattttgagcagcagagctattatggcat






tagagctaaggttaaaaactgccatgtggatgaagagcttgcacctgcccatgttaacgcttccacaacctacattaaagttcaag






tagaagatgaagatgaacctcctgttttcctcttaccatattacatacttgaaattcctgaaggaaaaccatatggaacaattgtg






gggacggtttctgccacagacccagatcgaagacaatctcctatgagatattatctcactggaagcaaaatgtttgatatcaatga






caatggaacaataatcaccactaacatgcttgacagagaggtcagtgcttggtacaacttgactgtcacagctactgaaacataca






atgtacaacagatctcttcagcccatgtttatgtacaagtctttaacattaacgacaatgctccagagttctctcaattctatgag






acttatgtttgtgaaaatgctgaatctggtgagatagttcagatcatcagtgcaattgatagagatgagtccatagaagatcacca






tttttactttaatcactctctggaagacacaaacaactcaagttttatgctaacagacaatcaagataacacagctgtaattctga






gtaatagaactggtttcaatcttaaagaagagcctgtcttctacatgatcatcttgattgctgataacgggatcccatctctcaca






agcacaaacactctcactatccaagtctgtgactgtggagacagtagaaacacagaaacttgtgctaacaagggacttctctttat






catgggattcagaacagaggcaataattgccatcatgatatgtgttatggtaatatttgggtttttctttttgattcttgctctga






aacagcgaagaaaggagactctatttccagagaagactgaagactttagggagaatatattttgctatgatgatgaaggcggcggg






gaagaagactcggaagcctttgacatcgtagagctgagacaaagtacagtaatgagagaaagaaagcctcagagaagcaagagtgc






ggagatcaggagcttgtacaggcagtccctgcaggtgggcccagacagtgccatatttcgaaaatttatcctagagaagcttgaag






aagccaacacagacccatgtgctcccccctttgattcactacagacgtttgcctatgagggaacagggtcatcagctggctctctg






agctccttggcatccagagacactgatcaggaggatgacttcgactaccttaatgacctgggacctcgttttaaaagattagcaag






catgtttggctctgcagtacaacccaacaattag





968
Flag Tag
artificial
aa
DYKDDDDK





969
Flag Tag
artificial
nt
gactacaaagacgatgacgacaag





970
ckCDH19(1-43)
artificial
aa
MNCSTFLSLVLALVQLQLCSPTTQIFSAQKTDQSYTTIRRVKRDYKDDDDKGWVWEPLFVTEEETSTMPMYVGQLKSDLDKEDGSL



::FLAG::ckCDH19


QYILTGEGADSIFFINEHGKIYVRQKLDREKKSFYILRAQVINRKTRHPIEPDSEFIIKVRDINDHEPQFLDGPYVATVPEMSPEG



(44-776)


TSVTQVTATDGDDPSYGNNARLLYSLIQGQPYFSVEPKTGVIRMTSQMDRETKDQYLVVIQAKDMVGQAGAFSATATVTINLSDVN






DNPPKFQQRLYYLNVSEEAPVGTTVGRLLAEDSDIGENAAMNYFIEEDSSDVFGIITDRETQEGIIILKKRVDYESKRKHSVRVKA






VNRYIDDRFLKEGPFEDITIVQISVVDADEPPVFTLESYVMEIAEGVVSGSLVGTVSARDLDNDDSSVRYSIVQGLHLKRLFSINE






HNGTIITTEPLDREKASWHNITVTATETRNPEKISEANVYIQVLDVNDHAPEFSKYYETFVCENAVPGQLIQNISAVDKDDSAENH






RFYFSLAQATNSSHFTVKDNQDNTAGIFTAGSGFSRKEQFYFFLPILILDNGSPPLTSTNTLTVTVCDCDTEVNTLYCRYGAFLYS






IGLSTEALVAVLACLLILLVFFLAIIGIRQQRKKTLFSEKVEEFRENIVRYDDEGGGEEDTEAFDISALRTRAVLRTHKPRKKITT






EIHSLYRQSLQVGPDSAIFRQFISEKLEEANTDPSVPPYDSLQTYAFEGTGSLAGSLSSLGSNTSDVDQNYEYLVGWGPPFKQLAG






MYTSQRSTRD





971
huCDH19(1-43)


MNCYLLLRFMLGIPLLWPCLGATENSQTKKVKQPVRSHLRVKRDYKDDDDKGWVWNQFFVPEEMNTTSHHIGQLRSDLDNGNNSFQ



::FLAG::hu


YKLLGAGAGSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIATGRAVEPESEFVIKVSDINDHEPQFLDGPYVATVPEMSPEG



(44-141)


TSVTQVTATDGDDPSYGNNARLLYSLIQGQPYFSVEPKTGVIRMTSQMDRETKDQYLVVIQAKDMVGQAGAFSATATVTINLSDVN



::ckCDH19


DNPPKFQQRLYYLNVSEEAPVGTTVGRLLAEDSDIGENAAMNYFIEEDSSDVFGIITDRETQEGIIILKKRVDYESKRKHSVRVKA



(142-776)


VNRYIDDRFLKEGPFEDITIVQISVVDADEPPVFTLESYVMEIAEGVVSGSLVGTVSARDLDNDDSSVRYSIVQGLHLKRLFSINE






HNGTIITTEPLDREKASWHNITVTATETRNPEKISEANVYIQVLDVNDHAPEFSKYYETFVCENAVPGQLIQNISAVDKDDSAENH






RFYFSLAQATNSSHFTVKDNQDNTAGIFTAGSGFSRKEQFYFFLPILILDNGSPPLTSTNTLTVTVCDCDTEVNTLYCRYGAFLYS






IGLSTEALVAVLACLLILLVFFLAIIGIRQQRKKTLFSEKVEEFRENIVRYDDEGGGEEDTEAFDISALRTRAVLRTHKPRKKITT






EIHSLYRQSLQVGPDSAIFRQFISEKLEEANTDPSVPPYDSLQTYAFEGTGSLAGSLSSLGSNTSDVDQNYEYLVGWGPPFKQLAG






MYTSQRSTRD





972
ckCDH19(1-43)


MNCSTFLSLVLALVQLQLCSPTTQIFSAQKTDQSYTTIRRVKRDYKDDDDKGWVWEPLFVTEEETSTMPMYVGQLKSDLDKEDGSL



::FLAG::ckCDH19


QYILTGEGADSIFFINEHGKIYVRQKLDREKKSFYILRAQVINRKTRHPIEPDSEFIIKVRDINDNEPKFLDEPYEAIVPEMSPEG



(44-141)


TLVIQVTASDADDPSSGNNARLLYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSDVN



::huCDH19


DNPPKFQQRLYYLNVSEEAPVGTTVGRLLAEDSDIGENAAMNYFIEEDSSDVFGIITDRETQEGIIILKKRVDYESKRKHSVRVKA



(142-249)


VNRYIDDRFLKEGPFEDITIVQISVVDADEPPVFTLESYVMEIAEGVVSGSLVGTVSARDLDNDDSSVRYSIVQGLHLKRLFSINE



::ckCDH19


HNGTIITTEPLDREKASWHNITVTATETRNPEKISEANVYIQVLDVNDHAPEFSKYYETFVCENAVPGQLIQNISAVDKDDSAENH



(250-776)


RFYFSLAQATNSSHFTVKDNQDNTAGIFTAGSGFSRKEQFYFFLPILILDNGSPPLTSTNTLTVTVCDCDTEVNTLYCRYGAFLYS






IGLSTEALVAVLACLLILLVFFLAIIGIRQQRKKTLFSEKVEEFRENIVRYDDEGGGEEDTEAFDISALRTRAVLRTHKPRKKITT






EIHSLYRQSLQVGPDSAIFRQFISEKLEEANTDPSVPPYDSLQTYAFEGTGSLAGSLSSLGSNTSDVDQNYEYLVGWGPPFKQLAG






MYTSQRSTRD





973
ckCDH19(1-43)


MNCSTFLSLVLALVQLQLCSPTTQIFSAQKTDQSYTTIRRVKRDYKDDDDKGWVWEPLFVTEEETSTMPMYVGQLKSDLDKEDGSL



::FLAG::ckCDH19


QYILTGEGADSIFFINEHGKIYVRQKLDREKKSFYILRAQVINRKTRHPIEPDSEFIIKVRDINDHEPQFLDGPYVATVPEMSPEG



(44-249)


TSVTQVTATDGDDPSYGNNARLLYSLIQGQPYFSVEPKTGVIRMTSQMDRETKDQYLVVIQAKDMVGQAGAFSATATVTINLSDVN



::huCDH19


DNKPIFKESLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHETQEGIVILKKKVDFEHQNHYGIRAKV



(250-364)


KNHHVPEQLMKYHTEASTTFIKIQVEDVDEPPVFTLESYVMEIAEGVVSGSLVGTVSARDLDNDDSSVRYSIVQGLHLKRLFSINE



::ckCDH19


HNGTIITTEPLDREKASWHNITVTATETRNPEKISEANVYIQVLDVNDHAPEFSKYYETFVCENAVPGQLIQNISAVDKDDSAENH



(365-776)


RFYFSLAQATNSSHFTVKDNQDNTAGIFTAGSGFSRKEQFYFFLPILILDNGSPPLTSTNTLTVTVCDCDTEVNTLYCRYGAFLYS






IGLSTEALVAVLACLLILLVFFLAIIGIRQQRKKTLFSEKVEEFRENIVRYDDEGGGEEDTEAFDISALRTRAVLRTHKPRKKITT






EIHSLYRQSLQVGPDSAIFRQFISEKLEEANTDPSVPPYDSLQTYAFEGTGSLAGSLSSLGSNTSDVDQNYEYLVGWGPPFKQLAG






MYTSQRSTRD





974
ckCDH19(1-43)


MNCSTFLSLVLALVQLQLCSPTTQIFSAQKTDQSYTTIRRVKRDYKDDDDKGWVWEPLFVTEEETSTMPMYVGQLKSDLDKEDGSL



::FLAG::ckCDH19


QYILTGEGADSIFFINEHGKIYVRQKLDREKKSFYILRAQVINRKTRHPIEPDSEFIIKVRDINDHEPQFLDGPYVATVPEMSPEG



(44-364)


TSVTQVTATDGDDPSYGNNARLLYSLIQGQPYFSVEPKTGVIRMTSQMDRETKDQYLVVIQAKDMVGQAGAFSATATVTINLSDVN



::huCDH19


DNPPKFQQRLYYLNVSEEAPVGTTVGRLLAEDSDIGENAAMNYFIEEDSSDVFGIITDRETQEGIIILKKRVDYESKRKHSVRVKA



(365-463)


VNRYIDDRFLKEGPFEDITIVQISVVDADEPPLFLLPYYVFEVFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNINDNGTI



::ckCDH19


TTSNSLDREISAWYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSKYYETFVCENAVPGQLIQNISAVDKDDSAENHRFYFS



(469-776)


LAQATNSSHFTVKDNQDNTAGIFTAGSGFSRKEQFYFFLPILILDNGSPPLTSTNTLTVTVCDCDTEVNTLYCRYGAFLYSIGLST






EALVAVLACLLILLVFFLAIIGIRQQRKKTLFSEKVEEFRENIVRYDDEGGGEEDTEAFDISALRTRAVLRTHKPRKKITTEIHSL






YRQSLQVGPDSAIFRQFISEKLEEANTDPSVPPYDSLQTYAFEGTGSLAGSLSSLGSNTSDVDQNYEYLVGWGPPFKQLAGMYTSQ






RSTRD





975
(1-43)


MNCSTFLSLVLALVQLQLCSPTTQIFSAQKTDQSYTTIRRVKRDYKDDDDKGWVWEPLFVTEEETSTMPMYVGQLKSDLDKEDGSL



::FLAG::ckCDH19


QYILTGEGADSIFFINEHGKIYVRQKLDREKKSFYILRAQVINRKTRHPIEPDSEFIIKVRDINDHEPQFLDGPYVATVPEMSPEG



(44-468)


TSVTQVTATDGDDPSYGNNARLLYSLIQGQPYFSVEPKTGVIRMTSQMDRETKDQYLVVIQAKDMVGQAGAFSATATVTINLSDVN



::huCDH19


DNPPKFQQRLYYLNVSEEAPVGTTVGRLLAEDSDIGENAAMNYFIEEDSSDVFGIITDRETQEGIIILKKRVDYESKRKHSVRVKA



(464-772)


VNRYIDDRFLKEGPFEDITIVQISVVDADEPPVFTLESYVMEIAEGVVSGSLVGTVSARDLDNDDSSVRYSIVQGLHLKRLFSINE






HNGTIITTEPLDREKASWHNITVTATETRNPEKISEANVYIQVLDVNDHAPEFSQYYETYVCENAGSGQVIQTISAVDRDESIEEH






HFYFNLSVEDTNNSSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIPSLTSTNTLTIHVCDCGDSGSTQTCQYQELVL






SMGFKTEVIIAILICIMIIFGFIFLTLGLKQRRKQILFPEKSEDFRENIFQYDDEGGGEEDTEAFDIAELRSSTIMRERKTRKTTS






AEIRSLYRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLESAVSDQDESYDYLNELGPRFKRLA






CMFGSAVQSNN





976
rhCDH19(1-43)


MNCYLLLPFMLGIPLLWPCLGATENSQTKKVQQPVGSHLRVKRDYKDDDDKGWVWNQFFVPEEMNTTSHHVGRLRSDLDNGNNSFQ



::FLAG::rhCDH19


YKLLGAGAGSTFIIDERTGDIYAIEKLDREERSLYILRAQVIDITTGRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEG



(44-772)


TLVIQVTASDADDPSSGNNARLLYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSDVN






DNKPIFKESLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHETQEGIVILKKKVNFEHQNHYGIRAKV






KNHHVDEQLMKYHTEASTTFIKIQVEDVDEPPLFLLPYYIFEIFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNIDDNGTI






TTTNSLDREISAWYNLSITATEKYNIEQISSIPVYVQVLNINDHAPEFSQYYESYVCENAGSGQVIQTISAVDRDESIEEHHFYFN






LSVEDTNSSSFTIIDNQDNTAVILTNRTGFNLQEEPIFYISILIADNGIPSLTSTNTLTIHVCDCDDSGSTQTCQYQELMLSMGFK






TEVIIAILICIMVIFGFIFLTLGLKQRRKQILFPEKSEDFRENIFRYDDEGGGEEDTEAFDVAALRSSTIMRERKTRKTTSAEIRS






LYRQSLQVGPDSAIFRKFILEKLEEADTDPCAPPFDSLQTYAFEGTGSLAGSLSSLESAVSDQDESYDYLNELGPRFKRLACMFGS






AVQSNN





977
caCDH19(1-42)


QFFVPEEMNKTDYHIGQLRSDLDNGNNSFQYKLLGAGAGSIFVIDERTGDIYAIQKLDREERSLYTLRAQVIDSTTGRAVEPESEF



::FLAG::caCDH19


VIRVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTATDADDPASGNNARLLYSLLQGQPYFSIEPTTGVIRISSKMDRELQDEY



(43-770)


WVIIQAKDMIGLPGALSGTTSVLIKLSDVNDNKPIFKERLYRLTVSESAPTGTSIGRIMAYDNDIGENAEMDYSIEDDSQTFDIIT






NNETQEGIVILKKKVDFEHQNHYLIRANVKNRHVAEHLMEYHVEASTTFVRVQVEDEDEPPVFLLPYYLFEILEESPHGSFVGMVS






ATDPDQRKSPIRYSITRSKVFSIDDNGTIITTNPLDREISAWYNLSITATEKYNVQQISAVPVYVQVLNINDHAPEFSEYYDSYVC






ENAGSGQVIQTISAVDRDESVEDHHFYFNLSVEDTKNSSFIIIDNEDNTAVILTNRTGFSLQEEPVFYISVLIADNGIPSLTSTNT






LTIHICDCDDYGSTQTCRDKDLLLSMGFRTEVILAILISIMIIFGFIFLILGLKQRRKPTLFPEKGEDFRENIFRYDDEGGGEEDT






EAFDIVQLRSSTIMRERKTRKTAAAEIRSLYRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLG






SAVSDQDENYDYLNELGPRFKRLACMFGSAMQSNN





978
rhCDH19(1-43):


MNCYLLLPFMLGIPLLWPCLGATENSQTKKVQQPVGSHLRVKRDYKDDDDKGWVWNQFFVPEEMNTTSHHVGRLRSDLDNGNNSFQ



FLAG::rhCDH19


YKLLGAGAGSTFIIDERTGDIYAIEKLDREERSLYILRAQVIDITTGRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEG



(44-141)


TLVIQVTATDADDPASGNNARLLYSLLQGQPYFSIEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGLPGALSGTTSVLIKLSDVN



::caCDH19


DNKPIFKERLYRLTVSESAPTGTSIGRIMAYDNDIGENAEMDYSIEDDSQTFDIITNNETQEGIVILKKKVDFEHQNHYLIRANVK



(141-770)


NRHVAEHLMEYHVEASTTFVRVQVEDEDEPPVFLLPYYLFEILEESPHGSFVGMVSATDPDQRKSPIRYSITRSKVFSIDDNGTII






TTNPLDREISAWYNLSITATEKYNVQQISAVPVYVQVLNINDHAPEFSEYYDSYVCENAGSGQVIQTISAVDRDESVEDHHFYFNL






SVEDTKNSSFIIIDNEDNTAVILTNRTGFSLQEEPVFYISVLIADNGIPSLTSTNTLTIHICDCDDYGSTQTCRDKDLLLSMGFRT






EVILAILISIMIIFGFIFLILGLKQRRKPTLFPEKGEDFRENIFRYDDEGGGEEDTEAFDIVQLRSSTIMRERKTRKTAAAEIRSL






YRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLGSAVSDQDENYDYLNELGPRFKRLACMFGSA






MQSNN





979
rhCDH19(1-43)


MNCYLLLPFMLGIPLLWPCLGATENSQTKKVQQPVGSHLRVKRDYKDDDDKGWVWNQFFVPEEMNTTSHHVGRLRSDLDNGNNSFQ



::FLAG::rhCDH19


YKLLGAGAGSIFVIDERTGDIYAIQKLDREERSLYTLRAQVIDSTTGRAVEPESEFVIRVSDINDNEPKFLDEPYEAIVPEMSPEG



(44-65)


TLVIQVTATDADDPASGNNARLLYSLLQGQPYFSIEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGLPGALSGTTSVLIKLSDVN



::caCDH19


DNKPIFKERLYRLTVSESAPTGTSIGRIMAYDNDIGENAEMDYSIEDDSQTFDIITNNETQEGIVILKKKVDFEHQNHYLIRANVK



(65-770)


NRHVAEHLMEYHVEASTTFVRVQVEDEDEPPVFLLPYYLFEILEESPHGSFVGMVSATDPDQRKSPIRYSITRSKVFSIDDNGTII






TTNPLDREISAWYNLSITATEKYNVQQISAVPVYVQVLNINDHAPEFSEYYDSYVCENAGSGQVIQTISAVDRDESVEDHHFYFNL






SVEDTKNSSFIIIDNEDNTAVILTNRTGFSLQEEPVFYISVLIADNGIPSLTSTNTLTIHICDCDDYGSTQTCRDKDLLLSMGFRT






EVILAILISIMIIFGFIFLILGLKQRRKPTLFPEKGEDFRENIFRYDDEGGGEEDTEAFDIVQLRSSTIMRERKTRKTAAAEIRSL






YRQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLGSAVSDQDENYDYLNELGPRFKRLACMFGSA






MQSNN





980
caCDH19(1-43)


MNYCFLLPLMLGIPLIWPCFTASESSKTEVKHQAGSHLRVKRDYKDDDDKGWMWNQFFVPEEMNKTDYHIGQLRSDLDNGNNSFQY



::FLAG::caCDH19


KLLGAGAGSTFIIDERTGDIYAIEKLDREERSLYILRAQVIDSTTGRAVEPESEFVIRVSDINDNEPKFLDEPYEAIVPEMSPEGT



(44-87)


LVIQVTATDADDPASGNNARLLYSLLQGQPYFSIEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGLPGALSGTTSVLIKLSDVND



::rhCDH19


NKPIFKERLYRLTVSESAPTGTSIGRIMAYDNDIGENAEMDYSIEDDSQTFDIITNNETQEGIVILKKKVDFEHQNHYLIRANVKN



(89-114)


RHVAEHLMEYHVEASTTFVRVQVEDEDEPPVFLLPYYLFEILEESPHGSFVGMVSATDPDQRKSPIRYSITRSKVFSIDDNGTIIT



::caCDH19


TNPLDREISAWYNLSITATEKYNVQQISAVPVYVQVLNINDHAPEFSEYYDSYVCENAGSGQVIQTISAVDRDESVEDHHFYFNLS



(115-770)


VEDTKNSSFIIIDNEDNTAVILTNRTGFSLQEEPVFYISVLIADNGIPSLTSTNTLTIHICDCDDYGSTQTCRDKDLLLSMGFRTE






VILAILISIMIIFGFIFLILGLKQRRKPTLFPEKGEDFRENIFRYDDEGGGEEDTEAFDIVQLRSSTIMRERKTRKTAAAEIRSLY






RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLGSAVSDQDENYDYLNELGPRFKRLACMFGSAM






QSNN





981
caCDH19(1-43)


MNYCFLLPLMLGIPLIWPCFTASESSKTEVKHQAGSHLRVKRDYKDDDDKGWMWNQFFVPEEMNKTDYHIGQLRSDLDNGNNSFQY



::FLAG::caCDH19


KLLGAGAGSIFVIDERTGDIYAIQKLDREERSLYTLRAQVIDITTGRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGT



(44-120)


LVIQVTATDADDPASGNNARLLYSLLQGQPYFSIEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGLPGALSGTTSVLIKLSDVND



::rhCDH19


NKPIFKERLYRLTVSESAPTGTSIGRIMAYDNDIGENAEMDYSIEDDSQTFDIITNNETQEGIVILKKKVDFEHQNHYLIRANVKN



(122-137)


RHVAEHLMEYHVEASTTFVRVQVEDEDEPPVFLLPYYLFEILEESPHGSFVGMVSATDPDQRKSPIRYSITRSKVFSIDDNGTIIT



::caCDH19


TNPLDREISAWYNLSITATEKYNVQQISAVPVYVQVLNINDHAPEFSEYYDSYVCENAGSGQVIQTISAVDRDESVEDHHFYFNLS



(137-770)


VEDTKNSSFIIIDNEDNTAVILTNRTGFSLQEEPVFYISVLIADNGIPSLTSTNTLTIHICDCDDYGSTQTCRDKDLLLSMGFRTE






VILAILISIMIIFGFIFLILGLKQRRKPTLFPEKGEDFRENIFRYDDEGGGEEDTEAFDIVQLRSSTIMRERKTRKTAAAEIRSLY






RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLGSAVSDQDENYDYLNELGPRFKRLACMFGSAM






QSNN





982
rhCDH19(1-43)


MNCYLLLPFMLGIPLLWPCLGATENSQTKKVQQPVGSHLRVKRDYKDDDDKGWVWNQFFVPEEMNTTSHHVGRLRSDLDNGNNSFQ



::FLAG::rhCDH19


YKLLGAGAGSTFIIDERTGDIYAIEKLDREERSLYILRAQVIDITTGRAVEPESEFVIKVSDINDNEPRFLDEPYEAIVPEMSPEG



(44-141)


TFVIKVTANDADDPTSGYHARILYNLEQGQPYFSVEPTTGVIRISSKMDRELQDTYCVIIQAKDMLGQPGALSGTTTISIKLSDIN



::raCDH19


DNKPIFKESLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHETQEGIVILKKKVNFEHQNHYGIRAKV



(140-247)


KNHHVDEQLMKYHTEASTTFIKIQVEDVDEPPLFLLPYYIFEIFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNIDDNGTI



::rhCDH19


TTTNSLDREISAWYNLSITATEKYNIEQISSIPVYVQVLNINDHAPEFSQYYESYVCENAGSGQVIQTISAVDRDESIEEHHFYFN



(250-772)


LSVEDTNSSSFTIIDNQDNTAVILTNRTGFNLQEEPIFYISILIADNGIPSLTSTNTLTIHVCDCDDSGSTQTCQYQELMLSMGFK






TEVIIAILICIMVIFGFIFLTLGLKQRRKQILFPEKSEDFRENIFRYDDEGGGEEDTEAFDVAALRSSTIMRERKTRKTTSAEIRS






LYRQSLQVGPDSAIFRKFILEKLEEADTDPCAPPFDSLQTYAFEGTGSLAGSLSSLESAVSDQDESYDYLNELGPRFKRLACMFGS






AVQSNN





983
raCDH19(1-43)


MNHYFLKYWILMVPLIWPCLKVAETLKIEKAQRAVPSLGRAKRDYKDDDDKGWVWKQFVVPEEMDTIQHVGRLRSDLDNGNNSFQY



::FLAG::raCDH19


KLLGTGDGSFSIDEKTGDIFAMQKLDREKQSLYILRAQVIDTTIGKAVEPESEFVIRVSDVNDNEPRFLDEPYEAIVPEMSPEGTF



(44-770)


VIKVTANDADDPTSGYHARILYNLEQGQPYFSVEPTTGVIRISSKMDRELQDTYCVIIQAKDMLGQPGALSGTTTISIKLSDINDN






KPIFKESFYRFTISESAPSGTTIGKIMAYDDDIGENAEMDYSIEDDESQIFDIVIDNETQEGIVILKKKVDFEHQNHYGIRVKVKN






CHVDEELAPAHVNASTTYIKVQVEDEDEPPTFLLPYYIFEIPEGKPYGTMVGTVSAVDPDRRQSPMRYSLIGSKMFDINGNGTIVT






TNLLDREVSAWYNLSVTATETYNVQQISSAHVYVQVLNINDHAPEFSQLYETYVCENAESGEIIQTISAIDRDESIEDHHFYFNHS






VEDTNNSSFILTDNQDNTAVILSNRAGFSLKEETVFYMIILIADNGIPPLTSTNTLTIQVCDCGDSRSTETCTSKELLFIMGFKAE






AIIAIVICVMVIFGFIFLILALKQRRKETLFPEKTEDFRENIFCYDDEGGGEEDSEAFDIIELRQSTVMRERKPRKSRSAEIRSLY






RQSLQVGPDSAIFRKFILEKLEEANTDSSAPPFDSLQTFAYEGTGSSAGSLSSLGSSVTDQEDDFDYLNDLGPCFKRLANMFGSAV






QPDN





984
(1-43)


MNYCFLKHWILMIPLLWPCLKVSETLKAEKARRTVPSTWRAKRDYKDDDDKAWVWRPFVVLEEMDDIQCVGKLRSDLDNGNNSFQY



::FLAG::muCDH19


KLLGIGAGSFSINERTGEICAIQKLDREEKSLYILRAQVIDTTIGKAVETESEFVIRVLDINDNEPRFLDEPYEAIVPEMSPEGTF



(44-323)


VIKVTANDADDPSTGYHARILYNLERGQPYFSVEPTTGVIRISSKMDRELQDTYCVIIQAKDMLGQPGALSGTTTVSIKLSDINDN



::raCDH19


KPIFKESFYRFTISESAPIGTSIGKIMAYDDDIGENAEMEYSIEDDDSKIFDIIIDNDTQEGIVILKKKVDFEHQNHYGIRAKVKN



(324-327)


CHVDEELAPAHVNASTTYIKVQVEDEDEPPVFLLPYYILEIPEGKPYGTIVGTVSATDPDRRQSPMRYYLTGSKMFDINDNGTIIT



::muCDH19


TNMLDREVSAWYNLTVTATETYNVQQISSAHVYVQVFNINDNAPEFSQFYETYVCENAESGEIVQIISAIDRDESIEDHHFYFNHS



(328-770)


LEDTNNSSFMLTDNQDNTAVILSNRTGFNLKEEPVFYMIILIADNGIPSLTSTNTLTIQVCDCGDSRNTETCANKGLLFIMGFRTE






AIIAIMICVMVIFGFFFLILALKQRRKETLFPEKTEDFRENIFCYDDEGGGEEDSEAFDIVELRQSTVMRERKPQRSKSAEIRSLY






RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTFAYEGTGSSAGSLSSLASRDTDQEDDFDYLNDLGPRFKRLASMFGSAV






QPNN





985
muCDH19(1-43)


MNYCFLKHWILMIPLLWPCLKVSETLKAEKARRTVPSTWRAKRDYKDDDDKAWVWRPFVVLEEMDDIQCVGKLRSDLDNGNNSFQY



::FLAG::muCDH19


KLLGIGAGSFSINERTGEICAIQKLDREEKSLYILRAQVIDTTIGKAVETESEFVIRVLDINDNEPRFLDEPYEAIVPEMSPEGTF



(44-770)


VIKVTANDADDPSTGYHARILYNLERGQPYFSVEPTTGVIRISSKMDRELQDTYCVIIQAKDMLGQPGALSGTTTVSIKLSDINDN



::raCDH19


KPIFKESFYRFTISESAPIGTSIGKIMAYDDDIGENAEMEYSIEDDDSKIFDIIIDNDTQEGIVILKKKVDFEQQSYYGIRAKVKN



(290, 299, 308)


CHVDEELAPAHVNASTTYIKVQVEDEDEPPVFLLPYYILEIPEGKPYGTIVGTVSATDPDRRQSPMRYYLTGSKMFDINDNGTIIT






TNMLDREVSAWYNLTVTATETYNVQQISSAHVYVQVFNINDNAPEFSQFYETYVCENAESGEIVQIISAIDRDESIEDHHFYFNHS






LEDTNNSSFMLTDNQDNTAVILSNRTGFNLKEEPVFYMIILIADNGIPSLTSTNTLTIQVCDCGDSRNTETCANKGLLFIMGFRTE






AIIAIMICVMVIFGFFFLILALKQRRKETLFPEKTEDFRENIFCYDDEGGGEEDSEAFDIVELRQSTVMRERKPQRSKSAEIRSLY






RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTFAYEGTGSSAGSLSSLASRDTDQEDDFDYLNDLGPRFKRLASMFGSAV






QPNN





986
muCDH19(1-43)


MNYCFLKHWILMIPLLWPCLKVSETLKAEKARRTVPSTWRAKRDYKDDDDKAWVWRPFVVLEEMDDIQCVGKLRSDLDNGNNSFQY



::FLAG::muCDH19


KLLGIGAGSFSINERTGEICAIQKLDREEKSLYILRAQVIDTTIGKAVETESEFVIRVLDINDNEPRFLDEPYEAIVPEMSPEGTF



(44-770)


VIKVTANDADDPSTGYHARILYNLERGQPYFSVEPTTGVIRISSKMDRELQDTYCVIIQAKDMLGQPGALSGTTTVSIKLSDINDN



::huCDH19 (271)


KPIFKESFYRFTISESAPTGTSIGKIMAYDDDIGENAEMEYSIEDDDSKIFDIIIDNDTQEGIVILKKKVDFEQQSYYGIRAKVKN






CHVDEELAPAHVNASTTYIKVQVEDEDEPPVFLLPYYILEIPEGKPYGTIVGTVSATDPDRRQSPMRYYLTGSKMFDINDNGTIIT






TNMLDREVSAWYNLTVTATETYNVQQISSAHVYVQVFNINDNAPEFSQFYETYVCENAESGEIVQIISAIDRDESIEDHHFYFNHS






LEDTNNSSFMLTDNQDNTAVILSNRTGFNLKEEPVFYMIILIADNGIPSLTSTNTLTIQVCDCGDSRNTETCANKGLLFIMGFRTE






AIIAIMICVMVIFGFFFLILALKQRRKETLFPEKTEDFRENIFCYDDEGGGEEDSEAFDIVELRQSTVMRERKPQRSKSAEIRSLY






RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTFAYEGTGSSAGSLSSLASRDTDQEDDFDYLNDLGPRFKRLASMFGSAV






QPNN








Claims
  • 1. An isolated human antibody or antigen binding fragment thereof capable of binding to human cadherin 19 (CDH19) on the surface of a target cell, comprising a VH region comprising CDR-H1, CDR-H2 and CDR-H3 and a VL region comprising CDR-L1, CDR-L2 and CDR-L3 selected from the group consisting of: (a) a VH region comprising CDR-H1 as set forth in SEQ ID NO: 124, CDR-H2 as set forth in SEQ ID NO: 125, CDR-H3 as set forth in SEQ ID NO: 126, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 292, CDR-L2 as set forth in SEQ ID NO: 293 and CDR-L3 as set forth in SEQ ID NO: 294,(b) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 130, CDR-H2 as set forth in SEQ ID NO: 131, CDR-H3 as set forth in SEQ ID NO: 132, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 298, CDR-L2 as set forth in SEQ ID NO: 299 and CDR-L3 as set forth in SEQ ID NO: 300,(c) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 136, CDR-H2 as set forth in SEQ ID NO: 137, CDR-H3 as set forth in SEQ ID NO: 138, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 304, CDR-L2 as set forth in SEQ ID NO: 305 and CDR-L3 as set forth in SEQ ID NO: 306,(d) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 142, CDR-H2 as set forth in SEQ ID NO: 143, CDR-H3 as set forth in SEQ ID NO: 144, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 310, CDR-L2 as set forth in SEQ ID NO: 311 and CDR-L3 as set forth in SEQ ID NO: 312,(e) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 148, CDR-H2 as set forth in SEQ ID NO: 149, CDR-H3 as set forth in SEQ ID NO: 150, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 316, CDR-L2 as set forth in SEQ ID NO: 317 and CDR-L3 as set forth in SEQ ID NO: 318,(f) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 166, CDR-H2 as set forth in SEQ ID NO: 167, CDR-H3 as set forth in SEQ ID NO: 168, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 334, CDR-L2 as set forth in SEQ ID NO: 335 and CDR-L3 as set forth in SEQ ID NO: 336,(g) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 124, CDR-H2 as set forth in SEQ ID NO: 125, CDR-H3 as set forth in SEQ ID NO: 915, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 292, CDR-L2 as set forth in SEQ ID NO: 293 and CDR-L3 as set forth in SEQ ID NO: 294,(h) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 124, CDR-H2 as set forth in SEQ ID NO: 125, CDR-H3 as set forth in SEQ ID NO: 915, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 292, CDR-L2 as set forth in SEQ ID NO: 293 and CDR-L3 as set forth in SEQ ID NO: 928,(i) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 124, CDR-H2 as set forth in SEQ ID NO: 125, CDR-H3 as set forth in SEQ ID NO: 915, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 292, CDR-L2 as set forth in SEQ ID NO: 293 and CDR-L3 as set forth in SEQ ID NO: 929,(j) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 166, CDR-H2 as set forth in SEQ ID NO: 167, CDR-H3 as set forth in SEQ ID NO: 168, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 334, CDR-L2 as set forth in SEQ ID NO: 335 and CDR-L3 as set forth in SEQ ID NO: 942,(k) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 166, CDR-H2 as set forth in SEQ ID NO: 167, CDR-H3 as set forth in SEQ ID NO: 168, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 334, CDR-L2 as set forth in SEQ ID NO: 335 and CDR-L3 as set forth in SEQ ID NO: 943,(l) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 148, CDR-H2 as set forth in SEQ ID NO: 149, CDR-H3 as set forth in SEQ ID NO: 150, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 316, CDR-L2 as set forth in SEQ ID NO: 317 and CDR-L3 as set forth in SEQ ID NO: 937,(m) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 148, CDR-H2 as set forth in SEQ ID NO: 149, CDR-H3 as set forth in SEQ ID NO: 150, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 316, CDR-L2 as set forth in SEQ ID NO: 317 and CDR-L3 as set forth in SEQ ID NO: 938,(n) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 148, CDR-H2 as set forth in SEQ ID NO: 149, CDR-H3 as set forth in SEQ ID NO: 919, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 316, CDR-L2 as set forth in SEQ ID NO: 317 and CDR-L3 as set forth in SEQ ID NO: 938,(o) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 142, CDR-H2 as set forth in SEQ ID NO: 143, CDR-H3 as set forth in SEQ ID NO: 144, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 310, CDR-L2 as set forth in SEQ ID NO: 311 and CDR-L3 as set forth in SEQ ID NO: 935,(p) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 142, CDR-H2 as set forth in SEQ ID NO: 143, CDR-H3 as set forth in SEQ ID NO: 918, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 310, CDR-L2 as set forth in SEQ ID NO: 311 and CDR-L3 as set forth in SEQ ID NO: 935,(q) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 142, CDR-H2 as set forth in SEQ ID NO: 143, CDR-H3 as set forth in SEQ ID NO: 918, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 310, CDR-L2 as set forth in SEQ ID NO: 311 and CDR-L3 as set forth in SEQ ID NO: 936,(r) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 136, CDR-H2 as set forth in SEQ ID NO: 137, CDR-H3 as set forth in SEQ ID NO: 138, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 304, CDR-L2 as set forth in SEQ ID NO: 305 and CDR-L3 as set forth in SEQ ID NO: 933,(s) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 136, CDR-H2 as set forth in SEQ ID NO: 137, CDR-H3 as set forth in SEQ ID NO: 917, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 304, CDR-L2 as set forth in SEQ ID NO: 305 and CDR-L3 as set forth in SEQ ID NO: 934,(t) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 130, CDR-H2 as set forth in SEQ ID NO: 131, CDR-H3 as set forth in SEQ ID NO: 132, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 298, CDR-L2 as set forth in SEQ ID NO: 299 and CDR-L3 as set forth in SEQ ID NO: 930,(u) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 130, CDR-H2 as set forth in SEQ ID NO: 131, CDR-H3 as set forth in SEQ ID NO: 916, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 298, CDR-L2 as set forth in SEQ ID NO: 299 and CDR-L3 as set forth in SEQ ID NO: 931, and(v) a VH region comprising CDR-H1 as set forth in CDR-H1 as set forth in SEQ ID NO: 130, CDR-H2 as set forth in SEQ ID NO: 131, CDR-H3 as set forth in SEQ ID NO: 916, and a VL region comprising CDR-L1 as set forth in SEQ ID NO: 298, CDR-L2 as set forth in SEQ ID NO: 299 and CDR-L3 as set forth in SEQ ID NO: 932.
  • 2. The human antibody or antigen binding fragment thereof according to claim 1, wherein the antibody or antigen binding fragment thereof is a monoclonal antibody or a fragment thereof.
  • 3. The human antibody or antigen binding fragment thereof according to claim 1, comprising a VH region comprising the amino acid sequence selected from the group consisting of: SEQ ID NO: 342, SEQ ID NO: 366, SEQ ID NO: 370, SEQ ID NO: 344, SEQ ID NO: 372, SEQ ID NO: 368, SEQ ID NO: 496, SEQ ID NO: 497, SEQ ID NO: 498, SEQ ID NO: 499, SEQ ID NO: 500, SEQ ID NO: 508, SEQ ID NO: 509, SEQ ID NO: 510, SEQ ID NO: 511, SEQ ID NO: 512, SEQ ID NO: 519, SEQ ID NO: 520, SEQ ID NO: 521, SEQ ID NO: 522, SEQ ID NO: 523, SEQ ID NO: 524, SEQ ID NO: 525, SEQ ID NO: 526, SEQ ID NO: 527, SEQ ID NO: 528, SEQ ID NO: 529, SEQ ID NO: 530, SEQ ID NO: 531, SEQ ID NO: 532, SEQ ID NO: 533, SEQ ID NO: 534, SEQ ID NO: 535, SEQ ID NO: 536, SEQ ID NO: 537, and SEQ ID NO: 538.
  • 4. The human antibody or antigen binding fragment thereof according to claim 1, comprising a VL region comprising the amino acid sequence selected from the group consisting of: SEQ ID NO: 398, SEQ ID NO: 422, SEQ ID NO: 426, SEQ ID NO: 400, SEQ ID NO: 428, SEQ ID NO: 424, SEQ ID NO: 591, SEQ ID NO: 592, SEQ ID NO: 593, SEQ ID NO: 594, SEQ ID NO: 595, SEQ ID NO: 603, SEQ ID NO: 604, SEQ ID NO: 605, SEQ ID NO: 606, SEQ ID NO: 607, SEQ ID NO: 614, SEQ ID NO: 615, SEQ ID NO: 616, SEQ ID NO: 617, SEQ ID NO: 618, SEQ ID NO: 619, SEQ ID NO: 620, SEQ ID NO: 621, SEQ ID NO: 622, SEQ ID NO: 623, SEQ ID NO: 624, SEQ ID NO: 625, SEQ ID NO: 626, SEQ ID NO: 627, SEQ ID NO: 628, SEQ ID NO: 629, SEQ ID NO: 630, SEQ ID NO: 631, SEQ ID NO: 632, and SEQ ID NO: 633.
  • 5. The human antibody or antigen binding fragment thereof according to claim 1, comprising a VH region and a VL region comprising a pair of amino acid sequences selected from the group consisting of: SEQ ID NOs: 342 and 398, SEQ ID NOs: 366 and 422, SEQ ID NOs: 370 and 426, SEQ ID NOs: 344 and 400, SEQ ID NOs: 372 and 428, SEQ ID NOs: 368 and 424, SEQ ID NOs: 496 and 591, SEQ ID NOs: 497 and 592, SEQ ID NOs: 498 and 593, SEQ ID NOs: 499 and 594, SEQ ID NOs: 500 and 595, SEQ ID NOs: 508 and 603, SEQ ID NOs: 509 and 604, SEQ ID NOs: 510 and 605, SEQ ID NOs: 511 and 606, SEQ ID NOs: 512 and 607, SEQ ID NOs: 519 and 614, SEQ ID NOs: 520 and 615, SEQ ID NOs: 521 and 616, SEQ ID NOs: 522 and 617, SEQ ID NOs; 523 and 618, SEQ ID NOs: 524 and 619, SEQ ID NOs: 525 and 620, SEQ ID NOs: 526 and 621, SEQ ID NOs: 527 and 622, SEQ ID NOs: 528 and 623, SEQ ID NOs: 529 and 624, SEQ ID NOs: 530 and 625, SEQ ID NOs: 531 and 626, SEQ ID NOs: 532 and 627, SEQ ID NOs: 533 and 628, SEQ ID NOs: 534 and 629, SEQ ID NOs: 535 and 630, SEQ ID NOS: 536 and 631, SEQ ID NOs: 537 and 632, and SEQ ID NOs: 538 and 633.
  • 6. The human antibody or antigen binding fragment thereof according to claim 5, wherein the human binding domain or antigen binding fragment thereof comprising a heavy and light chain amino acid sequence selected from the group consisting of: SEQ ID NOs: 660 and 696, SEQ ID NOs: 662 and 698, SEQ ID NOs: 668 and 704, SEQ ID NOs: 674 and 710, SEQ ID NOs: 672 and 708, SEQ ID NOs: 658 and 694, SEQ ID NOs: 758 and 853, SEQ ID NOs: 759 and 854, SEQ ID NOs: 760 and 855, SEQ ID NOs: 761 and 856, SEQ ID NOs: 762 and 857, SEQ ID NOs: 770 and 865, SEQ ID NOs: 771 and 866, SEQ ID NOs: 772 and 867, SEQ ID NOs: 773 and 868, SEQ ID NOs: 774 and 869, SEQ ID NOs: 781 and 876, SEQ ID NOs: 782 and 877, SEQ ID NOs: 783 and 878, SEQ ID NOs: 784 and 879, SEQ ID NOs: 785 and 880, SEQ ID NOs: 786 and 881, SEQ ID NOs: 787 and 882, SEQ ID NOs: 788 and 883, SEQ ID NOs: 789 and 884, SEQ ID NOs: 790 and 885, SEQ ID NOs: 791 and 886, SEQ ID NOs: 792 and 887, SEQ ID NOs: 793 and 888, SEQ ID NOs: 794 and 889, SEQ ID NOs: 795 and 890, SEQ ID NOs: 796 and 891, SEQ ID NOs: 797 and 892, SEQ ID NOs: 798 and 893, SEQ ID NOs: 799 and 894, and SEQ ID NOs: 800 and 895.
  • 7. An antibody construct comprising the human antibody or antigen binding fragment thereof according to claim 1 conjugated to a chemotherapeutic agent.
  • 8. The antibody construct according to claim 7, further comprising a linker, wherein the linker conjugates the chemotherapeutic agent to the human antibody or antigen binding fragment thereof.
  • 9. The antibody construct according to claim 8, wherein the linker is a non-cleavable linker.
  • 10. The antibody construct according to claim 9, wherein the linker comprises N-succinimidyl 4-(N-maleimidomethyl) cyclohexane-1 carboxylate (MCC).
  • 11. The antibody construct of claim 7, wherein the chemotherapeutic agent is conjugated to one or more lysines contained in the human antibody or antigen binding fragment thereof.
  • 12. The antibody construct of claim 7, wherein the chemotherapeutic agent is maytansinoid (DM1).
  • 13. The antibody construct of claim 12, wherein the average number of DM1 molecules per antibody construct is between 1 and 10.
  • 14. The antibody construct of claim 12, wherein the average number of DM1 molecules per antibody construct is between 3 and 7.
  • 15. The antibody construct of claim 12, wherein the average number of DM1 molecules per antibody construct is between 4 and 6.
  • 16. The antibody construct of claim 12, wherein the average number of DM1 molecules per antibody construct is about 4.0, about 4.1, about 4.2, about 4.3, about 4.4, about 4.5, about 4.6, about 4.7, about 4.8, about 4.9, about 5.0, about 5.1, about 5.2, about 5.3, about 5.4, about 5.5, about 5.6, about 5.7, about 5.8, about 5.9, or about 6.0.
  • 17. An isolated nucleic acid molecule encoding the human antibody or antigen binding fragment thereof of claim 1.
  • 18. A vector comprising the nucleic acid molecule of claim 17.
  • 19. A host cell transformed or transfected with the nucleic acid molecule of claim 17.
  • 20. A process for producing a human antibody or antigen binding fragment thereof, said process comprising culturing the host cell of claim 15 under conditions allowing the expression of the antibody or antigen binding fragment thereof.
  • 21. The process of claim 20 further comprising recovering the produced antibody or antigen binding fragment thereof, and conjugating a chemotherapeutic agent to the recovered antibody or antigen binding fragment thereof to produce an antibody conjugate.
  • 22. A pharmaceutical composition comprising the human antibody or antigen binding fragment thereof according to claim 1 and a pharmaceutically acceptable carrier.
  • 23. A method for treating or ameliorating a melanoma disease or metastatic melanoma disease, comprising administering to a subject in need thereof the antibody or antigen binding fragment thereof of claim 1.
  • 24. The method according to claim 23, wherein the melanoma disease or metastatic melanoma disease is selected from the group consisting of superficial spreading melanoma, lentigo maligna, lentigo maligna melanoma, acral lentiginous melanoma and nodular melanoma.
  • 25. A kit comprising the antibody or antigen binding fragment thereof of claim 1 in a vial or a syringe.
US Referenced Citations (4)
Number Name Date Kind
9765157 Xiao et al. Sep 2017 B2
10059766 Xiao et al. Aug 2018 B2
20050276812 Ebens et al. Dec 2005 A1
20180002450 Xiao et al. Jan 2018 A1
Foreign Referenced Citations (2)
Number Date Country
WO-2006071441 Jul 2006 WO
WO-2011005481 Jan 2011 WO
Non-Patent Literature Citations (5)
Entry
Anti-CDH19 Product Datasheet, <<https://atlasantibodies.com/print_datasheet/R74953>> retrieved May 13, 2014.
Bertucci et al., Gene expression profiling of human melanoma cell lines with distinct metastatic potential identifies new progession markers. Int. J. Cancer Res. Treatment 27(5A): 3441-9 (2007).
CDH19 monoclonal antibody (M01), clone 1G4, <<http://www.abnova.com/protocol_pdf/DS_H00028513-M01.pdf>> retrieved May 13, 2014.
Chen et al., The melanosomal protein PMEL17 as a target for antibody drug conjugate therapy in melanoma. J. Biol. Chem. 287(29): 24082-91 (2012).
Niu et a., Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1 induced protein (MCPIP). J. Biol. Chem. 283(21): 14542-51 (2008).
Related Publications (1)
Number Date Country
20180208654 A1 Jul 2018 US
Provisional Applications (2)
Number Date Country
61785119 Mar 2013 US
61756977 Jan 2013 US
Divisions (1)
Number Date Country
Parent 14762053 US
Child 15878047 US