The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 20, 2018, is named N2067-7134WO_SL.txt and is 289,339 bytes in size.
Cluster of Differentiation 73 (CD73), also known as ecto-5′-nucleotidase (ecto-5′NT), is a glycosyl-phosphatidylinositol (GPI)-linked cell surface enzyme found in most tissues, and particularly expressed in endothelial cells and subsets of hematopoietic cells (Resta et al., Immunol Rev 161:95-109 (1998) and Colgan et al., Prinergic Signal 2:351-60 (2006)). CD73 catalyzes the conversion of adenosine monophosphate (AMP) to adenosine. Adenosine is a signaling molecule which mediates its biological effects through several receptors, including the Adenosine A1, A2A, A2B, and A3 receptors. The A2A receptor has received particular attention due to its broad expression on immune cells. Adenosine has pleiotropic effects in the tumor microenvironment, including expansion of regulatory T cells (Tregs), inhibition of effector T cell (Teff) responses mediated by interferon (IFN)-γ, and expansion of myeloid derived suppressor cells (MDSCs). See, e.g., Allard B, et al., Curr Opin Pharmacol 29:7-16 (2016) and Allard D, et al., Immunotherapy 8:145-163 (2016).
CD73 is also expressed on cancer cells, including colon, lung, pancreas, ovary, bladder, leukemia, glioma, glioblastoma, melanoma, thyroid, esophageal, prostate, and breast (Jin et al., Cancer Res 70:2245-55 (2010) and Stagg et al., PNAS 107: 1547-52 (2010); Zhang et al., Cancer Res 70:6407-11 (2010)). High CD73 expression has been reported to correlate with poor outcome across various cancer indications, such as lung, melanoma, triple-negative breast, squamous head and neck and colorectal cancers. See, e.g., Allard B, et al., Expert Opin Ther Targets 18:863-881 (2014); Leclerc B G, et al., Clin Cancer Res 22:158-166 (2016); Ren Z H, et al., Oncotarget 7:61690-61702 (2016); Ren Z H, et al., Oncol Lett 12:556-562 (2016); and Turcotte M, et al., Cancer Res 75:4494-4503 (2015).
Given the ongoing need for improved strategies for targeting diseases such as cancer, new compositions and methods for regulating CD73 activity and related therapeutic agents are highly desirable.
The disclosure provides, at least in part, methods and compositions comprising an anti-CD73 antibody molecule described herein, e.g., in Table 2, in combination with a second therapeutic agent, e.g., one or more therapeutic agents, e.g., 1, 2, 3, 4 or more therapeutic agents described herein. In some embodiments, the second therapeutic agent is chosen from one or more of: a chemotherapy, a targeted anti-cancer therapy, an oncolytic drug, a cytotoxic agent, an immune-based therapy, a cytokine, an activator of a costimulatory molecule, an inhibitor of an inhibitory molecule (e.g., an inhibitor of a checkpoint inhibitor), a vaccine, or a cellular immunotherapy, e.g., as described in Tables 1, and 7-14. The combinations described herein can provide a beneficial effect, e.g., in the treatment of a CD73-associated disorder, e.g., a cancer, such as an enhanced anti-cancer effect, reduced toxicity and/or reduced side effects. For example, the anti-CD73 antibody molecule, the second therapeutic agent, e.g., the one or more additional therapeutic agents, or all, can be administered at a lower dosage than would be required to achieve the same therapeutic effect compared to a monotherapy dose. Thus, compositions and methods for treating proliferative disorders, including cancer, using the aforesaid combination therapies are disclosed. In one embodiment, the cancer is a solid tumor from the lung, breast (e.g., triple-negative breast cancer), ovarian, lymphoid, gastrointestinal (e.g., colon), colorectal (e.g., microsatellite stable (MSS) colorectal cancer), anal, genitals and genitourinary tract (e.g., renal, urothelial, bladder cells, prostate), pharynx, CNS (e.g., brain, neural or glial cells), head and neck (e.g., squamous head and neck cancer), skin (e.g., melanoma), pancreas (e.g., pancreatic ductal adenocarcinoma), colon, rectum, renal-cell carcinoma, liver, lung, non-small cell lung cancer, small intestine or the esophagus. In one embodiment, the cancer is a hematological cancer chosen from a Hodgkin lymphoma, a non-Hodgkin lymphoma, a lymphocytic leukemia, or a myeloid leukemia.
Accordingly, in one aspect, the invention features a method of treating (e.g., inhibiting, reducing, ameliorating, or preventing) a disorder, e.g., a hyperproliferative condition or disorder (e.g., a cancer) in a subject. The method includes administering to the subject an anti-CD73 antibody molecule, e.g., an anti-CD73 antibody molecule described in Table 2, and a second therapeutic agent, e.g., a second therapeutic agent chosen from one or more of: a chemotherapy, a targeted anti-cancer therapy, an oncolytic drug, a cytotoxic agent, an immune-based therapy, a cytokine, an activator of a costimulatory molecule, an inhibitor of an inhibitory molecule (e.g., an inhibitor of a checkpoint inhibitor), a vaccine, or a cellular immunotherapy, e.g., as described in Tables 1, and 7-14.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a second therapeutic agent chosen from: one or more of the agents listed in Table 1, e.g., one or more of: 1) a protein kinase C (PKC) inhibitor; 2) a heat shock protein 90 (HSP90) inhibitor; 3) an inhibitor of a phosphoinositide 3-kinase (PI3K) and/or target of rapamycin (mTOR); 4) an inhibitor of cytochrome P450 (e.g., a CYP17 inhibitor or a 17alpha-Hydroxylase/C17-20 Lyase inhibitor); 5) an iron chelating agent; 6) an aromatase inhibitor; 7) an inhibitor of p53, e.g., an inhibitor of a p53/Mdm2 interaction; 8) an apoptosis inducer; 9) an angiogenesis inhibitor; 10) an aldosterone synthase inhibitor; 11) a smoothened (SMO) receptor inhibitor; 12) a prolactin receptor (PRLR) inhibitor; 13) a Wnt signaling inhibitor; 14) a CDK4/6 inhibitor; 15) a fibroblast growth factor receptor 2 (FGFR2)/fibroblast growth factor receptor 4 (FGFR4) inhibitor; 16) an inhibitor of macrophage colony-stimulating factor (M-CSF); 17) an inhibitor of one or more of c-KIT, histamine release, Flt3 (e.g., FLK2/STK1) or PKC; 18) an inhibitor of one or more of VEGFR-2 (e.g., FLK-1/KDR), PDGFRbeta, c-KIT or Raf kinase C; 19) a somatostatin agonist and/or a growth hormone release inhibitor; 20) an anaplastic lymphoma kinase (ALK) inhibitor; 21) an insulin-like growth factor 1 receptor (IGF-1R) inhibitor; 22) a P-Glycoprotein 1 inhibitor; 23) a vascular endothelial growth factor receptor (VEGFR) inhibitor; 24) a BCR-ABL kinase inhibitor; 25) an FGFR inhibitor; 26) an inhibitor of CYP11B2; 27) a HDM2 inhibitor, e.g., an inhibitor of the HDM2-p53 interaction; 28) an inhibitor of a tyrosine kinase; 29) an inhibitor of c-MET; 30) an inhibitor of JAK; 31) an inhibitor of DAC; 32) an inhibitor of 11β-hydroxylase; 33) an inhibitor of IAP; 34) an inhibitor of PIM kinase; 35) an inhibitor of Porcupine; 36) an inhibitor of BRAF, e.g., BRAF V600E or wild-type BRAF; 37) an inhibitor of HER3; 38) an inhibitor of MEK; or 39) an inhibitor of a lipid kinase, e.g., as described herein and in Table 1;
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a PD-1 inhibitor. In some embodiments, the PD-1 inhibitor is an anti-PD-1 antibody molecule. In some embodiments, the PD-1 inhibitor is selected from the group consisting of PDR001, Nivolumab, Pembrolizumab, Pidilizumab, MEDI0680, REGN2810, TSR-042, PF-06801591, and AMP-224.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a PD-L1 inhibitor. In some embodiments, the PD-L1 inhibitor is an anti-PD-L antibody molecule. In some embodiments, the PD-L1 inhibitor is selected from the group consisting of FAZ053, Atezolizumab, Avelumab, Durvalumab, and BMS-936559.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a CTLA-4 inhibitor. In some embodiments, the CTLA-4 inhibitor is an anti-CTLA-4 antibody molecule. In some embodiments, the CTLA-4 inhibitor is Ipilimumab or Tremelimumab.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a TIM-3 inhibitor. In some embodiments, the TIM-3 inhibitor is an anti-TIM-3 antibody molecule. In some embodiments, the TIM-3 inhibitor is chosen from MGB453, TSR-022, or LY3321367.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a LAG-3 inhibitor. In some embodiments, the LAG-3 inhibitor is an anti-LAG-3 antibody molecule. In some embodiments, the LAG-3 inhibitor is selected from the group consisting of LAG525, BMS-986016, TSR-033, MK-4280, and REGN3767.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a GITR agonist. In some embodiments, the GITR agonist is an anti-GITR antibody molecule. In some embodiments, the GITR agonist is selected from the group consisting of GWN323, BMS-986156, MK-4166, MK-1248, TRX518, INCAGN1876, AMG 228 or INBRX-110.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with an anti-CD3 multispecific antibody molecule. In some embodiments, the anti-CD3 multispecific antibody molecule is an anti-CD3×anti-CD123 bispecific antibody molecule (e.g., XENP14045), or an anti-CD3×anti-CD20 bispecific antibody molecule (e.g., XENP13676).
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a cytokine molecule. In some embodiments, the cytokine molecule is IL-15 complexed with a soluble form of IL-15 receptor alpha (IL-15Ra).
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a STING agonist.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a macrophage colony-stimulating factor (M-CSF) inhibitor, optionally wherein the M-CSF inhibitor is MCS 110.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a CSF-1R inhibitor, optionally wherein the CSF-1R inhibitor is BLZ945.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with an inhibitor of indoleamine 2,3-dioxygenase (IDO) and/or tryptophan 2,3-dioxygenase (TDO).
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a TGF-beta inhibitor.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with an oncolytic vaccine.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with an adenosine A2AR antagonist. In some embodiments, the adenosine A2AR antagonist is selected from the group consisting of PBF509, CPI444, AZD4635, Vipadenant, GBV-2034, and AB928. In some embodiments, the adenosine A2AR antagonist is selected from the group consisting of 5-bromo-2,6-di-(1H-pyrazol-1-yl)pyrimidine-4-amine; (S)-7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine; (R)-7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine, or racemate thereof; 7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine; and 6-(2-chloro-6-methylpyridin-4-yl)-5-(4-fluorophenyl)-1,2,4-triazin-3-amine.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a PD-1 inhibitor and an adenosine A2AR antagonist. In other embodiments, the anti-CD73 antibody molecule is administered in combination with a PD-L1 inhibitor and an adenosine A2AR antagonist.
In some embodiments, the anti-CD73 antibody molecule is administered in combination with a chimeric antigen receptor (CAR) T-cell therapy. In some embodiments, the CAR T-cell therapy is CTL019.
The combination of the anti-CD73 antibody molecule and the second therapeutic agent, e.g., one or more additional therapeutic agents, can be administered together in a single composition or administered separately in two or more different compositions, e.g., one or more compositions or dosage forms as described herein. The administration of the anti-CD73 antibody molecule and the second agent can be in any order. For example, the anti-CD73 antibody molecule can be administered concurrently with, prior to, or subsequent to, the second agent. In some embodiments, the disorder is a cancer, e.g., a cancer described herein, e.g., a solid tumor or a hematological cancer.
In another aspect, the invention features a method of reducing an activity (e.g., growth, survival, or viability, or all), of a proliferative (e.g., a cancer) cell. The method includes contacting the cell with an anti-CD73 antibody molecule, and a second therapeutic agent, e.g., one or more of: a chemotherapy, a targeted anti-cancer therapy, an oncolytic drug, a cytotoxic agent, an immune-based therapy, a cytokine, an activator of a costimulatory molecule, an inhibitor of an inhibitory molecule (e.g., an inhibitor of a checkpoint inhibitor), a vaccine, or a cellular immunotherapy, e.g., as described in Tables 1, and 7-14.
The methods described herein can be used in vitro or in vivo, e.g., in an animal subject or as part of a therapeutic protocol. The contacting of the cell with the anti-CD73 antibody molecule, and the second agent can be in any order. In certain embodiments, the cell is contacted with the anti-CD73 antibody molecule concurrently, prior to, or subsequent to, the second agent.
In another aspect, the invention features a composition (e.g., one or more compositions, formulations or dosage formulations) or a pharmaceutical combination, comprising an anti-CD73 antibody molecule and a second therapeutic agent, e.g., a second therapeutic agent chosen from one or more of: a chemotherapy, a targeted anti-cancer therapy, an oncolytic drug, a cytotoxic agent, an immune-based therapy, a cytokine, an activator of a costimulatory molecule, an inhibitor of an inhibitory molecule (e.g., an inhibitor of a checkpoint inhibitor), a vaccine, or a cellular immunotherapy, e.g., as described in Tables 1, and 7-14.
In one embodiment, the composition comprises a pharmaceutically acceptable carrier. The anti-CD73 antibody molecule and the second agent can be present in a single composition or as two or more different compositions. The anti-CD73 antibody molecule and the second agent can be administered via the same administration route or via different administration routes. In one embodiment, the pharmaceutical combination comprises the anti-CD73 antibody molecule and the second agent separately or together.
In one embodiment, the composition, formulation or pharmaceutical combination is for use as a medicine, e.g., for the treatment of a proliferative disease (e.g., a cancer as described herein). In some embodiments, the anti-CD73 antibody molecule and the second agent are administered concurrently, e.g., independently at the same time or within an overlapping time interval, or separately within time intervals. In certain embodiment, the time interval allows the anti-CD73 antibody molecule and the second agent to be jointly active. In one embodiment, the composition, formulation or pharmaceutical combination includes an amount which is jointly therapeutically effective for the treatment of a proliferative disease, e.g., a cancer as described herein.
In another aspect, the invention features a use of a composition (e.g., one or more compositions, formulations or dosage formulations) or a pharmaceutical combination, comprising an anti-CD73 antibody molecule described herein, e.g., in Table 2, and a second therapeutic agent, e.g., one or more of the second therapeutic agents chosen from: a chemotherapy, a targeted anti-cancer therapy, an oncolytic drug, a cytotoxic agent, an immune-based therapy, a cytokine, an activator of a costimulatory molecule, an inhibitor of an inhibitory molecule (e.g., an inhibitor of a checkpoint inhibitor), a vaccine, or a cellular immunotherapy, e.g., as described in Tables 1, and 7-14, for the manufacture of a medicament for treating a proliferative disease, e.g., a cancer.
Additional features or embodiments of the methods and compositions disclosed herein include one or more of the following.
In an embodiment, an anti-CD73 antibody molecule disclosed herein is a full antibody molecule or an antigen binding fragment thereof. In embodiments, the anti-CD73 antibody molecule or antigen binding fragment thereof, binds to and reduces, e.g., inhibits or antagonizes, an activity of CD73, e.g., human CD73.
In one embodiment, the anti-CD73 antibody molecule is MEDI 9447, e.g., disclosed in e.g., WO2016/075099, herein incorporated by reference in its entirety, and having a sequence disclosed herein, e.g., in Table 2. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 1 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 2 (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
In one embodiment, the anti-CD73 antibody molecule is 11F11-2, e.g., disclosed in WO2016/081748, herein incorporated by reference in its entirety, and having a sequence disclosed herein, e.g., in Table 2. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 5 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 6 (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
In one embodiment, the anti-CD73 antibody molecule is 11F11-1, e.g., disclosed in WO2016/081748, and having a sequence disclosed herein, e.g., in Table 2. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 8 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 9 (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
In one embodiment, the anti-CD73 antibody molecule is CD73.4, e.g., disclosed in U.S. Pat. No. 9,605,080, herein incorporated by reference in its entirety, and having a sequence disclosed herein, e.g., in Table 2. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 10 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 11 (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
In one embodiment, the anti-CD73 antibody molecule is CD73.10, e.g., disclosed in U.S. Pat. No. 9,605,080, and having a sequence disclosed herein, e.g., in Table 2. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 12 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 13 (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
In one embodiment, the anti-CD73 antibody molecule is 067-213, e.g., disclosed in U.S. Pat. No. 9,388,249, herein incorporated by reference in its entirety, and having a sequence disclosed herein, e.g., in Table 2. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 14 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 15 (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
In other embodiments, the anti-CD73 antibody molecule comprises a light chain variable region comprising an amino acid sequence at least 85%, 90%, 95% identical or higher to any of SEQ ID NOs: 2, 5, 8, 10, 12 or 14 as disclosed in Table 2.
In some other embodiments, the anti-CD73 antibody molecule comprises a light chain variable region comprising the amino acid sequence of SEQ ID NO: 2, 5, 8, 10, 12 or 14 as disclosed in Table 2.
In other embodiments, the anti-CD73 antibody molecule comprises a heavy chain variable region comprising an amino acid sequence at least 85%, 90%, 95% identical or higher to any of SEQ ID NOs: 1, 6, 9, 11, 13 or 15 as disclosed in Table 2.
In some other embodiments, the anti-CD73 antibody molecule comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NOs: 1, 6, 9, 11, 13 or 15 as disclosed in Table 2.
In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable region and a light chain variable region comprising an amino acid sequence chosen from the sequences disclosed in Table 2, or sequences substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified.
In certain embodiments, the anti-CD73 antibody molecule is a monoclonal antibody or an antibody with single specificity. In certain embodiments, the anti-CD73 antibody molecule is a bispecific or multispecific antibody. The heavy and light chains of the anti-CD73 antibody molecule can be full-length (e.g., an antibody can include at least one or at least two complete heavy chains, and at least one or at least two complete light chains) or can include an antigen-binding fragment (e.g., a Fab, F(ab′)2, Fv, a single chain Fv fragment, a single domain antibody, a diabody (dAb), a bivalent or bispecific antibody or fragment thereof, a single domain variant thereof, or a camelid antibody).
In embodiments, the anti-CD73 antibody molecules comprise a heavy chain constant region (Fc) chosen from, e.g., the heavy chain constant regions of IgG, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgD, and IgE; particularly, chosen from, e.g., the heavy chain constant regions of IgG1, IgG2, IgG3, and IgG4, more particularly, the heavy chain constant region of IgG1 or IgG4 (e.g., human IgG1 or IgG4). In one embodiment, the constant region is altered, e.g., mutated, to modify the properties of the antibody molecule (e.g., to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, or complement function).
In some embodiments, the second therapeutic agent is chosen from: one or more of the agents listed in Table 1, e.g., one or more of: 1) a protein kinase C (PKC) inhibitor; 2) a heat shock protein 90 (HSP90) inhibitor; 3) an inhibitor of a phosphoinositide 3-kinase (PI3K) and/or target of rapamycin (mTOR); 4) an inhibitor of cytochrome P450 (e.g., a CYP17 inhibitor or a 17alpha-Hydroxylase/C17-20 Lyase inhibitor); 5) an iron chelating agent; 6) an aromatase inhibitor; 7) an inhibitor of p53, e.g., an inhibitor of a p53/Mdm2 interaction; 8) an apoptosis inducer; 9) an angiogenesis inhibitor; 10) an aldosterone synthase inhibitor; 11) a smoothened (SMO) receptor inhibitor; 12) a prolactin receptor (PRLR) inhibitor; 13) a Wnt signaling inhibitor; 14) a CDK4/6 inhibitor; 15) a fibroblast growth factor receptor 2 (FGFR2)/fibroblast growth factor receptor 4 (FGFR4) inhibitor; 16) an inhibitor of macrophage colony-stimulating factor (M-CSF); 17) an inhibitor of one or more of c-KIT, histamine release, Flt3 (e.g., FLK2/STK1) or PKC; 18) an inhibitor of one or more of VEGFR-2 (e.g., FLK-1/KDR), PDGFRbeta, c-KIT or Raf kinase C; 19) a somatostatin agonist and/or a growth hormone release inhibitor; 20) an anaplastic lymphoma kinase (ALK) inhibitor; 21) an insulin-like growth factor 1 receptor (IGF-1R) inhibitor; 22) a P-Glycoprotein 1 inhibitor; 23) a vascular endothelial growth factor receptor (VEGFR) inhibitor; 24) a BCR-ABL kinase inhibitor; 25) an FGFR inhibitor; 26) an inhibitor of CYP11B2; 27) a HDM2 inhibitor, e.g., an inhibitor of the HDM2-p53 interaction; 28) an inhibitor of a tyrosine kinase; 29) an inhibitor of c-MET; 30) an inhibitor of JAK; 31) an inhibitor of DAC; 32) an inhibitor of 11β-hydroxylase; 33) an inhibitor of IAP; 34) an inhibitor of PIM kinase; 35) an inhibitor of Porcupine; 36) an inhibitor of BRAF, e.g., BRAF V600E or wild-type BRAF; 37) an inhibitor of HER3; 38) an inhibitor of MEK; or 39) an inhibitor of a lipid kinase, e.g., as described herein and in Table 1.
In some embodiments, the second therapeutic agent is a PD-1 inhibitor. In some embodiments, the PD-1 inhibitor is an anti-PD-1 antibody molecule. In some embodiments, the PD-1 inhibitor is selected from the group consisting of PDR001, Nivolumab, Pembrolizumab, Pidilizumab, MEDI0680, REGN2810, TSR-042, PF-06801591, and AMP-224.
In some embodiments, the second therapeutic agent is a PD-L1 inhibitor. In some embodiments, the PD-L1 inhibitor is an anti-PD-L1 antibody molecule. In some embodiments, the PD-L1 inhibitor is selected from the group consisting of FAZ053, Atezolizumab, Avelumab, Durvalumab, and BMS-936559.
In some embodiments, the second therapeutic agent is a CTLA-4 inhibitor. In some embodiments, the CTLA-4 inhibitor is an anti-CTLA-4 antibody molecule. In some embodiments, the CTLA-4 inhibitor is Ipilimumab or Tremelimumab.
In some embodiments, the second therapeutic agent is a TIM-3 inhibitor. In some embodiments, the TIM-3 inhibitor is an anti-TIM-3 antibody molecule. In some embodiments, the TIM-3 inhibitor is chosen from MGB453, TSR-022, or LY3321367.
In some embodiments, the second therapeutic agent is a LAG-3 inhibitor. In some embodiments, the LAG-3 inhibitor is an anti-LAG-3 antibody molecule. In some embodiments, the LAG-3 inhibitor is selected from the group consisting of LAG525, BMS-986016, TSR-033, MK-4280, and REGN3767.
In some embodiments, the second therapeutic agent is a GITR agonist. In some embodiments, the GITR agonist is an anti-GITR antibody molecule. In some embodiments, the GITR agonist is selected from the group consisting of GWN323, BMS-986156, MK-4166, MK-1248, TRX518, INCAGN1876, AMG 228 or INBRX-110.
In some embodiments, the second therapeutic agent is an anti-CD3 multispecific antibody molecule. In some embodiments, the anti-CD3 multispecific antibody molecule is an anti-CD3×anti-CD123 bispecific antibody molecule (e.g., XENP14045), or an anti-CD3×anti-CD20 bispecific antibody molecule (e.g., XENP13676).
In some embodiments, the second therapeutic agent is a cytokine molecule. In some embodiments, the cytokine molecule is IL-15 complexed with a soluble form of IL-15 receptor alpha (IL-15Ra).
In some embodiments, the second therapeutic agent is a STING agonist.
In some embodiments, the second therapeutic agent is a macrophage colony-stimulating factor (M-CSF) inhibitor, optionally wherein the M-CSF inhibitor is MCS 110.
In some embodiments, the second therapeutic agent is a CSF-1R inhibitor, optionally wherein the CSF-1R inhibitor is BLZ945.
In some embodiments, the second therapeutic agent is an inhibitor of indoleamine 2,3-dioxygenase (IDO) and/or tryptophan 2,3-dioxygenase (TDO).
In some embodiments, the second therapeutic agent is a TGF-beta inhibitor.
In some embodiments, the second therapeutic agent is an oncolytic vaccine.
In some embodiments, the second therapeutic agent is an adenosine A2AR antagonist. In some embodiments, the adenosine A2AR antagonist is selected from the group consisting of PBF509, CPI444, AZD4635, Vipadenant, GBV-2034, and AB928. In some embodiments, the adenosine A2AR antagonist is selected from the group consisting of 5-bromo-2,6-di-(1H-pyrazol-1-yl)pyrimidine-4-amine; (S)-7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine; (R)-7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine, or racemate thereof; 7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine; and 6-(2-chloro-6-methylpyridin-4-yl)-5-(4-fluorophenyl)-1,2,4-triazin-3-amine.
In some embodiments, the second therapeutic agent is a PD-1 inhibitor and an adenosine A2AR antagonist. In other embodiments, the second therapeutic agent is a PD-L1 inhibitor and an adenosine A2AR antagonist.
In some embodiments, the second therapeutic agent is a chimeric antigen receptor (CAR) T-cell therapy. In some embodiments, the CAR T-cell therapy is CTL019.
In certain embodiments, an anti-CD73 antibody (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in a method or composition described herein. For example, the anti-CD73 antibody (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein), is used in combination with one or more of the agents listed in Tables 1 and 7-14.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with one or more of the agents listed in Table 1, e.g., chosen from one or more of: 1) a protein kinase C (PKC) inhibitor; 2) a heat shock protein 90 (HSP90) inhibitor; 3) an inhibitor of a phosphoinositide 3-kinase (PI3K) and/or target of rapamycin (mTOR); 4) an inhibitor of cytochrome P450 (e.g., a CYP17 inhibitor or a 17alpha-Hydroxylase/C17-20 Lyase inhibitor); 5) an iron chelating agent; 6) an aromatase inhibitor; 7) an inhibitor of p53, e.g., an inhibitor of a p53/Mdm2 interaction; 8) an apoptosis inducer; 9) an angiogenesis inhibitor; 10) an aldosterone synthase inhibitor; 11) a smoothened (SMO) receptor inhibitor; 12) a prolactin receptor (PRLR) inhibitor; 13) a Wnt signaling inhibitor; 14) a CDK4/6 inhibitor; 15) a fibroblast growth factor receptor 2 (FGFR2)/fibroblast growth factor receptor 4 (FGFR4) inhibitor; 16) an inhibitor of macrophage colony-stimulating factor (M-CSF); 17) an inhibitor of one or more of c-KIT, histamine release, Flt3 (e.g., FLK2/STK1) or PKC; 18) an inhibitor of one or more of VEGFR-2 (e.g., FLK-1/KDR), PDGFRbeta, c-KIT or Raf kinase C; 19) a somatostatin agonist and/or a growth hormone release inhibitor; 20) an anaplastic lymphoma kinase (ALK) inhibitor; 21) an insulin-like growth factor 1 receptor (IGF-1R) inhibitor; 22) a P-Glycoprotein 1 inhibitor; 23) a vascular endothelial growth factor receptor (VEGFR) inhibitor; 24) a BCR-ABL kinase inhibitor; 25) an FGFR inhibitor; 26) an inhibitor of CYP11B2; 27) a HDM2 inhibitor, e.g., an inhibitor of the HDM2-p53 interaction; 28) an inhibitor of a tyrosine kinase; 29) an inhibitor of c-MET; 30) an inhibitor of JAK; 31) an inhibitor of DAC; 32) an inhibitor of 11β-hydroxylase; 33) an inhibitor of IAP; 34) an inhibitor of PIM kinase; 35) an inhibitor of Porcupine; 36) an inhibitor of BRAF, e.g., BRAF V600E or wild-type BRAF; 37) an inhibitor of HER3; 38) an inhibitor of MEK; or 39) an inhibitor of a lipid kinase e.g., listed in Table 1. In one embodiment, one or more of the aforesaid combinations is used to treat a cancer, e.g., a cancer described herein.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a PD-1 inhibitor (e.g., an anti-PD-1 antibody molecule), optionally wherein the PD-1 inhibitor is selected from the group consisting of PDR001, Nivolumab, Pembrolizumab, Pidilizumab, MEDI0680, REGN2810, TSR-042, PF-06801591, and AMP-224.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a PD-L1 inhibitor (e.g., an anti-PD-L1 antibody molecule), optionally wherein the PD-L1 inhibitor is selected from the group consisting of FAZ053, Atezolizumab, Avelumab, Durvalumab, and BMS-936559.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a CTLA-4 inhibitor (e.g., an anti-CTLA-4 antibody molecule), optionally wherein the CTLA-4 inhibitor is Ipilimumab or Tremelimumab.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a TIM-3 inhibitor (e.g., an anti-TIM-3 antibody molecule), optionally wherein the TIM-3 inhibitor is chosen from MGB453, TSR-022, or LY3321367.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a LAG-3 inhibitor (e.g., an anti-LAG-3 antibody molecule), optionally wherein the LAG-3 inhibitor is selected from the group consisting of LAG525, BMS-986016, TSR-033, MK-4280, and REGN3767.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a GITR agonist (e.g., an anti-GITR antibody molecule), optionally wherein the GITR agonist is selected from the group consisting of GWN323, BMS-986156, MK-4166, MK-1248, TRX518, INCAGN1876, AMG 228 or INBRX-110.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with an anti-CD3 multispecific antibody molecule, optionally wherein the anti-CD3 multispecific antibody molecule is an anti-CD3×anti-CD123 bispecific antibody molecule (e.g., XENP14045), or an anti-CD3×anti-CD20 bispecific antibody molecule (e.g., XENP13676).
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a cytokine molecule, optionally wherein the cytokine molecule is IL-15 complexed with a soluble form of IL-15 receptor alpha (IL-15Ra).
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a STING agonist.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a macrophage colony-stimulating factor (M-CSF) inhibitor, optionally wherein the M-CSF inhibitor is MCS 110.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a CSF-1R inhibitor, optionally wherein the CSF-1R inhibitor is BLZ945.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with an inhibitor of indoleamine 2,3-dioxygenase (IDO) and/or tryptophan 2,3-dioxygenase (TDO).
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a TGF-beta inhibitor.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with an oncolytic vaccine.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with an adenosine A2AR antagonist. In some embodiments, the adenosine A2AR antagonist is selected from the group consisting of PBF509, CPI444, AZD4635, Vipadenant, GBV-2034, and AB928. In some embodiments, the adenosine A2AR antagonist is selected from the group consisting of 5-bromo-2,6-di-(1H-pyrazol-1-yl)pyrimidine-4-amine; (S)-7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine; (R)-7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine, or racemate thereof; 7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine; and 6-(2-chloro-6-methylpyridin-4-yl)-5-(4-fluorophenyl)-1,2,4-triazin-3-amine.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a PD-1 inhibitor and an adenosine A2AR antagonist.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a PD-L1 inhibitor and an adenosine A2AR antagonist.
In embodiments, the anti-CD73 antibody molecule (e.g., MEDI 9447, 11F11-1, 11F11-2, CD73.4, CD73.10, 067-213 or an antibody disclosed herein) is used in combination with a chimeric antigen receptor (CAR) T-cell therapy, optionally wherein, the CAR T-cell therapy is CTL019.
All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety.
Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Table 1 is a summary of selected therapeutic agents that can be administered in combination with the anti-CD73 antibody molecules described herein. Table 1 provides from left to right the following: the Compound Designation of the second therapeutic agent, the Compound structure, and Patent publication(s) disclosing the Compound.
Table 2 depicts the amino acid sequences of the heavy and light chain variable regions, and full heavy and light chains of anti-CD73 antibody molecules.
Tables 5 and 6 provide amino acid and/or nucleotide sequences of exemplary anti-PD-1 antibody molecules.
Tables 7 and 8 provide amino acid and/or nucleotide sequences of exemplary anti-PD-L1 antibody molecules.
Tables 9 and 10 provide amino acid and/or nucleotide sequences of exemplary anti-LAG-3 antibody molecules.
Tables 11 and 12 provide amino acid and/or nucleotide sequences of exemplary anti-TIM-3 antibody molecules.
Tables 13 and 14 provide amino acid and/or nucleotide sequences of exemplary anti-GITR antibody molecules.
Table 15 provides amino acid sequences of exemplary anti-CD3 bispecific antibody molecules.
Tables 16 and 17 provide amino acid sequences of exemplary IL15/IL-15Ra complexes.
Methods and compositions are disclosed, which comprise an anti-CD73 antibody molecule, e.g., an anti-CD73 molecule described herein, e.g., in Table 2, in combination with a second therapeutic agent are disclosed. In some embodiments, the second therapeutic agent is chosen from one or more of: a chemotherapy, a targeted anti-cancer therapy, an oncolytic drug, a cytotoxic agent, an immune-based therapy, a cytokine, an activator of a costimulatory molecule, an inhibitor of an inhibitory molecule (e.g., an inhibitor of a checkpoint inhibitor), a vaccine, or a cellular immunotherapy.
The combinations described herein can provide a beneficial effect, e.g., in the treatment of a cancer, such as an enhanced anti-cancer effect, reduced toxicity and/or reduced side effects. For example, the anti-CD73 antibody molecule, the second therapeutic agent, or both, can be administered at a lower dosage than would be required to achieve the same therapeutic effect compared to a monotherapy dose.
As used herein, the articles “a” and “an” refer to one or to more than one (e.g., to at least one) of the grammatical object of the article.
The term “or” is used herein to mean, and is used interchangeably with, the term “and/or”, unless context clearly indicates otherwise.
“About” and “approximately” shall generally mean an acceptable degree of error for the quantity measured given the nature or precision of the measurements. Exemplary degrees of error are within 20 percent (%), typically, within 10%, and more typically, within 5% of a given value or range of values.
The term “CD73” as used herein refers to “Cluster of Differentiation 73,” also known as 5′-nucleotidase (5′-NT) or ecto-5′-nucleotidase. The term “CD73” includes mutants, fragments, variants, isoforms, and homologs of full-length wild-type CD73. In one embodiment, the protein CD73 is encoded by the NT5E gene. The protein CD73 is encoded by the NT5E gene. Exemplary CD73 sequences are available at the Uniprot database under accession numbers Q6NZX3 and P21589. CD73 catalyzes the hydrolysis of adenosine monophosphate (AMP) to adenosine.
By “combination” or “in combination with,” it is not intended to imply that the therapy or the therapeutic agents must be administered at the same time and/or formulated for delivery together, although these methods of delivery are within the scope described herein. The therapeutic agents in the combination can be administered concurrently with, prior to, or subsequent to, one or more other additional therapies or therapeutic agents. The therapeutic agents or therapeutic protocol can be administered in any order. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent. In will further be appreciated that the additional therapeutic agent utilized in this combination may be administered together in a single composition or administered separately in different compositions. In general, it is expected that additional therapeutic agents utilized in combination be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.
In embodiments, the additional therapeutic agent is administered at a therapeutic or lower-than therapeutic dose. In certain embodiments, the concentration of the second therapeutic agent that is required to achieve inhibition, e.g., growth inhibition, is lower when the second therapeutic agent is administered in combination with the first therapeutic agent, e.g., the anti-PD-1 antibody molecule, than when the second therapeutic agent is administered individually. In certain embodiments, the concentration of the first therapeutic agent that is required to achieve inhibition, e.g., growth inhibition, is lower when the first therapeutic agent is administered in combination with the second therapeutic agent than when the first therapeutic agent is administered individually. In certain embodiments, in a combination therapy, the concentration of the second therapeutic agent that is required to achieve inhibition, e.g., growth inhibition, is lower than the therapeutic dose of the second therapeutic agent as a monotherapy, e.g., 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, or 80-90% lower. In certain embodiments, in a combination therapy, the concentration of the first therapeutic agent that is required to achieve inhibition, e.g., growth inhibition, is lower than the therapeutic dose of the first therapeutic agent as a monotherapy, e.g., 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, or 80-90% lower.
The term “inhibition,” “inhibitor,” or “antagonist” includes a reduction in a certain parameter, e.g., an activity, of a given molecule, e.g., an immune checkpoint inhibitor. For example, inhibition of an activity, e.g., a CD73 activity, of at least 5%, 10%, 20%, 30%, 40% or more is included by this term. Thus, inhibition need not be 100%.
The term “activation,” “activator,” or “agonist” includes an increase in a certain parameter, e.g., an activity, of a given molecule, e.g., a costimulatory molecule. For example, increase of an activity, e.g., a costimulatory activity, of at least 5%, 10%, 25%, 50%, 75% or more is included by this term.
The term “anti-cancer effect” refers to a biological effect which can be manifested by various means, including but not limited to, e.g., a decrease in tumor volume, a decrease in the number of cancer cells, a decrease in the number of metastases, an increase in life expectancy, decrease in cancer cell proliferation, decrease in cancer cell survival, or amelioration of various physiological symptoms associated with the cancerous condition. An “anti-cancer effect” can also be manifested by the ability of the peptides, polynucleotides, cells and antibodies in prevention of the occurrence of cancer in the first place.
The term “anti-tumor effect” refers to a biological effect which can be manifested by various means, including but not limited to, e.g., a decrease in tumor volume, a decrease in the number of tumor cells, a decrease in tumor cell proliferation, or a decrease in tumor cell survival. The term “cancer” refers to a disease characterized by the rapid and uncontrolled growth of aberrant cells. Cancer cells can spread locally or through the bloodstream and lymphatic system to other parts of the body. Examples of various cancers are described herein and include but are not limited to, breast cancer, prostate cancer, ovarian cancer, cervical cancer, skin cancer, pancreatic cancer, colorectal cancer, renal cancer, liver cancer, brain cancer, lymphoma, leukemia, lung cancer and the like. The terms “tumor” and “cancer” are used interchangeably herein, e.g., both terms encompass solid and liquid, e.g., diffuse or circulating, tumors. As used herein, the term “cancer” or “tumor” includes premalignant, as well as malignant cancers and tumors.
As used herein, the terms “treat,” “treatment” and “treating” refer to the reduction or amelioration of the progression, severity and/or duration of a disorder, e.g., a proliferative disorder, or the amelioration of one or more symptoms (preferably, one or more discernible symptoms) of the disorder resulting from the administration of one or more therapies. In specific embodiments, the terms “treat,” “treatment” and “treating” refer to the amelioration of at least one measurable physical parameter of a proliferative disorder, such as growth of a tumor, not necessarily discernible by the patient. In other embodiments the terms “treat”, “treatment” and “treating” refer to the inhibition of the progression of a proliferative disorder, either physically by, e.g., stabilization of a discernible symptom, physiologically by, e.g., stabilization of a physical parameter, or both. In other embodiments the terms “treat”, “treatment” and “treating” refer to the reduction or stabilization of tumor size or cancerous cell count.
The compositions and methods of the present invention encompass polypeptides and nucleic acids having the sequences specified, or sequences substantially identical or similar thereto, e.g., sequences at least 85%, 90%, 95%, 96%, 97%, 98%, 99% identical or higher to the sequence specified. In the context of an amino acid sequence, the term “substantially identical” is used herein to refer to a first amino acid that contains a sufficient or minimum number of amino acid residues that are i) identical to, or ii) conservative substitutions of aligned amino acid residues in a second amino acid sequence such that the first and second amino acid sequences can have a common structural domain and/or common functional activity. For example, amino acid sequences that contain a common structural domain having at least about 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to a reference sequence, e.g., a sequence provided herein.
In the context of nucleotide sequence, the term “substantially identical” is used herein to refer to a first nucleic acid sequence that contains a sufficient or minimum number of nucleotides that are identical to aligned nucleotides in a second nucleic acid sequence such that the first and second nucleotide sequences encode a polypeptide having common functional activity, or encode a common structural polypeptide domain or a common functional polypeptide activity. For example, nucleotide sequences having at least about 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to a reference sequence, e.g., a sequence provided herein.
The term “functional variant” refers to polypeptides that have a substantially identical amino acid sequence to the naturally-occurring sequence, or are encoded by a substantially identical nucleotide sequence, and are capable of having one or more activities of the naturally-occurring sequence.
Calculations of homology or sequence identity between sequences (the terms are used interchangeably herein) are performed as follows.
To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”).
The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG software package (available at www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A particularly preferred set of parameters (and the one that should be used unless otherwise specified) are a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
The percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller ((1989) CABIOS, 4:11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
The nucleic acid and protein sequences described herein can be used as a “query sequence” to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to a nucleic acid (SEQ ID NO: 1) molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25:3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See www.ncbi.nlm.nih.gov.
As used herein, the term “hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions” describes conditions for hybridization and washing. Guidance for performing hybridization reactions can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6, which is incorporated by reference. Aqueous and nonaqueous methods are described in that reference and either can be used. Specific hybridization conditions referred to herein are as follows: 1) low stringency hybridization conditions in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by two washes in 0.2×SSC, 0.1% SDS at least at 50° C. (the temperature of the washes can be increased to 55° C. for low stringency conditions); 2) medium stringency hybridization conditions in 6×SSC at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 60° C.; 3) high stringency hybridization conditions in 6×SSC at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 65° C.; and preferably 4) very high stringency hybridization conditions are 0.5M sodium phosphate, 7% SDS at 65° C., followed by one or more washes at 0.2×SSC, 1% SDS at 65° C. Very high stringency conditions (4) are the preferred conditions and the ones that should be used unless otherwise specified.
It is understood that the molecules of the present invention may have additional conservative or non-essential amino acid substitutions, which do not have a substantial effect on their functions.
The term “amino acid” is intended to embrace all molecules, whether natural or synthetic, which include both an amino functionality and an acid functionality and capable of being included in a polymer of naturally-occurring amino acids. Exemplary amino acids include naturally-occurring amino acids; analogs, derivatives and congeners thereof; amino acid analogs having variant side chains; and all stereoisomers of any of any of the foregoing. As used herein the term “amino acid” includes both the D- or L-optical isomers and peptidomimetics.
A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
The terms “polypeptide”, “peptide” and “protein” (if single chain) are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component. The polypeptide can be isolated from natural sources, can be a produced by recombinant techniques from a eukaryotic or prokaryotic host, or can be a product of synthetic procedures.
The terms “nucleic acid,” “nucleic acid sequence,” “nucleotide sequence,” or “polynucleotide sequence,” and “polynucleotide” are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. The polynucleotide may be either single-stranded or double-stranded, and if single-stranded may be the coding strand or non-coding (antisense) strand. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. The nucleic acid may be a recombinant polynucleotide, or a polynucleotide of genomic, cDNA, semisynthetic, or synthetic origin which either does not occur in nature or is linked to another polynucleotide in a nonnatural arrangement.
The term “isolated,” as used herein, refers to material that is removed from its original or native environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated by human intervention from some or all of the co-existing materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of the environment in which it is found in nature.
Various aspects of the invention are described in further detail below. Additional definitions are set out throughout the specification.
In one embodiment, the antibody molecule binds to a mammalian, e.g., human, CD73 molecule. For example, the antibody molecule binds specifically to an epitope, e.g., linear or conformational epitope, (e.g., an epitope as described herein) on CD73.
As used herein, the term “antibody molecule” refers to a protein comprising at least one immunoglobulin variable domain sequence. The term antibody molecule includes, for example, full-length, mature antibodies and antigen-binding fragments of an antibody. For example, an antibody molecule can include a heavy (H) chain variable domain sequence (abbreviated herein as VH), and a light (L) chain variable domain sequence (abbreviated herein as VL). In another example, an antibody molecule includes two heavy (H) chain variable domain sequences and two light (L) chain variable domain sequence, thereby forming two antigen binding sites, such as Fab, Fab′, F(ab′)2, Fc, Fd, Fd′, Fv, single chain antibodies (scFv for example), single variable domain antibodies, diabodies (Dab) (bivalent and bispecific), and chimeric (e.g., humanized) antibodies, which may be produced by the modification of whole antibodies or those synthesized de novo using recombinant DNA technologies. These functional antibody fragments retain the ability to selectively bind with their respective antigen or receptor. Antibodies and antibody fragments can be from any class of antibodies including, but not limited to, IgG, IgA, IgM, IgD, and IgE, and from any subclass (e.g., IgGI, IgG2, IgG3, and IgG4) of antibodies. The antibodies of the present invention can be monoclonal or polyclonal. The antibody can also be a human, humanized, CDR-grafted, or in vitro generated antibody. The antibody can have a heavy chain constant region chosen from, e.g., IgG, IgG2, IgG3, or IgG4. The antibody can also have a light chain chosen from, e.g., kappa or lambda.
Examples of antigen-binding fragments include: (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a diabody (dAb) fragment, which consists of a VH domain; (vi) a camelid or camelized variable domain; (vii) a single chain Fv (scFv), see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883); (viii) a single domain antibody. These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are screened for utility in the same manner as are intact antibodies.
The term “antibody” includes intact molecules as well as functional fragments thereof. Constant regions of the antibodies can be altered, e.g., mutated, to modify the properties of the antibody (e.g., to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, or complement function).
Antibody molecules can also be single domain antibodies. Single domain antibodies can include antibodies whose complementary determining regions are part of a single domain polypeptide. Examples include, but are not limited to, heavy chain antibodies, antibodies naturally devoid of light chains, single domain antibodies derived from conventional 4-chain antibodies, engineered antibodies and single domain scaffolds other than those derived from antibodies. Single domain antibodies may be any of the art, or any future single domain antibodies. Single domain antibodies may be derived from any species including, but not limited to mouse, human, camel, llama, fish, shark, goat, rabbit, and bovine. According to another aspect of the invention, a single domain antibody is a naturally occurring single domain antibody known as heavy chain antibody devoid of light chains. Such single domain antibodies are disclosed in WO 9404678, for example. For clarity reasons, this variable domain derived from a heavy chain antibody naturally devoid of light chain is known herein as a VHH or nanobody to distinguish it from the conventional VH of four chain immunoglobulins. Such a VHH molecule can be derived from antibodies raised in Camelidae species, for example in camel, llama, dromedary, alpaca and guanaco. Other species besides Camelidae may produce heavy chain antibodies naturally devoid of light chain; such VHHs are within the scope of the invention.
The VH and VL regions can be subdivided into regions of hypervariability, termed “complementarity determining regions” (CDR), interspersed with regions that are more conserved, termed “framework regions” (FR or FW).
The extent of the framework region and CDRs has been precisely defined by a number of methods (see, Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242; Chothia, C. et al. (1987) J. Mol. Biol. 196:901-917; and the AbM definition used by Oxford Molecular's AbM antibody modeling software. See, generally, e.g., Protein Sequence and Structure Analysis of Antibody Variable Domains. In: Antibody Engineering Lab Manual (Ed.: Duebel, S. and Kontermann, R., Springer-Verlag, Heidelberg).
The terms “complementarity determining region,” and “CDR,” as used herein refer to the sequences of amino acids within antibody variable regions which confer antigen specificity and binding affinity. In general, there are three CDRs in each heavy chain variable region (HCDR1, HCDR2, HCDR3) and three CDRs in each light chain variable region (LCDR1, LCDR2, LCDR3).
The precise amino acid sequence boundaries of a given CDR can be determined using any of a number of well-known schemes, including those described by Kabat et al. (1991), “Sequences of Proteins of Immunological Interest,” 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (“Kabat” numbering scheme), Al-Lazikani et al., (1997) JMB 273, 927-948 (“Chothia” numbering scheme). As used herein, the CDRs defined according the “Chothia” number scheme are also sometimes referred to as “hypervariable loops.” For example, under Kabat, the CDR amino acid residues in the heavy chain variable domain (VH) are numbered 31-35 (HCDR1), 50-65 (HCDR2), and 95-102 (HCDR3); and the CDR amino acid residues in the light chain variable domain (VL) are numbered 24-34 (LCDR1), 50-56 (LCDR2), and 89-97 (LCDR3). Under Chothia the CDR amino acids in the VH are numbered 26-32 (HCDR1), 52-56 (HCDR2), and 95-102 (HCDR3); and the amino acid residues in VL are numbered 26-32 (LCDR1), 50-52 (LCDR2), and 91-96 (LCDR3). By combining the CDR definitions of both Kabat and Chothia, the CDRs consist of amino acid residues 26-35 (HCDR1), 50-65 (HCDR2), and 95-102 (HCDR3) in human VH and amino acid residues 24-34 (LCDR1), 50-56 (LCDR2), and 89-97 (LCDR3) in human VL.
As used herein, an “immunoglobulin variable domain sequence” refers to an amino acid sequence which can form the structure of an immunoglobulin variable domain. For example, the sequence may include all or part of the amino acid sequence of a naturally-occurring variable domain. For example, the sequence may or may not include one, two, or more N- or C-terminal amino acids, or may include other alterations that are compatible with formation of the protein structure.
The term “antigen-binding site” refers to the part of an antibody molecule that comprises determinants that form an interface that binds to the PD-1 polypeptide, or an epitope thereof. With respect to proteins (or protein mimetics), the antigen-binding site typically includes one or more loops (of at least four amino acids or amino acid mimics) that form an interface that binds to the PD-1 polypeptide. Typically, the antigen-binding site of an antibody molecule includes at least one or two CDRs and/or hypervariable loops, or more typically at least three, four, five or six CDRs and/or hypervariable loops.
The terms “monoclonal antibody” or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of single molecular composition. A monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope. A monoclonal antibody can be made by hybridoma technology or by methods that do not use hybridoma technology (e.g., recombinant methods).
An “effectively human” protein is a protein that does not evoke a neutralizing antibody response, e.g., the human anti-murine antibody (HAMA) response. HAMA can be problematic in a number of circumstances, e.g., if the antibody molecule is administered repeatedly, e.g., in treatment of a chronic or recurrent disease condition. A HAMA response can make repeated antibody administration potentially ineffective because of an increased antibody clearance from the serum (see, e.g., Saleh et al., Cancer Immunol. Immunother., 32:180-190 (1990)) and also because of potential allergic reactions (see e.g., LoBuglio et al., Hybridoma, 5:5117-5123 (1986)).
The antibody molecule can be a polyclonal or a monoclonal antibody. In other embodiments, the antibody can be recombinantly produced, e.g., produced by phage display or by combinatorial methods.
Phage display and combinatorial methods for generating antibodies are known in the art (as described in, e.g., Ladner et al. U.S. Pat. No. 5,223,409; Kang et al. International Publication No. WO 92/18619; Dower et al. International Publication No. WO 91/17271; Winter et al. International Publication WO 92/20791; Markland et al. International Publication No. WO 92/15679; Breitling et al. International Publication WO 93/01288; McCafferty et al. International Publication No. WO 92/01047; Garrard et al. International Publication No. WO 92/09690; Ladner et al. International Publication No. WO 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum Antibod Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffths et al. (1993) EMBO J 12:725-734; Hawkins et al. (1992) J Mol Biol 226:889-896; Clackson et al. (1991) Nature 352:624-628; Gram et al. (1992) PNAS 89:3576-3580; Garrad et al. (1991) Bio/Technology 9:1373-1377; Hoogenboom et al. (1991) Nuc Acid Res 19:4133-4137; and Barbas et al. (1991) PNAS 88:7978-7982, the contents of all of which are incorporated by reference herein).
In one embodiment, the antibody is a fully human antibody (e.g., an antibody made in a mouse which has been genetically engineered to produce an antibody from a human immunoglobulin sequence), or a non-human antibody, e.g., a rodent (mouse or rat), goat, primate (e.g., monkey), camel antibody. Preferably, the non-human antibody is a rodent (mouse or rat antibody). Methods of producing rodent antibodies are known in the art.
Human monoclonal antibodies can be generated using transgenic mice carrying the human immunoglobulin genes rather than the mouse system. Splenocytes from these transgenic mice immunized with the antigen of interest are used to produce hybridomas that secrete human mAbs with specific affinities for epitopes from a human protein (see, e.g., Wood et al. International Application WO 91/00906, Kucherlapati et al. PCT publication WO 91/10741; Lonberg et al. International Application WO 92/03918; Kay et al. International Application 92/03917; Lonberg, N. et al. 1994 Nature 368:856-859; Green, L. L. et al. 1994 Nature Genet. 7:13-21; Morrison, S. L. et al. 1994 Proc. Natl. Acad. Sci. USA 81:6851-6855; Bruggeman et al. 1993 Year Immunol 7:33-40; Tuaillon et al. 1993 PNAS 90:3720-3724; Bruggeman et al. 1991 Eur J Immunol 21:1323-1326).
An antibody can be one in which the variable region, or a portion thereof, e.g., the CDRs, are generated in a non-human organism, e.g., a rat or mouse. Chimeric, CDR-grafted, and humanized antibodies are within the invention. Antibodies generated in a non-human organism, e.g., a rat or mouse, and then modified, e.g., in the variable framework or constant region, to decrease antigenicity in a human are within the invention.
Chimeric antibodies can be produced by recombinant DNA techniques known in the art (see Robinson et al., International Patent Publication PCT/US86/02269; Akira, et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al., European Patent Application 173,494; Neuberger et al., International Application WO 86/01533; Cabilly et al. U.S. Pat. No. 4,816,567; Cabilly et al., European Patent Application 125,023; Better et al. (1988 Science 240:1041-1043); Liu et al. (1987) PNAS 84:3439-3443; Liu et al., 1987, J. Immunol. 139:3521-3526; Sun et al. (1987) PNAS 84:214-218; Nishimura et al., 1987, Canc. Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; and Shaw et al., 1988, J. Natl Cancer Inst. 80:1553-1559).
A humanized or CDR-grafted antibody will have at least one or two but generally all three recipient CDRs (of heavy and or light immuoglobulin chains) replaced with a donor CDR. The antibody may be replaced with at least a portion of a non-human CDR or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding of the humanized antibody to PD-1. Preferably, the donor will be a rodent antibody, e.g., a rat or mouse antibody, and the recipient will be a human framework or a human consensus framework. Typically, the immunoglobulin providing the CDRs is called the “donor” and the immunoglobulin providing the framework is called the “acceptor.” In one embodiment, the donor immunoglobulin is a non-human (e.g., rodent). The acceptor framework is a naturally-occurring (e.g., a human) framework or a consensus framework, or a sequence about 85% or higher, preferably 90%, 95%, 99% or higher identical thereto.
As used herein, the term “consensus sequence” refers to the sequence formed from the most frequently occurring amino acids (or nucleotides) in a family of related sequences (See e.g., Winnaker, From Genes to Clones (Verlagsgesellschaft, Weinheim, Germany 1987). In a family of proteins, each position in the consensus sequence is occupied by the amino acid occurring most frequently at that position in the family. If two amino acids occur equally frequently, either can be included in the consensus sequence. A “consensus framework” refers to the framework region in the consensus immunoglobulin sequence.
An antibody can be humanized by methods known in the art (see e.g., Morrison, S. L., 1985, Science 229:1202-1207, by Oi et al., 1986, BioTechniques 4:214, and by Queen et al. U.S. Pat. Nos. 5,585,089, 5,693,761 and 5,693,762, the contents of all of which are hereby incorporated by reference).
Humanized or CDR-grafted antibodies can be produced by CDR-grafting or CDR substitution, wherein one, two, or all CDRs of an immunoglobulin chain can be replaced. See e.g., U.S. Pat. No. 5,225,539; Jones et al. 1986 Nature 321:552-525; Verhoeyan et al. 1988 Science 239:1534; Beidler et al. 1988 J. Immunol. 141:4053-4060; Winter U.S. Pat. No. 5,225,539, the contents of all of which are hereby expressly incorporated by reference. Winter describes a CDR-grafting method which may be used to prepare the humanized antibodies of the present invention (UK Patent Application GB 2188638A, filed on Mar. 26, 1987; Winter U.S. Pat. No. 5,225,539), the contents of which is expressly incorporated by reference.
Also within the scope of the invention are humanized antibodies in which specific amino acids have been substituted, deleted or added. Criteria for selecting amino acids from the donor are described in U.S. Pat. No. 5,585,089, e.g., columns 12-16 of U.S. Pat. No. 5,585,089, e.g., columns 12-16 of U.S. Pat. No. 5,585,089, the contents of which are hereby incorporated by reference. Other techniques for humanizing antibodies are described in Padlan et al. EP 519596 A1, published on Dec. 23, 1992.
The antibody molecule can be a single chain antibody. A single-chain antibody (scFV) may be engineered (see, for example, Colcher, D. et al. (1999) Ann N Y Acad Sci 880:263-80; and Reiter, Y. (1996) Clin Cancer Res 2:245-52). The single chain antibody can be dimerized or multimerized to generate multivalent antibodies having specificities for different epitopes of the same target protein.
In yet other embodiments, the antibody molecule has a heavy chain constant region chosen from, e.g., the heavy chain constant regions of IgG, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgD, and IgE; particularly, chosen from, e.g., the (e.g., human) heavy chain constant regions of IgG, IgG2, IgG3, and IgG4. In another embodiment, the antibody molecule has a light chain constant region chosen from, e.g., the (e.g., human) light chain constant regions of kappa or lambda. The constant region can be altered, e.g., mutated, to modify the properties of the antibody (e.g., to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, and/or complement function). In one embodiment the antibody has: effector function; and can fix complement. In other embodiments the antibody does not; recruit effector cells; or fix complement. In another embodiment, the antibody has reduced or no ability to bind an Fc receptor. For example, it is a isotype or subtype, fragment or other mutant, which does not support binding to an Fc receptor, e.g., it has a mutagenized or deleted Fc receptor binding region.
Methods for altering an antibody constant region are known in the art. Antibodies with altered function, e.g. altered affinity for an effector ligand, such as FcR on a cell, or the C1 component of complement can be produced by replacing at least one amino acid residue in the constant portion of the antibody with a different residue (see e.g., EP 388,151 A1, U.S. Pat. Nos. 5,624,821 and 5,648,260, the contents of all of which are hereby incorporated by reference). Similar type of alterations could be described which if applied to the murine, or other species immunoglobulin would reduce or eliminate these functions.
An antibody molecule can be derivatized or linked to another functional molecule (e.g., another peptide or protein). As used herein, a “derivatized” antibody molecule is one that has been modified. Methods of derivatization include but are not limited to the addition of a fluorescent moiety, a radionucleotide, a toxin, an enzyme or an affinity ligand such as biotin. Accordingly, the antibody molecules of the invention are intended to include derivatized and otherwise modified forms of the antibodies described herein, including immunoadhesion molecules. For example, an antibody molecule can be functionally linked (by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., a bispecific antibody or a diabody), a detectable agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate association of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).
One type of derivatized antibody molecule is produced by crosslinking two or more antibodies (of the same type or of different types, e.g., to create bispecific antibodies). Suitable crosslinkers include those that are heterobifunctional, having two distinctly reactive groups separated by an appropriate spacer (e.g., m-maleimidobenzoyl-N-hydroxysuccinimide ester) or homobifunctional (e.g., disuccinimidyl suberate). Such linkers are available from Pierce Chemical Company, Rockford, Ill.
An antibody molecules may be conjugated to another molecular entity, typically a label or a therapeutic (e.g., a cytotoxic or cytostatic) agent or moiety. Radioactive isotopes can be used in diagnostic or therapeutic applications. Radioactive isotopes that can be coupled to the anti-PSMA antibodies include, but are not limited to α-, β-, or γ-emitters, or β- and γ-emitters. Such radioactive isotopes include, but are not limited to iodine (131I or 125I), yttrium (90Y), lutetium (177Lu), actinium (225Ac), praseodymium, astatine (211At), rhenium (186Re), bismuth (212Bi or 213Bi), indium (111In), technetium (99mTc), phosphorus (32P), rhodium (18Rh), sulfur (35S), carbon (14C), tritium (3H), chromium (51Cr), chlorine (36Cl), cobalt (57Co or 58Co), iron (59Fe), selenium (75Se), or gallium (67Ga). Radioisotopes useful as therapeutic agents include yttrium (90Y), lutetium (177Lu), actinium (225Ac), praseodymium, astatine (211At), rhenium (186Re), bismuth (212Bi or 213Bi), and rhodium (188Rh). Radioisotopes useful as labels, e.g., for use in diagnostics, include iodine (131I or 125I), indium (111In), technetium (99mTc), phosphorus (32P), carbon (14C), and tritium (3H), or one or more of the therapeutic isotopes listed above.
The invention provides radiolabeled antibody molecules and methods of labeling the same. In one embodiment, a method of labeling an antibody molecule is disclosed. The method includes contacting an antibody molecule, with a chelating agent, to thereby produce a conjugated antibody. The conjugated antibody is radiolabeled with a radioisotope, e.g., 111Indium, 90Yttrium and 177Lutetium, to thereby produce a labeled antibody molecule. As is discussed above, the antibody molecule can be conjugated to a therapeutic agent. Therapeutically active radioisotopes have already been mentioned. Examples of other therapeutic agents include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, maytansinoids, e.g., maytansinol (see U.S. Pat. No. 5,208,020), CC-1065 (see U.S. Pat. Nos. 5,475,092, 5,585,499, 5,846, 545) and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, CC-1065, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclinies (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine, vinblastine, taxol and maytansinoids).
The combination therapies (e.g., methods and compositions described herein) can include an anti-CD73 antibody molecule and a second therapeutic agent, e.g., a second therapeutic agent chosen from one or more of: a chemotherapy, a targeted anti-cancer therapy, an oncolytic drug, a cytotoxic agent, an immune-based therapy, a cytokine, an activator of a costimulatory molecule, an inhibitor of an inhibitory molecule (e.g., an inhibitor of a checkpoint inhibitor), a vaccine, or a cellular immunotherapy, e.g., as described in Tables 1, and 7-14.
In some embodiments, a combination includes a formulation of the anti-CD73 antibody and the second therapeutic agent, with or without instructions for combined use or to combination products. The combined compounds can be manufactured and/or formulated by the same or different manufacturers. The combination partners may thus be entirely separate pharmaceutical dosage forms or pharmaceutical compositions that are also sold independently of each other. In embodiments, instructions for their combined use are provided: (i) prior to release to physicians (e.g. in the case of a “kit of part” comprising the compound of the disclosure and the other therapeutic agent); (ii) by the physicians themselves (or under the guidance of a physician) shortly before administration; (iii) the patient themselves by a physician or medical staff.
The combination therapies disclosed herein include an anti-CD73 antibody molecule. In one embodiment, an anti-CD73 antibody molecule is a full antibody molecule or an antigen-binding fragment thereof. In some embodiments, the anti-CD73 antibody molecule is chosen from any of the antibody molecules listed in Table 2. In other embodiments, the anti-CD73 antibody molecule comprises a heavy chain variable domain sequence, a light chain variable domain sequence, or both, as disclosed in Table 2. In certain embodiments, the anti-CD73 antibody molecule binds to a CD73 protein and reduces, e.g., inhibits or antagonizes, an activity of CD73, e.g., human CD73.
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2016/075099, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule is MEDI 9447, e.g., as disclosed in WO2016/075099. Alternative names for MEDI 9447 include clone 10.3 or 73combo3. MEDI 9447 is an IgG1 antibody that inhibits, e.g., antagonizes, an activity of CD73. MEDI 9447 and other anti-CD73 antibody molecules are also disclosed in WO2016/075176 and US2016/0129108, the entire contents of which are herein incorporated by reference in their entirety.
In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of MEDI 9477. The amino acid sequence of the heavy chain variable domain of MEDI 9477 is disclosed as SEQ ID NO: 1 (see Table 2). The amino acid sequence of the light chain variable domain of MEDI 9477 is disclosed as SEQ ID NO: 2 (see Table 2).
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2016/081748, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule is 11F11, e.g., as disclosed in WO2016/081748. 11F11 is an IgG2 antibody that inhibits, e.g., antagonizes, an activity of CD73. Antibodies derived from 11F11, e.g., CD73.4, and CD73.10; clones of 11F11, e.g., 11F11-1 and 11F11-2; and other anti-CD73 antibody molecules are disclosed in WO2016/081748 and U.S. Pat. No. 9,605,080, the entire contents of which are herein incorporated by reference in their entirety.
In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of 11F11-1 or 11F11-2. The amino acid sequence of the heavy chain variable domain of 11F11-1 is disclosed as SEQ ID NO: 8 (see Table 2). The amino acid sequence of the light chain variable domain of 11F11-1 is disclosed as SEQ ID NO: 9 (see Table 2). The amino acid sequence of the heavy chain variable domain of 11F11-2 is disclosed as SEQ ID NO: 5 (see Table 2). The amino acid sequence of the light chain variable domain of 11F11-2 is disclosed as SEQ ID NO: 6 (see Table 2). In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain, a light chain, or both, of 11F11-1 or 11F11-2. The heavy and light chain amino acid sequences of 11F11-1 are disclosed as SEQ ID NO: 3 and SEQ ID NO:7, respectively (see Table 2). The heavy and light chain amino acid sequences of 11F11-2 are disclosed as SEQ ID NO: 3 and SEQ ID NO:4, respectively (see Table 2).
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in e.g., U.S. Pat. No. 9,605,080, herein incorporated by reference in its entirety.
In one embodiment, the anti-CD73 antibody molecule is CD73.4, e.g., as disclosed in U.S. Pat. No. 9,605,080. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of CD73.4. The amino acid sequence of the heavy chain variable domain of CD73.4 is disclosed as SEQ ID NO: 10 (see Table 2). The amino acid sequence of the light chain variable domain of 11F11-2 is disclosed as SEQ ID NO: 11 (see Table 2).
In one embodiment, the anti-CD73 antibody molecule is CD73.10, e.g., as disclosed in U.S. Pat. No. 9,605,080. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of CD73.10. The amino acid sequence of the heavy chain variable domain of CD73.10 is disclosed as SEQ ID NO: 12 (see Table 2).
The amino acid sequence of the light chain variable domain of 11F11-2 is disclosed as SEQ ID NO: 13 (see Table 2).
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2009/0203538, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule is 067-213, e.g., as disclosed in WO2009/0203538.
In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of 067-213. The amino acid sequence of the heavy chain variable domain of 067-213 is disclosed as SEQ ID NO: 14 (see Table 2). The amino acid sequence of the light chain variable domain of 067-213 is disclosed as SEQ ID NO: 15 (see Table 2).
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in U.S. Pat. No. 9,090,697, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule is TY/23, e.g., as disclosed in U.S. Pat. No. 9,090,697. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of TY/23.
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2016/055609, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2016/055609.
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2016/146818, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2016/146818.
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2004/079013, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2004/079013.
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2012/125850, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2012/125850.
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2015/004400, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2015/004400.
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2007/146968, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2007146968.
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in US2007/0042392, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in US2007/0042392.
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in US2009/0138977, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in US2009/0138977.
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in Flocke et al., Eur J Cell Biol. 1992 June; 58(1):62-70, herein incorporated by reference in its entirety. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in Flocke et al., Eur J Cell Biol. 1992 June; 58(1):62-70.
In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in Stagg et al., PNAS. 2010 January 107(4): 1547-1552, herein incorporated by reference in its entirety. In some embodiments, the anti-CD73 antibody molecule is TY/23 or TY11.8, as disclosed in Stagg et al. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in Stagg et al.
The anti-CD73 antibody molecules used in the combination therapies disclosed herein can include any of the VH/VL sequences disclosed in Table 2, or an amino acid sequence substantially identical thereto (e.g., at least 80%, 85%, 90%, 95%, 99% or more identical thereto). Exemplary sequences for CD73 antibodies include:
(i) the VH and VL amino acid sequences for MEDI 9447, SEQ ID NOs: 1-2, respectively, or an amino acid sequence substantially identical thereto (e.g., at least 80%, 85%, 90%, 95%, 99% or more identical to SEQ ID NOs: 1-2);
(ii) the HC and LC amino acid sequences for 11F11-2, SEQ ID NOs: 3-4, respectively, or an amino acid sequence substantially identical thereto (e.g., at least 80%, 85%, 90%, 95%, 99% or more identical to SEQ ID NOs: 3-4);
(iii) the VH and VL amino acid sequences for 11F11-2, SEQ ID NOs: 5-6, respectively, or an amino acid sequence substantially identical thereto (e.g., at least 80%, 85%, 90%, 95%, 99% or more identical to SEQ ID NOs: 5-6);
(iv) the HC and LC amino acid sequences for 11F11-1, SEQ ID NOs: 3 and 7, respectively, or an amino acid sequence substantially identical thereto (e.g., at least 80%, 85%, 90%, 95%, 99% or more identical to SEQ ID NOs: 3 and 7);
(v) the VH and VL amino acid sequences for 11F11-1, SEQ ID NOs: 8-9, respectively, or an amino acid sequence substantially identical thereto (e.g., at least 80%, 85%, 90%, 95%, 99% or more identical to SEQ ID NOs: 8-9);
(vi) the VH and VL amino acid sequences for CD73.4, SEQ ID NOs: 10-11, respectively, or an amino acid sequence substantially identical thereto (e.g., at least 80%, 85%, 90%, 95%, 99% or more identical to SEQ ID NOs: 10-11);
(vii) the VH and VL amino acid sequences for CD73.10, SEQ ID NOs: 12-13, respectively, or an amino acid sequence substantially identical thereto (e.g., at least 80%, 85%, 90%, 95%, 99% or more identical to SEQ ID NOs: 12-13); or
(viii) the VH and VL amino acid sequences for 067-213, SEQ ID NOs: 14-15, respectively, or an amino acid sequence substantially identical thereto (e.g., at least 80%, 85%, 90%, 95%, 99% or more identical to SEQ ID NOs: 14-15).
The anti-CD73 antibody molecules can be used in combination with other therapies. For example, the combination therapy can include a composition of the present invention co-formulated with, and/or co-administered with, one or more additional therapeutic agents, e.g., one or more anti-cancer agents, cytotoxic or cytostatic agents, hormone treatment, vaccines, and/or other immunotherapies. In other embodiments, the antibody molecules are administered in combination with other therapeutic treatment modalities, including surgery, radiation, cryosurgery, and/or thermotherapy. Such combination therapies may advantageously utilize lower dosages of the administered therapeutic agents, thus avoiding possible toxicities or complications associated with the various monotherapies.
It is not intended to imply that the therapy or the therapeutic agents must be administered at the same time and/or formulated for delivery together, although these methods of delivery are within the scope described herein. The anti-CD73 antibody molecules can be administered concurrently with, prior to, or subsequent to, one or more other additional therapies or therapeutic agents. The anti-CD73 antibody molecule and the other agent or therapeutic protocol can be administered in any order. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent. In will further be appreciated that the additional therapeutic agent utilized in this combination may be administered together in a single composition or administered separately in different compositions. In general, it is expected that additional therapeutic agents utilized in combination be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.
In certain embodiments, the anti-CD73 molecules described herein are administered in combination with an adenosine A2A receptor (A2AR) antagonist. Exemplary A2AR antagonists include, e.g., PBF509 (Palobiofarma/Novartis), CPI444/V81444 (Corvus/Genentech), AZD4635/HTL-1071 (AstraZeneca/Heptares), Vipadenant (Redox/Juno), GBV-2034 (Globavir), AB928 (Arcus Biosciences), Theophylline, Istradefylline (Kyowa Hakko Kogyo), Tozadenant/SYN-115 (Acorda), KW-6356 (Kyowa Hakko Kogyo), ST-4206 (Leadiant Biosciences), and Preladenant/SCH 420814 (Merck/Schering).
In certain embodiments, the A2AR antagonist is PBF509. PBF509 and other A2AR antagonists are disclosed in U.S. Pat. No. 8,796,284 and WO 2017/025918, herein incorporated by reference in their entirety. PBF509 refers to 5-bromo-2,6-di-(1H-pyrazol-1-yl)pyrimidine-4-amine with the following structure:
In certain embodiments, the A2AR antagonist is CPI444/V81444. CPI-444 and other A2AR antagonists are disclosed in WO 2009/156737, herein incorporated by reference in its entirety. In certain embodiments, the A2AR antagonist is (S)-7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine. In certain embodiments, the A2AR antagonist is (R)-7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine, or racemate thereof. In certain embodiments, the A2AR antagonist is 7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine. In certain embodiments, the A2AR antagonist has the following structure:
In certain embodiments, the A2AR antagonist is AZD4635/HTL-1071. A2AR antagonists are disclosed in WO 2011/095625, herein incorporated by reference in its entirety.
In certain embodiments, the A2AR antagonist is 6-(2-chloro-6-methylpyridin-4-yl)-5-(4-fluorophenyl)-1,2,4-triazin-3-amine. In certain embodiments, the A2AR antagonist has the following structure:
In certain embodiments, the A2AR antagonist is ST-4206 (Leadiant Biosciences). In certain embodiments, the A2AR antagonist is an A2AR antagonist described in U.S. Pat. No. 9,133,197, herein incorporated by reference in its entirety. In certain embodiments, the A2AR antagonist has the following structure:
In certain embodiments, the A2AR antagonist is an A2AR antagonist described in U.S. Pat. Nos. 8,114,845, 9,029,393, US20170015758, or US20160129108, herein incorporated by reference in their entirety.
In certain embodiments, the A2AR antagonist is istradefylline (CAS Registry Number: 155270-99-8). Istradefylline is also known as KW-6002 or 8-[(E)-2-(3,4-dimethoxyphenyl)vinyl]-1,3-diethyl-7-methyl-3,7-dihydro-1H-purine-2,6-dione. Istradefylline is disclosed, e.g., in LeWitt et al. (2008) Annals of Neurology 63 (3): 295-302).
In certain embodiments, the A2aR antagonist is tozadenant (Biotie). Tozadenant is also known as SYN 115 or 4-hydroxy-N-(4-methoxy-7-morpholin-4-yl-1,3-benzothiazol-2-yl)-4-methylpiperidine-1-carboxamide. Tozadenant blocks the effect of endogenous adenosine at the A2a receptors, resulting in the potentiation of the effect of dopamine at the D2 receptor and inhibition of the effect of glutamate at the mGluR5 receptor. In some embodiments, the A2aR antagonist is preladenant (CAS Registry Number: 377727-87-2). Preladenant is also known as SCH 420814 or 2-(2-Furanyl)-7-[2-[4-[4-(2-methoxyethoxy)phenyl]-1-piperazinyl]ethyl]7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine-5-amine. Preladenant was developed as a drug that acted as a potent and selective antagonist at the adenosine A2A receptor.
In certain embodiments, the A2aR antagonist is vipadenan. Vipadenan is also known as BIIB014, V2006, or 3-[(4-amino-3-methylphenyl)methyl]-7-(furan-2-yl)triazolo[4,5-d]pyrimidin-5-amine.
Other exemplary A2aR antagonists include, e.g., ATL-444, MSX-3, SCH-58261, SCH-412,348, SCH-442,416, VER-6623, VER-6947, VER-7835, CGS-15943, or ZM-241,385.
In some embodiments, the A2aR antagonist is an A2aR pathway antagonist (e.g., a CD-73 inhibitor, e.g., an anti-CD73 antibody) is MEDI9447. MEDI9447 is a monoclonal antibody specific for CD73. Targeting the extracellular production of adenosine by CD73 may reduce the immunosuppressive effects of adenosine. MEDI9447 was reported to have a range of activities, e.g., inhibition of CD73 ectonucleotidase activity, relief from AMP-mediated lymphocyte suppression, and inhibition of syngeneic tumor growth. MEDI9447 can drive changes in both myeloid and lymphoid infiltrating leukocyte populations within the tumor microenvironment. These changes include, e.g., increases in CD8 effector cells and activated macrophages, as well as a reduction in the proportions of myeloid-derived suppressor cells (MDSC) and regulatory T lymphocytes.
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with a PD-1 inhibitor. The PD-1 inhibitor may be an antibody, an antigen binding fragment thereof, an immunoadhesin, a fusion protein, or an oligopeptide. In some embodiments, the PD-1 inhibitor is chosen from PDR001 (Novartis), Nivolumab (Bristol-Myers Squibb), Pembrolizumab (Merck & Co), Pidilizumab (CureTech), MEDI0680 (Medimmune), REGN2810 (Regeneron), TSR-042 (Tesaro), PF-06801591 (Pfizer), BGB-A317 (Beigene), BGB-108 (Beigene), INCSHR1210 (Incyte), or AMP-224 (Amplimmune).
In one embodiment, the PD-1 inhibitor is an anti-PD-1 antibody molecule. In one embodiment, the PD-1 inhibitor is an anti-PD-1 antibody molecule as described in US 2015/0210769, published on Jul. 30, 2015, entitled “Antibody Molecules to PD-1 and Uses Thereof,” incorporated by reference in its entirety.
In one embodiment, the anti-PD-1 antibody molecule comprises at least one, two, three, four, five or six complementarity determining regions (CDRs) (or collectively all of the CDRs) from a heavy and light chain variable region comprising an amino acid sequence shown in Table 5 (e.g., from the heavy and light chain variable region sequences of BAP049-Clone-E or BAP049-Clone-B disclosed in Table 5), or encoded by a nucleotide sequence shown in Table 5. In some embodiments, the CDRs are according to the Kabat definition (e.g., as set out in Table 5). In some embodiments, the CDRs are according to the Chothia definition (e.g., as set out in Table 5). In some embodiments, the CDRs are according to the combined CDR definitions of both Kabat and Chothia (e.g., as set out in Table 5). In one embodiment, the combination of Kabat and Chothia CDR of VH CDR1 comprises the amino acid sequence GYTFTTYWMH (SEQ ID NO: 541). In one embodiment, one or more of the CDRs (or collectively all of the CDRs) have one, two, three, four, five, six or more changes, e.g., amino acid substitutions (e.g., conservative amino acid substitutions) or deletions, relative to an amino acid sequence shown in Table 5, or encoded by a nucleotide sequence shown in Table 5.
In one embodiment, the anti-PD-1 antibody molecule comprises a heavy chain variable region (VH) comprising a VHCDR1 amino acid sequence of SEQ ID NO: 501, a VHCDR2 amino acid sequence of SEQ ID NO: 502, and a VHCDR3 amino acid sequence of SEQ ID NO: 503; and a light chain variable region (VL) comprising a VLCDR1 amino acid sequence of SEQ ID NO: 510, a VLCDR2 amino acid sequence of SEQ ID NO: 511, and a VLCDR3 amino acid sequence of SEQ ID NO: 512, each disclosed in Table 5.
In one embodiment, the antibody molecule comprises a VH comprising a VHCDR1 encoded by the nucleotide sequence of SEQ ID NO: 524, a VHCDR2 encoded by the nucleotide sequence of SEQ ID NO: 525, and a VHCDR3 encoded by the nucleotide sequence of SEQ ID NO: 526; and a VL comprising a VLCDR1 encoded by the nucleotide sequence of SEQ ID NO: 529, a VLCDR2 encoded by the nucleotide sequence of SEQ ID NO: 530, and a VLCDR3 encoded by the nucleotide sequence of SEQ ID NO: 531, each disclosed in Table 5.
In one embodiment, the anti-PD-1 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 506, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity or higher to SEQ ID NO: 506. In one embodiment, the anti-PD-1 antibody molecule comprises a VL comprising the amino acid sequence of SEQ ID NO: 520, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity or higher to SEQ ID NO: 520. In one embodiment, the anti-PD-1 antibody molecule comprises a VL comprising the amino acid sequence of SEQ ID NO: 516, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity or higher to SEQ ID NO: 516. In one embodiment, the anti-PD-1 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 506 and a VL comprising the amino acid sequence of SEQ ID NO: 520. In one embodiment, the anti-PD-1 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 506 and a VL comprising the amino acid sequence of SEQ ID NO: 516.
In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 507, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity or higher to SEQ ID NO: 507. In one embodiment, the antibody molecule comprises a VL encoded by the nucleotide sequence of SEQ ID NO: 521 or 517, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity or higher to SEQ ID NO: 521 or 517. In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 507 and a VL encoded by the nucleotide sequence of SEQ ID NO: 521 or 517.
In one embodiment, the anti-PD-1 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 508, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity or higher to SEQ ID NO: 508. In one embodiment, the anti-PD-1 antibody molecule comprises a light chain comprising the amino acid sequence of SEQ ID NO: 522, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity or higher to SEQ ID NO: 522. In one embodiment, the anti-PD-1 antibody molecule comprises a light chain comprising the amino acid sequence of SEQ ID NO: 518, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity or higher to SEQ ID NO: 518. In one embodiment, the anti-PD-1 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 508 and a light chain comprising the amino acid sequence of SEQ ID NO: 522. In one embodiment, the anti-PD-1 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 508 and a light chain comprising the amino acid sequence of SEQ ID NO: 518.
In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 509, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity or higher to SEQ ID NO: 509. In one embodiment, the antibody molecule comprises a light chain encoded by the nucleotide sequence of SEQ ID NO: 523 or 519, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity or higher to SEQ ID NO: 523 or 519. In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 509 and a light chain encoded by the nucleotide sequence of SEQ ID NO: 523 or 519.
The antibody molecules described herein can be made by vectors, host cells, and methods described in US 2015/0210769, incorporated by reference in its entirety.
In one embodiment, the anti-PD-1 antibody molecule is Nivolumab (Bristol-Myers Squibb), also known as MDX-1106, MDX-1106-04, ONO-4538, BMS-936558, or OPDIVO®. Nivolumab (clone 5C4) and other anti-PD-1 antibodies are disclosed in U.S. Pat. No. 8,008,449 and WO 2006/121168, incorporated by reference in their entirety. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Nivolumab, e.g., as disclosed in Table 6.
In one embodiment, the anti-PD-1 antibody molecule is Pembrolizumab (Merck & Co), also known as Lambrolizumab, MK-3475, MK03475, SCH-900475, or KEYTRUDA®. Pembrolizumab and other anti-PD-1 antibodies are disclosed in Hamid, O. et al. (2013) New England Journal of Medicine 369 (2): 134-44, U.S. Pat. No. 8,354,509, and WO 2009/114335, incorporated by reference in their entirety. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Pembrolizumab, e.g., as disclosed in Table 6.
In one embodiment, the anti-PD-1 antibody molecule is Pidilizumab (CureTech), also known as CT-011. Pidilizumab and other anti-PD-1 antibodies are disclosed in Rosenblatt, J. et al. (2011) J immunotherapy 34(5): 409-18, U.S. Pat. Nos. 7,695,715, 7,332,582, and 8,686,119, incorporated by reference in their entirety. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Pidilizumab, e.g., as disclosed in Table 6.
In one embodiment, the anti-PD-1 antibody molecule is MEDI0680 (Medimmune), also known as AMP-514. MEDI0680 and other anti-PD-1 antibodies are disclosed in U.S. Pat. No. 9,205,148 and WO 2012/145493, incorporated by reference in their entirety. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of MEDI0680.
In one embodiment, the anti-PD-1 antibody molecule is REGN2810 (Regeneron). In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of REGN2810.
In one embodiment, the anti-PD-1 antibody molecule is PF-06801591 (Pfizer). In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of PF-06801591.
In one embodiment, the anti-PD-1 antibody molecule is BGB-A317 or BGB-108 (Beigene). In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of BGB-A317 or BGB-108.
In one embodiment, the anti-PD-1 antibody molecule is INCSHR1210 (Incyte), also known as INCSHR01210 or SHR-1210. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of INCSHR1210.
In one embodiment, the anti-PD-1 antibody molecule is TSR-042 (Tesaro), also known as ANB011. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of TSR-042.
Further known anti-PD-1 antibodies include those described, e.g., in WO 2015/112800, WO 2016/092419, WO 2015/085847, WO 2014/179664, WO 2014/194302, WO 2014/209804, WO 2015/200119, U.S. Pat. Nos. 8,735,553, 7,488,802, 8,927,697, 8,993,731, and 9,102,727, incorporated by reference in their entirety.
In one embodiment, the anti-PD-1 antibody is an antibody that competes for binding with, and/or binds to the same epitope on PD-1 as, one of the anti-PD-1 antibodies described herein.
In one embodiment, the PD-1 inhibitor is a peptide that inhibits the PD-1 signaling pathway, e.g., as described in U.S. Pat. No. 8,907,053, incorporated by reference in its entirety. In one embodiment, the PD-1 inhibitor is an immunoadhesin (e.g., an immunoadhesin comprising an extracellular or PD-1 binding portion of PD-L1 or PD-L2 fused to a constant region (e.g., an Fc region of an immunoglobulin sequence). In one embodiment, the PD-1 inhibitor is AMP-224 (B7-DCIg (Amplimmune), e.g., disclosed in WO 2010/027827 and WO 2011/066342, incorporated by reference in their entirety).
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with a PD-L1 inhibitor. The PD-L1 inhibitor may be an antibody, an antigen binding fragment thereof, an immunoadhesin, a fusion protein, or an oligopeptide. In some embodiments, the PD-L1 inhibitor is chosen from FAZ053 (Novartis), Atezolizumab (Genentech/Roche), Avelumab (Merck Serono and Pfizer), Durvalumab (MedImmune/AstraZeneca), or BMS-936559 (Bristol-Myers Squibb).
In one embodiment, the PD-L1 inhibitor is an anti-PD-L1 antibody molecule. In one embodiment, the PD-L1 inhibitor is an anti-PD-L1 antibody molecule as disclosed in US 2016/0108123, published on Apr. 21, 2016, entitled “Antibody Molecules to PD-L1 and Uses Thereof,” incorporated by reference in its entirety.
In one embodiment, the anti-PD-L antibody molecule comprises at least one, two, three, four, five or six complementarity determining regions (CDRs) (or collectively all of the CDRs) from a heavy and light chain variable region comprising an amino acid sequence shown in Table 7 (e.g., from the heavy and light chain variable region sequences of BAP058-Clone O or BAP058-Clone N disclosed in Table 7), or encoded by a nucleotide sequence shown in Table 7. In some embodiments, the CDRs are according to the Kabat definition (e.g., as set out in Table 7). In some embodiments, the CDRs are according to the Chothia definition (e.g., as set out in Table 7). In some embodiments, the CDRs are according to the combined CDR definitions of both Kabat and Chothia (e.g., as set out in Table 7). In one embodiment, the combination of Kabat and Chothia CDR of VH CDR1 comprises the amino acid sequence GYTFTSYWMY (SEQ ID NO: 647). In one embodiment, one or more of the CDRs (or collectively all of the CDRs) have one, two, three, four, five, six or more changes, e.g., amino acid substitutions (e.g., conservative amino acid substitutions) or deletions, relative to an amino acid sequence shown in Table 7, or encoded by a nucleotide sequence shown in Table 7.
In one embodiment, the anti-PD-L1 antibody molecule comprises a heavy chain variable region (VH) comprising a VHCDR1 amino acid sequence of SEQ ID NO: 601, a VHCDR2 amino acid sequence of SEQ ID NO: 602, and a VHCDR3 amino acid sequence of SEQ ID NO: 603; and a light chain variable region (VL) comprising a VLCDR1 amino acid sequence of SEQ ID NO: 609, a VLCDR2 amino acid sequence of SEQ ID NO: 610, and a VLCDR3 amino acid sequence of SEQ ID NO: 611, each disclosed in Table 7.
In one embodiment, the anti-PD-L1 antibody molecule comprises a VH comprising a VHCDR1 encoded by the nucleotide sequence of SEQ ID NO: 628, a VHCDR2 encoded by the nucleotide sequence of SEQ ID NO: 629, and a VHCDR3 encoded by the nucleotide sequence of SEQ ID NO: 630; and a VL comprising a VLCDR1 encoded by the nucleotide sequence of SEQ ID NO: 633, a VLCDR2 encoded by the nucleotide sequence of SEQ ID NO: 634, and a VLCDR3 encoded by the nucleotide sequence of SEQ ID NO: 635, each disclosed in Table 7.
In one embodiment, the anti-PD-L1 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 606, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 606. In one embodiment, the anti-PD-L1 antibody molecule comprises a VL comprising the amino acid sequence of SEQ ID NO: 616, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity or higher to SEQ ID NO: 616. In one embodiment, the anti-PD-L1 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 620, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 620. In one embodiment, the anti-PD-L1 antibody molecule comprises a VL comprising the amino acid sequence of SEQ ID NO: 624, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 624. In one embodiment, the anti-PD-L1 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 606 and a VL comprising the amino acid sequence of SEQ ID NO: 616. In one embodiment, the anti-PD-L1 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 620 and a VL comprising the amino acid sequence of SEQ ID NO: 624.
In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 607, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 607. In one embodiment, the antibody molecule comprises a VL encoded by the nucleotide sequence of SEQ ID NO: 617, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 617. In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 621, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 621. In one embodiment, the antibody molecule comprises a VL encoded by the nucleotide sequence of SEQ ID NO: 625, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 625. In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 607 and a VL encoded by the nucleotide sequence of SEQ ID NO: 617. In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 621 and a VL encoded by the nucleotide sequence of SEQ ID NO: 625.
In one embodiment, the anti-PD-L1 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 608, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 608. In one embodiment, the anti-PD-L1 antibody molecule comprises a light chain comprising the amino acid sequence of SEQ ID NO: 618, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 618. In one embodiment, the anti-PD-L1 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 622, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 622. In one embodiment, the anti-PD-L1 antibody molecule comprises a light chain comprising the amino acid sequence of SEQ ID NO: 626, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 626. In one embodiment, the anti-PD-L1 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 608 and a light chain comprising the amino acid sequence of SEQ ID NO: 618. In one embodiment, the anti-PD-L1 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 622 and a light chain comprising the amino acid sequence of SEQ ID NO: 626.
In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 615, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 615. In one embodiment, the antibody molecule comprises a light chain encoded by the nucleotide sequence of SEQ ID NO: 619, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 619. In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 623, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 623. In one embodiment, the antibody molecule comprises a light chain encoded by the nucleotide sequence of SEQ ID NO: 627, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 627. In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 615 and a light chain encoded by the nucleotide sequence of SEQ ID NO: 619. In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 623 and a light chain encoded by the nucleotide sequence of SEQ ID NO: 627.
The antibody molecules described herein can be made by vectors, host cells, and methods described in US 2016/0108123, incorporated by reference in its entirety.
In one embodiment, the anti-PD-L1 antibody molecule is Atezolizumab (Genentech/Roche), also known as MPDL3280A, RG7446, RO5541267, YW243.55.S70, or TECENTRIQ™. Atezolizumab and other anti-PD-L1 antibodies are disclosed in U.S. Pat. No. 8,217,149, incorporated by reference in its entirety. In one embodiment, the anti-PD-L1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Atezolizuma, e.g., as disclosed in Table 8.
In one embodiment, the anti-PD-L1 antibody molecule is Avelumab (Merck Serono and Pfizer), also known as MSB0010718C. Avelumab and other anti-PD-L1 antibodies are disclosed in WO 2013/079174, incorporated by reference in its entirety. In one embodiment, the anti-PD-L1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Avelumab, e.g., as disclosed in Table 8.
In one embodiment, the anti-PD-L antibody molecule is Durvalumab (MedImmune/AstraZeneca), also known as MEDI4736. Durvalumab and other anti-PD-L1 antibodies are disclosed in U.S. Pat. No. 8,779,108, incorporated by reference in its entirety. In one embodiment, the anti-PD-L1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Durvalumab, e.g., as disclosed in Table 8.
In one embodiment, the anti-PD-L antibody molecule is BMS-936559 (Bristol-Myers Squibb), also known as MDX-1105 or 12A4. BMS-936559 and other anti-PD-L antibodies are disclosed in U.S. Pat. No. 7,943,743 and WO 2015/081158, incorporated by reference in their entirety. In one embodiment, the anti-PD-L1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of BMS-936559, e.g., as disclosed in Table 8.
Further known anti-PD-L1 antibodies include those described, e.g., in WO 2015/181342, WO 2014/100079, WO 2016/000619, WO 2014/022758, WO 2014/055897, WO 2015/061668, WO 2013/079174, WO 2012/145493, WO 2015/112805, WO 2015/109124, WO 2015/195163, U.S. Pat. Nos. 8,168,179, 8,552,154, 8,460,927, and 9,175,082, incorporated by reference in their entirety.
In one embodiment, the anti-PD-L antibody is an antibody that competes for binding with, and/or binds to the same epitope on PD-L1 as, one of the anti-PD-L1 antibodies described herein.
In certain embodiments, the anti-CD73 molecule described herein is administered in combination with a LAG-3 inhibitor known in the art. The LAG-3 inhibitor may be an antibody, an antigen binding fragment thereof, an immunoadhesin, a fusion protein, or oligopeptide. In some embodiments, the LAG-3 inhibitor is chosen from LAG525 (Novartis), BMS-986016 (Bristol-Myers Squibb), TSR-033 (Tesaro), MK-4280 (Merck & Co), or REGN3767 (Regeneron).
In one embodiment, the LAG-3 inhibitor is an anti-LAG-3 antibody molecule. In one embodiment, the LAG-3 inhibitor is an anti-LAG-3 antibody molecule as disclosed in US 2015/0259420, published on Sep. 17, 2015, entitled “Antibody Molecules to LAG-3 and Uses Thereof,” incorporated by reference in its entirety.
In one embodiment, the anti-LAG-3 antibody molecule comprises at least one, two, three, four, five or six complementarity determining regions (CDRs) (or collectively all of the CDRs) from a heavy and light chain variable region comprising an amino acid sequence shown in Table 9 (e.g., from the heavy and light chain variable region sequences of BAP050-Clone I or BAP050-Clone J disclosed in Table 9), or encoded by a nucleotide sequence shown in Table 9. In some embodiments, the CDRs are according to the Kabat definition (e.g., as set out in Table 9). In some embodiments, the CDRs are according to the Chothia definition (e.g., as set out in Table 9). In some embodiments, the CDRs are according to the combined CDR definitions of both Kabat and Chothia (e.g., as set out in Table 9). In one embodiment, the combination of Kabat and Chothia CDR of VH CDR1 comprises the amino acid sequence GFTLTNYGMN (SEQ ID NO: 766). In one embodiment, one or more of the CDRs (or collectively all of the CDRs) have one, two, three, four, five, six or more changes, e.g., amino acid substitutions (e.g., conservative amino acid substitutions) or deletions, relative to an amino acid sequence shown in Table 9, or encoded by a nucleotide sequence shown in Table 9.
In one embodiment, the anti-LAG-3 antibody molecule comprises a heavy chain variable region (VH) comprising a VHCDR1 amino acid sequence of SEQ ID NO: 701, a VHCDR2 amino acid sequence of SEQ ID NO: 702, and a VHCDR3 amino acid sequence of SEQ ID NO: 703; and a light chain variable region (VL) comprising a VLCDR1 amino acid sequence of SEQ ID NO: 710, a VLCDR2 amino acid sequence of SEQ ID NO: 711, and a VLCDR3 amino acid sequence of SEQ ID NO: 712, each disclosed in Table 9.
In one embodiment, the anti-LAG-3 antibody molecule comprises a VH comprising a VHCDR1 encoded by the nucleotide sequence of SEQ ID NO: 736 or 737, a VHCDR2 encoded by the nucleotide sequence of SEQ ID NO: 738 or 739, and a VHCDR3 encoded by the nucleotide sequence of SEQ ID NO: 740 or 741; and a VL comprising a VLCDR1 encoded by the nucleotide sequence of SEQ ID NO: 746 or 747, a VLCDR2 encoded by the nucleotide sequence of SEQ ID NO: 748 or 749, and a VLCDR3 encoded by the nucleotide sequence of SEQ ID NO: 750 or 751, each disclosed in Table 9. In one embodiment, the anti-LAG-3 antibody molecule comprises a VH comprising a VHCDR1 encoded by the nucleotide sequence of SEQ ID NO: 758 or 737, a VHCDR2 encoded by the nucleotide sequence of SEQ ID NO: 759 or 739, and a VHCDR3 encoded by the nucleotide sequence of SEQ ID NO: 760 or 741; and a VL comprising a VLCDR1 encoded by the nucleotide sequence of SEQ ID NO: 746 or 747, a VLCDR2 encoded by the nucleotide sequence of SEQ ID NO: 748 or 749, and a VLCDR3 encoded by the nucleotide sequence of SEQ ID NO: 750 or 751, each disclosed in Table 9.
In one embodiment, the anti-LAG-3 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 706, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 706. In one embodiment, the anti-LAG-3 antibody molecule comprises a VL comprising the amino acid sequence of SEQ ID NO: 718, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 718. In one embodiment, the anti-LAG-3 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 724, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 724. In one embodiment, the anti-LAG-3 antibody molecule comprises a VL comprising the amino acid sequence of SEQ ID NO: 730, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 730. In one embodiment, the anti-LAG-3 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 706 and a VL comprising the amino acid sequence of SEQ ID NO: 718. In one embodiment, the anti-LAG-3 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 724 and a VL comprising the amino acid sequence of SEQ ID NO: 730.
In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 707 or 708, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 707 or 708. In one embodiment, the antibody molecule comprises a VL encoded by the nucleotide sequence of SEQ ID NO: 719 or 720, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 719 or 720. In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 725 or 726, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 725 or 726. In one embodiment, the antibody molecule comprises a VL encoded by the nucleotide sequence of SEQ ID NO: 731 or 732, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 731 or 732. In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 707 or 708 and a VL encoded by the nucleotide sequence of SEQ ID NO: 719 or 720. In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 725 or 726 and a VL encoded by the nucleotide sequence of SEQ ID NO: 731 or 732.
In one embodiment, the anti-LAG-3 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 709, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 709. In one embodiment, the anti-LAG-3 antibody molecule comprises a light chain comprising the amino acid sequence of SEQ ID NO: 721, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 721. In one embodiment, the anti-LAG-3 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 727, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 727. In one embodiment, the anti-LAG-3 antibody molecule comprises a light chain comprising the amino acid sequence of SEQ ID NO: 733, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 733. In one embodiment, the anti-LAG-3 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 709 and a light chain comprising the amino acid sequence of SEQ ID NO: 721. In one embodiment, the anti-LAG-3 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 727 and a light chain comprising the amino acid sequence of SEQ ID NO: 733.
In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 716 or 717, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 716 or 717. In one embodiment, the antibody molecule comprises a light chain encoded by the nucleotide sequence of SEQ ID NO: 722 or 723, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 722 or 723. In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 728 or 729, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 728 or 729. In one embodiment, the antibody molecule comprises a light chain encoded by the nucleotide sequence of SEQ ID NO: 734 or 735, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 734 or 735. In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 716 or 717 and a light chain encoded by the nucleotide sequence of SEQ ID NO: 722 or 723. In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 728 or 729 and a light chain encoded by the nucleotide sequence of SEQ ID NO: 734 or 735.
The antibody molecules described herein can be made by vectors, host cells, and methods described in US 2015/0259420, incorporated by reference in its entirety.
In one embodiment, the anti-LAG-3 antibody molecule is BMS-986016 (Bristol-Myers Squibb), also known as BMS986016. BMS-986016 and other anti-LAG-3 antibodies are disclosed in WO 2015/116539 and U.S. Pat. No. 9,505,839, incorporated by reference in their entirety. In one embodiment, the anti-LAG-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of BMS-986016, e.g., as disclosed in Table 10.
In one embodiment, the anti-LAG-3 antibody molecule is TSR-033 (Tesaro). In one embodiment, the anti-LAG-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of TSR-033.
In one embodiment, the anti-LAG-3 antibody molecule is MK-4280 (Merck & Co). In one embodiment, the anti-LAG-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of MK-4280.
In one embodiment, the anti-LAG-3 antibody molecule is REGN3767 (Regeneron). In one embodiment, the anti-LAG-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of REGN3767.
In one embodiment, the anti-LAG-3 antibody molecule is IMP731 or GSK2831781 (GSK and Prima BioMed). IMP731 and other anti-LAG-3 antibodies are disclosed in WO 2008/132601 and U.S. Pat. No. 9,244,059, incorporated by reference in their entirety. In one embodiment, the anti-LAG-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of IMP731, e.g., as disclosed in Table 10. In one embodiment, the anti-LAG-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of GSK2831781.
In one embodiment, the anti-LAG-3 antibody molecule is IMP761 (Prima BioMed). In one embodiment, the anti-LAG-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of IMP761.
Further known anti-LAG-3 antibodies include those described, e.g., in WO 2008/132601, WO 2010/019570, WO 2014/140180, WO 2015/116539, WO 2015/200119, WO 2016/028672, U.S. Pat. Nos. 9,244,059, 9,505,839, incorporated by reference in their entirety.
In one embodiment, the anti-LAG-3 antibody is an antibody that competes for binding with, and/or binds to the same epitope on LAG-3 as, one of the anti-LAG-3 antibodies described herein.
In one embodiment, the anti-LAG-3 inhibitor is a soluble LAG-3 protein, e.g., IMP321 (Prima BioMed), e.g., as disclosed in WO 2009/044273, incorporated by reference in its entirety.
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with a TIM-3 inhibitor. The TIM-3 inhibitor may be an antibody, an antigen binding fragment thereof, an immunoadhesin, a fusion protein, or an oligopeptide. In some embodiments, the TIM-3 inhibitor is chosen from MGB453 (Novartis), TSR-022 (Tesaro), or LY3321367 (Eli Lilly).
In one embodiment, the TIM-3 inhibitor is an anti-TIM-3 antibody molecule. In one embodiment, the TIM-3 inhibitor is an anti-TIM-3 antibody molecule as disclosed in US 2015/0218274, published on Aug. 6, 2015, entitled “Antibody Molecules to TIM-3 and Uses Thereof,” incorporated by reference in its entirety.
In one embodiment, the anti-TIM-3 antibody molecule comprises at least one, two, three, four, five or six complementarity determining regions (CDRs) (or collectively all of the CDRs) from a heavy and light chain variable region comprising an amino acid sequence shown in Table 11 (e.g., from the heavy and light chain variable region sequences of ABTIM3-huml 1 or ABTIM3-hum03 disclosed in Table 11), or encoded by a nucleotide sequence shown in Table 11. In some embodiments, the CDRs are according to the Kabat definition (e.g., as set out in Table 11). In some embodiments, the CDRs are according to the Chothia definition (e.g., as set out in Table 11). In one embodiment, one or more of the CDRs (or collectively all of the CDRs) have one, two, three, four, five, six or more changes, e.g., amino acid substitutions (e.g., conservative amino acid substitutions) or deletions, relative to an amino acid sequence shown in Table 11, or encoded by a nucleotide sequence shown in Table 11.
In one embodiment, the anti-TIM-3 antibody molecule comprises a heavy chain variable region (VH) comprising a VHCDR1 amino acid sequence of SEQ ID NO: 801, a VHCDR2 amino acid sequence of SEQ ID NO: 802, and a VHCDR3 amino acid sequence of SEQ ID NO: 803; and a light chain variable region (VL) comprising a VLCDR1 amino acid sequence of SEQ ID NO: 810, a VLCDR2 amino acid sequence of SEQ ID NO: 811, and a VLCDR3 amino acid sequence of SEQ ID NO: 812, each disclosed in Table 11. In one embodiment, the anti-TIM-3 antibody molecule comprises a heavy chain variable region (VH) comprising a VHCDR1 amino acid sequence of SEQ ID NO: 801, a VHCDR2 amino acid sequence of SEQ ID NO: 820, and a VHCDR3 amino acid sequence of SEQ ID NO: 803; and a light chain variable region (VL) comprising a VLCDR1 amino acid sequence of SEQ ID NO: 810, a VLCDR2 amino acid sequence of SEQ ID NO: 811, and a VLCDR3 amino acid sequence of SEQ ID NO: 812, each disclosed in Table 11.
In one embodiment, the anti-TIM-3 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 806, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 806. In one embodiment, the anti-TIM-3 antibody molecule comprises a VL comprising the amino acid sequence of SEQ ID NO: 816, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 816. In one embodiment, the anti-TIM-3 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 822, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 822. In one embodiment, the anti-TIM-3 antibody molecule comprises a VL comprising the amino acid sequence of SEQ ID NO: 826, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 826. In one embodiment, the anti-TIM-3 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 806 and a VL comprising the amino acid sequence of SEQ ID NO: 816. In one embodiment, the anti-TIM-3 antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 822 and a VL comprising the amino acid sequence of SEQ ID NO: 826.
In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 807, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 807. In one embodiment, the antibody molecule comprises a VL encoded by the nucleotide sequence of SEQ ID NO: 817, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 817. In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 823, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 823. In one embodiment, the antibody molecule comprises a VL encoded by the nucleotide sequence of SEQ ID NO: 827, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 827. In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 807 and a VL encoded by the nucleotide sequence of SEQ ID NO: 817. In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 823 and a VL encoded by the nucleotide sequence of SEQ ID NO: 827.
In one embodiment, the anti-TIM-3 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 808, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 808. In one embodiment, the anti-TIM-3 antibody molecule comprises a light chain comprising the amino acid sequence of SEQ ID NO: 818, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 818. In one embodiment, the anti-TIM-3 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 824, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 824. In one embodiment, the anti-TIM-3 antibody molecule comprises a light chain comprising the amino acid sequence of SEQ ID NO: 828, or an amino acid sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 828. In one embodiment, the anti-TIM-3 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 808 and a light chain comprising the amino acid sequence of SEQ ID NO: 818. In one embodiment, the anti-TIM-3 antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 824 and a light chain comprising the amino acid sequence of SEQ ID NO: 828.
In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 809, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 809. In one embodiment, the antibody molecule comprises a light chain encoded by the nucleotide sequence of SEQ ID NO: 819, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 819. In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 825, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 825. In one embodiment, the antibody molecule comprises a light chain encoded by the nucleotide sequence of SEQ ID NO: 829, or a nucleotide sequence having at least about 85%, 90%, 95%, or 99% sequence identity to SEQ ID NO: 829. In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 809 and a light chain encoded by the nucleotide sequence of SEQ ID NO: 819. In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 825 and a light chain encoded by the nucleotide sequence of SEQ ID NO: 829.
The antibody molecules described herein can be made by vectors, host cells, and methods described in US 2015/0218274, incorporated by reference in its entirety.
In one embodiment, the anti-TIM-3 antibody molecule is TSR-022 (AnaptysBio/Tesaro). In one embodiment, the anti-TIM-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of TSR-022. In one embodiment, the anti-TIM-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of APE5137 or APE5121, e.g., as disclosed in Table 12. APE5137, APE5121, and other anti-TIM-3 antibodies are disclosed in WO 2016/161270, incorporated by reference in its entirety.
In one embodiment, the anti-TIM-3 antibody molecule is LY3321367 (Eli Lilly). In one embodiment, the anti-TIM-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of LY3321367.
In one embodiment, the anti-TIM-3 antibody molecule is the antibody clone F38-2E2. In one embodiment, the anti-TIM-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of F38-2E2.
Further known anti-TIM-3 antibodies include those described, e.g., in WO 2016/111947, WO 2016/071448, WO 2016/144803, U.S. Pat. Nos. 8,552,156, 8,841,418, and 9,163,087, incorporated by reference in their entirety.
In one embodiment, the anti-TIM-3 antibody is an antibody that competes for binding with, and/or binds to the same epitope on TIM-3 as, one of the anti-TIM-3 antibodies described herein.
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with a CTLA-4 inhibitor. The CTLA-4 inhibitor may be an antibody, an antigen binding fragment thereof, an immunoadhesin, a fusion protein, or an oligopeptide. In some embodiments, the CTLA-4 inhibitor is Ipilimumab (Yervoy®, Bristol-Myers Squibb) or Tremelimumab (Pfizer). The antibody Ipilimumab and other anti-CTLA-4 antibodies are disclosed in U.S. Pat. No. 6,984,720, herein incorporated by reference. The antibody Tremelimumab and other anti-CTLA-4 antibodies are disclosed in U.S. Pat. No. 7,411,057, herein incorporated by reference.
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with a GITR agonist. The GITR agonist may be an antibody, an antigen binding fragment thereof, an immunoadhesin, a fusion protein, or an oligopeptide. In some embodiments, the GITR agonist is GWN323 (Novartis), BMS-986156 (BMS), MK-4166 or MK-1248 (Merck), TRX518 (Leap Therapeutics), INCAGN1876 (Incyte/Agenus), AMG 228 (Amgen), or INBRX-110 (Inhibrx).
In one embodiment, the GITR agonist is an anti-GITR antibody molecule. In one embodiment, the GITR agonist is an anti-GITR antibody molecule as described in WO 2016/057846, published on Apr. 14, 2016, entitled “Compositions and Methods of Use for Augmented Immune Response and Cancer Therapy,” incorporated by reference in its entirety.
In one embodiment, the anti-GITR antibody molecule comprises at least one, two, three, four, five or six complementarity determining regions (CDRs) (or collectively all of the CDRs) from a heavy and light chain variable region comprising an amino acid sequence shown in Table 13 (e.g., from the heavy and light chain variable region sequences of MAB7 disclosed in Table 13), or encoded by a nucleotide sequence shown in Table 13. In some embodiments, the CDRs are according to the Kabat definition (e.g., as set out in Table 13). In some embodiments, the CDRs are according to the Chothia definition (e.g., as set out in Table 13). In one embodiment, one or more of the CDRs (or collectively all of the CDRs) have one, two, three, four, five, six or more changes, e.g., amino acid substitutions (e.g., conservative amino acid substitutions) or deletions, relative to an amino acid sequence shown in Table 13, or encoded by a nucleotide sequence shown in Table 13.
In one embodiment, the anti-GITR antibody molecule comprises a heavy chain variable region (VH) comprising a VHCDR1 amino acid sequence of SEQ ID NO: 909, a VHCDR2 amino acid sequence of SEQ ID NO: 911, and a VHCDR3 amino acid sequence of SEQ ID NO: 913; and a light chain variable region (VL) comprising a VLCDR1 amino acid sequence of SEQ ID NO: 914, a VLCDR2 amino acid sequence of SEQ ID NO: 916, and a VLCDR3 amino acid sequence of SEQ ID NO: 918, each disclosed in Table 13.
In one embodiment, the anti-GITR antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 901, or an amino acid sequence at least 85%, 90%, 95%, or 99% identical or higher to SEQ ID NO: 901. In one embodiment, the anti-GITR antibody molecule comprises a VL comprising the amino acid sequence of SEQ ID NO: 902, or an amino acid sequence at least 85%, 90%, 95%, or 99% identical or higher to SEQ ID NO: 902. In one embodiment, the anti-GITR antibody molecule comprises a VH comprising the amino acid sequence of SEQ ID NO: 901 and a VL comprising the amino acid sequence of SEQ ID NO: 902.
In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 905, or a nucleotide sequence at least 85%, 90%, 95%, or 99% identical or higher to SEQ ID NO: 905. In one embodiment, the antibody molecule comprises a VL encoded by the nucleotide sequence of SEQ ID NO: 906, or a nucleotide sequence at least 85%, 90%, 95%, or 99% identical or higher to SEQ ID NO: 906. In one embodiment, the antibody molecule comprises a VH encoded by the nucleotide sequence of SEQ ID NO: 905 and a VL encoded by the nucleotide sequence of SEQ ID NO: 906.
In one embodiment, the anti-GITR antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 903, or an amino acid sequence at least 85%, 90%, 95%, or 99% identical or higher to SEQ ID NO: 903. In one embodiment, the anti-GITR antibody molecule comprises a light chain comprising the amino acid sequence of SEQ ID NO: 904, or an amino acid sequence at least 85%, 90%, 95%, or 99% identical or higher to SEQ ID NO: 904. In one embodiment, the anti-GITR antibody molecule comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 903 and a light chain comprising the amino acid sequence of SEQ ID NO: 904.
In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 907, or a nucleotide sequence at least 85%, 90%, 95%, or 99% identical or higher to SEQ ID NO: 907. In one embodiment, the antibody molecule comprises a light chain encoded by the nucleotide sequence of SEQ ID NO: 908, or a nucleotide sequence at least 85%, 90%, 95%, or 99% identical or higher to SEQ ID NO: 908. In one embodiment, the antibody molecule comprises a heavy chain encoded by the nucleotide sequence of SEQ ID NO: 907 and a light chain encoded by the nucleotide sequence of SEQ ID NO: 908.
The antibody molecules described herein can be made by vectors, host cells, and methods described in WO 2016/057846, incorporated by reference in its entirety.
In one embodiment, the anti-GITR antibody molecule is BMS-986156 (Bristol-Myers Squibb), also known as BMS 986156 or BMS986156. BMS-986156 and other anti-GITR antibodies are disclosed, e.g., in U.S. Pat. No. 9,228,016 and WO 2016/196792, incorporated by reference in their entirety. In one embodiment, the anti-GITR antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of BMS-986156, e.g., as disclosed in Table 14.
In one embodiment, the anti-GITR antibody molecule is MK-4166 or MK-1248 (Merck). MK-4166, MK-1248, and other anti-GITR antibodies are disclosed, e.g., in U.S. Pat. No. 8,709,424, WO 2011/028683, WO 2015/026684, and Mahne et al. Cancer Res. 2017; 77(5):1108-1118, incorporated by reference in their entirety. In one embodiment, the anti-GITR antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of MK-4166 or MK-1248.
In one embodiment, the anti-GITR antibody molecule is TRX518 (Leap Therapeutics). TRX518 and other anti-GITR antibodies are disclosed, e.g., in U.S. Pat. Nos. 7,812,135, 8,388,967, 9,028,823, WO 2006/105021, and Ponte J et al. (2010) Clinical Immunology; 135:S96, incorporated by reference in their entirety. In one embodiment, the anti-GITR antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of TRX518.
In one embodiment, the anti-GITR antibody molecule is INCAGN1876 (Incyte/Agenus). INCAGN1876 and other anti-GITR antibodies are disclosed, e.g., in US 2015/0368349 and WO 2015/184099, incorporated by reference in their entirety. In one embodiment, the anti-GITR antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of INCAGN1876.
In one embodiment, the anti-GITR antibody molecule is AMG 228 (Amgen). AMG 228 and other anti-GITR antibodies are disclosed, e.g., in U.S. Pat. No. 9,464,139 and WO 2015/031667, incorporated by reference in their entirety. In one embodiment, the anti-GITR antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of AMG 228.
In one embodiment, the anti-GITR antibody molecule is INBRX-110 (Inhibrx). INBRX-110 and other anti-GITR antibodies are disclosed, e.g., in US 2017/0022284 and WO 2017/015623, incorporated by reference in their entirety. In one embodiment, the GITR agonist comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of INBRX-110.
In one embodiment, the GITR agonist (e.g., a fusion protein) is MEDI 1873 (MedImmune), also known as MEDI1873. MEDI 1873 and other GITR agonists are disclosed, e.g., in US 2017/0073386, WO 2017/025610, and Ross et al. Cancer Res 2016; 76(14 Suppl): Abstract nr 561, incorporated by reference in their entirety. In one embodiment, the GITR agonist comprises one or more of an IgG Fc domain, a functional multimerization domain, and a receptor binding domain of a glucocorticoid-induced TNF receptor ligand (GITRL) of MEDI 1873.
Further known GITR agonists (e.g., anti-GITR antibodies) include those described, e.g., in WO 2016/054638, incorporated by reference in its entirety.
In one embodiment, the anti-GITR antibody is an antibody that competes for binding with, and/or binds to the same epitope on GITR as, one of the anti-GITR antibodies described herein.
In one embodiment, the GITR agonist is a peptide that activates the GITR signaling pathway. In one embodiment, the GITR agonist is an immunoadhesin binding fragment (e.g., an immunoadhesin binding fragment comprising an extracellular or GITR binding portion of GITRL) fused to a constant region (e.g., an Fc region of an immunoglobulin sequence).
Exemplary anti-CD3 multispecific antibody molecules In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with an anti-CD3 multispecific antibody molecule (e.g., an anti-CD3 bispecific antibody molecule). In one embodiment, the anti-CD3 multispecific antibody molecule binds to CD3 and a target tumor antigen (TTA). In one embodiment, the TTA is chosen from CD19, CD20, CD38, or CD123. In one embodiment, the anti-CD3 multispecific antibody molecule is in a format disclosed in FIGS. 1A, 1B, 1C, and 125 of WO 2016/182751, herein incorporated by reference in its entirety.
In one embodiment, the anti-CD3 multispecific antibody molecule is an anti-CD3×anti-CD123 bispecific antibody molecule, e.g., XENP14045 (e.g., as set out in Table 15) or an anti-CD3×anti-CD123 bispecific antibody molecule disclosed in WO 2016/086189 or WO 2016/182751, herein incorporated by reference in their entirety. In one embodiment, the anti-CD3×anti-CD123 bispecific antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of XENP14045, or an amino acid sequence substantially identical thereto (e.g., a sequence having at least about 85%, 90%, or 95% sequence identity thereto).
In one embodiment, the anti-CD3 multispecific antibody is an anti-CD3×anti-CD20 bispecific antibody molecule, e.g., XENP13676 (e.g., as set out in Table 15) or an anti-CD3×anti-CD20 bispecific antibody molecule disclosed in WO 2016/086189 or WO 2016/182751, herein incorporated by reference in their entirety. In one embodiment, the anti-CD3×anti-CD20 bispecific antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of XENP13676, or an amino acid sequence substantially identical thereto (e.g., a sequence having at least about 85%, 90%, or 95% sequence identity thereto).
Exemplary IL15/IL-15Ra complexes
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with an IL-15/IL-15Ra complex. In some embodiments, the IL-15/IL-15Ra complex is chosen from NIZ985 (Novartis), ATL-803 (Altor) or CYP0150 (Cytune).
In one embodiment, the IL-15/IL-15Ra complex comprises human IL-15 complexed with a soluble form of human IL-15Ra. The complex may comprise IL-15 covalently or noncovalently bound to a soluble form of IL-15Ra. In a particular embodiment, the human IL-15 is noncovalently bonded to a soluble form of IL-15Ra. In a particular embodiment, the human IL-15 of the composition comprises an amino acid sequence of SEQ ID NO: 183 in Table 16 and the soluble form of human IL-15Ra comprises an amino acid sequence of SEQ ID NO: 184 in Table 16, as described in WO 2014/066527, incorporated by reference in its entirety. The molecules described herein can be made by vectors, host cells, and methods described in WO 2007/084342, incorporated by reference in its entirety.
In one embodiment, the IL-15/IL-15Ra complex is ALT-803, an IL-15/IL-15Ra Fc fusion protein (IL-15N72D:IL-15RaSu/Fc soluble complex). ALT-803 is disclosed in WO 2008/143794, incorporated by reference in its entirety. In one embodiment, the IL-15/IL-15Ra Fc fusion protein comprises the sequences as disclosed in Table 17.
In one embodiment, the IL-15/IL-15Ra complex comprises IL-15 fused to the sushi domain of IL-15Ra (CYP0150, Cytune). The sushi domain of IL-15Ra refers to a domain beginning at the first cysteine residue after the signal peptide of IL-15Ra, and ending at the fourth cysteine residue after said signal peptide. The complex of IL-15 fused to the sushi domain of IL-15Ra is disclosed in WO 2007/04606 and WO 2012/175222, incorporated by reference in their entirety. In one embodiment, the IL-15/IL-15Ra sushi domain fusion comprises the sequences as disclosed in Table 17.
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with a STING agonist. In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein e.g., a solid tumor (e.g., a breast cancer, a squamous cell carcinoma, a melanoma, an ovarian cancer, a fallopian tube carcinoma, a peritoneal carcinoma, a soft tissue sarcoma, an esophageal cancer, a head and neck cancer, an endometrial cancer, a cervical cancer, or a basal cell carcinoma), e.g., a hematologic malignancy (e.g., a leukemia (e.g., a chronic lymphocytic leukemia (CLL), or a lymphoma (e.g., a marginal zone B-cell lymphoma, a small lymphocytic lymphoma, a follicular lymphoma, Hodgkin lymphoma, non-Hodgkin lymphoma)). In some embodiments, the cancer is chosen from a head and neck cancer (e.g., a head and neck squamous cell carcinoma (HNSCC), a skin cancer (e.g., melanoma), a lung cancer (e.g., a non-small cell lung cancer (NSCLC)), or a breast cancer (e.g., a triple negative breast cancer (TNBC)).
In some embodiments, the STING agonist is cyclic dinucleotide, e.g., a cyclic dinucleotide comprising purine or pyrimidine nucleobases (e.g., adenosine, guanine, uracil, thymine, or cytosine nucleobases). In some embodiments, the nucleobases of the cyclic dinucleotide comprise the same nucleobase or different nucleobases.
In some embodiments, the STING agonist comprises an adenosine or a guanosine nucleobase. In some embodiments, the STING agonist comprises one adenosine nucleobase and one guanosine nucleobase. In some embodiments, the STING agonist comprises two adenosine nucleobases or two guanosine nucleobases.
In some embodiments, the STING agonist comprises a modified cyclic dinucleotide, e.g., comprising a modified nucleobase, a modified ribose, or a modified phosphate linkage. In some embodiments, the modified cyclic dinucleotide comprises a modified phosphate linkage, e.g., a thiophosphate.
In some embodiments, the STING agonist comprises a cyclic dinucleotide (e.g., a modified cyclic dinucleotide) with 2′,5′ or 3′,5′ phosphate linkages. In some embodiments, the STING agonist comprises a cyclic dinucleotide (e.g., a modified cyclic dinucleotide) with Rp or Sp stereochemistry around the phosphate linkages.
In some embodiments, the STING agonist is Rp,Rp dithio 2′,3′ c-di-AMP (e.g., Rp,Rp-dithio c-[A(2′,5′)pA(3′,5′)p]), or a cyclic dinucleotide analog thereof. In some embodiments, the STING agonist is a compound depicted in U.S. Patent Publication No. US2015/0056224 (e.g., a compound in FIG. 2c, e.g., compound 21 or compound 22). In some embodiments, the STING agonist is c-[G(2′,5′)pG(3′,5′)p], a dithio ribose O-substituted derivative thereof, or a compound depicted in FIG. 4 of PCT Publication Nos. WO 2014/189805 and WO 2014/189806. In some embodiments, the STING agonist is c-[A(2′,5′)pA(3′,5′)p] or a dithio ribose O-substituted derivative thereof, or is a compound depicted in FIG. 5 of PCT Publication Nos. WO 2014/189805 and WO 2014/189806. In some embodiments, the STING agonist is c-[G(2′,5′)pA(3′,5′)p], or a dithio ribose O-substituted derivative thereof, or is a compound depicted in FIG. 5 of PCT Publication Nos. WO 2014/189805 and WO 2014/189806. In some embodiments, the STING agonist is 2′-O-propargyl-cyclic-[A(2′,5′)pA(3′,5′)p] (2′-O-propargyl-ML-CDA) or a compound depicted in FIG. 7 of PCT Publication No. WO 2014/189806.
Other exemplary STING agonists are disclosed, e.g., in PCT Publication Nos. WO 2014/189805 and WO 2014/189806, and U.S. Publication No. 2015/0056225.
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with a CSF-1/1R binding agent. In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor (e.g., a prostate cancer, a breast cancer, or pigmented villonodular synovitis (PVNS)).
In some embodiments, the CSF-1/1R binding agent is an inhibitor of macrophage colony-stimulating factor (M-CSF). M-CSF is also sometimes known as CSF-1.
In another embodiment, the CSF-1/1R binding agent is a CSF-1R tyrosine kinase inhibitor, 4-((2-(((1R,2R)-2-hydroxycyclohexyl)amino)benzo[d]thiazol-6-yl)oxy)-N-methylpicolinamide (Compound A15), or a compound disclosed in PCT Publication No. WO 2005/073224. In some embodiments, the cancer is chosen from a brain cancer (e.g., glioblastoma multiforme (GBM)), a pancreatic cancer, or a breast cancer (e.g., a triple-negative breast cancer (TNBC)).
In some embodiments, the CSF-1/1R binding agent (e.g., a CSF-1R tyrosine kinase inhibitor), 4-((2-(((1R,2R)-2-hydroxycyclohexyl)amino)benzo[d]thiazol-6-yl)oxy)-N-methylpicolinamide (Compound A15), or a compound disclosed in PCT Publication No. WO 2005/073224, is administered in combination with a CD73 inhibitor (e.g., an anti-CD73 antibody molecule).
In certain embodiments, the CSF-1/1R binding agent (e.g., a CSF-1R tyrosine kinase inhibitor), 4-((2-(((1R,2R)-2-hydroxycyclohexyl)amino)benzo[d]thiazol-6-yl)oxy)-N-methylpicolinamide (Compound A15), or a compound disclosed in PCT Publication No. WO 2005/073224, is administered in combination with the CD73 inhibitor (e.g., the anti-CD73 antibody molecule) to treat a caner, e.g., a solid tumor (e.g., an advanced solid tumor), e.g., a brain cancer (e.g., glioblastoma multiforme (GBM), e.g., recurrent glioblastoma), a breast cancer (e.g., a triple-negative breast cancer (e.g., NTBC)), or a pancreatic cancer (e.g., advanced pancreatic cancer).
In some embodiments, the CSF-1/1R binding agent is an M-CSF inhibitor, Compound A33, or a binding agent to CSF-1 disclosed in PCT Publication No. WO 2004/045532 or PCT Publication No WO 2005/068503 including RX1 or 5H4 (e.g., an antibody molecule or Fab fragment against M-CSF). In some embodiments, the cancer is chosen from an endometrial cancer, a skin cancer (e.g., melanoma), a pancreatic cancer, or a breast cancer (e.g., a triple negative breast cancer (TNBC)).
In some embodiments, the CSF-1/1R binding agent is a CSF1R inhibitor or 4-(2-((1R, 2R)-2-hydroxycyclohexylamino)benzothiazol-6-yloxy)-N-methylpicolinamide. 4-(2-((1R, 2R)-2-hydroxycyclohexylamino)benzothiazol-6-yloxy)-N-methylpicolinamide is disclosed as example 157 at page 117 of PCT Publication No. WO 2007/121484.
In some embodiments, the CSF-1/1R binding agent is pexidartinib (CAS Registry Number 1029044-16-3). Pexidrtinib is also known as PLX3397 or 5-((5-chloro-1H-pyrrolo[2,3-b]pyridin-3-yl)methyl)-N-((6-(trifluoromethyl)pyridin-3-yl)methyl)pyridin-2-amine. Pexidartinib is a small-molecule receptor tyrosine kinase (RTK) inhibitor of KIT, CSF1R and FLT3. In some embodiments, the CSF-1/1R binding agent, e.g., pexidartinib, is used in combination with a CD73 inhibitor, e.g., an anti-CD73 antibody molecule described herein.
In some embodiments, the CSF-1/1R binding agent is emactuzumab. Emactuzumab is also known as RG7155 or R05509554. Emactuzumab is a humanized IgG1 mAb targeting CSF1R. In some embodiments, the CSF-1/1R binding agent, e.g., pexidartinib, is used in combination with a CD73 inhibitor, e.g., an anti-CD73 antibody molecule described herein.
In some embodiments, the CSF-1/1R binding agent is FPA008. FPA008 is a humanized mAb that inhibits CSF1R. In some embodiments, the CSF-1/1R binding agent, e.g., FPA008, is used in combination with a CD73 inhibitor, e.g., an anti-CD73 antibody molecule described herein.
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with an inhibitor of indoleamine 2,3-dioxygenase (IDO) and/or tryptophan 2,3-dioxygenase (TDO). In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor (e.g., melanoma, non-small cell lung cancer, colon cancer, squamous cell head and neck cancer, ovarian cancer, peritoneal cancer, fallopian tube cancer, breast cancer (e.g., metastatic or HER2-negative breast cancer)), e.g., a hematologic malignancy (e.g., a lymphoma, e.g., a non-Hodgkin's lymphoma or a Hodgkin's lymphoma (e.g., a diffuse large B-cell lymphoma (DLBCL))).
In some embodiments, the IDO/TDO inhibitor is chosen from (4E)-4-[(3-chloro-4-fluoroanilino)-nitrosomethylidene]-1,2,5-oxadiazol-3-amine (also known as INCB24360), indoximod (1-methyl-D-tryptophan), or α-cyclohexyl-5H-Imidazo[5,1-a]isoindole-5-ethanol (also known as NLG919).
In some embodiments, the IDO/TDO inhibitor is epacadostat (CAS Registry Number: 1204669-58-8). Epacadostat is also known as INCB24360 or INCB024360 (Incyte). Epacadostat is a potent and selective indoleamine 2,3-dioxygenase (IDO1) inhibitor with IC50 of 10 nM, highly selective over other related enzymes such as ID02 or tryptophan 2,3-dioxygenase (TDO).
In some embodiments, the IDO/TDO inhibitor is indoximod (New Link Genetics). Indoximod, the D isomer of 1-methyl-tryptophan, is an orally administered small-molecule indoleamine 2,3-dioxygenase (IDO) pathway inhibitor that disrupts the mechanisms by which tumors evade immune-mediated destruction.
In some embodiments, the IDO/TDO inhibitor is NLG919 (New Link Genetics). NLG919 is a potent IDO (indoleamine-(2,3)-dioxygenase) pathway inhibitor with Ki/EC50 of 7 nM/75 nM in cell-free assays.
In some embodiments, the IDO/TDO inhibitor is F001287 (Flexus/BMS). F001287 is a small molecule inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1).
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with a transforming growth factor beta (TGF-β) inhibitor. In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor (e.g., a brain cancer (e.g., a glioma), a melanoma, a kidney cancer (e.g., a renal cell carcinoma), a pleural malignant mesothelioma (e.g., a relapsed pleural malignant mesothelioma), or a breast cancer (e.g., a metastatic breast cancer)). In certain embodiments, the cancer is chosen from a colorectal cancer (e.g., a microsatelliate stable colorectal cancer (MSS CRC), a liver cancer (e.g., a hepatocellular carcinoma), a lung cancer (e.g., a non-small cell lung cancer (HSCLC)), a breast cancer (e.g., a triple negative breast cancer (TNBC)), a TGF-β-expressing cancer, a pancreatic cancer, a prostate cancer, or a renal cancer (e.g., a renal cell carcinoma).
TGF-β belongs to a large family of structurally-related cytokines including, e.g., bone morphogenetic proteins (BMPs), growth and differentiation factors, activins and inhibins. In some embodiments, the TGF-β inhibitors described herein can bind and/or inhibit one or more isoforms of TGF-β (e.g., one, two, or all of TGF-β1, TGF-β2, or TGF-β3).
In some embodiments, the TGF-β inhibitor is fresolimumab (CAS Registry Number: 948564-73-6). Fresolimumab is also known as GC1008. Fresolimumab is a human monoclonal antibody that binds to and inhibits TGF-beta isoforms 1, 2 and 3.
The heavy chain of fresolimumab has the amino acid sequence of:
The light chain of fresolimumab has the amino acid sequence of:
Fresolimumab is disclosed, e.g., in WO 2006/086469, U.S. Pat. Nos. 8,383,780, and 8,591,901.
In some embodiments, the TGF-β inhibitor is XOMA 089. XOMA 089 is also known as XPA.42.089. XOMA 089 is a fully human monoclonal antibody that binds and neutralizes TGF-beta 1 and 2 ligands.
The heavy chain variable region of XOMA 089 has the amino acid sequence of:
The light chain variable region of XOMA 089 has the amino acid sequence of:
In certain embodiments, the combination includes an inhibitor of CD73 (e.g., an anti-CD73 antibody molecule described herein) and a TGF-β inhibitor (e.g., a TGF-β inhibitor described herein).
In one embodiment, the combination includes a TGF-β inhibitor, XOMA 089, or a compound disclosed in PCT Publication No. WO 2012/167143, and an inhibitor of CD73 (e.g., an anti-CD73 antibody described herein).
In one embodiment, the TGF-β inhibitor, XOMA 089, or a compound disclosed in PCT Publication No. WO 2012/167143, is administered in combination with an inhibitor of CD73 (e.g., an anti-CD73 antibody molecule) to treat a pancreatic cancer, a colorectal cancer (e.g., a microsatellite stable colorectal cancer (MSS-CRC)), a lung cancer (e.g., a non-small cell lung cancer), a breast cancer (e.g., a triple negative breast cancer), a liver cancer (e.g., a hepatocellular carcinoma), a prostate cancer, or a renal cancer (e.g., a clear cell renal cell carcinoma).
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with a vascular endothelial growth factor (VEGF) receptor inhibitor (e.g., an inhibitor of one or more of VEGFR (e.g., VEGFR-1, VEGFR-2, or VEGFR-3) or VEGF). In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor (e.g., a melanoma, a breast cancer, a colon cancer, an esophageal cancer, a gastrointestinal stromal tumor (GIST), a kidney cancer (e.g., a renal cell cancer), a liver cancer, a non-small cell lung cancer (NSCLC), an ovarian cancer, a pancreatic cancer, a prostate cancer, or a stomach cancer), e.g., a hematologic malignancy (e.g., a lymphoma).
In some embodiments, the VEGFR inhibitor is vatalanib succinate (Compound A47) or a compound disclosed in EP 296122.
In some embodiment, the VEGFR inhibitor is an inhibitor of one or more of VEGFR-2, PDGFRbeta, KIT or Raf kinase C, 1-methyl-5-((2-(5-(trifluoromethyl)-1H-imidazol-2-yl)pyridin-4-yl)oxy)-N-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazol-2-amine (Compound A37) or a compound disclosed in PCT Publication No. WO 2007/030377.
Other exemplary VEGFR pathway inhibitors that can be used in the combinations disclosed herein include, e.g., bevacizumab (AVASTIN®), axitinib (INLYTA®); brivanib alaninate (BMS-582664, (S)-((R)-1-(4-(4-Fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f] [1,2,4]triazin-6-yloxy)propan-2-yl)2-aminopropanoate); sorafenib (NEXAVAR®); pazopanib (VOTRIENT®); sunitinib malate (SUTENT®); cediranib (AZD2171, CAS 288383-20-1); vargatef (BIBF1120, CAS 928326-83-4); Foretinib (GSK1363089); telatinib (BAY57-9352, CAS 332012-40-5); apatinib (YN968D1, CAS 811803-05-1); imatinib (GLEEVEC®); ponatinib (AP24534, CAS 943319-70-8); tivozanib (AV951, CAS 475108-18-0); regorafenib (BAY73-4506, CAS 755037-03-7); vatalanib dihydrochloride (PTK787, CAS 212141-51-0); brivanib (BMS-540215, CAS 649735-46-6); vandetanib (CAPRELSA® or AZD6474); motesanib diphosphate (AMG706, CAS 857876-30-3, N-(2,3-dihydro-3,3-dimethyl-1H-indol-6-yl)-2-[(4-pyridinylmethyl)amino]-3-pyridinecarboxamide, described in PCT Publication No. WO 02/066470); linfanib (ABT869, CAS 796967-16-3); cabozantinib (XL184, CAS 849217-68-1); lestaurtinib (CAS 111358-88-4); N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-piperidinecarboxamide (BMS38703, CAS 345627-80-7); (3R,4R)-4-amino-1-((4-((3-methoxyphenyl)amino)pyrrolo[2, 1-f][1,2,4]triazin-5-yl)methyl)piperidin-3-ol (BMS690514); N-(3,4-Dichloro-2-fluorophenyl)-6-methoxy-7-[[(3aα,5β,6aα)-octahydro-2-methylcyclopenta[c]pyrrol-5-yl]methoxy]-4-quinazolinamine (XL647, CAS 781613-23-8); 4-methyl-3-[[1-methyl-6-(3-pyridinyl)-1H-pyrazolo[3,4-d]pyrimidin-4-yl]amino]-N-[3-(trifluoromethyl)phenyl]-benzamide (BHG712, CAS 940310-85-0); aflibercept (EYLEA®), and endostatin (ENDOSTAR®).
Exemplary anti-VEGF antibodies that can be used in the combinations disclosed herein include, e.g., a monoclonal antibody that binds to the same epitope as the monoclonal anti-VEGF antibody A4.6.1 produced by hybridoma ATCC HB 10709; a recombinant humanized anti-VEGF monoclonal antibody generated according to Presta et al. (1997) Cancer Res. 57:4593-4599. In one embodiment, the anti-VEGF antibody is Bevacizumab (BV), also known as rhuMAb VEGF or AVASTIN®. It comprises mutated human IgG1 framework regions and antigen-binding complementarity-determining regions from the murine anti-hVEGF monoclonal antibody A.4.6.1 that blocks binding of human VEGF to its receptors. Bevacizumab and other humanized anti-VEGF antibodies are further described in U.S. Pat. No. 6,884,879 issued Feb. 26, 2005. Additional antibodies include the G6 or B20 series antibodies (e.g., G6-31, B20-4.1), as described in PCT Publication No. WO2005/012359, PCT Publication No. WO2005/044853, the contents of these patent applications are expressly incorporated herein by reference. For additional antibodies, see U.S. Pat. Nos. 7,060,269, 6,582,959, 6,703,020, 6,054,297, WO98/45332, WO 96/30046, WO94/10202, EP 0666868B1, U.S. Patent Application Publication Nos. 2006/009360, 2005/0186208, 2003/0206899, 2003/0190317, 2003/0203409, and 2005/0112126; and Popkov et al, Journal of Immunological Methods 288: 149-164 (2004). Other antibodies include those that bind to a functional epitope on human VEGF comprising of residues F17, M1 8, D19, Y21, Y25, Q89, 191, K1 01, E1 03, and C104 or, alternatively, comprising residues F17, Y21, Q22, Y25, D63, 183 and Q89.
Exemplary c-MET Inhibitors
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with an inhibitor of c-MET. In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor (e.g., a non-small cell lung cancer, a pancreatic cancer, a liver cancer, a thyroid cancer (e.g., anaplastic thyroid carcinoma), a brain tumor (e.g., a glioblastoma), a kidney cancer (e.g., a renal cell carcinoma), or a head and neck cancer (e.g., a head and neck squamous cell carcinoma). In certain embodiments, the cancer is a liver cancer, e.g., a hepatocellular carcinoma (HCC) (e.g., a c-MET-expressing HCC).
In some embodiments, the c-MET inhibitor is Compound A17 or a compound described in U.S. Pat. Nos. 7,767,675 and 8,420,645).
In some embodiments, the c-MET inhibitor is JNJ-38877605. JNJ-38877605 is an orally available, small molecule inhibitor of c-Met. JNJ-38877605 selectively binds to c-MET, thereby inhibiting c-MET phosphorylation and disrupting c-Met signal transduction pathways.
In some embodiments, the c-Met inhibitor is AMG 208. AMG 208 is a selective small-molecule inhibitor of c-MET. AMG 208 inhibits the ligand-dependent and ligand-independent activation of c-MET, inhibiting its tyrosine kinase activity, which may result in cell growth inhibition in tumors that overexpress c-Met.
In some embodiments, the c-Met inhibitor is AMG 337. AMG 337 is an orally bioavailable inhibitor of c-Met. AMG 337 selectively binds to c-MET, thereby disrupting c-MET signal transduction pathways.
In some embodiments, the c-Met inhibitor is LY2801653. LY2801653 is an orally available, small molecule inhibitor of c-Met. LY2801653 selectively binds to c-MET, thereby inhibiting c-MET phosphorylation and disrupting c-Met signal transduction pathways.
In some embodiments, c-Met inhibitor is MSC2156119J. MSC2156119J is an orally bioavailable inhibitor of c-Met. MSC2156119J selectively binds to c-MET, which inhibits c-MET phosphorylation and disrupts c-Met-mediated signal transduction pathways.
In some embodiments, the c-MET inhibitor is capmatinib. Capmatinib is also known as INCB028060. Capmatinib is an orally bioavailable inhibitor of c-MET. Capmatinib selectively binds to c-Met, thereby inhibiting c-Met phosphorylation and disrupting c-Met signal transduction pathways.
In some embodiments, the c-MET inhibitor is crizotinib. Crizotinib is also known as PF-02341066. Crizotinib is an orally available aminopyridine-based inhibitor of the receptor tyrosine kinase anaplastic lymphoma kinase (ALK) and the c-Met/hepatocyte growth factor receptor (HGFR). Crizotinib, in an ATP-competitive manner, binds to and inhibits ALK kinase and ALK fusion proteins. In addition, crizotinib inhibits c-Met kinase, and disrupts the c-Met signaling pathway. Altogether, this agent inhibits tumor cell growth.
In some embodiments, the c-MET inhibitor is golvatinib. Golvatinib is an orally bioavailable dual kinase inhibitor of c-MET and VEGFR-2 with potential antineoplastic activity. Golvatinib binds to and inhibits the activities of both c-MET and VEGFR-2, which may inhibit tumor cell growth and survival of tumor cells that overexpress these receptor tyrosine kinases.
In some embodiments, the c-MET inhibitor is tivantinib. Tivantinib is also known as ARQ 197. Tivantinib is an orally bioavailable small molecule inhibitor of c-MET. Tivantinib binds to the c-MET protein and disrupts c-Met signal transduction pathways, which may induce cell death in tumor cells overexpressing c-MET protein or expressing constitutively activated c-Met protein.
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with an inhibitor of Inhibitor of Apoptosis Protein (IAP). In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor (e.g., a colorectal cancer (CRC), a lung cancer (e.g., a non-small cell lung cancer (NSCLC)), a breast cancer (e.g., a triple negative breast cancer (TNBC)), an ovarian cancer, or a pancreatic cancer), e.g., a hematologic malignancy (e.g., a multiple myeloma).
In some embodiments, the IAP inhibitor is (S)—N—((S)-1-cyclohexyl-2-((S)-2-(4-(4-fluorobenzoyl)thiazol-2-yl)pyrrolidin-1-yl)-2-oxoethyl)-2-(methylamino)propanamide (Compound A21) or a compound disclosed in U.S. Pat. No. 8,552,003.
In some embodiments, the combination described herein includes an IAP inhibitor, (S)—N—((S)-1-cyclohexyl-2-((S)-2-(4-(4-fluorobenzoyl)thiazol-2-yl)pyrrolidin-1-yl)-2-oxoethyl)-2-(methylamino)propanamide (Compound A21), or a compound disclosed in U.S. Pat. No. 8,552,003, and an inhibitor of an immune checkpoint molecule, e.g., an inhibitor of CD73 (e.g., an anti-CD73 antibody molecule).
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with an inhibitor of Epidermal Growth Factor Receptor (EGFR). In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor (e.g., a lung cancer (e.g., a non-small cell lung cancer), a pancreatic cancer, a breast cancer (e.g., a triple negative breast cancer (TNBC)), or a colon cancer). In certain embodiments, the cancer is chosen from a colorectal cancer (e.g., a microsatellite stable colorectal cancer (MSS CRC)), a lung cancer (e.g., a non-small cell lung cancer), or a breast cancer (e.g., a triple negative lung cancer (TNBC)).
In some embodiments, the EGFR inhibitor is (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d] imidazol-2-yl)-2-methylisonicotinamide (Compound A40) or a compound disclosed in PCT Publication No. WO 2013/184757.
In some embodiments, the combination described herein includes an EGFR inhibitor, (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (Compound A40), or a compound disclosed in PCT Publication No. WO 2013/184757, and an inhibitor of an immune checkpoint molecule, e.g., an inhibitor of CD73 (e.g., an anti-CD73 antibody molecule).
In some embodiments, the EGFR inhibitor, (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d] imidazol-2-yl)-2-methylisonicotinamide (Compound A40), or a compound disclosed in PCT Publication No. WO 2013/184757, is administered in combination with an inhibitor of CD73 (e.g., an anti-CD73 antibody molecule) to treat a colorectal cancer (CRC) (e.g., an MSS-CRC), a lung cancer (e.g., a non-small cell lung cancer (NSCLC)), or a breast cancer (e.g., a triple negative breast cancer (TNBC)).
In some embodiments, the EGFR inhibitor is chosen from one of more of erlotinib, gefitinib, cetuximab, panitumumab, necitumumab, PF-00299804, nimotuzumab, or R05083945.
Exemplary mTOR Inhibitors
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with an inhibitor of target of rapamycin (mTOR). In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor (e.g., a prostate cancer, a breast cancer, a brain cancer, a bladder cancer, a pancreatic cancer, a renal cancer, or a liver cancer, a lung cancer (e.g., a small cell lung cancer or a non-small cell lung cancer), a respiratory/thoracic cancer, a sarcoma, a bone cancer, a non-small cell lung cancer, an endocrine cancer, an astrocytoma, a cervical cancer, a neurologic cancer, a gastric cancer, or a melanoma), e.g., a hematologic malignancy (e.g., a leukemia (e.g., lymphocytic leukemia), e.g., a lymphoma, or e.g., a multiple myeloma). In certain embodiments, the cancer is chosen from a colorectal cancer (e.g., a microsatellite stable colorectal cancer (MSS CRC)), a lung cancer (e.g., a non-small cell lung cancer), or a breast cancer (e.g., a triple negative lung cancer (TNBC)).
In some embodiments, the mTOR inhibitor is 8-(6-Methoxy-pyridin-3-yl)-3-methyl-1-(4-piperazin-1-yl-3-trifluoromethyl-phenyl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Compound A41).
In some embodiments, the mTOR inhibitor is everolimus (also known as AFINITOR®; Compound A36) or a compound disclosed in PCT Publication No. WO 2014/085318.
In some embodiments, the combination described herein includes the mTOR inhibitor, everolimus (Compound A36), or a compound disclosed in PCT Publication No. WO 2014/085318, and an inhibitor of an immune checkpoint molecule, e.g., an inhibitor of CD73 (e.g., an anti-CD73 antibody molecule).
In some embodiments, the mTOR inhibitor, Everolimus (Compound A36), or a compound disclosed in PCT Publication No. WO 2014/085318, is administered in combination with the CD73 inhibitor (e.g., the anti-CD73 antibody molecule) to treat a colorectal cancer, a lung cancer (e.g., a non-small cell lung cancer (NSCLC)), or a breast cancer (e.g., a triple negative breast cancer (NTBC)).
In some embodiments, the mTOR inhibitor is chosen from one or more of rapamycin, temsirolimus (TORISEL®), AZD8055, BGT226, XL765, PF-4691502, GDC0980, SF1126, OSI-027, GSK1059615, KU-0063794, WYE-354, Palomid 529 (P529), PF-04691502, or PKI-587. ridaforolimus (formally known as deferolimus, (1R,2R,4S)-4-[(2R)-2 [(1R,9S,12S,15R, 16E, 18R,19R,21R, 23S,24E,26E,28Z,30S,32S,35R)-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23, 29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.04,9] hexatriaconta-16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl dimethylphosphinate, also known as AP23573 and MK8669, and described in PCT Publication No. WO 03/064383); everolimus (AFINITOR® or RAD001); rapamycin (AY22989, SIROLIMUS®); simapimod (CAS Registry Number: 164301-51-3); (5-{2,4-Bis[(3S)-3-methylmorpholin-4-yl]pyrido[2,3-d]pyrimidin-7-yl}-2-methoxyphenyl)methanol (AZD8055); 2-Amino-8-[trans-4-(2-hydroxyethoxy)cyclohexyl]-6-(6-methoxy-3-pyridinyl)-4-methyl-pyrido[2,3-d]pyrimidin-7(8H)-one (PF04691502, CAS Registry Number: 1013101-36-4); N2-[1,4-dioxo-4-[[4-(4-oxo-8-phenyl-4H-1-benzopyran-2-yl)morpholinium-4-yl] methoxy]butyl]-L-arginylglycyl-L-a-aspartylL-serine (SEQ ID NO: 176) inner salt (SF1126, CAS Registry Number: 936487-67-1), or XL765 (SAR245409).
Other exemplary mTOR Inhibitors include, but are not limited to, temsirolimus; ridaforolimus (1R,2R,4S)-4-[(2R)-2 [(1R,9S,12S,15R, 16E, 18R,19R,21R, 23S,24E,26E,28Z,30S,32S,35R)-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23, 29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.04,9] hexatriaconta-16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl dimethylphosphinate, also known as AP23573 and MK8669; everolimus (RAD001); rapamycin (AY22989); simapimod; (5-{2,4-bis[(3S)-3-methylmorpholin-4-yl]pyrido[2,3-d]pyrimidin-7-yl}-2-methoxyphenyl)methanol (AZD8055); 2-mmino-8-[trans-4-(2-hydroxyethoxy)cyclohexyl]-6-(6-methoxy-3-pyridinyl)-4-methyl-pyrido[2,3-d]pyrimidin-7(8H)-one (PF04691502); and N2-[1,4-dioxo-4-[[4-(4-oxo-8-phenyl-4H-1-benzopyran-2-yl)morpholinium-4-yl]methoxy]butyl]-L-arginylglycyl-L-α-aspartylL-serine-(SEQ ID NO: 176), inner salt (SF1126); and XL765.
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with an inhibitor of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), e.g., phosphatidylinositol-4,5-bisphosphate 3-kinase gamma and/or delta (PI3K-γ,δ). In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor (e.g., a prostate cancer, a breast cancer, a brain cancer, a bladder cancer, a pancreatic cancer, a renal cancer, a solid tumor, a liver cancer, a non-small cell lung cancer, an endocrine cancer, an ovarian cancer, a melanoma, a female reproductive system cancer, a digestive/gastrointestinal cancer, a glioblastoma multiforme, a head and neck cancer, or a colon cancer), e.g., a hematologic malignancy (e.g., a leukemia (e.g., a lymphocytic leukemia, e.g., chronic lymphocytic leukemia (CLL) (e.g., relapsed CLL)),e.g., a lymphoma (e.g., non-Hodgkin lymphoma (e.g., relapsed follicular B-cell non-Hodgkin lymphoma (FL) or relapsed small lymphocytic lymphoma (SLL)), or e.g., a multiple myeloma).
In some embodiments, the PI3K inhibitor is an inhibitor of delta and gamma isoforms of PI3K. Exemplary PI3K inhibitors that can be used in combination are described in, e.g., WO 2010/036380, WO 2010/006086, WO 09/114870, WO 05/113556, GSK 2126458, GDC-0980, GDC-0941, Sanofi XL147, XL756, XL147, PF-46915032, BKM 120, CAL-101, CAL 263, SF1126, PX-886, and a dual PI3K inhibitor.
In some embodiments, the PI3K-γ,δ inhibitor is idelalisib (CAS Registry Number: 870281-82-6). Idelalisib is also known as ZYDELIG®, GS-1101, CAL-101, or 5-Fluoro-3-phenyl-2-[(1S)-1-(7H-purin-6-ylamino)propyl]-4(3H)-quinazolinone. Idelalisib blocks P1106, the delta isoform of PI3K. Idelalisib is disclosed, e.g., in Wu et al. Journal of Hematology & Oncology (2013) 6: 36.
In some embodiments, the PI3K-γ,δ inhibitor is 8-(6-Methoxy-pyridin-3-yl)-3-methyl-1-(4-piperazin-1-yl-3-trifluoromethyl-phenyl)-1,3-dihydro-imidazo[4,5-c] quinolin-2-one (Compound A41).
In some embodiments, the PI3K-γ,δ inhibitor is buparlisib (Compound A6) or a compound disclosed in PCT Publication No. WO 2007/084786.
Other exemplary PI3K-γ,δ inhibitors that can be used in the combination include, e.g., pictilisib (GDC-0941), LY294002, pilaralisib (XL147), PI-3065, PI-103, VS-5584 (SB2343), CZC24832, duvelisib (IPI-145, INK1197), TG100-115, CAY10505, GSK1059615, PF-04691502, AS-605240, voxtalisib (SAR245409, XL765), IC-87114, omipalisib (GSK2126458, GSK458), TG100713, gedatolisib (PF-05212384, PKI-587), PKI-402, XL147 analogue, PIK-90, PIK-293, PIK-294, 3-Methyladenine (3-MA), AS-252424, AS-604850, or apitolisib (GDC-0980, RG7422).
In some embodiments, the PI3K inhibitor is Compound A8 or a compound described in PCT Publication No. WO2010/029082.
In some embodiments, the PI3K inhibitor is a pan-PI3K inhibitor, (4S,5R)-3-(2′-amino-2-morpholino-4′-(trifluoromethyl)-[4,5′-bipyrimidin]-6-yl)-4-(hydroxymethyl)-5-methyloxazolidin-2-one (Compound A13) or a compound disclosed in PCT Publication No. WO2013/124826.
Exemplary PI3K-γ, -δ inhibitors include, but are not limited to, duvelisib and idelalisib. Idelalisib (also called GS-1101 or CAL-101; Gilead) is a small molecule that blocks the delta isoform of PI3K. The structure of idelalisib (5-Fluoro-3-phenyl-2-[(1S)-1-(7H-purin-6-ylamino)propyl]-4(3H)-quinazolinone) is shown below.
Duvelisib (also called IPI-145; Infinity Pharmaceuticals and Abbvie) is a small molecule that blocks PI3K-δ,γ. The structure of duvelisib (8-Chloro-2-phenyl-3-[(1S)-1-(9H-purin-6-ylamino)ethyl]-1(2H)-isoquinolinone) is shown below.
In one embodiment, the inhibitor is a dual phosphatidylinositol 3-kinase (PI3K) and mTOR inhibitor selected from 2-Amino-8-[trans-4-(2-hydroxyethoxy)cyclohexyl]-6-(6-methoxy-3-pyridinyl)-4-methyl-pyrido[2,3-d]pyrimidin-7(8H)-one (PF-04691502); N-[4-[[4-(Dimethylamino)-1-piperidinyl] carbonyl]phenyl]-N′-[4-(4,6-di-4-morpholinyl-1,3,5-triazin-2-yl)phenyl]urea (PF-05212384, PKI-587); apitolisib (GDC-0980, RG7422); 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide (GSK2126458); 8-(6-methoxypyridin-3-yl)-3-methyl-1-(4-(piperazin-1-yl)-3-(trifluoromethyl)phenyl)-1H-imidazo[4,5-c]quinolin-2(3H)-one Maleic acid (NVP-BGT226); 3-[4-(4-Morpholinylpyrido[3′,2′:4,5]furo[3,2-d]pyrimidin-2-yl]phenol (PI-103); 5-(9-isopropyl-8-methyl-2-morpholino-9H-purin-6-yl)pyrimidin-2-amine (VS-5584, SB2343); or N-[2-[(3,5-Dimethoxyphenyl)amino]quinoxalin-3-yl]-4-[(4-methyl-3-methoxyphenyl)carbonyl] aminophenylsulfonamide (XL765).
In certain embodiments, the anti-CD73 antibody molecule described herein is administered in combination with an inhibitor of Janus kinase (JAK). In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor (e.g., a colon cancer, a prostate cancer, a lung cancer, a breast cancer, or a pancreatic cancer), e.g., a hematologic malignancy (e.g., a leukemia (e.g., a myeloid leukemia or a lymphocytic leukemia), e.g., a lymphoma (e.g., a non-Hodgkin lymphoma), or a multiple myeloma.
In some embodiments, the JAK inhibitor is 2-fluoro-N-methyl-4-(7-(quinolin-6-ylmethyl)imidazo[1,2-b][1,2,4]triazin-2-yl)benzamide (Compound A17), or a dihydrochloric salt thereof, or a compound disclosed in PCT Publication No. WO 2007/070514.
In some embodiment, the JAK inhibitor is ruxolitinib phosphate (also known as JAKAFI; Compound A18) or a compound disclosed in PCT Publication No. WO 2007/070514.
Anti-CD73 antibody molecules can also be combined with a cell therapy, e.g., a chimeric antigen receptor (CAR) therapy, a T cell therapy, a natural killer (NK) cell therapy, or a dendritic cell therapy.
Combinations with CAR Therapies
The anti-CD73 antibody molecules described herein can be administered in combination with a second therapeutic, e.g., a cell comprising a chimeric antigen receptor (CAR). The CAR may comprise i) an extracellular antigen binding domain, ii) a transmembrane domain, and iii) an intracellular signaling domain (which may comprise one or both of a primary signaling domain and a costimulatory domain). The CAR may further comprise a leader sequence and/or a hinge sequence. In specific embodiments, the CAR construct comprises a scFv domain, wherein the scFv may be preceded by an optional leader sequence, and followed by an optional hinge sequence, a transmembrane region, and an intracellular signaling domain, e.g., wherein the domains are contiguous with and in the same reading frame to form a single fusion protein.
In some embodiments, the CAR molecule comprises a CD19 CAR molecule described herein, e.g., a CD19 CAR molecule described in US 2015/0283178, e.g., CTL019. In embodiments, the CD19 CAR comprises an amino acid, or has a nucleotide sequence shown in US 2015/0283178, incorporated herein by reference in its entirety, or a sequence substantially identical thereto (e.g., a sequence having at least about 85%, 90%, or 95% sequence identity thereto).
In one embodiment, the CAR T cell that binds to CD19 has the USAN designation TISAGENLECLEUCEL-T. CTL019 is made by a gene modification of T cells mediated by stable insertion via transduction with a self-inactivating, replication deficient lentiviral (LV) vector containing the CTL019 transgene under the control of the EF-1 alpha promoter. CTL019 can be a mixture of transgene positive and negative T cells that are delivered to the subject on the basis of percent transgene positive T cells.
In one embodiment, the CD19 CAR comprises an amino acid sequence provided as SEQ ID NO: 12 in PCT publication WO2012/079000. In embodiment, the amino acid sequence is:
MALPVTALLLPLALLLHAARPdiqmtqttsslsaslgdrvtiscrasqdiskylnwyqqkpdgtvklliyhtsr lhsgvpsrfsgsgsgtdysltisnleqediatyfcqqgntlpytfgggtkleitggggsggggsggggsevklqesgpglvapsqslsvtct vsgvslpdygvswirqpprkglewlgviwgsettyynsalksrltiikdnsksqvflkmnslqtddtaiyycakhyyyggsyamdyw gqgtsvtvsstttpaprpptpaptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvlllslvitlyckrgrkkllyifkqpf mrpvqttqeedgcscrfpeeeeggcelrvkfsrsadapaykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglyn elqkdkmaeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr (SEQ ID NO: 132), or a sequence substantially identical thereto (e.g., a sequence having at least about 85%, 90%, or 95% sequence identity thereto), with or without the signal peptide sequence indicated in capital letters.
In one embodiment, the amino acid sequence is:
diqmtqttsssaslgdrvtiscrasqdiskylnwyqqkpdgtvklliyhtsrlhsgvpsrfsgsgsgtdysltisnleqediatyf cqqgntlpytfgggtkleitggggsggggsggggsevklqesgpglvapsqslsvtctvsgvslpdygv swirqpprkglewlgviwg settyynsalksrltiikdnsksqvflkmnslqtddtaiyycakhyyyggsyamdywgqgtsvtvsstttpaprpptpaptiasqplslrp eacrpaaggavhtrgldfacdiyiwaplagtcgvlllslvitlyckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfs rsadapaykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglynelqkdkmaeay seigmkgerrrgkghdgly qglstatkdtydalhmqalppr (SEQ ID NO: 133), or a sequence substantially homologous thereto (e.g., a sequence having at least about 85%, 90%, or 95% sequence identity thereto).
The antigen binding domain can be any domain that binds to the antigen including but not limited to a monoclonal antibody, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, and a functional fragment thereof, including but not limited to a single-domain antibody such as a heavy chain variable domain (VH), a light chain variable domain (VL) and a variable domain (VHH) of camelid derived nanobody, and to an alternative scaffold known in the art to function as antigen binding domain, such as a recombinant fibronectin domain, a T cell receptor (TCR), or a fragment there of, e.g., single chain TCR, and the like. In some instances, it is beneficial for the antigen binding domain to be derived from the same species in which the CAR will ultimately be used in. For example, for use in humans, it may be beneficial for the antigen binding domain of the CAR to comprise human or humanized residues for the antigen binding domain of an antibody or antibody fragment.
In some embodiments, the antigen binding domain of the CAR is a scFv antibody fragment that is humanized compared to the murine sequence of the scFv from which it is derived.
In some embodiments, the antigen binding domain binds a tumor antigen described herein. In embodiments, the tumor antigen is chosen from: CD19; CD123; CD22; CD30; CD171; CS-1 (also referred to as CD2 subset 1, CRACC, SLAMF7, CD319, and 19A24); C-type lectin-like molecule-1 (CLL-1 or CLECL1); CD33; epidermal growth factor receptor variant III (EGFRvIII); ganglioside G2 (GD2); ganglioside GD3 (aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); TNF receptor family member B cell maturation (BCMA); Tn antigen ((Tn Ag) or (GalNAca-Ser/Thr)); prostate-specific membrane antigen (PSMA); Receptor tyrosine kinase-like orphan receptor 1 (ROR1); Fms-Like Tyrosine Kinase 3 (FLT3); Tumor-associated glycoprotein 72 (TAG72); CD38; CD44v6; Carcinoembryonic antigen (CEA); Epithelial cell adhesion molecule (EPCAM); B7H3 (CD276); KIT (CD117); Interleukin-13 receptor subunit alpha-2 (IL-13Ra2 or CD213A2); Mesothelin; Interleukin 11 receptor alpha (IL-11Ra); prostate stem cell antigen (PSCA); Protease Serine 21 (Testisin or PRSS21); vascular endothelial growth factor receptor 2 (VEGFR2); Lewis(Y) antigen; CD24; Platelet-derived growth factor receptor beta (PDGFR-beta); Stage-specific embryonic antigen-4 (SSEA-4); CD20; Folate receptor alpha; Receptor tyrosine-protein kinase ERBB2 (Her2/neu); Mucin 1, cell surface associated (MUC1); epidermal growth factor receptor (EGFR); neural cell adhesion molecule (NCAM); Prostase; prostatic acid phosphatase (PAP); elongation factor 2 mutated (ELF2M); Ephrin B2; fibroblast activation protein alpha (FAP); insulin-like growth factor 1 receptor (IGF-I receptor), carbonic anhydrase IX (CAIX); Proteasome (Prosome, Macropain) Subunit, Beta Type, 9 (LMP2); glycoprotein 100 (gp100); oncogene fusion protein consisting of breakpoint cluster region (BCR) and Abelson murine leukemia viral oncogene homolog 1 (Abl) (bcr-abl); tyrosinase; ephrin type-A receptor 2 (EphA2); Fucosyl GM1; sialyl Lewis adhesion molecule (sLe); ganglioside GM3 (aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); transglutaminase 5 (TGS5); high molecular weight-melanoma-associated antigen (HMWMAA); o-acetyl-GD2 ganglioside (OAcGD2); Folate receptor beta; tumor endothelial marker 1 (TEM1/CD248); tumor endothelial marker 7-related (TEM7R); claudin 6 (CLDN6); thyroid stimulating hormone receptor (TSHR); G protein-coupled receptor class C group 5, member D (GPRC5D); chromosome X open reading frame 61 (CXORF61); CD97; CD179a; anaplastic lymphoma kinase (ALK); Polysialic acid; placenta-specific 1 (PLAC1); hexasaccharide portion of globoH glycoceramide (GloboH); mammary gland differentiation antigen (NY-BR-1); uroplakin 2 (UPK2); Hepatitis A virus cellular receptor 1 (HAVCR1); adrenoceptor beta 3 (ADRB3); pannexin 3 (PANX3); G protein-coupled receptor 20 (GPR20); lymphocyte antigen 6 complex, locus K 9 (LY6K); Olfactory receptor 51E2 (OR51E2); TCR Gamma Alternate Reading Frame Protein (TARP); Wilms tumor protein (WT1); Cancer/testis antigen 1 (NY-ESO-1); Cancer/testis antigen 2 (LAGE-la); Melanoma-associated antigen 1 (MAGE-A1); ETS translocation-variant gene 6, located on chromosome 12p (ETV6-AML); sperm protein 17 (SPA17); X Antigen Family, Member 1A (XAGE1); angiopoietin-binding cell surface receptor 2 (Tie 2); melanoma cancer testis antigen-1 (MAD-CT-1); melanoma cancer testis antigen-2 (MAD-CT-2); Fos-related antigen 1; tumor protein p53 (p53); p53 mutant; prostein; surviving; telomerase; prostate carcinoma tumor antigen-1 (PCTA-1 or Galectin 8), melanoma antigen recognized by T cells 1 (MelanA or MART1); Rat sarcoma (Ras) mutant; human Telomerase reverse transcriptase (hTERT); sarcoma translocation breakpoints; melanoma inhibitor of apoptosis (ML-IAP); ERG (transmembrane protease, serine 2 (TMPRSS2) ETS fusion gene); N-Acetyl glucosaminyl-transferase V (NA17); paired box protein Pax-3 (PAX3); Androgen receptor; Cyclin B1; v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN); Ras Homolog Family Member C (RhoC); Tyrosinase-related protein 2 (TRP-2); Cytochrome P450 B1 (CYP1B1); CCCTC-Binding Factor (Zinc Finger Protein)-Like (BORIS or Brother of the Regulator of Imprinted Sites), Squamous Cell Carcinoma Antigen Recognized By T Cells 3 (SART3); Paired box protein Pax-5 (PAX5); proacrosin binding protein sp32 (OY-TES1); lymphocyte-specific protein tyrosine kinase (LCK); A kinase anchor protein 4 (AKAP-4); synovial sarcoma, X breakpoint 2 (SSX2); Receptor for Advanced Glycation Endproducts (RAGE-i); renal ubiquitous 1 (RU1); renal ubiquitous 2 (RU2); legumain; human papilloma virus E6 (HPV E6); human papilloma virus E7 (HPV E7); intestinal carboxyl esterase; heat shock protein 70-2 mutated (mut hsp70-2); CD79a; CD79b; CD72; Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1); Fc fragment of IgA receptor (FCAR or CD89); Leukocyte immunoglobulin-like receptor subfamily A member 2 (LILRA2); CD300 molecule-like family member f (CD300LF); C-type lectin domain family 12 member A (CLEC12A); bone marrow stromal cell antigen 2 (BST2); EGF-like module-containing mucin-like hormone receptor-like 2 (EMR2); lymphocyte antigen 75 (LY75); Glypican-3 (GPC3); Fc receptor-like 5 (FCRL5); and immunoglobulin lambda-like polypeptide 1 (IGLL1).
In one embodiment, the CAR molecule comprises a BCMA CAR molecule, e.g., a BCMA CAR described in US 2016/0046724 or WO 2016/014565, incorporated herein by reference. In embodiments, the BCMA CAR comprises an amino acid, or has a nucleotide sequence of a CAR molecule, or an antigen binding domain according to US 2016/0046724, or Table 1 or 16, SEQ ID NO: 271 or SEQ ID NO: 273 of WO 2016/014565, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., having at least about 85%, 90%, or 95% sequence identity to any of the aforesaid BCMA CAR sequences). The amino acid and nucleotide sequences encoding the BCMA CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO 2016/014565.
With respect to the transmembrane domain, in various embodiments, a CAR can be designed to comprise a transmembrane domain that is attached to the extracellular domain of the CAR.
The transmembrane domain may be derived either from a natural or from a recombinant source. Where the source is natural, the domain may be derived from any membrane-bound or transmembrane protein. In one aspect the transmembrane domain is capable of signaling to the intracellular domain(s) whenever the CAR has bound to a target. A transmembrane domain may include at least the transmembrane region(s) of e.g., the alpha, beta or zeta chain of the T-cell receptor, CD28, CD27, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154. In some embodiments, a transmembrane domain may include at least the transmembrane region(s) of, e.g., KIRDS2, OX40, CD2, CD27, LFA-1 (CD11a, CD18), ICOS (CD278), 4-1BB (CD137), GITR, CD40, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD160, CD19, IL2R beta, IL2R gamma, IL7Rα, ITGA1, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), SLAMF6 (NTB-A, Ly108), SLAM (SLAMFI, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, PAG/Cbp, NKG2D, or NKG2C.
In some instances, the transmembrane domain can be attached to the extracellular region of the CAR, e.g., the antigen binding domain of the CAR, via a hinge, e.g., a hinge from a human protein. For example, in one embodiment, the hinge can be a human Ig (immunoglobulin) hinge (e.g., an IgG4 hinge, an IgD hinge), a GS linker (e.g., a GS linker described herein), a KIR2DS2 hinge or a CD8a hinge.
The cytoplasmic domain or region of the CAR includes an intracellular signaling domain. An intracellular signaling domain is generally responsible for activation of at least one of the normal effector functions of the immune cell in which the CAR has been introduced.
Examples of intracellular signaling domains for use in the CAR include the cytoplasmic sequences of the T cell receptor (TCR) and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivative or variant of these sequences and any recombinant sequence that has the same functional capability.
A primary signaling domain regulates primary activation of the TCR complex either in a stimulatory way, or in an inhibitory way. Primary intracellular signaling domains that act in a stimulatory manner may contain signaling motifs which are known as immunoreceptor tyrosine-based activation motifs or ITAMs.
Examples of ITAM containing primary intracellular signaling domains include those of CD3 zeta, common FcR gamma (FCERIG), Fc gamma RIIa, FcR beta (Fc Epsilon Rlb), CD3 gamma, CD3 delta, CD3 epsilon, CD79a, CD79b, DAP10, and DAP12. In one embodiment, a CAR comprises an intracellular signaling domain, e.g., a primary signaling domain of CD3-zeta.
The intracellular signaling domain of the CAR can comprise the CD3-zeta signaling domain by itself or it can be combined with any other desired intracellular signaling domain(s) useful in the context of a CAR of the invention. For example, the intracellular signaling domain of the CAR can comprise a CD3 zeta chain portion and a costimulatory signaling domain. The costimulatory signaling domain refers to a portion of the CAR comprising the intracellular domain of a costimulatory molecule. A costimulatory molecule is a cell surface molecule other than an antigen receptor or its ligands that is required for an efficient response of lymphocytes to an antigen. Examples of such molecules include CD27, CD28, 4-1BB (CD137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, and a ligand that binds to CD83, and the like. For example, CD27 costimulation has been demonstrated to enhance expansion, effector function, and survival of human CART cells in vitro and augments human T cell persistence and antitumor activity in vivo (Song et al. Blood. 2012; 119(3):696-706). Further examples of such costimulatory molecules include CDS, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD160, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), NKG2D, CEACAMi, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, and CD19a.
Immune effector cells such as T cells may be activated and expanded generally using methods as described, for example, in U.S. Pat. Nos. 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and U.S. Patent Application Publication No. 2006/0121005, incorporated herein by reference.
Examples of immune effector cells include T cells, e.g., alpha/beta T cells and gamma/delta T cells, B cells, natural killer (NK) cells, natural killer T (NKT) cells, mast cells, and myeloid-derived phagocytes.
Methods of making CAR-expressing cells are described, e.g., in US 2016/0185861, incorporated herein by reference.
Anti-CD73 antibody molecules can be combined with an immunogenic agent, such as cancerous cells, purified tumor antigens (including recombinant proteins, peptides, and carbohydrate molecules), cells, and cells transfected with genes encoding immune stimulating cytokines (He et al. (2004) J. Immunol. 173:4919-28). Non-limiting examples of tumor vaccines that can be used include peptides of melanoma antigens, such as peptides of gp100, MAGE antigens, Trp-2, MART1 and/or tyrosinase, tumor cells transfected to express the cytokine GM-CSF, DNA-based vaccines, RNA-based vaccines, and viral transduction-based vaccines. The cancer vaccine may be prophylactic or therapeutic.
CD73 blockade can be used in conjunction with a collection of recombinant proteins and/or peptides expressed in a tumor in order to generate an immune response to these proteins.
Other tumor vaccines may include the proteins from viruses implicated in human cancers such a Human Papilloma Viruses (HPV), Hepatitis Viruses (HBV and HCV), Kaposi's Herpes Sarcoma Virus (KHSV), and Epstein-Barr virus (EBV). Another form of tumor specific antigen which may be used in conjunction with CD73 blockade is purified heat shock proteins (HSP) isolated from the tumor tissue itself. These heat shock proteins contain fragments of proteins from the tumor cells and these HSPs are highly efficient at delivery to antigen presenting cells for eliciting tumor immunity (Suot, R & Srivastava, P (1995) Science 269:1585-1588; Tamura, Y. et al. (1997) Science 278:117-120).
Dendritic cells (DC) are potent antigen presenting cells that can be used to prime antigen-specific responses. DC's can be produced ex vivo and loaded with various protein and peptide antigens as well as tumor cell extracts (Nestle, F. et al. (1998) Nature Medicine 4: 328-332). DCs may also be transduced by genetic means to express these tumor antigens as well. DCs have also been fused directly to tumor cells for the purposes of immunization (Kugler, A. et al. (2000) Nature Medicine 6:332-336). As a method of vaccination, DC immunization may be effectively combined with CD73 blockade to activate more potent anti-tumor responses.
Anti-CD73 antibody molecules can be administered in combination with oncolytic viruses. In embodiments, oncolytic viruses are capable of selectively replicating in and triggering the death of or slowing the growth of a cancer cell. In some cases, oncolytic viruses have no effect or a minimal effect on non-cancer cells. In some embodiments, the combination is used to treat a cancer, e.g., a cancer described herein. In certain embodiments, the cancer is a brain cancer, e.g., a glioblastoma (GBM). An oncolytic virus includes, but is not limited to, an oncolytic adenovirus, oncolytic Herpes Simplex Viruses, oncolytic retrovirus, oncolytic parvovirus, oncolytic vaccinia virus, oncolytic Sindbis virus, oncolytic influenza virus, or oncolytic RNA virus (e.g., oncolytic reovirus, oncolytic Newcastle Disease Virus (NDV), oncolytic measles virus, or oncolytic vesicular stomatitis virus (VSV)).
Exemplary oncolytic viruses include but are not limited to the following:
Group B Oncolytic Adenovirus (ColoAdl) (PsiOxus Therapeutics Ltd.) (see, e.g., Clinical Trial Identifier: NCT02053220);
ONCOS-102 (previously called CGTG-102), which is an adenovirus comprising granulocyte-macrophage colony stimulating factor (GM-CSF) (Oncos Therapeutics) (see, e.g., Clinical Trial Identifier: NCT01598129);
VCN-01, which is a genetically modified oncolytic human adenovirus encoding human PH20 hyaluronidase (VCN Biosciences, S.L.) (see, e.g., Clinical Trial Identifiers: NCT02045602 and NCT02045589);
Conditionally Replicative Adenovirus ICOVIR-5, which is a virus derived from wild-type human adenovirus serotype 5 (Had5) that has been modified to selectively replicate in cancer cells with a deregulated retinoblastomalE2F pathway (Institut Catala d'Oncologia) (see, e.g., Clinical Trial Identifier: NCT01864759);
Celyvir, which comprises bone marrow-derived autologous mesenchymal stem cells (MSCs) infected with ICOVIR5, an oncolytic adenovirus (Hospital Infantil Universitario Nifio Jesis, Madrid, Spain/Ramon Alemany) (see, e.g., Clinical Trial Identifier: NCT01844661);
CG0070, which is a conditionally replicating oncolytic serotype 5 adenovirus (Ad5) in which human E2F-1 promoter drives expression of the essential Ela viral genes, thereby restricting viral replication and cytotoxicity to Rb pathway-defective tumor cells (Cold Genesys, Inc.) (see, e.g., Clinical Trial Identifier: NCT02143804); or
DNX-2401 (formerly named Delta-24-RGD), which is an adenovirus that has been engineered to replicate selectively in retinoblastoma (Rb)-pathway deficient cells and to infect cells that express certain RGD-binding integrins more efficiently (Clinica Universidad de Navarra, Universidad de Navarra/DNAtrix, Inc.) (see, e.g., Clinical Trial Identifier: NCT01956734).
In some embodiments, an oncolytic virus described herein is administering by injection, e.g., subcutaneous, intra-arterial, intravenous, intramuscular, intrathecal, or intraperitoneal injection. In embodiments, an oncolytic virus described herein is administered intratumorally, transdermally, transmucosally, orally, intranasally, or via pulmonary administration.
Exemplary combinations of anti-CD73 antibody molecules (alone or in combination with other stimulatory agents) and standard of care for cancer, include at least the following. In certain embodiments, the anti-CD73 antibody molecule, e.g., the anti-CD73 antibody molecule described herein, is used in combination with a standard of cancer care chemotherapeutic agent including, but not limited to, anastrozole (Arimidex®), bicalutamide (Casodex®), bleomycin sulfate (Blenoxane®), busulfan (Myleran®), busulfan injection (Busulfex®), capecitabine (Xeloda®), N4-pentoxycarbonyl-5-deoxy-5-fluorocytidine, carboplatin (Paraplatin®), carmustine (BiCNU®), chlorambucil (Leukeran®), cisplatin (Platinol®), cladribine (Leustatin®), cyclophosphamide (Cytoxan® or Neosar®), cytarabine, cytosine arabinoside (Cytosar-U®), cytarabine liposome injection (DepoCyt®), dacarbazine (DTIC-Dome®), dactinomycin (Actinomycin D, Cosmegan), daunorubicin hydrochloride (Cerubidine®), daunorubicin citrate liposome injection (DaunoXome®), dexamethasone, docetaxel (Taxotere®), doxorubicin hydrochloride (Adriamycin®, Rubex®), etoposide (Vepesid®), fludarabine phosphate (Fludara®), 5-fluorouracil (Adrucil®, Efudex®), flutamide (Eulexin®), tezacitibine, Gemcitabine (difluorodeoxycitidine), hydroxyurea (Hydrea®), Idarubicin (Idamycin®), ifosfamide (IFEX®), irinotecan (Camptosar®), L-asparaginase (ELSPAR®), leucovorin calcium, melphalan (Alkeran®), 6-mercaptopurine (Purinethol®), methotrexate (Folex®), mitoxantrone (Novantrone®), mylotarg, paclitaxel (Taxol®), phoenix (Yttrium90/MX-DTPA), pentostatin, polifeprosan 20 with carmustine implant (Gliadel®), tamoxifen citrate (Nolvadex®), teniposide (Vumon®), 6-thioguanine, thiotepa, tirapazamine (Tirazone®), topotecan hydrochloride for injection (Hycamptin®), vinblastine (Velban®), vincristine (Oncovin®), vinorelbine (Navelbine®), Ibrutinib, idelalisib, and brentuximab vedotin.
Exemplary alkylating agents include, without limitation, nitrogen mustards, ethylenimine derivatives, alkyl sulfonates, nitrosoureas and triazenes): uracil mustard (Aminouracil Mustard®, Chlorethaminacil®, Demethyldopan®, Desmethyldopan®, Haemanthamine®, Nordopan®, Uracil nitrogen Mustard®, Uracillost®, Uracilmostaza®, Uramustin®, Uramustine®), chlormethine (Mustargen®), cyclophosphamide (Cytoxan®, Neosar®, Clafen®, Endoxan®, Procytox®, Revimmune™), ifosfamide (Mitoxana®), melphalan (Alkeran®), Chlorambucil (Leukeran®), pipobroman (Amedel®, Vercyte®), triethylenemelamine (Hemel®, Hexalen®, Hexastat®), triethylenethiophosphoramine, Temozolomide (Temodar®), thiotepa (Thioplex®), busulfan (Busilvex®, Myleran®), carmustine (BiCNU®), lomustine (CeeNU®), streptozocin (Zanosar®), and Dacarbazine (DTIC-Dome®). Additional exemplary alkylating agents include, without limitation, Oxaliplatin (Eloxatin®); Temozolomide (Temodar® and Temodal®); Dactinomycin (also known as actinomycin-D, Cosmegen®); Melphalan (also known as L-PAM, L-sarcolysin, and phenylalanine mustard, Alkeran®); Altretamine (also known as hexamethylmelamine (HMM), Hexalen®); Carmustine (BiCNU®); Bendamustine (Treanda®); Busulfan (Busulfex® and Myleran®); Carboplatin (Paraplatin®); Lomustine (also known as CCNU, CeeNU®); Cisplatin (also known as CDDP, Platinol® and Platinol®-AQ); Chlorambucil (Leukeran®); Cyclophosphamide (Cytoxan® and Neosar®); Dacarbazine (also known as DTIC, DIC and imidazole carboxamide, DTIC-Dome®); Altretamine (also known as hexamethylmelamine (HMM), Hexalen®); Ifosfamide (Ifex®); Prednumustine; Procarbazine (Matulane®); Mechlorethamine (also known as nitrogen mustard, mustine and mechloroethamine hydrochloride, Mustargen®); Streptozocin (Zanosar®); Thiotepa (also known as thiophosphoamide, TESPA and TSPA, Thioplex®); Cyclophosphamide (Endoxan®, Cytoxan®, Neosar®, Procytox®, Revimmune®); and Bendamustine HCl (Treanda®).
Exemplary anthracyclines include, e.g., doxorubicin (Adriamycin® and Rubex®); bleomycin (Lenoxane®); daunorubicin (dauorubicin hydrochloride, daunomycin, and rubidomycin hydrochloride, Cerubidine®); daunorubicin liposomal (daunorubicin citrate liposome, DaunoXome®); mitoxantrone (DHAD, Novantrone®); epirubicin (Ellence™); idarubicin (Idamycin®, Idamycin PFS®); mitomycin C (Mutamycin®); geldanamycin; herbimycin; ravidomycin; and desacetylravidomycin. Exemplary vinca alkaloids that can be used in combination with the anti-CD73 antibody molecules, include, but are not limited to, vinorelbine tartrate (Navelbine®), Vincristine (Oncovin®), and Vindesine (Eldisine®)); vinblastine (also known as vinblastine sulfate, vincaleukoblastine and VLB, Alkaban-AQ® and Velban®); and vinorelbine (Navelbine®).
Exemplary proteosome inhibitors that can be used in combination with the anti-CD73 antibody molecules include, but are not limited to, bortezomib (Velcade®); carfilzomib (PX-171-007, (S)-4-Methyl-N—((S)-1-(((S)-4-methyl-1-((R)-2-methyloxiran-2-yl)-1-oxopentan-2-yl)amino)-1-oxo-3-phenylpropan-2-yl)-2-((S)-2-(2-morpholinoacetamido)-4-phenylbutanamido)-pentanamide); marizomib (NPI-0052); ixazomib citrate (MLN-9708); delanzomib (CEP-18770); and O-Methyl-N-[(2-methyl-5-thiazolyl)carbonyl]-L-seryl-O-methyl-N-[(1S)-2-[(2R)-2-methyl-2-oxiranyl]-2-oxo-1-(phenylmethyl)ethyl]-L-serinamide (ONX-0912).
In some embodiments, the anti-CD73 antibody molecule, e.g., the anti-CD73 antibody molecule described herein, is used, in combination with a tyrosine kinase inhibitor (e.g., a receptor tyrosine kinase (RTK) inhibitor). Exemplary tyrosine kinase inhibitor include, but are not limited to, an epidermal growth factor (EGF) pathway inhibitor (e.g., an epidermal growth factor receptor (EGFR) inhibitor), a vascular endothelial growth factor (VEGF) pathway inhibitor (e.g., a vascular endothelial growth factor receptor (VEGFR) inhibitor (e.g., a VEGFR-1 inhibitor, a VEGFR-2 inhibitor, a VEGFR-3 inhibitor)), a platelet derived growth factor (PDGF) pathway inhibitor (e.g., a platelet derived growth factor receptor (PDGFR) inhibitor (e.g., a PDGFR-13 inhibitor)), a RAF-1 inhibitor, a KIT inhibitor and a RET inhibitor. In some embodiments, the anti-cancer agent used in combination with the hedgehog inhibitor is selected from the group consisting of: axitinib (AG013736), bosutinib (SKI-606), cediranib (RECENTIN™, AZD2171), dasatinib (SPRYCEL®, BMS-354825), erlotinib (TARCEVA®), gefitinib (IRESSA®), imatinib (Gleevec®, CGP57148B, STI-571), lapatinib (TYKERB®, TYVERB®), lestaurtinib (CEP-701), neratinib (HKI-272), nilotinib (TASIGNA®), semaxanib (semaxinib, SU5416), sunitinib (SUTENT®, SU11248), toceranib (PALLADIA®), vandetanib (ZACTIMA®, ZD6474), vatalanib (PTK787, PTK/ZK), trastuzumab (HERCEPTIN®), bevacizumab (AVASTIN®), rituximab (RITUXAN®), cetuximab (ERBITUX®), panitumumab (VECTIBIX®), ranibizumab (Lucentis®), nilotinib (TASIGNA®), sorafenib (NEXAVAR®), alemtuzumab (CAMPATH®), gemtuzumab ozogamicin (MYLOTARG®), ENMD-2076, PCI-32765, AC220, BIBW 2992 (TOVOK™), SGX523, PF-04217903, PF-02341066, PF-299804, BMS-777607, ABT-869, MP470, BIBF 1120 (VARGATEF®), AP24534, JNJ-26483327, MGCD265, DCC-2036, BMS-690154, CEP-11981, tivozanib (AV-951), OSI-930, MM-121, XL-184, XL-647, XL228, AEE788, AG-490, AST-6, BMS-599626, CUDC-101, PD153035, pelitinib (EKB-569), vandetanib (zactima), WZ3146, WZ4002, WZ8040, ABT-869 (linifanib), AEE788, AP24534 (ponatinib), AV-951(tivozanib), axitinib, BAY 73-4506 (regorafenib), brivanib alaninate (BMS-582664), brivanib (BMS-540215), cediranib (AZD2171), CP 673451, CYC 116, E7080, Ki8751, masitinib (AB1010), MGCD-265, motesanib diphosphate (AMG-706), MP-470, OSI-930, Pazopanib Hydrochloride, PD173074, Sorafenib Tosylate(Bay 43-9006), SU 5402, TSU-68(SU6668), vatalanib, XL880 (GSK1363089, EXEL-2880). Selected tyrosine kinase inhibitors are chosen from sunitinib, erlotinib, gefitinib, or sorafenib.
Radiation therapy can be administered through one of several methods, or a combination of methods, including without limitation external-beam therapy, internal radiation therapy, implant radiation, stereotactic radiosurgery, systemic radiation therapy, radiotherapy and permanent or temporary interstitial brachytherapy. The term “brachytherapy,” refers to radiation therapy delivered by a spatially confined radioactive material inserted into the body at or near a tumor or other proliferative tissue disease site. The term is intended without limitation to include exposure to radioactive isotopes (e.g., At-211, I-131, I-125, Y-90, Re-186, Re-188, Sm-153, Bi-212, P-32, and radioactive isotopes of Lu). Suitable radiation sources for use as a cell conditioner of the present invention include both solids and liquids. By way of non-limiting example, the radiation source can be a radionuclide, such as I-125, I-131, Yb-169, Ir-192 as a solid source, I-125 as a solid source, or other radionuclides that emit photons, beta particles, gamma radiation, or other therapeutic rays. The radioactive material can also be a fluid made from any solution of radionuclide(s), e.g., a solution of I-125 or I-131, or a radioactive fluid can be produced using a slurry of a suitable fluid containing small particles of solid radionuclides, such as Au-198, Y-90.
CD73 blockade may also be effectively combined with chemotherapeutic regimes. In these instances, it may be possible to reduce the dose of chemotherapeutic reagent administered.
Exemplary cytotoxic agents that can be administered in combination with an anti-CD73 antibody molecule include antimicrotubule agents, topoisomerase inhibitors, anti-metabolites, mitotic inhibitors, alkylating agents, anthracyclines, vinca alkaloids, intercalating agents, agents capable of interfering with a signal transduction pathway, agents that promote apoptosis, proteosome inhibitors, and radiation (e.g., local or whole body irradiation).
In certain embodiments, any of the combinations disclosed herein, alternatively or in combination, further includes one or more of the agents described in Table 1.
In some embodiments, the additional therapeutic agent is chosen from one or more of: 1) a protein kinase C (PKC) inhibitor; 2) a heat shock protein 90 (HSP90) inhibitor; 3) an inhibitor of a phosphoinositide 3-kinase (PI3K) and/or target of rapamycin (mTOR); 4) an inhibitor of cytochrome P450 (e.g., a CYP17 inhibitor or a 17alpha-Hydroxylase/C17-20 Lyase inhibitor); 5) an iron chelating agent; 6) an aromatase inhibitor; 7) an inhibitor of p53, e.g., an inhibitor of a p53/Mdm2 interaction; 8) an apoptosis inducer; 9) an angiogenesis inhibitor; 10) an aldosterone synthase inhibitor; 11) a smoothened (SMO) receptor inhibitor; 12) a prolactin receptor (PRLR) inhibitor; 13) a Wnt signaling inhibitor; 14) a CDK4/6 inhibitor; 15) a fibroblast growth factor receptor 2 (FGFR2)/fibroblast growth factor receptor 4 (FGFR4) inhibitor; 16) an inhibitor of macrophage colony-stimulating factor (M-CSF); 17) an inhibitor of one or more of c-KIT, histamine release, Flt3 (e.g., FLK2/STK1) or PKC; 18) an inhibitor of one or more of VEGFR-2 (e.g., FLK-1/KDR), PDGFRbeta, c-KIT or Raf kinase C; 19) a somatostatin agonist and/or a growth hormone release inhibitor; 20) an anaplastic lymphoma kinase (ALK) inhibitor; 21) an insulin-like growth factor 1 receptor (IGF-1R) inhibitor; 22) a P-Glycoprotein 1 inhibitor; 23) a vascular endothelial growth factor receptor (VEGFR) inhibitor; 24) a BCR-ABL kinase inhibitor; 25) an FGFR inhibitor; 26) an inhibitor of CYP11B2; 27) a HDM2 inhibitor, e.g., an inhibitor of the HDM2-p53 interaction; 28) an inhibitor of a tyrosine kinase; 29) an inhibitor of c-MET; 30) an inhibitor of JAK; 31) an inhibitor of DAC; 32) an inhibitor of 11β-hydroxylase; 33) an inhibitor of IAP; 34) an inhibitor of PIM kinase; 35) an inhibitor of Porcupine; 36) an inhibitor of BRAF, e.g., BRAF V600E or wild-type BRAF; 37) an inhibitor of HER3; 38) an inhibitor of MEK; or 39) an inhibitor of a lipid kinase, e.g., as described herein and in Table 1.
Exemplary tyrosine kinase inhibitor include, but are not limited to, an epidermal growth factor (EGF) pathway inhibitor (e.g., an epidermal growth factor receptor (EGFR) inhibitor), a vascular endothelial growth factor (VEGF) pathway inhibitor (e.g., a vascular endothelial growth factor receptor (VEGFR) inhibitor (e.g., a VEGFR-1 inhibitor, a VEGFR-2 inhibitor, a VEGFR-3 inhibitor)), a platelet derived growth factor (PDGF) pathway inhibitor (e.g., a platelet derived growth factor receptor (PDGFR) inhibitor (e.g., a PDGFR-β inhibitor)), a RAF-1 inhibitor, a KIT inhibitor and a RET inhibitor.
In one embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a PKC inhibitor, Sotrastaurin (Compound A1), or a compound disclosed in PCT Publication No. WO 2005/039549, to treat a disorder, e.g., a disorder described herein. In one embodiment, the PKC inhibitor is Sotrastaurin (Compound A1) or a compound disclosed in PCT Publication No. WO 2005/039549. In one embodiment, an anti-CD73 antibody molecule is used in combination with Sotrastaurin (Compound A1), or a compound as described in PCT Publication No. WO 2005/039549, to treat a disorder such as a cancer, a melanoma, a non-Hodgkin lymphoma, an inflammatory bowel disease, transplant rejection, an ophthalmic disorder, or psoriasis.
In one embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a BCR-ABL inhibitor, TASIGNA (Compound A2), or a compound disclosed in PCT Publication No. WO 2004/005281, to treat a disorder, e.g., a disorder described herein. In one embodiment, the BCR-ABL inhibitor is TASIGNA, or a compound disclosed in PCT Publication No. WO 2004/005281. In one embodiment, an anti-CD73 antibody molecule is used in combination with TASIGNA (Compound A2), or a compound as described in PCT Publication No. WO 2004/005281, to treat a disorder such as a lymphocytic leukemia, Parkinson's Disease, a neurologic cancer, a melanoma, a digestive/gastrointestinal cancer, a colorectal cancer, a myeloid leukemia, a head and neck cancer, or pulmonary hypertension.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an HSP90 inhibitor, to treat a disorder, e.g., a disorder described herein, e.g., a cancer, a multiple myeloma, a non-small cell lung cancer, a lymphoma, a gastric cancer, a breast cancer, a digestive/gastrointestinal cancer, a pancreatic cancer, a colorectal cancer, a solid tumor, or a hematopoiesis disorder.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, is used in combination with an inhibitor of PI3K and/or mTOR, 8-(6-Methoxy-pyridin-3-yl)-3-methyl-1-(4-piperazin-1-yl-3-trifluoromethyl-phenyl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Compound A41), to treat a disorder, e.g., a disorder described herein. In one embodiment, the PI3K and/or mTOR inhibitor is 8-(6-Methoxy-pyridin-3-yl)-3-methyl-1-(4-piperazin-1-yl-3-trifluoromethyl-phenyl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Compound A41). In one embodiment, an anti-CD73 antibody molecule is used in combination with 8-(6-Methoxy-pyridin-3-yl)-3-methyl-1-(4-piperazin-1-yl-3-trifluoromethyl-phenyl)-1,3-dihydro-imidazo[4,5-c] quinolin-2-one (Compound A41), to treat a disorder such as a cancer, a prostate cancer, a leukemia (e.g., lymphocytic leukemia), a breast cancer, a brain cancer, a bladder cancer, a pancreatic cancer, a renal cancer, a solid tumor, or a liver cancer.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an FGFR inhibitor, 3-(2,6-dichloro-3,5-dimethoxyphenyl)-1-(6-((4-(4-ethylpiperazin-1-yl)phenyl)amino)pyrimidin-4-yl)-1-methylurea (Compound A5) or a compound disclosed in U.S. Pat. No. 8,552,002, to treat a disorder, e.g., a disorder described herein. In one embodiment, the FGFR inhibitor is 3-(2,6-dichloro-3,5-dimethoxyphenyl)-1-(6-((4-(4-ethylpiperazin-1-yl)phenyl)amino)pyrimidin-4-yl)-1-methylurea (Compound A5) or a compound disclosed in U.S. Pat. No. 8,552,002. In one embodiment, an anti-CD73 antibody molecule is used in combination with Compound A5, or a compound as described in U.S. Pat. No. 8,552,002, to treat a disorder such as a digestive/gastrointestinal cancer, a hematological cancer, or a solid tumor. Compound A5 has the following structure:
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a PI3K inhibitor, Buparlisib (Compound A6), or a compound disclosed in PCT Publication No. WO 2007/084786, to treat a disorder, e.g., a disorder described herein. In one embodiment, the PI3K inhibitor is Buparlisib (Compound A6) or a compound disclosed in PCT Publication No. WO 2007/084786. In one embodiment, an anti-CD73 antibody molecule is used in combination with Buparlisib (Compound A6), or a compound disclosed in PCT Publication No. WO 2007/084786, to treat a disorder such as, a prostate cancer, a non-small cell lung cancer, an endocrine cancer, a leukemia, an ovarian cancer, a melanoma, a bladder cancer, a breast cancer, a female reproductive system cancer, a digestive/gastrointestinal cancer, a colorectal cancer, a glioblastoma multiforme, a solid tumor, a non-Hodgkin lymphoma, a hematopoiesis disorder, or a head and neck cancer. Compound A6 has the following structure:
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an FGFR inhibitor, 8-(2,6-difluoro-3,5-dimethoxyphenyl)-N-(4-((dimethylamino)methyl)-1H-imidazol-2-yl)quinoxaline-5-carboxamide (Compound A7) or a compound disclosed in PCT Publication No. WO 2009/141386 to treat a disorder, e.g., a disorder described herein. In one embodiment, the FGFR inhibitor is 8-(2,6-difluoro-3,5-dimethoxyphenyl)-N-(4-((dimethylamino)methyl)-1H-imidazol-2-yl)quinoxaline-5-carboxamide(Compound A7) or a compound disclosed in a PCT Publication No. WO 2009/141386. In one embodiment, the FGFR inhibitor is 8-(2,6-difluoro-3,5-dimethoxyphenyl)-N-(4-((dimethylamino)methyl)-1H-imidazol-2-yl)quinoxaline-5-carboxamide(Compound A7). In one embodiment, an anti-CD73 antibody molecule is used in combination with 8-(2,6-difluoro-3,5-dimethoxyphenyl)-N-(4-((dimethylamino)methyl)-1H-imidazol-2-yl)quinoxaline-5-carboxamide(Compound A7), or a compound disclosed in PCT Publication No. WO 2009/141386, to treat a disorder such as a cancer characterized by angiogenesis.
In another embodiment the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a PI3K inhibitor, (S)—N1-(4-methyl-5-(2-(1-trifluoro-2-methylpropan-2-yl)pyridin-4-yl)thiazol-2-yl)pyrrolidine-1,2-dicarboxamide (Compound A8) or a compound disclosed PCT Publication No. WO 2010/029082 to treat a disorder, e.g., a disorder described herein. In one embodiment, the PI3K inhibitor is (S)—N1-(4-methyl-5-(2-(1,1,1-trifluoro-2-methylpropan-2-yl)pyridin-4-yl)thiazol-2-yl)pyrrolidine-1,2-dicarboxamide (Compound A8) or a compound disclosed PCT Publication No. WO 2010/029082. In one embodiment, an anti-CD73 antibody molecule is used in combination with (S)—N1-(4-methyl-5-(2-(1,1,1-trifluoro-2-methylpropan-2-yl)pyridin-4-yl)thiazol-2-yl)pyrrolidine-1,2-dicarboxamide (Compound A8), or a compound disclosed PCT Publication No. WO 2010/029082, to treat a disorder such as a gastric cancer, a breast cancer, a pancreatic cancer, a digestive/gastrointestinal cancer, a solid tumor, and a head and neck cancer.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an inhibitor of cytochrome P450 (e.g., a CYP17 inhibitor) or a compound disclosed in PCT Publication No. WO 2010/149755, to treat a disorder, e.g., a disorder described herein. In one embodiment, the cytochrome P450 inhibitor (e.g., the CYP17 inhibitor) is CFG920 or a compound disclosed in PCT Publication No. WO 2010/149755; U.S. Pat. No. 8,263,635 B2; or EP 2445903 B. In one embodiment, an anti-CD73 antibody molecule is used in combination with a compound disclosed in PCT Publication No. WO 2010/149755, to treat prostate cancer.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an HDM2 inhibitor, (S)-1-(4-chlorophenyl)-7-isopropoxy-6-methoxy-2-(4-(methyl(((1r,4S)-4-(4-methyl-3-oxopiperazin-1-yl)cyclohexyl)methyl)amino)phenyl)-1,2-dihydroisoquinolin-3 (4H)-one(Compound A10) or a compound disclosed in PCT Publication No. WO 2011/076786 to treat a disorder, e.g., a disorder described herein). In one embodiment, the HDM2 inhibitor is (S)-1-(4-chlorophenyl)-7-isopropoxy-6-methoxy-2-(4-(methyl(((r,4S)-4-(4-methyl-3-oxopiperazin-1-yl)cyclohexyl)methyl)amino)phenyl)-1,2-dihydroisoquinolin-3(4H)-one (Compound A10) or a compound disclosed in PCT Publication No. WO 2011/076786. In one embodiment, an anti-CD73 antibody molecule is used in combination with (S)-1-(4-chlorophenyl)-7-isopropoxy-6-methoxy-2-(4-(methyl(((lr,4S)-4-(4-methyl-3-oxopiperazin-1-yl)cyclohexyl)methyl)amino)phenyl)-1,2-dihydroisoquinolin-3(4H)-one (Compound A10), or a compound disclosed in PCTPublication No. WO 2011/076786, to treat a disorder such as a solid tumor.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an iron chelating agent, Deferasirox (also known as EXJADE; Compound A11), or a compound disclosed in PCT Publication No. WO 1997/049395 to treat a disorder, e.g., a disorder described herein. In one embodiment, the iron chelating agent is Deferasirox or a compound disclosed in PCT Publication No. WO 1997/049395. In one embodiment, the iron chelating agent is Deferasirox (Compound A11). In one embodiment, an anti-CD73 antibody molecule is used in combination with Deferasirox (Compound A11), or a compound disclosed in PCT Publication No. WO 1997/049395, to treat iron overload, hemochromatosis, or myelodysplasia.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an aromatase inhibitor, Letrozole (also known as FEMARA; Compound A12), or a compound disclosed in U.S. Pat. No. 4,978,672 to treat a disorder, e.g., a disorder described herein. In one embodiment, the aromatase inhibitor is Letrozole (Compound A12) or a compound disclosed in U.S. Pat. No. 4,978,672. In one embodiment, an anti-CD73 antibody molecule is used in combination with Letrozole (Compound A12), or a compound disclosed in U.S. Pat. No. 4,978,672, to treat a disorder such as a cancer, a leiomyosarcoma, an endometrium cancer, a breast cancer, a female reproductive system cancer, or a hormone deficiency.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a PI3K inhibitor, e.g., a pan-PI3K inhibitor, (4S,5R)-3-(2′-amino-2-morpholino-4′-(trifluoromethyl)-[4,5′-bipyrimidin]-6-yl)-4-(hydroxymethyl)-5-methyloxazolidin-2-one (Compound A13) or a compound disclosed in PCT Publication No. WO2013/124826 to treat a disorder, e.g., a disorder described herein. In one embodiment, the PI3K inhibitor is (4S,5R)-3-(2′-amino-2-morpholino-4′-(trifluoromethyl)-[4,5′-bipyrimidin]-6-yl)-4-(hydroxymethyl)-5-methyloxazolidin-2-one (Compound A13) or a compound disclosed in PCT Publication No. WO2013/124826. In one embodiment, an anti-CD73 antibody molecule is used in combination with (4S,5R)-3-(2′-amino-2-morpholino-4′-(trifluoromethyl)-[4,5′-bipyrimidin]-6-yl)-4-(hydroxymethyl)-5-methyloxazolidin-2-one (Compound A13), or a compound disclosed in PCT Publication No. WO2013/124826, to treat a disorder such as a cancer or an advanced solid tumor.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an inhibitor of p53 and/or a p53/Mdm2 interaction, (S)-5-(5-chloro-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-6-(4-chlorophenyl)-2-(2,4-dimethoxypyrimidin-5-yl)-1-isopropyl-5,6-dihydropyrrolo[3,4-d]imidazol-4(1H)-one (Compound A14), or a compound disclosed in PCT Publication No. WO2013/111105 to treat a disorder, e.g., a disorder described herein. In one embodiment, the p53 and/or a p53/Mdm2 interaction inhibitor is (S)-5-(5-chloro-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-6-(4-chlorophenyl)-2-(2,4-dimethoxypyrimidin-5-yl)-1-isopropyl-5,6-dihydropyrrolo[3,4-d]imidazol-4(1H)-one (Compound A14) or a compound disclosed in PCT Publication No. WO2013/111105. In one embodiment, an anti-CD73 antibody molecule is used in combination with (S)-5-(5-chloro-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-6-(4-chlorophenyl)-2-(2,4-dimethoxypyrimidin-5-yl)-1-isopropyl-5,6-dihydropyrrolo[3,4-d]imidazol-4(1H)-one (Compound A14), or a compound disclosed in PCT Publication No. WO2013/111105, to treat a disorder such as a cancer or a soft tissue sarcoma.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a CSF-1R tyrosine kinase inhibitor, 4-((2-(((1R,2R)-2-hydroxycyclohexyl)amino)benzo[d]thiazol-6-yl)oxy)-N-methylpicolinamide (Compound A15), or a compound disclosed in PCT Publication No. WO 2005/073224 to treat a disorder, e.g., a disorder described herein. In one embodiment, the CSF-1R tyrosine kinase inhibitor is 4-((2-(((1R,2R)-2-hydroxycyclohexyl)amino)benzo[d]thiazol-6-yl)oxy)-N-methylpicolinamide (Compound A15) or a compound disclosed in PCT Publication No. WO 2005/073224. In one embodiment, an anti-CD73 antibody molecule is used in combination with 4-((2-(((1R,2R)-2-hydroxycyclohexyl)amino)benzo[d]thiazol-6-yl)oxy)-N-methylpicolinamide (Compound A15) or a compound disclosed in PCT Publication No. WO 2005/073224, to treat a disorder such as cancer.
In certain embodiments, the CSF-1R tyrosine kinase inhibitor, 4-((2-(((1R,2R)-2-hydroxycyclohexyl)amino)benzo[d]thiazol-6-yl)oxy)-N-methylpicolinamide (Compound A15), or a compound disclosed in PCT Publication No. WO 2005/073224, is administered in combination with the CD73 inhibitor (e.g., the anti-CD73 antibody molecule) to treat a cancer, e.g., a solid tumor (e.g., an advanced solid tumor). Exemplary cancers that can be treated by the combination include, but are not limited to, a brain cancer (e.g., glioblastoma multiforme (GBM), e.g., recurrent glioblastoma), a breast cancer (e.g., a triple-negative breast cancer (e.g., NTBC)), or a pancreatic cancer (e.g., advanced pancreatic cancer). The common features of these cancers include, e.g., a tumor biology characterized by high levels of TAMs in the tumor microenvironment that may contribute to immune evasion and immune suppression. In some embodiments, blockade of CSF-1R in conjunction with an anti-CD73 therapy can, e.g., promote re-programming of TAMs and/or remove immune suppression of tumor infiltrating lymphocytes (TIL).
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an apoptosis inducer and/or an angiogenesis inhibitor, such as Imatinib mesylate (also known as GLEEVEC®; Compound A16) or a compound disclosed in PCT Publication No. WO1999/003854 to treat a disorder, e.g., a disorder described. In one embodiment, the apoptosis inducer and/or an angiogenesis inhibitor is Imatinib mesylate (Compound A16) or a compound disclosed in PCT Publication No. WO1999/003854. In one embodiment, an anti-CD73 antibody molecule is used in combination with Imatinib mesylate (Compound A16), or a compound disclosed in PCT Publication No. WO1999/003854, to treat a disorder such as a cancer, a multiple myeloma, a prostate cancer, a non-small cell lung cancer, a lymphoma, a gastric cancer, a melanoma, a breast cancer, a pancreatic cancer, a digestive/gastrointestinal cancer, a colorectal cancer, a glioblastoma multiforme, a liver cancer, a head and neck cancer, asthma, multiple sclerosis, allergy, Alzheimer's dementia, amyotrophic lateral sclerosis, or rheumatoid arthritis.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a JAK inhibitor, 2-fluoro-N-methyl-4-(7-(quinolin-6-ylmethyl)imidazo[1,2-b] [1,2,4]triazin-2-yl)benzamide (Compound A17), or a dihydrochloric salt thereof, or a compound disclosed in PCT Publication No. WO 2007/070514, to treat a disorder, e.g., a disorder described herein. In one embodiment, the JAK inhibitor is 2-fluoro-N-methyl-4-(7-(quinolin-6-ylmethyl)imidazo[1,2-b] [1,2,4]triazin-2-yl)benzamide (Compound A17), or a dihydrochloric salt thereof, or a compound disclosed in PCT Publication No. WO 2007/070514. In one embodiment, an anti-CD73 antibody molecule is used in combination with 2-fluoro-N-methyl-4-(7-(quinolin-6-ylmethyl)imidazo[1,2-b][1,2,4]triazin-2-yl)benzamide (Compound A17), or a dihydrochloric salt thereof, or a compound disclosed in PCT Publication No. WO 2007/070514, to treat a disorder such as colorectal cancer, myeloid leukemia, hematological cancer, autoimmune disease, non-Hodgkin lymphoma, or thrombocythemia.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a JAK inhibitor, Ruxolitinib Phosphate (also known as JAKAFI; Compound A18) or a compound disclosed in PCT Publication No. WO 2007/070514 to treat a disorder, e.g., a disorder described herein. In one embodiment, the JAK inhibitor is Ruxolitinib Phosphate (Compound A18) or a compound disclosed in PCT Publication No. WO 2007/070514. In one embodiment, an anti-CD73 antibody molecule is used in combination with Ruxolitinib Phosphate (Compound A18), or a compound disclosed in PCT Publication No. WO 2007/070514, to treat a disorder such as a prostate cancer, a lymphocytic leukemia, a multiple myeloma, a lymphoma, a lung cancer, a leukemia, cachexia, a breast cancer, a pancreatic cancer, rheumatoid arthritis, psoriasis, a colorectal cancer, a myeloid leukemia, a hematological cancer, an autoimmune disease, a non-Hodgkin lymphoma, or thrombocythemia.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a deacetylase (DAC) inhibitor, Panobinostat (Compound A19), or a compound disclosed in PCT Publication No. WO 2014/072493 to treat a disorder, e.g., a disorder described herein. In one embodiment, the DAC inhibitor is Panobinostat (Compound A19) or a compound disclosed in PCT Publication No. WO 2014/072493. In one embodiment, an anti-CD73 antibody molecule is used in combination with Panobinostat (Compound A19), a compound disclosed in PCT Publication No. WO 2014/072493, to treat a disorder such as a colorectal cancer, a small cell lung cancer, a respiratory/thoracic cancer, a prostate cancer, a multiple myeloma, myelodysplastic syndrome, a bone cancer, a non-small cell lung cancer, an endocrine cancer, a lymphoma, a neurologic cancer, a leukemia, HIV/AIDS, an immune disorder, transplant rejection, a gastric cancer, a melanoma, a breast cancer (e.g., a triple negative breast cancer (TNBC)), a pancreatic cancer, a colorectal cancer, a glioblastoma multiforme, a myeloid leukemia, a hematological cancer, a renal cancer, a non-Hodgkin lymphoma, a head and neck cancer, a hematopoiesis disorders, or a liver cancer. In some embodiments, the cancer is chosen from a colorectal cancer (e.g., a microsatellite stable colorectal cancer (MSS CRC), a lung cancer (e.g., a non-small cell lung cancer), or a breast cancer (e.g., a triple negative lung cancer (TNBC)).
In some embodiments, the combination described herein includes a deacetylase (DAC) inhibitor, Panobinostat (Compound A19), or a compound disclosed in PCT Publication No. WO 2014/072493, and an inhibitor of an immune checkpoint molecule, e.g., an inhibitor of CD73 (e.g., an anti-CD73 antibody molecule).
In one embodiment, the DAC inhibitor, Panobinostat (Compound A19), or a compound disclosed in PCT Publication No. WO 2014/072493, is administered in combination with the CD73 inhibitor (e.g., the anti-CD73 antibody molecule) to treat a colorectal cancer (e.g., an MSS CRC), a lung cancer (e.g., a non-small cell lung cancer (NSCLC), or a breast cancer (e.g., a triple negative breast cancer (TNBC)).
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an inhibitor of one or more of cytochrome P450 (e.g., 11B2), aldosterone or angiogenesis, Osilodrostat (Compound A20), or a compound disclosed in PCT Publication No. WO2007/024945 to treat a disorder, e.g., a disorder described herein. In one embodiment, the inhibitor of one or more of cytochrome P450 (e.g., 11B2), aldosterone or angiogenesis is Osilodrostat (Compound A20) or a compound disclosed in PCT Publication No. WO2007/024945. In one embodiment, an anti-CD73 antibody molecule is used in combination with Osilodrostat (Compound A20), or a compound disclosed in PCT Publication No. WO2007/024945, to treat a disorder such as Cushing's syndrome, hypertension, or heart failure therapy.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a IAP inhibitor, (S)—N—((S)-1-cyclohexyl-2-((S)-2-(4-(4-fluorobenzoyl)thiazol-2-yl)pyrrolidin-1-yl)-2-oxoethyl)-2-(methylamino)propanamide (Compound A21) or a compound disclosed in U.S. Pat. No. 8,552,003 to treat a disorder, e.g., a disorder described herein. In one embodiment, the IAP inhibitor is (S)—N—((S)-1-cyclohexyl-2-((S)-2-(4-(4-fluorobenzoyl)thiazol-2-yl)pyrrolidin-1-yl)-2-oxoethyl)-2-(methylamino)propanamide (Compound A21) or a compound disclosed in U.S. Pat. No. 8,552,003. In one embodiment, an anti-CD73 antibody molecule is used in combination with (S)—N—((S)-1-cyclohexyl-2-((S)-2-(4-(4-fluorobenzoyl)thiazol-2-yl)pyrrolidin-1-yl)-2-oxoethyl)-2-(methylamino)propanamide (Compound A21), or a compound disclosed in U.S. Pat. No. 8,552,003, to treat a disorder such as a multiple myeloma, a colorectal cancer (CLC), a lung cancer (e.g., non-small cell lung cancer (NSCLC), a breast cancer (e.g., a triple-negative breast cancer (TNBC)), an ovarian cancer, a pancreatic cancer, or a hematopoiesis disorder. In some embodiments, the cancer is chosen from a colorectal cancer (e.g., a microsatellite stable colorectal cancer (MSS CRC), a lung cancer (e.g., a non-small cell lung cancer), or a breast cancer (e.g., a triple negative lung cancer (TNBC)).
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination a Smoothened (SMO) inhibitor, (R)-2-(5-(4-(6-benzyl-4,5-dimethylpyridazin-3-yl)-2-methylpiperazin-1-yl)pyrazin-2-yl)propan-2-ol (Compound A25), or a compound disclosed in PCT Publication No. WO 2010/007120 to treat a disorder, e.g., a disorder described herein. In one embodiment, the SMO inhibitor is (R)-2-(5-(4-(6-benzyl-4,5-dimethylpyridazin-3-yl)-2-methylpiperazin-1-yl)pyrazin-2-yl)propan-2-ol (Compound A25), or a compound disclosed in PCT Publication No. WO 2010/007120. In one embodiment, an anti-CD73 antibody molecule is used in combination with (R)-2-(5-(4-(6-benzyl-4,5-dimethylpyridazin-3-yl)-2-methylpiperazin-1-yl)pyrazin-2-yl)propan-2-ol (Compound A25), or a compound disclosed in PCT Publication No. WO 2010/007120 to treat a disorder such as a cancer, a medulloblastoma, a small cell lung cancer, a prostate cancer, a basal cell carcinoma, a pancreatic cancer, or an inflammation.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an Alk inhibitor, ceritinib (also known as ZY KADIA: Compound A23) to treat a disorder, e.g., a disorder described herein. In one embodiment, the Alk inhibitor is ceritinib (Compound A23). In one embodiment, an anti-CD73 antibody molecule is used in combination with ceritinib (Compound A23), to treat a disorder such as non-small cell lung cancer or solid tumors.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a JAK and/or CDK4/6 inhibitor, 7-cyclopentyl-N,N-dimethyl-2-((5-(piperazin-1-yl)pyridin-2-yl)amino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (Compound A24), or a compound disclosed in U.S. Pat. No. 8,415,355 or 8,685,980 to treat a disorder, e.g., a disorder described herein. In one embodiment, the JAK and/or CDK4/6 inhibitor is 7-cyclopentyl-N,N-dimethyl-2-((5-(piperazin-1-yl)pyridin-2-yl)amino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (Compound A24) or a compound disclosed in U.S. Pat. No. 8,415,355 or 8,685,980. In one embodiment, an anit-CD73 antibody molecule is used in combination with 7-cyclopentyl-N,N-dimethyl-2-((5-(piperazin-1-yl)pyridin-2-yl)amino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (Compound A24), or a compound disclosed in U.S. Pat. No. 8,415,355 or 8,685,980, to treat a disorder such as a lymphoma, a neurologic cancer, a melanoma, a breast cancer, or a solid tumor.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination a prolactin receptor (PRLR) inhibitor, a human monoclonal antibody molecule (Compound A26) as disclosed in U.S. Pat. No. 7,867,493), to treat a disorder, e.g., a disorder described herein. In one embodiment, the PRLR inhibitor is a human monoclonal antibody (Compound A26) disclosed in U.S. Pat. No. 7,867,493. In one embodiment, an anti-CD73 antibody molecule is used in combination with human monoclonal antibody molecule (Compound A26) described in U.S. Pat. No. 7,867,493 to treat a disorder such as, a cancer, a prostate cancer, or a breast cancer.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a PIM Kinase inhibitor, N-(4-((1R,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (Compound A27) or a compound disclosed in PCT Publication No. WO 2010/026124 to treat a disorder, e.g., a disorder described herein. In one embodiment, the PIM Kinase inhibitor is N-(4-((1R,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (Compound A27) or a compound disclosed in PCT Publication No. WO 2010/026124. In one embodiment, an anti-CD73 antibody molecule is used in combination with N-(4-((1R,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (Compound A27), or a compound disclosed in PCT Publication No. WO 2010/026124, to treat a disorder such as a multiple myeloma, myelodysplastic syndrome, a myeloid leukemia, or a non-Hodgkin lymphoma.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination a Wnt signaling inhibitor, 2-(2′,3-dimethyl-[2,4′-bipyridin]-5-yl)-N-(5-(pyrazin-2-yl)pyridin-2-yl)acetamide (Compound A28) or a compound disclosed in PCT publication No. WO 2010/101849 to treat a disorder, e.g., a disorder described herein. In one embodiment, the Wnt signaling inhibitor is 2-(2′,3-dimethyl-[2,4′-bipyridin]-5-yl)-N-(5-(pyrazin-2-yl)pyridin-2-yl)acetamide (Compound A28) or a compound disclosed in PCT publication No. WO 2010/101849. In one embodiment, the Wnt signaling inhibitor is 2-(2′,3-dimethyl-[2,4′-bipyridin]-5-yl)-N-(5-(pyrazin-2-yl)pyridin-2-yl)acetamide (Compound A28). In one embodiment, an anti-CD73 antibody molecule is used in combination with 2-(2′,3-dimethyl-[2,4′-bipyridin]-5-yl)-N-(5-(pyrazin-2-yl)pyridin-2-yl)acetamide (Compound A28), or a compound disclosed in PCT publication No. WO 2010/101849, to treat a disorder such as a solid tumor (e.g., a head and neck cancer, a squamous cell carcinoma, a breast cancer, a pancreatic cancer, or a colon cancer). In certain embodiments, the cancer is chosen from a skin cancer (e.g., a melanoma), a miicrosatclite instability-high (MSI-high) solid tumor, a pancreatic cancer, or a breast cancer (e.g., a triple negative breast cancer (TNBC)).
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a BRAF inhibitor, to treat a disorder, e.g., a disorder described herein, e.g., a non-small cell lung cancer, a melanoma, or a colorectal cancer.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination a CDK4/6 inhibitor, 7-cyclopentyl-N,N-dimethyl-2-((5-((1R,6S)-9-methyl-4-oxo-3,9-diazabicyclo[4.2.1]nonan-3-yl)pyridin-2-yl)amino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (Compound A30), or a compound disclosed in PCT publication No. WO 2011/101409 to treat a disorder, e.g., a disorder described herein. In one embodiment, the CDK4/6 inhibitor is 7-cyclopentyl-N,N-dimethyl-2-((5-((1R,6S)-9-methyl-4-oxo-3,9-diazabicyclo[4.2.1]nonan-3-yl)pyridin-2-yl)amino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (Compound A30) or a compound disclosed in PCT publication No. WO 2011/101409. In one embodiment, an anti-CD73 antibody molecule is used in combination with 7-cyclopentyl-N,N-dimethyl-2-((5-((1R,6S)-9-methyl-4-oxo-3,9-diazabicyclo[4.2.1]nonan-3-yl)pyridin-2-yl)amino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (Compound A30), or a compound disclosed in PCT publication No. WO 2011/101409, to treat a disorder such as a cancer, a mantle cell lymphoma, a liposarcoma, a non-small cell lung cancer, a melanoma, a squamous cell esophageal cancer, or a breast cancer.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a HER3 inhibitor, Compound A31, or a compound disclosed in PCT Publication No. WO 2012/022814, to treat a disorder, e.g., a disorder described herein. In one embodiment, the HER3 inhibitor is Compound A31 or a compound disclosed in PCT Publication WO 2012/022814. In one embodiment, an anti-CD73 antibody molecule is used in combination with Compound A31, or a compound disclosed in PCT Publication WO 2012/022814, to treat a disorder such as a gastric cancer, an esophageal cancer, a head and neck cancer, a squamous cell carcinoma, a stomach cancer, a breast cancer (e.g., metastatic breast cancer), or a digestive/gastrointestinal cancer.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination an FGFR2 and/or FGFR4 inhibitor, Compound A32, or a compound disclosed in a publication PCT Publication No. WO 2014/160160 (e.g., an antibody molecule drug conjugate against an FGFR2 and/or FGFR4, e.g., mAb 12425), to treat a disorder, e.g., a disorder described herein. In one embodiment, the FGFR2 and/or FGFR4 inhibitor is Compound A32 or a compound disclosed in a publication PCT Publication No. WO 2014/160160. In one embodiment, an anti-CD73 antibody molecule is used in combination with Compound A32, or a compound as described in Table 1, to treat a disorder such as a cancer, a gastric cancer, a breast cancer, a rhabdomyosarcoma, a liver cancer, an adrenal cancer, a lung cancer, an esophageal cancer, a colon cancer, or an endometrial cancer.
In some embodiments, Compound A32 is an antibody molecule drug conjugate against an FGFR2 and/or FGFR4, e.g., mAb 12425.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination an M-CSF inhibitor, Compound A33, or a compound disclosed in PCT Publication No. WO 2004/045532 (e.g., an antibody molecule or Fab fragment against M-CSF), to treat a disorder, e.g., a disorder described herein. In one embodiment, the M-CSF inhibitor is Compound A33 or a compound disclosed in PCT Publication No. WO 2004/045532. In one embodiment, an anti-CD73 antibody molecule is used in combination with Compound A33, or a compound as described in PCT Publication No. WO 2004/045532, to treat a disorder such as a cancer, a prostate cancer, a breast cancer, or pigmented villonodular synovitis (PVNS).
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a MEK inhibitor, to treat a disorder such as a non-small cell lung cancer, a multisystem genetic disorder, a melanoma, an ovarian cancer, a digestive/gastrointestinal cancer, a rheumatoid arthritis, or a colorectal cancer.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination an inhibitor of one or more of c-KIT, histamine release, Flt3 (e.g., FLK2/STK1) or PKC, Midostaurin (Compound A35) or a compound disclosed in PCT Publication No. WO 2003/037347 to treat a disorder, e.g., a disorder described herein. In one embodiment, the inhibitor is Midostaurin (Compound A35) or compound disclosed in PCT Publication No. WO 2003/037347. In one embodiment, the inhibitor of one or more of c-KIT, histamine release, Flt3 (e.g., FLK2/STK1) or PKC is Midostaurin. In one embodiment, an anti-CD73 antibody molecule is used in combination with Midostaurin (Compound A35), or compound disclosed in PCT Publication No. WO 2003/037347, to treat a disorder such as a cancer, a colorectal cancer, a myeloid leukemia, myelodysplastic syndrome, an age-related macular degeneration, a diabetic complication, or a dermatologic disorder.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a TOR inhibitor (e.g., mTOR inhibitor), Everolimus (also known as AFINITOR; Compound A36) or a Compound disclosed in PCT Publication No. WO 2014/085318 to treat a disorder, e.g., a disorder described herein). In one embodiment, the TOR inhibitor is Everolimus (Compound A36) or a Compound disclosed in PCT Publication No. WO 2014/085318. In one embodiment, an anti-CD73 antibody molecule is used in combination with Everolimus (Compound A36) to treat a disorder such as a colorectal cancer, an interstitial lung disease, a small cell lung cancer, a respiratory/thoracic cancer, a prostate cancer, a multiple myeloma, a sarcoma, an age-related macular degeneration, a bone cancer, tuberous sclerosis, a non-small cell lung cancer, an endocrine cancer, a lymphoma, a neurologic disorders, an astrocytoma, a cervical cancer, a neurologic cancer, a leukemia, an immune disorders, transplant rejection, a gastric cancer, a melanoma, epilepsy, a breast cancer (e.g., a triple-negative breast cancer (TNBC), or a bladder cancer. In some embodiments, the cancer is chosen from a colorectal cancer (e.g., a microsatellite stable colorectal cancer (MSS CRC), a lung cancer (e.g., a non-small cell lung cancer), or a breast cancer (e.g., a triple negative lung cancer (TNBC)).
In some embodiments, the combination described herein includes the mTOR inhibitor, everolimus (Compound A36), or a compound disclosed in PCT Publication No. WO 2014/085318, and an inhibitor of an immune checkpoint molecule, e.g., an inhibitor of CD73 (e.g., an anti-CD73 antibody molecule).
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination an inhibitor of one or more of VEGFR-2, PDGFRbeta, KIT or Raf kinase C, 1-methyl-5-((2-(5-(trifluoromethyl)-1H-imidazol-2-yl)pyridin-4-yl)oxy)-N-(4-(trifluoromethyl)phenyl)-1H-benzo[d] imidazol-2-amine (Compound A37) or a compound disclosed in PCT Publication No. WO 2007/030377 to treat a disorder, e.g., a disorder described herein. In one embodiment, the inhibitor of one or more of VEGFR-2, PDGFRbeta, KIT or Raf kinase C is 1-methyl-5-((2-(5-(trifluoromethyl)-1H-imidazol-2-yl)pyridin-4-yl)oxy)-N-(4-(trifluoromethyl)phenyl)-1H-benzo[d] imidazol-2-amine (Compound A37) or a compound disclosed in PCT Publication No. WO 2007/030377. In one embodiment, an anti-CD73 antibody molecule is used in combination with 1-methyl-5-((2-(5-(trifluoromethyl)-1H-imidazol-2-yl)pyridin-4-yl)oxy)-N-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazol-2-amine (Compound A37), or a compound disclosed in PCT Publication No. WO 2007/030377, to treat a disorder such as a cancer, a melanoma, or a solid tumor.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination a somatostatin agonist and/or growth hormone release inhibitor, Pasireotide diaspartate (also known as SIGNIFOR; Compound A38) or a compound disclosed in PCT Publication No. WO2002/010192 or U.S. Pat. No. 7,473,761 to treat a disorder, e.g., a disorder described herein. In one embodiment, the somatostatin agonist and/or growth hormone release inhibitor is Pasireotide diaspartate (Compound A38) or a compound disclosed in PCT Publication No. WO2002/010192 or U.S. Pat. No. 7,473,761. In one embodiment, an anti-CD73 antibody molecule is used in combination with Pasireotide diaspartate (Compound A38), or a compound disclosed in PCT Publication No. WO2002/010192 or U.S. Pat. No. 7,473,761, to treat a disorder such as a prostate cancer, an endocrine cancer, a nurologic cancer, a neuroendocrine tumor (NET) (e.g., an atypical pulmonary carcinoid tumor), a skin cancer (e.g., a melanoma or Merkel cell carcinoma), a pancreatic cancer, a liver cancer, Cushing's syndrome, a gastrointestinal disorder, acromegaly, a liver and biliary tract disorder, or liver cirrhosis.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination a signal transduction modulator and/or angiogenesis inhibitor, e.g., to treat a disorder such as a cancer, a respiratory/thoracic cancer, a multiple myeloma, a prostate cancer, a non-small cell lung cancer, an endocrine cancer, or a neurological genetic disorder.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an EGFR inhibitor, (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (Compound A40) or a compound disclosed in PCT Publication No. WO 2013/184757 to treat a disorder, e.g., a disorder described herein. In one embodiment, the EGFR inhibitor is (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino) but-2-enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (Compound A40) or a compound disclosed in PCT Publication No. WO 2013/184757. In one embodiment, an anti-CD73 antibody molecule is used in combination with (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d] imidazol-2-yl)-2-methylisonicotinamide (Compound A40), or a compound disclosed in PCT Publication No. WO 2013/184757, to treat a disorder such as a cancer, e.g., a solid tumor.
In some embodiments, the EGFR inhibitor, (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d] imidazol-2-yl)-2-methylisonicotinamide (Compound A40), or a compound disclosed in PCT Publication No. WO 2013/184757, is administered in combination with an inhibitor of CD73 (e.g., an anti-CD73 antibody molecule) to treat a colorectal cancer (CRC), a lung cancer (e.g., a non-small cell lung cancer (NSCLC)), or a breast cancer (e.g., a triple negative breast cancer (TNBC)).
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination an ALK inhibitor, N6-(2-isopropoxy-5-methyl-4-(1-methylpiperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine (Compound A42) or a compound disclosed in PCT Publication No. WO 2008/073687 to treat a disorder, e.g., a disorder described herein. In one embodiment, the ALK inhibitor is N6-(2-isopropoxy-5-methyl-4-(1-methylpiperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine (Compound A42) or a compound disclosed in PCT Publication No. WO 2008/073687. In one embodiment, an anti-CD73 antibody molecule is used in combination with N6-(2-isopropoxy-5-methyl-4-(1-methylpiperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine (Compound A42), or a compound disclosed in PCT Publication No. WO 2008/073687, to treat a disorder such as a cancer, an anaplastic large-cell lymphoma (ALCL), a non-small cell lung carcinoma (NSCLC), or a neuroblastoma.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination an IGF-1R inhibitor, 3-(4-(4-((5-chloro-4-((5-methyl-1H-pyrazol-3-yl)amino)pyrimidin-2-yl)amino)-5-fluoro-2-methylphenyl)piperidin-1-yl)thietane 1,1-dioxide (Compound A43), 5-chloro-N2-(2-fluoro-5-methyl-4-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)phenyl)-N4-(5-methyl-1H-pyrazol-3-yl)pyrimidine-2,4-diamine (Compound A44), or 5-chloro-N2-(4-(1-ethylpiperidin-4-yl)-2-fluoro-5-methylphenyl)-N4-(5-methyl-1H-pyrazol-3-yl)pyrimidine-2,4-diamine (Compound A45) or a compound disclosed in PCT Publication No. WO 2010/002655 to treat a disorder, e.g., a disorder described. In one embodiment, the IGF-1R inhibitor is 3-(4-(4-((5-chloro-4-((5-methyl-1H-pyrazol-3-yl)amino)pyrimidin-2-yl)amino)-5-fluoro-2-methylphenyl)piperidin-1-yl)thietane 1,1-dioxide (Compound A43), 5-chloro-N2-(2-fluoro-5-methyl-4-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)phenyl)-N4-(5-methyl-1H-pyrazol-3-yl)pyrimidine-2,4-diamine (Compound A44), 5-chloro-N2-(4-(1-ethylpiperidin-4-yl)-2-fluoro-5-methylphenyl)-N4-(5-methyl-1H-pyrazol-3-yl)pyrimidine-2,4-diamine (Compound A45), or a compound disclosed in PCT Publication No. WO 2010/002655. In one embodiment, an anti-CD73 antibody molecule is used in combination with 3-(4-(4-((5-chloro-4-((5-methyl-1H-pyrazol-3-yl)amino)pyrimidin-2-yl)amino)-5-fluoro-2-methylphenyl)piperidin-1-yl)thietane 1,1-dioxide (Compound A43), 5-chloro-N2-(2-fluoro-5-methyl-4-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)phenyl)-N4-(5-methyl-1H-pyrazol-3-yl)pyrimidine-2,4-diamine (Compound A44), 5-chloro-N2-(4-(1-ethylpiperidin-4-yl)-2-fluoro-5-methylphenyl)-N4-(5-methyl-1H-pyrazol-3-yl)pyrimidine-2,4-diamine (Compound A45), or a compound disclosed in PCT Publication No. WO 2010/002655, to treat a disorder such as a cancer or a sarcoma.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination a P-Glycoprotein 1 inhibitor, Valspodar (also known as AMDRAY; Compound A46) or a compound disclosed in EP 296122 to treat a disorder, e.g., a disorder described herein. In one embodiment, the P-Glycoprotein 1 inhibitor is Valspodar (Compound A46) or a compound disclosed in EP 296122. In one embodiment, an anti-CD73 antibody molecule is used in combination with Valspodar (Compound A46), or a compound disclosed in EP 296122, to treat a disorder such as a cancer or a drug-resistant tumor.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination one or more of a VEGFR inhibitor, Vatalanib succinate (Compound A47) or a compound disclosed in EP 296122 to treat a disorder, e.g., a disorder described herein. In one embodiment, the VEGFR inhibitor is Vatalanib succinate (Compound A47) or a compound disclosed in EP 296122. In one embodiment, an anti-CD73 antibody molecule is used in combination with Vatalanib succinate (Compound A47), or a compound disclosed in EP 296122, to treat cancer.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with an IDH inhibitor or a compound disclosed in WO2014/141104 to treat a disorder, e.g., a disorder described herein. In one embodiment, the IDH inhibitor is a compound disclosed in PCT Publication No. WO2014/141104. In one embodiment, an anti-CD73 antibody molecule is used in combination with a compound disclosed in WO2014/141104 to treat a disorder such as a cancer.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a BCL-ABL inhibitor or a compound disclosed in PCT Publication No. WO2013/171639, WO2013/171640, WO2013/171641, or WO2013/171642 to treat a disorder, e.g., a disorder described herein. In one embodiment, the BCL-ABL inhibitor is a compound disclosed in PCT Publication No. WO2013/171639, WO2013/171640, WO2013/171641, or WO2013/171642. In one embodiment, an anti-CD73 antibody molecule is used in combination with a compound disclosed in PCT Publication No. WO2013/171639, WO2013/171640, WO2013/171641, or WO2013/171642 to treat a disorder such as a cancer.
In another embodiment, the combination, e.g., a combination comprising an anti-CD73 antibody molecule as described herein, includes or is used in combination with a c-RAF inhibitor or a compound disclosed in PCT Publication No. WO2014/151616 to treat a disorder, e.g., a disorder described herein. In one embodiment, the c-RAF inhibitor is Compound A50 or a compound disclosed in PCT Publication No. WO2014/151616. In some embodiments, the c-RAF inhibitor or Compound A50 is a compound of formula (I):
or a pharmaceutically acceptable salt thereof, wherein:
Z1 is O, S, S(═O) or SO2;
Z2 is N, S or CRa, where Ra is H, halo, C1-4 alkyl or C1-4 haloalkyl;
R1 is CN, halo, OH, C1-4 alkoxy, or C1-4 alkyl that is optionally substituted with one to three groups selected from halo, C1-4 alkoxy, CN, and hydroxyl;
Ring B is selected from phenyl, pyridine, pyrimidine, pyrazine, pyridazine, pyridone, pyrimidone, pyrazinone, pyridazinone, and thiazole, each of which is optionally substituted with up to two groups selected from halo, OH, CN, C1-4 alkyl, C2-4 alkenyl, —O—(C1-4 alkyl), NH2, NH—(C1-4 alkyl), —N(C1-4 alkyl)2, —SO2R2, NHSO2R2, NHC(O)R2, NHCO2R2, C3-6 cycloalkyl, 5-6 membered heteroaryl, —O—C3-6 cycloalkyl, —O-(5-6-membered heteroaryl), C4-8 heterocycloalkyl, and —O-(4-8 membered heterocycloalkyl), where each heterocycloalkyl and heteroaryl contains up to three heteroatoms selected from N, O and S as ring members,
each Y is independently selected from C1-4 alkyl, C1-4 alkoxy, CN, halo, oxo, —(CH2)pOR4, —(CH2)pN(R4)2, —(CH2)pNHC(O)R4, —(CH2)pNHCOO(C1-4 alkyl),and imidazole,
or two Y groups on Ring A are optionally taken together to form a ring fused to or bridging Ring A, where said fused or bridging ring optionally contains a heteroatom selected from N, O and S as a ring member, and is optionally substituted with up to two groups selected from C1-4 alkyl, C1-4 alkoxy, CN, halo, oxo, —(CH2)pOR4, —(CH2)pN(R4)2, —(CH2)pNHC(O)R4, and —(CH2)pNHCOO(C1-4 alkyl);
each R4 is independently H or C1-4 alkyl;
each p is independently 0, 1, or 2;
q is 0, 1 or 2;
Z3, Z4, and Z5 are independently selected from CH and N and optionally NO;
L is —C(═O)—NR4—[CY] or —NR4—C(═O)—[CY], where [CY] indicates which atom of L is attached to CY; and
CY is an aromatic ring selected from phenyl, pyridine, pyrimidine, pyrazine, pyridazine, pyridone, thiazole, isothiazole, oxazole, pyrazole, and isoxazole, wherein the ring is optionally fused to a thiophene, imidazole, oxazolone, or pyrrole ring;
and CY is substituted with up to two groups selected from halo, CN, R5, OR5, SO2R5, —S(═NH)(═O)R5, OH, NH2, NHR5, and —N(R5)2,
R6 is independently C1-4 alkyl, and each R7 is independently H or C1-4 alkyl;
and two R4, R5, R6, or R7 on the same nitrogen atom can be taken together to form a 5-6 membered heterocyclic ring optionally containing an additional N, O or S as a ring member and optionally substituted with up to two groups selected from C1-4 alkyl, oxo, halo, OH, and C1-4 alkoxy.
Methods of administering the antibody molecules are known in the art and are described below. Suitable dosages of the molecules used will depend on the age and weight of the subject and the particular drug used. Dosages and therapeutic regimens of the anti-CD73 antibody molecule can be determined by a skilled artisan.
In certain embodiments, the anti-CD73 antibody molecule is administered by injection (e.g., intravenously) at a dose (e.g., a flat dose) of about 60 mg to 2400 mg, e.g., about 100 mg to 2400 mg, about 100 mg to 2200 mg, about 100 mg to 2000 mg, about 100 mg to 1800 mg, about 100 mg to 1600 mg, about 100 mg to 1400 mg, about 100 mg to 1200 mg, about 100 mg to 1000 mg, about 100 mg to 800 mg, about 100 mg to 600 mg, about 100 mg to 400 mg, about 100 mg to 200 mg, or about 100 mg, about 180 mg, or about 200 mg. The dosing schedule can vary from e.g., once a week to once every 2, 3, or 4 weeks. In some embodiments, the anti-CD73 antibody molecule is administered at a dose of about 100 mg once every two weeks by intravenous infusion. In some embodiments, the anti-CD73 antibody molecule is administered at a dose of at least about 180 mg once every two weeks by intravenous infusion. In some embodiments, the anti-CD73 antibody molecule is administered at a dose of about 200 mg once every two weeks by intravenous infusion.
In certain embodiments, the anti-CD73 antibody molecule is administered by injection (e.g., intravenously) at a dose (e.g., a flat dose) of about 5 mg to 100 mg, about 100 mg to 500 mg, about 500 mg to 1000 mg, about 1000 mg to 1500 mg, about 1500 mg to 2000 mg, about 2000 mg to 2500 mg, about 2500 mg to 3000 mg, about 3000 mg to 3500 mg, or about 3500 mg to 4000 mg, e.g., once every week (QW), once every two weeks (Q2W), or once every four weeks (Q4W).
In certain embodiments, the anti-CD73 antibody molecule is administered by injection (e.g., intravenously) at a dose of about 1 to 30 mg/kg, e.g., about 5 to 25 mg/kg, about 10 to 20 mg/kg, about 1 to 5 mg/kg, or about 3 mg/kg. In some embodiments, the anti-CD73 antibody molecule is administered at a dose of about 1 mg/kg, about 3 mg/kg, or 10 mg/kg, about 20 mg/kg, about 30 mg/kg, or about 40 mg/kg. In some embodiments, the anti-CD73 antibody molecule is administered at a dose of about 1-3 mg/kg, or about 3-10 mg/kg. In some embodiments, the anti-CD73 antibody molecule is administered at a dose of about 0.5-2, 2-4, 2-5, 5-15, or 5-20 mg/kg. The dosing schedule can vary from e.g., once a week to once every 2, 3, or 4 weeks. In one embodiment, the anti-CD73 antibody molecule is administered at a dose of about 10 to 20 mg/kg every other week.
The antibody molecules can be used in unconjugated forms or conjugated to a second agent, e.g., a cytotoxic drug, radioisotope, or a protein, e.g., a protein toxin or a viral protein.
This method includes: administering the antibody molecule, alone or conjugated to a cytotoxic drug, to a subject requiring such treatment. The antibody molecules can be used to deliver a variety of therapeutic agents, e.g., a cytotoxic moiety, e.g., a therapeutic drug, a radioisotope, molecules of plant, fungal, or bacterial origin, or biological proteins (e.g., protein toxins) or particles (e.g., a recombinant viral particles, e.g., via a viral coat protein), or mixtures thereof.
All publications, patents, and Accession numbers mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.
While specific embodiments of the subject invention have been discussed, the above specification is illustrative and not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of this specification and the claims below. The full scope of the invention should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.
This application claims priority to U.S. Ser. No. 62/523,488 filed on Jun. 22, 2017, and U.S. Ser. No. 62/636,501 filed on Feb. 28, 2018, the contents of each of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/038805 | 6/21/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62523488 | Jun 2017 | US | |
62636501 | Feb 2018 | US |