Anticorrosive pigments

Information

  • Patent Application
  • 20070272117
  • Publication Number
    20070272117
  • Date Filed
    September 14, 2006
    18 years ago
  • Date Published
    November 29, 2007
    17 years ago
Abstract
The invention submitted concerns anticorrosive pigments of aluminum orthophosphate, their application as anticorrosive pigments in coating agents, as well as a method for their manufacturing.
Description
DETAILED DESCRIPTION

Aluminum orthophosphate can be an amorphous aluminum orthophosphate, an orthorhombic aluminum orthophosphate, a mixture amorphous and orthorhombic aluminum orthophosphates at weight percentages ranging from 80 to 20 and 20 to 80, respectively; a mixture of amorphous, orthorhombic, and trigonal (berlinite) aluminum orthophosphates at weight percentages ranging from 10 to 20, 20 to 50, and 20 to 70, respectively, or a mixture of berlinite and orthorhombic aluminum orthophosphate. It is understood that the sum of the individual aluminum orthophosphate percentages must add up to 100 percent. Impurities and/or secondary constituents have not been considered, their relative amount may be 15 weight percentages at maximum, preferably 10 weight percentages at maximum, most preferentially 5 weight percentages at maximum.


Preferred aluminum orthophosphates are amorphous aluminum orthophosphate, mixtures of 60 to 40 wt. % amorphous and 40 to 60 wt. % orthorhombic aluminum orthophosphate, in particular, mixtures of amorphous and orthorhombic aluminum orthophosphate with about equal proportions, as well as mixtures of 20 to 50 wt. % berlinite and 80 to 50 wt. % orthorhombic aluminum orthophosphate, preferentially 20 to 40 wt. % berlinite and 80 to 60 wt. % orthorhombic aluminum orthophosphate. Most preferred is amorphous aluminum orthophosphate.


Aluminum orthophosphates of the tridymite type are not very useful.


At maximum, 1 wt. % water-soluble phosphates and less than 0.05% chloride and/or sulfates may be contained as secondary components. The loss due to heating typically amounts to approx. 1 to 20% the pH value of a 1% suspension is at about 6 to 7.5.


Aluminum orthophosphate according to invention does not essentially contain any aluminum polyphosphates, i.e. their proportion is below 3 wt. %, preferentially below 1 wt. %, and particularly below 0.1%.


Manufacturing of the anticorrosive pigments according to the invention proceeds in an actually known way of converting aluminum salts with phosphoric acid or phosphates, whereby the poorly soluble aluminum orthophosphate is precipitated and separated. For example, aluminum hydroxide can be converted using phosphoric acid, and aluminum sulfate using sodium phosphate. Subsequent drying and, if necessary, tempering and perhaps grinding down to the needed grain size may ensue.


Depending on the conditions prevailing upon conversion of aluminum salt and phosphoric acid or in the process of tempering, the aluminum orthophosphate used according to invention contains more or less large proportions of orthorhombic and trigonal aluminum orthophosphate and may be more or less crystalline.


The conversion may, for example, proceed with aluminum sulfate or aluminum hydroxide. It is possible to add, for example, carbonates such as sodium carbonate in order to adjust the pH value during precipitation. Aluminum orthophosphate precipitates and is filtered off, if required, after further dilution with water. Subsequent drying ensues, for example, by means of spray drying.


If desired, the dried product can be further processed by tempering at 500 to 800° C., preferentially at 600 to 700° C. Tempering normally results in less reactive products which maintain efficacy over a longer period of time. Tempering at high temperatures should be avoided as it has a negative influence on solubility.


If the grain size of the aluminum orthophosphate thus obtained is not fine enough already, grinding and/or sorting or sieving will ensue. The grain size should preferably be in the range of D50 1-15 μm and D90 1-30 μm, whereby D90 lies above D50. In particular, the conditions D50≦10 μm and D90≦10 μm should be fulfilled. It is also preferential if approximately 0.01% of the grains at maximum have a grain size of more than 32 μm. D90 and D50 are defined as follows:


D50 and D90 are values which characterize the particle size of the aluminumphosphate pigments according to the invention, as the pigment particles naturally have different grain sizes. The values are derived from a grain size distribution curve. The value D50 means that 50% of the particles are smaller than 1-15 mm. The D90 value indicates that 90% of the particles are smaller than 1-30 mm.


The packed density lies preferably in the range of 90 to 250 g/l, in case of amorphous aluminum orthophosphate preferably in the range of 90 to 120 g/l.


The anticorrosive pigment aluminum orthophosphate according to invention is suited to replace zinc phosphate in coating agents. It possesses good anticorrosive properties and can be applied in both foundations and top coats.


The composition of coating agents is actually known to the expert. The real formulas depend, among other criteria, upon the subsurface to be coated, the type of coating agent, the intended mode of application, etc. Aluminum orthophosphate is well compatible with most components which coating agents normally contain. Up to about 1 to 20 wt. % aluminum orthophosphate is typically worked into the coating agent. However, if a dilution is foreseen before application, higher percentages may be used, if necessary.


The following examples are intended to further illustrate the invention, however, without limiting it to the embodiments specifically described. All percentages reported refer to weights, if not indicated otherwise.


EXAMPLE 1
Manufacturing of Aluminum Orthophosphate

Phosphoric acid (583 g, 84%, 5.0 mol) is given into a receiver and heated up to approx. 80° C., then aluminum hydroxide (410 g, wet hydrate incl. 5% water, 5.0 mol) is swiftly added, whereby the reaction mixture heats up to approx. 120° C. 500 ml water are brought into the very viscous suspension created. The precipitating crystalline solid substance is aspirated through a paper filter (S&S No. 606 ø110 mm), washed with 65 ml water, and dried over night at 110 ° C. The same amounts phosphoric acid and aluminum hydroxide are then converted for the next batch as described. Dilution proceeds with the mother liquor received in the first batch, then once again filtered, washed and dried. Eight additional batches are produced by analogy to the first run, whereby the mother liquor obtained from the preceding batch is used for making dilutions.


A yield of 6719 g is obtained from all nine batches; this amount is equivalent to a yield of 95%.


EXAMPLE 2
Tempering of Aluminum Orthophosphate

Aluminum orthophosphate manufactured in accordance with Example 1 and an aluminum orthophosphate which is supplied under the name of B111 from BK Giulini Chemie GmbH, Germany, and composed of an aluminum orthophosphate which had been made by precipitating aluminum sulfate with phosphoric acid and sodium carbonate, are tempered. To this end, the aluminum orthophosphate is brought into a heat-resistant stainless-steel tube (DIN 1.4841) over a vibrating channel. The tube is situated at a descending angle of 80 mm/1600 mm inside a furnace heated up to 700° C. and rotated at a speed of 10 rotations per minute. The rotations lead the material through the heated zone and discharge it at the end of the tube. The throughput rate amounts to 0.8-1.3 kg/h.


EXAMPLE 3
Efficacy Test

Seven different anticorrosive pigments were worked into a standardized varnish and the varnish was then applied onto sheets of metal. Afterwards adhesion (DIN 53151), degree of blistering (DIN 53209), and subsurface migration (DIN 53167) were determined applying the salt-spray test, the condensation water test, and after wet storage.













TABLE 1









Oil absorption


Designation
Substance
Manufacturing/Supplier
Tempering
value



















Wa 2894
AlPO4,
Example 1
Example 2
53.75



mixture 70%



berlinite/30%



orthorhombic


Wa 2890
AlPO4,
BK111, BK Giulini
Example 2
95.05



mixture
Chemie GmbH



50%



orthorhombic



50%



amorphous


Wa 2880C
AlPO4,
BK111, BK Giulini
Example 2
34.19



amorphous
Chemie GmbH



water-free


Wa 2825
AlPO4, 100%
BK111, BK Giulini
Convection
37.76



orthorhombic
Chemie GmbH
oven





650° C., 2 h


Wa 2886
B111, AlPO4,
B111, BK Giulini
none
113.09



amorphous,
Chemie GmbH



water-



containing


ZP 10
Zinc
ZP 10, Heubach

30.00



phosphate


Wa 2901
magnesium
Pigmentan E,

89.28



oxiaminophosphate
Pigmentan Ltd.









ZP10 and Wa 2901 are comparative examples in which, ZP 10 is a zinc phosphate and Wa 2901 a commercially available zinc-free substitute product. The determination of the oil absorption value proceeded according to ISO 787, Part 5.


As to the varnish, two formulas were used. In one, as is common procedure in the paint industry, the amount of pigment was substituted on the basis of an identical oil absorption value. As the oil absorption values of the pigments tested strongly differ, substitution, in the second formula, proceeded on the basis of identical pigment masses in the second formula.


Formula 1:









TABLE 1







Formulas of the stock varnish (batch approx. 500 g, pigments substituted


according to oil absorption values).

















1/1
1/2
1/3
1/4
1/5
1/6
1/7



Raw Material
(g)
(g)
(g)
(g)
(g)
(g)
(g)



















1
Beckopox EP
137.49
151.65
152.12
141.87
153.28
146.75
152.90



301,



75% in xylene


2
xylene
41.27
45.52
45.66
42.58
46.01
44.05
45.90


3
Dowanol PM
35.39
39.03
39.15
36.51
39.45
37.77
39.35


4
Methyl
8.70
9.60
9.63
8.98
9.70
9.29
9.68



isoamyl ketone


5
Bentone 38.8%
36.99
40.80
40.92
38.17
41.24
39.48
41.13



in xylene


6
Anti Terra 204
2.90
3.20
3.21
2.99
3.23
3.10
3.23


7
Aerosil R 972
2.32
2.56
2.57
2.39
2.59
2.48
2.58


8
Finntalc M 15
73.09
80.62
80.87
75.42
81.49
78.02
81.29


9
EWO
76.58
84.46
84.72
79.01
85.37
81.73
85.16


10
Finntitan 3-RD
15.66
17.28
17.33
16.16
17.46
16.72
17.42



2-3036


10
Zinc phosphate
69.61



ZP 10


10
Wa 2901

25.28


10
Wa 2890


23.81


10
Wa 2825



55.91


10
Wa 2886




20.17


10
Wa 2894





40.62


10
Wa 2880C






21.37


11
Furnace black
0.05
0.05
0.05
0.05
0.05
0.05
0.05



101



Yield
500
500
500
500
500
500
500
















TABLE 2







Formulas of the stock varnish (batch approx. 500 g, pigments


substituted according to mass values).

















1/1
1/2
1/3
1/4
1/5
1/6
1/7



Raw Material
(g)
(g)
(g)
(g)
(g)
(g)
(g)



















1
Beckopox EP
137.49
137.49
137.49
137.49
137.49
137.49
137.49



301.



75% in xylene


2
Xylene
41.27
41.27
41.27
41.27
41.27
41.27
41.27


3
Dowanol PM
35.39
35.39
35.39
35.39
35.39
35.39
35.39


4
Methyl
8.70
8.70
8.70
8.70
8.70
8.70
8.70



isoamyl ketone


5
Bentone 38.8%
36.99
36.99
36.99
36.99
36.99
36.99
36.99



in xylene


6
Anti Terra 204
2.90
2.90
2.90
2.90
2.90
2.90
2.90


7
Aerosil R 972
2.32
2.32
2.32
2.32
2.32
2.32
2.32


8
Finntalc M 15
73.09
73.09
73.09
73.09
73.09
73.09
73.09


9
EWO
76.58
76.58
76.58
76.58
76.58
76.58
76.58


10
Finntitan 3-RD
15.66
15.66
15.66
15.66
15.66
15.66
15.66



2-3036


10
Zinc phosphate
69.61



ZP 10


10
Wa 2901

69.61


10
Wa 2890


69.61


10
Wa 2825



69.61


10
Wa 2886




69.61


10
Wa 2894





69.61


10
Wa 2880C






69.61


11
Furnace black
0.05
0.05
0.05
0.05
0.05
0.05
0.05



101



Yield
500
500
500
500
500
500
500









Manufacturing proceeded as follows: item 1 is given into a receptacle; addition of item 2 with incorporation under continual stirring; addition of item 6 under continual stirring, addition of portions of items 7-11 and stirring in using a spatula; pre-mixture of items 2-4 with addition under continual stirring (initially only as much solvent is added so that a viscosity is attained which is appropriate for dispersion, the rest is added after dispersal). Dispersion was done over 60 minutes at a rotation speed of 3300 rpm with 250 g glass beads under cooling.


For application, 500 g stock varnish were thoroughly mixed with 64 g hardener composed of 41.5 g Versamid and 22.5 g xylene. The ready-to-use varnish was diluted with a Xylene-Dowanol PM mixture (4:1) to attain spray viscosity (DIN beaker 4: 16-17 seconds).


Application onto metal sheets proceeded with the aid of high-pressure syringes equipped with a 1.3 mm-nozzle, at 4 bar pressure, to yield a coating thickness: 50±5. Formulations with an identical pigment mass revealed a marked change in flow properties of the stock varnish. The intended coating thickness could therefore not be reached in this test series. In each test, three metal sheets were coated in the wet storage test, salt-spray test, and condensation water test, respectively, in addition to one retention sample sheet. The following tests were conducted after conditioning the specimens in a climate chamber for over ten days:

    • a) salt-spray test (acc. to DIN 50021)
    • b) condensation water test (similar to DIN 50017)
    • c) wet storage (DIN 627/1)
    • d) adhesion test after 4 weeks (DIN 53151)
    • e) determination of the degree of blistering, weekly (DIN 53209)
    • f) determination of underrusting after 28 days (DIN 53167)


The results obtained in the adhesion test are compiled in Tables 3 and 4.









TABLE 3







Results of the adhesion tests (DIN 53151) (Series 1)









Sheet No.
















1/1/1
1/1/2
1/2
1/3
1/4
1/5
1/6
1/7









Pigment Type


















Wa
Wa
Wa
Wa
Wa
Wa


Adhesion
ZP 10
ZP 10
2901
2890
2825
2886
2894
2880C





After Salt-










Spray Test


1
0
1
4
0
5
2
0
5


2
1
4
5*
5*
5
0
1
0


3
0
5*
5
1
5
1
5*
0


After


Condensation


Water Test


1
1
1
5*
0
4
0
1
2


2
1
0
5*
0
1
4
0
2


3
1
1
5**
0
1
3
0
2


after Wet


Storage


1
2
2
5*
5*
5*
1
0
5


2
2
5
5*
2
3
1
1
2


3
5*
5**
5**
5*
4
5**
1
5*





*complete detachment in the cutting section


**complete detachment exceeding the cutting section













TABLE 4







Results of the adhesion tests (DIN 53151) (Series 2, intended


coating thickness not reached)









Sheet No.
















1/1/1
1/1/2
2/2
2/3
2/4
2/5
2/6
2/7









Pigment Type


















Wa
Wa
Wa
Wa
Wa
Wa


Adhesion
ZP 10
ZP 10
2901
2890
2825
2886
2894
2880C





after Salt-










Spray Test


1
0
1
5*
5*
5
4
1
1


2
1
4
5
5**
5*
1
3
0


3
0
5*
5*
5
1
2
0
0


After


Condensation


Water Test


1
1
1
5*
5
5*
0
1
3


2
1
0
3
5**
2
0
2
1


3
1
1
4
5
5**
1
1
5*


after Wet


Storage


1
2
2
5**
5
5
3
5
3


2
2
5
5**
5**
5*
5*
5
5**


3
5*
5**
5**
5**
5*
5
2
2*





*complete detachment in the cutting section


**complete detachment exceeding the cutting section






It can be conceived that the aluminum pigments according to invention display improved adhesion properties, however, at least an adhesion which is comparable to the reference pigment zinc phosphate (ZP 10). The zinc-free pigment used for reference produced less favorable results.


The results obtained from the test applied to determine the degree of blistering are compiled in Tables 5 and 6.









TABLE 5







Degree of blistering (DIN 53209) (Series 1)









Sheet No.
















1/1/1
1/1/2
1/2
1/3
1/4
1/5
1/6
1/7









Pigment Type























Wa



ZP 10
ZP 10
Wa 2901
Wa 2890
Wa 2825
Wa 2886
Wa 2894
2880C









Degree of Blistering
























m
g
m
g
m
g
m
g
m
g
m
g
m
g
m
g



























after Salt-


















Spray Test


7 days


1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


14 days


1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


21 days


1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


28 days


1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


After


Conden-


sation


Water


Test


7 days


1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0


2
0
0
0
0
2
2
0
0
1
1
0
0
0
0
0
0


3
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0


14 days


1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0


2
0
0
0
0
3
3
0
0
1
1
0
0
0
0
0
0


3
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0


21 days


1
0
0
0
0
4
1
0
0
1
1
0
0
0
0
1
1


2
0
0
0
0
3
4
0
0
1
2
0
0
0
0
1
1


3
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1


after Wet


Storage


Test


7 days


1
0
0
0
0
2
2
0
0
0
0
0
0
0
0
0
0


2
0
0
0
0
3
2
0
0
0
0
0
0
0
0
0
0


3
0
0
0
0
3
2
0
0
0
0
0
0
0
0
0
0


14 days


1
0
0
0
0
3
4
0
0
0
0
0
0
0
0
0
0


2
0
0
1
1
3
2
0
0
0
0
0
0
0
0
0
0


3
0
0
1
1
3
4
0
0
0
0
0
0
0
0
0
0


21 days


1
0
0
0
0
3
4
0
0
0
0
0
0
0
0
0
0


2
0
0
2
1
3
2
0
0
0
0
0
0
0
0
0
0


3
0
0
1
1
3
4
0
0
0
0
0
0
0
0
0
0


28 days


1
0
0
0
0
3
4
1
1
1
1
0
0
0
0
1
1


2
0
0
2
2
3
2
0
0
0
0
0
0
0
0
1
1


3
1
1
1
1
3
4
0
0
1
1
0
0
1
1
0
0









No differentiation concerning the degree of blistering was obtained in the salt-spray test even after 4 weeks. In the condensation water test, the sheets to which the foundations according to invention were applied, i.e. 1/3, 1/5 and 1/6, as well as zinc phosphate, also did not display any blistering. Intermediate values were obtained for the 1/4 and 1/7 foundations according to invention, whereas the alternative zinc-free foundation 1/2 produced insufficient results. In the wet storage test, only the metal sheets coated with the 1/5 foundation according to invention did not yet display any blistering after a period of four weeks.


Sheets coated with zinc phosphate and the 1/3, 1/6, and 1/7 foundations according to invention, which displayed very small blisters only after the fourth week, produced good results.


However, all metal sheets did equally well within the error margins of the test, except for the alternative zinc-free foundation 1/2.









TABLE 6







Degree of blistering (DIN 53209) (Series 2, intended coating


thickness not reached)









Sheet No.
















1/1/1
1/1/2
2/2
2/3
2/4
2/5
2/6
2/7









Pigment Type























Wa



ZP 10
ZP 10
Wa 2901
Wa 2890
Wa 2825
Wa 2886
Wa 2894
2880C









Degree of Blistering
























m
g
m
g
m
g
m
g
m
g
m
g
m
g
m
g



























after Salt-


















Spray Test


7 days


1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


14 days


1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


21 days


1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


28 days


1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


after


Conden-


sation


Water


Test


7 days


1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


2
0
0
0
0
2
2
0
0
1
1
0
0
0
0
0
0


3
0
0
0
0
3
3
0
0
1
1
0
0
0
0
0
0


14 days


1
0
0
0
0
3
3
0
0
2
1
0
0
0
0
0
0


2
0
0
0
0
2
2
0
0
2
1
0
0
0
0
0
0


3
0
0
0
0
3
3
0
0
3
2
0
0
0
0
0
0


21 days


1
0
0
0
0
3
3
1
1
3
3
0
0
0
0
0
0


2
0
0
0
0
2
2
2
2
4
3
0
0
0
0
0
0


3
0
0
0
0
3
3
1
1
3
4
0
0
0
0
0
0


after Wet


Storage


Test


7 days


1
0
0
0
0
4
4
0
0
0
0
0
0
0
0
0
0


2
0
0
0
0
4
4
0
0
0
0
0
0
0
0
0
0


3
0
0
0
0
4
4
0
0
0
0
0
0
0
0
0
0


14 days


1
0
0
0
0
5
4
0
0
0
0
0
0
0
0
0
0


2
0
0
1
1
4
4
1
1
0
0
0
0
0
0
0
0


3
0
0
1
1
4
4
1
1
0
0
0
0
0
0
0
0


21 days


1
0
0
0
0
5
4
3
2
0
0
0
0
0
0
0
0


2
0
0
2
1
4
4
1
1
0
0
0
0
0
0
0
0


3
0
0
1
1
4
4
0
0
0
0
0
0
0
0
0
0


28 days


1
0
0
0
0
5
4
3
2
1
1
1
1
1
1
0
0


2
0
0
2
2
5
4
1
1
0
0
1
1
0
0
1
1


3
1
1
1
1
4
4
0
0
1
1
1
1
0
0
0
0









As a tendency, metal sheets coated with foundations of the second series confirmed the results of the first. Despite the lower coating thickness, all foundations according to invention produced equally good results as zinc phosphate within the error margins of the test, with the exception of 1/3. The alternative zinc-free foundation again produced insufficient.


The results of the subsurface migration test are compiled in Tables 7 and 8.









TABLE 7







Subsurface migration according to DIN 53167 (Series 1)









Foundation No.
















1/1/1
1/1/2
1/2
1/3
1/4
1/5
1/6
1/7









Pigment Type























Wa



ZP 10
ZP 10
Wa 2901
Wa 2890
Wa 2825
Wa 2886
Wa 2894
2880C



















after Salt-
5.6
16.6
6.4
5.1
5.1
2.9
5.4
4.8


Spray Test


28 days









The least migration was found on the metal sheet coated with the 1/5 foundation according to invention. The subsurface migration values obtained from other sheets ranging between 4.8 and 6.4 were very close to each other, in the order of foundation 1/7, 1/3 and 1/4, 1/6 and reference 1/1/1. The second reference foundation 1/1/2 made an exception.









TABLE 8







Subsurface migration according to DIN 53167 (Series 2, intended coating


thickness not reached)









Foundation No.
















1/1/1
1/1/2
2/2
2/3
2/4
2/5
2/6
2/7









Pigment Type























Wa



ZP 10
ZP 10
Wa 2901
Wa 2890
Wa 2825
Wa 2886
Wa 2894
2880C



















after Salt-
5.6
16.6
1
1.3
3
1
4.9
0.8


Spray Test


28 days









The metal sheets coated with the foundations of the second series possessing the least coating thickness, sheets coated with the foundations 2/2, 2/3, 2/5 and 2/7 displayed very little migration. Subsurface migration on the sheet with the foundations 2/4 and 2/6 was somewhat better than on the sheet to which the zinc phosphate foundation had been applied.


In summary, the tests demonstrated that the efficacy of aluminum orthophosphate as an anticorrosive pigment is comparable with zinc phosphate which is currently in use. A hitherto available, alternative zinc-free pigment, Pigmentan E, displayed a markedly poorer efficacy.

Claims
  • 1. A coating composition comprising an anticorrosive pigment wherein the anticorrosive pigment consists of aluminum orthophosphate.
  • 2. The composition of claim 1, wherein aluminum orthophosphate is characterized by a grain size range of from D50 1-15 μm to D90 1-30 μm.
  • 3. The composition of claim 1, wherein the aluminum orthophosphate possesses a packed density of 90-250 μg/l.
  • 4. The composition of claim 1, wherein aluminum orthophosphate is selected from the group consisting of amorphous aluminum orthophosphate; orthorhombic aluminum orthophosphate; a mixture of orthorhombic aluminum orthophosphate and amorphous aluminum orthophosphate; and a mixture of orthorhombic, trigonal and amorphous aluminum orthophosphate.
  • 5. The composition of claim 4, wherein aluminum orthophosphate is selected from the group consisting of 100 wt. % amorphous aluminum orthophosphate; a mixture of 20 to 80 wt. % amorphous and 80 to 20 wt. % orthorhombic aluminum orthophosphate; and a mixture of 20 to 50 wt. % orthorhombic, 20 to 70 wt. % trigonal, and 10 to 20 wt. % amorphous aluminum orthophosphate.
  • 6. A corrodible substrate coated with a protective waiting comprising aluminum orthophosphate as an anticorrosive pigment.
  • 7. A process of manufacturing an anticorrosive pigment of claim 1, comprising the steps: a) converting an aluminum salt with phosphoric acid or a phosphate in the aqueous phase; andb) precipitation of aluminum orthophosphatec) filtration of aluminum orthophosphate; andd) drying of aluminum orthophosphate.
  • 8. A method in accordance with claim 7, wherein aluminum orthophosphate is tempered in one step e) at temperatures ranging from 500 to 800° C.
  • 9. A method in accordance with claim 7, wherein aluminum orthophosphate is ground in one step f) to a grain size of D50≦15 μm and D90≦30 μm.
  • 10. A method in accordance with claim 7, wherein the aluminum salt is aluminum hydroxide and is chemically converted with phosphoric acid.
  • 11. A method in accordance with claim 7, wherein the aluminum salt is an aluminum sulfate and is converted with sodium phosphate.
  • 12. A method in accordance with claims 7, wherein drying proceeds by spray drying.
  • 13. A coating composition comprising an anticorrosive pigment wherein the anticorrosive pigment is zinc-free and comprises aluminum orthophosphate.
  • 14. The coating composition of claim 13, wherein the aluminum orthophosphate possesses a packed density of 90-250 μg/l.
  • 15. The coating composition of claim 1, wherein the aluminum orthophosphate is selected from the group consisting of amorphous aluminum orthophosphate; orthorhombic aluminum orthophosphate; a mixture of orthorhombic aluminum orthophosphate and amorphous aluminum orthophosphate; and a mixture of orthorhombic, trigonal and amorphous aluminum orthophosphate.
Priority Claims (1)
Number Date Country Kind
10 2006 024 869.4 May 2006 DE national