ANTIGEN-BINDING PROTEIN COMPRISING TWO FC DOMAINS AND USE THEREOF

Abstract
The present invention provides a fusion protein comprising one antigen-binding site and two Fc domains and having a novel antibody structure. Although such a novel antibody has a molecular weight similar to human IgG, the antibody structure enables Fc domains to be present on a cell surface antigen a maximum of four times compared to a natural human antibody. Thus, the fusion protein has increased affinity for Fcγ receptors, and has increased effector functions. Therefore, the fusion protein having a novel antibody format can be used as a novel antibody platform.
Description
TECHNICAL FIELD

The present invention relates to a novel antibody format having an antigen-binding site that specifically binds to a cancer surface antigen, and two Fc domains.


BACKGROUND ART

Antibody-based therapeutic agents and Fc fusion proteins are a group of clinically important drugs for patients with cancer, immune diseases, infectious diseases, and inflammatory diseases. ADCC (antibody-dependent cell-mediated cytotoxicity), ADCP (antibody-dependent cellular phagocytosis), and CDC (complement-dependent cytotoxicity), which are induced by the interaction between the antibody Fc domain and the innate immune system, play an important role in alleviating or treating symptoms of the disease.


Attempts are being made to maintain the bivalency of the antibody and to improve the effector function by increasing the number of Fc domains (Claudio Sustmann et al., MAbs. 2019; Dennis R Goulet et al., Proteins, 2020). Although these platforms confirmed improvements in binding ability to Fcγ receptors and ADCC, it is difficult to obtain homogeneous antibodies due to the complexity of production and purification. Attempts to improve the effector function by connecting the Fc domains of antibodies in tandem or constituting a large number of Fc domains are also currently underway (U.S. Patent Publication US 2020/0040084 A1). In this case, there is a disadvantage that permeability to the tissue may be significantly lowered due to the increase in the size or molecular weight of the antibody.


DETAILED DESCRIPTION OF INVENTION
Technical Problem

Accordingly, the present inventors studied to improve the function of the antibody and at the same time to solve the problems of the existing antibody format designed to comprise multiple Fc domains in tandem as described above. As a result, the present inventors developed a novel improved antibody format that enables Fc domains to be present on a cell surface antigen a maximum of four times compared to a natural human antibody, even though it has a molecular weight (approximately 150 kDa) similar to that of natural human immunoglobulin G (IgG).


Solution to Problem

In one aspect of the present invention, there is provided a fusion protein comprising an antigen-binding site, a first Fc domain or a variant thereof linked to a first linking position of the antigen-binding site, and a second Fc domain or a variant thereof linked to a second linking position of the antigen-binding site.


In another aspect of the present invention, there is provided a fusion protein comprising two antigen-binding sites linked in tandem (tandem two antigen-binding regions), a first Fc domain or a variant thereof linked to a first linking position of the tandem 2 antigen-binding sites, and a second Fc domain or a variant thereof linked to a second linking position of the tandem 2 antigen-binding sites. According to one embodiment, each of the two antigen-binding sites constituting the tandem 2 antigen-binding sites may be a sequence comprising a CDR sequence or a variable region that is each capable of binding to different epitopes of the same antigen or to different antigens, or a sequence consisting of a variable region.


In the fusion proteins described in the present disclosure, according to one embodiment, the antigen-binding site may be a sequence comprising a CDR sequence or a variable region of an antibody or a sequence consisting of a variable region. Therefore, the antigen-binding site may comprise a first peptide consisting of or comprising a light chain CDR sequence or a light chain variable region of an antibody, and a second peptide consisting of or comprising a heavy chain CDR sequence or a heavy chain variable region of an antibody. The first Fc domain and the second Fc domain may each be a dimer consisting of two peptide sequences. The first peptide of the antigen-binding site binds to a first Fc domain or a variant thereof, and the second peptide of the antigen-binding site binds to a second Fc domain or a variant thereof.


In the fusion proteins described in the present disclosure, according to another embodiment, the first Fc domain and the second Fc domain may be linked to each other through a covalent bond, non-covalent bond, or linker, or may not be linked to each other. In a preferred embodiment, the first Fc domain and the second Fc domain are not linked to each other.


According to embodiments of the present disclosure, the Fc domain may be an Fc domain of a wild-type immunoglobulin, and may comprise modifications for modulating the reactivity of the Fc domain to Fcγ receptors (FcγRs), ADCC or minimizing the formation of undesirable multimers of the Fc domain, for example amino acid substitutions. The Fc domain comprises CH2 and CH3 regions, and may comprise a CH4 region and/or a hinge region, and it should be interpreted that the Fc domain comprises Fc domain fragments that exhibit the function of the Fc domain.


According to embodiments of the present disclosure, an antigen-binding site and an Fc domain or a variant thereof may be joined either directly or through a linker. For example, an antigen-binding site and an Fc domain or a variant thereof may be connected with or without a linker between the N-terminus and the C-terminus, between the N-terminus and the N-terminus, or between the C-terminus and the C-terminus of each peptide molecule.


According to embodiments of the present disclosure, when an antigen-binding site and an Fc domain or a variant thereof is joined through a linker, the linker may be a commonly used pepetide linker. For example, the linker may be a peptide consisting of 1-70 amino acid residues, 2-60 amino acid residues, 2-50 amino acid residues, 2-40 amino acid residues, 2-30 amino acid residues, 3-50 amino acid residues, 3-40 amino acid residues, 3-30 amino acid residues, 2-28 amino acid residues, 2-26 amino acid residues, 2-24 amino acid residues, 2-22 amino acid residues, 2-20 amino acid residues, 2-18 amino acid residues, 2-16 amino acid residues, 2-14 amino acid residues, 2-12 amino acid residues, or 2-10 amino acid residues. The connection between a first Fc domain and an antigen-binding site, the connection between a second Fc domain and an antigen-binding site, or both may be achieved through a linker.


In another aspect of the present invention, there is provided a pharmaceutical composition for preventing or treating cancer, comprising the fusion protein as an active ingredient.


In another aspect of the present invention, there is provided nucleotides encoding the fusion protein, and a vector comprising the nucleotides, and a transformed cell into which the vector has been introduced.


In another aspect of the present invention, there is provided a method for treating or preventing cancer, comprising administering the fusion protein to a subject.


In another aspect of the present invention, there is provided a use of the fusion protein for the treatment of cancer.


Effects of Invention

Unlike wild type antibodies, the fusion protein having the novel antibody format of the present invention comprises one or two antigen-binding sites and two Fc domains. The two Fc domains are not directly linked to each other, but the two Fc domains are each independently linked to two different polypeptide chains constituting the antigen-binding site. Even though this novel antibody format has a size and molecular weight similar to that of human IgG, it can enable Fc domains to be present on a cell surface antigen a maximum of four times compared to a natural human antibody. Due to these properties, the fusion protein having the novel antibody format has improved affinity (avidity) for Fcγ receptors and can induce improved effector functions. Therefore, the fusion protein having the novel antibody format can be utilized for various purposes by replacing conventional antibodies.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1a is a schematic diagram of natural human immunoglobulin (IgG).



FIG. 1b is a schematic diagram of the novel engineered antibody format.



FIG. 1c is a schematic diagram showing a cancer cell with its tumor antigens bound to the antigen-specific human immunoglobulins (IgG) in a monovalent manner.



FIG. 1d is a schematic diagram showing a cancer cell with its tumor antigens bound to the antigen-specific human immunoglobulin (IgG) in a monovalent or bivalent manner.



FIG. 1e is a schematic diagram showing a cancer cell with its tumor antigens bound to the antigen-specific human immunoglobulins (IgG) in a bivalent manner.



FIG. 1f is a schematic diagram showing a cancer cell with its tumor antigens bound to the antigen-specific novel engineered antibody.



FIG. 2a is a schematic diagram of the novel monovalent antibody format (WT) with two Fc domains.



FIG. 2b is a schematic diagram of an antibody (M1) in which VH Q105C and VL A43C amino acid substitutions are introduced in the novel monovalent antibody format with two Fc domains.



FIG. 2c is a schematic diagram of an antibody (M2) in which CH1 F122C and CL S121C amino acid substitutions are introduced in the novel monovalent antibody format with two Fc domains.



FIG. 2d is a schematic diagram of an antibody (M3) in which VH G44C and VL Q100C amino acid substitutions are introduced in the novel monovalent antibody format with two Fc domains.



FIG. 3a illustrates sequence information indicating the position of Cys substitution in the VH-CH1 domain of trastuzumab. The WT sequence is SEQ ID NO: 8, the sequence of Mutant 1 is SEQ ID NO: 10, the sequence of Mutant 2 is SEQ ID NO: 12, and the sequence of Mutant 3 is SEQ ID NO: 14.



FIG. 3b illustrates sequence information indicating the position of Cys substitution in the VL-CL domain of trastuzumab. The WT sequence is SEQ ID NO: 9, the sequence of Mutant 1 is SEQ ID NO: 11, the sequence of Mutant 2 is SEQ ID NO: 13, and the sequence of Mutant 3 is SEQ ID NO: 15.



FIG. 4 illustrates a result obtained by SDS-PAGE analysis of WT, M1, M2, and M3.



FIG. 5a illustrates a result obtained by size exclusion chromatography analysis of WT.



FIG. 5b illustrates a result obtained by size exclusion chromatography analysis of M1.



FIG. 5c illustrates a result obtained by size exclusion chromatography analysis of M2.



FIG. 5d illustrates a result obtained by size exclusion chromatography analysis of M3.



FIG. 6a is a schematic diagram of an antibody (M3) in which the CL domain and the hinge region are linked with a 15-mer peptide.



FIG. 6b is a schematic diagram of an antibody (V1) in which the CL domain and the hinge region are linked with a 10-mer peptide.



FIG. 6c is a schematic diagram of an antibody (V2) in which the CL domain and the hinge region are linked with a 5-mer peptide.



FIG. 6d is a schematic diagram of an antibody (V3) in which the CL domain and the hinge region are directly linked without a linker.



FIG. 7 illustrates a result obtained by SDS-PAGE analysis of M3, V1, V2, and V3.



FIG. 8a is a schematic diagram of fragments generated when H01 and P01 are cleaved with papain.



FIG. 8b is a schematic diagram of fragments generated by papain cleavage of H01 and P01 when a disulfide bond in the hinge region is abnormally formed.



FIG. 8c illustrates a result obtained by SDS-PAGE analysis of the H01 papain cleavage product.



FIG. 8d illustrates a result obtained by SDS-PAGE analysis of the P01 papain cleavage product.



FIG. 9 illustrates a result obtained by SDS-PAGE analysis of H01 wt and H01.



FIG. 10a is a schematic diagram of H01Fv1, which has an Fv-(Fc)2 structure.



FIG. 10b is a schematic diagram of H01Fv2, which has an Fv-(Fc)2 structure.



FIG. 10c is a schematic diagram of H01Fv3, which has an Fv-(Fc)2 structure.



FIG. 10d is a schematic diagram of H01Fv4, which has an Fv-(Fc)2 structure.



FIG. 10e is a schematic diagram of H01Fv5, which has an Fv-(Fc)2 structure.



FIG. 10f is a schematic diagram of H01Fv6, which has an Fv-(Fc)2 structure.



FIG. 10g is a schematic diagram of H01Fv7, which has an Fv-(Fc)2 structure.



FIG. 10h is a table showing the mutated positions of the Fv-(Fc)2 structure.



FIG. 11 illustrates a result obtained by SDS-PAGE analysis of the Fv-(Fc)2 structure after Protein A purification.



FIGS. 12a to 12g illustrate results obtained by SEC analysis of the Fv-(Fc)2 structure after Protein A purification.



FIG. 13a illustrates an analysis of the sensorgram data for the binding of H01Fv1, a purified Fv-(Fc)2 structure, to human HER2.



FIG. 13b illustrates an analysis of the sensorgram data for the binding of H01Fv2, a purified Fv-(Fc)2 structure, to human HER2.



FIG. 13c illustrates an analysis of the sensorgram data for the binding of H01Fv4, a purified Fv-(Fc)2 structure, to human HER2.



FIG. 13d illustrates an analysis of the sensorgram data for the binding of H01Fv5, a purified Fv-(Fc)2 structure, to human HER2.



FIG. 13e illustrates an analysis of the sensorgram data for the binding of H01Fv6, a purified Fv-(Fc)2 structure, to human HER2.



FIG. 13f illustrates an analysis of the sensorgram data for the binding of H01Fv7, a purified Fv-(Fc)2 structure, to human HER2.



FIG. 14 illustrates a differential scanning fluorimetry analysis of the melting temperatures of H01, P01, trastuzumab, and pertuzumab.



FIG. 15 is a bio-layer interferometry analysis of the sensorgram data showing competitive binding of H01 and P01.



FIG. 16a is a schematic diagram showing the binding mode of H01 in combination with P01 to HER2 on HER2-positive cancer cells.



FIG. 16b is a schematic diagram showing the binding mode of trastuzumab in combination with pertuzumab to HER2 on HER2-positive cancer cells.



FIG. 17a illustrates a flow cytometry analysis of the amount of Fc domain present on the surface of NCI-N87 gastric cancer cell line upon treatment with 50 nM anti-HER2 antibody.



FIG. 17b illustrates a flow cytometry analysis of the amount of Fc domain present on the surface of BT474 breast cancer cell line upon treatment with 50 nM anti-HER2 antibody.



FIG. 17c illustrates a flow cytometry analysis of the amount of Fc domain present on the surface of SK-0V3 ovarian cancer cell line upon treatment with 50 nM anti-HER2 antibody.



FIG. 17d illustrates a flow cytometry analysis of the amount of Fc domain present on the surface of SNU-1 gastric cancer cell line upon treatment with 50 nM anti-HER2 antibody.



FIG. 17e illustrates a flow cytometry analysis of the amount of Fc domain present on the surface of SNU-5 gastric cancer cell line upon treatment with 50 nM anti-HER2 antibody.



FIG. 18a illustrates a flow cytometry analysis of the amount of Fc domain present on the surface of NCI-N87 gastric cancer cell line upon treatment with anti-HER2 antibody at indicated concentrations.



FIG. 18b illustrates a flow cytometry analysis of the amount of Fc domain present on the surface of BT474 breast cancer cell line upon treatment with anti-HER2 antibody at indicated concentrations.



FIG. 18c illustrates a flow cytometry analysis of the amount of Fc domain present on the surface of SK-0V3 ovarian cancer cell line upon treatment with anti-HER2 antibody at indicated concentrations.



FIG. 18d illustrates a flow cytometry analysis of the amount of Fc domain present on the surface of SNU-1 gastric cancer cell line upon treatment with anti-HER2 antibody at indicated concentrations.



FIG. 18e illustrates a flow cytometry analysis of the amount of Fc domain present on the surface of SNU-5 gastric cancer cell line upon treatment with anti-HER2 antibody at indicated concentrations.



FIG. 19a is a schematic diagram of H01DE4 in which S239D and 1332E mutations were introduced in H01.



FIG. 19b is a schematic diagram of P01DE4 in which S239D and 1332E mutations were introduced in P01.



FIGS. 20a to 20d are sensorgrams binding profiles of H01, H01DE4, P01, and P01DE4 for human HER2.



FIGS. 21a to 21h are sensorgrams binding profiles of H01, P01, H01DE4, P01DE4, human IgG1, trastuzumab, pertuzumab, and margetuximab for Fcγ receptor 1.



FIGS. 22a to 22h are sensorgrams binding profiles of H01, P01, H01DE4, P01DE4, human IgG1, trastuzumab, pertuzumab, and margetuximab for Fcγ receptor 2A (131R isoform).



FIGS. 23a to 23h are sensorgrams binding profiles of H01, P01, H01DE4, P01DE4, human IgG1, trastuzumab, pertuzumab, and margetuximab for Fcγ receptor 3A (176V isoform).



FIG. 24a is a graph showing an antibody concentration in blood over time when H01, P01, trastuzumab, and pertuzumab were administered intravenously at 10 mg/kg to Sprague-Dawley rats.



FIG. 24b illustrates the PK parameters calculated from FIG. 24a when H01, P01, trastuzumab, and pertuzumab were administered intravenously at 10 mg/kg to Sprague-Dawley rats.



FIG. 25 is a schematic diagram of HP501, which is a HER2 biparatopic engineered antibody.



FIG. 26 is a schematic diagram of HP501 to HP516, which are HER2 biparatopic engineered antibodies.



FIG. 27 illustrates a size exclusion chromatography analysis of HP501 to HP516, which are HER2 biparatopic engineered antibodies.



FIG. 28a is a bio-layer interferometry analysis of the sensorgram data for the binding of HP503 to HER2.



FIG. 28b is a bio-layer interferometry analysis of the sensorgram data for the binding of HP507 to HER2.



FIG. 28c is a bio-layer interferometry analysis of the sensorgram data for the binding of HP511 for HER2.



FIG. 28d is a bio-layer interferometry analysis of the sensorgram data for the binding of HP515 for HER2 protein using bio-layer interferometry analysis.



FIG. 29a is a bio-layer interferometry analysis of the sensorgram data for the binding of HP503 for Fcγ receptor 1, Fcγ receptor 2A (131R isoform), and Fcγ receptor 3A (176V isoform).



FIG. 29b is a bio-layer interferometry analysis of the sensorgram data for the binding of HP507 for Fcγ receptor 1, Fcγ receptor 2A (131R isoform), and Fcγ receptor 3A (176V isoform).



FIG. 29c is a bio-layer interferometry analysis of the sensorgram data for the binding of HP511 for Fcγ receptor 1, Fcγ receptor 2A (131R isoform), and Fcγ receptor 3A (176V isoform).



FIG. 29d is a bio-layer interferometry analysis of the sensorgram data for the binding of HP515 for Fcγ receptor 1, Fcγ receptor 2A (131R isoform), and Fcγ receptor 3A (176V isoform).



FIG. 30a is a bio-layer interferometry analysis of the sensorgram data for the binding of HP503, HP507, HP511, and HP515 for the neonatal Fc receptor (FcRn).



FIG. 30b is a bio-layer interferometry analysis of the sensorgram data for the binding of human IgG1, trastuzumab, pertuzumab, and margetuximab for the neonatal Fc receptor (FcRn).



FIG. 31a illustrates the CDC activity of anti-HER2 antibodies in the BT474 breast cancer cell line.



FIG. 31b illustrates the CDC activity of anti-HER2 antibodies in the NCI-N87 gastric cancer cell line.



FIG. 32a illustrates the ADCC activity of anti-HER2 antibodies in the NCI-N87 gastric cancer cell line.



FIG. 32b illustrates the ADCC activity of anti-HER2 antibodies in the MDA-MB-453 breast cancer cell line.



FIG. 32c illustrates the ADCC activity of anti-HER2 antibodies in the SNU-601 gastric cancer cell line.



FIG. 32d illustrates the ADCC activity of anti-HER2 antibodies in the SNU-5 gastric cancer cell line.



FIG. 33a illustrates the antitumor activity of anti-HER2 antibodies in a C.B-17 SCID mouse model of tumor xenograft of SNU-5 gastric cancer cell line.



FIG. 33b illustrates the antitumor activity of anti-HER2 antibodies in a Balb/c-nude mouse model of tumor xenograft of SNU-5 gastric cancer cell line.



FIG. 34 illustrates the antitumor activity of anti-HER2 antibodies in a mouse model of tumor xenograft of SNU-601 gastric cancer cell line.



FIG. 35 illustrates the antitumor activity of anti-HER2 antibodies in a mouse model of tumor xenograft of NCI-N87 gastric cancer cell line.



FIG. 36 illustrates a vector to express human HER2 protein in mammalian cells.



FIG. 37 illustrates the flow cytometry quantification of HER2 expression in a CT26 mouse large intestine cancer cell line clone expressing human HER2(CT26-HER2).



FIG. 38 illustrates the stability of human HER2 expression in the CT26-HER2 clones.



FIG. 39 illustrates the relative expression of human HER2 in CT26-HER2 cell line (Clone name: #2-60) compared to human cancer cell lines, and shows that H01 allows a greater amount of Fc domain to bind to the surface of CT26-HER2 cells compared to trastuzumab.



FIG. 40 illustrates antitumor activity of anti-HER2 antibodies in a syngeneic CT26-HER2 mouse tumor model.



FIG. 41a is a schematic diagram of a monovalent engineered mAb according to one embodiment.



FIG. 41b is a schematic diagram of a biparatopic engineered mAb according to one embodiment.



FIG. 42 illustrates the bio-layer interferometry analysis of the sensorgram data for the binding of a fusion protein to the target according to one embodiment. Specifically, FIG. 42a illustrates the sensorgram data for the binding of GPM01, a monovalent engineered mAb targeting GPC-3, to human GPC-3. FIG. 42b illustrates the sensorgram data for the binding of GPM02, a monovalent engineered mAb targeting GPC-3, to human GPC-3. FIG. 42c illustrates the sensorgram data for the binding of GPM04, a monovalent engineered mAb targeting GPC-3, to human GPC-3. FIG. 42d illustrates the sensorgram data for the binding of GPB01, a biparatopic engineered mAb targeting GPC-3, to human GPC-3. FIG. 42e illustrates the sensorgram data for the binding of GPB03, a biparatopic engineered mAb targeting GPC-3, to human GPC-3. FIG. 42f illustrates the sensorgram data for the binding of GPB04, a biparatopic engineered mAb targeting GPC-3, to human GPC-3. FIG. 42g illustrates the sensorgram data for the binding of GPB06, a biparatopic engineered mAb targeting GPC-3, to human GPC-3.



FIG. 43 illustrates the flow cytometry analysis of the amount of Fc domain present on the surface of HepG2 liver cancer cell line upon treatment with 100 nM GPC-3 antibody.



FIG. 44 illustrates the SDS-PAGE analysis showing the inhibition of AKT phosphorylation in the PC-3 prostate cancer cell line upon treatment with 50 nM EphA2 antibody.



FIG. 45 illustrates the flow cytometry analysis of the amount of Fc domain present on the surface of PC-3 prostate cancer cell line upon treatment with 100 nM EphA2 antibody.



FIG. 46 illustrates the bio-layer interferometry analysis of the sensorgram data for the binding of MEM01 and MEM06, which are monovalent engineered mAbs targeting MET, to human MET.



FIG. 47 illustrates the flow cytometry analysis of the amount of Fc domain present on the surface of MKN45 gastric cancer cell line upon treatment with MET antibody at indicated concentrations.



FIG. 48 illustrates the flow cytometry analysis of the amount of Fc domain present on the surface of SNU5 gastric cancer cell line upon treatment with an antibody at indicated concentrations.



FIG. 49 illustrates the bio-layer interferometry analysis of the sensorgram data for the binding of monovalent engineered mAbs targeting EGFR to human EGFR.



FIG. 50 illustrates the bio-layer interferometry analysis of the sensorgram data for the binding of 33-1, 33-2, and 33-3, which are monovalent engineered mAbs targeting CD33, and 33-4, 33-5, 33-6, and 33-7, which are biparatopic engineered mAbs targeting CD33, to human CD33.



FIG. 51 illustrates the bio-layer interferometry analysis of the sensorgram data for the binding of monovalent engineered mAbs targeting CEACAM5 to human CEACAM5.



FIG. 52 illustrates the bio-layer interferometry analysis of the sensorgram data for the binding of a fusion protein according to one embodiment for the target. Specifically, FIG. 52a illustrates the sensorgram data for the binding of T01, a monovalent engineered mAb targeting TROP2, to human TROP2. FIG. 52b illustrates the sensorgram data for the binding of MSM01, a monovalent engineered mAb targeting mesothelin, to human mesothelin. FIG. 52c illustrates the sensorgram data for the binding of LIM01, a monovalent engineered mAb targeting LIV-1, to human LIV-1. A:T01, B:MSM01, C:LIM01.





BEST MODE FOR CARRYING OUT THE INVENTION
Definition of Terms

As used herein, the term “fusion protein with two Fcs” or “antibody with two Fcs” refers to a fusion protein in which two Fc domains are independently joined to two polypeptide chains constituting the antigen-binding site. The two polypeptide chains constituting the antigen-binding site may be different from each other. For example, one of the two polypeptide chains constituting the antigen-binding site may be a sequence comprising or consisting of the light chain CDR sequence or light chain variable region of the antibody, or may be an scFv, and the other may be a sequence comprising or consisting of the heavy chain CDR sequence or heavy chain variable region of the antibody, or may be an scFv. In one embodiment, the fusion protein having the two Fc regions may comprise the sequence of a “humanized” form of a non-human antibody, which is a chimeric antibody comprising a human immunoglobulin comprising native CDRs. In addition, the fusion protein may comprise a “fully human antibody” or a portion of a “human antibody.” In addition, in one embodiment, the multispecific fusion protein or antigen binding domain may be a “monoclonal antibody” or a portion thereof.


As used herein, the term “antibody” refers to a substance that specifically binds to an antigen and causes an antigen-antibody reaction. In addition, the antibody is also referred to as immunoglobulin. The antibody may refer to any one selected from IgG, IgE, IgM, IgD, and IgA, and may be a subclass of IgG, such as IgG1, IgG2, IgG3, IgG4, IgA1, or IgA2. In addition, the antibody may be an agonistic antibody or an antagonistic antibody.


As used herein, the term “Fab” or “Fab region” refers to a region of an antibody that binds to an antigen. Conventional IgG generally comprises two Fab regions. Each Fab region typically consists of one variable region and one constant region of each heavy chain and light chain. Specifically, the variable region and the constant region of the heavy chain in the Fab region are the VH and CH1 regions, and the variable region and the constant region of the light chain in the Fab region are the VL and CL regions. VH, CH1, VL, and CL of the Fab region may be arranged in various ways to impart the antigen binding ability according to the present disclosure, including the CrossMab Fab technology in which VH and VL have an arrangement substituted for each other.


As used herein, the term “heavy chain” refers to a polypeptide chain of about 50 kDa to about 70 kDa. Here, the N-terminal portion comprises a variable region of at least about 120 to 130 amino acids, and the C-terminal portion comprises a constant region. The constant region may be one of five types: alpha (α), delta (δ), epsilon (ε), gamma (γ), and mu (μ). Here, α, δ, and γ comprise about 450 amino acids, and μ and ε comprise about 550 amino acids.


As used herein, the term “light chain” refers to a polypeptide chain of about 25 kDa. Here, the N-terminal portion comprises a variable region of at least about 100 to about 110 amino acids, and the C-terminal portion comprises a constant region. There are two types of light chain constant domains: kappa (κ) or lambda (λ). In addition, the constant region of the light chain is referred to as “CL”. The heavy chain C domains (CH domains) are numbered from N-terminus to C-terminus (e.g., CH1, CH2, CH3, etc.). The CL and a CH1 regions of any of these antibody classes may be used in the present disclosure. In certain embodiments, the CL and CH1 regions provided herein are of the IgG type (for example, IgG1).


As used herein, the term “Fc” or “Fc region” refers to the C-terminal region of an immunoglobulin heavy chain, including a native Fc region, a recombinant Fc region, and a variant Fc region. Therefore, Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, the last three constant region immunoglobulin domains of IgE and IgM, and the hinge present in the N-terminus of these domains. For IgA and IgM, the Fc may comprise a J chain. For IgG, the Fc comprises the immunoglobulin domains Cy2 (CH2) and Cy3 (CH3) and the hinge between Cy1 and Cy2. Although the interface of the Fc region may vary, the human IgG heavy chain Fc region is generally defined as comprising residues C226, P230, or A231 at the C-terminus, where numbering is according to the EU index. As used herein, “Fc polypeptide” or “Fc-derived polypeptide” refers to a polypeptide comprising all or part of an Fc region. In one embodiment, a variant Fc region may be in a form in which at least one amino acid, for example, about 1 to about 10 amino acids, or about 1 to about 5 amino acids, are substituted compared to the native sequence Fc region. In addition, the variant Fc region may have at least about 80% homology, at least about 90% homology, or at least about 95% homology to the native sequence Fc region.


As used herein, the term “Fv” or “Fv fragment” or “Fv region” is a polypeptide comprising the VL and VH domains of a single antibody.


As used herein, the term “single chain Fv” or “scFv” refers to an antibody fragment comprising the VH and VL domains of an antibody within a single polypeptide chain.


As used herein, the term “variable region” refers to an antibody region comprising one or more immunoglobulin domains encoded by any one of the VL (including Vkappa (VK) and Vlambda (VL)) and/or VH genes that constitute the light chain (including kappa and lambda) and heavy chain immunoglobulin loci, respectively. The light or heavy chain variable region (VL or VH) consists of a “framework” or “FR” region that includes three hypervariable regions referred to as “complementarity determining regions” or “CDRs”. As used herein, the term “antigen” refers to a structure capable of selectively binding to an antibody. A target antigen may be a polypeptide, carbohydrate, nucleic acid, lipid, hapten, or other naturally occurring compound or synthetic compound. Specifically, an antigen is a polypeptide and may be a protein present on or within a cell.


As used herein, the term “epitope” refers to an antigenic determinant and is a part on an antigen to which an antibody or polypeptide binds. A protein epitope may comprise amino acid residues that are directly involved in binding as well as amino acid residues that are effectively blocked by specific antigen-binding antibodies or peptides. It is the simplest form or smallest structural region of a complex antigen molecule that may bind to an antibody or receptor. The epitope may be linear or structural/conformational.


As used herein, the term “vector” refers to a material for transporting or expressing a nucleic acid sequence including a nucleic acid sequence encoding a multispecific fusion protein (for example, an antibody) described herein. Specifically, vectors include expression vectors, plasmids, phage vectors, viral vectors, episomes, and artificial chromosomes.


As used herein, the term “polynucleotide,” also referred to as “nucleic acid,” refers to a polymer of nucleotides of any length. Specifically, the polynucleotide may be DNA or RNA.


Antibody Comprising Two Fcs

In one aspect of the present invention, there is provided an antibody comprising a plurality of Fc domains, characterized in that the ratio of the antigen-binding site and the Fc domain is 1:2 or 2:2. Specifically, the antibody may be a fusion protein comprising an antigen-binding site, a first Fc domain or a variant thereof, and a second Fc domain or a variant thereof.


Here, the antigen-binding site may consist of two different polypeptide chains. In addition, each polypeptide may be linked to a first Fc domain or a variant thereof, and a second Fc domain or a variant thereof.


Here, in one embodiment of the fusion protein, when the antigen-binding site comprises Fab, it may be a fusion protein in which the two Fc domains are bound to the C-terminus of the CH1 region of the heavy chain and the C-terminus of the constant region of the light chain, respectively. In addition, the Fc domain and Fab may be linked through a peptide linker.


In addition, in one embodiment of the fusion protein, when the antigen-binding site is Fv, it may be a fusion protein in which the two Fc domains are bound to the C-terminus of the variable region of the heavy chain and the C-terminus of the variable region of the light chain, respectively. In addition, the Fc domain and Fv may be linked through a peptide linker.


This novel antibody format or structure has a molecular weight similar to human IgG. In addition, the fusion protein may have an antigen binding affinity equivalent to that of a human IgG-based antibody. However, the antibody format enables Fc domains to be present on a cell surface antigen a maximum of four times compared to a natural human antibody. Due to these characteristics, the fusion protein may have increased affinity for Fcγ receptors, and may have increased effector functions compared to the wild type antibody. Each Fc domain bound to the fusion protein may have a similar level of Fc receptor (Fcγ receptor and FcRn) binding affinity as the Fc domain of an IgG-based antibody, but due to the avidity effect, the apparent binding affinity (apparent affinity) of the fusion protein to the Fc receptor (Fcγ receptor and FcRn) may be significantly increased compared to a human IgG antibody. In addition, the fusion protein has a similar level of thermal stability as that of an IgG-based antibody.


Specifically, the fusion protein may be a fusion protein comprising (a) an antigen-binding site consisting of a first polypeptide comprising at least one complementarity-determining region (CDR) sequence and a second polypeptide comprising at least one complementarity-determining region (CDR) sequence, wherein the first polypeptide and the second polypeptide form a dimer, and the antigen-binding site is capable of specifically binding to a target antigen, (b) a first Fc domain or a variant thereof that is a dimer consisting of two polypeptide sequences, one of which is joined to the first polypeptide of the antigen-binding site, and (c) a second Fc domain or a variant thereof that is a dimer consisting of two polypeptide sequences, one of which is joined to the second polypeptide of the antigen-binding site.


Here, the first polypeptide of the antigen-binding site may comprise CDR1, CDR2, and CDR3 of an antibody heavy chain, and the second polypeptide of the antigen-binding site may comprise CDR1, CDR2, and CDR3 of an antibody light chain. In addition, the first polypeptide of the antigen-binding site may further comprise a CH1 region of an antibody heavy chain, and/or the second polypeptide of the antigen-binding site may further comprise a constant region of an antibody light chain.


The specific structure of the fusion protein is described in more detail below.


Antigen-Binding Site

Here, the antigen-binding site is capable of specifically binding to a protein expressed on the cell surface. Specifically, the antigen-binding site is capable of specifically binding to a cancer antigen.


In one embodiment, the antigen-binding site is capable of specifically binding to any one selected from the group consisting of PD-L1, EGFR, EGFRvIII, BCMA, CD22, CD25, CD30, CD33, CD37, CD38, CD52, CD56, CD123, c-Met (MET), DLL3, DR4, DR5, GD2, nectin-4, RANKL, SLAMF7, Trop-2, LIV-1, claudin 18.2, IL13α2, CD3, HER2, HER3, FGFR2, FGFR3, GPC3, ROR1, Folα, CD20, CD19, CTLA-4, VEGFR, NCAM1, ICAM-1, ICAM-2, CEACAM5, CEACAM6, carcinoembryonic antigen (CEA), CA-125, alphafetoprotein (AFP), MUC-1, MUC-16, PSMA, PSCA, epithelial tumor antigen (ETA), melanoma-associated antigen (MAGE), immature laminin receptor, TAG-72, HPV E6/E7, BING-4, calcium-activated chloride channel 2, cyclin-B1, 9D7, Ep-CAM, EphA2, EphA3, mesothelin, SAP-1, survivin, and virus-derived antigens.


A second antigen-binding site is also capable of specifically binding to any one antigen selected from the above group. According to one embodiment, the antigen to which a first antigen-binding site binds may be different from the antigen to which a second antigen-binding site binds. For example, the first antigen-binding site may comprise a sequence that specifically binds to HER2, and the second antigen-binding site may comprise a sequence that specifically binds to EGFR. In another embodiment, the first antigen-binding site may comprise a sequence that specifically binds to one epitope of an antigen, and the second antigen-binding site may comprise a sequence that specifically binds to a different epitope of the same antigen.


Specific Examples of Antigen-Binding Sites

Here, the antigen-binding site may comprise a variable region that specifically binds to the antigen. Specifically, the variable region may include the heavy chain variable region and light chain variable region of any one antibody selected from the group consisting of cetuximab, panitumumab, necitumumab, imgatuzumab, depatuxizumab, losatuxizumab, etevritamab, AMG-595, atezolizumab, avelumab, durvalumab, trastuzumab, pertuzumab, onartuzumab, emibetuzumab, telisotuzumab, datopotamab, sacituzumab, rovalpituzumab, tarlatamab, belantamab, ladiratuzumab, codrituzumab, aprutumab, bemarituzumab, vofatamab, ramucirumab, rituximab, obinutuzumab, daratumumab, and 1C1(Clone name), but is not limited thereto.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to EGFR. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 175, H-CDR2 represented by SEQ ID NO: 176, and H-CDR3 represented by SEQ ID NO: 177 of cetuximab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 178, L-CDR2 represented by SEQ ID NO: 179, and L-CDR3 represented by SEQ ID NO: 180. As another example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 181, H-CDR2 represented by SEQ ID NO: 182, and H-CDR3 represented by SEQ ID NO: 183 of panitumumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 184, L-CDR2 represented by SEQ ID NO: 185, and L-CDR3 represented by SEQ ID NO: 186. As another example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 187, H-CDR2 represented by SEQ ID NO: 188, and H-CDR3 represented by SEQ ID NO: 189 of necitumumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 190, L-CDR2 represented by SEQ ID NO: 191, and L-CDR3 represented by SEQ ID NO: 192. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 193, H-CDR2 represented by SEQ ID NO: 194, and H-CDR3 represented by SEQ ID NO: 195 of imgatuzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 196, L-CDR2 represented by SEQ ID NO: 197, and L-CDR3 represented by SEQ ID NO: 198. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 199, H-CDR2 represented by SEQ ID NO: 200, and H-CDR3 represented by SEQ ID NO: 201 of depatuxizumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 202, L-CDR2 represented by SEQ ID NO: 203, and L-CDR3 represented by SEQ ID NO: 204. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 199, H-CDR2 represented by SEQ ID NO: 205, and H-CDR3 represented by SEQ ID NO: 206 of losatuxizumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 202, L-CDR2 represented by SEQ ID NO: 203, and L-CDR3 represented by SEQ ID NO: 204.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to EGFRvIII. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 207, H-CDR2 represented by SEQ ID NO: 208, and H-CDR3 represented by SEQ ID NO: 209 of etevritamab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 210, L-CDR2 represented by SEQ ID NO: 211, and L-CDR3 represented by SEQ ID NO: 212. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 213, H-CDR2 represented by SEQ ID NO: 214, and H-CDR3 represented by SEQ ID NO: 215 of AMG-595, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 210, L-CDR2 represented by SEQ ID NO: 216, and L-CDR3 represented by SEQ ID NO: 217.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to PD-L1. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 218, H-CDR2 represented by SEQ ID NO: 219, and H-CDR3 represented by SEQ ID NO: 220 of atezolizumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 221, L-CDR2 represented by SEQ ID NO: 222, and L-CDR3 represented by SEQ ID NO: 223. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 224, H-CDR2 represented by SEQ ID NO: 225, and H-CDR3 represented by SEQ ID NO: 226 of avelumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 227, L-CDR2 represented by SEQ ID NO: 228, and L-CDR3 represented by SEQ ID NO: 229. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 230, H-CDR2 represented by SEQ ID NO: 231, and H-CDR3 represented by SEQ ID NO: 232 of durvalumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 233, L-CDR2 represented by SEQ ID NO: 234, and L-CDR3 represented by SEQ ID NO: 235.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to HER2. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 21, H-CDR2 represented by SEQ ID NO: 22, and H-CDR3 represented by SEQ ID NO: 23 of trastuzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 24, L-CDR2 represented by SEQ ID NO: 25, and L-CDR3 represented by SEQ ID NO: 26. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 33, H-CDR2 represented by SEQ ID NO: 34, and H-CDR3 represented by SEQ ID NO: 35 of pertuzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 36, L-CDR2 represented by SEQ ID NO: 37, and L-CDR3 represented by SEQ ID NO: 38.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to c-Met. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 236, H-CDR2 represented by SEQ ID NO: 237, and H-CDR3 represented by SEQ ID NO: 238 of onartuzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 239, L-CDR2 represented by SEQ ID NO: 240, and L-CDR3 represented by SEQ ID NO: 241. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 242, H-CDR2 represented by SEQ ID NO: 243, and H-CDR3 represented by SEQ ID NO: 244 of emibetuzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 245, L-CDR2 represented by SEQ ID NO: 246, and L-CDR3 represented by SEQ ID NO: 247. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 248, H-CDR2 represented by SEQ ID NO: 249, and H-CDR3 represented by SEQ ID NO: 250 of telisotuzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 251, L-CDR2 represented by SEQ ID NO: 252, and L-CDR3 represented by SEQ ID NO: 253.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to Trop-2. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 254, H-CDR2 represented by SEQ ID NO: 255, and H-CDR3 represented by SEQ ID NO: 256 of datopotamab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 257, L-CDR2 represented by SEQ ID NO: 258, and L-CDR3 represented by SEQ ID NO: 259. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 260, H-CDR2 represented by SEQ ID NO: 261, and H-CDR3 represented by SEQ ID NO: 262 of sacituzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 263, L-CDR2 represented by SEQ ID NO: 264, and L-CDR3 represented by SEQ ID NO: 265.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to DLL3. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 266, H-CDR2 represented by SEQ ID NO: 267, and H-CDR3 represented by SEQ ID NO: 268 of rovalpituzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 269, L-CDR2 represented by SEQ ID NO: 270, and L-CDR3 represented by SEQ ID NO: 271. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 272, H-CDR2 represented by SEQ ID NO: 273, and H-CDR3 represented by SEQ ID NO: 274 of tarlatamab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 275, L-CDR2 represented by SEQ ID NO: 276, and L-CDR3 represented by SEQ ID NO: 277.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to BCMA. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 278, H-CDR2 represented by SEQ ID NO: 279, and H-CDR3 represented by SEQ ID NO: 280 of belantamab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 281, L-CDR2 represented by SEQ ID NO: 282, and L-CDR3 represented by SEQ ID NO: 283.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to LIV-1. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 284, H-CDR2 represented by SEQ ID NO: 285, and H-CDR3 represented by SEQ ID NO: 286 of ladiratuzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 287, L-CDR2 represented by SEQ ID NO: 288, and L-CDR3 represented by SEQ ID NO: 289.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to GPC-3. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 99, H-CDR2 represented by SEQ ID NO: 100, and H-CDR3 represented by SEQ ID NO: 101 of codrituzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 102, L-CDR2 represented by SEQ ID NO: 103, and L-CDR3 represented by SEQ ID NO: 104.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to FGFR2. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 290, H-CDR2 represented by SEQ ID NO: 291, and H-CDR3 represented by SEQ ID NO: 292 of aprutumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 293, L-CDR2 represented by SEQ ID NO: 294, and L-CDR3 represented by SEQ ID NO: 295. In addition, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 296, H-CDR2 represented by SEQ ID NO: 297, and H-CDR3 represented by SEQ ID NO: 298 of bemarituzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 299, L-CDR2 represented by SEQ ID NO: 300, and L-CDR3 represented by SEQ ID NO: 301.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to FGFR3. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 302, H-CDR2 represented by SEQ ID NO: 303, and H-CDR3 represented by SEQ ID NO: 304 of vofatamab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 305, L-CDR2 represented by SEQ ID NO: 306, and L-CDR3 represented by SEQ ID NO: 307.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to VEGFR2. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 308, H-CDR2 represented by SEQ ID NO: 309, and H-CDR3 represented by SEQ ID NO: 310 of ramucirumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 311, L-CDR2 represented by SEQ ID NO: 312, and L-CDR3 represented by SEQ ID NO: 313.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to CD20. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 314, H-CDR2 represented by SEQ ID NO: 315, and H-CDR3 represented by SEQ ID NO: 316 of rituximab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 317, L-CDR2 represented by SEQ ID NO: 318, and L-CDR3 represented by SEQ ID NO: 319. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 320, H-CDR2 represented by SEQ ID NO: 321, and H-CDR3 represented by SEQ ID NO: 322 of obinutuzumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 323, L-CDR2 represented by SEQ ID NO: 324, and L-CDR3 represented by SEQ ID NO: 325.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to CD38. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 326, H-CDR2 represented by SEQ ID NO: 327, and H-CDR3 represented by SEQ ID NO: 328 of daratumumab, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 329, L-CDR2 represented by SEQ ID NO: 330, and L-CDR3 represented by SEQ ID NO: 331.


As a specific example of the present invention, it may include an antigen-binding site that specifically binds to EphA2. For example, it may comprise a heavy chain variable region comprising H-CDR1 represented by SEQ ID NO: 157, H-CDR2 represented by SEQ ID NO: 158, and H-CDR3 represented by SEQ ID NO: 159 of 1C1, and may comprise a light chain variable region comprising L-CDR1 represented by SEQ ID NO: 160, L-CDR2 represented by SEQ ID NO: 161, and L-CDR3 represented by SEQ ID NO: 162.


Table 1 below shows the CDR sequences of non-limiting exemplary antibodies with anticancer efficacy that may be used in specific examples of the present invention.











TABLE 1








Heavy chain
Light chain













Antibody
CDR
Sequence
SEQ ID NO
CDR
Sequence
SEQ ID NO





Cetuximab
VH-CDR1
NYGVH
175
VL-CDR1
RASQSIGTNIH
178



VH-CDR2
VIWSGGNTDYNTPF
176
VL-CDR2
YASESIS
179




TS







VH-CDR3
ALTYYDYEFAY
177
VL-CDR3
QQNNNWPTT
180





Panitumumab
VH-CDR1
DYYWT
181
VL-CDR1
QASQDISNYLN
184



VH-CDR2
HIYYSGNTNYNPSL
182
VL-CDR2
DASNLET
185




KS







VH-CDR3
DRVTGAFDI
183
VL-CDR3
QHFDHLPLA
186





Necitumumab
VH-CDR1
DYYWS
187
VL-CDR1
RASQSVSSYLA
190



VH-CDR2
YIYYSGSTDYNPSL
188
VL-CDR2
DASNRAT
191




KS







VH-CDR3
VSIFGVGTFDY
189
VL-CDR3
HQYGSTPLT
192





Imgatuzumab
VH-CDR1
DYKIH
193
VL-CDR1
RASQGINNYLN
196



VH-CDR2
YFNPNSGYSTYAQK
194
VL-CDR2
NTNNLQT
197




FQG







VH-CDR3
LSPGGYYVMDA
195
VL-CDR3
LQHNSFPT
198





Depatuxizumab
VH-CDR1
DFAWN
199
VL-CDR1
HSSQDINSNIG
202



VH-CDR2
YISYSGNTRYQPSL
200
VL-CDR2
HGTNLDD
203




KS







VH-CDR3
AGRGFPY
201
VL-CDR3
VQYAQFPWT
204





Losatuxizumab
VH-CDR1
DFAWN
199
VL-CDR1
HSSQDINSNIG
202



VH-CDR2
YISYNGNTRYQPSL
205
VL-CDR2
HGTNLDD
203




KS







VH-CDR3
ASRGFPY
206
VL-CDR3
VQYAQFPWT
204





Etevritamab
VH-CDR1
NYGMH
207
VL-CDR1
RSSQSLVHSDG
210







NTYLS




VH-CDR2
VIWYDGSDKYYAD
208
VL-CDR2
RISRRFS
211




SVRG







VH-CDR3
DGYDILTGNPRDFD
209
VL-CDR3
MQSTHVPRT
212




Y









AMG-595
VH-CDR1
SYGMH
213
VL-CDR1
RSSQSL VHSDG
210







NTYLS




VH-CDR2
VIWYDGSNKYYVD
214
VL-CDR2
KISNRFS
216




SVKG







VH-CDR3
DGWQQLAPFDY
215
VL-CDR3
MQATQLPRT
217





Atezolizumab
VH-CDR1
DSWIH
218
VL-CDR1
RASQDVSTAVA
221



VH-CDR2
WISPYGGSTYYADS
219
VL-CDR2
SASFLYS
222




VKG







VH-CDR3
RHWPGGFDY
220
VL-CDR3
QQYLYHPAT
223





Avelumab
VH-CDR1
SSYIM
224
VL-CDR1
TGTSSDVGGYN
227







YVS




VH-CDR2
SIYPSGGITFYADTV
225
VL-CDR2
DVSNRPS
228




KG







VH-CDR3
IKLGTVTTVDY
226
VL-CDR3
SSYTSSSTRV
229





Durvalumab
VH-CDR1
RYWMS
230
VL-CDR1
RASQRVSSSYL
233







A




VH-CDR2
NIKQDGSEKYYVDS
231
VL-CDR2
DASSRAT
234




VKG







VH-CDR3
EGGWFGELAFDY
232
VL-CDR3
QQYGSLPWT
235





Trastuzumab
VH-CDR1
DTYIH
21
VL-CDR1
RASQDVNTAV
24







A




VH-CDR2
RIYPTNGYTRYADS
22
VL-CDR2
SASFLYS
25




VKG







VH-CDR3
WGGDGFYAMDY
23
VL-CDR3
QQHYTTPPT
26





Pertuzumab
VH-CDR1
DYTMD
33
VL-CDR1
KASQDVSIGVA
36



VH-CDR2
DVNPNSGGSIYNQR
34
VL-CDR2
SASYRYT
37




FKG







VH-CDR3
NLGPSFYFDYW
35
VL-CDR3
QQYYIYPYT
38





Onartuzumab
VH-CDR1
SYWLH
236
VL-CDR1
KSSQSLLYTSS
239







QKNYLA




VH-CDR2
MIDPSNSDTRFNPN
237
VL-CDR2
WASTRES
240




FKD







VH-CDR3
YRSYVTPLDY
238
VL-CDR3
QQYYAYPWT
241





Emibetuzumab
VH-CDR1
DYYMH
242
VL-CDR1
SVSSSVSSIYLH
245



VH-CDR2
RVNPNRRGTTYNQ
243
VL-CDR2
STSNLAS
246




KFEG







VH-CDR3
ANWLDY
244
VL-CDR3
QVYSGYPLT
247





Telisotuzumab
VH-CDR1
AYTMH
248
VL-CDR1
KSSESVDSYAN
251







SFLH




VH-CDR2
WIKPNNGLANYAQ
249
VL-CDR2
RASTRES
252




KFQG







VH-CDR3
SEITTEFDY
250
VL-CDR3
QQSKEDPLT
253





Datopotamab
VH-CDR1
TAGMQ
254
VL-CDR1
KASQDVSTAV
257







A




VH-CDR2
WINTHSGVPKYAE
255
VL-CDR2
SASYRYT
258




DFKG







VH-CDR3
SGFGSSYWYFDV
256
VL-CDR3
QQHYITPLT
259





Sacituzumab
VH-CDR1
NYGMN
260
VL-CDR1
KASQDVSIAVA
263



VH-CDR2
WINTYTGEPTYTDD
261
VL-CDR2
SASYRYT
264




FKG







VH-CDR3
GGFGSSYWYFDV
262
VL-CDR3
QQHYITPLT
265





Rovalpituzumab
VH-CDR1
NYGMN
266
VL-CDR1
KASQSVSNDVV
269



VH-CDR2
WINTYTGEPTYADD
267
VL-CDR2
YASNRYT
270




FKG







VH-CDR3
IGDSSPSDY
268
VL-CDR3
QQDYTSPWT
271





Tarlatamab
VH-CDR1
SYYWS
272
VL-CDR1
RASQRVNNNY
275







LA




VH-CDR2
YVYYSGTTNYNPSL
273
VL-CDR2
GASSRAT
276




KS







VH-CDR3
IAVTGFYFDY
274
VL-CDR3
QQYDRSPLT
277





Belantamab
VH-CDR1
NYWMH
278
VL-CDR1
SASQDISNYLN
281



VH-CDR2
ATYRGHSDTYYNQ
279
VL-CDR2
YTSNLHS
282




KFKG







VH-CDR3
GAIYDGYDVLDN
280
VL-CDR3
QQYRKLPWT
283





Ladiratuzumab
VH-CDR1
DYYMH
284
VL-CDR1
RSSQSLLHSSG
287







NTYLE




VH-CDR2
WIDPENGDTEYGPK
285
VL-CDR2
KISTRFS
288




FQG







VH-CDR3
HNAHYGTWFAY
286
VL-CDR3
FQGSHVPYT
289





Codrituzumab
VH-CDR1
DYEMH
99
VL-CDR1
RSSQSLVHSNR
102







NTYLH




VH-CDR2
ALDPKTGDTAYSQ
100
VL-CDR2
KVSNRFS
103




KFKG







VH-CDR3
FYSYTY
101
VL-CDR3
SQNTHVPPT
104





Aprutumab
VH-CDR1
SYAMS
290
VL-CDR1
SGSSSNIGNNY
293







VS




VH-CDR2
AISGSGTSTYYADS
291
VL-CDR2
ENYNRPA
294




VKG







VH-CDR3
VRYNWNHGDWFD
292
VL-CDR3
SSWDDSLNYW
295




P


V






Bemarituzumab
VH-CDR1
TYNVH
296
VL-CDR1
KASQGVSNDV
299







A




VH-CDR2
SIYPDNGDTSYNQN
297
VL-CDR2
SASYRYT
300




FKG







VH-CDR3
GDFAY
298
VL-CDR3
QQHSTTPYT
301





Vofatamab
VH-CDR1
STGIS
302
VL-CDR1
RASQDVDTSLA
305



VH-CDR2
RIYPTSGSTNYADS
303
VL-CDR2
SASFLYS
306




VKG







VH-CDR3
TYGIYDLYVDYTEY
304
VL-CDR3
QQSTGHPQT
307




VMDY









Ramucirumab
VH-CDR1
SYSMN
308
VL-CDR1
RASQGIDNWLG
311



VH-CDR2
SISSSSSYIYYADSV
309
VL-CDR2
DASNLDT
312




KG







VH-CDR3
VTDAFDI
310
VL-CDR3
QQAKAFPPT
313





Rituximab
VH-CDR1
SYNMH
314
VL-CDR1
RSSKSLLHSNGI
317







TYLY




VH-CDR2
AIYPGNGDTSYNQK
315
VL-CDR2
QMSNLVS
318




FKG







VH-CDR3
STYYGGDWYFNV
316
VL-CDR3
AQNLELPYT
319





Obinutuzumab
VH-CDR1
YSWIN
320
VL-CDR1
RASQSVSSYLA
323



VH-CDR2
RIFPGDGDTDYNGK
321
VL-CDR2
DASNRAT
324




FKG







VH-CDR3
NVFDGYWLVY
322
VL-CDR3
QQRSNWPPT
325





Daratumumab
VH-CDR1
SFAMS
326
VL-CDR1
RASQSVSSYLA
329



VH-CDR2
AISGSGGGTYYADS
327
VL-CDR2
DASNRAT
330




VKG







VH-CDR3
DKILWFGEPVFDY
328
VL-CDR3
QQRSNWPPT
331





1C1
VH-CDR1
HYMMA
157
VL-CDR1
RASQSISTWLA
160


(Clone name)
VH-CDR2
RIGPSGGPTHYADS
158
VL-CDR2
KASNLHT
161




VKG







VH-CDR3
YDSGYDYVAVAGP
159
VL-CDR3
QQYNSYSRT
162




AEYFQH









Antigen

As antigens to which the antigen-binding site described herein may specifically bind, the following non-limiting substances may be exemplified.


“Epidermal growth factor receptor (EGFR)”: It is a cell membrane receptor that regulates cell growth, division, survival, and death. In various cancers, the expression of EGFR is increased in tumor tissues. It is known that tumor tissues with the increased EGFR are invasive, metastatic, and highly resistant to anticancer agents. In one embodiment, the substance that inhibits EGFR may be cetuximab, panitumumab, necitumumab, imgatuzumab, depatuxizumab, or losatuxizumab, but is not limited thereto.


“Epidermal growth factor receptor variant 3 (EGFRvIII)”: It is a mutation in which exons 2 to 7 of EGFR are deleted. It is mainly reported in glioblastoma multiforme, and most patients with EGFRvIII-positive mutation have a poor prognosis. In one embodiment, the substance that inhibits EGFRvIII may be cetuximab, panitumumab, necitumumab, imgatuzumab, depatuxizumab, losatuxizumab, etevritamab, or AMG-595, but is not limited thereto.


Programmed death-ligand 1 (PD-L1)”: It is a protein overexpressed on the surface of cancer cells. It is a major cancer-specific antigen that plays an important role in inducing exhaustion and apoptosis of T cells and acquiring immune tolerance in cancer cells. In one embodiment, PD-L1 targeting anticancer antibody may be atezolizumab, avelumab, and durvalumab, but is not limited thereto.


“HER-2/neu (human epidermal growth factor receptor 2): It regulates cell proliferation through activation of PI3K/AkT. It is known that it is overexpressed in metastatic breast cancer and ovarian cancer, etc., and induces resistance against anticancer agents. The HER2/neu targeting anticancer agent may be trastuzumab or pertuzumab, but is not limited thereto.


“c-Met (mesenchymal-epithelial transition factor)”: It is a hepatocyte growth factor receptor. Its amplification or mutation is frequently reported in cancer cells, and it is known to promote tumor growth, metastasis, and malignancy. Specifically, the inhibitor of the protein may be onartuzumab, emibetuzumab, or telisotuzumab, but is not limited thereto.


“Trop-2 (tumor-associated calcium signal transducer 2)”: It is a cellular glycoprotein related to cancer cell growth and proliferation. It is known to be specifically overexpressed in non-small cell lung cancer and breast cancer. Specifically, the antibody targeting the protein may be datopotamab or sacituzumab, but is not limited thereto.


“DLL3 (delta-like ligand 3)”: It is a major cancer target antigen known to be expressed in approximately 85% of small cell lung cancer patients. Specifically, the antibody targeting the protein may be rovalpituzumab or tarlatamab, but is not limited thereto.


“BCMA (B-cell maturation antigen)”: It is an important factor in the survival and proliferation of myeloma cells and is a clinically proven target for treatment of multiple myeloma. Specifically, the antibody targeting the protein may be belantamab, but is not limited thereto.


“LIV-1 (zinc transporter ZIP6)”: It is a highly cancer-specific antigen overexpressed in breast cancer. Specifically, the antibody targeting the protein may be ladiratuzumab, but is not limited thereto.


“GPC-3 (glypican-3)”: It is a highly cancer-specific antigen that is specifically overexpressed in liver cancer. Specifically, the antibody targeting the protein may be codrituzumab, but is not limited thereto.


“FGFR (fibroblast growth factor receptor)”: It is a receptor for fibroblast growth factor (FGF), which regulates various biological processes including cell growth, differentiation, and migration. The FGFR gene is easily mutated, and these variants are commonly observed in breast cancer, uterine cancer, ovarian cancer, cervical cancer, and the like. The four FGFR genes are made of seven signaling receptors, of which FGFR2 and FGFR3 are highly cancer-specific antigens. The antibody targeting FGFR2 or FGFR3 may be aprutumab, bemarituzumab, or vofatamab, but is not limited thereto.


“Vascular endothelial growth factor receptor (VEGFR)”: It is a cell membrane receptor for a vascular endothelial growth factor that induces angiogenesis. The VEGFR inhibitor inhibits tumor growth and metastasis by inhibiting angiogenesis. In one embodiment, the VEGFR inhibitor may be ramucirumab, but is not limited thereto.


“CD20 (B lymphocyte antigen CD20)”: It is a protein expressed on the surface of B cells, which is used as a target protein for the treatment of B cell lymphoma. The CD20 inhibitor may be rituximab or obinutuzumab, but is not limited thereto.


“CD38 (cluster of differentiation 38)”: It is a protein that acts as a signal transduction receptor in immune cells and regulates cell proliferation and death. The inhibitor targeting the protein may be daratumumab, but is not limited thereto.


“EphA2 (EPH receptor A2)”: It is overexpressed in cancer cells and has a significant impact on the growth and metastasis of cancer cells. The antibody targeting the protein may be 1C1, but is not limited thereto.


The antigen-binding site that specifically binds to the antigens exemplified above may include CDR sequences as exemplified below.


EGFR:





    • 1) VH region (SEQ ID NO: 334) comprising the amino acid sequences of SEQ ID NO: 175 (VH-CDR1), SEQ ID NO: 176 (VH-CDR2) and SEQ ID NO: 177 (VH-CDR3), and VL region (SEQ ID NO: 335) comprising the amino acid sequences of SEQ ID NO: 178 (VL-CDR1), SEQ ID NO: 179 (VL-CDR2) and SEQ ID NO: 180 (VL-CDR3);

    • 2) VH region (SEQ ID NO: 336) comprising the amino acid sequences of SEQ ID NO: 181 (VH-CDR1), SEQ ID NO: 182 (VH-CDR2) and SEQ ID NO: 183 (VH-CDR3), and VL region (SEQ ID NO: 337) comprising the amino acid sequences of SEQ ID NO: 184 (VL-CDR1), SEQ ID NO: 185 (VL-CDR2) and SEQ ID NO: 186 (VL-CDR3);

    • 3) VH region (SEQ ID NO: 338) comprising the amino acid sequences of SEQ ID NO: 187 (VH-CDR1), SEQ ID NO: 188 (VH-CDR2) and SEQ ID NO: 189 (VH-CDR3), and VL region (SEQ ID NO: 339) comprising the amino acid sequences of SEQ ID NO: 190 (VL-CDR1), SEQ ID NO: 191 (VL-CDR2) and SEQ ID NO: 192 (VL-CDR3);

    • 4) VH region (SEQ ID NO: 340) comprising the amino acid sequences of SEQ ID NO: 193 (VH-CDR1), SEQ ID NO: 194 (VH-CDR2) and SEQ ID NO: 195 (VH-CDR3), and VL region (SEQ ID NO: 341) comprising the amino acid sequences of SEQ ID NO: 196 (VL-CDR1), SEQ ID NO: 197 (VL-CDR2) and SEQ ID NO: 198 (VL-CDR3);

    • 5) VH region (SEQ ID NO: 342) comprising the amino acid sequences of SEQ ID NO: 199 (VH-CDR1), SEQ ID NO: 200 (VH-CDR2) and SEQ ID NO: 201 (VH-CDR3), and VL region (SEQ ID NO: 343) comprising the amino acid sequences of SEQ ID NO: 202 (VL-CDR1), SEQ ID NO: 203 (VL-CDR2) and SEQ ID NO: 204 (VL-CDR3);

    • 6) VH region (SEQ ID NO: 344) comprising the amino acid sequences of SEQ ID NO: 199 (VH-CDR1), SEQ ID NO: 205 (VH-CDR2) and SEQ ID NO: 206 (VH-CDR3), and VL region (SEQ ID NO: 345) comprising the amino acid sequences of SEQ ID NO: 202 (VL-CDR1), SEQ ID NO: 203 (VL-CDR2) and SEQ ID NO: 204 (VL-CDR3);





EGFRvIII:





    • 7) VH region (SEQ ID NO: 346) comprising the amino acid sequences of SEQ ID NO: 207 (VH-CDR1), SEQ ID NO: 208 (VH-CDR2) and SEQ ID NO: 209 (VH-CDR3), and VL region (SEQ ID NO: 347) comprising the amino acid sequences of SEQ ID NO: 210 (VL-CDR1), SEQ ID NO: 211 (VL-CDR2) and SEQ ID NO: 212 (VL-CDR3);

    • 8) VH region (SEQ ID NO: 348) comprising the amino acid sequences of SEQ ID NO: 213 (VH-CDR1), SEQ ID NO: 214 (VH-CDR2) and SEQ ID NO: 215 (VH-CDR3), and VL region (SEQ ID NO: 349) comprising the amino acid sequences of SEQ ID NO: 210 (VL-CDR1), SEQ ID NO: 216 (VL-CDR2) and SEQ ID NO: 217 (VL-CDR3);





PD-L1:





    • 9) VH region (SEQ ID NO: 350) comprising the amino acid sequences of SEQ ID NO: 218 (VH-CDR1), SEQ ID NO: 219 (VH-CDR2) and SEQ ID NO: 220 (VH-CDR3), and VL region (SEQ ID NO: 351) comprising the amino acid sequences of SEQ ID NO: 221 (VL-CDR1), SEQ ID NO: 222 (VL-CDR2) and SEQ ID NO: 223 (VL-CDR3);

    • 10) VH region (SEQ ID NO: 352) comprising the amino acid sequences of SEQ ID NO: 224 (VH-CDR1), SEQ ID NO: 225 (VH-CDR2) and SEQ ID NO: 226 (VH-CDR3), and VL region (SEQ ID NO: 353) comprising the amino acid sequences of SEQ ID NO: 227 (VL-CDR1), SEQ ID NO: 228 (VL-CDR2) and SEQ ID NO: 229 (VL-CDR3);

    • 11) VH region (SEQ ID NO: 354) comprising the amino acid sequences of SEQ ID NO: 230 (VH-CDR1), SEQ ID NO: 231 (VH-CDR2) and SEQ ID NO: 232 (VH-CDR3), and VL region (SEQ ID NO: 355) comprising the amino acid sequences of SEQ ID NO: 233 (VL-CDR1), SEQ ID NO: 234 (VL-CDR2) and SEQ ID NO: 235 (VL-CDR3);





HER2:





    • 12) VH region (SEQ ID NO: 356) comprising the amino acid sequences of SEQ ID NO: 21 (VH-CDR1), SEQ ID NO: 22 (VH-CDR2) and SEQ ID NO: 23 (VH-CDR3), and VL region (SEQ ID NO: 357) comprising the amino acid sequences of SEQ ID NO: 24 (VL-CDR1), SEQ ID NO: 25 (VL-CDR2) and SEQ ID NO: 26 (VL-CDR3);

    • 13) VH region (SEQ ID NO: 27) comprising the amino acid sequences of SEQ ID NO: 33 (VH-CDR1), SEQ ID NO: 34 (VH-CDR2) and SEQ ID NO: 35 (VH-CDR3), and VL region (SEQ ID NO: 28) comprising the amino acid sequences of SEQ ID NO: 36 (VL-CDR1), SEQ ID NO: 37 (VL-CDR2) and SEQ ID NO: 38 (VL-CDR3);


      c-Met:

    • 14) VH region (SEQ ID NO: 358) comprising the amino acid sequences of SEQ ID NO: 236 (VH-CDR1), SEQ ID NO: 237 (VH-CDR2) and SEQ ID NO: 238 (VH-CDR3), and VL region (SEQ ID NO: 359) comprising the amino acid sequences of SEQ ID NO: 239 (VL-CDR1), SEQ ID NO: 240 (VL-CDR2) and SEQ ID NO: 241 (VL-CDR3);

    • 15) VH region (SEQ ID NO: 360) comprising the amino acid sequences of SEQ ID NO: 242 (VH-CDR1), SEQ ID NO: 243 (VH-CDR2) and SEQ ID NO: 244 (VH-CDR3), and VL region (SEQ ID NO: 361) comprising the amino acid sequences of SEQ ID NO: 245 (VL-CDR1), SEQ ID NO: 246 (VL-CDR2) and SEQ ID NO: 247 (VL-CDR3);

    • 16) VH region (SEQ ID NO: 362) comprising the amino acid sequences of SEQ ID NO: 248 (VH-CDR1), SEQ ID NO: 249 (VH-CDR2) and SEQ ID NO: 250 (VH-CDR3), and VL region (SEQ ID NO: 363) comprising the amino acid sequences of SEQ ID NO: 251 (VL-CDR1), SEQ ID NO: 252 (VL-CDR2) and SEQ ID NO: 253 (VL-CDR3);





Trop-2:





    • 17) VH region (SEQ ID NO: 364) comprising the amino acid sequences of SEQ ID NO: 254 (VH-CDR1), SEQ ID NO: 255 (VH-CDR2) and SEQ ID NO: 256 (VH-CDR3), and VL region (SEQ ID NO: 365) comprising the amino acid sequences of SEQ ID NO: 257 (VL-CDR1), SEQ ID NO: 258 (VL-CDR2) and SEQ ID NO: 259 (VL-CDR3);

    • 18) VH region (SEQ ID NO: 366) comprising the amino acid sequences of SEQ ID NO: 260 (VH-CDR1), SEQ ID NO: 261 (VH-CDR2) and SEQ ID NO: 262 (VH-CDR3), and VL region (SEQ ID NO: 367) comprising the amino acid sequences of SEQ ID NO: 263 (VL-CDR1), SEQ ID NO: 264 (VL-CDR2) and SEQ ID NO: 265 (VL-CDR3);





DLL3:





    • 19) VH region (SEQ ID NO: 368) comprising the amino acid sequences of SEQ ID NO: 266 (VH-CDR1), SEQ ID NO: 267 (VH-CDR2) and SEQ ID NO: 268 (VH-CDR3), and VL region (SEQ ID NO: 369) comprising the amino acid sequences of SEQ ID NO: 269 (VL-CDR1), SEQ ID NO: 270 (VL-CDR2) and SEQ ID NO: 271 (VL-CDR3);

    • 20) VH region (SEQ ID NO: 370) comprising the amino acid sequences of SEQ ID NO: 272 (VH-CDR1), SEQ ID NO: 273 (VH-CDR2) and SEQ ID NO: 274 (VH-CDR3), and VL region (SEQ ID NO: 371) comprising the amino acid sequences of SEQ ID NO: 275 (VL-CDR1), SEQ ID NO: 276 (VL-CDR2) and SEQ ID NO: 277 (VL-CDR3);





BCMA:





    • 21) VH region (SEQ ID NO: 372) comprising the amino acid sequences of SEQ ID NO: 278 (VH-CDR1), SEQ ID NO: 279 (VH-CDR2) and SEQ ID NO: 280 (VH-CDR3), and VL region (SEQ ID NO: 373) comprising the amino acid sequences of SEQ ID NO: 281 (VL-CDR1), SEQ ID NO: 282 (VL-CDR2) and SEQ ID NO: 283 (VL-CDR3);





LIV-1:





    • 22) VH region (SEQ ID NO: 374) comprising the amino acid sequences of SEQ ID NO: 284 (VH-CDR1), SEQ ID NO: 285 (VH-CDR2) and SEQ ID NO: 286 (VH-CDR3), and VL region (SEQ ID NO: 375) comprising the amino acid sequences of SEQ ID NO: 287 (VL-CDR1), SEQ ID NO: 288 (VL-CDR2) and SEQ ID NO: 289 (VL-CDR3);





GPC-3:





    • 23) VH region (SEQ ID NO: 87) comprising the amino acid sequences of SEQ ID NO: 99 (VH-CDR1), SEQ ID NO: 100 (VH-CDR2) and SEQ ID NO: 101 (VH-CDR3), and VL region (SEQ ID NO: 88) comprising the amino acid sequences of SEQ ID NO: 102 (VL-CDR1), SEQ ID NO: 103 (VL-CDR2) and SEQ ID NO: 104 (VL-CDR3);





FGFR2:





    • 24) VH region (SEQ ID NO: 376) comprising the amino acid sequences of SEQ ID NO: 290 (VH-CDR1), SEQ ID NO: 291 (VH-CDR2) and SEQ ID NO: 292 (VH-CDR3), and VL region (SEQ ID NO: 377) comprising the amino acid sequences of SEQ ID NO: 293 (VL-CDR1), SEQ ID NO: 294 (VL-CDR2) and SEQ ID NO: 295 (VL-CDR3);

    • 25) VH region (SEQ ID NO: 378) comprising the amino acid sequences of SEQ ID NO: 296 (VH-CDR1), SEQ ID NO: 297 (VH-CDR2) and SEQ ID NO: 298 (VH-CDR3), and VL region (SEQ ID NO: 379) comprising the amino acid sequences of SEQ ID NO: 299 (VL-CDR1), SEQ ID NO: 300 (VL-CDR2) and SEQ ID NO: 301 (VL-CDR3);





FGFR3:





    • 26) VH region (SEQ ID NO: 380) comprising the amino acid sequences of SEQ ID NO: 302 (VH-CDR1), SEQ ID NO: 303 (VH-CDR2) and SEQ ID NO: 304 (VH-CDR3), and VL region (SEQ ID NO: 381) comprising the amino acid sequences of SEQ ID NO: 305 (VL-CDR1), SEQ ID NO: 306 (VL-CDR2) and SEQ ID NO: 307 (VL-CDR3);





VEGFR2:





    • 27) VH region (SEQ ID NO: 382) comprising the amino acid sequences of SEQ ID NO: 308 (VH-CDR1), SEQ ID NO: 309 (VH-CDR2) and SEQ ID NO: 310 (VH-CDR3), and VL region (SEQ ID NO: 383) comprising the amino acid sequences of SEQ ID NO: 311 (VL-CDR1), SEQ ID NO: 312 (VL-CDR2) and SEQ ID NO: 313 (VL-CDR3);





CD20:





    • 28) VH region (SEQ ID NO: 384) comprising the amino acid sequences of SEQ ID NO: 314 (VH-CDR1), SEQ ID NO: 315 (VH-CDR2) and SEQ ID NO: 316 (VH-CDR3), and VL region (SEQ ID NO: 385) comprising the amino acid sequences of SEQ ID NO: 317 (VL-CDR1), SEQ ID NO: 318 (VL-CDR2) and SEQ ID NO: 319 (VL-CDR3);

    • 29) VH region (SEQ ID NO: 386) comprising the amino acid sequences of SEQ ID NO: 320 (VH-CDR1), SEQ ID NO: 321 (VH-CDR2) and SEQ ID NO: 322 (VH-CDR3), and VL region (SEQ ID NO: 387) comprising the amino acid sequences of SEQ ID NO: 323 (VL-CDR1), SEQ ID NO: 324 (VL-CDR2) and SEQ ID NO: 325 (VL-CDR3);





CD38:





    • 30) VH region (SEQ ID NO: 388) comprising the amino acid sequences of SEQ ID NO: 326 (VH-CDR1), SEQ ID NO: 327 (VH-CDR2) and SEQ ID NO: 328 (VH-CDR3), and VL region (SEQ ID NO: 389) comprising the amino acid sequences of SEQ ID NO: 329 (VL-CDR1), SEQ ID NO: 330 (VL-CDR2) and SEQ ID NO: 331 (VL-CDR3);





EphA2:





    • 31) VH region (SEQ ID NO: 143) comprising the amino acid sequences of SEQ ID NO: 157 (VH-CDR1), SEQ ID NO: 158 (VH-CDR2) and SEQ ID NO: 159 (VH-CDR3), and VL region (SEQ ID NO: 145) comprising the amino acid sequences of SEQ ID NO: 160 (VL-CDR1), SEQ ID NO: 161 (VL-CDR2) and SEQ ID NO: 162 (VL-CDR3).





Table 2 below shows the nucleotide sequence and the polypeptide sequence of an exemplary signal sequence for efficient expression of the fusion proteins according to various embodiments. When the above antibodies are expressed in mammalian cells, SEQ ID NO: 333 may be used as the signal sequence, but is not limited thereto.











TABLE 2





Name
Sequence
SEQ ID NO







Nucleotide
ATGACACGCCTCACAGTTCTTG
332


sequence
CCTTGCTGGCTGGACTTCTTGC




CTCATCCAGGGCA






Polypeptide
MTRLTVLALLAGLLASSRA
333


sequence









Table 3 below shows the variable region polypeptide sequences of anticancer antibodies, which are described as antigen-binding sites of various fusion proteins described herein. The fusion proteins according to exemplary embodiments may comprise or consist of these variable region polypeptides.













TABLE 3









SEQ


Antigen
Antibody
Variable

ID




Region
Polypeptide sequence of variable region
NO



















EGFR
Cetuximab
VH
QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVI
334





WSGGNTDYNTPFTSRLSINKDNSKSQVFFKMNSLQSNDTAIYYCARALTYY






DYEFAYWGQGTLVTVSA





VL
DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYA
335





SESISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGT






KLELK




Panitumumab
VH
QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGDYYWTWIRQSPGKGLEWIG
336





HIYYSGNTNYNPSLKSRLTISIDTSKTQFSLKLSSVTAADTAIYYCVRDRV






TGAFDIWGQGTMVTVSS





VL
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPkLLIYDA
337





SNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYFCQHFDHLPLAFGGGT






KVEIK




Necitumumab
VH
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGDYYWSWIRQPPGKGLEWIG
338





YIYYSGSTDYNPSLKSRVTMSVDTSKNQFSLKVNSVTAADTAVYYCARVSI






FGVGIFDYWGQGTLVTVSS





VL
EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPELLIYDA
339





SNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCHQYGSTPLIFGGGT






KAEIK




Imgatuzumab
VH
QVQLVQSGAEVKKPGSSVKVSCKASGFTFTDYKIHWVRQAPGQGLEWNGYF
340





NPNSGYSTYAQKFQGRYTITADKSTSTAYMELSSLRSEDTAVYYCARLSPG






GYYVNDAWGQGTTYTYSS





VL
DIQMTQSPSSLSASYGDRYTITCRASQGINNYLNWYQQKPGKAPERLIYNT
341





NNLQTGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSFPTFGQGTK






LEIK




Depatuxizumab
VH
QVQLQESGPGLVKPSQTLSLTCTVSGYSISSDFAWNWIRQPPGKGLEWMGY
342





ISYSGNTRYQPSLKSRITISRDTSKNQFFLKLNSVIAADTATYYCVTAGRG






FPYWGQGTLVTVSS





VL
DIQMTQSPSSMSVSVGDRVTITCHSSQDINSNIGWLQQKTGKSFKGLIYHG
343





INLDDGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCVQYAQFPWTFGGGT






ELEIK




Losatuxiszumab
VH
EVQLQESGPGLVKPSQTLSLTCTYSGYSISRDFAWNWIRQPPGKGLEWMGY
344





ISYNGNTRYQPSLESRITISRDTSKNQFFLELNSVTAADTATYYCVTASRG






FPYWGQGTLVTVSS





VL
DIQMTQSPSSMSVSVGDRVTITCHSSQDINSNIGWLQQKPGKSFKGLIYHG
345





TNLDDGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCVQYAQFPWTFGGGT






KLEIK






EGFRv
Etevritamab
VH
QVQLVESGGGNVQSGRSLRLSCAASGFTFRHYGNHIVRQADGKCLEWYAVI
346


III


WYDGSDKYYADSYRGRFTISRDNSENTLYLQMNSLRAEDTAVYYCARDGYD






ILTGNPRDEDYWGQGILVTVSS





VL
DTVMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQPPRL
347





LIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCMQSTHVPRT






FGCGTKVEIK




ANG-505
VH
QVQLVESGGGVVQFGRSLRLSCAASGFTFSSYGMHNVRQAPGEGLEWVAVI
348





WYDGSNEYYVDSVEGRFTISNQNSKNTLYLQMNSLRAEDTAVYYCARDGWQ






QLAPFDYWGQGTLVTVSS





VL
DIVMTQTTLSSPVTLGQPASISCRSSQSLVHSDGNTYLSWLHQRFGQPPRL
349





LIYKISNRFSGVPDRFSGSGAGTAFTLEISKVEAEDVGVYYCMQATQLPRI






FGQGIKVEIK






PD-L1
Atezolizumab
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHNVRQANGKGLEWYAWI
350





SPYGGSTYYADSVEGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRHWP






GGFDYWGQGILVIVSS





VL
DIQMTQSPSSLSASNGDKVTITCRASQDVSTAVAWYQQEFGKAPKLLIYSA
351





SFLYSGVTSRESGSGSGIDFTLTISSLQPEDFATYYQQQYLYHPATFGQGT






EVEIK




Avelumab
VH
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYIMMWVRQAPGKGLEWVSSI
352





YTSGGITFYADTVKGRFTISKDNSKNTLYLQNNSLRAEDTAVYYCARIKLG






TVTTVDYWGQGTLVTVSS





VL
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPELMIY
353





DVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRVFG






TGTKYTYL




Durvalumab
VH
EVQLVESGGGLYQDGGSLRLSCAASGFTFSRYWMSNVRQAPGKGLEWVANT
354





KQDGSEKYYVDSVEGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREGGW






FGELAFDYWGQGILYTVSS





VL
EIVLTQSPGTLSLSPGERATLSCRASQRYSSSYLAWYQQKPGQAPRLLTYD
355





ASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSLFWTFGQG






TKVEIK






HER2
Trastuzumab
VH
EVQLVESGGGLVQNGGSLRISCAASGFNIKDTYIHWVRQAPGKGLENVARI
356





YTTNGYTEYADSVEGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGD






GFYAMDYWGQGTLVTVSS





VL
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPELLIYSA
357





SFLYSGVPSRFSGSRSGIDFTLTISSLQPEDFATYYCQCHYTITPTFGQGT






KVEIK




Pertuzumab
VH
EVQLVESGGGLVQPGGSLRLSCAASGFIFTDYINDNVRQAFGKGLEWVADY
27





NPNSGGSIYNQRFKGRFILSVDRSKNILYLQINSLRAEDTAVYYCARNEGP






SFYFDYWGQGTLVTVSS





VL
DIQMTQSPSSLSASVGDRVTITCKASQDVSIGVAWYQQKPGRAPKLLIYSA
28





SYRYTGVPSRFSGSGSGIDFILTISSLQPEDFATYYCQQYYTYPYTFGQGT






KVEIR






c-Net
Onartuzumab
VH
EVQLVESGGGLVQPGGSLELSCAASGYTFTSYWLHWVRQAPGKGLETVGNI
358





DFSNSDTRFNPNFKDRFTISADTSKNTAYLQMNSLRAEDTAVYYCATYRSY






VIPLDYWGQGTLVTVSS





VL
DIQMTQSPSSLSASVGDRYTITCKSSQSLLYTSSQKNYLAWYQQKPGKAPK
359





LLIYWASTRESGVFSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYAYPW






TFGQGTKVEIK




Emibetuzumab
VH
QVQLVQSGAEVEKPGASVKVSCKASGYTFTDYYMHWVRQAPGQGLEWMGRV
360





NPNRRGTTYNQKFEGRVTMTTDTSTAYMELRSLRSDDTAVYYCARANWL






DYWGQGTTVTVSS





VL
DIQMTQSPSSLSASVGDRYTITCSVSSSVSSTYLHTYQQKPGKAPELLIYS
361





TSNLASGVPSRFSGSGSGTDFILTISSLQPEDFATYYCQVYSGYPLTFGGG






TEVEIK




Telisotuzumab
VH
QVQLVQSGAEVEKPGASVKYSCKASGYIFTAYIMHWVRQAFGQGLEWMGWI
362





KPNNGLANYAQKFQGRYTMIRDTSISTAYMELSRLRSDDTAVYYCARSEIT






TEFDYWGQGILVTVSS





VL
DIVWTQSPDSLAVSLGERATINCKSSESVDSYANSRLHWYQQKPGQPPKLL
363





IYRASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSKEDPLTF






GGGTKVEIK






TROP-2
Datopotamab
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFITAGMQWVRQAPGQGLEWMGWI
364





NTHSGVPKYAEDFKGRVTISADTSTSTAYLQLSSLKSEDTAVYYCARSGFG






SSYWYFDVWGQGTLVTVSS





VL
DIQMTQSPSSLSASVGDRVTITCKASQDVSTAVAWYQQKPGKAPKLLIYSA
365





SYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFAVYYCQQHYITPLTFGQGT






KLEIK




Sactext missing or illegible when filed tuzumab
VH
QVQLQQSGSELKKPGASVKVSCKASGYTFTNYGMNWVKQAPGQGLKWMGWI
366





NTYTGEPTYTDDFKGRFAFSLDTSVSTAYLQISSLKADDTAVYFCARGGFG 






SSYWYFDVWGQGSLVTVSS






DIQLTQSPSSLSASVGDRVSITCKASQDVSIAVAWYQQKPGKAPKLLIYSA
367





SYRYTGVPDRFSGSGTDFTLTISSLQPEDFAVYYCQQHYITPLTFGAGTKV






EIK






DLL3
Rovalpituzumab
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQAPGQGLEWMGWI
368





NTYTGEPTYADDFKGRVTMTIDTSTSTAYMELRSLRSDDTAVYYCARIGDS






SPSDYWGQGTLVTVSS





VL
EIVMTQSPATLSVSPGERAILSCKASQSVSNDVVWYQQRIGQAPRLLIYYA
369





SNRYTGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQDYTSPWTFGQGT






KLEIK




Tartext missing or illegible when filed atamab
VH
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKCLEWIGYV
370





YYSGTTNYNPSLKSRVTISVDISKNQFSLKLSSVIAADTAVYYCASIAVTG






FYFDYWGQGILVTVSS






EIVLTQSPGTLSLSPGERVILSCRASQRVNNNYLAWYQQRPGQAPRLLIYG
371





ASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSELTFGCG






TKLEIK






BCMA
Belantamab
VH
QVQLVQSGAEVEKPGSSVKVSCKASGGTFSVYWMHWYRQAPGQGLETMGAT
372





YRGHSDTYYNQKFKGRVTITADESTSTAYMELSSLRSEDTAVYYCARGAIY






DGYDVLDNWGQGTLVTVSS






DIQMTQSPSSLSASVGDRVTITCSASQDISNYLNWYQQRPGKAPELLIYYT
373





SNLHSGVPSRFSGSGSGIDFTLTISSLQPEDFATYYCQQYRKLFTIFGQGI






KLEIK






LIV-1
Ladiratuzumab
VH
QVQLVQSGAEVEKTGASVEYSCKASGLTIEDYYMHWVRQAPGQGLETMGWI
374





DRENGDTEYGPKFQGRVTMTRQTSINTAYMELSRLESDDTAVYYCAVHNAH






YGTWFAYWGQGTLVTVSS






DVVMTQSPLSLPVTLGQPASISCRSSQSLLHSSGNTYLEWYQQRPGQSPRP
375





LIYKISTRFSGVPDRFSGSGSGTDFILKISRVEAEDVGVYYCFQGSHYPYT






FGGGTKVEIK






GPC-3
Codrituzumab
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPGQGLEWMGAL
87





DPKTGDTAYSQKFKGRVTLTADKSTSTAYMELSSLTSEDTAVYYCTRFYSY






TYWGQGTLVTVSS





VL
DVVMTQSPLSLPVTPGEPASISCRSSQSLVHSNRNTYLHWYLQKPGQSPQL
88





LIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQNTHYPPT






FGQGTELEIK






FGFR2
Aprutumab
VH
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAI
376





SGSGTSTYYADSVKGRATISRDNSKNTLYLQMNSLRAEDTAVYYCARVRYN






WNHGDWFDPWGQGTLVTVSS





11
QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNYVSWYQQLPGTAPELLIYE
377





NYNRPAGVPDRFSGSKSGTSASLAISGLRSEDEADYYCSSWDDSLNYWVFG






GGTKLTVL




Bemaritusumab
VH
QVQLVQSGAEVKKPGSSVKVSCKASGYIFTTYNVHWVRQAPGQGLEWIGSI
378





YPDNGDTSYNQNFKGRATITADKSTSTAYMELSSLRSEDTAVYYCARGDFA






YWGQGTLVTVSS






DIQMTQSPSSLSASVGDRVTITCKASQGYSNDVAWYQQKPGKAPKLLIYSA
379





SYRYTGVPSRFSGSGSGIDFIFTISSLQPEDIATYYCQQHSTIPYTFGQGT






KLEIK






FGER3
Vofatamab
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFTSTGISWVRQAPGKGLEWYGRI
380





YPTSGSTNYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARTYGI






YDLYVDYTEYVMDYWGQGTLVTVSS






DIQMTQSPSSLSASVGDRYTITCRASQDVDTSLAWYKQKPGKAPELLIYSA
381





SFLYSGVPSRFSGSGSGIDFILTISSLQPEDFATYYCQQSTGHPQTFGQGT 






KVEIK



VEGFR 2
Ramucirumab
VH
EVQLVQSGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSI
382





SSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARVTDA






FDIWGQGTMVTVSS





VL
DIQMTQSPSSVSASIGDRVTITCRASQGIDNWLGWYQQKPGKAPKLLIYDA
383





SNLDTGVPSRFSGSGSGTYFTLTISSLQAEDFAVYFCQQAKAFPPTFGGGT






KVDIK






CD20
Rituximab
VH
QVQLQQPGAELVKPGASVKMSCKASGYTFTSYNMHWVKQTPGRGLEWIGAI
384





YPGNGDTSYNQKFKGKATLTADKSSSTAYMQLSSLTSEDSAVYYCARSTYY






GGDWYFNVWGAGTTVTVSA





VL
QIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWFQQKPGSSPKPWIYATS
385





NLASGVPVRFSGSGSGTSYSLTISRVEAEDAATYYCQQWTSNPPTFGGGTK






LEIK




Obinutuzumab
VH
QVQLVQSGAEVKKPGSSVKVSCKASGYAFSYSWINWYRQAPGQGLEWNGRI
386





FPGDGDTDYNGKFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCARNVFD






GYWLVYWGQGTLVTVSS





VL
DIVMTQTPLSLPVIPGETASISCRSSKSLLHSNGITYLYWYLQKPGQSPQL
387





LIYQMSNLVSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCAQNLELPYT






FGGGIKVEIK






CDSS
Daratimumab
VH
EVQLLESGGGLVQPGGSLRLSCAVSGFTFNSFAMSWVRQAPGKGLEWVSAI
388





SGSGGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYFCAKDKIL






WFGEPVFDYWGQGTLVTVSS





VL
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDA
389





SNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGT






KVEIK






Eph42
1C1
VH
EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKGLEWVSRI
143





GPSGGPTHYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSG






YDYVAVAGPAEYFQHWGQGTLVTVSS





VL
DIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPGKAPKLLTYKA
145





SNLHTGVPSRFSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGQGT






KVEIK






text missing or illegible when filed indicates data missing or illegible when filed







Table 4 below shows the nucleotide sequences encoding variable regions of anticancer antibodies, which are described as antigen-binding sites of various fusion proteins described herein.













TABLE 4









SEQ




Variable

ID


Antigen
Antibody
Region
Nucleotide sequence of variable region
NO







EGFR
Cetuximab
VH
CAAGTGCAGCTTAAACAGAGTGGACCAGGGCTCGTTCAGCCTTCTCAAAGTTTG
390





AGCATAACATGTACCGTAAGTGGTTTTTCACTGACTAACTACGGAGTGCATTGG






GTTCGACAGTCCCCTGGAAAGGGTCTCGAATGGCTTGGAGTTATTTGGAGTGGC






GGTAACACTGACTACAACACACCATTCACCTCTCGGCTGTCTATAAACAAGGAT






AACTCTAAGTCACAGGTCTTTTTCAAGATGAACAGCCTCCAAAGTAACGACACC






GCCATCTATTACTGTGCAAGAGCCTTGACCTACTACGATTACGAGTTTGCCTAT






TGGGGTCAGGGAACTCAAAGTCAGTGCT





VL
GACATCCTTCTCACTCAGTCCCCCGTAATTCTGAGCGTGTCTCCCGGCGAGCGC
301





GTCAGTTTCTCATGCAGGGCTAGCCAGAGTATAGGTACTAACATTCATTGCTAT






CAACAGCGAACCAACGGCTCACCCCGCTTGCTTATCAAATATGCCTCTGAGAGT






ATCTCTGGCATTCCATCCCGTTTTAGCGGTAGTGGTTCAGGAACAGATTTCACT






CTTTCAATTAACTCTGTAGAATCAGAAGACATAGCCGATTATTATTGTCAGCAA






AACAACAATTGGCCTACTACATTTGGAGCTGCTACAAAACTGGAACTCAAG




Panitumumab
VH
CAGGTACAACTGCAAGAGAGCGGACCTGGGTTGGTAAAGCCAAGTGAGACCCTG
392





TCACTTACTTGCACACTATCAGGAGGAAGTGTCTCAAGTGGCGATTACTATTGG






ACTTCGATTCGACAAAGCCCCGGAAAAGGATTGGAATGGATCCGCCACATATAT






TATTCAGGAAATACCAACTATAATCCCAGTCTTAAATCTCGGCTTACCATTAGC






ATTGACACTTCCAAAACCCAATTTTCACTTAAACTGAGTTCTGTGACTGCTGCC






GACACTCCTATATACTACTGCGTCCGCGACCGGGTCACTGGGGCTTTTGATATA






TGGGGACAAGGAACTATGGTTACTGTATCATCT






GATATTCAAATGACCCAATCTCCTTCATCACTCTCAGCATCAGTCGCGGATAGA
393





GTGACAATAACTTGCCAAGCAAGCCAGGATATATCTAATTATCTCAACTCGTAT






CAACAAAAGCCAGGTAAAGCTCCAAAGTTGTTGACTTACGATGCCTCTAATCTC






GAGACCGGCGTACCAAGTAGGTTCAGTGGTTCAGGAAGTGGGACTGATTTCACT






TTTACCATTTCTTCTCTCCAGCCCGAAGACATACCAACTTATTTCTGTCAACAC






TTCGATCATCTTCCTACAAAGTTGAAATCAAG




Necitumumab
VH
CAGGTACAACTCCAGGAATCCGGTCCTGGTCTCGTAAAGCCATGCCAAACATTG
394





AGTTTGACCTGCACAGTCACTGGTGGCAGTATTTCCTCAGCCGATTATTACTGG






AGTTGGATACGCCAGCCACCCGGTAAGGGATTGGAATGGATCGGTTATATATAC






TACTCTGGATCTACAGACTATAATCCTTCCCTGAAGTCCAGGGTTACCATGAGT






GTTGACACATCCAAAAACCAGTTCTCCTTGAAGGTCAACTCTGTGACCGCTGCC






GATACTGCCCTTTATTATTGTGCACCTGTATCTATCTTCGGAGTAGGCACCTTT






GACTATTGGGTCAAGGCACCCTGGTCACCGTGTCATCT






GAGATACTAATGACACAGTCACCTCCTACCCTTTCCCTCAGCCCTCGCGAACGC
395





GCCACCTTGTCTTGCAGGGCTAGCCAAAGTGTATCCTCTTATTTGGCATGGTAT






CAGCAGAAACCAGGGCAAGCCCCACGGCTCCTGATTTATGATGCCTCCAATCGA






GCCACCGGGATTCCTCCCCGATTGAGCGGATCAGGCAGTCGGACTGATTTTACA






TTGACCATTAGCTCTCTGGAGCCTGAGGACTTTGCCGTGTATTATTGTCATCAA






TATGGGAGTACTCCCCTCACATTTGGCGGCGGGACAAAAGCAGAAATTAAA




Imgatuzumab
VH
CAAGTACAGTTCGTACAAAGTGGGGCCGAGGTCAAGAAACCTGGTTCTAGCGTA
396





AAGGTTAGCTGCAAGGCAAGCGGCTTCACCTTCACCGATTACAAAATTCATTGG






GTCCCTCAAGCCCCCCGTCACGGCCTTGAATCGATGCGTTATTTCAACCCCAAC






TCTGGTTATTCTACCTATGCACAGAAGTTCCAGGGCCGCCTCACTATAACTGCA






GACAAGTCCACAAGTACAGCCTATATCGAACTGTCCAGTTTGCGTAGCGAGGAT






ACTGCCGTATATTACTGTGCTAGACTCTCACCCGGCGGATATTACGTTATGGAT






GCATGGGGCCAGGGCACCACCGTGACCGTGAGCAGC





VL
GACATCCAAATGACACAGTCTCCTTCCTCACTCTCCGCTTCTGTAGGAGATAGA
397





GTGACAATAACATGCCGTGCTTCACAAGGTATCAATAACTACCTCAATTGGTAT






CAACAGAAACCTGGTAAAGCTCCAAAGCGCCTTATCTATAATACCAACAATCTC






CAGACTGGTGTTCCAAGTAGGTTCTCCGGGAGCGGTAGTGCGACTGAGTTTACA






TTGACAATTTCATCATTGCAACCCGAAGATTTTGCCACCTACTATTGCTTGCAG






CATAATAGTTTTCCCACTTTCGGTCAGGGAACTAAGCTCGAAATAAKA




Depatuxizumab
VH
CAGGTACAACTCCAAGAATCTGGACCTGGGCTGGTAAAACCATCTCAGACCTTG
398





AGTCTCACTTGCACTGTGTCCCGTTACTCTATATCTAGCGATTTTtext missing or illegible when filed CATGGAAT






TGGATTCGCCAGCCACCCGGTAAGGGACTGGAGTGGATGGGTTACATTTCATAC






AGTGGAAACACACGTTACCAACCCAGTCTCAAGAGCCGGATAACCATTAGTAGC






GACACAAGCAAAAACCAATTTTTCCTCAAACTGAATTCAGTGACTCCTGCCGAC






ACAGCCACTTACTATTGTGTCACAGCCGGTCGGGGGTTCCCTTACTGGGGACAG






GGTACTCTCCTTACTGTAAGTTCT






GACATACAAATGACTCAATCACCTAGCTCCATGTCTGTTTCCGTTGGCGACCGC
399





GTAACCATCACCTGTCATTCCTCACAGGATATAAATTCCAATATTGGGTGGCTT






CAGCAGAAACCAGGTAAATCATTCAAGGCCCTTATTTATCACCGGACCAACCTT






GATGACGGTGTCCCCTCTCGCTTTAGCGGTTCTGGATCAGGTACAGATTATACC






CTGACCATCTCTTCTCTCCAGCCCGAGGATTTCGCTACTTACTACTGTGTGCAA






TACGCACAGTTCCCCTGGGACATTCGGCGGTGGAACTAAACTGGAGATAAAG




Losatuxizumab
VH
GAAGTTCAGTTGCAAGAAAGTGGCCCCGGACTTGTTAAACCATCCCAGACCTTG
400





AGCCTGACTTGCACCGTTTCTGCCTATTCTATTTCCCGCGACTTCGCATCGAAC






TGGATACGCCAACCTCCCGGCAAGGGCTTGGAGTGGATGGGGTATATCTCCTAT






AACGGCAATACACGCTATCAACCTAGTTTGAAGAGCCGCATAACCATCAGTAGA






GACACAAGTAAAAACCAATTCTTCTTGAAACTGAATAGTGTGACCGCTGCAGAC






ACTGCAACCTATTACTGCGTCACAGCCAGTCGGGGGTTTCCATATTGCGGTCAA






CGTACACTTGTAACCGTGTCTTCA





VL
GATATACAAATGACCCACTCCCCTTCCTCCATGTCTGTCAGCGTCGCTGATAGG
401





GTTACCATAACTTGTCATAGCAGCCAAGACATAAACAGCAATATAGGTTCGCTG






CAACAAAAGCCCCGTAAATCTTTCAAGGGGTTGATTTACCACGGAACTAACETC






GATGATGGTGTGCCCAGTCGCTTTTCAGGTAGTGGGTCTGGAACAGACTACACC






CTGACAATCTCCAGTTTGCAACCAGAAGACTTTGCTACTTATTATTGTGTACAG






TACCCTCAATTTCCTTGGACTTTCGGGGGAGGAACCAAACTTGAGATCAAG






EGFR
Etevritamab
VH
CAAGTCCAACTCGTGGAGTCTGGAGGCGGTGTGGTCCAAAGCGGGAGATCCTTG
402


VIII


CGGCTGTCTTGCGCAGCATCAGGGTTTACATTTAGGAACTACGGCATGCAGTGG






GTTAGACAGGCACCCGGTAAGTGTCTTGAATGGGTAGCAGTAATCTGGTATGAT






GACAACTCAAAGAACACTTTGTACCTCCAAATGAACTCTCTGAGGGCCGAGGAT






ACAGCTGTATATTACTCTGCTAGGGATGGCTATGACATACTCACCCGCAACCCA






CGGGATTTCCATTACTGGGGGCAAGGGACATTGGTAACAGTTTCATCT





VL
GATACAGTAATGACCCAGACTCCTCTGAGTAGTCATCTTACACTCGGCCAGCCT
403





GCCTCTATCTCCTGTCGTTCAAGTCAGAGTCTGGTGCACTCAGACGGAAACACC






TACCTTTCATGGTTGCAACAGCGTGGTGGTCAACCTCCTCGATTGTTGATATAC






AGAATTAGTCGGCGTTTTTCTGGCGTCCCAGATCGCTTCTCCGGCTCAGGTGCC






GGAACAGACTTCACCCTTGAGATCAGTCGAGTGGAGGCTGAGGATGTGGGCGTA






TATTACTGTATGCAAAGCACTCACGTGCCAAGGACATTCGGGTGTGGAACCAAG






GTAGAGATCAAA




AMG-595
VH
CAGGTGCAGTTGGTTGAGAGCGGCGGAGGTGTGGTACAGCCTGGAAGGAGTCTG
404





CGACTCTCATGTGCCGCCTCCGGTTTTACATTTTCTTCCTACGGCATGCATTGG






GTTCGACAAGCACCAGGCAAGGGATTGGAATGGGTCGCAGTAATTTCGTACGAC






GGGTCAAATAAATACTATGTTGACAGCGTGAAAGGGCGATTCACTATCAGTCGT






GACAATAGTAAAAACACTTTGTATCTGCAAATGAATAGTCTGAGGGCAGAGGAC






ACAGCAGTCTATTACTGTGCTCGTGATGGTTGGCAACAGCTTGCCCCTTTTGAC






TATTGGGGACAAGGAACTTTGGTAACAGTAAGCAGC





VL
GACATTGTTATGACACAAACACCTTTGTCCTCACCCGTAACACTGGGCCAACCT
405





GCCTCCATATCCTGCCGAAGCAGTCAATCACTTGTCCACTCTGATGCGAATACC 






TACTTGTCATGGCTGCATCAGCGACCAGGTCAGCCTCCAAGGCTTCTCATATAT






AAAATATCCAATCGTTTTTCAGGTGTTCCCGACCGTTTCTCCGGCTCAGGGGCC






GGAACCGCCTTCACTCTCAAAATATCCAGAGTGGAGGCTGAAGACGTAGGTGTA






TATTATTGTATGCAAGCCACCCAGTTGCCACGCACCTTTGGGCAAGGGACTAAA






GTAGAAATAAAG



PD-L1
Atezolizumab
VH
GAAGTTCAACTGGTGGAGTCTGGAGGGGGTCTCGTCCAGCCCGGCGGGAGCTTG
406





AGACTGTCTTGTGCTGCATCOGGOTTTACCTTTAGCGATTOCTGGATACACTGG






GTAAGACAAGCACCTGGTAAAGGGTTGGAATGGGTGGCATGOATTTOCCCATAC






GGGGGATCAACCTATTATGCTGATAGCGTGAAGGGCCGGTTTACTATTTCAGCC






GACACAAGCAAGAACACCGCCTACCTCCAAATGAATTCTCTGAGGGCCGAGGAC






ACAGCAGTCTATTACTGTGCTAGGAGGCATTGGCCCGGCGGATTCGACTACTGG






GGGCAGGGCACTCTGGTCACAGTAAGCTCA





VL
GACATCCAAATGACACAGTCTCCAAGCTCTCTCTCCGCAAGCGTGGGCGATCGG
407





GTCACAATAACATGCCGCGCCTCACAAGACGTGTCTACAGCCGTTGCTTGGTAT






CAGCAAAAGCCCGGAAAAGCTCCCAAACTGCTCATTTATTCAGCCAGCTTTCTC






TACAGCGGGGTGCCAAGCCGGTTCAGTGGGAGCGGAAGTGGCACCCACTTTACT






CTTACCATCTCCTCTCTGCAACCCGAAGACTTCGCCACCTATTACTGCCAGCAA






TACCTGTATCATCCAGCTACTTTCGGGCAAGGGACCAAGGTTGAAATCAAA




Avelumab
VH
GAGGTTCAGCTTCTGGAGTCAGGAGGTGGTCTTGTTCAACCCGGAGGGTCTCTC
408





CGTTTGTCCTGCGCCGCAAGTGGGTTCACATTTTCCAGTTATATCATGATGTGG






GTGAGGCAAGCCCCTGGGAAAGGATTGGAGTGGGTCTCATCTATTTATCCATCT






GGAGGTATTACATTCTATGCCGACACAGTTAAGGGCAGGTTTACTATAAGCCGC






GATAATTCCAAAAACACCCTGTACCTGCAAATGAATTCACTGCGAGCCGAGGAC






ACTGCTGTCTACTATTGCGCCAGAATCAAACTGGGGACAGTAACAACTGTAGAC






TATTGGGGGCAGGGGACTTTGGTCACTGTATCATCA





VL
CAGTCAGCTCTGACACAGCCCGCATCTGTCTCTGGGAGTCCCGGACAGTCAATA
409





ACTATATCATGCACAGGGACCTCCTCTGATGTTGGGGGATACAATTACGTGTCC






TGGTATCACCAGCACCCOOGCAAGGOCCCCAAACTCATGATATACGACGTTTCA






AATCGTCCTTCAGGCGTGTCTAACAGATTTTCCGGTTCTAAATCAGGCAATACC






GCTTCCTTGACTATCTCAGGACTTCAAGCAGAGGATGAAGCAGACTATTACTGC






TCAAGCTATACCTCCAGTTCTACTAGAGTGTTCGGTACAGGAACTAAGGTAACA






GTGCTG




Durvalumab
VH
GAGGTTCAGCTOGTOGAGAGTGGGGGGGGACTTGTTCAGCCAGGCGGTTCATTG
410





CGGTTGTCTTGTGCCGCCTCAGGATTTACATTCTCAAGATACTGGATGAGCTGG






GTGAGGCAAGCACCCGGTAAAGGTCTCGAGTGGGTAGCTAATATCAAACAAGAT






GGGAGCGAGAAGTATTATGTTGACAGCGTGAAGGGTCGCTTTACCATATCAAGG






GATAACGCTAAGAACTCCCTTTATCTTCAGATGAATAGTCTCCGCGCTGAGGAC






ACCGCAGTATATTACTGTGCTAGGGAAGGAGGGTGGTTTGGGGAATTGGCATTC






GATGGACTGGGGTCAGGGTACTCTCGTTACAGTCAGTTCC





VL
GAAATCGTTTTGACACAGAGCCCTGGGACACTGTCCTTGAGCCCAGGAGAACGC
411





GCAACCCTCTCCTGCCGTGCAAGTCAGCGTGTTTCCTCATCTTAGGTTGCTTGG






TATCAACAAAAGCCAGGGCAGGCTCCTAGACTGCTTATCTATGACGCTTCTAGC






AGAGCTACTGGGATACCAGATAGGTTTTCCGGGTCTGGTTCAGGCACAGACTTC






ACCCTCACCATATCTCGACTCGAACCTGAGGATTTTGCAGTGTACTATTGTCAA



HER2
Trastuzumab
VH
GAAGTGCAGCTGGTCGAAAGTGGCGGTGGACTTGTGCAACCTGGCGGTAGCCTC
412





CGTCTCAGCTGCGCTGCAAGTGGGTTCAACATCAAGGACACTTATATTCATTGG






GTCCGACAGCCACCTGGGAAAGGTTTGGAGTGGGTCGCACGGATCTATCCCACT






AATGGTTACACAAGATATGCCGATTCAGTAAAAGGCCGGTTTACAATCAGCGCA






GATACTTCAAAAAACACTGCCTATCTTCAAATGAACTCACTTCGAGCAGAAGAC






ACAGCCGTCTATTATTGTAGTCGTTGGGGAGGCGACGGCTTTTATGCTATGGAC






TACTGGGGACAAGGAACTCTGGTCACAGTTTCATCA





VL
GATATTCAGATGACTCAGAGTCCTAGTTCCCTCAGCGCCTCCGTAGGCGACAGA
413





GTTACAATAACTTGCCGAGCAAGCCAAGACGTAAACACTGCAGTCGCCTGGTAC






CAACAGAAACCAGGCAAAGCTCCAAAACTCTTGATTTACAGTGCTTCCTTCCTT






TATAGTGGCGTTCCAAGCCGCTTCAGCGGCAGCCGCTCTGGCACCGACTTCACT






CTCACTATTTCTTCCTTGCAACCTGAAGACTTCGCCACTTATTATTGCCAGCAA






CACTACACAACACCCCCAACATTCGGACAGGGCACAAAGGTAGAAATAAAA




Pertazumab
VH
GAAGTGCAACTGGTGGAGTCTGGTGGTGGATTGGTGCAGCCAGGCGGTTCTCTG
414





CGACTTAGTTGTGCAGCCTCCGGCTTTACCTTCACTGATTATACAATGGACTGG






GTTCGGCAGGCACCCGGTAAGGGGCTTGAGTCGCTCCCCGACGTCAATCCTAAT






TCAGGGGGAAGTATTTATAACCAAGGCTTCAAGGGTCGATTTACATTGTCCGTA






GATCGTAGTAMAAATACCCTCTACCTTCAAATGAACTCCCTGAGGGCAGACGAT






ACCGCAGTCTACTACTGCGCTCGTAACCTGGGGCCTAGTTTTTATTTCGATTAT






TGGGGCCAAGGCACATTGGTAACTGTGTCTTCA





VL
GATATACAAATGACACAATCTCCTAGTTCATTGAGTGCCTCAGTCGGCGACCGA
415





GTCACTATAACTTGTAAAGCAAGCCAAGATGTTAGCATTGGCGTAGCTTGGTAT






CAGCAGAAACCTGGAAAAGCACCAAAAGTGCTTATCTACTCCGCTAGTTACCGT






TACACCGGAGTTCCCTCAAGGTTTTCTGGCAGCGGAAGTGGGACTGACTTCACT






CTGACTATTTCTTCACTTCAGCCAGAAGACTTCGCTACTTATTACTGTCAGCAG






TACTATATCTATCCCTATACATTTGGACAAGGAACCAAAGTTGAGATTAAA






c-Met
Onartuzumab
VH
GAAGTGCAACTGGTAGAATCTGGAGGGGGTCTTGTTCAACCTGGGGGCAGTCTC
416





AGGCTGTCATGTCCAGCAAGTGGATATACATTTACTTCCTATTGGCTCCATTGG






GTACGACAAGCACCTGGGAAAGGGCTGGAATGGGTTGGTATGATCGACCCATCA






AACTCTGACACCCGCTTTAATCCAAATTTTAAAGACCGCTTTACAATATCCGCA






GATACAAGTAAGAACACCGCATATCTCCAGATGAACAGCCTGCGTGCAGAGGAT






ACCGCAGTGTACTACTGTGCAACCTACCGGTCCTATGTAACCCCTCTCGACTAT






TGGGGTCAAGGCACACTTGTCACCGTGAGTAGC





VL
GACAATACAAATGACCCAATCACCAAGTTCCCTTTCTGCTTCAGTCGGTGATCG
417





GTGACAATAACATGCAAATCATCTCAAAGTCTCTTGTACACAAGCAGCCAAAAA






AATTATCTTGCTTGGTACCAGCAGAAGCCAGGGAAAGCACCAAAACTGCTGATC






TACTGGGCTTCAACAAGAGAATCCGGGGTGCCCAGCCGCTTTTCCGGTTCGGGC






AGTGGAACTGATTTCACCCTCACTATTTCCTCATTGCAACCCGAGGACTTCGCA






ACCTATTACTGTCAACAGTATTACGCCTACCCTTGGACATTTGGACAAGGAACT






AAGGTTGAAATTAAA




Emibetuzumab
VH
CAAGTACAGCTCGTCCAATCCGGCGCTGAAGTCAAGAAGCCCGGAGCTTCCGTT
418





AAAGTTTCCTCCAAAGCCAGCGGCTACACTTTCACTGATTACTATATGCACTGG






GTTAGACAAGCACCCGGGCAGGGTCTCGAATGGATGGGTAGGGTTAATCCAAAT






CGCAGGGGAACTACTTACAACCAGAAATTTGAGGGGAGGGTTACCATGACTACC






GATACCAGCACATCTACTGCATATATGGAGCTGCGTTCTCTGAGGAGTGATGAT






ACAGCAGTGTACTATTGTGCCCGCGCTAACTGGTTGGACTACTGGGGGCAAGGT






ACAACTGTCACAGTATCTAGC





VL
GACATTCAAATGACACAAAAGTCCATCCTCTCTCAGTGCTTCAGTGGGGACCGA
419





GTAACCATAACATCCAGTGTCTCAAGTAGCGTGAGTAGCATCTACCTCCATTGG






TATCAGCAGAAACCTGGCAAGGCACCCAAACTCCTCATTTATTCCACAAGTAAT






CTTGCTTCCGGCGTACCTTCTACGTTTAGCGGGTCCGGCTCTGGCACCGATTTC






ACCCTCACTATTAGCTCCTTGCAACCTGAGGACTTTGCTACTTACTATTGTCAG






GTTTATTCCGGTTACCCCCTCACATTCGGTGGAGGAACCAAGGTAGAGATTAAG




Telisotuzumab
VH
CAGGTCCAGTTGGTACAGTCAGGGGCAGAAGTTAAGAAACCAGGCGCTTCTGTA
420





AAGGTTAGTTGCAAGGCAAGCGGGTATATATTCACAGCCTATACCATGCATTGG






GTGCGTCAAGCTCCTGGGCAAGGATTGGAGTGGATGGGCTGGATCAAGCCCAAC






AATGGTCTGGCCAACTACGCACAGAAGTTCCAAGGTCGTGTAACCATGACCAGG






GACACTTCAATAAGCACCGCCTACATGGAATTGAGCAGACTTCGATCAGATGAT






ACAGCAGTTTACTATTGCGCTAGGAGTGAAATTACCACAGAGTTTGATTACTGG






GGCCAAGGAACTCTGGTGACTGTTTCCAGT





VL
GATATCGTTATGACACAGTCCCCCGACAGCCTGGCTGTCAGTCTCGGGGAGAGA
421





GCAACTATAAACTGTAAAAGCAGTGAATCCGTCGATTCATACGCAAACAGTTTT






CTGCATTGGTATCAGCAAAAACCCGGCCAGCCACCCAAACTGCTCATATATCGG






GCTAGTACACGTGAGTCAGGCGTACCAGACCGCTTTAGCGGATCAGGAAGTGGG






ACAGACTTTACCTTGACCATTAGCTCACTTCAGGCTGAGGACGTTGCAGTTTAC






TACTGCCAACAAACTAAGGANGACCCACTCACATTCGGCGGAGGAACTAAGGTC






GAGATTAAG






TROP-2
Datopotamab
VH
CAGGTGCAGTTGGTCCAGTCCGGTGCAGAGGTAAAGATACCAGGCGCTTCCGTT
422





AAAGTATCCTGTAAAGCTAGCGGTTATACTTTCACTACTGCCGGAATGCAGTGG






GTGCGACAGGCTCCTGGTCAGGGTCTCGAATGGATGGGATGGATCAATAGTCAC






TCAGGAGTGCCAAAGTATGCTGAAGATTTCAAGGGGCGTGTTACTATCTCCGCT






GACACTCCACATCTACTGCTTATCTTCAGCTCTCTAGCCTGAAGTCAGAAGAT





VL
GATATACAGATGACCCAATCACCCTCTTCTTTGAGTGCATCAGTAGGTCATCGT
493





GTTACAATTACCTCTAAACCTAGTCAAGACGTGTCTACTGCTGTCGCCTCGTAT






CAACAGAAACCAGGCAAAGCACCAAAACTTTTGATTTATTCTGCTTCTTATAGA






TATACAGGCGTCCCCAGCCGGTTTTCAGGTTCCGGTTCCGGGACCGACTTTACC






CTCACTATCAGCTCTCTTCAGCCTGAGGACTTCGCCGTTTATTATTGCCAGCAG






CACTATATCACCCACTGACTTTTGGGCAAGGGACTAAGCTGGAGATCAAA




Sacirazum ab
VH
CAAGTACAGCTTCAGCAATCAGGCTCTGAACTCAAGAAACCTGGTGCCAGCGTG
424





AAAGTATCCTCTAAGGCATCCCGCTACACTTTTACAKACTATGGAATGAATTGG






GTAAAACAAGCCCCCGGACAAGGGCTTAAATGGATGGCTTGGATATATACTTAC 






ACCGGAGAACCTACATATACAGACGACTTTAAAGGGCGATTCGCTTTCTCCCTT






ACCGGAGAACCTACATATACAGACGACTTTAAAGGGCGATTCGCTTTCTCCCTT






GACACAAGTGTAAGCACAGCCTACCTGCAAATCAGCAGTCTCAAAGCCGACGAT






ACAGCCGTGTACTTTTGCGCCAGGGGTCGCTTCGGCTCCACCTATTGGTACTTC






GATGTCTGGGGACAGGGCAGCCTTGTAACTGTATCTAGT





VL
GATATTCAGTTGACACAGAGCCCTAGCTCACTTTCAGCCTCTGTGGGTGATAGG
425





GTTAGTATTACCTGTAAGGCATCCCAAGACGTTAGCATTGCCGTCGCCTGGTAC






CAGCAGAAACCCGGAAAAGCTCCAAAACTGCTCATCTACTCAGCATCCTATCGT






TATACAGCTGTACCTGACAGGTTCTCTGCCTCCGGGAGCGGTACCGATTTTACT






TTGACCATTTCAAGTTTGCAACCAGAAGACTTCGCTGTTTACTACTGCCAGCAG






CATTACATTACTCCACTCACATTCGGAGCAGGGACAAAGGTCGTAATCAAA






DLL3
Rovalpituzumab
VH
CAAGTCCAGCTTGTTCAAAGTGGGGCTGAAGTGAAGAAACCAGGGGCTAGTGTT
426





AAAGTGAGCTGTAAGGCATCAGGATACACTTTCACAAACTACGGAATGAATTGG






GTTCGCCAAGCACCTGGTCAAGGCTTGGAATCGATGCGTTGGATTAACACATAT






ACAGGTGAGCCAACTTACCCCGATGATTTCAAGGGGCGAGTTACCATGACTACC






GACACCTCAACATCCACTGCATACATGGAGCTTCGCTCACTCCGAAGCGATGAT






ACTGCAGTTTACTATTGCGCTCCCATCCGTGACTCATCACCTAGCGACTACTGG






GGCCAAGCTACATTGCTAACAGTTTCTTCA





VL
GAGATCGTGATGACCCAGAGTCCCCCTACTCTCTCAGTGAGTCCTGGTGAACGT
427





GCTACACTGTCTTGTAAGGCCAGTCAGTCCGTCTCAAACGATGTCGTTTGGTAT






CAGGAAAAGCCAGGACAAGCCCCCAGACTCCTGATATACTACGCCAGTAATCGC






TATACTCGAATCCCCGCTAGATTCAGTCGGAGTGGAAGCGGAACTGAATTTACC






TTGACTATATCCTCATTGCAAAGCGAAGACTTTGCCGTTTACTATTGTCAACAA






GACTACACCTCTCCTTGGACCTTCGGACAAGGTACAAAACTTGAAATCAAG




Tarlatamab
VH
CAAGTACAGCTCCAAGAAACTGGCCCCCGATTGGTGAAGCCATCCGAAACACTT
428





TCCCTTACCTGCACTGTCTCCGGGGGCTCCATCAGTAGTTATTACTGGAGTTGG






ATACGCCAACCACCCGGTAAGTGTCTGGAGTGGATAGGTTATGTGTATTACTCA






GGCACAACCAATTATAATCCATCCTTGAAAAGCCGGGTAACCATCTCAGTAGAT






ACCAGCAAAAACCAGTTCTCCCTGAAACTGTCCAGTGTTACTGCTGCTGATACC






GCCCTATATTATTGTGCATCCATTGCAGTGACAGGGTTTTATTTTGACTATTCG






GGCCAGGGTACTTTGGTAACCGGTATCTTCA





VL
GAGATCGTCCTGACCCAAAGCCCAGGTACTCTTTCCCTCAGCCCAGGCGAAAGG
429





GTCACTCTGTCATGCAGGGCTAGTCAAAGAGTCAACAATAATTACCTCGCATGG






TATCAACAAAGACCCGGACAGGCTCCACGCCTGCTCATATATCGAGCAAGTAGC






CGAGCTACTCGCATTCCCGATAGATTCAGTGGATCTGGATCTGGGACCGATTTT






ACTCTGACAATAAGTCGTCTTGAACCTGAAGATTTTGCAGTATACTATTGTCAG






CAATATGACAGGAGCCCCCTGACATTCGGGTGCGGTACTAAGCTGGAAATCAAA






BCMA
Belantamab
VH
CAAGTCCAACTGGTCCAGTCAGGCGCAGAAGTTAAAAAGCCTGGCAGCAGTGTG
430





AAGGTGTCTTGTAAGGCAAGCGGCGGTACATTTAGTAATTATTGGATGCACTGG






GTACGGCAGGCTCCCGGCCAAGGGCTTGAATGGATGGGCGCCACATACCGAGGT






CATTCAGACACCTATTACAACCAGAAATTCAAGGGGCGCGTGACCATTACAGCA






GATAAATCAACTTCTACAGCCTACATGGAACTCAGCTCCCTCCGGTATGAGGAT






ACAGCAGTCTACTACTGTGCTCGCGGAGCCATTTACGATGGGTATGATGTGCTG






GATAATTGGGGCAGGGCACACTCGTGAACCGTAAGTAGT





VL
GATATACAGATGACCCACTCACCATCCAGCCTTAGTGCATCCGTCGCGGATCGG
431





GTGACTATTACTTGCTCCGCTTCTCAAGATATTTCAAACTATCTGAATTGGTAT






CAGCAAAAGCCTGGGAAGGCCCCAAAATTGCTGATCTATTACACTTCAAATTTG






CACTCAGGGGTTCCCTCTCGCTTCAGCGGAAGCGGAAGCGGTACTGATTTTACC






TTGACTATCTCTAGCCTCCAGCCAGAGGACTTTGCTACCTACTACTGCCAACAC






TACAGGAAACTCCCATGGACTTTTGGACAAGGCACCAAGCTCGAAATTAAG



LIV-1
Ladiratuzumab
VH
CAAGTTCAGTTCGTTCAATCTGGGGCCGAAGTCAAAAAACCTGGCGCTTCAGTT
432





AAAGTTAGCTGCAAAGCAAGCGGTCTCACTATAGAAGACTATTATATGCACTGG






GTCAGACAGGCTCCAGGGCAAGGGCTTGAGTGGATGGGGTGGATAGATCCAGAG






AATGGGGACACCGADTATGCACCCAAATTCCAGGGGCGTGTAACCATGACCCGA






GACACTTCAATAAATACTGCATACATGGAACTCTCCCGGCTCCGGAGCGACGAT






ACAGCCGTGTATTACTGTGCTGTCCACAACGCCCACTACCGCACATCGTTTCCA






TATTGGGGGCAGGGAACTCTTGTTACTGTTTCTTCA





VL
GACGTAGTGATGACTCAGTCTCCACTGTCCCTGCCAGTGACATTGCGCCAACCT
433





GCAAGTATTTCATGCAGATCAAGTCAATCTCTCCTGCACAGTAGCGGCAACACA






TACTTGGAGTGGTATCAACAACGCCCAGGTCAATCACCCAGGCCACTGATATAT






AAAATCTCAACTCGATTCAGCGGTGTTCCCGACAGGTTCTCAGGATCTGGCTCC






GGCACTGATTTTACCTTGAAGATCTCACGAGTGGAAGCTGAGGATGTGGGAGTA






TATTACTGTTTCCAAGCTTCACATGTCCCTTATACTTTTGGTGGAGGAACTAAG






GTAGAGATCAAG



GPC-3
Codrituzumab
VH
CAGGTGCAACTCGTTCAAAGCGGGGCCGAGGTGAAGATACCAGGGGCCTCAGTT
434





AAGGTGAGTTGCAAGGCAAGTGGATACACTTTCACCGATTATGAAATGCATTGG






GTGCGTCAGGCCCCAGGACAAGGACTGGAGTGGATGGGCGCTCTCGATCCTAAG






ACTGGTGATACTGCTTACTCTCAAAAGTTCAAAGGCCGAGTCACCTTGACCGCC






GACAAGTCCACATCCACTGCATATATGGAATTGTCAAGTCTGACAAGCGAAGAT






ACAGCCGTCTACTACTGCACCGCCTTTTATAGCTATACATATTGGGGACAGGGG






ACCTTGGTTACTGTGTCATCT





VL
GACGTGGTAATGACACAATCACCTTTGTCTCTTCCCGTAACCCCCGGTGAACCA
435





GCCAGCATCTCATGCAGAAGCAGTCAGTCACTGGTACATTCCAACCGTAATACT






TATCTTCACTGGTACTTCCASAAGCCTGGGCAGTCTCCTCAACTTTTGATATAT






AAAGTGAGCAATCGGTTTAGCGGTGTCCCAGACCGCTTTTCTGGATCTGGAAGT






GGAACAGACTTTACTCTGAAAATAAGCAGAGTCGAGGCAGAAGATGTCGGAGTT






TACTACTGTAGCCAGAACACACACGTACCCCCAACCTTTGGACAGGGCACAAAG






TTGGAAATCAAG



FGFR2
Apratumab
VH
GAGGTACAACTGCTTGAATCTGGAGGAGGGTTGGTACAACCTGGTGCTTCACTG
436





CGATTGTCCTGTGCACCCTCAGGCTTTACTTTCTCATCATATGCCATGTCCTGG






GTAAGGCAGGCACCTGGAAAAGGACTCGAATGGGTCTCAGCCATCTCCGGTTCA






GCCACATCAACTTACTATCCAGACTCTGTCAAAGGGCGCTTTACAATATCTAGG






GATAATTCAAAAAATACATTGTACTTGCAGATGAACAGTTTGCGTGCCGAAGAT






ACCGCAGTGTACTATTGCGCTAGGGTTCGATATAACTGGAACCATGGTGACTGG






TTTGACCCTTGGGGCCAAGGCACTGGTGACAGTGAGTTCC





VL
CAGTCCGTCCTCACACAACCACCTAGTGCCTCTGGTACACCAGGACAACGTGTC
437





ACAATTTCCTGCAGCGGGTCAAGTTCAAACATAGGGAATAACTATGTGTCATGG






TATCAACAACTTCCTGGTACTGCTCCAAAGCTCCTCATTTATGAAAACTATAAC






AGGCCCCCAGGTGTCCCAGATCGATTTTCACGATCAAAGTCCGGTACCTCAGCC






AGTTTGGCAATTAGTGGCCTTCGATCCGAAGATGAAGCAGATTACTACTGTTCA






TCCTGGGACGATTCTCTTAACTATTGGGTATTCGGCGGAGCCACTAAACTCACC






GTCCTT




Bemarituzumab
VH
CAAGTGCAGCTTGTTCAGAGTGGGGCTGAAGTCAAAAAGCCAGGCTCAAGCGTG
438





AAACTCAGCTGCAAGGCCAGCCGTTACATCTTCACAACTTACAATGTTCACTGC






GTCAGACAAGCCCCTGGTCAGGCGCTTGAGTGGATÄGGATCAATCTACCCCGAT






AATGGGGACACCAGCTATAATCAAAACTTCAAAGGACGTGCAACAATCACAGCC






GACAAGTCAACTTCAACAGCCTACATGGAGCTTTCCAGCTTCCGATCCGAAGAT






ACTGCCGTATATTACTGTGCTAGAGGCGACTTCGCTTATTGGGGACAAGGTACT






TTGGTGACTGTTTCTTCT





VL
GACATTCAAATGACCCAATCCCCCAGTTCCTTGAGTGCCTCCGTCGGAGATCGA
439





GTTAGTATTACATGTAAAGCTAGTCAAGGGGTCAGTAACGACGTTGCTTGGTAC






CAGCAGAAGCCAGGTAAGGCTCCCAAGCTCCTGATATATAGCGCCTCATACCGC






TACACAGGTGTGCCTTCCCGGTTTAGTGGCTCAGGATCAGGGACAGATTTTACA






TTCACTATAAGCTCTTTGCAGCCCGAAGACATAGCCACATATTATTGCCAGCAG






CATTCCACTACTCCATACACATTTGGACAGGGAACAAAGCTGGAGATTAAG






FGFR3
Vofatext missing or illegible when filed amab
VH
GAAGTACAGCTTGTCGAGAGCGGTGGCGGGCTTGTACAACCTGGTGGAAGCTTG
440





CGGTTGAGTTGTGCAGCCAGCGGTTTCACATTTACTAGCACTGGAATATCATGG






GTCCGTCAAGCTCCAGGGAAAGGGCTGGAATGGGTTGGCCGAATATATCCCACC






AGTGGCTCTACCAACTACGCAGACTCAGTCAAGGGTCGCTTTACAATTTCTGCT






GACACAAGTAAGAAGACCGCATATTTGCAGATGAACTCACTGCGAGCCGAGGAT






ACCGCCGTTTACTACTGTGCAAGGACATACGGAATTTACGATCTTTACGTTGAT






TATACAGAGTATGTGATGGATTATTGGGGGCAGGGCACCCTCGTCACTGTGAGT






TCT





VL
GACATCCAGATGACCCAGAGCCCCTCTTCTTTGTCAGCAAGCGTCGGAGACCGC
441





GTTACCATTACTTGCCCTGCCTCTCAGGACGTCGACACCAGCCTTCCTTGCTAC






AAGCAGAAACCAGGAAAAGCCCCCAAGCTGCTCATCTATTCCGCTTCATTTCTC






TACAGCCGAGTGCCATCCCCTTTCTCCGGTTCAGGCTCTGGAACAGACTTCACT






CTGACTATAAGCAGTCTTCAACCCGAAGACTTCGCTACATACTATTGTCAGCAA






TCAACCGGACACCCACAGACATTCGGCCAGGGCACTAAAGTAGAGATTAAA



VEGFR2
Ramucirumab
VH
GAAGTTCAGCTTGTGCAGAGTGGCGGAGGGCTTGTGAAACCAGGAGGATCACTG
442





AGGCTCTCCTGTGCAGCATCCGGTTTCACATTCAGCAGCTATAGTATGAACTGG






GTGCGTCAGGCTCCAGGGAAGGGACTGGAATGGGTCTCAAGCATTTCCTCCTCC






TCTTCATATATATATTACGCCGACAGTGTAAAAGGCGGCTTTACAATATCTCGG






GATAACGCTAAAAATAGCTTGTACCTTCAGATGAATTCACTGAGGGCTGAGGAC






ACTGCTGTGTACTACTGTGCAAGAGTCACCGACGCTTTTGATATTTGGGGTCAG






GGGACAATGGTGACCGTCTCCTCA





VL
GATATACAAATGACCCAGTCTGGGAGTTCAGTATCCGCCAGCATAGGTGACCGC
443





GTGACCATAACATGCCGGGCCAGCCAGGGAATTGATAATTGGTTGGGGTGGTAT






CAACAAAAGCCCGGAAAAGCTCCCAAGCTCCTTATCTATGATGCTTCTAACTTG






GATACAGGTGTACCCAGTCGATTTAGTGGCTCCGGGAGTGGGACTTATTTCACC






CTCACTATATCTTCTCTGCAAGCAGAAGACTTTGCAGTATATTTCTGTCAACAG






GCCAAAGCATTCCCTCCAACCTTCGCTGGGGGGACAAAGGTAGACATTAAA






CD20
Rituximab
VH
CAGGTCCAGCTCCAACAACCTGGAGCAGAATTGGTCAAGCCAGGGGCAAGCGTG
444





AAGATGAGCTGCAAGGCAAGCGCCTATACTTTCACCTCCTACAATATGCATTGG






GTCAAACAAACTCCAGGTCGTGGGCTTGAGTGGATCGGGGCCATTTACCCAGGC






AACGCCGACACCTCATATAACCAAAAGTTTAAGGGAAAAGCCACTTTGACAGCA






GATAAAAGTAGTAGCACTCCATACATGCAACTGTCAAGTCTGACTAGCGAAGAT






AGTGCCGTATATTATTGCGCTAGGTCCACATATTACGCCGCTGATTGGTACTTC






AATGTTTGGGGAGCCGGGACTACAGTCACCGTATCCGCT





VL
CAAATCGTCCTGTCTCAATCACCAGCAATTCTGAGTCCTAGTCCCGGAGAAAAA
445





GTCACTATGACCTGTAGAGCCTCATCATCTGTTTCCTATATACATTGGTTTCAG






CAGAAACCTGGATCTTCTCCCAAGCCCTGGATTTATCCAACCTCTAACCTCGCA






AGTGGAGTCCCCGTGCGGTTTTCAGGCAGCGGTTCCGGTACAAGTTATTCCCTG






ACCATCAGCCGTGTGGAAGCAGAAGACGCCGCCACATACTACTGCCAACAGTGG






ACCTCARATCCTCCCACCTTTGGGGGAGGTACTAAACTTGAAATAAAA




Obinutuzumab
VH
CAAGTGCAACTGGTTCAAAGTGGAGCCGAGGTCAAAAAACCTGGTTCCTCCGTC
446





AAAGTGTCTTGTAAAGCTTCAGGGTACGCATTCTCCTACTCCTCGATAAACTGG






GTGCGTCAGCCTCCTGGGCAAGCTCTGGAATGGATGGGCCGGATTTTCCCAGGA






GATGGCGACACAGACTACAATGGGAAGTTTAAGCGTCGGGTAACCATCACCGCT






GACAAGAGTACATCTACCCCCTATATGGAGCTTTCTTCACTTAGGACTGAGGAC






ACAGCAGTCTACTATTGTGCTCGAAATGTGTTTGACCGGTATTGCCTGGTGTAT






TGGGGCCAGGGTACCCTCGTAACACTATCATCA





VL
GATATTGTTATGACACAAACACCACTGTCCCTCCCTGTTACACCCGGAGAGCCT
447





GCTTCCATAAGTTGTCGATCCTCCAAATCACTTCTCCACTCAAATGGAATCACT






TATCTTTATTGGTATCTTCAGAAGCCAGGACAGTCCCCTCAACTGTTGATTTAT






CAGATGTCAAATTTGGTGAGTGGGGTGCCAGATAGGTTTTCTGGATCCGGTTCC






GGTACTGACTTTACATTGAAAATATCCCGAGTCGAAGCCGAAGACGTGGGCGTG






TACTATTGCGCTCAGAACCTTGAGCTGCCTTACACCTTTGGCGGTGGGACTAAA






GTGGAAATTAAG






CD38
Daratumumab
VH
GAGGTTCAGTTGCTGGAGAGCGGAGGGGGGCTTGTCCAACCAGGCGGTTCTCTG
448





CGACTTTCTTGTGCAGTGTCTGGGTTTACCTTCAACAGCTTTGCCATGTCCTGG






GTGCGCCAAGCACCCGGAAAGGGACTGGAGTGGGTTAGCGCAATCTCTGGGTCA






GGGGGAGGGACTTATTATGCTGACTCTGTTAAGGGTAGATTTACAATCAGTCGC






GATAATAGTAAAAATACACTGTATCTTCAGATGAACTCTCTCAGAGCCGAGGAT






ACAGCCGTGTATTTCTGTGCCAAAGACAAGATCCTTTGGTTCGGAGAGCCTGTT






TTCGACTATTGGGGTCAAGGGACATTGGTGACAGTAAGCTCT





VL
GAAATTGTTCTCACCCAGAGTCCAGCTACCCTGTCCCTGAGCCCCGGCGAGAGA
449





GCAACCTTGAGTTGCCGAGCCTCTCAATCCGTCTCCTCCTATCTGGCCTGGTAC






CAACAAAAACCAGGCCAACCCCCCCGTTTGCTGATATACGACGCCAGTAACCGA






GCTACCGGCATACCCGCCCGCTTTAGCGGCTCTGGATCTGGTACAGATTTCACA






CTCACTATATCAAGTCTGGAACCTGAAGATTTCGCAGTCTATTATTGCCAACAA






CGGTCAAATTGGCCCCCTACATTTGGACAAGGGACCAAAGTGGAGATTAAG






EphA2
1C1
VH
GAGGTACAGTTGCTGGAGTCAGGAGGTGGATTGGTCCAACCCGGAGGATCTCTT
450





CGTCTGTCCTGCGCCGCCTCAGGATTTACCTTCTCTCATTATATGATGGCATGG






GTACGTCAGGCTCCAGGCAAAGGTCTGGAATGGGTTAGTCGGATTGGTCCCTCA






GGGCGTCCTACCCATTATGCCGATTCTGTAAAGGGCCGTTTTACCATAAGCAGA






GACAACTCTAAGAACACCCTTTACCTTCAGATGAATAGCCTGAGGGCTGAGGAT






ACCGCAGTGTATTACTGCGCAGGCTATGACTCTCGGTACGACTATGTCGCCGTA






GCAGGACCTGCCGAGTATTTTCAACACTGGGGACAGGGGACCCTTGTCACAGTT






TCTAGT





VL
GATATTCAAATGACACHAAGCCCAAGTTCCTTGTCCGCCTCAGTTGGTGATCGT
451





GTGACAATAACCTGTCGGGCTTCACAATCCATATCTACATGGCTGGCTTGGTAC






CAGCAAAAGCCAGGTAAAGCCCCAAAACTCCTGATTTACAAGGCAAGTAACTTG






CATACTGGGCTACCCAGCCGTTTCTCTGCGTCACGCTCTCGGACAGAGTTTAGT






CTTACAATTTCTGGTCTGCAACCCGATGACTTCGCTACCTATTACTATCAACAA






TATAATAGTTATTCTCGAACATTTGGTCAGGGAACAAAAGTGGAAATCHAA






text missing or illegible when filed indicates data missing or illegible when filed







Fc Region or Fragment Thereof

Here, the above-described first Fc domain and the second Fc domain may each be an Fc region of an immunoglobulin. The Fc region of an immunoglobulin may be an Fc domain variant as well as a wild type Fc domain. Here, the Fc region may be an Fc region of IgG, IgA, IgE, IgD), or IgM.


As used herein, the term “Fc domain variant” may refer to a form which is different from the wild type Fc domain in terms of glycosylation pattern, has a high level of specific glycan species as compared with the wild type Fc domain, a low level of specific glycan species as compared with the wild type Fc domain, or a deglycosylated form. In addition, an aglycosylated Fc domain is included therein. The Fc domain or a variant thereof may be adapted to have an adjusted number of sialic acids, fucosylations, or other types of glycosylations, through modulation of culture conditions or genetic manipulation of a host cell.


In addition, glycosylation of the Fc domain of an immunoglobulin may be modified by conventional methods such as chemical methods, enzymatic methods, and genetic engineering methods using microorganisms. In addition, the Fc domain variant may be in a mixed form of respective Fc regions of immunoglobulin IgG, IgA, IgE, IgD, or IgM. In addition, the Fc domain variant may be a form in which some amino acids of the Fc domain are substituted with other amino acids.


An “amino acid” introduced by the substitution and/or addition may be any one selected from the group consisting of lysine (K), alanine (A), arginine (R), asparagine (N), aspartic acid (D), cysteine (C), glutamine (Q), glutamic acid (E), glycine (G), histidine (H), isoleucine (I), leucine (L), methionine (M), phenylalanine (F), proline (P), serine (S), threonine (T), tryptophan (W), tyrosine (Y), and valine (V).


In one embodiment, the variant of the Fc region may be a form in which amino acids 239 and/or 332 of the CH2 region are substituted with other amino acids (see Kabat numbering system). Specifically, S239 may be substituted with an amino acid other than S, and specifically, S239 may be substituted with S239D. In addition, 1332 may be substituted with an amino acid other than I, and specifically, I332 may be substituted with I332E.


In addition, the Fc region may include a variant or structure of a knob, or a variant or structure of a hole.


As used herein, the term “knob-into-hole” refers to an Fc heterodimerization strategy for producing antibodies that specifically bind to different regions, such as bispecific antibodies, multispecific antibodies, or heterodimeric antibodies. Generally, this technique involves introducing a knob mutation at the interface of a first polypeptide (e.g., the first CH3 domain of a first antibody heavy chain) and a corresponding hole mutation at the interface of a second polypeptide (e.g., the second CH3 domain of a second antibody heavy chain), such that a knob may be placed within the hole to promote heterodimer formation and prevent homodimer formation.


The ‘knob’ variant is constructed by replacing small amino acid side chains from the interface of the first polypeptide (e.g., the first CH3 domain of the first antibody heavy chain) with larger side chains (e.g., arginine, phenylalanine, tyrosine, or tryptophan). The complementary ‘hole’ variant of the same or similar size to the knob is created by replacing large amino acid side chains at the interface of the second polypeptide (e.g., the second CH3 domain of the second antibody heavy chain) with smaller side chains (e.g., alanine, serine, valine, or threonine). The knob and hole may be created by altering the nucleic acid encoding the polypeptide, for example, by site-directed mutagenesis, or by peptide synthesis.


Examples of variants of the Fc region that promote the formation of a heterodimer may include those described in WO2014084607A1 and WO2018059502A1, etc. The disclosures of WO2014084607A1 and WO2018059502A1 are incorporated herein by reference. WO2014084607A1 describes, for example, mutations in the CH3 domain that may comprise (a-1) tryptophan (W) substituted at Lys409 of one CH3 domain that interacts with valine (V) substituted at Asp399 and threonine (T) substituted at Phe405 of another CH3 domain; and (a-2) serine (S) substituted at Tyr349 of one CH3 domain that interacts with tryptophan (W) substituted at Glu357 of another CH3 domain, and in addition, may further comprise (b-1) glutamic acid (E) substituted at Lys360 of one CH3 domain that interacts with arginine (R) substituted at Gln347 of another CH3 domain; and (b-2) glutamic acid (E) substituted at Gln347 and glutamic acid substituted at Lys360 of one CH3 domain that interact with arginine (R) substituted at Gln347 of another CH3 domain. Here, the position of the amino acid residue follows the EU index. WO2018059502A1, for example, describes mutations in the Fc domain including one or more mutations selected from a)-e), respectively: a) L351G, L351Y, L351V, L351P, L351D, L351E, L351K, or L351W; b) T366L, T366P, T366W, or T366V; c) D399C, D399N, D399I, D399G, D399R, D399T, or D399A; d) Y407L, Y407A, Y407P, Y407F, Y407T, or Y407H; and e) K409C, K409P, K409S, K409F, K409V, K409Q, or K409R. Here, the position of the amino acid residue follows the EU index.


Structure of Fusion Protein

The fusion protein may comprise polypeptide chains represented by the following structural formulas (I), (II), (III), and (IV), respectively:





N′—X-(L1)n-A-C′  (I);





N′—Y-(L2)m-B—C′  (II);





N′—C—C′  (III); and





N′-D—C′  (IV)

    • wherein, in the structural formulas (I), (II), (III), and (IV),
    • N′ is the N-terminus of each polypeptide,
    • C′ is the C-terminus of each polypeptide,
      • refers to a linkage,
    • A, B, C, and D are monomeric polypeptide sequences of an Fc domain each comprising the CH2 and CH3 regions of an immunoglobulin, and optionally further comprising CH4 and/or a hinge sequence, wherein
    • A forms a dimer with one of C or D to form the first Fc domain (b), and
    • B forms a dimer with the remaining one of C or D to form the second Fc domain (c);
    • L1 and L2 are each peptide linker,
    • n and m are each independently 0 or 1,
    • X comprises a heavy chain variable region or a light chain variable region of an antibody that specifically binds to an antigen;
    • Y comprises a light chain variable region or a heavy chain variable region of an antibody that specifically binds to an antigen; and
    • X and Y pair with each other to form the antigen-binding site (a) that specifically binds to an antigen, and
    • the polypeptides of (I), (II), (III), and (IV) may be assembled into a fusion protein comprising one antigen-binding site and two Fc domains.


Specifically, X is a first polypeptide sequence of the antigen-binding site, which comprises heavy chain CDR1, CDR2, and CDR3 sequences of an antibody that specifically binds to a first antigen, or a heavy chain variable region of an antibody that specifically binds to a first antigen; Y is a second polypeptide sequence of the antigen-binding site, which comprises light chain CDR1, CDR2, and CDR3 sequences of an antibody that specifically binds to a first antigen, or a light chain variable region of an antibody that specifically binds to a first antigen; and X and Y pair with each other to form the antigen-binding site (a) that specifically binds to an antigen.


According to one embodiment, the CH3 region may be mutated to minimize the interaction between A and B, and between C and D and promote the formation of a heterodimeric Fc between A and C, and between B and D. Specifically, the Fc domain monomer comprises a knob variant or a hole variant that promotes the formation of an Fc heterodimer (heterodimeric Fc); or the Fc domain monomer may comprise a variant that promotes the formation of a heterodimer by electrostatic steering mechanism.


According to one embodiment, X in the structural formula (I) may further comprise a heavy chain CH1 region, and/or Y in the structural formula (II) may further comprise a light chain constant region.


In addition, the fusion protein may comprise polypeptide chains represented by the following structural formulas (I′), (II′), (III), and (IV):





N′—VD1-(L3)p-X-(L1)n-A-C′  (I′);





N′—VD2-(L4)q-Y-(L2)m-B—C′  (II′);





N′—C—C′  (III); and





N′-D-C′  (IV)

    • wherein, in the structural formulas (I′), (II′), (III), and (IV),
    • N′ is the N-terminus of the polypeptide chain,
    • C′ is the C-terminus of the polypeptide chain,
      • refers to a linkage,
    • A, B, C, and D are monomeric polypeptide sequences of an Fc domain each comprising the CH2 and CH3 regions of an immunoglobulin, and optionally further comprising CH4 and/or a hinge sequence, wherein A forms a dimer with one of C or D to form the first Fc domain (b), and B forms a dimer with the remaining one of C or D to form the second Fc domain (c);
    • L1, L2, L3, and L4 are each peptide linker,
    • n, m, p, and q are each independently 0 or 1,
    • VD1 consists of a heavy chain or light chain variable region of an antibody that specifically binds to an antigen, or CDR1, CDR2, and CDR3 of an antibody heavy chain or light chain;
    • VD2 consists of a light chain or heavy chain variable region of an antibody that specifically binds to an antigen, or CDR1, CDR2, and CDR3 of an antibody heavy chain or light chain;
    • VD1 and VD2 pair with each other to form a second antibody variable region that specifically binds to a second antigen,
    • X comprises a heavy chain or light chain variable region of an antibody that specifically binds to an antigen, or CDR1, CDR2, and CDR3 of an antibody heavy chain or light chain;
    • Y comprises a light chain or heavy chain variable region of an antibody that specifically binds to an antigen, or CDR1, CDR2, and CDR3 of an antibody heavy chain or light chain; and
    • X and Y pair with each other to form a first antibody variable region that specifically binds to a first antigen, and
    • VD1-(L3)p-X forms a first polypeptide sequence of the antigen-binding site (a), and VD2-(L4)q-Y forms a second polypeptide sequence of the antigen-binding site (a).


According to one embodiment, the CH3 region may be mutated to minimize the interaction between A and B, and between C and D and promote the formation of a heterodimeric Fc between A and C, and between B and D. Specifically, the Fc domain monomer comprises a knob variant or a hole variant that promotes the formation of an Fc heterodimer (heterodimeric Fc); or the Fc domain monomer may comprise a variant that promotes the formation of a heterodimer by electrostatic steering mechanism.


According to one embodiment, the heavy chain variable region may further comprise a heavy chain CH1 region. In addition, the light chain variable region may further comprise a light chain constant region.


In the structures of the fusion proteins described herein, the binding between X and Y may be achieved i) through a disulfide bond formed by Cys present in CH1 and a light chain constant region, ii) through a disulfide bond formed by Cys present in a heavy chain variable region and a light chain variable region, or iii) through a disulfide bond formed by Cys present in CH1 and a light chain constant region, and a disulfide bond formed by Cys present in a heavy chain variable region and a light chain variable region.


Specifically, the binding between X and Y may be formed by a disulfide bond present between CH1233 and CL214 based on Kabat numbering system. In addition, X and Y may further comprise Cys through amino acid substitution. Examples of such variants may include mutations in the variable region, and specifically may include mutations at 105C of VH and 43C of VL, or mutations at 44C of VH and 100C of VL based on Kabat numbering system. In one embodiment, the mutation may be Q105C of VH and A43C of VL. In addition, in one embodiment, the mutation may be G44C of VH and Q100C of VL. In addition, examples of variants in the constant region may include mutations at 122C of CH1 and 121C of CL based on Kabat numbering system. In one embodiment, the mutation may be F122C of CH1 and S121C of CL.


Linker and Hinge

The hinge is a hinge region derived from immunoglobulins. In one embodiment, the antibody hinge region is an IgG hinge region. The IgG hinge region provided herein may be selected, for example, from antibody hinge regions of various IgG subtypes. The table below lists exemplary IgG subtypes with core hinge sequences that may be included in the flexible peptide regions provided herein. In addition, at least one Cys may exist within the hinge. Specifically, 1, 2, or 3 Cys may exist within the hinge.











TABLE 5





IgG

SEQ


subtype
Sequence of core hinge
ID NO







IgG1
EPKSCDKTHTCPPCP
828





IgG2
ERKCCVECPPCP
829





IgG3
ELKTPLDTTHTCPRCP(EPKSCDTPPPCPRCP)3
830





IgG4
ESKYGPPCPSCP
831









The hinge may be modified to delete disulfide bonds or introduce additional disulfide bonds.


In addition, the linkers L1 and L2 may each comprise 1 to about 70 amino acids. According to one exemplary embodiment, L1 and L2 may each comprise about 5 to about 60 amino acids, about 10 to about 50 amino acids, about 15 to about 40 amino acids, or about 20 to about 30 amino acids. According to another exemplary embodiment, for example, L1 and L2 may each be a peptide consisting of 1-70 amino acid residues, 2-60 amino acid residues, 2-50 amino acid residues, 2-40 amino acid residues, 2-30 amino acid residues, 3-50 amino acid residues, 3-40 amino acid residues, 3-30 amino acid residues, 2-28 amino acid residues, 2-26 amino acid residues, 2-24 amino acid residues, 2-22 amino acid residues, 2-20 amino acid residues, 2-18 amino acid residues, 2-16 amino acid residues, 2-14 amino acid residues, 2-12 amino acid residues, or 2-10 amino acid residues. Specifically, L1 and L2 may include the amino acid sequence of (G4S)o (where o is an integer of 1 to 5) in Table 6 below, but are not limited thereto. In addition, L1 and L2 may have different amino acid sequences. In addition, here, L1 and L2 may comprise at least one Cys. In addition, a disulfide bond may be formed through Cys present in L1 and L2.












TABLE 6







Sequence of linker
SEQ ID NO



















GGGGS
832



GGGGSGGGGS
833



GGGGSGGGGSGGGGS
6










In addition, the linkers L3 and L4 may each comprise 1 to about 30 amino acids. According to one exemplary embodiment, L3 and L4 may each comprise about 5 to about 25 amino acids, about 10 to about 20 amino acids, or about 15 amino acids. According to another exemplary embodiment, L3 and L4 may each be a peptide consisting of 2-30 amino acid residues, 2-25 amino acid residues, 2-20 amino acid residues, 2-15 amino acid residues, 3-30 amino acid residues, 2-28 amino acid residues, 2-26 amino acid residues, 2-24 amino acid residues, 2-22 amino acid residues, 2-20 amino acid residues, 2-18 amino acid residues, 2-16 amino acid residues, 2-14 amino acid residues, 2-12 amino acid residues, or 2-10 amino acid residues. Specifically, L3 and L4 may include the amino acid sequence of (G4S)o (where o is an integer of 1 to 5) in Table 6 above, but are not limited thereto. In addition, L3 and L4 may have different amino acid sequences.


Specific Examples of Fusion Proteins
Fusion Protein Comprising One Antigen-Binding Site and Two Fcs

i) Fusion Protein in which Antigen-Binding Site is Fab


As shown in FIG. 2a, the fusion protein comprises polypeptides of the structural formulas (I), (II), (III), and (IV), where X is a heavy chain variable region and further comprises CH1, and Y is a light chain variable region and comprises a light chain constant region. In addition, they are attached to each other by Cys in the CH1 structure and the light chain variable region to form a Fab structure. Here, n is 0, CH1 is directly linked to the hinge, m is 1, and L2 includes a peptide linker. Here, A and C are attached to each other to form the first Fc domain, and B and D are attached to each other to form the second Fc domain. In addition, the CH3 region of A comprises a hole variant, and the CH3 region of C comprises a knob variant. In addition, the CH3 region of B comprises a hole variant, and the CH3 region of D comprises a knob variant. In addition, the antigen-binding site, antigen, hinge, linker, and Fc are as described above.


As shown in FIG. 2b, the fusion protein comprises polypeptides of the structural formulas (I), (II), (III), and (IV), where X is a heavy chain variable region and further comprises CH1, and Y is a light chain variable region and comprises a light chain constant region. In addition, they are attached to each other by Cys in the CH1 structure and the light chain variable region to form a Fab structure. Here, n is 0, CH1 is directly linked to the hinge, m is 1, and L2 includes a peptide linker. Here, A and C are attached to each other to form the first Fc domain, and B and D are attached to each other to form the second Fc domain. In addition, the CH3 region of A comprises a hole variant, and the CH3 region of C comprises a knob variant. In addition, the CH3 region of B comprises a hole variant, and the CH3 region of D comprises a knob variant. In addition, X comprises the mutation of 105C, and Y comprises the mutation of 43C, and a disulfide bond between Cys is formed. In addition, the antigen-binding site, antigen, hinge, linker, and Fc are as described above.


As shown in FIG. 2c, the fusion protein comprises polypeptides of the structural formulas (I), (II), (III), and (IV), where X is a heavy chain variable region and further comprises CH1, and Y is a light chain variable region and comprises a light chain constant region. In addition, they are attached to each other by Cys in the CH1 structure and the light chain variable region to form a Fab structure. Here, n is 0, CH1 is directly linked to the hinge, m is 1, and L2 includes a peptide linker. Here, A and C are attached to each other to form the first Fc domain, and B and D are attached to each other to form the second Fc domain. In addition, the CH3 region of A comprises a hole variant, and the CH3 region of C comprises a knob variant. In addition, the CH3 region of B comprises a hole variant, and the CH3 region of D comprises a knob variant. In addition, CH1 comprises the mutation of 122C, and the light chain constant region comprises the mutation of 121C, and a disulfide bond between Cys is formed. In addition, the antigen-binding site, antigen, hinge, linker, and Fc are as described above.


As shown in FIG. 2d, the fusion protein comprises polypeptides of the structural formulas (I), (II), (III), and (IV), where X is a heavy chain variable region and further comprises CH1, and Y is a light chain variable region and comprises a light chain constant region. In addition, they are attached to each other by Cys in the CH1 structure and the light chain variable region to form a Fab structure. Here, n is 0, CH1 is directly linked to the hinge, m is 1, and L2 includes a peptide linker. Here, A and C are attached to each other to form the first Fc domain, and B and D are attached to each other to form the second Fc domain. In addition, the CH3 region of A comprises a hole variant, and the CH3 region of C comprises a knob variant. In addition, the CH3 region of B comprises a hole variant, and the CH3 region of D comprises a knob variant. In addition, X comprises the mutation of 44C, and Y comprises the mutation of 100C, and a disulfide bond between Cys is formed. In addition, the antigen-binding site, antigen, hinge, linker, and Fc are as described above.


As shown in FIGS. 6a to 6d, the fusion protein comprises polypeptides of the structural formulas (I), (II), (III), and (IV), where X is a heavy chain variable region and further comprises CH1, and Y is a light chain variable region and comprises a light chain constant region. In addition, they are attached to each other by Cys in the CH1 structure and the light chain variable region to form a Fab structure. Here, n is 0, and CH1 is directly linked to the hinge. Here, A and C are attached to each other to form the first Fc domain, and B and D are attached to each other to form the second Fc domain. In addition, the CH3 region of A comprises a hole variant, and the CH3 region of C comprises a knob variant. In addition, the CH3 region of B comprises a hole variant, and the CH3 region of D comprises a knob variant. In addition, X comprises the mutation of 44C, and Y comprises the mutation of 100C, and a disulfide bond between Cys is formed. Here, m is 0, and the light chain variable region may be directly linked to the hinge (FIG. 6d). In addition, m is 1, and L2 may include a 15-mer peptide linker (FIG. 6a), a 10-mer peptide linker (FIG. 6b), or a 5-mer peptide linker (FIG. 6c). In addition, the antigen-binding site, antigen, hinge, linker, and Fc are as described above.


As shown in FIG. 19a, the fusion protein comprises polypeptides of the structural formulas (I), (II), (III), and (IV), where X is a heavy chain variable region and further comprises CH1, and Y is a light chain variable region and comprises a light chain constant region. In addition, they are attached to each other by Cys in the CH1 structure and the light chain variable region to form a Fab structure. Here, n is 0, CH1 is directly linked to the hinge, m is 1, and L2 includes a peptide linker. Here, A and C are attached to each other to form the first Fc domain, and B and D are attached to each other to form the second Fc domain. In addition, the CH3 region of A comprises a hole variant, and the CH3 region of C comprises a knob variant. In addition, the CH3 region of B comprises a hole variant, and the CH3 region of D comprises a knob variant. In addition, X comprises the mutation of 44C, and Y comprises the mutation of 100C, and a disulfide bond between Cys is formed. Here, all CH2s of A, B, C, and D comprise the 239D and 332E mutations. In addition, the antigen-binding site, antigen, hinge, linker, and Fc are as described above.


ii) Fusion Protein in which Antigen-Binding Site is Fv


As shown in FIG. 10, the fusion protein comprises polypeptides of the structural formulas (I), (II), (III), and (IV), where X and Y are attached to each other by at least one Cys present therein to form a Fv structure. Here, A and C are attached to each other to form the first Fc domain, and B and D are attached to each other to form the second Fc domain. In addition, the CH3 region of A comprises a hole variant, and the CH3 region of C comprises a knob variant. In addition, the CH3 region of B comprises a hole variant, and the CH3 region of D comprises a knob variant. X may comprise the mutations of 44C, 105C, 122C, 44C/105C, 44C/122C, 105C/126C or 44C/105C/126C, and Y may comprise the mutations of 100C, 43C, 121C, 100C/43C, 100C/121C, 43C/121C, or 100C/43C/121C. In addition, a disulfide bond may be formed by Cys present in L1 and L2. In addition, the antigen-binding site, antigen, hinge, linker, and Fc are as described above.


Fusion Protein Comprising Two Antigen-Binding Sites and Two Fcs

iii) Fusion Protein in which Antigen-Binding Site is Fab


As shown in FIG. 25, the fusion protein comprises polypeptides of the structural formulas (I′), (II′), (III), and (IV), where X is a heavy chain variable region and further comprises CH1, and Y is a light chain variable region and comprises a light chain constant region. In addition, they are attached to each other by Cys in the CH1 structure and the light chain variable region to form a Fab structure. Here, n is 0, CH1 is directly linked to the hinge, m is 1, and L2 includes a peptide linker. Here, A and C are attached to each other to form the first Fc domain, and B and D are attached to each other to form the second Fc domain. In addition, the CH3 region of A comprises a hole variant, and the CH3 region of C comprises a knob variant. In addition, the CH3 region of B comprises a hole variant, and the CH3 region of D comprises a knob variant. In addition, VD1 in the structural formula (I′) is a heavy chain variable region, and VD2 in the structural formula (II′) is a light chain variable region, and VD1 and VD2 pair with each other to form Fv. In addition, p and q are each 1, and L3 and L4 are peptide linkers. As a non-limiting example, X and Y may pair with each other to form the variable region of pertuzumab, and VD1 and VD2 may pair with each other to form the variable region of trastuzumab. In addition, the antigen-binding site, antigen, hinge, linker, and Fc are as described above.


As shown in FIG. 26, the peptide linkers of L3 and L4 in the structural formulas (I′) and (II′) may be of various lengths. In addition, the first antigen-binding site formed by pairing between X and Y, and the second antigen-binding site formed by pairing between VD1 and VD2 may be the same or different. In addition, L1 and L2 may also comprise various peptide linkers.


Use of Fusion Protein

In another aspect of the present invention, there is provided a pharmaceutical composition for preventing or treating cancer, comprising the fusion protein as an active ingredient.


Here, cancer may be any one selected from the group consisting of gastric cancer, liver cancer, lung cancer, large intestine cancer, breast cancer, prostate cancer, skin cancer, bone cancer, multiple myeloma, glioma, ovarian cancer, pancreatic cancer, cervical cancer, thyroid cancer, laryngeal cancer, acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, chronic lymphoblastic leukemia, brain tumor, neuroblastoma, retinoblastoma, head and neck cancer, salivary gland cancer, and lymphoma.


Polynucleotide Encoding Fusion Protein

In another aspect of the present invention, there is provided a polynucleotide encoding a polypeptide of the structural formula (I), (II), (III), and/or (IV).


In another aspect of the present invention, there is provided a polynucleotide encoding a polypeptide of the structural formula (I′), (II′), (III), and/or (IV).


The polynucleotide may further comprise a nucleic acid encoding a signal sequence or a leader sequence. As used herein, the term “signal sequence” refers to a signal peptide that directs secretion of a target protein. The signal peptide is translated and then cleaved in a host cell. Specifically, the signal sequence is an amino acid sequence that initiates migration of a protein across the endoplasmic reticulum (ER) membrane.


The signal sequences are well known in the art for their characteristics. Such signal sequences typically comprise 16 to 30 amino acid residues, and may comprise more or fewer amino acid residues than such amino acid residues. A typical signal peptide consists of three regions, that is, a N-terminal region, a central hydrophobic region, and a more polar C-terminal region. The central hydrophobic region comprises 4 to 12 hydrophobic residues that cause the signal sequence to be immobilized during migration of an immature polypeptide through the membrane lipid bilayer.


After initiation, signal sequences are cleaved in the lumen of ER by cellular enzymes, commonly known as signal peptidases. Here, the signal sequence may be a secretory signal sequence of tPa (tissue plasminogen activator), HSV gDs (signal sequence of Herpes simplex virus glycoprotein D), or a growth hormone. Preferably, a secretory signal sequence used in higher eukaryotic cells including mammals and the like may be used. In addition, as the signal sequence, a wild type signal sequence may be used, or a signal sequence that has been substituted with a codon having high expression frequency in a host cell may be used.


Vector Loaded with Polynucleotide


In another aspect of the present invention, there is provided a vector comprising the polynucleotide. The vector may comprise a polynucleotide encoding a polypeptide of the structural formula (I), (II), (III), and/or (IV). In addition, the vector may comprise a polynucleotide encoding a polypeptide of the structural formula (I′), (II′), (III), and/or (IV).


The vector may be introduced into a host cell to be recombined with and inserted into the genome of the host cell. Alternatively, the vector is understood as nucleic acid means comprising a polynucleotide sequence which is autonomously replicable as an episome. The vectors include linear nucleic acids, plasmids, phagemids, cosmids, RNA vectors, viral vectors, and analogs thereof. Examples of the viral vector include, but are not limited to, retroviruses, adenoviruses, and adeno-associated viruses.


Specifically, the vector may include plasmid DNA, phage DNA, and the like; and commercially developed plasmids (pUC18, pBAD, pIDTSAMRT-AMP, and the like), E. coli-derived plasmids (pYG601BR322, pBR325, pUC118, pUC119, and the like), Bacillus subtilis-derived plasmids (pUB110, pTP5, and the like), yeast-derived plasmids (YEp13, YEp24, YCp50, and the like), phage DNA (Charon4A, Charon21A, EMBL3, EMBL4, λgt10, λgt11, λZAP, and the like), animal viral vectors (retroviruses, adenoviruses, vaccinia viruses, and the like), insect viral vectors (baculoviruses and the like). Since the vector exhibits different expression levels and modification of a protein depending on a host cell, it is preferred to select and use a host cell which is most suitable for the purpose.


As used herein, the term “gene expression” or “expression” of a target protein is understood to mean transcription of DNA sequences, translation of mRNA transcripts, and secretion of fusion protein products or fragments thereof. A useful expression vector may be RcCMV (Invitrogen, Carlsbad) or a variant thereof. The expression vector may comprise human cytomegalovirus (CMV) promoter for promoting continuous transcription of a target gene in mammalian cells, and a bovine growth hormone polyadenylation signal sequence for increasing the stability level of RNA after transcription.


Transformed Cell Expressing Fusion Protein

In another aspect of the present invention, there is provided a transformed cell expressing. Specifically, the transformed cell may be one into which the vector has been introduced.


Host cells for the transformed cell may include, but are not limited to, prokaryotic cells, eukaryotic cells, and cells of mammalian, plant, insect, fungal, or cellular origin. As an example of the prokaryotic cells, E. coli may be used. In addition, as an example of the eukaryotic cells, yeast may be used. In addition, for the mammalian cells, CHO cells, F2N cells, CSO cells, BHK cells, Bowes melanoma cells, HeLa cells, 911 cells, AT1080 cells, A549 cells, HEK 293 cells, HEK293T cells, or the like may be used. However, the mammalian cells are not limited thereto, and any cells which are known to those of ordinary skill in the art to be usable as mammalian host cells may be used.


In addition, for the introduction of an expression vector into the host cell, CaCl2) precipitation, Hanahan method whose efficiency has been increased efficiency by using a reducing agent such as dimethyl sulfoxide (DMSO) in CaCl2) precipitation, electroporation, calcium phosphate precipitation, protoplast fusion, agitation using silicon carbide fiber, Agrobacteria-mediated transformation, transformation using PEG, dextran sulfate-, Lipofectamine-, and dry/inhibition-mediated transformation, and the like may be used.


As described above, for optimization of properties of a fusion protein as a therapeutic agent or for any other purpose, glycosylation pattern of the fusion protein (for example, sialic acids, fucosylations, glycosylations) may be adjusted by manipulating, through methods known to those of ordinary skill in the art, glycosylation-related genes possessed by host cells.


Method for Producing a Fusion Protein

In another aspect of the present invention, there is provided a method for producing a fusion protein comprising an antigen-binding site, a first Fc domain or a variant thereof, and a second Fc domain or a variant thereof, the method comprising the steps of: i) culturing the transformed cells; and ii) collecting the produced fusion proteins.


The step of culturing the transformed cells may be carried out using methods well known in the art. Specifically, the culture may be carried out in a batch process, or carried out continuously in a fed batch or repeated fed batch process.


Composition or Preparation Containing Fusion Protein

In another aspect of the present invention, there is provided a pharmaceutical composition comprising the fusion protein as an active ingredient.


The pharmaceutical composition may be used for the prevention or treatment of cancer, such as any one cancer selected from the group consisting of gastric cancer, liver cancer, lung cancer, large intestine cancer, breast cancer, prostate cancer, gallbladder cancer, bladder cancer, kidney cancer, esophageal cancer, skin cancer, rectal cancer, osteosarcoma, multiple myeloma, glioma, ovarian cancer, pancreatic cancer, cervical cancer, endometrial cancer, thyroid cancer, laryngeal cancer, testicular cancer, mesothelioma, acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, chronic lymphoblastic leukemia, brain tumor, neuroblastoma, retinoblastoma, head and neck cancer, salivary gland cancer, and lymphoma.


A preferred dosage of the pharmaceutical composition varies depending on the patient's condition and body weight, severity of disease, form of drug, route and duration of administration and may be appropriately selected by those of ordinary skill in the art. In the pharmaceutical composition for treating or preventing tumor of the present invention, the active ingredient may be contained in any amount (effective amount) depending on application, dosage form, blending purpose, and the like, as long as the active ingredient may exhibit therapeutic activity against tumor or, in particular, may exhibit a therapeutic effect on cancer. A conventional effective amount thereof will be determined within a range of 0.001% to 20.0% by weight, based on the total weight of the composition. Here, the term “effective amount” refers to an amount of an active ingredient that may induce an effect of improving or treating the condition of a disease, especially an effect of improving or treating the condition of cancer. Such an effective amount may be experimentally determined within the scope of common knowledge of those of ordinary skill in the art.


As used herein, the term “treatment” may be used to mean both therapeutic and prophylactic treatment. Here, prophylaxis may be used to mean that a pathological condition or disease of a subject is alleviated or mitigated. In one embodiment, the term “treatment” includes both application or any form of administration for treating a disease in a mammal, including a human. In addition, the term includes inhibiting or slowing down the progression of a disease; and includes meanings of restoring or repairing impaired or lost function so that a disease is partially or completely alleviated; stimulating inefficient processes; or alleviating a serious disease.


Pharmacokinetic parameters such as bioavailability and underlying parameters such as clearance rate may also affect efficacy. Therefore, “improved efficacy” (for example, improvement in efficacy) may be due to improved pharmacokinetic parameters and improved efficacy, which may be measured by comparing clearance rate in test animals or human subjects, and parameters such as tumor treatment or improvement.


As used herein, the term “therapeutically effective amount” or “pharmaceutically effective amount” refers to an amount of a compound or composition effective to prevent or treat the disease in question, which is sufficient to treat the disease at a reasonable benefit/risk ratio applicable to medical treatment and does not cause adverse effects. A level of the effective amount may be determined depending on factors including the patient's health condition, type and severity of disease, activity of drug, the patient's sensitivity to drug, mode of administration, time of administration, route of administration and excretion rate, duration of treatment, combined or simultaneously used drugs, and other factors well known in the medical field. In one embodiment, the therapeutically effective amount means an amount of drug effective to treat cancer.


Here, the pharmaceutical composition may further comprise a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier may be any carrier as long as the carrier is a non-toxic substance suitable for delivery to a patient. Distilled water, alcohol, fat, wax, and inert solid may be contained as the carrier. A pharmaceutically acceptable adjuvant (buffer, dispersant) may also be contained in the pharmaceutical composition.


Specifically, by including a pharmaceutically acceptable carrier in addition to the active ingredient, the pharmaceutical composition may be prepared into a parenteral formulation depending on its route of administration using conventional methods known in the art. Here, the term “pharmaceutically acceptable” means that the carrier does not have more toxicity than the subject to be applied (prescribed) may adapt while not inhibiting activity of the active ingredient.


When the pharmaceutical composition is prepared into a parenteral formulation, it may be made into preparations in the form of injections, transdermal patches, nasal inhalants, or suppositories with suitable carriers according to methods known in the art. In a case of being made into injections, sterile water, ethanol, polyol such as glycerol or propylene glycol, or a mixture thereof may be used as a suitable carrier; and an isotonic solution, such as Ringer's solution, phosphate buffered saline (PBS) containing triethanol amine or sterile water for injection, and 5% dextrose, or the like may preferably be used. Formulation of pharmaceutical compositions is known in the art, and reference may specifically be made to Remington's Pharmaceutical Sciences (19th ed., 1995) and the like. This document is considered part of the present specification.


A preferred dosage of the pharmaceutical composition may range from 0.01 μg/kg to 10 g/kg, or 0.01 mg/kg to 1 g/kg, per day, depending on the patient's condition, body weight, sex, age, severity of the patient, and route of administration. The dosage may be administered once a day or may be divided into several times a day. Such a dosage should not be construed as limiting the scope of the present invention in any aspect.


Subjects to which the pharmaceutical composition may be applied (prescribed) are mammals including dogs, cats, humans, etc., with humans being particularly preferred. In addition to the active ingredient, the pharmaceutical composition of the present invention may further comprise any compound or natural extract, which is known to have a therapeutic effect on tumor.


Treatment Method Using Fusion Protein

In another aspect of the present invention, there is provided a method for treating or preventing cancer, comprising administering a fusion protein comprising an antigen-binding site, a first Fc domain or a variant thereof, and a second Fc domain or a variant thereof administering to a subject.


In another aspect of the present invention, there is provided a use of a fusion protein comprising an antigen-binding site, a first Fc domain or a variant thereof, and a second Fc domain or a variant thereof for the treatment of cancer.


Here, the subject may be an individual suffering from cancer. In addition, the subject may be a mammal, preferably a human.


Route of administration, dosage, and frequency of administration of the fusion protein may vary depending on the patient's condition and the presence or absence of side effects, and thus the fusion protein may be administered to a subject in various ways and amounts. The optimal administration method, dosage, and frequency of administration may be selected in an appropriate range by those of ordinary skill in the art. In addition, the fusion protein may be administered in combination with other drugs or physiologically active substances whose therapeutic effect is known with respect to a disease to be treated, or may be formulated in the form of combination preparations with other drugs.


MODE FOR CARRYING OUT THE INVENTION

Hereinafter, the present invention will be described in more detail by way of the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited only to these examples.


Example 1. Design, Preparation and Analysis of a Novel Antibody with Two Fc Domains

Naturally occurring human immunoglobulin G (IgG) consists of two fragment antigen-binding (Fab) regions and one fragment crystallizable (Fc) region (FIG. 1a). Human IgG binds to the target antigen in a monovalent or bivalent manner, and in some cases has 0.5 to 1 Fc region per target antigen (FIGS. 1c, 1d, and 1e).


The object of the present invention is to improve effector function by increasing the amount of Fc region present per antigen while having a molecular weight similar to that of an antibody and having a homogeneous composition. Therefore, we designed a novel antibody format with two Fc regions that has a molecular weight similar to that of a natural human IgG antibody (approximately 150 kDa) (FIG. 1b). This form binds to a cancer cell surface antigen and enables Fc regions to be present on a cancer cell surface a maximum of four times compared to conventional antibodies (FIGS. 1b and 1f).


In order to implement the novel antibody format mentioned above, trastuzumab was used as a template (FIG. 2a). In order to improve pairing between the VH-CH1 region and the VL-CL region of the trastuzumab Fab region, a specific amino acid was substituted with cysteine to introduce an artificial disulfide bond (FIGS. 2b, 2c, and 2d).


Fab in which glutamine (Q) at number 105 of the heavy chain and alanine (A) at number 43 of the light chain are substituted with cysteines, Fab in which phenylalanine (F) at number 122 of the heavy chain and serine (S) at number 121 of the light chain are substituted with cysteines, and Fab in which glycine (G) at number 44 of the heavy chain and glutamine (Q) at number 100 of the light chain are substituted with cysteines were designed, and they were referred to as Mutant 1, Mutant 2, and Mutant 3, respectively (FIGS. 2b, 2c, 2d, 3a, and 3b). Based on the above, the Fab-(Fc)2 structure with trastuzumab as a template was referred to as wild type (WT) (FIG. 2a), and the Fab-(Fc)2 structures with Fab corresponding to Mutants 1 to 3 were referred to as respective M1, M2, and M3 (FIGS. 2b, 2c, 2d, 3a, and 3b).


The notation of the positions in amino acids constituting an antibody follows the Kabat numbering system. In order to minimize unwanted Fc-related byproducts, knob-into-hole mutation technology (Merchant et al., Nat. Biotechnol. 1998) was applied to the Fc domain (SEQ ID NO: 3) of human immunoglobulin G1 (IgG1) to design polypeptides of Fc with knob mutation (S354C and T366W; SEQ ID NO: 4) and Fc with hole mutation (Y349C, T366S, L368A, and Y407V; SEQ ID NO: 5). In order to provide additional flexibility between the CL domain and hinge region, a (G4S)3 linker was introduced (SEQ ID NO: 6; FIG. 2). The expression of WT was performed by co-transfection of vectors capable of expressing polypeptides corresponding to Fc-Hole (SEQ ID NO: 7), TraH-WT-Knob (SEQ ID NO: 8), and TraL-WT-Knob (SEQ ID NO: 9) into the EXPICHO-S™ (Gibco, A29127) cell line.


M1 consists of Fc-Hole (SEQ ID NO: 7), TraH-Q105C-Knob (SEQ ID NO: 10), and TraL-A43C-Knob (SEQ ID NO: 11), M2 consists of Fc-Hole (SEQ ID NO: 7), TraH-F122C-Knob (SEQ ID NO: 12), and TraL-S121C-Knob (SEQ ID NO: 13), and M3 consists of Fc-Hole (SEQ ID NO: 7), TraH-G44C-Knob (SEQ ID NO: 14), and TraL-Q100C-Knob (SEQ ID NO: 15). All of M1, M2, and M3 were expressed in the EXPICHO-S™ (Gibco, A29127) cell line. They were purified using an AKTA pure 25 (Cytiva) or AKTA avant 150 (Cytiva) protein isolation and purification system equipped with a CAPTURESELECT™ CH1-XL Pre-packed Column (Thermo Scientific, 494346205) purification column, and the purified product was further subjected to affinity chromatography using KappaSelect resin (Cytiva, 17545801), and the sample was concentrated using an Amicon Ultra-15 Centrifugal Filter Unit (Merck millipore). For the final purified product, the absorbance of the sample at 280 nm was measured using a NanoDrop One trace spectrophotometer (Thermo Fisher Scientific), and the concentration was quantified based on the sample's intrinsic extinction coefficient and molecular weight.


The purified product was analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography (SEC) (FIGS. 4 and 5a to 5d). Bio-rad's electrophoresis gel and system were used for SDS-PAGE analysis, and samples were analyzed under non-reducing conditions, and size of each band were identified using Coomassie Brilliant Blue staining (FIG. 4). WT, M1, M2, and M3 were identified at about 150 kDa, and monomers were identified at about 75 kDa in WT which has no additional disulfide bond introduced into the Fab interface (FIG. 4). Similarly, for M1 and M2, a trace amount of monomer was identified at 75 kDa. For M3, almost no monomers were identified probably because most of the monomers were easily paired through the formation of disulfide bonds (FIG. 4).


For size exclusion chromatography analysis, an ALLIANCE® HPLC-e2695 Separations Module (Waters, 2695) equipped with an Agilent Bio SEC-3 HPLC column (Agilent, 5190-2511) was used. The analysis showed that the main product was identified at a retention time of 8.6 to 8.8 minutes (FIGS. 5a, 5b, 5c, and 5d).


Based on the M3 structure, the impact of the linker that connects the CL domain with the hinge region on the structural integrity of the antibody were analyzed. M3 has a 15-mer polypeptide linker consisting of (G4S)3, and V1 (SEQ ID NO: 7, 14, and 16) and V2 (SEQ ID NO: 7, 14, and 17) have polypeptide linkers of (G4S)2 and G4S, respectively, and V3 (SEQ ID NO: 7, 14, and 18) directly linked the CL domain and the hinge region without a linker (FIG. 6). By SDS-PAGE analysis, the main product was identified at about 150 kDa, and the byproduct was not identified (FIG. 7). It was found that the presence or absence of a linker between the CL domain and the hinge region had no significant effect on the formation of the byproduct.


Based on these results, it was found that the Fab-(Fc)2 structure was stably formed when the VH 44 and VL 100 positions of Fab were substituted with respective cysteines.











TABLE 7





Name
Polypeptide sequence
SEQ ID NO







Trastuzumab VH-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEW
 1


CH1 domain
VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG




GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS




VVTVPSSSLGTQTYICNVNHKPSNTKVDKKV






Trastuzumab VL-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLL
 2


CL domain
IYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPT




FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK




VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKV




YACEVTHQGLSSPVTKSFNRGEC






IgG1 Fc(CH2-
APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
 3


CH3)
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV




SNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ




QGNVFSCSVMHEALHNHYTQKSLSLSPGK






IgG1 Fc(Knob;
APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
 4


S354C, T366W)
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV




SNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKG




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ




QGNVFSCSVMHEALHNHYTQKSLSLSPGK






IgG1 Fc(Hole;
APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
 5


Y349C, T366S,
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV



L368A, Y407V)
SNKALPAPIEKTISKAKGQPREPQVCTLPPSREEMTKNQVSLSCAVKG




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQ




QGNVFSCSVMHEALHNHYTQKSLSLSPGK






15-mer Linker
GGGGSGGGGSGGGGS
 6





Fc-Hole
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE
 7



DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWL




NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVCTLPPSREEMTKNQ




VSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






TraH-WT-Knob
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEW
 8



VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG




GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS




VVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAP




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD




GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN




KALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG




NVFSCSVMHEALHNHYTQKSLSLSPGK






TraL-WT-Knob
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLL
 9



IYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPT




FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK




VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKV




YACEVTHQGLSSPVTKSFNRGECGGGGGGGGSGGGGSEPKSSDKTH




TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE




YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSL




WCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV




DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






TraH-Q105C-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEW
10


Knob
VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGCGTLVTVSSASTKGPSVFPLAPSSKSTSGG




TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV




VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE




LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD




GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN




KALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG




NVFSCSVMHEALHNHYTQKSLSLSPGK






TraL-A43C-Knob
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKCPKLLI
11



YSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTF




GQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV




QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY




ACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSSDKTHT




CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK




FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWC




LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS




RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






TraH-F122C-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEW
12


Knob
VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVCPLAPSSKSTSG




GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS




VVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAP




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD




GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN




KALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG




NVFSCSVMHEALHNHYTQKSLSLSPGK






TraL-S121C-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLL
13


Knob
IYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPT




FGQGTKVEIKRTVAAPSVFIFPPCDEQLKSGTASVVCLLNNFYPREAK




VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKV




YACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSSDKTH




TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE




YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSL




WCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV




DKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPGK






TraH-G44C-Knob
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKCLEW
14



VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG




GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS




VVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAP




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD




GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN




KALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG




NVFSCSVMHEALHNHYTQKSLSLSPGK






TraL-Q100C-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLL
15


Knob
IYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPT




FGCGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV




QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY




ACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSSDKTHT




CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK




FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWC




LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS




RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






TraL-Q100C-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLL
16


Knob1
IYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPT




FGCGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV




QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY




ACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSEPKSSDKTHTCPPCPA




PELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS




NKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCL VKGF




YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ




GNVFSCSVMHEALHNHYTQKSLSLSPGK






TraL-Q100C-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLL
17


Knob2
IYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPT




FGCGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV




QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY




ACEVTHQGLSSPVTKSFNRGECGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP




APIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCL VKGFYPSDI




AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS




CSVMHEALHNHYTQKSLSLSPGK






TraL-Q100C-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLL
18


Knob3
IYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPT




FGCGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV




QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY




ACEVTHQGLSSPVTKSFNRGECEPKSSDKTHTCPPCPAPELLGGPSVFL




FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI




SKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWES




NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE




ALHNHYTQKSLSLSPGK


















TABLE 8





Name
Nucleotide sequence
SEQ ID NO







Trastuzumab VH-
GAAGTGCAGCTGGTCGAAAGTGGCGGTGGACTTGTGCAACCTGGCGG
452


CH1 domain
TAGCCTCCGTCTCAGCTGCGCTGCAAGTGGGTTCAACATCAAGGACA




CTTATATTCATTGGGTCCGACAGGCACCTGGGAAAGGTTTGGAGTGG




GTCGCACGGATCTATCCCACTAATGGTTACACAAGATATGCCGATTC




AGTAAAAGGCCGGTTTACAATCAGCGCAGATACTTCAAAAAACACTG




CCTATCTTCAAATGAACTCACTTCGAGCAGAAGACACAGCCGTCTAT




TATTGTAGTCGTTGGGGAGGCGACGGCTTTTATGCTATGGACTACTGG




GGACAAGGAACTCTGGTCACAGTTTCATCAGCTAGCACCAAAGGACC




TAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGAC




AGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCAC




TGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCC




TGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGAC




AGTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCA




ACCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTC






Trastuzumab VL-
GATATTCAGATGACTCAGAGTCCTAGTTCCCTCAGCGCCTCCGTAGGC
453


CL domain
GACAGAGTTACAATAACTTGCCGAGCAAGCCAAGACGTAAACACTGC




AGTCGCCTGGTACCAACAGAAACCAGGCAAAGCTCCAAAACTCTTGA




TTTACAGTGCTTCCTTCCTTTATAGTGGCGTTCCAAGCCGCTTCAGCG




GCAGCCGCTCTGGCACCGACTTCACTCTCACTATTTCTTCCTTGCAAC




CTGAAGACTTCGCCACTTATTATTGCCAGCAACACTACACAACACCC




CCAACATTCGGACAGGGCACAAAGGTAGAAATAAAACGTACGGTGG




CAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGA




GTGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTG




AAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAA




CAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACA




GTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACAC




AAGGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGT




AACTAAGAGCTTTAACCGGGGAGAATGT






IgG1 Fc(CH2-
GCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAA
454


CH3)
CCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGT




GGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGT




ACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA




GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCC




TGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCC




AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAA




AGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCAAGCCGG




GAGGAGATGACCAAGAACCAGGTCAGCCTGACGTGCCTGGTCAAAG




GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG




CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGG




CTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGC




AGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC




AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






IgG1 Fc(Knob;
GCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAA
455


S354C, T366W)
CCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGT




GGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGT




ACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA




GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCC




TGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCC




AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAA




AGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGG




AGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGG




CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC




CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGC




TCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCA




GCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACA




ACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






IgG1 Fc(Hole;
GCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAA
456


Y349C, T366S,
CCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGT



L368A, Y407V)
GGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGT




ACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA




GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCC




TGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCC




AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAA




AGGGCAGCCCCGAGAACCACAGGTGTGCACCCTGCCCCCATCCCGGG




AGGAGATGACCAAGAACCAGGTCAGCCTGAGCTGCGCGGTCAAAGG




CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC




CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGC




TCCTTCTTCCTCGTGAGCAAGCTCACCGTGGACAAGAGCAGGTGGCA




GCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACA




ACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






15-mer Linker
GGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGT
457





Fc-Hole
GACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGG
458



GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCAT




GATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCC




ACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG




GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCA




CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG




AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGC




CCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAA




CCACAGGTGTGCACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAA




CCAGGTCAGCCTGAGCTGCGCGGTCAAAGGCTTCTATCCCAGCGACA




TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAA




GACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCGTGAG




CAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCT




CATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAG




AGCCTCTCCCTGTCTCCGGGTAAA






TraH-WT-Knob
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGAGG
459



TTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGGATAC




TTATATTCATTGGGTTCGCCAGGCACCCGGAAAAGGGCTGGAATGGG




TGGCCCGTATATATCCCACTAACGGTTACACTCGATATGCTGACTCTG




TAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAAAACACTGCC




TACCTCCAGATGAACAGTCTGCGCGCCGAGGATACAGCAGTTTATTA




TTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCATGGACTACTGGG




GTCAAGGGACACTGGTAACCGTTTCTTCTGCTAGCACCAAAGGACCT




AGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACA




GCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACT




GTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCT




GCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACA




GTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAA




CCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAG




TCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACT




CCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA




CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC




GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGG




CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC




AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGA




CTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC




TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC




CGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGAC




CAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCA




GCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAA




CTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT




CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAAC




GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG




CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






TraL-WT-Knob
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAGGG
460



GACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATACAGC




AGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCTTTTGA




TCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGATTCTCAG




GCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAAGTCTCCAGC




CAGAAGATTTTGCAACCTACTACTGCCAACAACACTACACTACTCCTC




CAACCTTCGGACAGGGCACAAAAGTAGAGATTAAGCGTACGGTGGC




AGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAG




TGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGA




AGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAAC




AGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAG




TCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACA




AGGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTA




ACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGG




GCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGACAA




AACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGAC




CGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT




CCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAA




GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCA




TAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTAC




CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG




CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA




TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACA




GGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAG




GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGC




CGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC




ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAG




CTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATG




CTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC




TCTCCCTGTCTCCGGGTAAA






TraH-Q105C-
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGAGG
461


Knob
TTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGGATAC




TTATATTCATTGGGTTCGCCAGGCACCCGGAAAAGGGCTGGAATGGG




TGGCCCGTATATATCCCACTAACGGTTACACTCGATATGCTGACTCTG




TAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAAAACACTGCC




TACCTCCAGATGAACAGTCTGCGCGCCGAGGATACAGCAGTTTATTA




TTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCATGGACTACTGGG




GTTGTGGGACACTGGTAACCGTTTCTTCTGCTAGCACCAAAGGACCT




AGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACA




GCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACT




GTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCT




GCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACA




GTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAA




CCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAG




TCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACT




CCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA




CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC




GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGG




CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC




AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGA




CTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC




TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC




CGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGAC




CAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCA




GCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAA




CTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT




CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAAC




GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG




CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






TraL-A43C-Knob
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAGGG
462



GACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATACAGC




AGTCGCATGGTACCAGCAGAAGCCCGGTAAGTGTCCTAAGCTTTTGA




TCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGATTCTCAG




GCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAAGTCTCCAGC




CAGAAGATTTTGCAACCTACTACTGCCAACAACACTACACTACTCCTC




CAACCTTCGGACAGGGCACAAAAGTAGAGATTAAGCGTACGGTGGC




AGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAG




TGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGA




AGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAAC




AGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAG




TCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACA




AGGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTA




ACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGG




GCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGACAA




AACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGAC




CGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT




CCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAA




GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCA




TAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTAC




CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG




CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA




TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACA




GGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAG




GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGC




CGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC




ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAG




CTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATG




CTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC




TCTCCCTGTCTCCGGGTAAA






TraH-F122C-
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGAGG
463


Knob
TTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGGATAC




TTATATTCATTGGGTTCGCCAGGCACCCGGAAAAGGGCTGGAATGGG




TGGCCCGTATATATCCCACTAACGGTTACACTCGATATGCTGACTCTG




TAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAAAACACTGCC




TACCTCCAGATGAACAGTCTGCGCGCCGAGGATACAGCAGTTTATTA




TTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCATGGACTACTGGG




GTCAAGGGACACTGGTAACCGTTTCTTCTGCTAGCACCAAAGGACCT




AGTGTTTGTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACA




GCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACT




GTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCT




GCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACA




GTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAA




CCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAG




TCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACT




CCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA




CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC




GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGG




CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC




AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGA




CTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC




TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC




CGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGAC




CAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCA




GCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAA




CTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT




CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAAC




GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG




CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






TraL-S121C-
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAGGG
464


Knob
GACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATACAGC




AGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCTTTTGA




TCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGATTCTCAG




GCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAAGTCTCCAGC




CAGAAGATTTTGCAACCTACTACTGCCAACAACACTACACTACTCCTC




CAACCTTCGGACAGGGCACAAAAGTAGAGATTAAGCGTACGGTGGC




AGCTCCCAGCGTTTTTATCTTTCCCCCATGTGACGAGCAGCTCAAGAG




TGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGA




AGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAAC




AGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAG




TCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACA




AGGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTA




ACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGG




GCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGACAA




AACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGAC




CGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT




CCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAA




GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCA




TAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTAC




CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG




CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA




TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACA




GGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAG




GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGC




CGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC




ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAG




CTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATG




CTCCGTGATGCATGAGGCTCTGCACAACAGATTTACGCAGAAGAGCC




TCTCCCTGTCTCCGGGTAAA






TraH-G44C-Knob
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGAGG
465



TTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGGATAC




TTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGGAATGGG




TGGCCCGTATATATCCCACTAACGGTTACACTCGATATGCTGACTCTG




TAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAAAACACTGCC




TACCTCCAGATGAACAGTCTGCGCGCCGAGGATACAGCAGTTTATTA




TTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCATGGACTACTGGG




GTCAAGGGACACTGGTAACCGTTTCTTCTGCTAGCACCAAAGGACCT




AGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACA




GCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACT




GTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCT




GCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACA




GTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAA




CCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAG




TCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACT




CCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA




CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC




GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGG




CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC




AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGA




CTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC




TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC




CGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGAC




CAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCA




GCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAA




CTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT




CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAAC




GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG




CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






TraL-Q100C-
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAGGG
466


Knob
GACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATACAGC




AGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCTTTTGA




TCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGATTCTCAG




GCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAAGTCTCCAGC




CAGAAGATTTTGCAACCTACTACTGCCAACAACACTACACTACTCCTC




CAACCTTCGGATGTGGCACAAAAGTAGAGATTAAGCGTACGGTGGCA




GCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGT




GGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAA




GCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACA




GCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGT




CTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAA




GGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAA




CTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGGG




CGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGACAAA




ACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACC




GTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTC




CCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG




ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCAT




AATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACC




GTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC




AAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT




CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG




GTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGT




CAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCG




TGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCAC




GCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCT




CACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCT




CCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTC




TCCCTGTCTCCGGGTAAA






TraL-Q100C-
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAGGG
467


Knob1
GACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATACAGC




AGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCTTTTGA




TCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGATTCTCAG




GCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAAGTCTCCAGC




CAGAAGATTTTGCAACCTACTACTGCCAACAACACTACACTACTCCTC




CAACCTTCGGATGTGGCACAAAAGTAGAGATTAAGCGTACGGTGGCA




GCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGT




GGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAA




GCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACA




GCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGT




CTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAA




GGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAA




CTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGGG




CGGAGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCA




CCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC




CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGT




CACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGT




TCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA




GCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCC




TCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGC




AAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTC




CAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCC




CCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCT




GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCA




ATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGAC




TCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAG




CAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG




CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT




AAA






TraL-Q100C-
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAGGG
468


Knob2
GACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATACAGC




AGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCTTTTGA




TCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGATTCTCAG




GCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAAGTCTCCAGC




CAGAAGATTTTGCAACCTACTACTGCCAACAACACTACACTACTCCTC




CAACCTTCGGATGTGGCACAAAAGTAGAGATTAAGCGTACGGTGGCA




GCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGT




GGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAA




GCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACA




GCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGT




CTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAA




GGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAA




CTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGAACC




AAAGAGTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTG




AACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG




GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGT




GGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG




ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCA




GTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACC




AGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA




AGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGC




AGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAG




ATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTA




TCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG




AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTT




CTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGG




GGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT




ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






TraL-Q100C-
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAGGG
469


Knob3
GACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATACAGC




AGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCTTTTGA




TCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGATTCTCAG




GCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAAGTCTCCAGC




CAGAAGATTTTGCAACCTACTACTGCCAACAACACTACACTACTCCTC




CAACCTTCGGATGTGGCACAAAAGTAGAGATTAAGCGTACGGTGGCA




GCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGT




GGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAA




GCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACA




GCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGT




CTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAA




GGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAA




CTAAGAGCTTTAACCGGGGAGAATGTGAACCAAAGAGTAGTGACAA




AACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGAC




CGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT




CCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAA




GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCA




TAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTAC




CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG




CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA




TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACA




GGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAG




GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGC




CGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC




ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAG




CTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATG




CTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC




TCTCCCTGTCTCCGGGTAAA









Table 9 below shows the polypeptide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of H01. Table 10 below shows the nucleotide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of H01.











TABLE 9





Name
Sequence
SEQ ID NO







H01 
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYI
19


VH
HWVRQAPGKCLEWVARIYPTNGYTRYADSVKGRF




TISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGD




GFYAMDYWGQGTLVTVSS






H01 
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVA
20


VL
WYQQKPGKAPKLLIYSASFLYSGVPSRFSGSRSG




TDFTLTISSLQPEDFATYYCQQHYTTPPTFGCGT




KVEIK


















TABLE 10





Name
Sequence
SEQ ID NO







H01VH
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGAG
470



GTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGGAT




ACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGGAAT




GGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATGCTGA




CTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAAAAC




ACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATACAGCAG




TTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCATGGAC




TACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCT






H01VL
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAGG
471



GGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATACA




GCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCTTT




TGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGATTC




TCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAAGTCT




CCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACTACACT




ACTCCTCCAACCTTCGGATGTGGCACAAAAGTAGAGATTAAG









Table 11 below shows the H01 heavy chain and light chain CDR sequences.












TABLE 11





Name
CDR region
Sequence
SEQ ID NO







H01 VH
CDR-H1
DTYIH
21



CDR-H2
RIYPTNGYTRYADSVKG
22



CDR-H3
WGGDGFYAMDY
23





H01 VL
CDR-L1
RASQDVNTAVA
24



CDR-L2
SASFLYS
25



CDR-L3
QQHYTTPPT
26









Example 2. Preparation of a Novel Antibody with Two Fc Domains Using Pertuzumab as a Template

M3 is characterized by a (trastuzumab Fab)-(Fc)2 structure with mutations of VH G44C and VL Q100C, hereinafter referred to as H01. Similarly, based on the VH and VL regions of pertuzumab (SEQ ID NOs: 27 and 28), the (pertuzumab Fab)-(Fc)2 structure with the mutations VH G44C and VL Q100C is hereinafter referred to as P01. For P01, expression vectors containing the sequences corresponding to Fc-Hole (SEQ ID NO: 7), PerH-G44C-Knob (SEQ ID NO: 29), and PerL-Q100C-Knob (SEQ ID NO: 30) were co-transfected into EXPICHO-S™ (Gibco, A29127), and purification and analysis were performed in the same manner as described in Example 1.











TABLE 12







SEQ


Name
Sequence
ID NO







Pertuzumab
EVQLVESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKGLE
27


VH domain
WVADVNPNSGGSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAV




YYCARNLGPSFYFDYWGQGTLVTVSS






Pertuzumab
DIQMTQSPSSLSASVGDRVTITCKASQDVSIGVAWYQQKPGKAPKLLIY
28


VL domain
SASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYIYPYTFG




QGTKVEIK






PerH-G44C-
EVQLVESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKCLEW
29


Knob
VADVNPNSGGSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVY




YCARNLGPSFYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV




PSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH




NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI




EKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVE




WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV




MHEALHNHYTQKSLSLSPGK






PerL-Q100C-
DIQMTQSPSSLSASVGDRVTITCKASQDVSIGVAWYQQKPGKAPKLLIY
30


Knob
SASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYIYPYTFG




CGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQW




KVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEV




THQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSSDKTHTCPPCP




APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY




VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS




NKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGF




YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG




NVFSCSVMHEALHNHYTQKSLSLSPGK


















TABLE 13





Name
Sequence
SEQ ID NO







Pertuzumab VH
GAAGTGCAACTGGTGGAGTCTGGTGGTGGATTGGTGCAGCCAGGCG
414


domain
GTTCTCTGCGACTTAGTTGTGCAGCCTCCGGCTTTACCTTCACTGAT




TATACAATGGACTGGGTTCGGCAGGCACCCGGTAAGGGGCTTGAGT




GGGTCGCCGACGTCAATCCTAATTCAGGGGGAAGTATTTATAACCA




AAGGTTCAAGGGTCGATTTACATTGTCCGTAGATCGTAGTAAAAAT




ACCCTCTACCTTCAAATGAACTCCCTGAGGGCAGAGGATACCGCAG




TCTACTACTGCGCTCGTAACCTGGGGCCTAGTTTTTATTTCGATTAT




TGGGGCCAAGGCACATTGGTAACTGTGTCTTCA






Pertuzumab VL
GATATACAAATGACACAATCTCCTAGTTCATTGAGTGCCTCAGTCG
415


domain
GCGACCGAGTCACTATAACTTGTAAAGCAAGCCAAGATGTTAGCAT




TGGCGTAGCTTGGTATCAGCAGAAACCTGGAAAAGCACCAAAACTG




CTTATCTACTCCGCTAGTTACCGTTACACCGGAGTTCCCTCAAGGTT




TTCTGGCAGCGGAAGTGGGACTGACTTCACTCTGACTATTTCTTCAC




TTCAGCCAGAAGACTTCGCTACTTATTACTGTCAGCAGTACTATATC




TATCCCTATACATTTGGACAAGGAACCAAAGTTGAGATTAAA






PerH-G44C-Knob
GAAGTACAGTTGGTGGAGTCTGGTGGAGGTCTTGTACAACCTGGCG
472



GGAGTTTGCGGCTTTCCTGCGCTGCAAGCGGGTTTACCTTCACCGAT




TATACCATGGATTGGGTACGCCAAGCCCCTGGTAAGTGCCTTGAGT




GGGTTGCCGATGTAAACCCTAATTCCGGAGGAAGTATCTATAATCA




ACGCTTCAAGGGCCGATTCACTCTGAGTGTGGATCGAAGCAAGAAC




ACCTTGTACTTGCAGATGAATTCCTTGCGGGCTGAAGACACAGCCG




TCTATTACTGCGCCCGAAATTTGGGGCCTTCATTCTATTTTGACTAT




TGGGGTCAGGGAACTCTGGTAACTGTTTCAAGTGCTAGCACCAAAG




GACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGG




GGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGC




CTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCAT




ACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTC




TGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATACATC




TGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAA




GTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCC




CAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCA




AAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACAT




GCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA




CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCC




GCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC




ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA




AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTC




CAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCC




CCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTG




CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAG




AGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG




CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGA




CAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATG




CATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT




CTCCGGGTAAA






PerL-Q100C-
GATATTCAAATGACCCAAAGTCCAAGTTCCCTTTCAGCATCTGTCGG
473


Knob
TGATCGAGTCACTATAACTTGTAAGGCCAGCCAAGACGTTAGCATA




GGAGTAGCATGGTACCAACAAAAGCCTGGGAAGGCTCCCAAACTTC




TCATTTATTCTGCTTCCTACCGATATACTGGTGTCCCAAGTAGATTT




TCTGGCAGCGGATCTGGAACTGATTTTACATTGACTATCAGCTCCCT




CCAGCCTGAGGACTTCGCTACTTATTACTGCCAACAGTACTACATTT




ATCCCTATACATTCGGTTGTGGGACCAAAGTAGAGATCAAACGTAC




GGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGC




TCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTAT




CCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGA




GCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTC




CACTTACAGTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTAC




GAAAAACACAAGGTGTACGCATGCGAGGTGACACACCAAGGTCTTT




CATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGG




GGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAA




GAGTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAA




CTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG




ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGT




GGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTG




GACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG




CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGC




ACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA




ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAA




AGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGG




GAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAA




GGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC




AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGA




CGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGG




TGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC




TGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAA




A









Table 14 below shows the polypeptide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of P01. Table 15 below shows the nucleotide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of P01.











TABLE 14





Name
Sequence
SEQ ID NO







P01 VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKCLE
31



WVADVNPNSGGSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTA




VYYCARNLGPSFYFDYWGQGTLVTVSS






P01 VL
DIQMTQSPSSLSASVGDRVTITCKASQDVSIGVAWYQQKPGKAPKLLI
32



YSASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYIYPYT




FGCGTKVEIK


















TABLE 15





Name
Sequence
SEQ ID NO







P01 VH
GAAGTACAGTTGGTGGAGTCTGGTGGAGGTCTTGTACAACCTGGC
474



GGGAGTTTGCGGCTTTCCTGCGCTGCAAGCGGGTTTACCTTCACCG




ATTATACCATGGATTGGGTACGCCAAGCCCCTGGTAAGTGCCTTGA




GTGGGTTGCCGATGTAAACCCTAATTCCGGAGGAAGTATCTATAAT




CAACGCTTCAAGGGCCGATTCACTCTGAGTGTGGATCGAAGCAAG




AACACCTTGTACTTGCAGATGAATTCCTTGCGGGCTGAAGACACAG




CCGTCTATTACTGCGCCCGAAATTTGGGGCCTTCATTCTATTTTGA




CTATTGGGGTCAGGGAACTCTGGTAACTGTTTCAAGT






P01 VL
GATATTCAAATGACCCAAAGTCCAAGTTCCCTTTCAGCATCTGTCG
475



GTGATCGAGTCACTATAACTTGTAAGGCCAGCCAAGACGTTAGCA




TAGGAGTAGCATGGTACCAACAAAAGCCTGGGAAGGCTCCCAAACT




TCTCATTTATTCTGCTTCCTACCGATATACTGGTGTCCCAAGTAGA




TTTTCTGGCAGCGGATCTGGAACTGATTTTACATTGACTATCAGCT




CCCTCCAGCCTGAGGACTTCGCTACTTATTACTGCCAACAGTACTA




CATTTATCCCTATACATTCGGTTGTGGGACCAAAGTAGAGATCAAA









Table 16 below shows CDR sequences in heavy and light chains of the P01.












TABLE 16





Name

Sequence
SEQ ID NO







P01 VH
CDR-H1
DYTMD
33



CDR-H2
DVNPNSGGSIYNQRFKG
34



CDR-H3
NLGPSFYFDY
35





P01 VL
CDR-L1
KASQDVSIGVA
36



CDR-L2
SASYRYT
37



CDR-L3
QQYYIYPYT
38









Example 3. Analysis of H01 and P01 Byproducts Through Papain Digestion

Papain recognizes specific sequences in the hinge region and induces antibody digestion. In the case of the Fab-(Fc)2 structure, when papain digestion is performed, it is cleaved into a Fab portion of approximately 49.3 kDa and two Fc domains of approximately 50.4 kDa (FIG. 8a). However, if abnormal disulfide bonds are formed in the hinge region, unwanted inter-chain disulfide bond byproducts could be observed (FIG. 8b). In this case, a Fab fragment of approximately 49.3 kDa and an abnormal (Fc)2 product of approximately 100.7 kDa could be observed (FIG. 8b).


To verify this, papain digestion of H01 and P01 was performed. Papain (Sigma, P3125) was used by diluting it to 0.1 mg/mL in digestion buffer (20 mM EDTA+10 mM Cys-HCl in PBS pH 7.4). 200 μg of H01 and P01 were digested at 37° C. for 2 hours, and then SDS-PAGE was performed. As a result of SDS-PAGE performed under non-reducing conditions, abnormal (Fc)2 at about 100 kDa was not identified (FIGS. 8c and 8d).


Example 4. Analysis of Physical Properties of H01 wt

In H01, four Fc monomers are assembled into two Fc dimers due to knob-into-hole mutations, resulting in a structure as shown in FIG. 6a. To analyze the effect of the knob-into-hole mutations on the formation of H01 structure, the Fc hole monomer polypeptide (SEQ ID NO: 7) was substituted with a polypeptide (SEQ ID NO: 39) corresponding to the wild type IgG1 Fc monomer (Table 17). The two knob polypeptides (SEQ ID NOs: 14 and 15) constituting H01 were also substituted with polypeptides (SEQ ID NOs: 40 and 41) corresponding to the wild type IgG1 Fc monomer (Table 17). This novel antibody format consisting of two wtFc polypeptides (SEQ ID NO: 39), one TraH-G44C-wtFc polypeptide (SEQ ID NO: 40), and one TraL-Q100C-wtFc polypeptide (SEQ ID NO: 41) is referred to as H01 wt (FIG. 9).


Expression vectors containing sequences corresponding to wtFc (SEQ ID NO: 39), TraH-G44C-wtFc (SEQ ID NO: 40), and TraL-Q100C-wtFc (SEQ ID NO: 41) were co-transfected into EXPICHO-S™ (Gibco, A29127), and purification and analysis were performed in the same manner as described in Example 1. SDS-PAGE analysis under non-reducing conditions (NR) identified a small amount of H01 wt at about 150 kDa, and most of H01 wt were expressed as abnormally structured byproducts (FIG. 9). In the case of H01, which has knob-into-hole mutations in the Fc region, each polypeptide was efficiently assembled into a product that is identified at about 150 kDa (FIG. 9).











TABLE 17





Name
Sequence
SEQ ID NO







wtFc
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE
39



DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWL




NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ




VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






TraH-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKCLEW
40


G44C-
VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY



wtFc
YCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG




GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS




VVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAP




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD




GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN




KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG




NVFSCSVMHEALHNHYTQKSLSLSPGK






TraL-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLL
41


Q100C-
IYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPT



wtFc
FGCGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV




QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY




ACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSSDKTHT




CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK




FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC




LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS




RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK









Table 18 below shows the nucleotide sequences encoding wtFc, TraH-G44C-wtFc, and TraL-Q100C-wtFc of H011 wt.











TABLE 18





Name
Sequence
SEQ ID NO







wtFc
GACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTG
476



GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCC




TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGT




GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGG




CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT




ACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA




GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA




AGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGG




GCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGA




GGAGATGACCAAGAACCAGGTCAGCCTGACGTGCCTGGTCAAAGG




CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA




GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGA




CGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGG




TGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC




TGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAA




A






TraH-
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
477


G44C-
GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG



wtFc
ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGGA




ATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATGCT




GACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAAA




ACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATACAG




CAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCAT




GGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCTAGC




ACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTAC




CTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTC




CCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTG




GTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTC




ATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAG




ACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTA




GATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGC




CCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCC




TCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC




TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGA




GGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGC




CAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT




GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAA




GGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCAT




CGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACA




GGTGTACACCCTGCCCCCAAGCCGGGAGGAGATGACCAAGAACCA




GGTCAGCCTGACGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC




GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAA




GACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC




AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT




CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG




CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






TraL-
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
478


Q100C-
GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA



wtFc
CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGC




TTTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACTA




CACTACTCCTCCAACCTTCGGATGTGGCACAAAAGTAGAGATTAA




GCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGAC




GAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATA




ACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATG




CCCTTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATT




CCAAAGATTCCACTTACAGTCTGTCCAGCACATTGACACTGAGTAA




GGCTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGACACA




CCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAA




TGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGG




TAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCACCGTG




CCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC




CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC




ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAG




TTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA




AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC




GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC




AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAA




ACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTAC




ACCCTGCCCCCAAGCCGGGAGGAGATGACCAAGAACCAGGTCAGC




CTGACGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGG




AGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG




CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGC




TCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCAT




GCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGTAAA









Example 5. Characterization of H01Fv Variant

The schematic diagram of Fv-(Fc)2, in which two Fc domains are fused in parallel to an antibody Fv fragment, is shown in FIGS. 10a to 10g. Fv consists of a VH domain and a VL domain. In order to improve interaction of the domains at the domain interfaces, a disulfide bond was formed artificially by substituting an amino acid at a specific position with cysteine (FIGS. 10a to 10h, Table 19).













TABLE 19







VH Mutation site
VL Mutation site
MW



(Kabat numbering)
(Kabat numbering)
(kDa)



















H01Fv1
G44C
Q100C
128.21


H01Fv2
Q105C
A43C
128.19


H01Fv3
F122C
S121C
130.98


H01Fv4
G44C, Q105C
Q100C, A43C
130.01


H01Fv5
G44C, F122C
Q100C, S121C
130.00


H01Fv6
Q105C, F126C
A43C, S121C
130.99


H01Fv7
G44C, Q105C, F126C
Q100C, A43C, S121C
131.01









Table 20 shows the polypeptide sequences constituting H01Fv1 to H01Fv7.











TABLE 20







SEQ


Name
Sequence
ID NO







Fc-Hole-RF
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE
789



DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWL




NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVCTLPPSREEMTKNQ




VSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKL




TVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPGK






H01Fv1-HC
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKCLEW
790



VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGQGTLVTVSSEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL




PAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSD




IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF




SCSVMHEALHNHYTQKSLSLSPGK






H01Fv1-LC
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLL
791



IYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPT




FGCGTKVEIKREPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI




SRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYK




TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK




SLSLSPGK






H01Fv2-HC
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEW
792



VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGCGTLVTVSSEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL




PAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSD




IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF




SCSVMHEALHNHYTQKSLSLSPGK






H01Fv2-LC
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKCPKLLI
793



YSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTF




GQGTKVEIKREPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS




RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTT




PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL




SLSPGK






H01Fv3-HC
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEW
794



VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVCPLAPEPKSCDK




THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP




EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNG




KEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVS




LWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT




VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






H01Fv3-LC
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLL
795



IYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPT




FGQGTKVEIKRTVAAPSVFIFPPCGGGSEPKSCDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP




APIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDI




AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS




CSVMHEALHNHYTQKSLSLSPGK






H01Fv4-HC
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKCLEW
796



VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGCGTLVTVSSASTKGPSVCPLAPEPKSCDK




THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP




EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNG




KEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVS




LWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT




VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






H01Fv4-LC
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKCPKLLI
797



YSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTF




GCGTKVEIKREPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS




RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTT




PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL




SLSPGK






H01Fv5-HC
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKCLEW
798



VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVCPLAPEPKSCDK




THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP




EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNG




KEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVS




LWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT




VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






H01Fv5-LC
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLL
799



IYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPT




FGCGTKVEIKRTVAAPSVFIFPPCGGGSEPKSCDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP




APIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDI




AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS




CSVMHEALHNHYTQKSLSLSPGK






H01Fv6-HC
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEW
800



VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGCGTLVTVSSASTKGPSVCPLAPEPKSCDK




THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP




EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNG




KEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVS




LWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT




VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






H01Fv6-LC
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKCPKLLI
801



YSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTF




GQGTKVEIKRTVAAPSVFIFPPCGGGSEPKSCDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV




HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA




PIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC




SVMHEALHNHYTQKSLSLSPGK






H01Fv7-HC
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKCLEW
802



VARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY




YCSRWGGDGFYAMDYWGCGTLVTVSSASTKGPSVCPLAPEPKSCDK




THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP




EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNG




KEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVS




LWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT




VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






H01Fv7-LC
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKCPKLLI
803



YSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTF




GCGTKVEIKRTVAAPSVFIFPPCGGGSEPKSCDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV




HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA




PIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC




SVMHEALHNHYTQKSLSLSPGK









Table 21 shows the nucleotide sequences encoding polypeptides constituting H01Fv1 to H01Fv7.











TABLE 21







SEQ


Name
Sequence
ID NO







Fc-Hole-
GACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTG
804


RF
GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCC




TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGT




GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGG




CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT




ACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA




GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA




AGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGG




GCAGCCCCGAGAACCACAGGTGTGCACCCTGCCCCCATCCCGGGA




GGAGATGACCAAGAACCAGGTCAGCCTGAGCTGCGCGGTCAAAGG




CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA




GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGA




CGGCTCCTTCTTCCTCGTGAGCAAGCTCACCGTGGACAAGAGCAGG




TGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC




TGCACAACAGATTTACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAA




A






H01Fv1-HC
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
805



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGGA




ATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATGCT




GACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAAA




ACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATACAG




CAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCAT




GGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGAACCA




AAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTG




AACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAA




GGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTG




GTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC




GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA




GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGT




CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGT




CTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAA




AGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCC




ATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCT




GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAG




CAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCT




GGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGAC




AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATG




CATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT




CTCCGGGTAAA






H01Fv1-LC
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
806



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGC




TTTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACTA




CACTACTCCTCCAACCTTCGGATGTGGCACAAAAGTAGAGATTAA




GCGTGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTG




CCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC




CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC




ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAG




TTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA




AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC




GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC




AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAA




ACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTAC




ACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGC




CTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGG




AGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG




CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGC




TCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCAT




GCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGTAAA






H01Fv2-HC
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
807



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAAGGGCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATGC




TGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAA




AACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATACA




GCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCA




TGGACTACTGGGGTTGTGGGACACTGGTAACCGTTTCTTCTGAACC




AAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCT




GAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCA




AGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT




GGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTA




CGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA




GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGT




CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGT




CTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAA




AGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCC




ATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCT




GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAG




CAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCT




GGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGAC




AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATG




CATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT




CTCCGGGTAAA






H01Fv2-LC
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
808



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGTGTCCTAAGC




TTTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACTA




CACTACTCCTCCAACCTTCGGACAGGGCACAAAAGTAGAGATTAA




GCGTGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTG




CCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC




CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC




ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAG




TTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA




AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC




GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC




AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAA




ACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTAC




ACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGC




CTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGG




AGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG




CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGC




TCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCAT




GCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGTAAA






H01Fv3-HC
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
809



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAAGGGCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATGC




TGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAA




AACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATACA




GCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCA




TGGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCTAG




CACCAAAGGACCTAGTGTTTGTCCTCTTGCCCCTGAACCAAAGTCT




TGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCC




TGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACAC




CCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC




GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC




GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCA




GTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCAC




CAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAAC




AAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA




GGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGG




GAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAA




GGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGG




CAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCC




GACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA




GGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG




CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGG




TAAA






H01Fv3-LC
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
810



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGC




TTTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACTA




CACTACTCCTCCAACCTTCGGACAGGGCACAAAAGTAGAGATTAA




GCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATGTGGA




GGTGGAAGTGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCA




CCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCT




TCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGA




GGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT




CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA




GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA




GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT




GTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGT




CAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC




GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGAC




CACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGC




AAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC




TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGA




AGAGCCTCTCCCTGTCTCCGGGTAAA






H01Fv4-HC
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
811



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGGA




ATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATGCT




GACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAAA




ACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATACAG




CAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCAT




GGACTACTGGGGTTGTGGGACACTGGTAACCGTTTCTTCTGCTAGC




ACCAAAGGACCTAGTGTTTGTCCTCTTGCCCCTGAACCAAAGTCTT




GTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCT




GGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC




CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACG




TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG




GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAG




TACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACC




AGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACA




AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG




GGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGG




AGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAG




GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC




AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG




ACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG




GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCT




CTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA




AA






H01Fv4-LC
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
812



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGTGTCCTAAGC




TTTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACTA




CACTACTCCTCCAACCTTCGGATGTGGCACAAAAGTAGAGATTAA




GCGTGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTG




CCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC




CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC




ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAG




TTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA




AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC




GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC




AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAA




ACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTAC




ACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGC




CTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGG




AGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG




CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGC




TCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCAT




GCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGTAAA






H01Fv5-HC
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
813



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGGA




ATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATGCT




GACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAAA




ACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATACAG




CAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCAT




GGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCTAGC




ACCAAAGGACCTAGTGTTTGTCCTCTTGCCCCTGAACCAAAGTCTT




GTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCT




GGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC




CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACG




TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG




GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAG




TACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACC




AGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACA




AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG




GGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGG




AGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAG




GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC




AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG




ACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG




GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCT




CTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA




AA






H01Fv5-LC
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
814



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGC




TTTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACTA




CACTACTCCTCCAACCTTCGGATGTGGCACAAAAGTAGAGATTAA




GCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATGTGGA




GGTGGAAGTGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCA




CCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCT




TCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGA




GGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT




CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA




GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA




GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT




GTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGT




CAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC




GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGAC




CACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGC




AAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC




TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGA




AGAGCCTCTCCCTGTCTCCGGGTAAA






H01Fv6-HC
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
815



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAAGGGCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATGC




TGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAA




AACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATACA




GCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCA




TGGACTACTGGGGTTGTGGGACACTGGTAACCGTTTCTTCTGCTAG




CACCAAAGGACCTAGTGTTTGTCCTCTTGCCCCTGAACCAAAGTCT




TGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCC




TGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACAC




CCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC




GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC




GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCA




GTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCAC




CAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAAC




AAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA




GGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGG




GAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAA




GGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGG




CAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCC




GACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA




GGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG




CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGG




TAAA






H01Fv6-LC
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
816



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGTGTCCTAAGC




TTTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACTA




CACTACTCCTCCAACCTTCGGACAGGGCACAAAAGTAGAGATTAA




GCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATGTGGA




GGTGGAAGTGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCA




CCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCT




TCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGA




GGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT




CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA




GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA




GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT




GTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGT




CAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC




GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGAC




CACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGC




AAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC




TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGA




AGAGCCTCTCCCTGTCTCCGGGTAAA






H01Fv7-HC
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
817



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGGA




ATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATGCT




GACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAAAA




ACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATACAG




CAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCCAT




GGACTACTGGGGTTGTGGGACACTGGTAACCGTTTCTTCTGCTAGC




ACCAAAGGACCTAGTGTTTGTCCTCTTGCCCCTGAACCAAAGTCTT




GTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCT




GGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC




CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACG




TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG




GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAG




TACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACC




AGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACA




AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG




GGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGG




AGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAG




GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC




AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG




ACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG




GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCT




CTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA




AA






H01Fv7-LC
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
818



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGTGTCCTAAGC




TTTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACTA




CACTACTCCTCCAACCTTCGGATGTGGCACAAAAGTAGAGATTAA




GCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATGTGGA




GGTGGAAGTGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCA




CCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCT




TCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGA




GGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT




CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA




GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA




GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT




GTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGT




CAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC




GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGAC




CACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGC




AAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC




TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGA




AGAGCCTCTCCCTGTCTCCGGGTAAA









When expression vectors containing the sequences corresponding to Fc-Hole-F (SEQ ID NO: 789), H01Fv1-HC (SEQ ID NO: 790), and H01Fv1-LC (SEQ ID NO: 791) were co-transfect into EXPICHO-S™ (Gibco, A29127), H01Fv1 was formed (FIG. 10, Tables 20 and 21). Thereafter, it was purified through affinity chromatography using MABSELECT™ PrismA (Cytiva, 17549853). The Fc-Hole polypeptide (SEQ ID NO: 7) can form an Fc-Hole/Fc-Hole dimer. In order to remove this Fc-Hole/Fc-Hole dimer, H435R and Y436F mutations were introduced in the Fc-Hole polypeptide sequence (SEQ ID NO: 7) to produce the Fc-Hole-RF polypeptide (SEQ ID NO: 789) (FIG. 10, Tables 20 and 21). This prevents the Fc-Hole/Fc-Hole dimer from binding to Protein A resin and removes the mispaired Fc-Hole/Fc-Hole dimer (FIGS. 10 and 11). SDS-PAGE analysis identified the main product at about 130 kDa under non-reducing conditions (NR) (FIG. 11), and monomer purity was determined by SEC (FIG. 12). H01Fv3 exists mostly in an unpaired form of about 65 kDa, and the monomer purity of fully assembled form was determined to be 14.66% (FIGS. 11 and 12c). It was found that H01Fv1, H01Fv2, H01Fv4, H01Fv5, H01Fv6, and H01Fv7 have monomer purities of 71.24%, 61.25%, 68.55%, 73.05%, 67.73%, and 79.33%, respectively (FIG. 12). The binding characteristics of H01Fv1, H01Fv2, H01Fv4, H01Fv5, H01Fv6, and H01Fv7 were analyzed using Octet Red96e (Sartorius), a bio-layer interferometry (BLI) (FIG. 13). The human HER2 recombinant protein (R&D systems, 1129-ER) was loaded onto the Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120), and then the binding constants of H01Fv1, H01Fv2, H01Fv4, H01Fv5, H01Fv6, and H01Fv7 were calculated (FIG. 13, Table 22).












TABLE 22





Clone
KD(M)
kon(1/Ms)
kdis(1/s)







H01Fv1
2.44E−10
2.10E+05
5.11E−05


H01Fv2
3.24E−10
1.17E+05
3.78E−05


H01Fv3
Not Determined
Not Determined
Not Determined


H01Fv4
3.26E−10
2.37E+05
7.71E−05


H01Fv5
3.93E−10
2.73E+05
1.07E−04


H01Fv6
4.87E−11
1.36E+05
6.61E−06


H01Fv7
2.79E−10
2.76E+05
7.70E−05









Example 6. Analysis of Thermal Stability

Analysis of thermal stability was performed using the PROTEIN THERMAL SHIFT™ Dye Kit (Applied biosystems, 4461146) according to the manufacturer's manual. Briefly, 5 μL of reaction buffer and 2.5 μL of dye included in the kit were mixed with 5 μg of trastuzumab, pertuzumab, H01, or P01, and the final volume was adjusted to 20 μL using PBS.


The mixture was incubated at 20° C. for 30 seconds in a C1000 thermal cycler (Bio-Rad, 1841000) equipped with a CFX96 optical reaction module (Bio-Rad, 1845096), and the fluorescence intensity of the plate was measured while increasing the temperature from 20° C. to 95° C. at 1° C./min, and the reaction was stopped after incubation at 95° C. for 30 seconds.


After the reaction, the median value of relative fluorescence unit (RFU) values was taken, and analysis of melting temperature (Tm) was performed. The Tm1 values were found to be 68, 68, 66, and 66° C. and the Tm2 values were found to be 81, 79, 83, and 83° C. for trastuzumab, pertuzumab, H01, and P01, respectively, indicating that H01 and P01 have Tm values similar to those of commercialized therapeutic antibodies (FIG. 14, Table 23).













TABLE 23







Antibody
Tm1
Tm2




















Trastuzumab
68
81



Pertuzumab
68
79



H01
66
83



P01
66
83










Example 7. Identification of Competitive Binding of H01 and P01

In order to identify whether H01 and P01 bind to different epitopes or compete for binding, Octet Red96e (Sartorius), a bio-layer interferometry (BLI), was used.


The human HER2 recombinant protein (R&D systems, 1129-ER) was loaded onto the Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120). 100 nM human IgG1 (Bio X cell, BE0297) or 100 nM H01 or 100 nM trastuzumab was first bound to each biosensor loaded with HER2 antigen, followed by 100 nM human IgG1, 100 nM P01, or 100 nM pertuzumab to determine whether they bind competitively (FIG. 15). The binding signals (nm shift from baseline) measured at equilibrium after completion of Her2 recombinant protein loading were 0.620, 0.625, and 0.672 nm, respectively (FIG. 15, Table 24).


The first and second analytes were sequentially bound with binding time and dissociation time of 900 seconds. When the human IgG1 antibody was sequentially bound, it did not bind to HER2 (FIG. 15, Table 24). Sequential binding of H01 and P01 or sequential binding of trastuzumab and pertuzumab was observed, indicating that they bind to different epitopes (FIG. 15, Table 24). The binding signals (nm shift from baseline) of H01+P01 on the HER2-loaded sensor and the binding signals (nm shift from baseline) of trastuzumab+pertuzumab were measured to be 1.477 nm (=y-axis value at 4140 s−y-axis value at 1260 s), 0.923 nm (=y-axis value at 4140 s−y-axis value at 1260 s), respectively. The binding signals (nm shift from baseline) tend to increase as more proteins bind to the surface of the biosensor. Therefore, this indicates that to the same amount of HER2, H01 and P01 cause a greater amount of antibody binding than trastuzumab and pertuzumab (FIG. 15, Table 24).













TABLE 24







HER2




1st analyte -

Loading
1st Analyte
2nd Analyte


2nd analyte
Baseline(0 s)
(1260 s)
binding(2160 s)
binding(4140 s)



















hIgG1 - hIgG1
0
0.620
0.635
0.647


H01- P01
0
0.625
1.407
2.102


Trastuzumab -
0
0.679
1.157
1.595


Pertuzumab









Example 8. Quantification of Fc Loads

When H01 and P01 are treated in combination, a total of 16 Fc domains bind to four HER2 antigens present on the surface of cancer cells (FIG. 16a). When trastuzumab and pertuzumab are treated in combination, eight Fc domains bind to four HER2 antigens present on the surface of cancer cells if the binding is in monovalent mode, and fewer Fc domains can be bound if the binding is in bivalent mode (FIG. 16b). The combination of H01 and P01 should result in increased Fc loads on the surface of HER2-positive cancer cells than the combination of trastuzumab and pertuzumab and thereby should lead to a stronger effector function.


NCI-N87, BT474, SK-OV-3, SNU1, and SNU5 cancer cell lines used to quantify Fc loads of the antibodies on the surface of HER2-expressing cells were cultured in RPMI-1640+10% FBS medium. The cancer cell lines were treated with 50 nM human IgG1 (Bio X cell, BE0297), 50 nM trastuzumab (TRA), or 50 nM trastuzumab+50 nM pertuzumab (TRA+PER), 50 nM H01, 50 nM H01+50 nM P01 antibody at 4° C. for 30 minutes in a 96-well plate. Thereafter, they were treated with the Alexa 488 fluorescence-conjugated anti-human IgG Fcγ Fab antibody (Jackson ImmunoResearch, 109-547-008), and the antibody Fc bound to the cells was quantified using a flow cytometer (BD biosciences, FACSverse) (FIGS. 17a to 17e, Table 25). It was found that the fluorescence intensities of the 50 nM H01 alone group were higher than those of the 50 nM trastuzumab+50 nM pertuzumab (TRA+PER) combination group in the five cancer cell lines analyzed (FIGS. 17a to 17e, Table 25). Compared to treatment of 50 nM H01 alone, an additional increase in the Fc loads on the cancer cell surface was observed in the NCI-N87, BT474, SK-OV-3, SNU1, and SNU5 cancer cells when 50 nM P01 was treated in combination with 50 nM H01 (FIGS. 17a to 17e, Table 25).














TABLE 25






NCI-






GMFI
N87
BT474
SK-OV-3
SNU-1
SNU-5




















50 nM Trastuzumab
88911
23117
3590
1484
828


50 nM Trastuzumab +
136810
38714
6454
2688
1388


50 nM Pertuzumab


50 nM H01
154548
52835
9757
4065
1600


50 nM H01 + 50 nM
199196
75094
15961
7274
3022


P01









In order to determine the saturation concentration of antibodies binding to the cell surface, each test antibody was allowed to bind to a final concentration of 20, 50, and 100 nM, and the subsequent sampling process was carried out in the same manner as the above experimental conditions (FIGS. 18a to 18e). It was found that the saturation concentration of the antibody in the NCI-N87, BT474, SK-OV-3, SNU1, and SNU5 cancer cell lines was 50 nM (FIGS. 18a to 18e). It was found that treatment of 50 nM H01 alone results in more Fc loads on the surface of the five cell lines than treatment of 50 nM trastuzumab and 50 nM pertuzumab in combination (FIGS. 18a to 18e).


Example 9. Analysis of Antibody Binding Affinity to HER2

The S239D and I332E mutations in the antibody Fc domain improve the affinity of the antibody for Fcγ receptors, which leads to improved effector function (Greg A. Lazar et al., PNAS, 2006). H01DE4 and P01DE4 were designed by introducing the S239D and I332E mutations in the H01 and P01 Fc domains (FIGS. 19a and 19b). H01DE4 was prepared by co-transfection of vectors capable of expressing the polypeptides corresponding to Fc-Hole-S239D-I332E (Table 26, SEQ ID NO: 42), TraH-G44C-Knob-S239D-I332E (Table 26, SEQ ID NO: 43), and TraL-Q100C-Knob-S239D-I332E (Table 26, SEQ ID NO: 44) into EXPICHO-S™ (Gibco, A29127). P01DE4 was prepared by co-transfection of vectors capable of expressing the polypeptides corresponding to Fc-Hole-S239D-I332E (Table 26, Table 27, and SEQ ID NO: 42), PerH-G44C-Knob-S239D-I332E (Table 26, Table 27, and SEQ ID NO: 45), and PerL-Q100C-Knob-S239D-I332E (Table 26, Table 27, and SEQ ID NO: 46) into EXPICHO-S™ (Gibco, A29127).











TABLE 26







SEQ


Name
Sequence
ID NO







Fc-Hole-
DKTHTCPPCPAPELLGGPDVFLFPPKPKDTLMISRTPEVTCVVVDVSH
42


S239D-I332E
EDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW




LNGKEYKCKVSNKALPAPEEKTISKAKGQPREPQVCTLPPSREEMTK




NQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLV




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






TraH-G44C-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKCLE
43


Knob-S239D-
WVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTA



I332E
VYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKST




SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL




SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCP




APELLGGPDVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW




YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK




VSNKALPAPEEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLV




KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR




WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






TraL-Q100C-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKL
44


Knob-S239D-
LIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTP



I332E
PTFGCGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE




AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH




KVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSSD




KTHTCPPCPAPELLGGPDVFLFPPKPKDTLMISRTPEVTCVVVDVSHE




DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWL




NGKEYKCKVSNKALPAPEEKTISKAKGQPREPQVYTLPPCREEMTKN




QVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






PerH-G44C-
EVQLVESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKCLE
45


Knob-S239D-
WVADVNPNSGGSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTA



I332E
VYYCARNLGPSFYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG




GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS




VVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPA




PELLGGPDVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY




VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV




SNKALPAPEEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVK




GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW




QQGNVFSCSVMHEALHNHYTQKSLSLSPGK






PerL-Q100C-
DIQMTQSPSSLSASVGDRVTITCKASQDVSIGVAWYQQKPGKAPKLLI
46


Knob-S239D-
YSASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYIYPY



I332E
TFGCGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA




KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK




VYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSSDK




THTCPPCPAPELLGGPDVFLFPPKPKDTLMISRTPEVTCVVVDVSHED




PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN




GKEYKCKVSNKALPAPEEKTISKAKGQPREPQVYTLPPCREEMTKNQ




VSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


















TABLE 27





Name
Sequence
SEQ ID NO







Fc-Hole-
GACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTG
479


S239D-I332E
GGGGGACCGGATGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC
480



CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC




GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC




GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCA




GTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA




CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA




ACAAAGCCCTCCCAGCCCCCGAAGAGAAAACCATCTCCAAAGCC




AAAGGGCAGCCCCGAGAACCACAGGTGTGCACCCTGCCCCCATCC




CGGGAGGAGATGACCAAGAACCAGGTCAGCCTGAGCTGCGCGGT




CAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAA




TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG




ACTCCGACGGCTCCTTCTTCCTCGTGAGCAAGCTCACCGTGGACA




AGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGC




ATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT




CTCCGGGTAAA






TraH-G44C-
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA



Knob-S239D-
GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG



I332E
ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATG




CTGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAA




AAACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATAC




AGCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCC




ATGGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCT




AGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGT




CTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATT




ATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGAC




TTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTG




TACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCA




CTCAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAA




AGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCAC




ACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGGAT




GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCC




GGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAA




GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTG




CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC




GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCT




GAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC




CAGCCCCCGAAGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC




CGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGAT




GACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTA




TCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG




AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCT




CCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGC




AGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC




ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






TraL-Q100C-
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
481


Knob-S239D-
GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA



I332E
CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCT




TTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACT




ACACTACTCCTCCAACCTTCGGATGTGGCACAAAAGTAGAGATTA




AGCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGA




CGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAAT




AACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAAT




GCCCTTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGA




TTCCAAAGATTCCACTTACAGTCTGTCCAGCACATTGACACTGAGT




AAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGAC




ACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGG




AGAATGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCG




GCGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCA




CCGTGCCCAGCACCTGAACTCCTGGGGGGACCGGATGTCTTCCTC




TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT




GAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGA




GGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGC




CAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTG




TGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCA




AGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCG




AAGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA




CAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAA




CCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGA




CATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACT




ACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT




CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGA




ACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTA




CACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






PerH-G44C-
GAAGTACAGTTGGTGGAGTCTGGTGGAGGTCTTGTACAACCTGGC
482


Knob-S239D-
GGGAGTTTGCGGCTTTCCTGCGCTGCAAGCGGGTTTACCTTCACCG



I332E
ATTATACCATGGATTGGGTACGCCAAGCCCCTGGTAAGTGCCTTG




AGTGGGTTGCCGATGTAAACCCTAATTCCGGAGGAAGTATCTATA




ATCAACGCTTCAAGGGCCGATTCACTCTGAGTGTGGATCGAAGCA




AGAACACCTTGTACTTGCAGATGAATTCCTTGCGGGCTGAAGACA




CAGCCGTCTATTACTGCGCCCGAAATTTGGGGCCTTCATTCTATTT




TGACTATTGGGGTCAGGGAACTCTGGTAACTGTTTCAAGTGCTAG




CACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCT




ACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTAT




TTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTT




CTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTA




CTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACT




CAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAG




GTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACAC




GTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGGATGT




CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGG




ACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGAC




CCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCAT




AATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTA




CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA




TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGC




CCCCGAAGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAG




AACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCA




AGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCA




GCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC




AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTC




TTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAG




GGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAAC




CACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






PerL-Q100C-
GATATTCAAATGACCCAAAGTCCAAGTTCCCTTTCAGCATCTGTCG
483


Knob-S239D-
GTGATCGAGTCACTATAACTTGTAAGGCCAGCCAAGACGTTAGCA



I332E
TAGGAGTAGCATGGTACCAACAAAAGCCTGGGAAGGCTCCCAAA




CTTCTCATTTATTCTGCTTCCTACCGATATACTGGTGTCCCAAGTA




GATTTTCTGGCAGCGGATCTGGAACTGATTTTACATTGACTATCAG




CTCCCTCCAGCCTGAGGACTTCGCTACTTATTACTGCCAACAGTAC




TACATTTATCCCTATACATTCGGTTGTGGGACCAAAGTAGAGATC




AAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCG




ACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGA




ATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATA




ATGCCCTTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAA




GATTCCAAAGATTCCACTTACAGTCTGTCCAGCACATTGACACTG




AGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGAGGT




GACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCG




GGGAGAATGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAG




GCGGCGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGC




CCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGGATGTCTTC




CTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC




CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCT




GAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT




GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCG




TGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG




CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCC




CGAAGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAAC




CACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAG




AACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGC




GACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAA




CTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC




CTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGG




GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA




CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA









Binding characteristics were analyzed at 25° C. using Octet Red96e (Sartorius), a bio-layer interferometry (BLI). The buffer used for analysis was 10× Kinetics Buffer (Sartorius, 18-1042) diluted in PBS pH 7.4 (Gibco, 10010), and analysis plate was agitated at 1,000 rpm. The human HER2 recombinant protein (R&D systems, 1129-ER) was loaded onto the Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120). To measure the binding rate constant (Ka), 1 to 32 nM of H01, H01DE4, P01, and P01DE4 were allowed to bind to loaded antigen for 300 seconds and then the dissociation rate constant (Kd) was determined after 600 seconds of dissociation in Kinetics Buffer. Ka and Kd values were measured through a 1:1 binding model in Octet analysis software (Sartorius), and the equilibrium dissociation constant (KD) value was determined (FIGS. 20a to 20d, Table 28).













TABLE 28







KD(pM)
Ka(1/Ms)
Kd(1/s)





















H01
144.76
3.10 × 105
4.49 × 10−5



H01DE4
144.67
2.58 × 105
3.73 × 10−5



P01
338.46
2.72 × 105
9.20 × 10−5



P01DE4
223.78
2.46 × 105
5.51 × 10−5










Example 10. Analysis of Antibody Binding Affinity to Fcγ Receptors

The binding constants of each antibody to Fcγ receptors at 25° C. were analyzed using Octet Red96e (Sartorius). Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120) was used, and human FcγRI (R&D systems, 1257-FC) or human FcγIIA (R&D systems, 1330-CD) or human FcγRIIIA (176V isoform, R&D systems, 4325-FC) containing a His tag were loaded onto the biosensor.


The association rate constants (Ka) and the dissociation rate constants (Kd) of H01, P01, H01DE4, P01DE4, human IgG1 (Bio X cell, BE0297), trastuzumab, pertuzumab, and margetuximab to the biosensor loaded with an antigen was determined. Ka and Kd values were calculated through a 1:1 binding model in Octet analysis software (Sartorius), and the equilibrium dissociation constant (KD) value was determined (FIGS. 21a to 21h, FIGS. 22a to 22h, FIGS. 23a to 23h, Table 29).













TABLE 29









FcγRI(CD64)
FcγRIIA(CD32A, 131R)
FcγRIIIA(CD16A, 176V)
















Antigen
KD
Ka
Kd
KD
Ka
Kd
KD
Ka
Kd


Antibody
(nM)
(1/Ms)
(1/s)
(nM)
(1/Ms)
(1/s)
(nM)
(1/Ms)
(1/s)



















H01
0.054
8.67E+05
4.70E−05
7.73
8.68E+05
6.71E−03
2.08
8.17E+05
1.70E−03


P01
0.058
9.95E+05
5.75E−05
6.04
1.03E+06
6.22E−03
2.37
6.36E+05
1.51E−03


H01DE4
0.036
8.52E+05
3.06E−05
3.62
4.83E+05
1.75E−03
0.10
5.26E+05
5.51E−05


P01DE4
0.038
7.48E+05
2.85E−05
4.71
4.20E+05
1.98E−03
0.33
4.78E+05
1.59E−04


Human IgG1
2.457
3.59E+05
8.82E−04
310.45
2.01E+05
6.24E−02
197.84
1.39E+05
2.75E−02


Trastuzumab
2.342
3.33E+05
7.80E−04
151.82
7.97E+04
1.21E−02
103.21
1.56E+05
1.61E−02


Pertuzumab
3.042
3.32E+05
1.01E−03
359.01
7.27E+04
2.61E−02
211.65
1.03E+05
2.18E−02


Margetuximab
5.563
3.11E+05
1.73E−03
17.23
1.37E+05
2.36E−03
126.28
1.37E+05
1.73E−02









Example 11. Pharmacokinetic (PK) Analysis in Rats

H01, P01 trastuzumab, and pertuzumab were administered at 10 mg/kg to 7-week-old male Sprague-Dawley rats (ORIENT BIO INC.) via the intravenous (i.v.) route. Blood samples were collected in 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 1 day, 2 days, 3 days, 7 days, 10 days, 14 days, 21 days, 28 days, 35 days, and 42 days after administration. Thereafter, only the serum was separated from the blood for analysis. The antibody concentration in serum was measured by ELISA.


Briefly, a 96-well ELISA plate (Corning, 3590) was coated with human HER2 recombinant protein (R&D systems, 1129-ER) and stored overnight at 4° C., and the sera obtained at each time were appropriately diluted, and allowed to bind to the coated human HER2. Peroxidase-conjugated anti-human Fab goat antibody (Invitrogen, 31482) was used to detect H01, P01 trastuzumab, and pertuzumab.


Standard samples of H01, P01, trastuzumab, and pertuzumab were prepared, and the concentrations of the analytes at each time point were quantified based on a standard curve created from naive rat serum containing different concentrations of the antibody standards. The half-lives of intravenously administered H01, P01, trastuzumab, and pertuzumab were determined to be approximately 11.8 days, 14.2 days, 7.3 days, and 11.6 days, respectively (FIGS. 24a and 24b, Table 30). The engineered novel antibodies, H01 and P01, were found to have similar PK parameters to the parental humanized antibodies trastuzumab and pertuzumab.














TABLE 30







Trastuzumab
Pertuzumab
H01
P01




















Dose (mg/kg),
10, IV
10, IV
10, IV
10, IV


Route


T1/2 (day)
7.3 ± 4.3
11.6 ± 2.2
11.8 ± 1.9
14.2 ± 3.7


AUClast
1802 ± 320 
1822 ± 172
950 ± 22
1206 ± 73 


(μg*day/mL)


AUCinf
1875 ± 295 
1968 ± 250
1018 ± 30 
1316 ± 47 


(μg*day/mL)


Vz_obs
59.1 ± 37.7
84.8 ± 8.9
167 ± 22
156 ± 43


(mL/kg)


Cl_obs
5.4 ± 0.9
 5.1 ± 0.7
 9.8 ± 0.3
 7.6 ± 0.3


(mL/day/kg)


MRTinf (day)
11.6 ± 3.8 
14.9 ± 2.4
14.8 ± 1.1
15.7 ± 2.3









Example 12. Design, Preparation and Analysis of Novel Antibody that Recognizes Two Epitopes of HER2

In order to construct an antibody that recognizes two epitopes of HER2 protein, a biparatopic antibody HP51 was designed by connecting the V domains of trastuzumab and pertuzumab via a linker (FIG. 25). In order to minimize the decrease in binding affinity due to interference between different V domains, linkers with variable lengths connecting the V domains were tested. At the same time, as an attempt to improve the physical integrity of the antibody, 16 variants were designed in which Cys substitution mutations capable of forming a disulfide bond in the V domain were introduced (FIG. 26, Table 31). According to Kabat numbering system, mutations were introduced only at position 44 for the heavy chain and position 100 for the light chain (Table 31). In Table 31, the VH linker with 6 amino acid residues was designated as VH-S-Linker, the VH linker with 13 amino acid residues was designated as VH-L-Linker, the VL linker with 6 amino acid residues was designated as VL-S-Linker, and the VL linker with 13 amino acid residues was designated as VL-L-Linker.












TABLE 31









VH domain
VH domain













Clone
VH1 44
Linker
VH2 44
VL1 100
Linker
VL2 100


name
(Upper)
length
(Lower)
(Upper)
length
(Lower)
















HP501
Gly (G)
6
Gly (G)
Gln (Q)
6
Gln (Q)


HP502
Cys (C)
6
Gly (G)
Cys (C)
6
Gln (Q)


HP503
Gly (G)
6
Cys (C)
Gln (Q)
6
Cys (C)


HP504
Cys (C)
6
Cys (C)
Cys (C)
6
Cys (C)


HP505
Gly (G)
6
Gly (G)
Gln (Q)
13
Gln (Q)


HP506
Cys (C)
6
Gly (G)
Cys (C)
13
Gln (Q)


HP507
Gly (G)
6
Cys (C)
Gln (Q)
13
Cys (C)


HP508
Cys (C)
6
Cys (C)
Cys (C)
13
Cys (C)


HP509
Gly (G)
13
Gly (G)
Gln (Q)
6
Gln (Q)


HP510
Cys (C)
13
Gly (G)
Cys (C)
6
Gln (Q)


HP511
Gly (G)
13
Cys (C)
Gln (Q)
6
Cys (C)


HP512
Cys (C)
13
Cys (C)
Cys (C)
6
Cys (C)


HP513
Gly (G)
13
Gly (G)
Gln (Q)
13
Gln (Q)


HP514
Cys (C)
13
Gly (G)
Cys (C)
13
Gln (Q)


HP515
Gly (G)
13
Cys (C)
Gln (Q)
13
Cys (C)


HP516
Cys (C)
13
Cys (C)
Cys (C)
13
Cys (C)









For HP51, expression vectors consisting of the sequences corresponding to Fc-Hole (SEQ ID NO: 7), TN-S-PH-Knob (SEQ ID NO: 51), and TL-S-PL-Knob (SEQ ID NO: 59) were co-transfected into EXPICHO-S™ (Gibco, A29127) (Tables 31, 32, 33, and 34), and purification and analysis were performed in the same manner as described in Example 1. Expression, purification and analysis were performed for HP502 to HP516 in the same manner as mentioned above, and the composition of the expression vector is shown in detail











TABLE 32







SEQ


Name
Sequence
ID NO

















VH-S-Linker
ASTKGP
47





VH-L-Linker
ASTKGPSVFPLAP
48





VL-S-Linker
RTVAAP
49





VL-L-Linker
RTVAAPSVFIFPP
50





TH-S-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLE
51


PH-Knob
WVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTA




VYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPEVQLVESGGGL




VQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKGLEWVADVNPNSG




GSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYYCARNLGPS




FYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKD




YFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ




TYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWES




NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLSPGK






THC-S-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKCLE
52


PH-Knob
WVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTA




VYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPEVQLVESGGGL




VQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKGLEWVADVNPNSG




GSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYYCARNLGPS




FYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKD




YFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ




TYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWES




NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLSPGK






TH-S-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLE
53


PHC-Knob
WVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTA




VYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPEVQLVESGGGL




VQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKCLEWVADVNPNSG




GSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYYCARNLGPS




FYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKD




YFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ




TYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWES




NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLSPGK






THC-S-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKCLE
54


PHC-Knob
WVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTA




VYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPEVQLVESGGGL




VQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKCLEWVADVNPNSG




GSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYYCARNLGPS




FYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKD




YFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ




TYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWES




NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLSPGK






TH-L-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLE
55


PH-Knob
WVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTA




VYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPEVQL




VESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKGLEWVA




DVNPNSGGSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYY




CARNLGPSFYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT




VPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA




LPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN




VFSCSVMHEALHNHYTQKSLSLSPGK






THC-L-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKCLE
56


PH-Knob
WVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTA




VYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPEVQL




VESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKGLEWVA




DVNPNSGGSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYY




CARNLGPSFYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT




VPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA




LPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN




VFSCSVMHEALHNHYTQKSLSLSPGK






TH-L-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLE
57


PHC-Knob
WVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTA




VYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPEVQL




VESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKCLEWVA




DVNPNSGGSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYY




CARNLGPSFYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT




VPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA




LPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN




VFSCSVMHEALHNHYTQKSLSLSPGK






THC-L-
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKCLE
58


PHC-Knob
WVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTA




VYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPEVQL




VESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKCLEWVA




DVNPNSGGSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYY




CARNLGPSFYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT




VPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA




LPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN




VFSCSVMHEALHNHYTQKSLSLSPGK






TL-S-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKL
59


PL-Knob
LIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTP




PTFGQGTKVEIKRTVAAPDIQMTQSPSSLSASVGDRVTITCKASQDVS




IGVAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQYYIYPYTFGQGTKVEIKRTVAAPSVFIFPPSDEQLK




SGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST




YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGS




GGGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI




SRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYK




TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ




KSLSLSPGK






TLC-S-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKL
60


PL-Knob
LIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTP




PTFGCGTKVEIKRTVAAPDIQMTQSPSSLSASVGDRVTITCKASQDVSI




GVAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTLTISSLQ




PEDFATYYCQQYYIYPYTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS




GTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY




SLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSG




GGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS




RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYK




TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ




KSLSLSPGK






TL-S-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKL
61


PLC-Knob
LIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTP




PTFGQGTKVEIKRTVAAPDIQMTQSPSSLSASVGDRVTITCKASQDVS




IGVAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQYYIYPYTFGCGTKVEIKRTVAAPSVFIFPPSDEQLK




SGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST




YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGS




GGGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI




SRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYK




TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ




KSLSLSPGK






TLC-S-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKL
62


PLC-Knob
LIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTP




PTFGCGTKVEIKRTVAAPDIQMTQSPSSLSASVGDRVTITCKASQDVSI




GVAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTLTISSLQ




PEDFATYYCQQYYIYPYTFGCGTKVEIKRTVAAPSVFIFPPSDEQLKS




GTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY




SLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSG




GGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS




RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYK




TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ




KSLSLSPGK






TL-L-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKL
63


PL-Knob
LIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTP




PTFGQGTKVEIKRTVAAPSVFIFPPDIQMTQSPSSLSASVGDRVTITCK




ASQDVSIGVAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDF




TLTISSLQPEDFATYYCQQYYIYPYTFGQGTKVEIKRTVAAPSVFIFPP




SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ




DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGE




CGGGGSGGGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKP




KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA




LHNHYTQKSLSLSPGK






TLC-L-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKL
64


PL-Knob
LIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTP




PTFGCGTKVEIKRTVAAPSVFIFPPDIQMTQSPSSLSASVGDRVTITCK




ASQDVSIGVAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDF




TLTISSLQPEDFATYYCQQYYIYPYTFGQGTKVEIKRTVAAPSVFIFPP




SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ




DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGE




CGGGGSGGGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKP




KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA




LHNHYTQKSLSLSPGK






TL-L-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKL
65


PLC-Knob
LIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTP




PTFGCGTKVEIKRTVAAPSVFIFPPDIQMTQSPSSLSASVGDRVTITCK




ASQDVSIGVAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDF




TLTISSLQPEDFATYYCQQYYIYPYTFGQGTKVEIKRTVAAPSVFIFPP




SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ




DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGE




CGGGGSGGGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKP




KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA




LHNHYTQKSLSLSPGK






TLC-L-
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKL
66


PLC-Knob
LIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTP




PTFGCGTKVEIKRTVAAPSVFIFPPDIQMTQSPSSLSASVGDRVTITCK




ASQDVSIGVAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDF




TLTISSLQPEDFATYYCQQYYIYPYTFGCGTKVEIKRTVAAPSVFIFPP




SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ




DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGE




CGGGGSGGGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKP




KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA




LHNHYTQKSLSLSPGK


















TABLE 33







SEQ


Name
Sequence
ID NO







VH-S-Linker
GCTAGCACAAAAGGACCT
484





VH-L-Linker
GCTAGCACAAAAGGACCTAGTGTTTTCCCACTGGCTCCA
485





VL-S-Linker
CGTACGGTGGCTGCTCCA
486





VL-L-Linker
CGTACGGTGGCTGCTCCATCCGTTTTTATCTTTCCCCCA
487





TH-S-PH-Knob
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
488



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAAGGGCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATG




CTGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAA




AAACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATAC




AGCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCC




ATGGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCT




AGCACAAAAGGACCTGAAGTACAGTTGGTGGAGTCTGGTGGAGG




TCTTGTACAACCTGGCGGGAGTTTGCGGCTTTCCTGCGCTGCAAGC




GGGTTTACCTTCACCGATTATACCATGGATTGGGTACGCCAAGCC




CCTGGTAAGGGCCTTGAGTGGGTTGCCGATGTAAACCCTAATTCC




GGAGGAAGTATCTATAATCAACGCTTCAAGGGCCGATTCACTCTG




AGTGTGGATCGAAGCAAGAACACCTTGTACTTGCAGATGAATTCC




TTGCGGGCTGAAGACACAGCCGTCTATTACTGCGCCCGAAATTTG




GGGCCTTCATTCTATTTTGACTATTGGGGTCAGGGAACTCTGGTAA




CTGTTTCAAGTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGC




CCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTG




CCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAAC




TCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTC




AAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTC




AAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACAA




ACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTT




GTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCC




TGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA




CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGG




ACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG




ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG




CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTG




CACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTC




CAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGC




CAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATG




CCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGG




TCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCA




ATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG




GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGAC




AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATG




CATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTG




TCTCCGGGTAAA






THC-S-PH-Knob
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
489



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATG




CTGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAA




AAACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATAC




AGCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCC




ATGGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCT




AGCACAAAAGGACCTGAAGTACAGTTGGTGGAGTCTGGTGGAGG




TCTTGTACAACCTGGCGGGAGTTTGCGGCTTTCCTGCGCTGCAAGC




GGGTTTACCTTCACCGATTATACCATGGATTGGGTACGCCAAGCC




CCTGGTAAGGGCCTTGAGTGGGTTGCCGATGTAAACCCTAATTCC




GGAGGAAGTATCTATAATCAACGCTTCAAGGGCCGATTCACTCTG




AGTGTGGATCGAAGCAAGAACACCTTGTACTTGCAGATGAATTCC




TTGCGGGCTGAAGACACAGCCGTCTATTACTGCGCCCGAAATTTG




GGGCCTTCATTCTATTTTGACTATTGGGGTCAGGGAACTCTGGTAA




CTGTTTCAAGTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGC




CCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTG




CCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAAC




TCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTC




AAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTC




AAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACAA




ACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTT




GTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCC




TGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA




CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGG




ACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG




ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG




CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTG




CACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTC




CAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGC




CAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATG




CCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGG




TCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCA




ATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG




GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGAC




AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATG




CATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTG




TCTCCGGGTAAA






TH-S-PHC-Knob
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
490



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAAGGGCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATG




CTGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAA




AAACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATAC




AGCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCC




ATGGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCT




AGCACAAAAGGACCTGAAGTACAGTTGGTGGAGTCTGGTGGAGG




TCTTGTACAACCTGGCGGGAGTTTGCGGCTTTCCTGCGCTGCAAGC




GGGTTTACCTTCACCGATTATACCATGGATTGGGTACGCCAAGCC




CCTGGTAAGTGCCTTGAGTGGGTTGCCGATGTAAACCCTAATTCC




GGAGGAAGTATCTATAATCAACGCTTCAAGGGCCGATTCACTCTG




AGTGTGGATCGAAGCAAGAACACCTTGTACTTGCAGATGAATTCC




TTGCGGGCTGAAGACACAGCCGTCTATTACTGCGCCCGAAATTTG




GGGCCTTCATTCTATTTTGACTATTGGGGTCAGGGAACTCTGGTAA




CTGTTTCAAGTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGC




CCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTG




CCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAAC




TCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTC




AAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTC




AAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACAA




ACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTT




GTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCC




TGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA




CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGG




ACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG




ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG




CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTG




CACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTC




CAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGC




CAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATG




CCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGG




TCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCA




ATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG




GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGAC




AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATG




CATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTG




TCTCCGGGTAAA






THC-S-PHC-Knob
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
491



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATG




CTGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAA




AAACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATAC




AGCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCC




ATGGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCT




AGCACAAAAGGACCTAGTGTTTTCCCACTGGCTCCAGAAGTACAG




TTGGTGGAGTCTGGTGGAGGTCTTGTACAACCTGGCGGGAGTTTG




CGGCTTTCCTGCGCTGCAAGCGGGTTTACCTTCACCGATTATACCA




TGGATTGGGTACGCCAAGCCCCTGGTAAGTGCCTTGAGTGGGTTG




CCGATGTAAACCCTAATTCCGGAGGAAGTATCTATAATCAACGCT




TCAAGGGCCGATTCACTCTGAGTGTGGATCGAAGCAAGAACACCT




TGTACTTGCAGATGAATTCCTTGCGGGCTGAAGACACAGCCGTCT




ATTACTGCGCCCGAAATTTGGGGCCTTCATTCTATTTTGACTATTG




GGGTCAGGGAACTCTGGTAACTGTTTCAAGTGCTAGCACCAAAGG




ACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGG




GGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAG




CCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTC




ATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTC




TTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATA




CATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAA




AAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACC




GTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC




CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG




GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC




AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG




ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA




GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG




TGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAG




GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC




GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAA




GACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC




AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT




CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACAC




GCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






TH-L-PH-Knob
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
492



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAAGGGCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATG




CTGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAA




AAACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATAC




AGCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCC




ATGGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCT




AGCACAAAAGGACCTAGTGTTTTCCCACTGGCTCCAGAAGTACAG




TTGGTGGAGTCTGGTGGAGGTCTTGTACAACCTGGCGGGAGTTTG




CGGCTTTCCTGCGCTGCAAGCGGGTTTACCTTCACCGATTATACCA




TGGATTGGGTACGCCAAGCCCCTGGTAAGGGCCTTGAGTGGGTTG




CCGATGTAAACCCTAATTCCGGAGGAAGTATCTATAATCAACGCT




TCAAGGGCCGATTCACTCTGAGTGTGGATCGAAGCAAGAACACCT




TGTACTTGCAGATGAATTCCTTGCGGGCTGAAGACACAGCCGTCT




ATTACTGCGCCCGAAATTTGGGGCCTTCATTCTATTTTGACTATTG




GGGTCAGGGAACTCTGGTAACTGTTTCAAGTGCTAGCACCAAAGG




ACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGG




GGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAG




CCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTC




ATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTC




TTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATA




CATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAA




AAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACC




GTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC




CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG




GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC




AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG




ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA




GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG




TGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAG




GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC




GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAA




GACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC




AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT




CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACAC




GCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






THC-L-PH-Knob
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
493



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATG




CTGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAA




AAACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATAC




AGCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCC




ATGGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCT




AGCACAAAAGGACCTAGTGTTTTCCCACTGGCTCCAGAAGTACAG




TTGGTGGAGTCTGGTGGAGGTCTTGTACAACCTGGCGGGAGTTTG




CGGCTTTCCTGCGCTGCAAGCGGGTTTACCTTCACCGATTATACCA




TGGATTGGGTACGCCAAGCCCCTGGTAAGGGCCTTGAGTGGGTTG




CCGATGTAAACCCTAATTCCGGAGGAAGTATCTATAATCAACGCT




TCAAGGGCCGATTCACTCTGAGTGTGGATCGAAGCAAGAACACCT




TGTACTTGCAGATGAATTCCTTGCGGGCTGAAGACACAGCCGTCT




ATTACTGCGCCCGAAATTTGGGGCCTTCATTCTATTTTGACTATTG




GGGTCAGGGAACTCTGGTAACTGTTTCAAGTGCTAGCACCAAAGG




ACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGG




GGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAG




CCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTC




ATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTC




TTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATA




CATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAA




AAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACC




GTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC




CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG




GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC




AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG




ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA




GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG




TGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAG




GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC




GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAA




GACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC




AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT




CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACAC




GCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






TH-L-PHC-Knob
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
494



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAAGGGCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATG




CTGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAA




AAACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATAC




AGCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCC




ATGGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCT




AGCACAAAAGGACCTAGTGTTTTCCCACTGGCTCCAGAAGTACAG




TTGGTGGAGTCTGGTGGAGGTCTTGTACAACCTGGCGGGAGTTTG




CGGCTTTCCTGCGCTGCAAGCGGGTTTACCTTCACCGATTATACCA




TGGATTGGGTACGCCAAGCCCCTGGTAAGTGCCTTGAGTGGGTTG




CCGATGTAAACCCTAATTCCGGAGGAAGTATCTATAATCAACGCT




TCAAGGGCCGATTCACTCTGAGTGTGGATCGAAGCAAGAACACCT




TGTACTTGCAGATGAATTCCTTGCGGGCTGAAGACACAGCCGTCT




ATTACTGCGCCCGAAATTTGGGGCCTTCATTCTATTTTGACTATTG




GGGTCAGGGAACTCTGGTAACTGTTTCAAGTGCTAGCACCAAAGG




ACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGG




GGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAG




CCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTC




ATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTC




TTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATA




CATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAA




AAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACC




GTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC




CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG




GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC




AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG




ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA




GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG




TGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAG




GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC




GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAA




GACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC




AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT




CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACAC




GCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






THC-L-PHC-Knob
GAAGTTCAACTTGTGGAGTCTGGAGGCGGTTTGGTACAACCTGGA
495



GGTTCACTTCGTTTGTCATGTGCTGCCTCTGGGTTTAATATCAAGG




ATACTTATATTCATTGGGTTCGCCAGGCACCCGGAAAATGCCTGG




AATGGGTGGCCCGTATATATCCCACTAACGGTTACACTCGATATG




CTGACTCTGTAAAGGGTCGATTTACTATATCCGCTGATACTAGCAA




AAACACTGCCTACCTCCAGATGAACAGTCTGCGCGCCGAGGATAC




AGCAGTTTATTATTGTTCCCGATGGGGAGGTGACGGGTTCTATGCC




ATGGACTACTGGGGTCAAGGGACACTGGTAACCGTTTCTTCTGCT




AGCACAAAAGGACCTAGTGTTTTCCCACTGGCTCCAGAAGTACAG




TTGGTGGAGTCTGGTGGAGGTCTTGTACAACCTGGCGGGAGTTTG




CGGCTTTCCTGCGCTGCAAGCGGGTTTACCTTCACCGATTATACCA




TGGATTGGGTACGCCAAGCCCCTGGTAAGTGCCTTGAGTGGGTTG




CCGATGTAAACCCTAATTCCGGAGGAAGTATCTATAATCAACGCT




TCAAGGGCCGATTCACTCTGAGTGTGGATCGAAGCAAGAACACCT




TGTACTTGCAGATGAATTCCTTGCGGGCTGAAGACACAGCCGTCT




ATTACTGCGCCCGAAATTTGGGGCCTTCATTCTATTTTGACTATTG




GGGTCAGGGAACTCTGGTAACTGTTTCAAGTGCTAGCACCAAAGG




ACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGG




GGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAG




CCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTC




ATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTC




TTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATA




CATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAA




AAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACC




GTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC




CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG




GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC




AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG




ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA




GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG




TGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAG




GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC




GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAA




GACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC




AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT




CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACAC




GCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






TL-S-PL-Knob
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
496



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCT




TTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACT




ACACTACTCCTCCAACCTTCGGACAGGGCACAAAAGTAGAGATTA




AGCGTACGGTGGCTGCTCCAGATATTCAAATGACCCAAAGTCCAA




GTTCCCTTTCAGCATCTGTCGGTGATCGAGTCACTATAACTTGTAA




GGCCAGCCAAGACGTTAGCATAGGAGTAGCATGGTACCAACAAA




AGCCTGGGAAGGCTCCCAAACTTCTCATTTATTCTGCTTCCTACCG




ATATACTGGTGTCCCAAGTAGATTTTCTGGCAGCGGATCTGGAAC




TGATTTTACATTGACTATCAGCTCCCTCCAGCCTGAGGACTTCGCT




ACTTATTACTGCCAACAGTACTACATTTATCCCTATACATTCGGTC




AAGGGACCAAAGTAGAGATCAAACGTACGGTGGCAGCTCCCAGC




GTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTG




CCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAAGCAAA




AGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCA




AGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCT




GTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAA




GGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGT




AACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCG




GGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGT




GACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTG




GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC




CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC




GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC




GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCA




GTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA




CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA




ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCA




AAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCC




GGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTC




AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT




GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGA




CTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA




GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCA




TGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTC




TCCGGGTAAA






TLC-S-PL-Knob
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
497



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCT




TTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACT




ACACTACTCCTCCAACCTTCGGATGTGGCACAAAAGTAGAGATTA




AGCGTACGGTGGCTGCTCCAGATATTCAAATGACCCAAAGTCCAA




GTTCCCTTTCAGCATCTGTCGGTGATCGAGTCACTATAACTTGTAA




GGCCAGCCAAGACGTTAGCATAGGAGTAGCATGGTACCAACAAA




AGCCTGGGAAGGCTCCCAAACTTCTCATTTATTCTGCTTCCTACCG




ATATACTGGTGTCCCAAGTAGATTTTCTGGCAGCGGATCTGGAAC




TGATTTTACATTGACTATCAGCTCCCTCCAGCCTGAGGACTTCGCT




ACTTATTACTGCCAACAGTACTACATTTATCCCTATACATTCGGTC




AAGGGACCAAAGTAGAGATCAAACGTACGGTGGCAGCTCCCAGC




GTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTG




CCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAAGCAAA




AGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCA




AGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCT




GTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAA




GGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGT




AACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCG




GGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGT




GACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTG




GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC




CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC




GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC




GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCA




GTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA




CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA




ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCA




AAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCC




GGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTC




AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT




GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGA




CTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA




GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCA




TGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTC




TCCGGGTAAA






TL-S-PLC-Knob
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
498



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCT




TTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACT




ACACTACTCCTCCAACCTTCGGACAGGGCACAAAAGTAGAGATTA




AGCGTACGGTGGCTGCTCCAGATATTCAAATGACCCAAAGTCCAA




GTTCCCTTTCAGCATCTGTCGGTGATCGAGTCACTATAACTTGTAA




GGCCAGCCAAGACGTTAGCATAGGAGTAGCATGGTACCAACAAA




AGCCTGGGAAGGCTCCCAAACTTCTCATTTATTCTGCTTCCTACCG




ATATACTGGTGTCCCAAGTAGATTTTCTGGCAGCGGATCTGGAAC




TGATTTTACATTGACTATCAGCTCCCTCCAGCCTGAGGACTTCGCT




ACTTATTACTGCCAACAGTACTACATTTATCCCTATACATTCGGTT




GTGGGACCAAAGTAGAGATCAAACGTACGGTGGCAGCTCCCAGC




GTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTG




CCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAAGCAAA




AGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCA




AGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCT




GTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAA




GGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGT




AACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCG




GGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGT




GACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTG




GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC




CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC




GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC




GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCA




GTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA




CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA




ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCA




AAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCC




GGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTC




AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT




GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGA




CTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA




GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCA




TGAGGCTCTGCACAACcactacACGCAGAAGAGCCTCTCCCTGTCT




CCGGGTAAA






TLC-S-PLC-Knob
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
499



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCT




TTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACT




ACACTACTCCTCCAACCTTCGGATGTGGCACAAAAGTAGAGATTA




AGCGTACGGTGGCTGCTCCAGATATTCAAATGACCCAAAGTCCAA




GTTCCCTTTCAGCATCTGTCGGTGATCGAGTCACTATAACTTGTAA




GGCCAGCCAAGACGTTAGCATAGGAGTAGCATGGTACCAACAAA




AGCCTGGGAAGGCTCCCAAACTTCTCATTTATTCTGCTTCCTACCG




ATATACTGGTGTCCCAAGTAGATTTTCTGGCAGCGGATCTGGAAC




TGATTTTACATTGACTATCAGCTCCCTCCAGCCTGAGGACTTCGCT




ACTTATTACTGCCAACAGTACTACATTTATCCCTATACATTCGGTT




GTGGGACCAAAGTAGAGATCAAACGTACGGTGGCAGCTCCCAGC




GTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTG




CCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAAGCAAA




AGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCA




AGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCT




GTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAA




GGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGT




AACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCG




GGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGT




GACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTG




GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC




CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC




GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC




GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCA




GTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA




CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA




ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCA




AAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCC




GGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTC




AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT




GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGA




CTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA




GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCA




TGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTC




TCCGGGTAAA






TL-L-PL-Knob
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
500



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCT




TTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACT




ACACTACTCCTCCAACCTTCGGACAGGGCACAAAAGTAGAGATTA




AGCGTACGGTGGCTGCTCCATCCGTTTTTATCTTTCCCCCAGATAT




TCAAATGACCCAAAGTCCAAGTTCCCTTTCAGCATCTGTCGGTGAT




CGAGTCACTATAACTTGTAAGGCCAGCCAAGACGTTAGCATAGGA




GTAGCATGGTACCAACAAAAGCCTGGGAAGGCTCCCAAACTTCTC




ATTTATTCTGCTTCCTACCGATATACTGGTGTCCCAAGTAGATTTT




CTGGCAGCGGATCTGGAACTGATTTTACATTGACTATCAGCTCCCT




CCAGCCTGAGGACTTCGCTACTTATTACTGCCAACAGTACTACATT




TATCCCTATACATTCGGTCAAGGGACCAAAGTAGAGATCAAACGT




ACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGC




AGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTT




CTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCT




TCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCA




AAGATTCCACTTACAGTCTGTCCAGCACATTGACACTGAGTAAGG




CTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGACACAC




CAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAA




TGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGG




TAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCACCGTG




CCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC




CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC




ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAA




GTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC




AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCA




GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGT




ACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA




AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG




TACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTC




AGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC




GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGAC




CACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAG




CAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT




CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCA




GAAGAGCCTCTCCCTGTCTCCGGGTAAA






TLC-L-PL-Knob
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
501



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCT




TTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACT




ACACTACTCCTCCAACCTTCGGATGTGGCACAAAAGTAGAGATTA




AGCGTACGGTGGCTGCTCCATCCGTTTTTATCTTTCCCCCAGATAT




TCAAATGACCCAAAGTCCAAGTTCCCTTTCAGCATCTGTCGGTGAT




CGAGTCACTATAACTTGTAAGGCCAGCCAAGACGTTAGCATAGGA




GTAGCATGGTACCAACAAAAGCCTGGGAAGGCTCCCAAACTTCTC




ATTTATTCTGCTTCCTACCGATATACTGGTGTCCCAAGTAGATTTT




CTGGCAGCGGATCTGGAACTGATTTTACATTGACTATCAGCTCCCT




CCAGCCTGAGGACTTCGCTACTTATTACTGCCAACAGTACTACATT




TATCCCTATACATTCGGTCAAGGGACCAAAGTAGAGATCAAACGT




ACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGC




AGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTT




CTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCT




TCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCA




AAGATTCCACTTACAGTCTGTCCAGCACATTGACACTGAGTAAGG




CTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGACACAC




CAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAA




TGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGG




TAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCACCGTG




CCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC




CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC




ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAA




GTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC




AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCA




GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGT




ACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA




AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG




TACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTC




AGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC




GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGAC




CACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGC




AAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT




CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCA




GAAGAGCCTCTCCCTGTCTCCGGGTAAA






TL-L-PLC-Knob
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
502



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCT




TTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACT




ACACTACTCCTCCAACCTTCGGACAGGGCACAAAAGTAGAGATTA




AGCGTACGGTGGCTGCTCCATCCGTTTTTATCTTTCCCCCAGATAT




TCAAATGACCCAAAGTCCAAGTTCCCTTTCAGCATCTGTCGGTGAT




CGAGTCACTATAACTTGTAAGGCCAGCCAAGACGTTAGCATAGGA




GTAGCATGGTACCAACAAAAGCCTGGGAAGGCTCCCAAACTTCTC




ATTTATTCTGCTTCCTACCGATATACTGGTGTCCCAAGTAGATTTT




CTGGCAGCGGATCTGGAACTGATTTTACATTGACTATCAGCTCCCT




CCAGCCTGAGGACTTCGCTACTTATTACTGCCAACAGTACTACATT




TATCCCTATACATTCGGTTGTGGGACCAAAGTAGAGATCAAACGT




ACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGC




AGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTT




CTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCT




TCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCA




AAGATTCCACTTACAGTCTGTCCAGCACATTGACACTGAGTAAGG




CTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGACACAC




CAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAA




TGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGG




TAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCACCGTG




CCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC




CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC




ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAA




GTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC




AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCA




GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGT




ACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA




AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG




TACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTC




AGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC




GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGAC




CACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGC




AAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT




CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCA




GAAGAGCCTCTCCCTGTCTCCGGGTAAA






TLC-L-PLC-Knob
GACATTCAGATGACCCAATCCCCCTCTAGCCTTTCAGCCTCCGTAG
503



GGGACAGAGTTACAATAACCTGTAGGGCTAGTCAGGACGTTAATA




CAGCAGTCGCATGGTACCAGCAGAAGCCCGGTAAGGCTCCTAAGCT




TTTGATCTACAGTGCTTCTTTCCTGTATTCTGGTGTACCTAGCCGA




TTCTCAGGCTCTCGGAGTGGCACAGACTTCACTCTGACAATTTCAA




GTCTCCAGCCAGAAGATTTTGCAACCTACTACTGCCAACAACACT




ACACTACTCCTCCAACCTTCGGATGTGGCACAAAAGTAGAGATTA




AGCGTACGGTGGCTGCTCCATCCGTTTTTATCTTTCCCCCAGATAT




TCAAATGACCCAAAGTCCAAGTTCCCTTTCAGCATCTGTCGGTGAT




CGAGTCACTATAACTTGTAAGGCCAGCCAAGACGTTAGCATAGGA




GTAGCATGGTACCAACAAAAGCCTGGGAAGGCTCCCAAACTTCTC




ATTTATTCTGCTTCCTACCGATATACTGGTGTCCCAAGTAGATTTT




CTGGCAGCGGATCTGGAACTGATTTTACATTGACTATCAGCTCCCT




CCAGCCTGAGGACTTCGCTACTTATTACTGCCAACAGTACTACATT




TATCCCTATACATTCGGTTGTGGGACCAAAGTAGAGATCAAACGT




ACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGC




AGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTT




CTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCT




TCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCA




AAGATTCCACTTACAGTCTGTCCAGCACATTGACACTGAGTAAGG




CTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGACACAC




CAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAA




TGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGG




TAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCACCGTG




CCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC




CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC




ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAA




GTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC




AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCA




GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGT




ACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA




AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG




TACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTC




AGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC




GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGAC




CACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAG




CAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT




CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCA




GAAGAGCCTCTCCCTGTCTCCGGGTAAA




















TABLE 34







VH1-linker-VH2-
VL1-linker-VL2-




CH1-Fc(Knob)
CL-linker-Fc(Knob)
Fc(Hole)



















HP501
SEQ ID NO: 51
SEQ ID NO: 59
SEQ ID NO: 7


HP502
SEQ ID NO: 52
SEQ ID NO: 60
SEQ ID NO: 7


HP503
SEQ ID NO: 53
SEQ ID NO: 61
SEQ ID NO: 7


HP504
SEQ ID NO: 54
SEQ ID NO: 62
SEQ ID NO: 7


HP505
SEQ ID NO: 51
SEQ ID NO: 63
SEQ ID NO: 7


HP506
SEQ ID NO: 52
SEQ ID NO: 64
SEQ ID NO: 7


HP507
SEQ ID NO: 53
SEQ ID NO: 65
SEQ ID NO: 7


HP508
SEQ ID NO: 54
SEQ ID NO: 66
SEQ ID NO: 7


HP509
SEQ ID NO: 55
SEQ ID NO: 59
SEQ ID NO: 7


HP510
SEQ ID NO: 56
SEQ ID NO: 60
SEQ ID NO: 7


HP511
SEQ ID NO: 57
SEQ ID NO: 61
SEQ ID NO: 7


HP512
SEQ ID NO: 58
SEQ ID NO: 62
SEQ ID NO: 7


HP513
SEQ ID NO: 55
SEQ ID NO: 63
SEQ ID NO: 7


HP514
SEQ ID NO: 56
SEQ ID NO: 64
SEQ ID NO: 7


HP515
SEQ ID NO: 57
SEQ ID NO: 65
SEQ ID NO: 7


HP516
SEQ ID NO: 58
SEQ ID NO: 66
SEQ ID NO: 7









Purity was analyzed by size exclusion chromatography in the same manner as described in Example 1 (FIG. 27, Table 35). The analysis showed that HP503, HP507, HP511, and HP515, in which the first V domain is wild type and the second V domain is Cys substituted variant (VH 44C, VL 100C), have an excellent purity (FIG. 27, Table 35).












TABLE 35







Clone name
Monomer purity (%)



















HP501
93.06



HP502
94.91



HP503
96.45



HP504
86.77



HP505
92.94



HP506
82.89



HP507
97.31



HP508
57.51



HP509
90.88



HP510
86.56



HP511
96.95



HP512
68.52



HP513
89.89



HP514
79.31



HP515
96.20



HP516
58.07










The binding constants of HP501, HP502, HP503, HP504, HP505, HP506, HP507, HP508, HP509, HP510, HP511, HP512, HP513, HP514, HP515, and HP516 to D2 region and D4 region in HER2 protein were determined using the Octet Red96e (Sartorius). In order to analyze the binding constants of the sixteen antibodies to the D2 region, the human HER2 recombinant protein (R&D systems, 1129-ER) was loaded onto the Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120) and then saturated with 100 nM trastuzumab which targets the D4 region. Thereafter, the sixteen antibodies were added in a binding reaction (300 seconds) and a dissociation reaction (600 seconds) at a concentration of 100 nM, and their affinities for the D2 region were calculated (Table 36). In order to analyze the binding constants of the sixteen antibodies to the D4 region, the human HER2 recombinant protein (R&D systems, 1129-ER) was loaded onto the Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120), and then saturated with 100 nM pertuzumab which targets the D2 region. Thereafter, the sixteen antibodies were added in a binding reaction (300 seconds) and a dissociation reaction (600 seconds) at a concentration of 100 nM, and their affinities for the D4 region were calculated (Table 36). The binding constants of HP507, HP511, and HP515 to D2 region were 2.285, 3.267, and 2.012 nM, respectively, showing excellent binding affinities to the D2 region compared to other clones (Table 36). HP503 has a binding constant of 8.098 nM to the D2 region and shows a relatively low binding ability to the D2 region compared to HP507, HP511, and HP515. However, it was found that when measuring the binding constant to the D4 region, the binding constants of HP503, HP507, HP511, and HP515 were 0.181, 0.228, 0.162, and 0.227 nM, respectively, demonstrating strong binding affinity Table 36).











TABLE 36







100 nM




Single
Binding kinetics of mAbs to D2 epitope
Binding kinetics of mAbs to D4 epitope













Kinetics
KD (nM)
Ka (1/Ms)
Kd (1/s)
KD (nM)
Ka (1/Ms)
Kd (1/s)
















HP501
13.009
8.05E+03
1.05E−04
0.218
2.00E+05
4.36E−05


HP502
8.433
8.97E+03
7.56E−05
0.531
1.47E+05
7.82E−05


HP503
8.098
4.69E+03
3.80E−05
0.181
2.14E+05
3.87E−05


HP504
7.304
2.53E+04
1.85E−04
0.788
1.13E+05
8.94E−05


HP505
5.882
1.41E+04
8.30E−05
0.586
1.50E+05
8.79E−05


HP506
5.682
1.21E+04
6.89E−05
0.611
1.37E+05
8.37E−05


HP507
2.285
1.85E+04
4.23E−05
0.228
1.99E+05
4.53E−05


HP508
6.490
2.36E+04
1.53E−04
1.219
8.44E+04
1.03E−04


HP509
7.962
1.33E+04
1.06E−04
0.393
1.72E+05
6.77E−05


HP510
10.736
9.86E+03
1.06E−04
0.336
1.97E+05
6.60E−05


HP511
3.267
1.47E+04
4.81E−05
0.162
2.27E+05
3.67E−05


HP512
7.615
2.80E+04
2.13E−04
0.667
1.12E+05
7.47E−05


HP513
4.739
2.17E+04
1.03E−04
0.381
1.95E+05
7.43E−05


HP514
5.920
1.78E+04
1.06E−04
0.451
1.74E+05
7.82E−05


HP515
2.012
2.89E+04
5.81E−05
0.227
2.14E+05
4.87E−05


HP516
5.094
3.29E+04
1.67E−04
0.607
1.23E+05
7.46E−05









The binding constants of HP503, HP507, HP511, and P515 to the HER2 extracellular domain (ECD) were measured using Octet Red96e (Sartorius). The human HER2 recombinant protein (R&D systems, 1129-ER) was loaded onto the Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120). HP503 or P57 or P5 or) P515 at a concentration of 0.25, 0.5, 1, 2, 4, or 8 nM were added in a binding reaction (600 seconds) and a dissociation reaction (1,800 seconds) in the sensor loaded with the HER2 protein, and the binding constants were calculated (FIGS. 28a to 28d, Table 37). It was found that HP507, HP511, and HP515 had a dissociation constant (<1.0E-07 1/s) that exceeded the measurement limit of the equipment under the following analysis conditions (FIGS. 28a to 28d, Table 37).













TABLE 37







KD (nM)
Ka (1/Ms)
Kd (1/s)





















HP503
6.57E−12
4.69E+05
3.08E−06



HP507
<1.0E−12
4.58E+05
<1.0E−07



HP511
<1.0E−12
5.20E+05
<1.0E−07



HP515
<1.0E−12
4.14E+05
<1.0E−07










The measured binding constants of HP503, HP507, HP511, and BP515 to Fcγ receptors were analyzed using Octet Red96e (Sartorius) in the same manner as described in Example 10 (FIGS. 29a to 29d, Table 38). The analysis showed that HP503, HP507, HP511, and BP515 have excellent binding affinities to FcγRI (CD64), FcγRIIA (CD32A, 131R), and FcγRIIIA (CD16A, 176V) compared to human IgG1, trastuzumab, pertuzumab, and margetuximab (FIGS. 21a to 21h, FIGS. 22a to 22h, FIGS. 23a to 23h, FIGS. 29a to 29d, and Tables 29 and 38).













TABLE 38









FcγRI (CD64)
FcγRIIA (CD32A, 131R)
FcγRIIIA (CD16A, 176V)
















Antigen
KD
Ka
Kd
KD
Ka
Kd
KD
Ka
Kd


Antibody
(nM)
(1/Ms)
(1/s)
(nM)
(1/Ms)
(1/s)
(nM)
(1/Ms)
(1/s)



















HP503
0.22
3.46E+05
7.67E−05
3.69
1.58E+06
5.81E−03
2.42
6.60E+05
1.60E−03


HP507
0.20
3.19E+05
6.37E−05
3.38
1.39E+06
4.70E−03
2.45
6.33E+05
1.55E−03


HP511
0.22
3.00E+05
6.63E−05
4.40
1.48E+06
6.53E−03
2.56
6.19E+05
1.58E−03


HP515
0.20
3.05E+05
6.13E−05
13.31
1.25E+06
4.15E−03
2.31
5.70E+05
1.32E−03









The binding constants of HP503, HP507, BP511, and BP515 to the neonatal Fc receptor (FcRn) were measured using Octet Red96e (Sartorius). HP503, HP507, BP511, HP515, human IgG1 (Bio X cell, BE0297), trastuzumab, pertuzumab, and margetuximab were loaded onto the anti-human Fab-CH1 2nd generation (FAB2G) biosensor (Sartorius, 18-5126), and a binding and a dissociation time were set to be 120 seconds, respectively (FIGS. 30a to 30b, Table 39). For analysis, Kinetics Buffer (Sartorius, 18-1105) was used at pH 6.0.














TABLE 39







Antibodies
KD (nM)
Ka (1/Ms)
Kd (1/s)





















HP503
219.28
6.43E+04
1.41E−02



HP507
190.85
6.64E+04
1.27E−02



HP511
306.41
6.46E+04
1.98E−02



HP515
193.12
6.98E+04
1.35E−02



Human IgG1
149.02
9.78E+05
1.46E−01



Trastuzumab
283.94
5.23E+05
1.49E−01



Pertuzumab
321.85
4.79E+04
1.54E−02



Margetuximab
282.64
4.04E+04
1.14E−02










Example 13. Analysis of Complement-Dependent Cytotoxicity

For the analysis of complement-dependent cytotoxicity, BT474 (HER2 3+; high) breast cancer cell line and NCI-N87 (HER2 3+; high) gastric cancer cell line were used. The cells were diluted in cell culture medium and dispensed in a 96-well plate at 10,000 cells per well. The cells, antibodies, and human serum (Sigma, H4522) were each reacted at a volume ratio of 1:1:1.


In order to identify a dose-response relationship, human IgG1, trastuzumab (TRA), trastuzumab+pertuzumab (TRA+PER), H01, and H01+P01 were serially diluted by a factor of two six times from initial concentration of 1200 nM, and the reaction was carried out from 400 nM (another three-fold dilution when dispensed). The human serum was diluted and dispensed in the culture medium to a final concentration of 25%, and the mixture of the cells, antibodies, and human serum was incubated for 5 hours in a humidified incubator at 37° C. and 5% (v/v) C02 conditions.


Cell Titer Glo-Reagent (Promega, G9243) previously dissolved at 4° C. was dispensed into each well in an equal volume of the mixed culture medium, and then the cell lysis was induced using a plate shaker (Allsheng, MX100-4A) with agitation at 500 rpm for 2 minutes. In order to stabilize the luminescence signal, the mixture was incubated at room temperature for 10 minutes and then analyzed using a plate reader equipment (Envision; PerkinElmer, 2105-0010) (FIGS. 31a to 31b). The complement-dependent cytotoxicity activity (CDC activity) was calculated as follows.










C

D

C


activity



(
%
)


=

100
×

[

1
-

(

luminescence


with


experimental


antibody
/

luminiscence


without


antibody

)


]








Equation


1









Human IgG1, trastuzumab (TRA), trastuzumab+pertuzumab (TRA+PER), and H01 did not induce CDC responses in BT474 and NCI-N87 cell lines (FIGS. 31a to 31b). It was shown that CDC is induced in both cell lines only when H01 is treated in combination with P01 (FIGS. 31a to 31b).


Example 14. Analysis of Antibody-Dependent Cytotoxicity

NCI-N87 (HER2 3+; high), MDA-MB-453(HER2 2+; Mid), SNU-601 (HER2 1+; low), and SNU-5 (HER2 1+; low) cancer cell lines were used for antibody-dependent cell-mediated cytotoxicity analysis (FIGS. 32a, 32b, 32c, and 32d). Each cancer cell line was seeded at 1.0×104 cells/well in a 96-well plate. Thereafter, each antibody was diluted and treated in culture medium to an appropriate concentration. Peripheral blood mononuclear cells (PBMC) isolated on the same day were used as effector cells and treated at 1.5×105 cells/well to make the number of PBMC 15 times more than the number of target cells (E:T ratio=15:1).


After treatment, the cells were incubated for 18 hours in a humidified incubator at 37° C. and 5% (v/v) C02 conditions, and then cytotoxicity was measured using a cytotoxicity detection kit (LDH) (Roche, 11644793001) (FIGS. 32a, 32b, 32c, and 32d). Cytotoxicity was calculated using the following formula for antibody-dependent cytotoxicity.





Cytotoxicity (%)=[(Test release-spontaneous release)/(Maximum release-spontaneous release)]×100  <Equation 2>


H01 showed excellent cytotoxicity at a low concentration compared to trastuzumab in NCI-N87 (HER2 3+; high) and MDA-MB-453 (HER2 2+; Mid) cancer cell lines (FIGS. 32a and 32b). Cytotoxicity analysis in SNU-601 (HER2 1+; low) and SNU-5 (HER2 1+; low) cancer cell lines H01 showed excellent cytotoxicity of H01 compared to that of trastuzumab (FIGS. 32c and 32d).


Example 15. Evaluation of Efficacy in Xenograft Mouse Models

Efficacy in the SNU-5 (HER2 1+; low) gastric cancer cell line-derived xenograft model was evaluated using 6-week-old female SCID mice (C.B-17/NcrKoat-Prkdcscid, Koatech) (FIG. 33a). The SNU-5 cancer cell line was diluted in PBS at 1×107 cells/100 μL and mixed with MATRIGEL® Growth Factor Reduced (GFR) Basement Membrane Matrix (Corning, 354230) at a ratio of 1:1, and 100 μL of the mixture was transplanted subcutaneously into the right flank, and tumor growth was monitored. Mice were regrouped so that the average tumor volume was about 107 mm3, and PBS (vehicle), 5 mg/kg H01, 5 mg/kg H01+5 mg/kg P01, 5 mg/kg HP507, 5 mg/kg trastuzumab, 5 mg/kg trastuzumab+5 mg/kg pertuzumab were administered intravenously (I.V.) once a week for a total of 6 weeks (FIG. 33a). According to the analysis, H01 alone showed superior antitumor activity compared to trastuzumab and trastuzumab+pertuzumab (FIG. 33a). It was shown that H01+P01 induces improved antitumor activity compared to H01 alone, and HP507 induces the strongest antitumor activity in the SNU-5 gastric cancer xenograft model (FIG. 33a).


In addition, efficacy in the SNU-5 (HER2 1+; low) gastric cancer cell line-derived xenograft model was evaluated using 6-week-old female BALB/c-nu mice (ORIENT BIO INC.) (FIG. 33b). The SNU-5 cancer cell line was diluted in PBS at 1×107 cells/100 μL and mixed with MATRIGEL® Growth Factor Reduced (GFR) Basement Membrane Matrix (Corning, 354230) at a ratio of 1:1, and 100 μL of the mixture was transplanted subcutaneously into the right flank, and tumor growth was observed. Mice were regrouped so that the average tumor volume was about 122 mm3, and 50 mg/kg Intravenous Immunoglobulin (IVIG; LIV-r, SK Plasma) was administered to all mice twice a week for 6 weeks (FIG. 33b). PBS (vehicle), 1 mg/kg trastuzumab, 1 mg/kg pertuzumab, 0.5 mg/kg trastuzumab+0.5 mg/kg pertuzumab, 1 mg/kg H01, 1 mg/kg P01, and 0.5 mg/kg H01+0.5 mg/kg P01 were administered intraperitoneally (I.P.) twice a week for a total of 6 weeks (FIG. 33b). The analysis showed that H01, P01, and H01+P01 induce superior antitumor activity compared to trastuzumab, pertuzumab, and trastuzumab+pertuzumab (FIG. 33b).


Efficacy in the SNU-601 (HER2 1+; low) gastric cancer cell line-derived xenograft model was evaluated using 6-week-old female SCID mice (C.B-17/NcrKoat-Prkdcscid, Koatech). The SNU-5 cancer cell line was diluted in PBS at 1×107 cells/100 μL and mixed with MATRIGEL® Growth Factor Reduced (GFR) Basement Membrane Matrix (Corning, 354230) at a ratio of 1:1, and 100 μL of the mixture was transplanted subcutaneously into the right flank, and tumor growth was observed. Mice were regrouped so that the average tumor volume was about 142 mm3, and PBS (vehicle), 5 mg/kg H01, 5 mg/kg trastuzumab, and 5 mg/kg trastuzumab+5 mg/kg pertuzumab were administered intraperitoneally (I.P.) twice a week for a total of 6 weeks (FIG. 34). Since there are no antibodies present in the blood of the SCID mice, 50 mg/kg Intravenous Immunoglobulin (IVIG; LIV-r, SK Plasma) was administered to all mice twice a week for 6 weeks to simulate the actual human blood environment (FIG. 34). In the SNU-601 gastric cancer xenograft model, H01 alone induced most superior antitumor activity (FIG. 34).


Efficacy in the NCI-N87 (HER2 3+; high) gastric cancer cell line-derived xenograft model was evaluated using 6-week-old female SCID mice (C.B-17/NcrKoat-Prkdcscid, Koatech). The NCI-N87 cancer cell line was diluted in PBS at 5×106 cells/100 μL and mixed with MATRIGEL® Growth Factor Reduced (GFR) Basement Membrane Matrix (Corning, 354230) at a ratio of 1:1, and 100 μL of the mixture was transplanted subcutaneously into the right flank, and tumor growth was observed. Mice were regrouped so that the average tumor volume was about 146 mm3, and PBS (vehicle), 0.2 mg/kg H01, 5 mg/kg H01, 0.2 mg/kg trastuzumab, and 5 mg/kg trastuzumab were administered intraperitoneally (I.P.) twice a week for a total of 6 weeks (FIG. 35). Since there are no antibodies present in the blood of the SCID mice, 50 mg/kg Intravenous Immunoglobulin (IVIG; LIV-r, SK Plasma) was administered to all mice twice a week for 6 weeks to simulate the actual human blood environment (FIG. 35). The analysis showed that H01 induces superior antitumor activity compared to trastuzumab when the antibodies were administered at 5 mg/kg and at 0.2 mg/kg (FIG. 35).


Example 16. Evaluation of Antitumor Activity in CT26-HER2 Syngeneic Mouse Model

The nucleotide (SEQ ID NO: 566, Table 40) encoding the human HER2 protein (SEQ ID NO: 567, Table 40) was cloned into a protein expression vector (ORIGENE, PS100020) containing a neomycin-resistance gene to construct the human HER2 expression vector pCMV6-AC-hHER2 (FIG. 36, Table 40).











TABLE 40





Name
Sequence
SEQ ID NO







Human HER2
ATGGAGCTGGCGCCTTGTGCCGCTGGGGGCTCCTCCTCGCCCTCTTGCCCCCCGGAGC
566


nucleotide
CGCGAGCACCCAAGTGTGCACCGGCACAGACATGAAGCTGCGGCTCCCTGCCAGTCCCG



sequence
AGACCCACCTGGACATGCTCCGCCACCTCTACCAGGGCTGCCAGGTGGTGCAGGGAAAC




CTGGAACTCACCTACCTGCCCACCAATGCCAGCCTGTCCTTCCTGCAGGATATCCAGGA




GGTGCAGGGCTACGTGCTCATCGCTCACAACCAAGTGAGGCAGGTCCCACTGCAGAGGC




TGCGGATTGTGCGAGGCACCCAGCTCTTTGAGGACAACTATGCCCTGGCCGTGCTAGAC




AATGGAGACCCGCTGAACAATACCACCCCTGTCACAGGGGCCTCCCCAGGAGGCCTGCG




GGAGCTGCAGCTTCGAAGCCTCACAGAGTCTTGAAAGGAGGGGTCTTGATCCAGCGGA




ACCCCCAGCTCTGCTACCAGGACACGATTTTGTGGAAGGACATCTTCCACAAGAACAAC




CAGCTGGCTCTCACACTGATAGACACCAACCGCTCTCGGGCCTGCCACCCCTGTTCTCC




GATGTGTAAGGGCTCCCGCTGCTGGGGAGAGAGTTCTGAGGATTGTCAGAGCCTGACGC




GCACTGTCTGTGCCGGTGGCTGTGCCCGCTGCAAGGGGCCAGCCCACTGACTGCTGC




CATGAGCAGTGTGCTGCCGGCTGCACGGGCCCCAAGCACTCTGACTGCCTGGCCTGCCT




CCACTTCAACCACAGTGGCATCTGTGAGCTGCACTGCCCAGCCCTGGTCACCTACAACA




CAGACACGTTTGAGTCCATGCCCAATCCCGAGGGCCGGTATACATTCGGCGCCAGCTGT




GTGACTGCCTGTCCCTACAACTACCTTTCTACGGACGTGGGATCCTGCACCCTCGTCTG




CCCCCTGCACAACCAAGAGGTGACAGCAGAGGATGGAACACAGCGGTGTGAGAAGTGCA




GCAAGCCCTGTGCCCGAGTGTGCTATGGTCTGGGCATGGAGCACTTGCGAGAGGTGAGG




GCAGTTACCAGTGCCAATATCCAGGAGTTTGCTGGCTGCAAGAAGATCTTTGGGAGCCT




GGCATTTCTGCCGGAGAGCTTTGATGGGGACCCAGCCTCCAACACTGCCCCGCTCCAGC




CAGAGCAGCTCCAAGTGTTTGAGACTCTGGAAGAGATCACAGGTTACCTATACATCTCA




GCATGGCCGGACAGCCTGCCTGACCTCAGCGTCTTCCAGAACCTGCAAGTAATCCGGGG




ACGAATTCTGCACAATGGCGCCTACTCGCTGACCCTGCAAGGGCTGGGCATCAGCTGGC




TGGGGCTGCGCTCACTGAGGGAACTGGGCAGTGGACTGGCCCTCATCCACCATAACACC




CACCTCTGCTTCGTGCACACGGTGCCCTGGGACCAGCTCTTTCGGAACCCGCACCAAGC




TCTGCTCCACACTGCCAACCGGCCAGAGGACGAGTGTGTGGGCGAGGGCCTGGCCTGCC




ACCAGCTGTGCGCCCGAGGGCACTGCTGGGGTCCAGGGCCCACCCAGTGTGTCAACTGC




AGCCAGTTCCTTCGGGGCCAGGAGTGCGTGGAGGAATGCCGAGTACTGCAGGGGCTCCC




CAGGGAGTATGTGAATGCCAGGCACTGTTTGCCGTGCCACCCTGAGTGTCAGCCCCAGA




ATGGCTCAGTGACCTGTTTTGGACCGGAGGCTGACCAGTGTGTGGCCTGTGCCCACTAT




AAGGACCCTCCCTTCTGCGTGGCCCGCTGCCCCAGCGGTGTGAAACCTGACCTCTCCTA




CATGCCCATCTGGAAGTTTCCAGATGAGGAGGGCGCATGCCAGCCTTGCCCCATCAACT




GCACCCACTCCTGTGTGGACCTGGATGACAAGGGCTGCCCCGCCGAGCAGAGAGCCAGC




CCTCTGACGTCCATCATCTCTGCGGTGGTTGGCATTCTGCTGGTCGTGGTCTTGGGGGT




GGTCTTTGGGATCCTCATCAAGCGACGGCAGCAGAAGATCCGGAAGTACACGATGCGGA




GACTGCTGCAGGAAACGGAGCTGGTGGAGCCGCTGACACCTAGCGGAGCGATGCCCAAC




CAGGCGCAGATGCGGATCCTGAAAGAGACGGAGCTGAGGAAGGTGAAGGTGCTTGGATC




TGGCGCTTTTGGCACAGTCTACAAGGGCATCTGGATCCCTGATGGGGAGAATGTGAAAA




TTCCAGTGGCCATCAAAGTGTTGAGGGAAAACACATCCCCCAAAGCCAACAAAGAAATC




TTAGACGAAGCATACGTGATGGCTGGTGTGGGCTCCCCATATGTCTCCCGCCTTCTGGG




CATCTGCCTGACATCCACGGTGCAGCTGGTGACACAGCTTATGCCCTATGGCTGCCTCT




TAGACCATGTCCGGGAAAACCGCGGACGCCTGGGCTCCCAGGACCTGCTGAACTGGTGT




ATGCAGATTGCCAAGGGGATGAGCTACCTGGAGGATGTGCGGCTCGTACACAGGGACTT




GGCCGCTCGGAACGTGCTGGTCAAGAGTCCCAACCATGTCAAAATTACAGACTTCGGGC




TGGCTCGGCTGCTGGACATTGACGAGACAGAGTACCATGCAGATGGGGGCAAGGTGCCC




ATCAAGTGGATGGCGCTGGAGTCCATTCTCCGCCGGCGGTTCACCCACCAGAGTGATGT




GTGGAGTTATGGTGTGACTGTGTGGGAGCTGATGACTTTTGGGGCCAAACCTTACGATG




GGATCCCAGCCCGGGAGATCCCTGACCTGCTGGAAAAGGGGGAGCGGCTGCCCCAGCCC




CCCATCTGCACCATTGATGTCTACATGATCATGGTCAAATGTTGGATGATTGACTCTGA




ATGTCGGCCAAGATTCCGGGAGTTGGTGTCTGAATTCTCCCGCATGGCCAGGGACCCCC




AGCGCTTTGTGGTCATCCAGAATGAGGACTTGGGCCCAGCCAGTCCCTTGGACAGCACC




TTCTACCGCTCACTGCTGGAGGACGATGACATGGGGGACCTGGTGGATGCTGAGGAGTA




TCTGGTACCCCAGCAGGGCTTCTTCTGTCCAGACCCTGCCCCGGGCGCTGGGGGCATGG




TCCACCACAGGCACCGCAGCTCATCTACCAGGAGTGGCGGTGGGGACCTGACACTAGGG




CTGGAGCCCTCTGAAGAGGAGGCCCCCAGGTCTCCACTGGCACCCTCCGAAGGGGCTGG




CTCCGATGTATTTGATGGTGACCTGGGAATGGGGGCAGCCAAGGGGCTGCAAAGCCTCC




CCACACATGACCCCAGCCCTCTACAGCGGTACAGTGAGGACCCCACAGTACCCCTGCCC




TCTGAGACTGATGGCTACGTTGCCCCCCTGACCTGCAGCCCCCAGCCTGAATATGTGAA




CCAGCCAGATGTTCGGCCCCAGCCCCCTTCGCCCCGAGAGGGCCCTCTGCCTGCTGCCC




GACCTGCTGGTGCCACTCTGGAAAGGCCCAAGACTCTCTCCCCAGGGAAGAATGGGGTC




GTCAAAGACGTTTTTGCCTTTGGGGGTGCCGTGGAGAACCCCGAGTACTTGACACCCCA




GGGAGGAGCTGCCCCTCAGCCCCACCCTCCTCCTGCCTTCAGCCCAGCCTTCGACAACC




TCTATTACTGGGACCAGGACCCACCAGAGCGGGGGGCTCCACCCAGCACCTTCAAAGGG




ACACCTACGGCAGAGAACCCAGAGTACCTGGGTCTGGACGTGCCAGTG






Human HER2
MELAALCRWGLLLALLPPGAASTQVCTGTDMKLRLPASPETHLDMLRHLYQGCQVVGN
567


protein
LELTYLPTNASLSFLQDIQEVQGYVLIAHNQVRQVPLQRLRIVRGTQLFEDNYALAVLD



sequence
NGDPLNNTTPVTGASPGGLRELQLRSLTEILKGGVLIQRNPQLCYQDTILWKDIFHKNN




QLALTLIDTNRSRACHPCSPMCKGSRCWGESSEDCQSLTRTVCAGGCARCKGPLPTDCC




HEQCAAGCTGPKHSDCLACLHFNHSGICELHCPALVTYNTDTFESMPNPEGRYTFGASC




VTACPYNYLSTDVGSCTLVCPLHNQEVTAEDGTQRCEKCSKPCARVCYGLGMEHLREVR




AVTSANIQEFAGCKKIFGSLAFLPESFDGDPASNTAPLQPEQLQVFETLEEITGYLYIS




AWPDSLPDLSVFQNLQVIRGRILHNGAYSLTLQGLGISWLGLRSLRELGSGLALIHHNT




HLCFVHTVPWDQLFRNPHQALLHTANRPEDECVGEGLACHQLCARGHCWGPGPTQCVNC




SQFLRGQECVEECRVLQGLPREYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHY




KDPPFCVARCPSGVKPDLSYMPIWKFPDEEGACQPCPINCTHSCVDLDDKGCPAEQRAS




PLTSIISAVVGILLVVVLGVVFGILIKRRQQKIRKYTMRRLLQETELVEPLTPSGAMPN




QAQMRILKETELRKVKVLGSGAFGTVYKGIWIPDGENVKIPVAIKVLRENTSPKANKEI




LDEAYVMAGVGSPYYSRLLGICLTSTVQLVTQLMPYGCLLDHVRENRGRLGSQDLLNWC




MQIAKGMSYLEDVRLVHRDLAARNVLVKSPNHVKITDFGLARLLDIDETEYHADGGKVP




IKWMALESILRRRFTHQSDVWSYGVTVWELMTFGAKPYDGIPAREIPDLLEKGERLPQP




PICTIDVYMIMVKCWMIDSECRPRFRELVSEFSRMARDPQRFVVIQNEDLGPASPLDST




FYRSLLEDDDMGDLVDAEEYLVPQQGFFCPDPAPGAGGMVHHRHRSSSTRSGGGDLTLG




LEPSEEEAPRSPLAPSEGAGSDVFDGDLGMGAAKGLQSLPTHDPSPLQRYSEDPTVPLP




SETDGYVAPLTCSPQPEYVNQPDVRPQPPSPREGPLPAARPAGATLERPKTLSPGKNGV




VKDVFAFGGAVENPEYLTPQGGAAPQPHPPPAFSPAFDNLYYWDQDPPERGAPPSTFKG




TPTAENPEYLGLDVPV









The mouse large intestine-derived CT26 cancer cells were transfected with the pCMV6-AC-hHER2 human HER2 expression vector using the lipofectamine 2000 transfection reagent (Invitrogen, 11668-019). Only cells transfected with the pCMV6-AC-hHER2 human HER2 expression vector were selected by incubating the transfected cells in culture medium containing 1 mg/mL G418 (Invivogen, ant-gn-5) for 14 days. The top 3% clones in terms of HER2 expression was sorted into a 96-well plate (ThermoFisher, 167008) with 1 cell per well using SH800S Cell Sorter (SONY). Selection was performed by incubation in G418-containing medium for 21 days, and a total of 8 CT26 mouse large intestine cancer cell line clones expressing human HER2 were obtained, and human HER2 expression in these cells was monitored by flow cytometer (BD Biosciences, FACSverse) analysis after staining with the anti-human HER2-BV421 (BD, 744811) (FIG. 37, Table 41).









TABLE 41





ΔGMFI (of unstained control)


















#1-24
27.3



#1-66
3.7



#2-50
19.1



#2-60
25.9



#2-78
7.5



#2-91
17.5



#4-14
26.8



#4-46
6.5










Alter subculturing six times tor 20 days in a (G418-free environment, the cells were stained with the anti-human HER2-BV421 (BD, 744811), and the level of human HER2 expression was measured. It was shown that the level of human HER2 expression was not reduced in cells grown without G418 compared to cells grown with G418 (FIG. 38, Table 42).









TABLE 42





ΔGMFI (of unstained control)


















#1-24
27.3



#1-66
3.7



#2-50
19.1



#2-60
25.9



#2-78
7.5



#2-91
17.5



#4-14
26.8



#4-46
6.5










To compare the cell surface Fc loads among the parental CT26, CT26-HER2 cell line (Clone #2-60) and human cancer cell lines (SNU5, SNU601, and NCI-N87), each cell was allowed to bind to 100 nM human IgG1 (Bio X cell, BE0297), 100 nM trastuzumab (TRA), and 100 nM H01 antibody at 4° C. for 30 minutes in a 96-well v-bottom plate (Corning, 3363). Thereafter, they were treated with the Alexa 488 fluorescence-conjugated anti-human IgG Fcγ Fab antibody (Jackson ImmunoResearch, 109-547-008), and the Fc loads on the cells were quantified using a flow cytometer (FIG. 39, Table 43). CT26-HER2 cell line (Clone #2-60) was shown to express human HER2 at a level similar to that of SNU5 (FIG. 39, Table 43). In addition, it was shown that in the CT26-HER2 cell line, treatment of 100 nM H01 results in increased Fc loads on the cell surface compared to that of 100 nM trastuzumab (TRA).














TABLE 43







CT26-HER2





GMFI
CT26
(#2-60)
SNU5
SNU601
NCI-N87




















2nd only
99
102
94
97
116


100 nM IgG1
176
150
101
173
132


isotype


100 nM
252
959
991
1642
162433


Trastuzumab


100 nM H01
147
1907
2028
3703
243897









Efficacy in the CT26-HER2 (Clone #2-60) syngeneic mouse model was evaluated using 6-week-old female Balb/c mice (ORIENT BIO INC.). PBS (vehicle), 5 mg/kg trastuzumab, and 5 mg/kg H01 were administered intraperitoneally (I.P.) twice a week for a total of 2 weeks (FIG. 40). The analysis showed that H01 induces superior antitumor activity compared to trastuzumab (FIG. 40).


Example 17. Design, Preparation and Analysis of Novel Antibody Targeting Glypican-3 (GPC3)

The variant light chain and heavy chain polypeptide sequences of the antibodies that specifically recognize the glypican-3 (GPC-3) protein are shown in Table 44. For GPM01, expression vectors consisting of the sequences corresponding to Fc-Hole (SEQ ID NO: 7), GPM01 HC (SEQ ID NO: 67), and GPM01 LC (SEQ ID NO: 68) were co-transfected into EXPICHO-S™ (Gibco, A29127) (FIG. 41a, Table 44), and purification and analysis were performed in the same manner as described in Example 1. Expression, purification and analysis were performed for GPM02, GPM04, GPB01, GPB03, GPB04, and GPB06 in the same manner as mentioned above (FIGS. 41a to 41b, Table 44). GPM01, GPM02, and GPM04 bind monovalently to different epitopes of the antigen and have structures consisting of two Fc domains (FIG. 41a). GPB01, GPB03, GPB04, and GPB06 have structures in which the variable regions of GPM01, GPM02, and GPM04 are linked with a polypeptide linker (SEQ ID NO: 48, SEQ ID NO: 50), and bind biparatopically to GPC-3, and have two Fc domains (FIG. 41b).











TABLE 44





Name
Sequence
SEQ ID NO







GPM01 HC
EVQLVESGGGLVKPGGSLKLSCAASGFTFSRYAMSWVRQIPEKCLE
67



WVAAIDSSGGDTYYLDTVKDRFTISRDNANNTLHLQMRSLRSEDTA




LYYCVRQGGAYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAAL




GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP




SSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL




PAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN




VFSCSVMHEALHNHYTQKSLSLSPGK






GPM01 LC
DVVMTQTPLTLSVTIGQPASISCKSSQSLLDSDGKTYLNWLLQRPGQS
68



PKRLIYLVSKLDSGAPDRFTGSGSGTDFTLKISRVEAEDLGIYYCWQG




THFPLTFGCGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFY




PREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADY




EKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPK




SSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS




HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD




WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMT




KNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






GPM02 HC
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPGQCL
69



EWMGALDPKTGDTAYSQKFKGRVTLTADKSTSTAYMELSSLTSEDT




AVYYCTRFYSYTYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT




VPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA




LPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN




VFSCSVMHEALHNHYTQKSLSLSPGK






GPM02 LC
DVVMTQSPLSLPVTPGEPASISCRSSQSLVHSNRNTYLHWYLQKPGQ
70



SPQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQ




NTHVPPTFGCGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF




YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKAD




YEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEP




KSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD




VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH




QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREE




MTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS




FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






GPM04 HC
EVQLVETGGGLVQPKGSLKLSCAASGFTFNASAMNWVRQAPGKCLE
71



WVARIRSKSNNYAIYYADSVKDRFTISRDDSQSMLYLQMNNLKTED




TAMYYCVRDPGYYGNPWFAYWGQGTLVTVSSASTKGPSVFPLAPSS




KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL




YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTC




PPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK




FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLW




CLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD




KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






GPM04 LC
QIVLTQSPAIMSAFPGEKVTMTCSASSSVSYMYWYQQKSGSSPRLLIY
72



DTSNLASGVPVRFSGSGSGTSYSLTISRMEAEDAATYYCQQWSSYPL




TFGCGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA




KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK




VYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSSDK




THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED




PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN




GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQ




VSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






GPB01 HC
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPGQGL
73



EWMGALDPKTGDTAYSQKFKGRVTLTADKSTSTAYMELSSLTSEDT




AVYYCTRFYSYTYWGQGTLVTVSSASTKGPSVFPLAPEVQLVESGG




GLVKPGGSLKLSCAASGFTFSRYAMSWVRQIPEKCLEWVAAIDSSGG




DTYYLDTVKDRFTISRDNANNTLHLQMRSLRSEDTALYYCVRQGGA




YWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE




PVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC




NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP




KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA




LHNHYTQKSLSLSPGK






GPB01 LC
DVVMTQSPLSLPVTPGEPASISCRSSQSLVHSNRNTYLHWYLQKPGQ
74



SPQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQ




NTHVPPTFGQGTKLEIKRTVAAPSVFIFPPDVVMTQTPLTLSVTIGQPA




SISCKSSQSLLDSDGKTYLNWLLQRPGQSPKRLIYLVSKLDSGAPDRF




TGSGSGTDFTLKISRVEAEDLGIYYCWQGTHFPLTFGCGTKLEIKRTV




AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG




NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSP




VTKSFNRGECGGGGSGGGGSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV




HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP




APIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDI




AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF




SCSVMHEALHNHYTQKSLSLSPGK






GPB03 HC
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPGQGL
75



EWMGALDPKTGDTAYSQKFKGRVTLTADKSTSTAYMELSSLTSEDT




AVYYCTRFYSYTYWGQGTLVTVSSASTKGPSVFPLAPEVQLVETGG




GLVQPKGSLKLSCAASGFTFNASAMNWVRQAPGKCLEWVARIRSKS




NNYAIYYADSVKDRFTISRDDSQSMLYLQMNNLKTEDTAMYYCVR




DPGYYGNPWFAYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT




VPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA




LPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN




VFSCSVMHEALHNHYTQKSLSLSPGK






GPB03 LC
DVVMTQSPLSLPVTPGEPASISCRSSQSLVHSNRNTYLHWYLQKPGQ
76



SPQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQ




NTHVPPTFGQGTKLEIKRTVAAPSVFIFPPQIVLTQSPAIMSAFPGEKV




TMTCSASSSVSYMYWYQQKSGSSPRLLIYDTSNLASGVPVRFSGSGS




GTSYSLTISRMEAEDAATYYCQQWSSYPLTFGCGTKLEIKRTVAAPS




VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE




SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS




FNRGECGGGGSGGGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNA




KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE




KTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVE




WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS




VMHEALHNHYTQKSLSLSPGK






GPB04 HC
EVQLVESGGGLVKPGGSLKLSCAASGFTFSRYAMSWVRQIPEKILEW
77



VAAIDSSGGDTYYLDTVKDRFTISRDNANNTLHLQMRSLRSEDTALY




YCVRQGGAYWGQGTLVTVSSASTKGPSVFPLAPQVQLVQSGAEVKK




PGASVKVSCKASGYTFTDYEMHWVRQAPGQCLEWMGALDPKTGDT




AYSQKFKGRVTLTADKSTSTAYMELSSLTSEDTAVYYCTRFYSYTY




WGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP




VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICN




VNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPK




DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPGK






GPB04 LC
DVVMTQTPLTLSVTIGQPASISCKSSQSLLDSDGKTYLNWLLQRPGQS
78



PKRLIYLVSKLDSGAPDRFTGSGSGTDFTLKISRVEAEDLGIYYCWQG




THFPLTFGAGTKLEIKRTVAAPSVFIFPPDVVMTQSPLSLPVTPGEPASI




SCRSSQSLVHSNRNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRFS




GSGSGTDFTLKISRVEAEDVGVYYCSQNTHVPPTFGCGTKLEIKRTV




AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG




NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSP




VTKSFNRGECGGGGSGGGGSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV




HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP




APIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDI




AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF




SCSVMHEALHNHYTQKSLSLSPGK






GPB06 HC
EVQLVETGGGLVQPKGSLKLSCAASGFTFNASAMNWVRQAPGKGLE
79



WVARIRSKSNNYAIYYADSVKDRFTISRDDSQSMLYLQMNNLKTED




TAMYYCVRDPGYYGNPWFAYWGQGTLVTVSSASTKGPSVFPLAPQ




VQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPGQCLE




WMGALDPKTGDTAYSQKFKGRVTLTADKSTSTAYMELSSLTSEDTA




VYYCTRFYSYTYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA




LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV




PSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL




PAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN




VFSCSVMHEALHNHYTQKSLSLSPGK






GPB06 LC
QIVLTQSPAIMSAFPGEKVTMTCSASSSVSYMYWYQQKSGSSPRLLIY
80



DTSNLASGVPVRFSGSGSGTSYSLTISRMEAEDAATYYCQQWSSYPL




TFGGGTKLEIKRTVAAPSVFIFPPDVVMTQSPLSLPVTPGEPASISCRSS




QSLVHSNRNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRFSGSGSG




TDFTLKISRVEAEDVGVYYCSQNTHVPPTFGCGTKLEIKRTVAAPSVF




IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESV




TEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN




RGECGGGGSGGGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWES




NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLSPGK


















TABLE 45





Name
Sequence
SEQ ID NO







GPM01 HC
GAAGTTCAGCTTGTCGAAAGTGGCGGAGGTCTTGTAAAGCCAGGA
504



GGGTCCCTGAAGTTGAGTTGTGCTGCCTCTGGCTTCACCTTTTCAC




GGTATGCCATGTCCTGGGTTCGACAGATACCTGAGAAGTGTCTTG




AATGGGTGGCCGCAATAGACAGTAGCGGTGGTGACACCTATTACC




TCGACACAGTCAAAGACCGCTTTACTATCTCACGCGATAACGCCA




ACAATACCCTGCACTTGCAGATGCGATCACTTCGTTCAGAAGACA




CTGCTCTTTACTATTGTGTACGCCAAGGGGGAGCATACTGGGGTC




AGGGAACACTGGTTACCGTGTCTTCAGCTAGCACCAAAGGACCTA




GTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGAC




AGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGT




CACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACA




TTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGT




TGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTG




CAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAG




TCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCC




CAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCC




AAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCAC




ATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTT




CAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAA




AGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC




GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC




AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAA




ACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTA




CACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCA




GCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCG




TGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC




ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCA




AGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC




TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG




AAGAGCCTCTCCCTGTCTCCGGGTAAA






GPM01 LC
GACGTGGTTATGACTCAGACTCCTCTGACTCTCTCCGTCACTATTG
505



GTCAGCCCGCTTCCATATCATGTAAATCATCACAATCTCTTCTTGA




TAGCGATGGCAAGACTTATTTGAACTGGTTGTTGCAACGCCCAGG




TCAGAGCCCTAAGAGACTTATCTATTTGGTGAGCAAACTCGACAG




CGGTGCACCCGATCGTTTTACCGGAAGCGGCAGCGGCACCGATTT




CACACTGAAGATCAGTAGGGTCGAAGCTGAAGACCTGGGAATCT




ACTACTGCTGGCAAGGTACTCACTTTCCCCTGACTTTCGGCTGCGG




TACTAAACTTGAGATCAAACGTACGGTGGCAGCTCCCAGCGTTTT




TATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCT




GTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTAC




AGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAAGAA




AGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTGTCC




AGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGT




GTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAAC




TAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGG




GCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGAC




AAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGG




GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTC




ATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG




AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGC




GTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTA




CAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA




GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACA




AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG




GGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGG




AGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAA




GGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGG




CAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCC




GACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC




AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAG




GCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCG




GGTAAA






GPM02 HC
CAGGTTCAGCTTGTGCAATCAGGCGCTGAAGTCAAAAAACCAGGA
506



GCAAGCGTGAAAGTAAGCTGTAAGGCTTCCGGTTACACTTTCACC




GATTACGAAATGCACTGGGTACGCCAGGCTCCTGGACAATGTCTG




GAATGGATGGGCGCACTTGATCCAAAAACAGGTGACACTGCTTAC




AGTCAAAAATTCAAAGGTCGTGTCACTCTTACAGCAGATAAGTCC




ACCAGTACCGCTTATATGGAGCTTAGCTCCCTGACTTCCGAGGAC




ACCGCCGTGTATTATTGTACAAGATTCTACTCATATACTTACTGGG




GCCAAGGAACCCTGGTGACAGTGTCATCTGCTAGCACCAAAGGAC




CTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGG




GACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCC




TGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCAT




ACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTT




CTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATACA




TCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAA




AAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGT




GCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCC




CCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGT




CACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA




AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGA




CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTC




AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAG




TACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAG




AAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT




GTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGG




TCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCG




CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG




ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACA




GCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTC




TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG




CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






GPM02 LC
GATGTTGTTATGACTCAGTCACCTCTCTCACTTCCTGTAACCCCTG
507



GTGAACCAGCCTCTATAAGCTGCCGGTCAAGTCAAAGCCTGGTTC




ATAGCAACCGTAACACTTACCTTCACTGGTACTTGCAAAAACCTG




GTCAGTCCCCACAACTCTTGATCTACAAAGTCTCCAATCGCTTCTC




TGGAGTCCCTGACAGGTTTTCTGGTAGTGGATCAGGTACAGACTT




CACTTTGAAAATCAGCCGCGTTGAGGCCGAGGACGTGGGAGTGTA




TTATTGCTCTCAGAATACCCATGTACCCCCAACCTTTGGCTGTGGG




ACTAAACTCGAGATTAAACGTACGGTGGCAGCTCCCAGCGTTTTT




ATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCT




GTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTAC




AGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAAGAA




AGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTGTCC




AGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGT




GTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAAC




TAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGG




GCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGAC




AAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGG




GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTC




ATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG




AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGC




GTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTA




CAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA




GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACA




AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG




GGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGG




AGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAA




GGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGG




CAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCC




GACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC




AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAG




GCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCG




GGTAAA






GPM04 HC
GAAGTGCAACTGGTCGAAACAGGCGGGGGACTGGTACAGCCCAA
508



GGGATCTTTGAAACTTAGTTGTGCTGCTAGTGGGTTTACATTCAAT




GCCTCCGCAATGAACTGGGTAAGACAAGCTCCTGGCAAGTGCCTG




GAATGGGTGGCCCGTATTCGCTCTAAAAGTAATAACTACGCTATT




TATTACGCTGATTCTGTAAAGGATCGGTTTACAATAAGTCGGGAC




GACAGCCAATCCATGCTGTATCTCCAAATGAATAACCTGAAAACA




GAGGATACTGCCATGTACTATTGTGTGCGGGACCCAGGCTATTAC




GGGAATCCCTGGTTCGCCTATTGGGGACAGGGCACTCTGGTTACC




GTATCATCAGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCC




CTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCC




TGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTC




TGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAA




AGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAA




GCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACAAAC




CCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTG




ACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGG




GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCC




TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACG




TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG




GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAG




TACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCAC




CAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAA




CAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAA




AGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCG




GGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCA




AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATG




GGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACT




CCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGA




GCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATG




AGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTC




CGGGTAAA






GPM04 LC
CAAATTGTCCTCACCCAATCACCAGCTATAATGTCTGCTTTTCCCG
509



GCGAGAAAGTAACCATGACTTGTAGCGCCTCTAGTAGCGTGTCAT




ATATGTATTGGTATCAACAAAAGAGCGGTAGTTCACCTCGACTCC




TTATCTACGACACAAGTAATCTCGCTAGTGGTGTCCCAGTCCGTTT




CTCCGGGAGCGGCAGCGGCACATCATACTCCCTGACCATCTCCAG




AATGGAGGCCGAGGACGCTGCCACATACTATTGTCAGCAGTGGAG




CTCATATCCTTTGACATTCGGTTGCGGTACTAAACTCGAAATCAAG




CGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACG




AGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATA




ACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATG




CCCTTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATT




CCAAAGATTCCACTTACAGTCTGTCCAGCACATTGACACTGAGTA




AGGCTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGACA




CACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGA




GAATGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGG




CGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCAC




CGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTT




CCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGA




GGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT




CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA




GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGG




TCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG




AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCG




AGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG




GTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCA




GGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACAT




CGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACA




AGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA




CAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACG




TCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACAC




GCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






GPB01 HC
CAGGTTCAGCTTGTGCAATCAGGCGCTGAAGTCAAAAAACCAGGA
510



GCAAGCGTGAAAGTAAGCTGTAAGGCTTCCGGTTACACTTTCACC




GATTACGAAATGCACTGGGTACGCCAGGCTCCTGGACAAGGCCTG




GAATGGATGGGCGCACTTGATCCAAAAACAGGTGACACTGCTTAC




AGTCAAAAATTCAAAGGTCGTGTCACTCTTACAGCAGATAAGTCC




ACCAGTACCGCTTATATGGAGCTTAGCTCCCTGACTTCCGAGGAC




ACCGCCGTGTATTATTGTACAAGATTCTACTCATATACTTACTGGG




GCCAAGGAACCCTGGTGACAGTGTCATCTGCTAGCACCAAAGGAC




CTAGTGTTTTTCCTCTTGCCCCTGAAGTTCAGCTTGTCGAAAGTGG




CGGAGGTCTTGTAAAGCCAGGAGGGTCCCTGAAGTTGAGTTGTGC




TGCCTCTGGCTTCACCTTTTCACGGTATGCCATGTCCTGGGTTCGA




CAGATACCTGAGAAGTGTCTTGAATGGGTGGCCGCAATAGACAGT




AGCGGTGGTGACACCTATTACCTCGACACAGTCAAAGACCGCTTT




ACTATCTCACGCGATAACGCCAACAATACCCTGCACTTGCAGATG




CGATCACTTCGTTCAGAAGACACTGCTCTTTACTATTGTGTACGCC




AAGGGGGAGCATACTGGGGTCAGGGAACACTGGTTACCGTGTCTT




CAGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTC




AAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAA




GGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGC




CTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGC




GGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCC




TCGGCACTCAGACATACATCTGCAATGTCAACCACAAACCCTCAA




ATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAA




ACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGA




CCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGA




TCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCC




ACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG




AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC




AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGAC




TGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGC




CCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA




GCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGA




GATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTT




CTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC




CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG




GCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGT




GGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC




TGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA




AA






GPB01 LC
GATGTTGTTATGACTCAGTCACCTCTCTCACTTCCTGTAACCCCTG
511



GTGAACCAGCCTCTATAAGCTGCCGGTCAAGTCAAAGCCTGGTTC




ATAGCAACCGTAACACTTACCTTCACTGGTACTTGCAAAAACCTG




GTCAGTCCCCACAACTCTTGATCTACAAAGTCTCCAATCGCTTCTC




TGGAGTCCCTGACAGGTTTTCTGGTAGTGGATCAGGTACAGACTT




CACTTTGAAAATCAGCCGCGTTGAGGCCGAGGACGTGGGAGTGTA




TTATTGCTCTCAGAATACCCATGTACCCCCAACCTTTGGCCAAGGG




ACTAAACTCGAGATTAAACGTACGGTGGCCGCTCCCTCCGTGTTC




ATCTTCCCACCCGACGTGGTTATGACTCAGACTCCTCTGACTCTCT




CCGTCACTATTGGTCAGCCCGCTTCCATATCATGTAAATCATCACA




ATCTCTTCTTGATAGCGATGGCAAGACTTATTTGAACTGGTTGTTG




CAACGCCCAGGTCAGAGCCCTAAGAGACTTATCTATTTGGTGAGC




AAACTCGACAGCGGTGCACCCGATCGTTTTACCGGAAGCGGCAGC




GGCACCGATTTCACACTGAAGATCAGTAGGGTCGAAGCTGAAGAC




CTGGGAATCTACTACTGCTGGCAAGGTACTCACTTTCCCCTGACTT




TCGGCTGCGGTACTAAACTTGAGATCAAACGTACGGTGGCAGCTC




CCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGG




CACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAA




GCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAA




CAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTA




CAGTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAA




ACACAAGGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATC




TCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGG




CAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGA




GTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAAC




TCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG




ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGG




TGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACG




TGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAG




GAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTC




CTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGT




CTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAA




AGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCC




CATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGC




CTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAG




AGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGT




GCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTG




GACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG




ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCC




CTGTCTCCGGGTAAA






GPB03 HC
CAGGTTCAGCTTGTGCAATCAGGCGCTGAAGTCAAAAAACCAGGA
512



GCAAGCGTGAAAGTAAGCTGTAAGGCTTCCGGTTACACTTTCACC




GATTACGAAATGCACTGGGTACGCCAGGCTCCTGGACAAGGCCTG




GAATGGATGGGCGCACTTGATCCAAAAACAGGTGACACTGCTTAC




AGTCAAAAATTCAAAGGTCGTGTCACTCTTACAGCAGATAAGTCC




ACCAGTACCGCTTATATGGAGCTTAGCTCCCTGACTTCCGAGGAC




ACCGCCGTGTATTATTGTACAAGATTCTACTCATATACTTACTGGG




GCCAAGGAACCCTGGTGACAGTGTCATCTGCTAGCACCAAAGGAC




CTAGTGTTTTTCCTCTTGCCCCTGAAGTGCAACTGGTCGAAACAGG




CGGGGGACTGGTACAGCCCAAGGGATCTTTGAAACTTAGTTGTGC




TGCTAGTGGGTTTACATTCAATGCCTCCGCAATGAACTGGGTAAG




ACAAGCTCCTGGCAAGTGCCTGGAATGGGTGGCCCGTATTCGCTC




TAAAAGTAATAACTACGCTATTTATTACGCTGATTCTGTAAAGGAT




CGGTTTACAATAAGTCGGGACGACAGCCAATCCATGCTGTATCTC




CAAATGAATAACCTGAAAACAGAGGATACTGCCATGTACTATTGT




GTGCGGGACCCAGGCTATTACGGGAATCCCTGGTTCGCCTATTGG




GGACAGGGCACTCTGGTTACCGTATCATCAGCTAGCACCAAAGGA




CCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGG




GGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGC




CTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCA




TACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCT




TCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATAC




ATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAA




AAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCG




TGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCC




CCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGG




TCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA




AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGA




CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTC




AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAG




TACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAG




AAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT




GTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGG




TCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCG




CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG




ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACA




GCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTC




TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG




CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






GPB03 LC
GATGTTGTTATGACTCAGTCACCTCTCTCACTTCCTGTAACCCCTG
513



GTGAACCAGCCTCTATAAGCTGCCGGTCAAGTCAAAGCCTGGTTC




ATAGCAACCGTAACACTTACCTTCACTGGTACTTGCAAAAACCTG




GTCAGTCCCCACAACTCTTGATCTACAAAGTCTCCAATCGCTTCTC




TGGAGTCCCTGACAGGTTTTCTGGTAGTGGATCAGGTACAGACTT




CACTTTGAAAATCAGCCGCGTTGAGGCCGAGGACGTGGGAGTGTA




TTATTGCTCTCAGAATACCCATGTACCCCCAACCTTTGGCCAAGGG




ACTAAACTCGAGATTAAACGTACGGTGGCCGCTCCCTCCGTGTTC




ATCTTCCCACCCCAAATTGTCCTCACCCAATCACCAGCTATAATGT




CTGCTTTTCCCGGCGAGAAAGTAACCATGACTTGTAGCGCCTCTA




GTAGCGTGTCATATATGTATTGGTATCAACAAAAGAGCGGTAGTT




CACCTCGACTCCTTATCTACGACACAAGTAATCTCGCTAGTGGTGT




CCCAGTCCGTTTCTCCGGGAGCGGCAGCGGCACATCATACTCCCT




GACCATCTCCAGAATGGAGGCCGAGGACGCTGCCACATACTATTG




TCAGCAGTGGAGCTCATATCCTTTGACATTCGGTTGCGGTACTAAA




CTCGAAATCAAGCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTC




CCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTT




GTTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGA




AGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAAGAAAGTGTTA




CCGAGCAAGATTCCAAAGATTCCACTTACAGTCTGTCCAGCACAT




TGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCAT




GCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCT




TTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGGGCGGAGGT




AGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGACAAAACTCA




CACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTC




AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCC




CGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAA




GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTG




CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC




GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCT




GAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC




CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC




CGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGAT




GACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTA




TCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG




AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCT




CCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGC




AGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC




ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






GPB04 HC
GAAGTTCAGCTTGTCGAAAGTGGCGGAGGTCTTGTAAAGCCAGGA
514



GGGTCCCTGAAGTTGAGTTGTGCTGCCTCTGGCTTCACCTTTTCAC




GGTATGCCATGTCCTGGGTTCGACAGATACCTGAGAAGATTCTTG




AATGGGTGGCCGCAATAGACAGTAGCGGTGGTGACACCTATTACC




TCGACACAGTCAAAGACCGCTTTACTATCTCACGCGATAACGCCA




ACAATACCCTGCACTTGCAGATGCGATCACTTCGTTCAGAAGACA




CTGCTCTTTACTATTGTGTACGCCAAGGGGGAGCATACTGGGGTC




AGGGAACACTGGTTACCGTGTCTTCAGCTAGCACCAAAGGACCTA




GTGTTTTTCCTCTTGCCCCTCAGGTTCAGCTTGTGCAATCAGGCGC




TGAAGTCAAAAAACCAGGAGCAAGCGTGAAAGTAAGCTGTAAGG




CTTCCGGTTACACTTTCACCGATTACGAAATGCACTGGGTACGCC




AGGCTCCTGGACAATGTCTGGAATGGATGGGCGCACTTGATCCAA




AAACAGGTGACACTGCTTACAGTCAAAAATTCAAAGGTCGTGTCA




CTCTTACAGCAGATAAGTCCACCAGTACCGCTTATATGGAGCTTA




GCTCCCTGACTTCCGAGGACACCGCCGTGTATTATTGTACAAGATT




CTACTCATATACTTACTGGGGCCAAGGAACCCTGGTGACAGTGTC




ATCTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCC




TCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTC




AAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGA




GCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCA




GCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAG




CCTCGGCACTCAGACATACATCTGCAATGTCAACCACAAACCCTC




AAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACA




AAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGG




GACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCAT




GATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAG




CCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT




GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACA




ACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGG




ACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA




GCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG




CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAG




GAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGG




CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA




GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGA




CGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG




GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGC




TCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGG




TAAA






GPB04 LC
GACGTGGTTATGACTCAGACTCCTCTGACTCTCTCCGTCACTATTG
515



GTCAGCCCGCTTCCATATCATGTAAATCATCACAATCTCTTCTTGA




TAGCGATGGCAAGACTTATTTGAACTGGTTGTTGCAACGCCCAGG




TCAGAGCCCTAAGAGACTTATCTATTTGGTGAGCAAACTCGACAG




CGGTGCACCCGATCGTTTTACCGGAAGCGGCAGCGGCACCGATTT




CACACTGAAGATCAGTAGGGTCGAAGCTGAAGACCTGGGAATCT




ACTACTGCTGGCAAGGTACTCACTTTCCCCTGACTTTCGGCGCCGG




TACTAAACTTGAGATCAAACGTACGGTGGCAGCTCCCAGCGTTTT




TATCTTTCCCCCAGATGTTGTTATGACTCAGTCACCTCTCTCACTTC




CTGTAACCCCTGGTGAACCAGCCTCTATAAGCTGCCGGTCAAGTC




AAAGCCTGGTTCATAGCAACCGTAACACTTACCTTCACTGGTACTT




GCAAAAACCTGGTCAGTCCCCACAACTCTTGATCTACAAAGTCTC




CAATCGCTTCTCTGGAGTCCCTGACAGGTTTTCTGGTAGTGGATCA




GGTACAGACTTCACTTTGAAAATCAGCCGCGTTGAGGCCGAGGAC




GTGGGAGTGTATTATTGCTCTCAGAATACCCATGTACCCCCAACCT




TTGGCTGTGGGACTAAACTCGAGATTAAACGTACGGTGGCAGCTC




CCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGG




CACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAA




GCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAA




CAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTA




CAGTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAA




ACACAAGGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATC




TCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGG




CAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGA




GTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAAC




TCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG




ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGG




TGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACG




TGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAG




GAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTC




CTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGT




CTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAA




AGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCC




CATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGC




CTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAG




AGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGT




GCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTG




GACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG




ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCC




CTGTCTCCGGGTAAA






GPB06 HC
GAAGTGCAACTGGTCGAAACAGGCGGGGGACTGGTACAGCCCAA
516



GGGATCTTTGAAACTTAGTTGTGCTGCTAGTGGGTTTACATTCAAT




GCCTCCGCAATGAACTGGGTAAGACAAGCTCCTGGCAAGGGCCTG




GAATGGGTGGCCCGTATTCGCTCTAAAAGTAATAACTACGCTATT




TATTACGCTGATTCTGTAAAGGATCGGTTTACAATAAGTCGGGAC




GACAGCCAATCCATGCTGTATCTCCAAATGAATAACCTGAAAACA




GAGGATACTGCCATGTACTATTGTGTGCGGGACCCAGGCTATTAC




GGGAATCCCTGGTTCGCCTATTGGGGACAGGGCACTCTGGTTACC




GTATCATCAGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCC




CTCAGGTTCAGCTTGTGCAATCAGGCGCTGAAGTCAAAAAACCAG




GAGCAAGCGTGAAAGTAAGCTGTAAGGCTTCCGGTTACACTTTCA




CCGATTACGAAATGCACTGGGTACGCCAGGCTCCTGGACAATGTC




TGGAATGGATGGGCGCACTTGATCCAAAAACAGGTGACACTGCTT




ACAGTCAAAAATTCAAAGGTCGTGTCACTCTTACAGCAGATAAGT




CCACCAGTACCGCTTATATGGAGCTTAGCTCCCTGACTTCCGAGG




ACACCGCCGTGTATTATTGTACAAGATTCTACTCATATACTTACTG




GGGCCAAGGAACCCTGGTGACAGTGTCATCTGCTAGCACCAAAGG




ACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGG




GGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAG




CCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTC




ATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTC




TTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATA




CATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAA




AAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACC




GTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTC




CCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG




GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC




AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG




ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA




GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG




TGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAG




GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC




GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAA




GACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC




AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT




CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACAC




GCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






GPB06 LC
CAAATTGTCCTCACCCAATCACCAGCTATAATGTCTGCTTTTCCCG
517



GCGAGAAAGTAACCATGACTTGTAGCGCCTCTAGTAGCGTGTCAT




ATATGTATTGGTATCAACAAAAGAGCGGTAGTTCACCTCGACTCC




TTATCTACGACACAAGTAATCTCGCTAGTGGTGTCCCAGTCCGTTT




CTCCGGGAGCGGCAGCGGCACATCATACTCCCTGACCATCTCCAG




AATGGAGGCCGAGGACGCTGCCACATACTATTGTCAGCAGTGGAG




CTCATATCCTTTGACATTCGGTGGAGGTACTAAACTCGAAATCAA




GCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCAGATGTT




GTTATGACTCAGTCACCTCTCTCACTTCCTGTAACCCCTGGTGAAC




CAGCCTCTATAAGCTGCCGGTCAAGTCAAAGCCTGGTTCATAGCA




ACCGTAACACTTACCTTCACTGGTACTTGCAAAAACCTGGTCAGT




CCCCACAACTCTTGATCTACAAAGTCTCCAATCGCTTCTCTGGAGT




CCCTGACAGGTTTTCTGGTAGTGGATCAGGTACAGACTTCACTTTG




AAAATCAGCCGCGTTGAGGCCGAGGACGTGGGAGTGTATTATTGC




TCTCAGAATACCCATGTACCCCCAACCTTTGGCTGTGGGACTAAA




CTCGAGATTAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTC




CCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTT




GTTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGA




AGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAAGAAAGTGTTA




CCGAGCAAGATTCCAAAGATTCCACTTACAGTCTGTCCAGCACAT




TGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCAT




GCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCT




TTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGGGCGGAGGT




AGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGACAAAACTCA




CACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTC




AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCC




CGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAA




GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTG




CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC




GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCT




GAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC




CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC




CGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGAT




GACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTA




TCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG




AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCT




CCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGC




AGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC




ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA









Table 46 below shows the polypeptide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting GPC-3. Table 47 below shows the nucleotide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting GPC-3.












TABLE 46










SEQ









Name
Sequence
ID NO













GPM01
VH
EVQLVESGGGLVKPGGSLKLSCAASGFTFSRYAMSWVRQIPEKCLEW
81




VAAIDSSGGDTYYLDTVKDRFTTSRDNANNTLHLQMRSLRSEDTALY





YCVRQGGAYWGQGTLVTVSS




VL
DVVMTQTPLTLSVTTGQPASISCKSSQSLLDSDGKTYLNWLLQRPGQS
82




PKRLIYLVSKLDSGAPDRFTGSGSGTDFTLKISRVEAEDLGIYYCWQG





THFPLTFGCGTKLEIK






GPM02
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPGQCL
83




EWMGALDPKTGDTAYSQKFKGRVTLTADKSTSTAYMELSSLTSEDT





AVYYCTRFYSYTYWGQGTLVTVSS




VL
DVVMTQSPLSLPVTPGEPASISCRSSQSLVHSNRNTYLHWYLQKPGQS
84




PQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQN





THVPPTFGCGTKLEIK






GPM04
VH
EVQLVETGGGLVQPKGSLKLSCAASGFTFNASAMNWVRQAPGKCLE
85




WVARIRSKSNNYAIYYADSVKDRFTTSRDDSQSMLYLQMNNLKTEDT





AMYYCVRDPGYYGNPWFAYWGQGTLVTVSS




VL
QIVLTQSPAIMSAFPGEKVTMTCSASSSVSYMYWYQQKSGSSPRLLIY
86




DTSNLASGVPVRFSGSGSGTSYSLTTSRMEAEDAATYYCQQWSSYPLT





FGCGTKLEIK






GPB01
VH1
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPGQGL
87




EWMGALDPKTGDTAYSQKFKGRVTLTADKSTSTAYMELSSLTSEDT





AVYYCTRFYSYTYWGQGTLVTVSS




VH2
EVQLVESGGGLVKPGGSLKLSCAASGFTFSRYAMSWVRQIPEKCLEW
81




VAAIDSSGGDTYYLDTVKDRFTTSRDNANNTLHLQMRSLRSEDTALY





YCVRQGGAYWGQGTLVTVSS




VL1
DVVMTQSPLSLPVTPGEPASISCRSSQSLVHSNRNTYLHWYLQKPGQS
88




PQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQN





THVPPTFGQGTKLEIK




VL2
DVVMTQTPLTLSVTTGQPASISCKSSQSLLDSDGKTYLNWLLQRPGQS
82




PKRLIYLVSKLDSGAPDRFTGSGSGTDFTLKISRVEAEDLGIYYCWQG





THFPLTFGCGTKLEIK






GPB03
VH1
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPGQGL
87




EWMGALDPKTGDTAYSQKFKGRVTLTADKSTSTAYMELSSLTSEDT





AVYYCTRFYSYTYWGQGTLVTVSS




VH2
EVQLVETGGGLVQPKGSLKLSCAASGFTFNASAMNWVRQAPGKCLE
85




WVARIRSKSNNYAIYYADSVKDRFTTSRDDSQSMLYLQMNNLKTEDT





AMYYCVRDPGYYGNPWFAYWGQGTLVTVSS




VL1
DVVMTQSPLSLPVTPGEPASISCRSSQSLVHSNRNTYLHWYLQKPGQS
88




PQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQN





THVPPTFGQGTKLEIK




VL2
QIVLTQSPAIMSAFPGEKVTMTCSASSSVSYMYWYQQKSGSSPRLLIY
86




DTSNLASGVPVRFSGSGSGTSYSLTTSRMEAEDAATYYCQQWSSYPLT





FGCGTKLEIK






GPB04
VH1
EVQLVESGGGLVKPGGSLKLSCAASGFTFSRYAMSWVRQIPEKILEW
89




VAAIDSSGGDTYYLDTVKDRFTTSRDNANNTLHLQMRSLRSEDTALY





YCVRQGGAYWGQGTLVTVSS




VH2
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPGQCL
83




EWMGALDPKTGDTAYSQKFKGRVTLTADKSTSTAYMELSSLTSEDT





AVYYCTRFYSYTYWGQGTLVTVSS




VL1
DVVMTQTPLTLSVTTGQPASISCKSSQSLLDSDGKTYLNWLLQRPGQS
90




PKRLIYLVSKLDSGAPDRFTGSGSGTDFTLKISRVEAEDLGIYYCWQG





THFPLTFGAGTKLEIK




VL2
DVVMTQSPLSLPVTPGEPASISCRSSQSLVHSNRNTYLHWYLQKPGQS
|84




PQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQN





THVPPTFGCGTKLEIK






GPB06
VH1
EVQLVETGGGLVQPKGSLKLSCAASGFTFNASAMNWVRQAPGKGLE
91




WVARIRSKSNNYAIYYADSVKDRFTTSRDDSQSMLYLQMNNLKTEDT





AMYYCVRDPGYYGNPWFAYWGQGTLVTVSS




VH2
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPGQCL
83




EWMGALDPKTGDTAYSQKFKGRVTLTADKSTSTAYMELSSLTSEDT





AVYYCTRFYSYTYWGQGTLVTVSS




VL1
QIVLTQSPAIMSAFPGEKVTMTCSASSSVSYMYWYQQKSGSSPRLLIY
92




DTSNLASGVPVRFSGSGSGTSYSLTTSRMEAEDAATYYCQQWSSYPLT





FGGGTKLEIK




VL2
DVVMTQSPLSLPVTPGEPASISCRSSQSLVHSNRNTYLHWYLQKPGQS
84




PQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQN





THVPPTFGCGTKLEIK


















TABLE 47







SEQ


Name
Sequence
ID NO


















GPM01
VH
GAAGTTCAGCTTGTCGAAAGTGGCGGAGGTCTTGTAAAGCCAGGAGGGTCCCTGAAGTTGA
518




GTTGTGCTGCCTCTGGCTTCACCTTTTCACGGTATGCCATGTCCTGGGTTCGACAGATACC





TGAGAAGTGTCTTGAATGGGTGGCCGCAATAGACAGTAGCGGTGGTGACACCTATTACCTC





GACACAGTCAAAGACCGCTTTACTATCTCACGCGATAACGCCAACAATACCCTGCACTTGC





AGATGCGATCACTTCGTTCAGAAGACACTGCTCTTTACTATTGTGTACGCCAAGGGGGAGC





ATACTGGGGTCAGGGAACACTGGTTACCGTGTCTTCA




VL
GACGTGGTTATGACTCAGACTCCTCTGACTCTCTCCGTCACTATTGGTCAGCCCGCTTCCA
519




TATCATGTAAATCATCACAATCTCTTCTTGATAGCGATGGCAAGACTTATTTGAACTGGTT





GTTGCAACGCCCAGGTCAGAGCCCTAAGAGACTTATCTATTTGGTGAGCAAACTCGACAGC





GGTGCACCCGATCGTTTTACCGGAAGCGGCAGCGGCACCGATTTCACACTGAAGATCAGTA





GGGTCGAAGCTGAAGACCTGGGAATCTACTACTGCTGGCAAGGTACTCACTTTCCCCTGAC





TTTCGGCTGCGGTACTAAACTTGAGATCAAA






GPM02
VH
CAGGTTCAGCTTGTGCAATCAGGCGCTGAAGTCAAAAAACCAGGAGCAAGCGTGAAAGTAA
520




GCTGTAAGGCTTCCGGTTACACTTTCACCGATTACGAAATGCACTGGGTACGCCAGGCTCC





TGGACAATGTCTGGAATGGATGGGCGCACTTGATCCAAAAACAGGTGACACTGCTTACAGT





CAAAAATTCAAAGGTCGTGTCACTCTTACAGCAGATAAGTCCACCAGTACCGCTTATATGG





AGCTTAGCTCCCTGACTTCCGAGGACACCGCCGTGTATTATTGTACAAGATTCTACTCATA





TACTTACTGGGGCCAAGGAACCCTGGTGACAGTGTCATCT




VL
GATGTTGTTATGACTCAGTCACCTCTCTCACTTCCTGTAACCCCTGGTGAACCAGCCTCTA
521




TAAGCTGCCGGTCAAGTCAAAGCCTGGTTCATAGCAACCGTAACACTTACCTTCACTGGTA





CTTGCAAAAACCTGGTCAGTCCCCACAACTCTTGATCTACAAAGTCTCCAATCGCTTCTCT





GGAGTCCCTGACAGGTTTTCTGGTAGTGGATCAGGTACAGACTTCACTTTGAAAATCAGCC





GCGTTGAGGCCGAGGACGTGGGAGTGTATTATTGCTCTCAGAATACCCATGTACCCCCAAC





CTTTGGCTGTGGGACTAAACTCGAGATTAAA






GPM04
VH
GAAGTGCAACTGGTCGAAACAGGCGGGGGACTGGTACAGCCCAAGGGATCTTTGAAACTTA
522




GTTGTGCTGCTAGTGGGTTTACATTCAATGCCTCCGCAATGAACTGGGTAAGACAAGCTCC





TGGCAAGTGCCTGGAATGGGTGGCCCGTATTCGCTCTAAAAGTAATAACTACGCTATTTAT





TACGCTGATTCTGTAAAGGATCGGTTTACAATAAGTCGGGACGACAGCCAATCCATGCTGT





ATCTCCAAATGAATAACCTGAAAACAGAGGATACTGCCATGTACTATTGTGTGCGGGACCC





AGGCTATTACGGGAATCCCTGGTTCGCCTATTGGGGACAGGGCACTCTGGTTACCGTATCA





TCA




VL
CAAATTGTCCTCACCCAATCACCAGCTATAATGTCTGCTTTTCCCGGCGAGAAAGTAACCA
523




TGACTTGTAGCGCCTCTAGTAGCGTGTCATATATGTATTGGTATCAACAAAAGAGCGGTAG





TTCACCTCGACTCCTTATCTACGACACAAGTAATCTCGCTAGTGGTGTCCCAGTCCGTTTC





TCCGGGAGCGGCAGCGGCACATCATACTCCCTGACCATCTCCAGAATGGAGGCCGAGGACG





CTGCCACATACTATTGTCAGCAGTGGAGCTCATATCCTTTGACATTCGGTTGCGGTACTAA





ACTCGAAATCAAG






GPB01
VH1
CAGGTGCAACTCGTTCAAAGCGGGGCCGAGGTGAAGAAACCAGGGGCCTCAGTTAAGGTGA
434




GTTGCAAGGCAAGTGGATACACTTTCACCGATTATGAAATGCATTGGGTGCGTCAGGCCCC





AGGACAAGGACTGGAGTGGATGGGCGCTCTCGATCCTAAGACTGGTGATACTGCTTACTCT





CAAAAGTTCAAAGGCCGAGTCACCTTGACCGCCGACAAGTCCACATCCACTGCATATATGG





AATTGTCAAGTCTGACAAGCGAAGATACAGCCGTCTACTACTGCACCCGCTTTTATAGCTA





TACATATTGGGGACAGGGGACCTTGGTTACTGTGTCATCT




VH2
GAAGTTCAGCTTGTCGAAAGTGGCGGAGGTCTTGTAAAGCCAGGAGGGTCCCTGAAGTTGA
518




GTTGTGCTGCCTCTGGCTTCACCTTTTCACGGTATGCCATGTCCTGGGTTCGACAGATACC





TGAGAAGTGTCTTGAATGGGTGGCCGCAATAGACAGTAGCGGTGGTGACACCTATTACCTC





GACACAGTCAAAGACCGCTTTACTATCTCACGCGATAACGCCAACAATACCCTGCACTTGC





AGATGCGATCACTTCGTTCAGAAGACACTGCTCTTTACTATTGTGTACGCCAAGGGGGAGC





ATACTGGGGTCAGGGAACACTGGTTACCGTGTCTTCA




VL1
GACGTGGTAATGACACAATCACCTTTGTCTCTTCCCGTAACCCCCGGTGAACCAGCCAGCA
435




TCTCATGCAGAAGCAGTCAGTCACTGGTACATTCCAACCGTAATACTTATCTTCACTGGTA





CTTGCAGAAGCCTGGGCAGTCTCCTCAACTTTTGATATATAAAGTGAGCAATCGGTTTAGC





GGTGTCCCAGACCGCTTTTCTGGATCTGGAAGTGGAACAGACTTTACTCTGAAAATAAGCA





GAGTCGAGGCAGAAGATGTCGGAGTTTACTACTGTAGCCAGAACACACACGTACCCCCAAC





CTTTGGACAGGGCACAAAGTTGGAAATCAAG




VL2
GACGTGGTTATGACTCAGACTCCTCTGACTCTCTCCGTCACTATTGGTCAGCCCGCTTCCA
519




TATCATGTAAATCATCACAATCTCTTCTTGATAGCGATGGCAAGACTTATTTGAACTGGTT





GTTGCAACGCCCAGGTCAGAGCCCTAAGAGACTTATCTATTTGGTGAGCAAACTCGACAGC





GGTGCACCCGATCGTTTTACCGGAAGCGGCAGCGGCACCGATTTCACACTGAAGATCAGTA





GGGTCGAAGCTGAAGACCTGGGAATCTACTACTGCTGGCAAGGTACTCACTTTCCCCTGAC





TTTCGGCTGCGGTACTAAACTTGAGATCAAA






GPB03
VH1
CAGGTGCAACTCGTTCAAAGCGGGGCCGAGGTGAAGAAACCAGGGGCCTCAGTTAAGGTGA
434




GTTGCAAGGCAAGTGGATACACTTTCACCGATTATGAAATGCATTGGGTGCGTCAGGCCCC





AGGACAAGGACTGGAGTGGATGGGCGCTCTCGATCCTAAGACTGGTGATACTGCTTACTCT





CAAAAGTTCAAAGGCCGAGTCACCTTGACCGCCGACAAGTCCACATCCACTGCATATATGG





AATTGTCAAGTCTGACAAGCGAAGATACAGCCGTCTACTACTGCACCCGCTTTTATAGCTA





TACATATTGGGGACAGGGGACCTTGGTTACTGTGTCATCT




VH2
GAAGTGCAACTGGTCGAAACAGGCGGGGGACTGGTACAGCCCAAGGGATCTTTGAAACTTA
522




GTTGTGCTGCTAGTGGGTTTACATTCAATGCCTCCGCAATGAACTGGGTAAGACAAGCTCC





TGGCAAGTGCCTGGAATGGGTGGCCCGTATTCGCTCTAAAAGTAATAACTACGCTATTTAT





TACGCTGATTCTGTAAAGGATCGGTTTACAATAAGTCGGGACGACAGCCAATCCATGCTGT





ATCTCCAAATGAATAACCTGAAAACAGAGGATACTGCCATGTACTATTGTGTGCGGGACCC





AGGCTATTACGGGAATCCCTGGTTCGCCTATTGGGGACAGGGCACTCTGGTTACCGTATCA





TCA




VL1
GACGTGGTAATGACACAATCACCTTTGTCTCTTCCCGTAACCCCCGGTGAACCAGCCAGCA
435




TCTCATGCAGAAGCAGTCAGTCACTGGTACATTCCAACCGTAATACTTATCTTCACTGGTA





CTTGCAGAAGCCTGGGCAGTCTCCTCAACTTTTGATATATAAAGTGAGCAATCGGTTTAGC





GGTGTCCCAGACCGCTTTTCTGGATCTGGAAGTGGAACAGACTTTACTCTGAAAATAAGCA





GAGTCGAGGCAGAAGATGTCGGAGTTTACTACTGTAGCCAGAACACACACGTACCCCCAAC





CTTTGGACAGGGCACAAAGTTGGAAATCAAG




VL2
CAAATTGTCCTCACCCAATCACCAGCTATAATGTCTGCTTTTCCCGGCGAGAAAGTAACCA
523




TGACTTGTAGCGCCTCTAGTAGCGTGTCATATATGTATTGGTATCAACAAAAGAGCGGTAG





TTCACCTCGACTCCTTATCTACGACACAAGTAATCTCGCTAGTGGTGTCCCAGTCCGTTTC





TCCGGGAGCGGCAGCGGCACATCATACTCCCTGACCATCTCCAGAATGGAGGCCGAGGACG





CTGCCACATACTATTGTCAGCAGTGGAGCTCATATCCTTTGACATTCGGTTGCGGTACTAA





ACTCGAAATCAAG






GPB04
VH1
GAAGTTCAGCTTGTCGAAAGTGGCGGAGGTCTTGTAAAGCCAGGAGGGTCCCTGAAGTTGA
524




GTTGTGCTGCCTCTGGCTTCACCTTTTCACGGTATGCCATGTCCTGGGTTCGACAGATACC





TGAGAAGATTCTTGAATGGGTGGCCGCAATAGACAGTAGCGGTGGTGACACCTATTACCTC





GACACAGTCAAAGACCGCTTTACTATCTCACGCGATAACGCCAACAATACCCTGCACTTGC





AGATGCGATCACTTCGTTCAGAAGACACTGCTCTTTACTATTGTGTACGCCAAGGGGGAGC





ATACTGGGGTCAGGGAACACTGGTTACCGTGTCTTCA




VH2
CAGGTTCAGCTTGTGCAATCAGGCGCTGAAGTCAAAAAACCAGGAGCAAGCGTGAAAGTAA
520




GCTGTAAGGCTTCCGGTTACACTTTCACCGATTACGAAATGCACTGGGTACGCCAGGCTCC





TGGACAATGTCTGGAATGGATGGGCGCACTTGATCCAAAAACAGGTGACACTGCTTACAGT





CAAAAATTCAAAGGTCGTGTCACTCTTACAGCAGATAAGTCCACCAGTACCGCTTATATGG





AGCTTAGCTCCCTGACTTCCGAGGACACCGCCGTGTATTATTGTACAAGATTCTACTCATA





TACTTACTGGGGCCAAGGAACCCTGGTGACAGTGTCATCT




VL1
GACGTGGTTATGACTCAGACTCCTCTGACTCTCTCCGTCACTATTGGTCAGCCCGCTTCCA
525




TATCATGTAAATCATCACAATCTCTTCTTGATAGCGATGGCAAGACTTATTTGAACTGGTT





GTTGCAACGCCCAGGTCAGAGCCCTAAGAGACTTATCTATTTGGTGAGCAAACTCGACAGC





GGTGCACCCGATCGTTTTACCGGAAGCGGCAGCGGCACCGATTTCACACTGAAGATCAGTA





GGGTCGAAGCTGAAGACCTGGGAATCTACTACTGCTGGCAAGGTACTCACTTTCCCCTGAC





TTTCGGCGCCGGTACTAAACTTGAGATCAAA




VL2
GATGTTGTTATGACTCAGTCACCTCTCTCACTTCCTGTAACCCCTGGTGAACCAGCCTCTA
521




TAAGCTGCCGGTCAAGTCAAAGCCTGGTTCATAGCAACCGTAACACTTACCTTCACTGGTA





CTTGCAAAAACCTGGTCAGTCCCCACAACTCTTGATCTACAAAGTCTCCAATCGCTTCTCT





GGAGTCCCTGACAGGTTTTCTGGTAGTGGATCAGGTACAGACTTCACTTTGAAAATCAGCC





GCGTTGAGGCCGAGGACGTGGGAGTGTATTATTGCTCTCAGAATACCCATGTACCCCCAAC





CTTTGGCTGTGGGACTAAACTCGAGATTAAA






GPB06
VH1
GAAGTGCAACTGGTCGAAACAGGCGGGGGACTGGTACAGCCCAAGGGATCTTTGAAACTTA
526




GTTGTGCTGCTAGTGGGTTTACATTCAATGCCTCCGCAATGAACTGGGTAAGACAAGCTCC





TGGCAAGGGCCTGGAATGGGTGGCCCGTATTCGCTCTAAAAGTAATAACTACGCTATTTAT





TACGCTGATTCTGTAAAGGATCGGTTTACAATAAGTCGGGACGACAGCCAATCCATGCTGT





ATCTCCAAATGAATAACCTGAAAACAGAGGATACTGCCATGTACTATTGTGTGCGGGACCC





AGGCTATTACGGGAATCCCTGGTTCGCCTATTGGGGACAGGGCACTCTGGTTACCGTATCA





TCA




VH2
CAGGTTCAGCTTGTGCAATCAGGCGCTGAAGTCAAAAAACCAGGAGCAAGCGTGAAAGTAA
520




GCTGTAAGGCTTCCGGTTACACTTTCACCGATTACGAAATGCACTGGGTACGCCAGGCTCC





TGGACAATGTCTGGAATGGATGGGCGCACTTGATCCAAAAACAGGTGACACTGCTTACAGT





CAAAAATTCAAAGGTCGTGTCACTCTTACAGCAGATAAGTCCACCAGTACCGCTTATATGG





AGCTTAGCTCCCTGACTTCCGAGGACACCGCCGTGTATTATTGTACAAGATTCTACTCATA





TACTTACTGGGGCCAAGGAACCCTGGTGACAGTGTCATCT




VL1
CAAATTGTCCTCACCCAATCACCAGCTATAATGTCTGCTTTTCCCGGCGAGAAAGTAACCA
527




TGACTTGTAGCGCCTCTAGTAGCGTGTCATATATGTATTGGTATCAACAAAAGAGCGGTAG





TTCACCTCGACTCCTTATCTACGACACAAGTAATCTCGCTAGTGGTGTCCCAGTCCGTTTC





TCCGGGAGCGGCAGCGGCACATCATACTCCCTGACCATCTCCAGAATGGAGGCCGAGGACG





CTGCCACATACTATTGTCAGCAGTGGAGCTCATATCCTTTGACATTCGGTGGAGGTACTCC





ACTCGAAATCAAG




VL2
GATGTTGTTATGACTCAGTCACCTCTCTCACTTCCTGTAACCCCTGGTGAACCAGCCTCTA
521




TAAGCTGCCGGTCAAGTCAAAGCCTGGTTCATAGCAACCGTAACACTTACCTTCACTGGTA





CTTGCAAAAACCTGGTCAGTCCCCACAACTCTTGATCTACAAAGTCTCCAATCGCTTCTCT





GGAGTCCCTGACAGGTTTTCTGGTAGTGGATCAGGTACAGACTTCACTTTGAAAATCAGCC





GCGTTGAGGCCGAGGACGTGGGAGTGTATTATTGCTCTCAGAATACCCATGTACCCCCAAC





CTTTGGCTGTGGGACTAAACTCGAGATTAAA









Table 48 below shows the heavy chain and light chain CDR sequences of the engineered antibodies targeting GPC-3.












TABLE 48





Name
CDR
Sequence
SEQ ID NO


















GPM01
CDR-H1
RYAMS
93



CDR-H2
AIDSSGGDTYYLDTVKD
94



CDR-H3
QGGAY
95



CDR-L1
KSSQSLLDSDGKTYLN
96



CDR-L2
LVSKLDS
97



CDR-L3
WQGTHFPLT
98





GPM02
CDR-H1
DYEMH
99



CDR-H2
ALDPKTGDTAYSQKFKG
100



CDR-H3
FYSYTY
101



CDR-L1
RSSQSLVHSNRNTYLH
102



CDR-L2
KVSNRFS
103



CDR-L3
SQNTHYPPT
104





GPM04
CDR-H1
ASAMN
105



CDR-H2
RIRSKSNNYAIYYAADSVKD
106



CDR-H3
DPGYYGNPWFAY
107



CDR-L1
SASSSYSWY
108



CDR-L2
DTSNLAS
109



CDR-L3
QQWSSYPLT
110





GPB01
V1 CDR-H1
DYEMH
99



V1 CDR-H2
ALDPKTGDTAYSQKFKG
100



V1 CDR-H3
FYSYTY
101



V1 CDR-L1
RSSQSLVHSNRNTYLH
102



V1 CDR-L2
KVSNRFS
103



V1 CDR-L3
SQNTHVPPT
104



V2 CDR-H1
RYAMS
93



V2 CDR-H2
AIDSSGGDTYYLDTVKD
94



V2 CDR-H3
QGGQY
95



V2 CDR-L1
KSSQSLLDSDGKTYLN
96



V2 CDR-L2
LVSKLDS
97



V2 CDR-L3
WQGTHFPLT
98





GPB03
V1 CDR-H1
DYEMH
99



V1 CDR-H2
ALDPKTGDTAYSQKFKG
100



V1 CDR-H3
FYSYTY
101



V1 CDR-L1
RSSQSLVHSNRNTYLH
102



V1 CDR-L2
KVSNRFS
103



V1 CDR-L3
SQNTHVPPT
104



V2 CDR-H1
ASAMN
105



V2 CDR-H2
RIRSKSNNYAIYYADSVKD
106



V2 CDR-H3
DPGYYGNPWFAY
107



V2 CDR-L1
SASSSVSYMY
108



V2 CDR-L2
DTSNLAS
100



V2 CDR-L3
QQWSSYPLT
110





GPB04
V1 CDR-H1
RYAMS
93



V1 CDR-H2
AIDSSGGDTYYLDTVKD
94



V1 CDR-H3
QGGAY
95



V1 CDR-L1
KSSQSLLDSDGKTYLN
96



V1 CDR-L2
LVSKLDS
97



V1 CDR-L3
WQGTHFPLT
98



V2 CDR-H1
DYEMH
99



V2 CDR-H2
ALDPKTGDTAYSQKFKG
100



V2 CDR-H3
FYSYTY
101



V2 CDR-L1
RSSQSLVHSNRNTYLH
102



V2 CDR-L2
KVSNRFS
103



V2 CDR-L3
SQNTHVPPT
104





GPB06
V1 CDR-H1
ASAMN
105



V1 CDR-H2
RIRSKSMMYAIIADSVKD
106



V1 CDR-H3
DPGYYGNPWFAY
107



V1 CDR-L1
SASSSVSYMY
108



V1 CDR-L2
DTSNLAS
100



V1 CDR-L3
QQWSSYPLT
110



V2 CDR-H1
DYENH
99



V2 CDR-H2
ALDFKTGDTAYSQKFKG
100



V2 CDR-H3
FYSYTY
101



V2 CDR-L1
RSSQSLVHSNRNTYLH
102



V2 CDR-L2
KVSNRFS
103



V2 CDR-L3
SQNTHVPPT
104









The GPC-3 protein binding constants of GPM01, GPM02, GPM04, GPB01, GPB03, GPB04, and GPB06 were determined using the Octet Red96e (Sartorius). In order to analyze the binding constants of the seven antibodies, the human GPC-3 recombinant protein (Sino Biologicals, 10088-H08H) was loaded onto the Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120). Then the seven antibodies were added in a binding reaction (300 seconds) and a dissociation reaction (1,200 seconds) at various concentrations, and their affinities for GPC-3 were calculated (FIG. 42, Table 49). Table 49 below illustrates the binding constants of the engineered antibodies targeting GPC-3.














TABLE 49





Antibodies
Antigen
Binding mode
KD (nM)
Ka (1/Ms)
Kd (1/s)




















GPM01
rhGPC3
Monovalent
2.7048
3.72E+05
1.01E−03


GPM02
rhGPC3
Monovalent
2.3799
1.92E+05
4.57E−04


GPM04
rhGPC3
Monovalent
38.3721
2.92E+04
1.12E−03


GPB01
rhGPC3
Biparatopic
0.5827
2.49E+05
1.45E−04


GPB03
rhGPC3
Biparatopic
0.1601
2.03E+05
3.25E−05


GPB04
rhGPC3
Biparatopic
0.2510
3.32E+05
8.33E−05


GPB06
rhGPC3
Biparatopic
0.3427
6.64E+04
2.28E−05









HepG2 liver cancer cell line was used to quantify the Fc loads on the surface of GPC-3 expressing cells. 100 nM human IgG1, GPM02, GPB01, GPB03, and GC33 were allowed to bind to the HepG2 cell line at 4° C. for 30 minutes, and the Fc loads were quantified using the Alexa 488 fluorescence-conjugated anti-human IgG Fcγ Fab antibody (Jackson ImmunoResearch, 109-547-008) (FIG. 43). GC33, which is a humanized antibody targeting GPC-3, was used as a positive control (Nakano et al., U.S. Pat. No. 7,919,086 B2). It was shown that higher Fc loads on the surface of cancer cells are induced by treatment of GPM02, GPB01, and GPB03 compared to GC33 (FIG. 43).


Example 18. Design, Preparation and Analysis of Antibody Structure Targeting EPH Receptor A2 (EphA2)

The variant light chain and heavy chain polypeptide sequences of the antibodies that specifically bind to the EPH receptor A2 (EphA2) protein are shown in Table 46. For EPB01, expression vectors consisting of the sequences corresponding to Fc-Hole (SEQ ID NO: 7), EPB01 HC (SEQ ID NO: 111), and EPB01 LC (SEQ ID NO: 112) were co-transfected into EXPICHO-S™ (Gibco, A29127) (FIG. 41b, Table 50), and purification and analysis were performed in the same manner as described in Example 1. Expression, purification and analysis were performed for EPB02, EPB03, EPB04, EPB05, EPB06, EPB07, EPB08, EPB09, EPB10, EPB11, and EPB12 in the same manner as mentioned above (Table 50). The 12 antibodies have structures in which the variable regions that bind to two different epitopes of EphA2 are linked with a polypeptide linker (SEQ ID NO: 48, SEQ ID NO: 50), bind biparatopically to EphA2, and have two Fc domains (FIG. 41b, Table 50).











TABLE 50







SEQ




ID


Name
Sequence
NO







EPB01 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYQMMWVRQAPGKGLEWVSSISPSGGVTL
111



YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRELLGTVVVPVAWKMRGYFDY




WGQLTLVTVSSASTKGPSVFPLAPEVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMA




WVRQAPGKCLEWVSRIGPSGGPTHYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY




YCAGYDSGYDYVAVAGPAEYFQHWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAAL




GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICN




VNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT




CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSLVTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT




QKSLSLSPGK






EPB01 LC
DIQMTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIP
112



ARFSGSGSGTEFTLTISSMQSEDFAVYYCQQYNNWPPLTFGGGTKVEIKRTVAAPSVFI




FPPDIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPGKAPKLLIYKASNLHT




GVPSRFSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGCGTKVEIKRTVAAPSV




FIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS




LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKS




SDKTHTCPPCPAPELLGGPSVFLFPPLPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY




VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPP




VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB02 HC
EVQLVESGGGVVRPGGSLRLSCAASGFTVSDYSMNWVRQAPGKGLEWIGFIRNKANAYT
113



TEYSASVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTYPRYHAMDSWGQGTMVTV




SSASTKGPSVFPLAPEVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKC




LEWVSRIGPSGGPTHYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGY




DYVAVAGPAEYFQHWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP




EPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTK




VDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE




DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL




PAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQP




ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG




K






EPB02 LC
AIQLTQSPSSLSASVGDRVTITCRASQSISNNLHWYLQKPGQSPSLLIYYGFQSISGVP
114



SRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGGGTKLEIKRTVAAPSVFIF




FPDIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPGKAPKLLIYKASNLHTG




VPSRFSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGCGTKVEIKRTVAAPSVF




IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL




SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSS




DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPV




LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB03 HC
QVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGQCLEWMGTISSGGTYTY
115



YPDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREAIFTYWGRGTLVTVSSAST




KGPSVFPLAPEVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKCLEWVS




RIGPSGGPTHYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGYDYVAV




AGPAEYFQHWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV




SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV




EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK




FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE




KTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYK




TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB03 LC
DIQMTQSPGTLSVSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDGVP
116



DRFSGSGSGTDFTLKISRVEAEDVGVYYCLKYDEFPYTFGQGTRLEIKRTVAAPSVFIF




PPDIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPGKAPKLLIYKASNLHTG




VPSRFSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGCGTKVEIKRTVAAPSVF




IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL




SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSS




DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPV




LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB04 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKCLEWVSRIGPSGGPTH
117



YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGYDYVAVAGPAEYFQHW




GQGTLVTVSSASTKGPSVFPLAPEVQLLESGGGLVQPGGSLRLSCAASGFTFSRYQMMW




VRQAPGKCLEWVSSISPSGGVTLYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY




CTRELLGTVVVPVAWKMRGYFDYWGQLTLVTVSSASTKGPSVFPLAPSSKSTSGGTAAL




GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICN




VNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT




CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT




QKSLSLSPGK






EPB04 LC
DIQMTQSPGTLSVSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDGVP
118



SRFSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGQGTRLEIKRTVAAPSVFIF




PPDIQMTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKPGKAPKLLIYKASNLHTG




IPARFSGSGSGTEFSLTISSMQSEDFAVYYCQQYNNWPPLTFGGGTKVEIKRTVAAPSV




FIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS




LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKS




SDKTHTCPPCPAPELLGGPSVFLFPPLPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY




VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPP




VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB05 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKGLEWVSRIGPSGGPTH
119



YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGYDYVAVAGPAEYFQHW




GQGTLVTVSSASTKGPSVFPLAPEVQLLESGGGVVRPGGSLRLSCAASGFTFSRYSMMW




VRQAPGKCLEWIGFIRNKANAYTTEYSASVKGRFTISRDDSKNTLYLQMNSLKTEDTAV




YYCTTYPRYHAMDSWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP




EPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTK




VDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE




DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL




PAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQP




ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG




K






EPB05 LC
DIQMTQSPGTLSVSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDGVP
120



SRFSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGQGTKVEIKRTVAAPSVFIF




PPAIQLTQSPSSLSASVGDRVTITCRASQSISNNLHWYLQKPGQSPSLLIYYGFQSISG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGCGTKLEIKRTVAAPSVF




IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL




SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSS




DKTHTCPPCPAPELLGGPSVFLFPPLPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPV




LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB06 LC
EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKGLEWVSRIGPSGGPTH
121



YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGYDYVAVAGPAEYFQHW




GQGTLVTVSSASTKGPSVFPLAPQVQLLESGGGLVQPGGSLRLSCAASGFTFSRYTMSW




VRQAPGQCLEWMGTISSGGTYTYYPDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYY




CAREAIFTYWGRGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV




SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV




EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK




FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE




KTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYK




TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB06 HC
DIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPDQAPKLLIKRANRLVDGVP
122



SRFSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGQGTKVEIKRTVAAPSVFIF




PPDIQLTQSPSSLSLSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGCGTKLEIKRTVAAPSVF




IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL




SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSS




DKTHTCPPCPAPELLGGPSVFLFPPLPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPV




LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB07 HC
EVQLVESGGGVVRPGGSLRLSCAASGFTVSDYSMNWVRQAPGKGLEWIGFIRNKANAYT
123



TEYSASVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTYPRYHAMDSWGQGTMVTV




SSASTKGPSVFPLAPEVQLLESGGGLVQPGGSLRLSCAASGFTFSRYQMMWVRQAPGKC




LEWVSSISPSGGVTLYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGY




VVVPVAWKMRGYFDYWGQLTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYF




PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT




KVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH




EDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA




LPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP




GK






EPB07 LC
AIQLTQSPSSLSASVGDRVTITCRASQSISNNLHWYLQKPGQSPSLLIYYGFQSISGVP
124



SRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGGGTKLEIKRTVAAPSVFIF




PPDIQMTQSPGTLSVSPGERVTLSCKASQDINNYLSWYQQKPGQAPRLLIYGASTRATG




IPARFSGSGSGTEFTLTISSMQSEDFAVYYCQQYNNWPPLTFGCGTKVEIKRTVAAPSV




FIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS




LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKS




SDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY




VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPP




VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB08 HC
QVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGQCLEWMGTISSGGTYTY
125



YPDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREAIFTYWGRGTLVTVSSAST




KGPSVFPLAPEVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKCLEWVS




SISPSGGVTLYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRELLGTVVVPV




AWKMRGYFDYWGQLTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT




VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK




VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI




EKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB08 LC
DIQMTQSPGTLSVSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDGVP
126



DRFSGSGSGTDFTLKISRVEAEDVGVYYCLKYDEFPYTFGQGTRLEIKRTVAAPSVFIF




PPDIQMTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKPGKAPKLLIYGASTRATG




IPARFSGSGSGTEFTLTISSMQSEDFAVYYCQQYNNWPPLTFGCGTKVEIKRTVAAPSV




FIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS




LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKS




SDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY




VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPP




VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB09 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYQMMWVRQAPGKGLEWVSSISPSGGVTL
127



YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRELLGTVVVPVAWKMRGYFDY




WGQLTLVTVSSASTKGPSVFPLAPEVQLVESGGGVVRPGGSLRLSCAASGFTVSDYSMN




WVRQAPGKCLEWIGFIRNKANAYTTEYSASVKGRFTISRDDSKNTLYLQMNSLKTEDTA




VYYCTTYPRYHAMDSWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYF




PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT




KVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH




EDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSLVTVLHQDWLNGKEYKCKVSNKA




LPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP




GK






EPB09 LC
DIQMTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIP
128



ARFSGSGSGTEFTLTISSMQSEDFAVYYCQQYNNWPPLTFGGGTKVEIKRTVAAPSVFI




FPPDIQLTQSPSSLSASVGDRVTITCRASQSISNNLHWYLQKPGQSPSLLIYYGFQSIS




GVPSRFSGSGSGTDFSLTISSLQPEDFATYYCQQANSWPLTFGCGTKVEIKRTVAAPSV




FIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS




LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKS




SDKTHTCPPCPAPELLGGPSVFLFPPLPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY




VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPP




VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB10 HC
QVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGQCLEWMGTISSGGTYTY
129



YPDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREAIFTYWGRGTLVTVSSAST




KGPSVFPLAPEVQLVESGGGVVRPGGSLRLSCAASGFTVSDYSMNWVRQAPGKGLEWIG




FIRNKANAYTTEYSASVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTYPRYHAMD




SWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT




SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKT




HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS




DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB10 LC
DIQLTQSPSSLSLSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDGVP
130



DRFSGSGSGTDFTLKISRVEAEDVGVYYCLKYDEFPYTFGQGTRLEIKRTVAAPSVFIF




PPAIQLTQSPSSLSASVGDRVTITCRASQSISNNLHWYLQKPGQSPSLLIYYGFQSISG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGCGTKLEIKRTVAAPSVF




IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL




SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSS




DKTHTCPPCPAPELLGGPSVFLFPPLPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPV




LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB11 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYQMMWVRQAPGKGLEWVSSISPSGGVTL
131



YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRELLGTVVVPVAWKMRGYFDY




WGQGTMVTVSSASTKGPSVFPLAPEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMS




WVRQAPGQCLEWMGTISSGGTYTYYPDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY




YCAREAIFTYWGRGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT




VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK




VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI




EKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB11 LC
DIQMTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIP
132



ARFSGSGSGTEFTLTISSMQSEDFAVYYCQQYNNWPPLTFGGGTKVEIKRTVAAPSVFI




FPPDIQLTQSPSSLSLSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVD




GVPSRFSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGCGTKVEIKRTVAAPSV




FIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS




LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKS




SDKTHTCPPCPAPELLGGPSVFLFPPLPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY




VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPP




VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB12 HC
EVQLVESGGGVVRPGGSLRLSCAASGFTVSDYSMNWVRQAPGKGLEWIGFIRNKANAYT
133



TEYSASVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTYPRYHAMDSWGQGTMVTV




SSASTKGPSVFPLAPEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGQC




LEWMGTISSGGTYTYYPDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREAIFT




YWGRGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT




SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKT




HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS




DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EPB12 LC
AIQLTQSPSSLSASVGDRVTITCRASQSISNNLHWYLQKPGQSPSLLIYYGFQSISGVP
134



SRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGGGTKLEIKRTVAAPSVFIF




FPDIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPGKAPKLLIYKASNLHTG




VPSRFSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGCGTKVEIKRTVAAPSVF




IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL




SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSS




DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPV




LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


















TABLE 51





Name
Sequence
SEQ ID NO







EPB01 HC
GAGGTGCAACTGCTTGAGTCAGGAGGAGGACTGGTTCAACCCGGCGGGAGCCTTCGACT
528



CTCATGTGCAGCCTCTGGGTTTACATTTAGTCGTTACCAAATGATGTGGGTACGCCAGG




CCCCCGGAAAAGGTTTGGAGTGGGTGAGCAGCATTTCTCCTTCAGGAGGAGTGACACTT




TACGCAGACAGTGTTAAGGGTCGGTTCACAATCAGTCGTGATAATTCCAAGAACACTCT




CTATCTCCAAATGAACTCCCTTCGAGCTGAGGACACTGCTGTTTATTACTGTACTCGGG




AACTTCTCGGCACTGTGGTTGTTCCTGTGGCTTGGAAGATGCGTGGATACTTCGACTAT




TGGGGGCAACTCACTCTTGTTACCGTCTCAAGCGCTAGCACCAAAGGACCTAGTGTTTT




TCCTCTTGCCCCTGAGGTTCAACTCCTTGAATCCGGAGGAGGACTTGTCCAACCAGGCG




GCAGCCTTAGGCTGTCCTGCGCTGCCTCAGGCTTTACATTCAGTCATTACATGATGGCC




TGGGTTAGACAGGCACCCGGCAAATGTCTGGAATGGGTCAGCCGAATAGGACCATCAGG




AGGTCCCACTCACTATGCCGATTCTGTAAAAGGGAGGTTTACAATTTCCAGAGACAATT




CAAAGAATACCCTTTACCTCCAGATGAACTCATTGAGAGCCGAGGACACAGCCGTATAT




TATTGCGCAGGTTATGATTCCGGTTACGATTACGTTGCAGTCGCAGGCCCAGCCGAATA




CTTCCAACATTGGGGTCAGGGAACCCTCGTGACCGTGTCCAGTGCTAGCACCAAAGGAC




CTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTG




GGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGC




CTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCAT




TGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAAT




GTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGA




CAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCT




TCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA




TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGA




CGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGT




ACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC




AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGC




CAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGA




CCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC




GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCT




GGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGC




AGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG




CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB01 LC
GACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACGCGCCAC
529



TCTGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGCAAAAAC




CCGGTCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGCATTCCT




GCACGCTTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTCCATGCA




GAGTGAGGATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCTCCACTCACTT




TTGGTGGTGGCACCAAAGTGGAGATAAAGCGTACGGTGGCAGCTCCCAGCGTTTTTATC




TTTCCCCCAGACATACAGATGACACAAAGTCCAAGTAGCCTTTCTGCATCCGTTGGAGA




CCGCGTAACCATAACTTGTCGAGCATCACAAAGCATAAGCACTTGGCTTGCTTGGTATC




AGCAGAAGCCAGGCAAAGCACCCAAGCTGCTGATTTATAAAGCCTCTAATCTCCATACA




GGAGTTCCCAGCCGTTTCTCAGGCAGCGGGTCTGGAACCGAATTCTCTCTGACCATCTC




TGGCTTGCAACCTGATGACTTTGCAACATATTACTGTCAACAATATAATTCATATAGTC




GTACTTTCGGGTGTGGCACTAAGGTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTT




TTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTT




GCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTC




AGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGT




CTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATG




CGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAAT




GTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGT




AGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTC




AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGG




TCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC




GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAG




CACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG




AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCC




AAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGA




GATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACA




TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC




GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG




GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT




ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB02 HC
GAGGTCCAGCTGGTTGAGTCTGGAGGTGGTGTAGTCAGGCCAGGAGGTTCCCTGCGTCT
530



GTCTTGCGCTGCCTCTGGGTTCACTGTGTCTGACTACAGTATGAACTGGGTTAGACAGG




CTCCAGGGAAAGGTTTGGAATGGATAGGGTTTATTCGCAATAAAGCCAATGCCTATACC




ACCGAATACAGCGCAAGCGTTAAAGGCAGGTTCACCATCAGTAGGGACGACTCTAAGAA




TACCCTCTACCTGCAGATGAATAGCTTGAAGACAGAGGATACCGCTGTTTATTACTGCA




CTACCTACCCCAGGTATCATGCTATGGACAGTTGGGGTCAAGGAACTATGGTCACCGTC




TCCTCTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTGAGGTTCAACTCCT




TGAATCCGGAGGAGGACTTGTCCAACCAGGCGGCAGCCTTAGGCTGTCCTGCGCTGCCT




CAGGCTTTACATTCAGTCATTACATGATGGCCTGGGTTAGACAGGCACCCGGCAAATGT




CTGGAATGGGTCAGCCGAATAGGACCATCAGGAGGTCCCACTCACTATGCCGATTCTGT




AAAAGGGAGGTTTACAATTTCCAGAGACAATTCAAAGAATACCCTTTACCTCCAGATGA




ACTCATTGAGAGCCGAGGACACAGCCGTATATTATTGCGCAGGTTATGATTCCGGTTAC




GATTACGTTGCAGTCGCAGGCCCAGCCGAATACTTCCAACATTGGGGTCAGGGAACCCT




CGTGACCGTGTCCAGTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCT




CAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCA




GAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCC




TGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAA




GCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAG




GTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCC




AGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA




CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAA




GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC




AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCC




TGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTC




CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT




GTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCC




TGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG




GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA




CAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG




TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT




AAA






EPB02 LC
GCCATACAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGATCGCGTTAC
531



AATTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATCTCCAGAAAC




CTGGACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGTGGAGTCCCA




AGTAGATTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTCTAGCCTCCA




ACCTGAAGATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCTTGACCTTCG




GAGGTGGGACTAAGCTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTT




CCCCCAGACATACAGATGACACAAAGTCCAAGTAGCCTTTCTGCATCCGTTGGAGACCG




CGTAACCATAACTTGTCGAGCATCACAAAGCATAAGCACTTGGCTTGCTTGGTATCAGC




AGAAGCCAGGCAAAGCACCCAAGCTGCTGATTTATAAAGCCTCTAATCTCCATACAGGA




GTTCCCAGCCGTTTCTCAGGCAGCGGGTCTGGAACCGAATTCTCTCTGACCATCTCTGG




CTTGCAACCTGATGACTTTGCAACATATTACTGTCAACAATATAATTCATATAGTCGTA




CTTTCGGGTGTGGCACTAAGGTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTTTTT




ATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCT




GAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGA




GCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTG




TCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGA




GGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTG




GTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGT




GACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGT




CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCA




CATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTG




GACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC




GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGT




ACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA




GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGAT




GACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCG




CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG




CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTG




GCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACA




CGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB03 HC
CAAGTGCAACTCCTTGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCGGTTCACTGCGTTT
532



GAGCTGTGCCGCATCCGGCTTTACCTTTTCCAGTTACACAATGAGTTGGGTCCGTCAAG




CACCCGGGCAAGCTTTGGAATGGATGGGAACTATTTCATCTGGTGGGACTTACACTTAC




TATCCCGATAGCGTCAAGGGACGTTTTACCATAAGCCGGGACAACGCTAAAAATTCACT




CTATCTTCAGATGAACAGTCTTAGGGCTGAGGATACCGCTGTTTATTATTGCGCCCGAG




AAGCCATTTTCACCTACTGGGGGCGCGGTACACTTGTCACCGTTAGCAGTGCTAGCACC




AAAGGACCTAGTGTTTTTCCTCTTGCCCCTGAGGTTCAACTCCTTGAATCCGGAGGAGG




ACTTGTCCAACCAGGCGGCAGCCTTAGGCTGTCCTGCGCTGCCTCAGGCTTTACATTCA




GTCATTACATGATGGCCTGGGTTAGACAGGCACCCGGCAAATGTCTGGAATGGGTCAGC




CGAATAGGACCATCAGGAGGTCCCACTCACTATGCCGATTCTGTAAAAGGGAGGTTTAC




AATTTCCAGAGACAATTCAAAGAATACCCTTTACCTCCAGATGAACTCATTGAGAGCCG




AGGACACAGCCGTATATTATTGCGCAGGTTATGATTCCGGTTACGATTACGTTGCAGTC




GCAGGCCCAGCCGAATACTTCCAACATTGGGGTCAGGGAACCCTCGTGACCGTGTCCAG




TGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTG




GGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTC




AGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAG




CAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTC




AGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTC




GAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCT




GGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCC




GGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAG




TTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGA




GCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGC




TGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAG




AAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCC




ATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCT




ATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG




ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGT




GGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC




TGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB03 LC
GACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGAACGCGTAAC
533



TCTCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACCAACAAAAGC




CTGACCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGACGGAGTTCCC




GACAGGTTCAGTGGGTCAGGCTCAGGTACAGATTTTACCTTGAAGATATCACGCGTGGA




AGCCGAAGACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCTATACTTTTG




GGCAAGGAACTCGCCTGGAAATAAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTT




CCCCCAGACATACAGATGACACAAAGTCCAAGTAGCCTTTCTGCATCCGTTGGAGACCG




CGTAACCATAACTTGTCGAGCATCACAAAGCATAAGCACTTGGCTTGCTTGGTATCAGC




AGAAGCCAGGCAAAGCACCCAAGCTGCTGATTTATAAAGCCTCTAATCTCCATACAGGA




GTTCCCAGCCGTTTCTCAGGCAGCGGGTCTGGAACCGAATTCTCTCTGACCATCTCTGG




CTTGCAACCTGATGACTTTGCAACATATTACTGTCAACAATATAATTCATATAGTCGTA




CTTTCGGGTGTGGCACTAAGGTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTTTTT




ATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCT




GAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGA




GCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTG




TCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGA




GGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTG




GTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGT




GACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGT




CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCA




CATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTG




GACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC




GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGT




ACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA




GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGAT




GACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCG




CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG




CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTG




GCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACA




CGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB04 HC
GAGGTTCAACTCCTTGAATCCGGAGGAGGACTTGTCCAACCAGGCGGCAGCCTTAGGCT
534



GTCCTGCGCTGCCTCAGGCTTTACATTCAGTCATTACATGATGGCCTGGGTTAGACAGG




CACCCGGCAAAGGTCTGGAATGGGTCAGCCGAATAGGACCATCAGGAGGTCCCACTCAC




TATGCCGATTCTGTAAAAGGGAGGTTTACAATTTCCAGAGACAATTCAAAGAATACCCT




TTACCTCCAGATGAACTCATTGAGAGCCGAGGACACAGCCGTATATTATTGCGCAGGTT




ATGATTCCGGTTACGATTACGTTGCAGTCGCAGGCCCAGCCGAATACTTCCAACATTGG




GGTCAGGGAACCCTCGTGACCGTGTCCAGTGCTAGCACCAAAGGACCTAGTGTTTTTCC




TCTTGCCCCTGAGGTGCAACTGCTTGAGTCAGGAGGAGGACTGGTTCAACCCGGCGGGA




GCCTTCGACTCTCATGTGCAGCCTCTGGGTTTACATTTAGTCGTTACCAAATGATGTGG




GTACGCCAGGCCCCCGGAAAATGTTTGGAGTGGGTGAGCAGCATTTCTCCTTCAGGAGG




AGTGACACTTTACGCAGACAGTGTTAAGGGTCGGTTCACAATCAGTCGTGATAATTCCA




AGAACACTCTCTATCTCCAAATGAACTCCCTTCGAGCTGAGGACACTGCTGTTTATTAC




TGTACTCGGGAACTTCTCGGCACTGTGGTTGTTCCTGTGGCTTGGAAGATGCGTGGATA




CTTCGACTATTGGGGGCAACTCACTCTTGTTACCGTCTCAAGCGCTAGCACCAAAGGAC




CTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTG




GGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGC




CTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCAT




TGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAAT




GTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGA




CAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCT




TCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA




TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGA




CGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGT




ACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC




AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGC




CAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGA




CCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC




GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCT




GGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGC




AGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG




CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB04 LC
GACATACAGATGACACAAAGTCCAAGTAGCCTTTCTGCATCCGTTGGAGACCGCGTAAC
535



CATAACTTGTCGAGCATCACAAAGCATAAGCACTTGGCTTGCTTGGTATCAGCAGAAGC




CAGGCAAAGCACCCAAGCTGCTGATTTATAAAGCCTCTAATCTCCATACAGGAGTTCCC




AGCCGTTTCTCAGGCAGCGGGTCTGGAACCGAATTCTCTCTGACCATCTCTGGCTTGCA




ACCTGATGACTTTGCAACATATTACTGTCAACAATATAATTCATATAGTCGTACTTTCG




GGCAAGGCACTAAGGTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTT




CCCCCAGACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACG




CGCCACTCTGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGC




AAAAACCCGGTCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGC




ATTCCTGCACGCTTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTC




CATGCAGAGTGAGGATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCTCCAC




TCACTTTTGGTTGTGGCACCAAAGTGGAGATAAAGCGTACGGTGGCAGCTCCCAGCGTT




TTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTT




GCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTC




AGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGT




CTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATG




CGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAAT




GTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGT




AGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTC




AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGG




TCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC




GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAG




CACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG




AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCC




AAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGA




GATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACA




TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC




GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG




GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT




ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB05 HC
GAGGTTCAACTCCTTGAATCCGGAGGAGGACTTGTCCAACCAGGCGGCAGCCTTAGGCT
536



GTCCTGCGCTGCCTCAGGCTTTACATTCAGTCATTACATGATGGCCTGGGTTAGACAGG




CACCCGGCAAAGGTCTGGAATGGGTCAGCCGAATAGGACCATCAGGAGGTCCCACTCAC




TATGCCGATTCTGTAAAAGGGAGGTTTACAATTTCCAGAGACAATTCAAAGAATACCCT




TTACCTCCAGATGAACTCATTGAGAGCCGAGGACACAGCCGTATATTATTGCGCAGGTT




ATGATTCCGGTTACGATTACGTTGCAGTCGCAGGCCCAGCCGAATACTTCCAACATTGG




GGTCAGGGAACCCTCGTGACCGTGTCCAGTGCTAGCACCAAAGGACCTAGTGTTTTTCC




TCTTGCCCCTGAGGTCCAGCTGGTTGAGTCTGGAGGTGGTGTAGTCAGGCCAGGAGGTT




CCCTGCGTCTGTCTTGCGCTGCCTCTGGGTTCACTGTGTCTGACTACAGTATGAACTGG




GTTAGACAGGCTCCAGGGAAATGTTTGGAATGGATAGGGTTTATTCGCAATAAAGCCAA




TGCCTATACCACCGAATACAGCGCAAGCGTTAAAGGCAGGTTCACCATCAGTAGGGACG




ACTCTAAGAATACCCTCTACCTGCAGATGAATAGCTTGAAGACAGAGGATACCGCTGTT




TATTACTGCACTACCTACCCCAGGTATCATGCTATGGACAGTTGGGGTCAAGGAACTAT




GGTCACCGTCTCCTCTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCT




CAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCA




GAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCC




TGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAA




GCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAG




GTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCC




AGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA




CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAA




GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC




AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCC




TGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTC




CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT




GTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCC




TGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG




GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA




CAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG




TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT




AAA






EPB05 LC
GACATACAGATGACACAAAGTCCAAGTAGCCTTTCTGCATCCGTTGGAGACCGCGTAAC
537



CATAACTTGTCGAGCATCACAAAGCATAAGCACTTGGCTTGCTTGGTATCAGCAGAAGC




CAGGCAAAGCACCCAAGCTGCTGATTTATAAAGCCTCTAATCTCCATACAGGAGTTCCC




AGCCGTTTCTCAGGCAGCGGGTCTGGAACCGAATTCTCTCTGACCATCTCTGGCTTGCA




ACCTGATGACTTTGCAACATATTACTGTCAACAATATAATTCATATAGTCGTACTTTCG




GGCAAGGCACTAAGGTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTT




CCCCCAGCCATACAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGATCG




CGTTACAATTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATCTCC




AGAAACCTGGACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGTGGA




GTCCCAAGTAGATTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTCTAG




CCTCCAACCTGAAGATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCTTGA




CCTTCGGATGTGGGACTAAGCTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTTTTT




ATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCT




GAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGA




GCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTG




TCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGA




GGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTG




GTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGT




GACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGT




CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCA




CATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTG




GACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC




GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGT




ACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA




GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGAT




GACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCG




CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG




CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTG




GCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACA




CGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB06 HC
GAGGTTCAACTCCTTGAATCCGGAGGAGGACTTGTCCAACCAGGCGGCAGCCTTAGGCT
538



GTCCTGCGCTGCCTCAGGCTTTACATTCAGTCATTACATGATGGCCTGGGTTAGACAGG




CACCCGGCAAAGGTCTGGAATGGGTCAGCCGAATAGGACCATCAGGAGGTCCCACTCAC




TATGCCGATTCTGTAAAAGGGAGGTTTACAATTTCCAGAGACAATTCAAAGAATACCCT




TTACCTCCAGATGAACTCATTGAGAGCCGAGGACACAGCCGTATATTATTGCGCAGGTT




ATGATTCCGGTTACGATTACGTTGCAGTCGCAGGCCCAGCCGAATACTTCCAACATTGG




GGTCAGGGAACCCTCGTGACCGTGTCCAGTGCTAGCACCAAAGGACCTAGTGTTTTTCC




TCTTGCCCCTCAAGTGCAACTCCTTGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCGGTT




CACTGCGTTTGAGCTGTGCCGCATCCGGCTTTACCTTTTCCAGTTACACAATGAGTTGG




GTCCGTCAAGCACCCGGGCAATGTTTGGAATGGATGGGAACTATTTCATCTGGTGGGAC




TTACACTTACTATCCCGATAGCGTCAAGGGACGTTTTACCATAAGCCGGGACAACGCTA




AAAATTCACTCTATCTTCAGATGAACAGTCTTAGGGCTGAGGATACCGCTGTTTATTAT




TGCGCCCGAGAAGCCATTTTCACCTACTGGGGGCGCGGTACACTTGTCACCGTTAGCAG




TGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTG




GGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTC




AGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAG




CAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTC




AGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTC




GAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCT




GGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCC




GGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAG




TTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGA




GCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGC




TGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAG




AAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCC




ATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCT




ATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG




ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGT




GGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC




TGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB06 LC
GACATACAGATGACACAAAGTCCAAGTAGCCTTTCTGCATCCGTTGGAGACCGCGTAAC
539



CATAACTTGTCGAGCATCACAAAGCATAAGCACTTGGCTTGCTTGGTATCAGCAGAAGC




CAGGCAAAGCACCCAAGCTGCTGATTTATAAAGCCTCTAATCTCCATACAGGAGTTCCC




AGCCGTTTCTCAGGCAGCGGGTCTGGAACCGAATTCTCTCTGACCATCTCTGGCTTGCA




ACCTGATGACTTTGCAACATATTACTGTCAACAATATAATTCATATAGTCGTACTTTCG




GGCAAGGCACTAAGGTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTT




CCCCCAGACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGAACG




CGTAACTCTCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACCAAC




AAAAGCCTGACCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGACGGA




GTTCCCGACAGGTTCAGTGGGTCAGGCTCAGGTACAGATTTTACCTTGAAGATATCACG




CGTGGAAGCCGAAGACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCTATA




CTTTTGGGTGTGGAACTCGCCTGGAAATAAAACGTACGGTGGCAGCTCCCAGCGTTTTT




ATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCT




GAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGA




GCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTG




TCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGA




GGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTG




GTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGT




GACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGT




CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCA




CATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTG




GACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC




GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGT




ACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA




GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGAT




GACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCG




CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG




CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTG




GCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACA




CGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB07 HC
GAGGTCCAGCTGGTTGAGTCTGGAGGTGGTGTAGTCAGGCCAGGAGGTTCCCTGCGTCT
540



GTCTTGCGCTGCCTCTGGGTTCACTGTGTCTGACTACAGTATGAACTGGGTTAGACAGG




CTCCAGGGAAAGGTTTGGAATGGATAGGGTTTATTCGCAATAAAGCCAATGCCTATACC




ACCGAATACAGCGCAAGCGTTAAAGGCAGGTTCACCATCAGTAGGGACGACTCTAAGAA




TACCCTCTACCTGCAGATGAATAGCTTGAAGACAGAGGATACCGCTGTTTATTACTGCA




CTACCTACCCCAGGTATCATGCTATGGACAGTTGGGGTCAAGGAACTATGGTCACCGTC




TCCTCTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTGAGGTGCAACTGCT




TGAGTCAGGAGGAGGACTGGTTCAACCCGGCGGGAGCCTTCGACTCTCATGTGCAGCCT




CTGGGTTTACATTTAGTCGTTACCAAATGATGTGGGTACGCCAGGCCCCCGGAAAATGT




TTGGAGTGGGTGAGCAGCATTTCTCCTTCAGGAGGAGTGACACTTTACGCAGACAGTGT




TAAGGGTCGGTTCACAATCAGTCGTGATAATTCCAAGAACACTCTCTATCTCCAAATGA




ACTCCCTTCGAGCTGAGGACACTGCTGTTTATTACTGTACTCGGGAACTTCTCGGCACT




GTGGTTGTTCCTGTGGCTTGGAAGATGCGTGGATACTTCGACTATTGGGGGCAACTCAC




TCTTGTTACCGTCTCAAGCGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTT




CCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTC




CCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATT




TCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCT




CAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACA




AAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTG




CCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG




ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCAC




GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA




GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCG




TCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCC




CTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACA




GGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGT




GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG




CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT




CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCT




CCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCG




GGTAAA






EPB07 LC
GCCATACAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGATCGCGTTAC
541



AATTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATCTCCAGAAAC




CTGGACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGTGGAGTCCCA




AGTAGATTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTCTAGCCTCCA




ACCTGAAGATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCTTGACCTTCG




GAGGTGGGACTAAGCTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTT




CCCCCAGACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACG




CGCCACTCTGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGC




AAAAACCCGGTCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGC




ATTCCTGCACGCTTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTC




CATGCAGAGTGAGGATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCTCCAC




TCACTTTTGGTTGTGGCACCAAAGTGGAGATAAAGCGTACGGTGGCAGCTCCCAGCGTT




TTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTT




GCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTC




AGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGT




CTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATG




CGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAAT




GTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGT




AGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTC




AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGG




TCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC




GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAG




CACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG




AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCC




AAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGA




GATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACA




TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC




GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG




GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT




ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB08 HC
CAAGTGCAACTCCTTGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCGGTTCACTGCGTTT
542



GAGCTGTGCCGCATCCGGCTTTACCTTTTCCAGTTACACAATGAGTTGGGTCCGTCAAG




CACCCGGGCAAGCTTTGGAATGGATGGGAACTATTTCATCTGGTGGGACTTACACTTAC




TATCCCGATAGCGTCAAGGGACGTTTTACCATAAGCCGGGACAACGCTAAAAATTCACT




CTATCTTCAGATGAACAGTCTTAGGGCTGAGGATACCGCTGTTTATTATTGCGCCCGAG




AAGCCATTTTCACCTACTGGGGGCGCGGTACACTTGTCACCGTTAGCAGTGCTAGCACC




AAAGGACCTAGTGTTTTTCCTCTTGCCCCTGAGGTGCAACTGCTTGAGTCAGGAGGAGG




ACTGGTTCAACCCGGCGGGAGCCTTCGACTCTCATGTGCAGCCTCTGGGTTTACATTTA




GTCGTTACCAAATGATGTGGGTACGCCAGGCCCCCGGAAAATGTTTGGAGTGGGTGAGC




AGCATTTCTCCTTCAGGAGGAGTGACACTTTACGCAGACAGTGTTAAGGGTCGGTTCAC




AATCAGTCGTGATAATTCCAAGAACACTCTCTATCTCCAAATGAACTCCCTTCGAGCTG




AGGACACTGCTGTTTATTACTGTACTCGGGAACTTCTCGGCACTGTGGTTGTTCCTGTG




GCTTGGAAGATGCGTGGATACTTCGACTATTGGGGGCAACTCACTCTTGTTACCGTCTC




AAGCGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCT




CTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACT




GTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCA




AAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCA




CTCAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAA




GTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACT




CCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT




CCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC




AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA




GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACT




GGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC




GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCC




CCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCT




TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC




AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCAC




CGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG




CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB08 LC
GACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGAACGCGTAAC
543



TCTCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACCAACAAAAGC




CTGACCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGACGGAGTTCCC




GACAGGTTCAGTGGGTCAGGCTCAGGTACAGATTTTACCTTGAAGATATCACGCGTGGA




AGCCGAAGACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCTATACTTTTG




GGCAAGGAACTCGCCTGGAAATAAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTT




CCCCCAGACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACG




CGCCACTCTGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGC




AAAAACCCGGTCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGC




ATTCCTGCACGCTTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTC




CATGCAGAGTGAGGATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCTCCAC




TCACTTTTGGTTGTGGCACCAAAGTGGAGATAAAGCGTACGGTGGCAGCTCCCAGCGTT




TTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTT




GCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTC




AGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGT




CTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATG




CGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAAT




GTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGT




AGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTC




AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGG




TCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC




GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAG




CACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG




AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCC




AAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGA




GATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACA




TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC




GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG




GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT




ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB09 HC
GAGGTGCAACTGCTTGAGTCAGGAGGAGGACTGGTTCAACCCGGCGGGAGCCTTCGACT
544



CTCATGTGCAGCCTCTGGGTTTACATTTAGTCGTTACCAAATGATGTGGGTACGCCAGG




CCCCCGGAAAAGGTTTGGAGTGGGTGAGCAGCATTTCTCCTTCAGGAGGAGTGACACTT




TACGCAGACAGTGTTAAGGGTCGGTTCACAATCAGTCGTGATAATTCCAAGAACACTCT




CTATCTCCAAATGAACTCCCTTCGAGCTGAGGACACTGCTGTTTATTACTGTACTCGGG




AACTTCTCGGCACTGTGGTTGTTCCTGTGGCTTGGAAGATGCGTGGATACTTCGACTAT




TGGGGGCAACTCACTCTTGTTACCGTCTCAAGCGCTAGCACCAAAGGACCTAGTGTTTT




TCCTCTTGCCCCTGAGGTCCAGCTGGTTGAGTCTGGAGGTGGTGTAGTCAGGCCAGGAG




GTTCCCTGCGTCTGTCTTGCGCTGCCTCTGGGTTCACTGTGTCTGACTACAGTATGAAC




TGGGTTAGACAGGCTCCAGGGAAATGTTTGGAATGGATAGGGTTTATTCGCAATAAAGC




CAATGCCTATACCACCGAATACAGCGCAAGCGTTAAAGGCAGGTTCACCATCAGTAGGG




ACGACTCTAAGAATACCCTCTACCTGCAGATGAATAGCTTGAAGACAGAGGATACCGCT




GTTTATTACTGCACTACCTACCCCAGGTATCATGCTATGGACAGTTGGGGTCAAGGAAC




TATGGTCACCGTCTCCTCTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTT




CCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTC




CCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATT




TCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCT




CAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACA




AAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTG




CCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG




ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCAC




GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA




GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCG




TCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCC




CTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACA




GGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGT




GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG




CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCT




CTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCT




CCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCG




GGTAAA






EPB09 LC
GACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACGCGCCAC
545



TCTGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGCAAAAAC




CCGGTCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGCATTCCT




GCACGCTTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTCCATGCA




GAGTGAGGATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCTCCACTCACTT




TTGGTGGTGGCACCAAAGTGGAGATAAAGCGTACGGTGGCAGCTCCCAGCGTTTTTATC




TTTCCCCCAGCCATACAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGA




TCGCGTTACAATTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATC




TCCAGAAACCTGGACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGT




GGAGTCCCAAGTAGATTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTC




TAGCCTCCAACCTGAAGATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCT




TGACCTTCGGATGTGGGACTAAGCTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTT




TTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTT




GCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTC




AGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGT




CTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATG




CGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAAT




GTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGT




AGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTC




AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGG




TCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC




GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAG




CACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG




AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCC




AAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGA




GATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACA




TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC




GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG




GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT




ACACGCAGAAGAGCDCTCTCCCTGTCTCCGGGTAAA






EPB10 HC
CAAGTGCAACTCCTTGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCGGTTCACTGCGTTT
546



GAGCTGTGCCGCATCCGGCTTTACCTTTTCCAGTTACACAATGAGTTGGGTCCGTCAAG




CACCCGGGCAAGCTTTGGAATGGATGGGAACTATTTCATCTGGTGGGACTTACACTTAC




TATCCCGATAGCGTCAAGGGACGTTTTACCATAAGCCGGGACAACGCTAAAAATTCACT




CTATCTTCAGATGAACAGTCTTAGGGCTGAGGATACCGCTGTTTATTATTGCGCCCGAG




AAGCCATTTTCACCTACTGGGGGCGCGGTACACTTGTCACCGTTAGCAGTGCTAGCACC




AAAGGACCTAGTGTTTTTCCTCTTGCCCCTGAGGTCCAGCTGGTTGAGTCTGGAGGTGG




TGTAGTCAGGCCAGGAGGTTCCCTGCGTCTGTCTTGCGCTGCCTCTGGGTTCACTGTGT




CTGACTACAGTATGAACTGGGTTAGACAGGCTCCAGGGAAATGTTTGGAATGGATAGGG




TTTATTCGCAATAAAGCCAATGCCTATACCACCGAATACAGCGCAAGCGTTAAAGGCAG




GTTCACCATCAGTAGGGACGACTCTAAGAATACCCTCTACCTGCAGATGAATAGCTTGA




AGACAGAGGATACCGCTGTTTATTACTGCACTACCTACCCCAGGTATCATGCTATGGAC




AGTTGGGGTCAAGGAACTATGGTCACCGTCTCCTCTGCTAGCACCAAAGGACCTAGTGT




TTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCC




TGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACT




TCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTC




TGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACC




ACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACT




CACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTT




CCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG




TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG




GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT




GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA




AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG




CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAA




CCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGT




GGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCC




GACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGG




GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGTAAA






EPB10 LC
GACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGAACGCGTAAC
547



TCTCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACCAACAAAAGC




CTGACCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGACGGAGTTCCC




GACAGGTTCAGTGGGTCAGGCTCAGGTACAGATTTTACCTTGAAGATATCACGCGTGGA




AGCCGAAGACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCTATACTTTTG




GGCAAGGAACTCGCCTGGAAATAAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTT




CCCCCAGCCATACAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGATCG




CGTTACAATTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATCTCC




AGAAACCTGGACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGTGGA




GTCCCAAGTAGATTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTCTAG




CCTCCAACCTGAAGATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCTTGA




CCTTCGGATGTGGGACTAAGCTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTTTTT




ATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCT




GAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGA




GCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTG




TCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGA




GGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTG




GTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGT




GACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGT




CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCA




CATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTG




GACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC




GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGT




ACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA




GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGAT




GACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCG




CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG




CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTG




GCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACA




CGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB11 HC
GAGGTGCAACTGCTTGAGTCAGGAGGAGGACTGGTTCAACCCGGCGGGAGCCTTCGACT
548



CTCATGTGCAGCCTCTGGGTTTACATTTAGTCGTTACCAAATGATGTGGGTACGCCAGG




CCCCCGGAAAAGGTTTGGAGTGGGTGAGCAGCATTTCTCCTTCAGGAGGAGTGACACTT




TACGCAGACAGTGTTAAGGGTCGGTTCACAATCAGTCGTGATAATTCCAAGAACACTCT




CTATCTCCAAATGAACTCCCTTCGAGCTGAGGACACTGCTGTTTATTACTGTACTCGGG




AACTTCTCGGCACTGTGGTTGTTCCTGTGGCTTGGAAGATGCGTGGATACTTCGACTAT




TGGGGGCAACTCACTCTTGTTACCGTCTCAAGCGCTAGCACCAAAGGACCTAGTGTTTT




TCCTCTTGCCCCTCAAGTGCAACTCCTTGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCG




GTTCACTGCGTTTGAGCTGTGCCGCATCCGGCTTTACCTTTTCCAGTTACACAATGAGT




TGGGTCCGTCAAGCACCCGGGCAATGTTTGGAATGGATGGGAACTATTTCATCTGGTGG




GACTTACACTTACTATCCCGATAGCGTCAAGGGACGTTTTACCATAAGCCGGGACAACG




CTAAAAATTCACTCTATCTTCAGATGAACAGTCTTAGGGCTGAGGATACCGCTGTTTAT




TATTGCGCCCGAGAAGCCATTTTCACCTACTGGGGGCGCGGTACACTTGTCACCGTTAG




CAGTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCT




CTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACT




GTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCA




AAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCA




CTCAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAA




GTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACT




CCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT




CCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC




AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA




GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACT




GGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC




GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCC




CCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCT




TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC




AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCAC




CGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG




CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB11 LC
GACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACGCGCCAC
549



TCTGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGCAAAAAC




CCGGTCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGCATTCCT




GCACGCTTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTCCATGCA




GAGTGAGGATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCTCCACTCACTT




TTGGTGGTGGCACCAAAGTGGAGATAAAGCGTACGGTGGCAGCTCCCAGCGTTTTTATC




TTTCCCCCAGACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGA




ACGCGTAACTCTCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACC




AACAAAAGCCTGACCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGAC




GGAGTTCCCGACAGGTTCAGTGGGTCAGGCTCAGGTACAGATTTTACCTTGAAGATATC




ACGCGTGGAAGCCGAAGACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCT




ATACTTTTGGGTGTGGAACTCGCCTGGAAATAAAACGTACGGTGGCAGCTCCCAGCGTT




TTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTT




GCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTC




AGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGT




CTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATG




CGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAAT




GTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGT




AGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTC




AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGG




TCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC




GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAG




CACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG




AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCC




AAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGA




GATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACA




TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC




GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAG




GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT




ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EPB12 HC
GAGGTCCAGCTGGTTGAGTCTGGAGGTGGTGTAGTCAGGCCAGGAGGTTCCCTGCGTCT
550



GTCTTGCGCTGCCTCTGGGTTCACTGTGTCTGACTACAGTATGAACTGGGTTAGACAGG




CTCCAGGGAAAGGTTTGGAATGGATAGGGTTTATTCGCAATAAAGCCAATGCCTATACC




ACCGAATACAGCGCAAGCGTTAAAGGCAGGTTCACCATCAGTAGGGACGACTCTAAGAA




TACCCTCTACCTGCAGATGAATAGCTTGAAGACAGAGGATACCGCTGTTTATTACTGCA




CTACCTACCCCAGGTATCATGCTATGGACAGTTGGGGTCAAGGAACTATGGTCACCGTC




TCCTCTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTCAAGTGCAACTCCT




TGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCGGTTCACTGCGTTTGAGCTGTGCCGCAT




CCGGCTTTACCTTTTCCAGTTACACAATGAGTTGGGTCCGTCAAGCACCCGGGCAATGT




TTGGAATGGATGGGAACTATTTCATCTGGTGGGACTTACACTTACTATCCCGATAGCGT




CAAGGGACGTTTTACCATAAGCCGGGACAACGCTAAAAATTCACTCTATCTTCAGATGA




ACAGTCTTAGGGCTGAGGATACCGCTGTTTATTATTGCGCCCGAGAAGCCATTTTCACC




TACTGGGGGCGCGGTACACTTGTCACCGTTAGCAGTGCTAGCACCAAAGGACCTAGTGT




TTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCC




TGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACT




TCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTC




TGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACC




ACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACT




CACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTT




CCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG




TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG




GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT




GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA




AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG




CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAA




CCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGT




GGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCC




GACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGG




GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGTAAA






EPB12 LC
GCCATACAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGATCGCGTTAC
551



AATTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATCTCCAGAAAC




CTGGACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGTGGAGTCCCA




AGTAGATTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTCTAGCCTCCA




ACCTGAAGATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCTTGACCTTCG




GAGGTGGGACTAAGCTGGAAATCAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTT




CCCCCAGACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGAACG




CGTAACTCTCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACCAAC




AAAAGCCTGACCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGACGGA




GTTCCCGACAGGTTCAGTGGGTCAGGCTCAGGTACAGATTTTACCTTGAAGATATCACG




CGTGGAAGCCGAAGACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCTATA




CTTTTGGGTGTGGAACTCGCCTGGAAATAAAACGTACGGTGGCAGCTCCCAGCGTTTTT




ATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCT




GAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGA




GCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTG




TCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGA




GGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTG




GTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGT




GACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGT




CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCA




CATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTG




GACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC




GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGT




ACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA




GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGAT




GACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCG




CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG




CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTG




GCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACA




CGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA









Table 52 below shows the polypeptide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting EphA2. Table 53 below shows the nucleotide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting EphA2.












TABLE 52








SEQ ID


Name

Sequence
NO







EPB01
VH1
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYQMMWVRQAPGKGLEWVSSISPSGGVTLYA
135




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRELLGTVVVPVAWKMRGYFDYWGQL





TLVTVSS




VH2
EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKCLEWVSRIGPSGGPTHYA
136




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGYDYVAVAGPAEYFQHWGQGT





LVTVSS




VL1
DIQMTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIPAR
137




FSGSGSGTEFTLTISSMQSEDFAVYYCQQYNNWPPLTFGGGTKVEIK




VL2
DIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPGKAPKLLIYKASNLHTGVPSR
138




FSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGCGTKVEIK






EPB02
VH1
EVQLVESGGGVVRPGGSLRLSCAASGFTVSDYSMNWVRQAPGKGLEWIGFIRNKANAYTTE
130




YSASVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTYPRYHAMDSWGQGTMVTVSS




VH2
EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKCLEWVSRIGPSGGPTHYA
136




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGYDYVAVAGPAEYFQHWGQGT





LVTVSS




VL1
AIQLTQSPSSLSASVGDRVTITCRASQSISNNLHWYLQKPGQSPQLLIYYGFQSISGVPSR
140




FSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGGGTKLEIK




VL2
DIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPGKAPKLLIYKASNLHTGVPSR
138




FSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGCGTKVEIK






EPB03
VH1
QVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGQALEWMGTISSGGTYTYYP
141




DSVKGRFTISRDNAKNSLYQMNSLRAEDTAVYYCAREAIFTYWGRGTLVTVSS




VH2
EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKCLEWVSRIGPSGGPTHYA
136




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGYDYVAVAGPAEYFQHWGQGT





LVTVSS




VL1
DIQLTQSPSSLSLSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDGVPDR
142




FSGSGSGTDFTLKISRVEAEDVGVYYCLKYDEFPYTFGQGTRLEIK




VL2
DIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPGKAPKLLIYKASNLHTGVPSR
138




FSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGCGTKVEIK






EPB04
VH1
EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKGLEWVSRIGPSGGPTHYA
143




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGYDYVAVAGPAEYFQHWGQGT





LVTVSS




VH2
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYQMMWYRQAPGKCLEWVSSISPSGGVTLYA
144




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRELLGTVVVPVAWKMRGYFDYNGQL





TLVTVSS




VL1
DIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPGKAPKLLIYKASNLHTGVPSR
145




FSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGQGTKVEIK




VL2
DIQMTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKPDQAPRLLIYGASTRATGIPAR
146




FSGSGSGTEFTLTISSMQSEDFAVYYCQQYNNWPPLTFGCGTKVEIK






EPB06
VH1
EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKGLEWVSRIGPSGGPTHYA
143




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGYDYVAVAGPAEYFQHWGQGT





LVTVSS




VH2
EVQLVESGGGVVRPGGSLRLSCAASGFTVSDYSMNWVRQAPGKCLEWIGFIRNKANAYTTE
147




YSASVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTYPRYHAMDSWGQGTMYTVSS




VL1
DIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPGKAPKLLIYKASNLHTGVPSR
145




FSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGQGTKVEIK




VL2
AIQLTQSPSSLSASVGDRYTITCRASQSISNNLHWYLQKPGQSPQLLIYYGFQSISGVPSR
148




FSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGCGTKLEIK






EPB06
VH1
EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYMMAWVRQAPGKGLEWVSRIGPSGGPTHYA
143




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGYDSGYDYVAVAGPAEYFQHWGQGT





LVTVSS




VH2
QVQLLESGGGLYQPGGSLRLSCAASGFTFSSYTMSWYRQAPGQCLEWMGTISSGGTYTYYP
149




DSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREAIFTYWGRGTLVTVSS




VL1
DIQMTQSPSSLSASVGDRVTITCRASQSISTWLAWYQQKPGKAPKLLIYKASNLHTGVPSR
145




FSGSGSGTEFSLTISGLQPDDFATYYCQQYNSYSRTFGQGTKVEIK




VL2
DIQLTQSPSSLSLSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDGVPDR
150




FSGSGSGTDFTLKISRVEARDVGVYYCLKYDEFPYTFGCGTRLEIK






EPB07
VH1
EVQLVESGGGVVRPGGSLRSLSCAASGTFVSDYSMNWVRQAPGLGLEWIGFIRNKANATTTE
139




YSASVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTYPKYHAMDSWGQGTMVTVSS




VH2
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYQMMWYRQAPGKCLEWVSSISPSGGVTLYA
144




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRELLGTVVVPVAWKMRGYFDYNGQL





TLVTVSS




VL1
AIQLTQSPSSLSASVGDRVTITCRASQSISNNLHWYLQKPGQSPQLLIYYGFQSISGVPSR
140




FSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGGGTKLEIK




VL3
DIQMTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKPDQAPRLLIYGASTRATGIPAR
146




FSGSGSGTEFTLTISSMQSEDFAVYYCQQYNNWPPLTFGCGTKVEIK






EPB08
VH1
QVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGQALEWMGTISSGGTYTYYP
141




DSVKGRFTISRDNAKNSLYQMNSLRAEDTAVYYCAREAIFTYWGRGTLVTVSS




VH2
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYQMMWYRQAPGKCLEWVSSISPSGGVTLYA
144




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRELLGTVVVPVAWKMRGYFDYNGQL





TLVTVSS




VL1
DIQLTQSPSSLSLSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDGVPDR
142




FSGSGSGTDFTLKISRVEAEDVGVYYCLKYDEFPYTFGQGTRLEIK




VL2
DIQMTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKPDQAPRLLIYGASTRATGIPAR
146




FSGSGSGTEFTLTISSMQSEDFAVYYCQQYNNWPPLTFGCGTKVEIK






EPB09
VH1
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYQMMWVRQAPGKGLEWVSSISPSGGVTLYA
135




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRELLGTVVVPVAWKMRGYFDYWGQL





TLVTVSS




VH2
EVQLVESGGGVVRPGGSERLSCAASGFTVSDYSMNWVRQAPGKCLEWIGFIRNKANAYTTE
147




YSASVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTYPRYHAMDSWGQGTMVTVSS





DIQMTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIPAR
137




FSGSGSGTEFTLTISSMQSEDFAVYYCQQYNNWPPLTFGGGTKVEIK




VL2
AIQLTQSPSSLSASVGDRYTITCRASQSISNNLHWYLQKPGQSPQLLIYYGFQSISGVPSR
148




FSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGCGTKLEIK






EPB10
VH1
QVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGQALEWMGTISSGGTYTYYP
141




DSVKGRFTISRDNAKNSLYQMNSLRAEDTAVYYCAREAIFTYWGRGTLVTVSS




VH2
EVQLVESGGGVVRPGGSLRLSCAASGFTVSDYSMNWVRQAPGKCLEWIGFIRNKANAYTTE
147




YSASVKGRFTISKDDSKNTLYLQMNSLKTEDTAVYYCTTYPRYHAMDSWGQGTMVTVSS




VL1
DIQLTQSPSSLSLSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDGVPDR
142




FSGSGSGTDFTLKISRVEAEDVGVYYCLKYDEFPYTFGQGTRLEIK




VL2
AIQLTQSPSSLSASVGDRVTITCRASQSISNNLHWYLQKPGQSPQLLIYYGFQSISGVPSR
148




FSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGCGTKLEIK






EPB11
VH1
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYQMMWVRQAPGKGLEWVSSISPSGGVTLYA
135




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRELLGTVVVPVAWKMRGYFDYWGQL





TLVTVSS




VH2
QVQLLESGGGLYQPGGSLRLSCAASGFTFSSYTMSWYRQAPGQCLEWMGTISSGGTYTYYP
149




DSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREAIFTYWGRGTLVTVSS




VL1
DIQMTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIPAR
137




FSGSGSGTEFTLTISSMQSEDFAVYYCQQYNNWPPLTFGGGTKVEIK




VL2
DIQLTQSPSSLSLSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDGVPDR
150




FSGSGSGTDFTLKISRVEARDVGVYYCLKYDEFPYTFGCGTRLEIK






EPB12
VH1
EVQLVESGGGVVRPGGSLRLSCAASGFTVSDYSMNWVRQAPGKGLEWIGFIRNKANAYTTE
130




YSASVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTYPRYHAMDSWGQGTMVTVSS




VH2
QVQLLESGGGLYQPGGSLRLSCAASGFTFSSYTMSWYRQAPGQCLEWMGTISSGGTYTYYP
149




DSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREAIFTYWGRGTLVTVSS




VL1
AIQLTQSPSSLSASVGDRVTITCRASQSISNNLHWYLQKPGQSPQLLIYYGFQSISGVPSR
140




FSGSGSGTDFTLTISSLQPEDFATYYCQQANSWPLTFGGGTKLEIK




VL2
DIQLTQSPSSLSLSPGERVTLSCKASQDINNYLSWYQQKPDQAPKLLIKRANRLVDGVPDR
150




FSGSGSGTDFTLKISRVEARDVGVYYCLKYDEFPYTFGCGTRLEIK



















TABLE 53










SEQ





ID









Name
Sequence
NO













EPB01
VH1
GAGGTGCAACTGCTTGAGTCAGGAGGAGGACTGGTTCAACCCGGGGGGAGCCTTCGACTCT
552




CATGTGCAGCCTCTGGGTTTACATTTAGTCGTTACCAAATGATGTGGGTACGCCAGGCCCC





CGGAAAAGGTTTGGAGTGGGTGAGCAGCATTTCTCCTTCAGGAGGAGTGACACTTTACGCA





GACAGTGTTAAGGGTCGGTTCACAATCAGTCGTGATAATTCCAAGAACACTCTCTATCTCC





AAATGAACTCCCTTCGAGCTGAGGACACTGCTGTTTATTACTGTACTCGGGAACTTCTCGG





CACTGTGGTTGTTCCTGTGGCTTGGAAGATGCGTGGATACTTCGACTATTGGGGGCAACTC





ACTCTTGTTACCGTCTCAAGC




VH2
GAGGTTCAACTCCTTGAATCCGGAGGAGGACTTGTCCAACCAGGCGGCAGCCTTAGGCTGT
553




CCTGCGCTGCCTCAGGCTTTACATTCAGTCATTACATGATGGCCTGGGTTAGACAGGCACC





CGGCAAATGTCTGGAATGGGTCAGCCGAATAGGACCATCAGGAGGTCCCACTCACTATGCC





GATTCTGTAAAAGGGAGGTTTACAATTTCCAGAGACAATTCAAAGAATACCCTTTACCTCC





AGATGAACTCATTGAGAGCCGAGGACACAGCCGTATATTATTGCGCAGGTTATGATTCCGG





TTACGATTACGTTGCAGTCGCAGGCCCAGCCGAATACTTCCAACATTGGGGTCAGGGAACC





CTCGTGACCGTGTCCAGT




VL1
GACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACGCGCCACTC
554




TGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGCAAAAACCCGG





TCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGCATTCCTGCACGC





TTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTCCATGCAGAGTGAGG





ATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCTCCACTCACTTTTGGTGGTGG





CACCAAAGTGGAGATAAAG




VL2
GACATACAGATGACACAAAGTCCAAGTAGCCTTTCTGCATCCGTTGGAGACCGCGTAACCA
556




TAACTTGTCGAGCATCACAAAGCATAAGCACTTGGCTTGCTTGGTATCAGCAGAAGCCAGG





CAAAGCACCCAAGCTGCTGATTTATAAAGCCTCTAATCTCCATACAGGAGTTCCCAGCCGT





TTCTCAGGCAGCGGGTCTGGAACCGAATTCTCTCTGACCATCTCTGGCTTGCAACCTGATG





ACTTTGCAACATATTACTGTCAACAATATAATTCATATAGTCGTACTTTCGGGTGTGGCAC





TAAGGTGGAAATCAAA






EPB02
VH1
GAGGTCCAGCTGGTTGAGTCTGGAGGTGGTGTAGTCAGGCCAGGAGGTTCCCTGCGTCTGT
556




CTTGCGCTGCCTCTGGGTTCACTGTGTCTGACTACAGTATGAACTGGGTTAGACAGGCTCC





AGGGAAAGGTTTGGAATGGATAGGGTTTATTCGCAATAAAGCCAATGCCTATACCACCGAA





TACAGCGCAAGCGTTAAAGGCAGGTTCACCATCAGTAGGGACGACTCTAAGAATACCCTCT





ACCTGCAGATGAATAGCTTGAAGACAGAGGATACCGCTGTTTATTACTGCACTACCTACCC





CAGGTATCATGCTATGGACAGTTGGGGTCAAGGAACTATGGTCACCGTCTCCTCT




VH2
GAGGTTCAACTCCTTGAATCCGGAGGAGGACTTGTCCAACCAGGGGGCAGCCTTAGGCTGT
553




CCTGCGCTGCCTCAGGCTTTACATTCAGTCATTACATGATGGCCTGGGTTAGACAGGCACC





CGGCAAATGTCTGGAATGGGTCAGCCGAATAGGACCATCAGGAGGTCCCACTCACTATGCC





GATTCTGTAAAAGGGAGGTTTACAATTTCCAGAGACAATTCAAAGAATACCCTTTACCTCC





AGATGAACTCATTGAGAGCCGAGGACACAGCCGTATATTATTGCGCAGGTTATGATTCCGG





TTACGATTACGTTGCAGTCGCAGGCCCAGCCGAATACTTCCAACATTGGGGTCAGGGAACC





CTCGTGACCGTGTCCAGT




VL1
GCCATACAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGATCGCGTTACAA
557




TTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATCTCCAGAAACCTGG





ACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGTGGAGTCCCAAGTAGA





TTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTCTAGCCTCCAACCTGAAG





ATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCTTGACCTTCGGAGGTGGGAC





TAAGCTGGAAATCAAA




VL2
GACATACAGATGACACAAAGTCCAAGTAGCCTTTCTGCATCCGTTGGAGACCGCGTAACCA
556




TAACTTGTCGAGCATCACAAAGCATAAGCACTTGGCTTGCTTGGTATCAGCAGAAGCCAGG





CAAAGCACCCAAGCTGCTGATTTATAAAGCCTCTAATCTCCATACAGGAGTTCCCAGCCGT





TTCTCAGGCAGCGGGTCTGGAACCGAATTCTCTCTGACCATCTCTGGCTTGCAACCTGATG





ACTTTGCAACATATTACTGTCAACAATATAATTCATATAGTCGTACTTTCGGGTGTGGCAC





TAAGGTGGAAATCAAA






EPB03
VH1
CAAGTGCAACTCCTTGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCGGTTCACTGCGTTTGA
558




GCTGTGCCGCATCCGGCTTTACCTTTTCCAGTTACACAATGAGTTGGGTCCGTCAAGCACC





CGGGCAAGCTTTGGAATGGATGGGAACTATTTCATCTGGTGGGACTTACACTTACTATCCC





GATAGCGTCAAGGGACGTTTTACCATAAGCCGGGACAACGCTAAAAATTCACTĆTATCTTC





AGATGAACAGTCTTAGGGCTGAGGATACCGCTGTTTATTATTGCGCCCGAGAAGCCATTTT





CACCTACTGGGGGCGCGGTACACTTGTCACCGTTAGCAGT




VH2
GAGGTTCAACTCCTTGAATCCGGAGGAGGACTTGTCCAACCAGGCGGCAGCCTTAGGCTGT
553




CCTGCGCTGCCTCAGGCTTTACATTCAGTCATTACATGATGGCCTGGGTTAGACAGGCACC





CGGCAAATGTCTGGAATGGGTCAGCCGAATAGGACCATCAGGAGGTCCCACTCACTATGCC





GATTCTGTAAAAGGGAGGTTTACAATTTCCAGAGACAATTCAAAGAATACCCTTTACCTCC





AGATGAACTCATTGAGAGCCGAGGACACAGCCGTATATTATTGCGCAGGTTATGATTCCGG





TTACGATTACGTTGCAGTCGCAGGCCCAGCCGAATACTTCCAACATTGGGGTCAGGGAACC





CTCGTGACCGTGTCCAGT




VL1
GACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGAACGCGTAACTC
559




TCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACCAACAAAAGCCTGA





CCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGACGGAGTTCCCGACAGG





TTCAGTCGGTCAGCCTCAGGTACAGATTTTACCTTGAAGATATCACGCGTGGAAGCCGAAG





ACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCTATACTTTTGGGCAAGGAAC





TCGCCTGGAAATAAAA




VL2
GACATACAGATGACACAAAGTCCAAGTAGCCTTTCTGCATCCGTTGGAGACCGCGTAACCA
556




TAACTTGTCGAGCATCACAAAGCATAAGCACTTGGCTTGCTTGGTATCAGCAGAAGCCAGG





CAAAGCACCCAAGCTGCTGATTTATAAAGCCTCTAATCTCCATACAGGAGTTCCCAGCCGT





TTCTCAGGCAGCGGGTCTGGAACCGAATTCTCTCTGACCATCTCTGGCTTGCAACCTGATG





ACTTTGCAACATATTACTGTCAACAATATAATTCATATAGTCGTACTTTCGGGTGTGGCAC





TAAGGTGGAAATCAAA






EPB04
VH1
GAGGTACAGTTGCTGGAGTCAGGAGGTGGATTGGTCCAACCCGGAGGATCTCTTCGTCTGT
450




CCTGCGCCGCCTCAGGATTTACCTTCTCTCATTATATGATGGCATGGGTACGTCAGGCTCC





AGGCAAAGGTCTGGAATGGGTTAGTCGGATTGGTCCCTCAGGGGGTCCTACCCATTATGCC





GATTCTGTAAAGGGCCGTTTTACCATAAGCAGAGACAACTCTAAGAACACCCTTTACCTTC





AGATGAATAGCCTGAGGGCTGAGGATACCGCAGTGTATTACTGCGCAGGCTATGACTCTGG





GTACGACTATGTCGCCGTAGCAGGACCTGCCGAGTATTTTCAACACTGGGGACAGGGGACC





CTTGTCACAGTTTCTAGT




VH2
GAGGTGCAACTGCTTGAGTCAGGAGGAGGACTGGTTCAACCCGGCGGGAGCCTTCGACTCT
560




CATGTGCAGCCTCTGGGTTTACATTTAGTCGTTACCAAATGATGTGGGTACGCCAGGCCCC





CGGAAAATGTTTGGAGTGGGTGAGCAGCATTTCTCCTTCAGGAGGAGTGACACTTTACGCA





GACAGTGTTAAGGGTCGGTTCACAATCAGTCGTGATAATTCCAAGAACACTCTCTATCTCC





AAATGAACTCCCTTCGAGCTGAGGACACTGCTGTTTATTACTGTACTCGGGAACTTCTCGG





CACTGTGGTTGTTCCTGTGGCTTGGAAGATGCGTGGATACTTCGACTATTGGGGGCAACTC





ACTCTTGTTACCGTCTCAAGC




VL1
GATATTCAAATGACACAAAGCCCAAGTTCCTTGTCCGCCTCAGTTGGTGATCGTGTGACAA
451




TAACCTGTCGGGCTTCACAATCCATATCTACATGGCTGGCTTGGTACCAGCAAAAGCCAGG





TAAAGCCCCAAAACTCCTGATTTACAAGGCAAGTAACTTGCATACTGGGGTACCCAGCCGT





TTCTCTGGGTCAGGCTCTGGGACAGAGTTTAGTCTTACAATTTCTGGTCTGCAACCCGATG





ACTTCGCTACCTATTACTGTCAACAATATAATAGTTATTCTCGAACATTTGGTCAGGGAAC





AAAAGTGGAAATCAAA




VL2
GACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACGCGCCACTC
561




TGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGCAAAAACCCGG





TCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGCATTCCTGCACGC





TTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTCCATGCAGAGTGAGG





ATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCTCCACTCACTTTTGGTTGTGG





CACCAAAGTGGAGATAAAG






EPB05
VH1
GAGGTACAGTTGCTGGAGTCAGGAGGTGGATTGGTCCAACCCGGAGGATCTCTTCGTCTGT
450




CCTGCGCCGCCTCAGGATTTACCTTCTCTCATTATATGATGGCATGGGTACGTCAGGCTCC





AGGCAAAGGTCTGGAATGGGTTAGTCGGATTGGTCCCTCAGGGGGTCCTACCCATTATGCC





GATTCTGTAAAGGGCCGTTTTACCATAAGCAGAGACAACTCTAAGAACACCCTTTACCTTC





AGATGAATAGCCTGAGGGCTGAGGATACCGCAGTGTATTACTGCGCAGGCTATGACTCTGG





GTACGACTATGTCGCCGTAGCAGGACCTGCCGAGTATTTTCAACACTGGGGACAGGGGACC





CTTGTCACAGTTTCTAGT




VH2
GAGGTCCAGCTGGTTGAGTCTGGAGGTGGTGTAGTCAGGCCAGGAGGTTCCCTGCGTCTGT
562




CTTGCGCTGCCTCTGGGTTCACTGTGTCTGACTACAGTATGAACTCGGTTAGACAGGCTCC





AGGGAAATGTTTGGAATGGATAGGGTTTATTCGCAATAAAGCCAATGCCTATACCACCGAA





TACAGCGCAAGCGTTAAAGGCAGGTTCACCATCAGTAGGGACGACTCTAAGAATACCCTCT





ACCTGCAGATGAATAGCTTGAAGACAGAGGATACCGCTGTTTATTACTGCACTACCTACCC





CAGGTATCATGCTATGGACAGTTGGGGTCAAGGAACTATGGTCACCGTCTCCTCT




VL1
GATATTCAAATGACACAAAGCCCAAGTTCCTTGTCCGCCTCAGTTGGTGATCGTGTGACAA
461




TAACCTGTCGGGCTTCACAATCCATATCTACATGGCTGGCTTGGTACCAGCAAAAGCCAGG





TAAAGCCCCAAAACTCCTGATTTACAAGGCAAGTAACTTGCATACTGGGGTACCCAGCCGT





TTCTCTGGGTCAGGCTCTGGGACAGAGTTTAGTCTTACAATTTCTGGTCTGCAACCCGATG





ACTTCGCTACCTATTACTGTCAACAATATAATAGTTATTCTCGAACATTTGGTCAGGGAAC





AAAAGTGGAAATCAAA




VL2
GCCATACAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGATCGCGTTACAA
563




TTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATCTCCAGAAACCTGG





ACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGTGGAGTCCCAAGTAGA





TTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTCTAGCCTCCAACCTGAAG





ATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCTTGACCTTCGGATGTGGGAC





TAAGCTGGAAATCAAA






EPB06
VH1
GAGGTACAGTTGCTGGAGTCAGGAGGTGGATTGGTCCAACCCGGAGGATCTCTTCGTCTGT
450




CCTGCGCCGCCTCAGGATTTACCTTCTCTCATTATATGATGGCATGGGTACGTCAGGCTCC





AGGCAÀAGGTCTGGAATGGGTTAGTCGGATTGGTCCCTCAGGGGGTCCTACCCATTATGCC





GATTCTGTAAAGGGCCGTTTTACCATAAGCAGAGACAACTCTAAGAACACCCTTTACCTTC





AGATGAATAGCCTGAGGCCTGAGGATACCGCAGTGTATTACTGCGCAGGCTATGACTCTGG





GTACGACTATGTCGCCGTAGCAGGACCTGCCGAGTATTTCAACACTGGGGACAGGGGACC





CTTGTCACAGTTTCTAGT




VH2
CAAGTGCAACTCCTTGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCGGTTCACTGCGTTTGA
564




GCTGTGCCGCATCCGGCTTTACCTTTTCCAGTTACACAATGAGTTGGGTCCGTCAAGCACC





CGGGCAATGTTTGGAATGGATGGGAACTATTTCATCTGGTGGGACTTACACTTACTATCCC





GATAGCGTCAAGGGACGTTTTACCATAAGCCGGGACAACGCTAAAAATTCACTCTATCTTC





AGATGAACAGTCTTAGGGCTGAGGATACCGCTGTTTATTATTGCGCCCGAGAAGCCATTTT





CACCTACTGGGGGCGCGGTACACTTGTCACCGTTAGCAGT




VL1
GATATTCAAATGACACAAAGCCCAAGTTCCTTGTCCGCCTCAGTTGGTGATCGTGTGACAA
451




TAACCTGTCGGGCTTCACAATCCATATCTACATGGCTGGCTTGGTACCAGCAAAAGCCAGG





TAAAGCCCCAAAACTCCTGATTTACAAGGCAAGTAACTTGCATACTGGGGTACCCAGCCGT





TTCTCTGGGTCAGGCTCTGGGACAGAGTTTAGTCTTACAATTTCTGGTCTGCAACCCGATG





ACTTCGCTACCTATTACTGTCAACAATATAATAGTTATTCTCGAACATTTGGTCAGGGAAC





AAAAGTGGAAATCAAA




VL2
GACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGAACGCGTAACTC
565




TCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACCAACAAAAGCCTGA





CCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGACGGAGTTCCCGACAGG





TTCAGTGGGTCAGGCTCAGGTACAGATTTTACCTTGAAGATATCACGCGTGGAAGCCGAAG





ACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCTATACTTTTGGGTGTGGAAC





TCGCCTGGAAATAAAA






EPB07
VH1
GAGGTCCAGCTGGTTGAGTCTGGAGGTGGTGTAGTCAGGCCAGGAGGTTCCCTGCGTCTGT
556




CTTGCGCTGCCTCTGGGTTCACTGTGTCTGACTACAGTATGAACTGGGTTAGACAGGCTCC





AGGGAAAGGTTTGGAATGGATAGGGTTTATTCGCAATAAACCCAATGCCTATACCACCGAA





TACAGCGCAAGCGTTAAAGGCAGGTTCACCATCAGTAGGGACGACTCTAAGAATACCCTCT





ACCTGCAGATGAATAGCTTGAAGACAGAGGATACCGCTGTTTATTACTGCACTACCTACCC





CAGGTATCATGCTATGGACAGTTGGGGTCAAGGAACTATGGTCACCGTCTCCTCT




VH2
GAGGTGCAACTGCTTGAGTCAGGAGGAGGACTGGTTCAAACCGGGGGGAGCCTTCGACTCT
560




CATGTGCAGCCTCTGGGTTTACATTTAGTCGTTACCAAATGATGTGGGTACGCCAGGCCCC





CGGAAAATGTTTGGAGTGGGTGAGCAGCATTTCTCCTTCAGGAGGAGTGACACTTTACGCA





GACAGTGTTAAGGGTCGGTTCACAATCAGTCGTGATAATTCCAAGAACACTCTCTATCTCC





AAATGAACTCCCTTCGAGCTGAGGACACTGCTGTTTATTACTGTACTCGGGAACTTCTCGG





CACTGTGGTTGTTCCTGTGGCTTGGAAGATGCGTGGATACTTCGACTATTGGGGGCAACTC





ACTTCTTGTTACCGTCTCAAGC:




VL1
GCCATACAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGATCGCGTTACAA
577




TTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATCTCCAGAAACCTGG





ACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGTGGAGTCCCAAGTAGA





TTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTCTAGCCTCCAACCTGAAG





ATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCTTGACCTTCGGAGGTGGGAC





TAAGCTGGAAATCAAA




VL2
GACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACGCGCCACTC
561




TGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGCAAAAACCCGG





TCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGCATTCCTGCACGC





TTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTCCATGCAGAGTGAGG





ATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCTCCACTCACTTTTGGTTGTGG





CACCAAAGTGGAGATAAAG






EPB08
VH1
CAAGTGCAACTCCTTGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCGGTTCACTGCGTTTGA
558




GCTGTGCCGCATCCGGCTTTACCTTTTCCAGTTACACAATGAGTTGGGTCCGTCAAGCACC





CGGGCAAGCTTTGGAATGGATGGGAACTATTTCATCTGGTGGGACTTACACTTACTATCCC





GATAGCGTCAAGGGACGTTTTACCATAAGCCGGGACAACGCTAAAAATTCACTCTATCTTC





AGATGAACAGTCTTAGGGCTGAGGATACCGCTGTTTATTATTGCGCCCGAGAAGCCATTTT





CACCTACTGGGGGCGCGGTACACTTGTCACCGTTAGCAGT




VH2
GAGGTGCAACTGCTTGAGTCAGGAGGAGGACTGGTTCAAACCGGCGGGAGCCTTCGACTCT
560




CATGTGCAGCCTCTGGGTTTACATTTAGTCGTTACCAAATGATGTGGGTACGCCAGGCCCC





CGGAAAATGTTTGGAGTGGGTGAGCAGCATTTCTCCTTCAGGAGGAGTGACACTTTACGCA





GACAGTGTTAAGGGTCGGTTCACAATCAGTCGTGATAATTCCAAGAACACTCTCTATCTCC





AAATGAACTCCCTTCGAGCTGAGGACACTGCTGTTTATTACTGTACTCGGGAACTTCTCGG





CACTGTGGTTGTTCCTGTGGCTTGGAAGATGCGTGGATACTTCGACTATTGGGGGCAACTC





ACTCTTGTTACCGTCTCAAGC




VL1
GACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGAACGCGTAACTC
559




TCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACCAACAAAAGCCTGA





CCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGACGGAGTTCCCGACAGG





TTCAGTGGGTCAGGCTCAGGTACAGATTTTACCTTGAAGATATCACGCGTGGAAGCCGAAG





ACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCTATACTTTTGGGCAAGGAAC





TCGCCTGGAAATAAAA




VL2
GACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACGCGCCACTC
561




TGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGCAAAAACCCGG





TCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGCATTCCTGCACGC





TTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTCCATGCAGAGTGAGG





ATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCTCCACTCACTTTTGGTTGTGG





CACCAAAGTGGAGATAAAG






EPB09
VH1
GAGGTGCAACTGCTTGAGTCAGGAGGAGGACTGGTTCAACCCGGCGGGAGCCTTCGACTCT
552




CATGTGCAGCCTCTGGGTTTACATTTAGTCGTTACCAAATGATGTGGGTACGCCÄGGCCCC





CGGAAAAGGTTTGGAGTGGGTGAGCAGCATTTCTCCTTCAGGAGGAGTGACACTTTACGCA





GACAGTGTTAAGGGTCGGTTCACAATCAGTCGTGATAATTCCAAGAACACTCTCTATCTCC





AAATGAACTCCCTTCGAGCTGAGGACACTGCTGTTTATTACTGTACTCGGGAACTTCTCGG





CACTGTGGTTGTTCCTGTGGCTTGGAAGATGCGTGGATACTTCGACTATTGGGGGCAACTC





ACTCTTGTTACCGTCTCAAGC




VH2
GAGGTCCAGCTGGTTGAGTCTGGAGGTGGTGTAGTCAGGCCAGGAGGTTCCCTGCGTCTGT
562




CTTGCGCTGCCTCTGGGTTCACTGTGTCTGACTACAGTATGAACTGGGTTAGACAGGCTCC





AGGGAAATGTTTGGAATGGATAGGGTTTATTCGCAATAAAGCCAATGCCTATACCACCGAA





TACAGCGCAAGCGTTAAAGGCAGGTTCACCATCAGTAGGGACGACTCTAAGAATACCCTCT





ACCTGCAGATGAATAGCTTGAAGACAGAGGATACCGCTGTTTATTACTGCACTACCTACCC





CAGGTATCATGCTATGGACAGTTGGGGTCAAGGAACTATGGTCACCGTCTCCTCT




VL1
GACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACGCGCCACTC
554




TGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGCAAAAACCCGG





TCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGCATTCCTGCACGC





TTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTCCATGCAGAGTGAGG





ATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCTCCACTCACTTTTGGTGGTGG





CACCAAAGTGGAGATAAAG




VL2
GCCATACAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGATCGCGTTACAA
563




TTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATCTCCAGAAACCTGG





ACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGTGGAGTCCCAAGTAGA





TTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTCTAGCCTCCAACCTGAAG





ATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCTTGACCTTCGGATGTGGGAC





TAAGCTGGAAATCAAA






EPB10
VH1
CAAGTGCAACTCCTTGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCGGTTCACTGCGTTTGA
558




GCTGTGCCGCATCCGGCTTTACCTTTTCCAGTTACACAATGAGTTGGGTCCGTCAAGCACC





CGGGCAAGCTTTGGAATGGATGGGAACTATTTCATCTGGGGGACTTACACTTACTATCCC





GATAGCGTCAAGGGACGTTTTACCATAAGCCGGGACAACGCTAAAAATTCACTCTATCTTC





AGATGAACAGTCTTAGGGCTGAGGATACCGCTGTTTATTATTGCGCCCGAGAAGCCATTTT





CACCTACTGGGGGCGCGGTACACTTGTCACCGTTAGCAGT




VH2
GAGGTCCAGCTGGTTGAGTCTGGAGGTGGTGTAGTCAGGCCAGGAGGTTCCCTGCGTCTGT
562




CTTGCGCTGCCTCTGGGTTCACTGTGTCTGACTACAGTATGAACTGGGTTAGACAGGCTCC





AGGGAAATGTTTGGAATGGATAGGGTTTATTCGCAATAAAGCCAATGCCTATACCACCGAA





TACAGCGCAAGCGTTAAAGGCAGGTTCACCATCAGTAGGGACGACTCTAAGAATACCCTCT





ACCTGCAGATGAATAGCTTGAAGACAGAGGATACCGCTGTTTATTACTGCACTACCTACCC





CAGGTATCATGCTATGGACAGTTGGCGTCAAGGAACTATGGTCACCGTCTCCTCT




VL1
GACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGAACGCGTAACTC
550




TCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACCAACAAAAGCCTGA





CCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGACGGAGTTCCCGACAGG





TTCAGTGGGTCAGGCTCAGGTACAGATTTTACCTTGAAGATATCACGCGTGGAAGCCGAAG





ACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCTATACTTTTGGGCAAGGAAC





TCGCCTGGAAATAAAA




VL2
GCCATACAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGATCGCGTTACAA
563




TTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATCTCCAGAAACCTGG





ACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGTGGAGTCCCAAGTAGA





TTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTCTAGCCTCCAACCTGAAG





ATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCTTGACCTTCGGATGTGGGAC





TAAGCTGGAÀATCAAA






EPB11
VH1
GAGGTGCAACTGCTTGAGTCAGGAGGAGGACTGGTTCAACCCGGCGGGAGCCTTCGACTCT
552




CATGTGCAGCCTCTGGGTTTACATTTAGTCGTTACCAAATGATGTGGGTACGCCAGGCCCC





CGGAAAAGGTTTGGAGTGGGTGAGCAGCATTTCTCCTTCAGGAGGAGTGACACTTTACGCA





GACAGTGTTAAGGGTCGGTTCACAATCAGTCGTGATAATTCCAAGAACACTCTCTATCTCC





AAATGAACTCCCTTCGAGCTGAGGACACTGCTGTTTATTACTGTACTCGGGAACTTCTCGG





CACTGTGGTTGTTCCTGTGGCTTGGAAGATGCGTGGATACTTCGACTATTGGGGGCAACTC





ACTCTTGTTACCGTCTCAAGC




VH2
CAAGTGCAACTCCTTGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCGGTTCACTGCGTTTGA
564




GCTGTGCCGCATCCGGCTTTACCTTTTCCAGTTACACAATGAGTTGGGTCCGTCAAGCACC





CGGGCAATGTTTGGAATGGATGGGAACTATTTCATCTGGTGGGACTTACACTTACTATCCC





GATAGCGTCAAGGGACGTTTTACCATAAGCCGGGACAACGCTAAAAATTCACTCTATCTTC





AGATGAACAGTCTTAGGGCTGAGGATACCGCTGTTTATTATTGCGCCCGAGAAGCCATTTT





CACCTACTGGGGGCGCGGTACACTTGTCACCGTTAGCAGT




VL1
GACATACAGATGACTCAGAGCCCTGGTACACTGAGTGTATCTCCTGGGGAACGCGCCACTC
554




TGTCTTGCCGAGCCTCTCAAAGCGTTAGTTCCAACCTGGCTTGGTATCAGCAAAAACCCGG





TCAAGCACCTCGCTTGCTTATCTACGGGGCCTCCACACGGGCAACCGGCATTCCTGCACGC





TTTAGTGGCTCTGGTAGCGGGACTGAATTCACTTTGACTATATCTTCCATGCAGAGTGAGG





ATTTCGCCGTTTATTATTGTCAACAGTACAATAACTGGCCCCACTCACTTTTGGTGGTGG





CACCAAAGTGGAGATAAAG




VL2
GACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGAACGCGTAACTC
565




TCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACCAACAAAAGCCTGA





CCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGACGGAGTTCCCGACAGG





TTCAGTGGGTCAGGCTCAGGTACAGATTTTACCTTGAAGATATCACGCGTGGAAGCCGAAG





ACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCTATACTTTTGGGTGTGGAAC





TCGCCTGGAAATAAAA






EPB12
VH1
GAGGTCCAGCTGGTTGAGTCTGGAGGTGGTGTAGTCAGGCCAGGAGGTTCCCTGCGTCTGT
556




CTTGCGCTGCCTCTGGGTTCACTGTGTCTGACTACAGTATGAACTGGGTTAGACAGGCTCC





AGGGAAAGGTTTGGAATGGATAGGGTTTATTCGCAATAAAGCCAATGCCTATACCACCGAA





TACAGCGCAAGCGTTAAAGGCAGGTTCACCATCAGTAGGGACGACTCTAAGAATACCCTCT





ACCTGCAGATGAATAGCTTGAAGACAGAGGATACCGCTGTTTATTACTGCACTACCTACCC





CAGGTATCATGCTATGGACAGTTGGGGTCAAGGAACTATGGTCACCGTCTCCTCT




VH2
CAAGTGCAACTCCTTGAAAGTGGAGGTGGCCTTGTCCAGCCAGGCGGTTCACTGCGTTTGA
564




GCTGTGCCGCATCCGGCTTTACCTTTTCCAGTTACACAATGAGTTGGGTCCGTCAAGCACC





CGGGCAATGTTTGGAATGGATGGGAACTATTTCATCTGGTGGGACTTACACTTACTATCCC





GATAGCGTCAAGGGACGTTTTACCATAAGCCGGGACAACGCTAAAAATTCACTCTATCTTC





AGATGAACAGTCTTAGGGCTGAGGATACCGCTGTTTATTATTGCGCCCGAGAAGCCATTTT





CACCTACTGGGGGCGCGGTACACTTGTCACCGTTAGCAGT




VL1
GCCATAGAGCTGACTCAATCACCTTCTTCTTTGAGCGCCTCTGTCGGTGATCGCGTTACAA
557




TTACATGCCGAGCTTCTCAGTCTATCTCTAATAACCTCCACTGGTATCTCCAGAAACCTGG





ACAGTCACCACAGCTTCTGATATATTACGGCTTTCAGTCTATAAGTGGAGTCCCAAGTAGA





TTTTCCGGTAGTGGATCTGGCACCGATTTTACTCTTACTATCTCTAGCCTCCAACCTGAAG





ATTTCGCAACCTATTACTGCCAGCAGGCCAATTCCTGGCCCTTGACCTTCGGAGGTGGGAC





TAAGCTGGAAATCAAA




VL2
GACATACAACTCACACAAAGTCCAAGCTCTCTTTCCCTTAGTCCAGGAGAACGCGTAACTC
565




TCTCATGTAAAGCCTCCCAGGATATCAATAACTATCTCTCTTGGTACCAACAAAAGCCTGA





CCAAGCTCCTAAGCTGCTTATCAAACGCGCCAATCGGTTGGTAGACGGAGTTCCCGACAGG





TTCAGTGGGTCAGGCTCAGGTACAGATTTTACCTTGAAGATATCACGCGTGGAAGCCGAAG





ACGTAGGGGTATATTATTGTCTGAAATATGACGAGTTCCCCTATACTTTTGGGTGTGGAAC





TCGCCTGGAAATAAAA









Table 54 below shows the heavy chain and light chain CDR sequences of the engineered antibodies targeting EphA2.












TABLE 54





Name
CDR
Sequence
SEQ ID NO







EPB01
V1 CDR-H1
RYQMM
151



V1 CDR-H2
SISPSGGVTLYADSVKG
152



V1 CDR-H3
ELLGTVVVPVAWKMRGYFDY
153



V1 CDR-L1
RASQSVSSNLA
154



V1 CDR-L2
GASTRAT
155



V1 CDR-L3
QQYNNWPPLT
156



V2 CDR-H1
HYMMA
157



V2 CDR-H2
RIGPSGGPTHYADSKG
158



V2 CDR-H3
YDSGYDYVAVAGPAEYFQH
159



V2 CDR-L1
RASQSISTWLA
160



V2 CDR-L2
KASNLHT
161



V2 CDR-L3
QQYNSYSRT
162








EPB02
V1 CDR-H1
DYSMN
163



V1 CDR-H2
FIRNKANAYTTEYSASVKG
164



V1 CDR-H3
YPRYHAMDSW
165



V1 CDR-L1
RASQSISNNLH
166



V1 CDR-L2
YGFQSIS
167



V1 CDR-L3
QQANSWPLT
168



V2 CDR-H1
HYMMA
157



V2 CDR-H2
RIGPSGGPTHYADSKG
158



V2 CDR-H3
YDSGYDYVAVAGPAEYFQH
159



V2 CDR-L1
RASQSISTWLA
160



V2 CDR-L2
KASNLHT
161



V2 CDR-L3
QQYNSYSRT
162





EPB03
V1 CDR-H1
SYTMS
169



V1 CDR-H2
TISSGGTYTYYPDSVKG
170



V1 CDR-H3
EAIFTYW
171



V1 CDR-L1
KASQDINNYLS
172



V1 CDR-L2
RANRLVD
173



V1 CDR-L3
LKYDEFPYT
174



V2 CDR-H1
HYMMA
157



V2 CDR-H2
RIGPSGGPTHYADSKG
158



V2 CDR-H3
YDSGYDYVAVAGPAEYFQH
159



V2 CDR-L1
RASQSISTWLA
160



V2 CDR-L2
KASNLHT
161



V2 CDR-L3
QQYNSYSRT
162





EPB04
V1 CDR-H1
HYMMA
157



V1 CDR-H2
RIGPSGGPTHYADSKG
158



V1 CDR-H3
YDSGYDYVAVAGPAEYFQH
159



V1 CDR-L1
RASQSISTWLA
160



V1 CDR-L2
KASNLHT
161



V1 CDR-L3
QQYNSYSRT
162



V2 CDR-H1
RYQMM
151



V2 CDR-H2
SISPSGGVTLYADSVKG
152



V2 CDR-H3
ELLGTYRGYFDY
153



V2 CDR-L1
RAS
154



V2 CDR-L2
GASTRAT
155



V2 CDR-L3
QQYNNWPPLT
156





EPB05
V1 CDR-H1
HYMMA
157



V1 CDR-H2
RIGPSGGPTHYADSKG
158



V1 CDR-H3
YDSGYDYVAVAGPAEYFQH
159



V1 CDR-L1
RASQSISTWLA
160



V1 CDR-L2
KASNLHT
161



V1 CDR-L3
QQYNSYSRT
162



V2 CDR-H1
DYSMN
163



V2 CDR-H2
FIRNKANAYTTEYSASVKG
164



V2 CDR-H3
YPRYHAMDSW
165



V2 CDR-L1
RASQSISNNLH
166



V2 CDR-L2
YGFQSIS
167



V2 CDR-L3
QQANSWPLT
168





EPB06
V1 CDR-H1
HYMMA
157



V1 CDR-H2
RIGPSGGPTHYADSKG
158



V1 CDR-H3
YDSGYDYVAVAGPAEYFQH
159



V1 CDR-L1
RASQSISTWLA
160



V1 CDR-L2
KASNLHT
161



V1 CDR-L3
QQYNSYSRT
162



V2 CDR-H1
SYTMS
169



V2 CDR-H2
TISSGGTYTYYPDSVKG
170



V2 CDR-H3
EAIFTYW
171



V2 CDR-L1
KASQDINNYLS
172



V2 CDR-L2
RANRLVD
173



V2 CDR-L3
LKYDEFPYT
174





EPB07
V1 CDR-H1
DYSMN
163



V1 CDR-H2
FIRNKANAYTTEYSASVKG
164



V1 CDR-H3
YPRYHAMDSW
165



V1 CDR-L1
RASQSISNNLH
166



V1 CDR-L2
YGFQSIS
167



V1 CDR-L3
QQANSWPLT
168



V2 CDR-H1
RYQMM
151



V2 CDR-H2
SISPSGGVTLYADSVKG
152



V2 CDR-H3
ELLGTYRGYFDY
153



V2 CDR-L1
RAS
154



V2 CDR-L2
GASTRAT
155



V2 CDR-L3
QQYNNWPPLT
156





EPB08
V1 CDR-H1
SYTMS
169



V1 CDR-H2
TISSGGTYTYYPDSVKG
170



V1 CDR-H3
EAIFTYW
171



V1 CDR-L1
KASQDINNYLS
172



V1 CDR-L2
RANRLVD
173



V1 CDR-L3
LKYDEFPYT
174



V2 CDR-H1
RYQMM
151



V2 CDR-H2
SISPSGGVTLYADSVKG
152



V2 CDR-H3
ELLGTYRGYFDY
153



V2 CDR-L1
RAS
154



V2 CDR-L2
GASTRAT
155



V2 CDR-L3
QQYNNWPPLT
156





EPB09
V1 CDR-H1
RYQMM
151



V1 CDR-H2
SISPSGGVTLYADSVKG
152



V1 CDR-H3
ELLGTYRGYFDY
153



V1 CDR-L1
RAS
154



V1 CDR-L2
GASTRAT
155



V1 CDR-L3
QQYNNWPPLT
156



V2 CDR-H1
DYSMN
163



V2 CDR-H2
FIRNKANAYTTEYSASVKG
164



V2 CDR-H3
YPRYHAMDSW
165



V2 CDR-L1
RASQSISNNLH
166



V2 CDR-L2
YGFQSIS
167



V2 CDR-L3
QQANSWPLT
168





EPB10
V1 CDR-H1
SYTMS
169



V1 CDR-H2
TISSGGTYTYYPDSVKG
170



V1 CDR-H3
EAIFTYW
171



V1 CDR-L1
KASQDINNYLS
172



V1 CDR-L2
RANRLVD
173



V1 CDR-L3
LKYDEFPYT
174



V2 CDR-H1
DYSMN
163



V2 CDR-H2
FIRNKANAYTTEYSASVKG
164



V2 CDR-H3
YPRYHAMDSW
165



V2 CDR-L1
RASQSISNNLH
166



V2 CDR-L2
YGFQSIS
167



V2 CDR-L3
QQANSWPLT
168





EPB11
V1 CDR-H1
RYQMM
151



V1 CDR-H2
SISPSGGVTLYADSVKG
152



V1 CDR-H3
ELLGTYRGYFDY
153



V1 CDR-L1
RAS
154



V1 CDR-L2
GASTRAT
155



V1 CDR-L3
QQYNNWPPLT
156



V2 CDR-H1
SYTMS
169



V2 CDR-H2
TISSGGTYTYYPDSVKG
170



V2 CDR-H3
EAIFTYW
171



V2 CDR-L1
KASQDINNYLS
172



V2 CDR-L2
RANRLVD
173



V2 CDR-L3
LKYDEFPYT
174





EPB12
V1 CDR-H1
DYSMN
163



V1 CDR-H2
FIRNKANAYTTEYSASVKG
164



V1 CDR-H3
YPRYHAMDSW
165



V1 CDR-L1
RASQSISNNLH
166



V1 CDR-L2
YGFQSIS
167



V1 CDR-L3
QQANSWPLT
168



V2 CDR-H1
SYTMS
169



V2 CDR-H2
TISSGGTYTYYPDSVKG
170



V2 CDR-H3
EAIFTYW
171



V2 CDR-L1
KASQDINNYLS
172



V2 CDR-L2
RANRLVD
173



V2 CDR-L3
LKYDEFPYT
174









The EphA2 protein binding constants of EPB01, EPB02, EPB03, EPB04, EPB05, EPB06, EPB07, EPB08, EPB09, EPB10, EPB11, and EPB12 were determined using Octet Red96e (Sartorius). In order to analyze the binding constants of the twelve biparatopic antibodies, the human EphA2 recombinant protein (Sino Biologicals, 13926-H08H) was loaded onto the Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120), and then the twelve antibodies were added in a binding reaction (300 seconds) and a dissociation reaction (1,200 seconds) at various concentrations. Based on the above, the affinity for EphA2 was calculated (Table 55). Table 55 below illustrates a result obtained by analyzing the binding constants of the engineered antibodies targeting EphA2.














TABLE 55







Antibodies
KD (nM)
Ka (1/Ms)
Kd (1/s)





















EPB01
9.8579
2.32E+05
2.29E−03



EPB02
<0.001
2.15E+05
<1.0E−07



EPB03
0.7944
4.91E+05
3.90E−04



EPB04
2.8644
4.95E+05
1.42E−03



EPB05
<0.001
3.42E+05
<1.0E−07



EPB06
<0.001
3.84E+05
<1.0E−07



EPB07
0.0795
2.03E+05
1.62E−05



EPB08
3.2174
6.58E+05
2.12E−03



EPB09
2.3522
2.64E+05
6.20E−04



EPB10
0.1878
3.92E+05
7.36E−05



EPB11
0.5349
2.98E+05
1.59E−04



EPB12
0.8657
5.44E+05
4.71E−04










PC-3 prostate cancer cell line was used to analyze the ability of antibodies to inhibit EphA2 signaling. PC-3 cancer cell lysate treated with each antibody at a concentration of 50 nM for 30 minutes was analyzed by western blot. The 1C1 humanized antibody that targets human EphA2 was used as a positive control and was prepared based on the sequence published in the literature (Kinch et al., US 20090304721 A1). Akt Rabbit mAb (Cell Signaling Technology, 9272), Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (Cell Signaling Technology, 4060), and β-Actin (13E5) Rabbit mAb (Cell Signaling Technology, 4970) were used as primary antibodies for analysis, and anti-rabbit IgG, HRP-linked antibody (Cell Signaling Technology, 7074) was used as secondary antibody. In the analysis of AKT signaling pathway inhibition, EPB02, EPB03, and EPB05 showed a similar level of inhibition as the positive control 1C1 (FIG. 44).


PC-3 prostate cancer cell line was used to quantify the Fc loads on the surface of EphA2 expressing cells. 100 nM antibodies were allowed to bind to the PC-3 cell line at 4° C. for 30 minutes, and the Fc loads were quantified using the Alexa 488 fluorescence-conjugated anti-human IgG Fcγ Fab antibody (Jackson ImmunoResearch, 109-547-008) (FIG. 44). It was shown that higher Fc loads on the surface of cancer cells are induced by treatment of EPB02, EPB03, EPB05, EPB06, EPB07, and EPB10 compared to treatment of 1C1 humanized antibody that targets EphA2 (FIG. 45).


Example 19. Design, Preparation and Analysis of Antibody Structure Targeting MET

The variant light chain and heavy chain polypeptide sequences of the antibodies that specifically bind to the MET protein are shown in Table 56. For MEM01, expression vectors consisting of the sequences corresponding to Fc-Hole (SEQ ID NO: 7), MEM01 HC (SEQ ID NO: 568), and MEM01 LC (SEQ ID NO: 569) were co-transfected into EXPICHO-S™ (Gibco, A29127) (FIG. 41a, Table 56), and purification and analysis were performed in the same manner as described in Example 1. Expression, purification and analysis were performed for MEM06 in the same manner as mentioned above (Table 56, Table 57).











TABLE 56





Name
Sequence
SEQ ID NO







MEM01 HC
EVQLVESGGGLVQPGGSLRLSCAASGYTFT
568



SYWLHWVRQAPGKCLEWVGMIDPSNSDTRF




NPNFKDRFTISADTSKNTAYLQMNSLRAED




TAVYYCATYRSYVTPLDYWGQGTLVTVSSA




STKGPSVFPLAPSSKSTSGGTAALGCLVKD




YFPEPVTVSWNSGALTSGVHTFPAVLQSSG




LYSLSSVVTVPSSSLGTQTYICNVNHKPSN




TKVDKKVEPKSCDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSH




EDPEVKFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKAL




PAPIEKTISKAKGQPREPQVYTLPPCREEM




TKNQVSLWCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ




QGNVFSCSVMHEALHNHYTQKSLSLSPGK






MEM01 LC
DIQMTQSPSSLSASVGDRVTITCKSSQSLL
569



YTSSQKNYLAWYQQKPGKAPKLLIYWASTR




ESGVPSRFSGSGSGTDFTLTISSLQPEDFA




TYYCQQYYAYPWTFGCGTKVEIKRTVAAPS




VFIFPPSDEQLKSGTASVVCLLNNFYPREA




KVQWKVDNALQSGNSQESVTEQDSKDSTYS




LSSTLTLSKADYEKHKVYACEVTHQGLSSP




VTKSFNRGECGGGGSGGGGSGGGGSEPKSS




DKTHTCPPCPAPELLGGPSVFLFPPKPKDT




LMISRTPEVTCVVVDVSHEDPEVKFNWYVD




GVEVHNAKTKPREEQYNSTYRVVSVLTVLH




QDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYTLPPCREEMTKNQVSLWCLVK




GFYPSDIAVEWESNGQPENNYKTTPPVLDS




DGSFFLYSKLTVDKSRWQQGNVFSCSVMHE




ALHNHYTQKSLSLSPGK






MEM06 HC
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
570



SYGFSWVRQAPGQCLEWMGWISASNGNTYY




AQKLQGRVTMTTDTSTSTAYMELRSLRSDD




TAVYYCARVYADYADYWGQGTLVTVSSAST




KGPSVFPLAPSSKSTSGGTAALGCLVKDYF




PEPVTVSWNSGALTSGVHTFPAVLQSSGLY




SLSSVVTVPSSSLGTQTYICNVNHKPSNTK




VDKKVEPKSCDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHED




PEVKFNWYVDGVEVHNAKTKPREEQYNSTY




RVVSVLTVLHQDWLNGKEYKCKVSNKALPA




PIEKTISKAKGQPREPQVYTLPPCREEMTK




NQVSLWCLVKGFYPSDIAVEWESNGQPENN




YKTTPPVLDSDGSFFLYSKLTVDKSRWQQG




NVFSCSVMHEALHNHYTQKSLSLSPGK






MEM06 LC
DIQMTQSPSSVSASVGDRVTITCRASQGIN
571



TWLAWYQQKPGKAPKLLIYAASSLKSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQ




ANSFPLTFGCGTKVEIKRTVAAPSVFIFPP




SDEQLKSGTASVVCLLNNFYPREAKVQWKV




DNALQSGNSQESVTEQDSKDSTYSLSSTLT




LSKADYEKHKVYACEVTHQGLSSPVTKSFN




RGECGGGGSGGGGSGGGGSEPKSSDKTHTC




PPCPAPELLGGPSVFLFPPKPKDTLMISRT




PEVTCVVVDVSHEDPEVKFNWYVDGVEVHN




AKTKPREEQYNSTYRVVSVLTVLHQDWLNG




KEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPCREEMTKNQVSLWCLVKGFYPSD




IAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHY




TQKSLSLSPGK


















TABLE 57







SEQ ID


Name
Sequence
NO







MEM01 HC
GAAGTCCAATTGGTCGAGAGTGGAGGCGGG
572



TTGGTACAGCCAGGAGGTTCACTTAGGTTG




TCCTGCGCCGCCAGTGGTTACACTTTCACA




TCTTATTGGCTGCACTGGGTGCGCCAAGCT




CCTGGGAAGTGTCTCGAATGGGTGGGTATG




ATCGATCCATCTAATTCCGACACACGGTTT




AACCCAAATTTTAAGGATAGATTTACAATT




AGTGCTGACACTTCAAAAAACACAGCATAC




CTCCAGATGAACAGCCTGCGTGCTGAGGAT




ACTGCTGTCTACTACTGTGCAACTTACCGC




TCCTATGTCACACCTTTGGATTATTGGGGC




CAGGGGACTCTGGTGACCGTGAGTTCTGCT




AGCACCAAAGGACCTAGTGTTTTTCCTCTT




GCCCCTTCCTCAAAGTCTACCTCTGGGGGG




ACAGCCGCTCTGGGCTGCCTGGTCAAGGAT




TATTTCCCAGAGCCTGTCACTGTCAGTTGG




AACTCTGGAGCCTTGACTTCTGGTGTTCAT




ACATTTCCTGCTGTCCTTCAAAGCAGCGGC




TTGTACTCATTGTCTTCTGTTGTGACAGTA




CCCTCAAGCAGCCTCGGCACTCAGACATAC




ATCTGCAATGTCAACCACAAACCCTCAAAT




ACAAAGGTAGATAAAAAAGTCGAACCAAAG




TCTTGTGACAAAACTCACACGTGCCCACCG




TGCCCAGCACCTGAACTCCTGGGGGGACCG




TCAGTCTTCCTCTTCCCCCCAAAACCCAAG




GACACCCTCATGATCTCCCGGACCCCTGAG




GTCACATGCGTGGTGGTGGACGTGAGCCAC




GAAGACCCTGAGGTCAAGTTCAACTGGTAC




GTGGACGGCGTGGAGGTGCATAATGCCAAG




ACAAAGCCGCGGGAGGAGCAGTACAACAGC




ACGTACCGTGTGGTCAGCGTCCTCACCGTC




CTGCACCAGGACTGGCTGAATGGCAAGGAG




TACAAGTGCAAGGTCTCCAACAAAGCCCTC




CCAGCCCCCATCGAGAAAACCATCTCCAAA




GCCAAAGGGCAGCCCCGAGAACCACAGGTG




TACACCCTGCCCCCATGCCGGGAGGAGATG




ACCAAGAACCAGGTCAGCCTGTGGTGCCTG




GTCAAAGGCTTCTATCCCAGCGACATCGCC




GTGGAGTGGGAGAGCAATGGGCAGCCGGAG




AACAACTACAAGACCACGCCTCCCGTGCTG




GACTCCGACGGCTCCTTCTTCCTCTACAGC




AAGCTCACCGTGGACAAGAGCAGGTGGCAG




CAGGGGAACGTCTTCTCATGCTCCGTGATG




CATGAGGCTCTGCACAACCACTACACGCAG




AAGAGCCTCTCCCTGTCTCCGGGTAAA






MEM01 LC
GATATACAGATGACACAAAGTCCCTCATCA
573



CTTTCTGCCTCCGTTGGAGATCGTGTGACC




ATTACCTGTAAGAGTTCCCAATCACTGCTT




TATACCTCTTCACAAAAAAATTACCTCGCT




TGGTACCAGCAGAAGCCAGGTAAAGCACCT




AAGCTGTTGATCTATTGGGCCTCCACTAGA




GAGTCAGGCGTGCCCAGCCGTTTCTCCGGT




TCAGGGAGTGGGACAGACTTTACCTTGACC




ATTTCTTCTTTGCAACCTGAAGACTTCGCC




ACATACTATTGTCAGCAATATTACGCATAT




CCATGGACCTTTGGGTGTGGAACCAAAGTC




GAAATAAAACGTACGGTGGCAGCTCCCAGC




GTTTTTATCTTTCCCCCATCCGACGAGCAG




CTCAAGAGTGGCACTGCCTCTGTAGTTTGT




TTGCTGAATAACTTCTATCCACGTGAAGCA




AAAGTACAGTGGAAGGTCGATAATGCCCTT




CAGAGCGGTAACAGCCAAGAAAGTGTTACC




GAGCAAGATTCCAAAGATTCCACTTACAGT




CTGTCCAGCACATTGACACTGAGTAAGGCT




GATTACGAAAAACACAAGGTGTACGCATGC




GAGGTGACACACCAAGGTCTTTCATCTCCT




GTAACTAAGAGCTTTAACCGGGGAGAATGT




GGTGGTGGGGGCAGCGGGGGCGGAGGTAGT




GGAGGCGGCGGTAGTGAACCAAAGAGTAGT




GACAAAACTCACACGTGCCCACCGTGCCCA




GCACCTGAACTCCTGGGGGGACCGTCAGTC




TTCCTCTTCCCCCCAAAACCCAAGGACACC




CTCATGATCTCCCGGACCCCTGAGGTCACA




TGCGTGGTGGTGGACGTGAGCCACGAAGAC




CCTGAGGTCAAGTTCAACTGGTACGTGGAC




GGCGTGGAGGTGCATAATGCCAAGACAAAG




CCGCGGGAGGAGCAGTACAACAGCACGTAC




CGTGTGGTCAGCGTCCTCACCGTCCTGCAC




CAGGACTGGCTGAATGGCAAGGAGTACAAG




TGCAAGGTCTCCAACAAAGCCCTCCCAGCC




CCCATCGAGAAAACCATCTCCAAAGCCAAA




GGGCAGCCCCGAGAACCACAGGTGTACACC




CTGCCCCCATGCCGGGAGGAGATGACCAAG




AACCAGGTCAGCCTGTGGTGCCTGGTCAAA




GGCTTCTATCCCAGCGACATCGCCGTGGAG




TGGGAGAGCAATGGGCAGCCGGAGAACAAC




TACAAGACCACGCCTCCCGTGCTGGACTCC




GACGGCTCCTTCTTCCTCTACAGCAAGCTC




ACCGTGGACAAGAGCAGGTGGCAGCAGGGG




AACGTCTTCTCATGCTCCGTGATGCATGAG




GCTCTGCACAACCACTACACGCAGAAGAGC




CTCTCCCTGTCTCCGGGTAAA






MEM06 HC
CAAGTGCAGCTTGTTCAATCAGGGGCCGAG
574



GTTAAGAAACCAGGTGCTTCCGTCAAGGTC




TCCTGCAAGGCTTCCGGCTACACTTTTACC




AGTTATGGGTTCAGTTGGGTTAGACAGGCC




CCAGGGCAGTGTCTCGAATGGATGGGATGG




ATTTCCGCATCTAACGGGAATACTTACTAT




GCCCAGAAACTTCAAGGTAGGGTTACCATG




ACTACCGATACTTCCACTAGTACAGCCTAC




ATGGAACTCAGATCACTCCGTTCAGATGAC




ACCGCAGTATATTACTGTGCAAGGGTATAT




GCTGATTATGCCGATTATTGGGGGCAAGGA




ACACTTGTCACAGTATCCAGCGCTAGCACC




AAAGGACCTAGTGTTTTTCCTCTTGCCCCT




TCCTCAAAGTCTACCTCTGGGGGGACAGCC




GCTCTGGGCTGCCTGGTCAAGGATTATTTC




CCAGAGCCTGTCACTGTCAGTTGGAACTCT




GGAGCCTTGACTTCTGGTGTTCATACATTT




CCTGCTGTCCTTCAAAGCAGCGGCTTGTAC




TCATTGTCTTCTGTTGTGACAGTACCCTCA




AGCAGCCTCGGCACTCAGACATACATCTGC




AATGTCAACCACAAACCCTCAAATACAAAG




GTAGATAAAAAAGTCGAACCAAAGTCTTGT




GACAAAACTCACACGTGCCCACCGTGCCCA




GCACCTGAACTCCTGGGGGGACCGTCAGTC




TTCCTCTTCCCCCCAAAACCCAAGGACACC




CTCATGATCTCCCGGACCCCTGAGGTCACA




TGCGTGGTGGTGGACGTGAGCCACGAAGAC




CCTGAGGTCAAGTTCAACTGGTACGTGGAC




GGCGTGGAGGTGCATAATGCCAAGACAAAG




CCGCGGGAGGAGCAGTACAACAGCACGTAC




CGTGTGGTCAGCGTCCTCACCGTCCTGCAC




CAGGACTGGCTGAATGGCAAGGAGTACAAG




TGCAAGGTCTCCAACAAAGCCCTCCCAGCC




CCCATCGAGAAAACCATCTCCAAAGCCAAA




GGGCAGCCCCGAGAACCACAGGTGTACACC




CTGCCCCCATGCCGGGAGGAGATGACCAAG




AACCAGGTCAGCCTGTGGTGCCTGGTCAAA




GGCTTCTATCCCAGCGACATCGCCGTGGAG




TGGGAGAGCAATGGGCAGCCGGAGAACAAC




TACAAGACCACGCCTCCCGTGCTGGACTCC




GACGGCTCCTTCTTCCTCTACAGCAAGCTC




ACCGTGGACAAGAGCAGGTGGCAGCAGGGG




AACGTCTTCTCATGCTCCGTGATGCATGAG




GCTCTGCACAACCACTACACGCAGAAGAGC




CTCTCCCTGTCTCCGGGTAAA






MEM06 LC
GATATCCAAATGACACAGTCACCCTCAAGT
575



GTTAGCGCAAGTGTCGGGGACAGGGTGACC




ATCACATGCAGAGCTTCCCAGGGTATCAAT




ACATGGCTGGCATGGTATCAACAGAAACCC




GGAAAAGCACCAAAATTGCTTATTTATGCA




GCTTCTAGCTTGAAGAGTGGGGTTCCCTCT




CGTTTCTCTGGTTCAGGAAGCGGTACTGAC




TTTACCTTGACCATCAGTAGCTTGCAGCCC




GAAGATTTCGCTACATATTATTGCCAACAG




GCCAACTCTTTTCCCCTGACATTCGGTTGT




GGCACTAAAGTGGAAATTAAGCGTACGGTG




GCAGCTCCCAGCGTTTTTATCTTTCCCCCA




TCCGACGAGCAGCTCAAGAGTGGCACTGCC




TCTGTAGTTTGTTTGCTGAATAACTTCTAT




CCACGTGAAGCAAAAGTACAGTGGAAGGTC




GATAATGCCCTTCAGAGCGGTAACAGCCAA




GAAAGTGTTACCGAGCAAGATTCCAAAGAT




TCCACTTACAGTCTGTCCAGCACATTGACA




CTGAGTAAGGCTGATTACGAAAAACACAAG




GTGTACGCATGCGAGGTGACACACCAAGGT




CTTTCATCTCCTGTAACTAAGAGCTTTAAC




CGGGGAGAATGTGGTGGTGGGGGCAGCGGG




GGCGGAGGTAGTGGAGGCGGCGGTAGTGAA




CCAAAGAGTAGTGACAAAACTCACACGTGC




CCACCGTGCCCAGCACCTGAACTCCTGGGG




GGACCGTCAGTCTTCCTCTTCCCCCCAAAA




CCCAAGGACACCCTCATGATCTCCCGGACC




CCTGAGGTCACATGCGTGGTGGTGGACGTG




AGCCACGAAGACCCTGAGGTCAAGTTCAAC




TGGTACGTGGACGGCGTGGAGGTGCATAAT




GCCAAGACAAAGCCGCGGGAGGAGCAGTAC




AACAGCACGTACCGTGTGGTCAGCGTCCTC




ACCGTCCTGCACCAGGACTGGCTGAATGGC




AAGGAGTACAAGTGCAAGGTCTCCAACAAA




GCCCTCCCAGCCCCCATCGAGAAAACCATC




TCCAAAGCCAAAGGGCAGCCCCGAGAACCA




CAGGTGTACACCCTGCCCCCATGCCGGGAG




GAGATGACCAAGAACCAGGTCAGCCTGTGG




TGCCTGGTCAAAGGCTTCTATCCCAGCGAC




ATCGCCGTGGAGTGGGAGAGCAATGGGCAG




CCGGAGAACAACTACAAGACCACGCCTCCC




GTGCTGGACTCCGACGGCTCCTTCTTCCTC




TACAGCAAGCTCACCGTGGACAAGAGCAGG




TGGCAGCAGGGGAACGTCTTCTCATGCTCC




GTGATGCATGAGGCTCTGCACAACCACTAC




ACGCAGAAGAGCCTCTCCCTGTCTCCGGGT




AAA









Table 58 below shows the polypeptide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting MET. Table 59 below shows the nucleotide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting MET.












TABLE 58





Name

Sequence
SEQ ID NO







MEM01
VH
EVQLVESGGGLVQPGGSLRLSCAASGYTFT
576




SYWLHWVRQAPGKCLEWVGMIDPSNSDTRF





NPNFKDRFTISADTSKNTAYLQMNSLRAED





TAVYYCATYRSYVTPLDYWGQGTLVTVSS




VL
DIQMTQSPSSLSASVGDRVTITCKSSQSLL
577




YTSSQKNYLAWYQQKPGKAPKLLIYWASTR





ESGVPSRFSGSGSGTDFTLTISSLQPEDFA





TYYCQQYYAYPWTFGCGTKVEIK






MEM06
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
578




SYGFSWVRQAPGQCLEWMGWISASNGNTYY





AQKLQGRVTMTTDTSTSTAYMELRSLRSDD





TAVYYCARVYADYADYWGQGTLVTVSS




VL
DIQMTQSPSSVSASVGDRVTITCRASQGIN
579




TWLAWYQQKPGKAPKLLIYAASSLKSGVPS





RFSGSGSGTDFTLTISSLQPEDFATYYCQQ





ANSFPLTFGCGTKVEIK



















TABLE 59





Name

Sequence
SEQ ID NO







MEM01
VH
GAAGTCCAATTGGTCGAGAGTGGAGGCGGG
580




TTGGTACAGCCAGGAGGTTCACTTAGGTTG





TCCTGCGCCGCCAGTGGTTACACTTTCACA





TCTTATTGGCTGCACTGGGTGCGCCAAGCT





CCTGGGAAGTGTCTCGAATGGGTGGGTATG





ATCGATCCATCTAATTCCGACACACGGTTT





AACCCAAATTTTAAGGATAGATTTACAATT





AGTGCTGACACTTCAAAAAACACAGCATAC





CTCCAGATGAACAGCCTGCGTGCTGAGGAT





ACTGCTGTCTACTACTGTGCAACTTACCGC





TCCTATGTCACACCTTTGGATTATTGGGGC





CAGGGGACTCTGGTGACCGTGAGTTCT




VL
GATATACAGATGACACAAAGTCCCTCATCA
581




CTTTCTGCCTCCGTTGGAGATCGTGTGACC





ATTACCTGTAAGAGTTCCCAATCACTGCTT





TATACCTCTTCACAAAAAAATTACCTCGCT





TGGTACCAGCAGAAGCCAGGTAAAGCACCT





AAGCTGTTGATCTATTGGGCCTCCACTAGA





GAGTCAGGCGTGCCCAGCCGTTTCTCCGGT





TCAGGGAGTGGGACAGACTTTACCTTGACC





ATTTCTTCTTTGCAACCTGAAGACTTCGCC





ACATACTATTGTCAGCAATATTACGCATAT





CCATGGACCTTTGGGTGTGGAACCAAAGTC





GAAATAAAA






MEM06
VH
CAAGTGCAGCTTGTTCAATCAGGGGCCGAG
582




GTTAAGAAACCAGGTGCTTCCGTCAAGGTC





TCCTGCAAGGCTTCCGGCTACACTTTTACC





AGTTATGGGTTCAGTTGGGTTAGACAGGCC





CCAGGGCAGTGTCTCGAATGGATGGGATGG





ATTTCCGCATCTAACGGGAATACTTACTAT





GCCCAGAAACTTCAAGGTAGGGTTACCATG





ACTACCGATACTTCCACTAGTACAGCCTAC





ATGGAACTCAGATCACTCCGTTCAGATGAC





ACCGCAGTATATTACTGTGCAAGGGTATAT





GCTGATTATGCCGATTATTGGGGGCAAGGA





ACACTTGTCACAGTATCCAGC




VL
GATATCCAAATGACACAGTCACCCTCAAGT
583




GTTAGCGCAAGTGTCGGGGACAGGGTGACC





ATCACATGCAGAGCTTCCCAGGGTATCAAT





ACATGGCTGGCATGGTATCAACAGAAACCC





GGAAAAGCACCAAAATTGCTTATTTATGCA





GCTTCTAGCTTGAAGAGTGGGGTTCCCTCT





CGTTTCTCTGGTTCAGGAAGCGGTACTGAC





TTTACCTTGACCATCAGTAGCTTGCAGCCC





GAAGATTTCGCTACATATTATTGCCAACAG





GCCAACTCTTTTCCCCTGACATTCGGTTGT





GGCACTAAAGTGGAAATTAAG









Table 60 below shows the heavy chain and light chain CDR sequences of the engineered antibodies targeting MET.












TABLE 60





Name
CDR
Sequence
SEQ ID NO







MEM01
CDR-H1
SYWLH
236



CDR-H2
MIDPSNSDTRFNPNFKD
237



CDR-H3
YRSYVTPLDY
238



CDR-L1
KSSQSLLYTSSQKNYLA
239



CDR-L2
WASTRES
240



CDR-L3
QQYYAYPWT
241





MEM06
CDR-H1
SYGFS
584



CDR-H2
WISASNGNTYYAQKLQG
585



CDR-H3
VYADYADY
586



CDR-L1
QQANSFPLT
587



CDR-L2
AASSLKS
588



CDR-L3
QQANSFPLT
589









The MET protein binding constants of MEM01 and MEM06 were determined using Octet Red96e (Sartorius). In order to analyze the binding constants of the antibodies, the antibodies were loaded onto the anti-human Fab-CH1 2nd generation (FAB2G) biosensor (Sartorius, 18-5125). Then, the human MET recombinant protein (Sino Biologicals, 10692-H08H) were added in a binding reaction (300 seconds) and a dissociation reaction (600 seconds) at various concentrations (FIG. 46), and the affinities of antibodies for MET was calculated (FIG. 46, Table 61). Table 61 below illustrates the binding constants of the engineered antibodies targeting MET.














TABLE 61







Antibodies
KD (nM)
Ka (1/Ms)
Kd (1/s)





















MEM01
0.1861
3.31E+05
6.16E−05



MEM06
0.7881
4.20E+05
3.31E−04










MKN45 and SNU-5 gastric cancer cell lines were used to quantify the Fc loads on the surface of MET expressing cells. The human IgG1 control, onartuzumab (produced in CHO cell line), emibetuzumab, MEM01I, and MEM06 antibodies were allowed to bind to the cell lines at 4° C. for 30 minutes, and the Fc loads were quantified using the Alexa 488 fluorescence-conjugated anti-human IgG Fcγ Fab antibody (Jackson ImmunoResearch, 109-547-008) (FIGS. 47 and 48). It was shown that high Fc loads on the surface of MET expressing cancer cells are induced by treatment of MEM01 compared to onartuzumab and emibetuzumab, which target MET (FIGS. 47 and 48). Treatment of MEM06 induced higher Fc loads on the surface of MET expressing cancer cells compared to emibetuzumab, but a similar level when compared to onartuzumab (FIGS. 47 and 48).


Example 20. Design, Preparation and Analysis of Antibody Structure Targeting EGFR

The variant light chain and heavy chain polypeptide sequences of the antibodies that specifically bind to the EGFR protein are shown in Table 62. For EGM01, expression vectors consisting of the sequences corresponding to Fc-Hole (SEQ ID NO: 7), EGM01 HC (SEQ ID NO: 590), and EGF01 LC (SEQ ID NO: 591) were co-transfected into EXPICHOWS™ (Gibco, A29127) (FIG. 41a, Table 62), and purification and analysis were performed in the same manner as described in Example 1. Expression, purification and analysis were performed for EGM02, EGM03, EGM04, EGM05, and EGM06 in the same manner as mentioned above (Table 62).











TABLE 62







SEQ ID


Name
Sequence
NO







EGM01 HC
QVQLKQSGPGLVQPSQSLSITCTVSGFSLT
590



NYGVHWVRQSPGKCLEWLGVIWSGGNTDYN




TPFTSRLSINKDNSKSQVFFKMNSLQSNDT




AIYYCARALTYYDYEFAYWGQGTLVTVSAA




STKGPSVFPLAPSSKSTSGGTAALGCLVKD




YFPEPVTVSWNSGALTSGVHTFPAVLQSSG




LYSLSSVVTVPSSSLGTQTYICNVNHKPSN




TKVDKKVEPKSCDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSH




EDPEVKFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKAL




PAPIEKTISKAKGQPREPQVYTLPPCREEM




TKNQVSLWCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ




QGNVFSCSVMHEALHNHYTQKSLSLSPGK






EGM01 LC
DILLTQSPVILSVSPGERVSFSCRASQSIG
591



TNIHWYQQRTNGSPRLLIKYASESISGIPS




RFSGSGSGTDFTLSINSVESEDIADYYCQQ




NNNWPTTFGCGTKLELKRTVAAPSVFIFPP




SDEQLKSGTASVVCLLNNFYPREAKVQWKV




DNALQSGNSQESVTEQDSKDSTYSLSSTLT




LSKADYEKHKVYACEVTHQGLSSPVTKSFN




RGECGGGGSGGGGSGGGGSEPKSSDKTHTC




PPCPAPELLGGPSVFLFPPKPKDTLMISRT




PEVTCVVVDVSHEDPEVKFNWYVDGVEVHN




AKTKPREEQYNSTYRVVSVLTVLHQDWLNG




KEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPCREEMTKNQVSLWCLVKGFYPSD




IAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHY




TQKSLSLSPGK






EGM02 HC
QVQLQESGPGLVKPSQTLSLTCTVSGGSIS
592



SGDYYWSWIRQPPGKCLEWIGYIYYSGSTD




YNPSLKSRVTMSVDTSKNQFSLKVNSVTAA




DTAVYYCARVSIFGVGTFDYWGQGTLVTVS




SASTKGPSVFPLAPSSKSTSGGTAALGCLV




KDYFPEPVTVSWNSGALTSGVHTFPAVLQS




SGLYSLSSVVTVPSSSLGTQTYICNVNHKP




SNTKVDKKVEPKSCDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDV




SHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNK




ALPAPIEKTISKAKGQPREPQVYTLPPCRE




EMTKNQVSLWCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFFLYSKLTVDKSR




WQQGNVFSCSVMHEALHNHYTQKSLSLSPG




K






EGM02 LC
EIVMTQSPATLSLSPGERATLSCRASQSVS
593



SYLAWYQQKPGQAPRLLIYDASNRATGIPA




RFSGSGSGTDFTLTISSLEPEDFAVYYCHQ




YGSTPLTFGCGTKAEIKRTVAAPSVFIFPP




SDEQLKSGTASVVCLLNNFYPREAKVQWKV




DNALQSGNSQESVTEQDSKDSTYSLSSTLT




LSKADYEKHKVYACEVTHQGLSSPVTKSFN




RGECGGGGSGGGGSGGGGSEPKSSDKTHTC




PPCPAPELLGGPSVFLFPPKPKDTLMISRT




PEVTCVVVDVSHEDPEVKFNWYVDGVEVHN




AKTKPREEQYNSTYRVVSVLTVLHQDWLNG




KEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPCREEMTKNQVSLWCLVKGFYPSD




IAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHY




TQKSLSLSPGK






EGM03 HC
QVQLQESGPGLVKPSETLSLTCTVSGGSVS
594



SGDYYWTWIRQSPGKCLEWIGHIYYSGNTN




YNPSLKSRLTISIDTSKTQFSLKLSSVTAA




DTAIYYCVRDRVTGAFDIWGQGTMVTVSSA




STKGPSVFPLAPSSKSTSGGTAALGCLVKD




YFPEPVTVSWNSGALTSGVHTFPAVLQSSG




LYSLSSVVTVPSSSLGTQTYICNVNHKPSN




TKVDKKVEPKSCDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSH




EDPEVKFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKAL




PAPIEKTISKAKGQPREPQVYTLPPCREEM




TKNQVSLWCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ




QGNVFSCSVMHEALHNHYTQKSLSLSPGK






EGM03 LC
DIQMTQSPSSLSASVGDRVTITCQASQDIS
595



NYLNWYQQKPGKAPKLLIYDASNLETGVPS




RFSGSGSGTDFTFTISSLQPEDIATYFCQH




FDHLPLAFGCGTKVEIKRTVAAPSVFIFPP




SDEQLKSGTASVVCLLNNFYPREAKVQWKV




DNALQSGNSQESVTEQDSKDSTYSLSSTLT




LSKADYEKHKVYACEVTHQGLSSPVTKSFN




RGECGGGGSGGGGSGGGGSEPKSSDKTHTC




PPCPAPELLGGPSVFLFPPKPKDTLMISRT




PEVTCVVVDVSHEDPEVKFNWYVDGVEVHN




AKTKPREEQYNSTYRVVSVLTVLHQDWLNG




KEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPCREEMTKNQVSLWCLVKGFYPSD




IAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHY




TQKSLSLSPGK






EGM04 HC
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
596



SHWMHWVRQAPGQCLEWIGEFNPSNGRTNY




NEKFKSKATMTVDTSTNTAYMELSSLRSED




TAVYYCASRDYDYDGRYFDYWGQGTLVTVS




SASTKGPSVFPLAPSSKSTSGGTAALGCLV




KDYFPEPVTVSWNSGALTSGVHTFPAVLQS




SGLYSLSSVVTVPSSSLGTQTYICNVNHKP




SNTKVDKKVEPKSCDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDV




SHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNK




ALPAPIEKTISKAKGQPREPQVYTLPPCRE




EMTKNQVSLWCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFFLYSKLTVDKSR




WQQGNVFSCSVMHEALHNHYTQKSLSLSPG




KDIQMTQSPSSLSASVGDRVTITCSASSSV






EGM04 LC
TYMYWYQQKPGKAPKLLI
597



YDTSNLASGVPSRFSGSGSGTDYTFTISSL




QPEDIATYYCQQWSSHIFTFGCGTKVEIKR




TVAAPSVFIFPPSDEQLKSGTASVVCLLNN




FYPREAKVQWKVDNALQSGNSQESVTEQDS




KDSTYSLSSTLTLSKADYEKHKVYACEVTH




QGLSSPVTKSFNRGECGGGGSGGGGSGGGG




SEPKSSDKTHTCPPCPAPELLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSHEDPEVK




FNWYVDGVEVHNAKTKPREEQYNSTYRVVS




VLTVLHQDWLNGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYTLPPCREEMTKNQVS




LWCLVKGFYPSDIAVEWESNGQPENNYKTT




PPVLDSDGSFFLYSKLTVDKSRWQQGNVFS




CSVMHEALHNHYTQKSLSLSPGK






EGM05 HC
QVQLVQSGAEVKKPGSSVKVSCKASGFTFT
|598



DYKIHWVRQAPGQCLEWMGYFNPNSGYSTY




AQKFQGRVTITADKSTSTAYMELSSLRSED




TAVYYCARLSPGGYYVMDAWGQGTTVTVSS




ASTKGPSVFPLAPSSKSTSGGTAALGCLVK




DYFPEPVTVSWNSGALTSGVHTFPAVLQSS




GLYSLSSVVTVPSSSLGTQTYICNVNHKPS




NTKVDKKVEPKSCDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVS




HEDPEVKFNWYVDGVEVHNAKTKPREEQYN




STYRVVSVLTVLHQDWLNGKEYKCKVSNKA




LPAPIEKTISKAKGQPREPQVYTLPPCREE




MTKNQVSLWCLVKGFYPSDIAVEWESNGQP




ENNYKTTPPVLDSDGSFFLYSKLTVDKSRW




QQGNVFSCSVMHEALHNHYTQKSLSLSPGK






EGM05 LC
DIQMTQSPSSLSASVGDRVTITCRASQGIN
|599



NYLNWYQQKPGKAPKRLIYNTNNLQTGVPS




RFSGSGSGTEFTLTISSLQPEDFATYYCLQ




HNSFPTFGCGTKLEIKRTVAAPSVFIFPPS




DEQLKSGTASVVCLLNNFYPREAKVQWKVD




NALQSGNSQESVTEQDSKDSTYSLSSTLTL




SKADYEKHKVYACEVTHQGLSSPVTKSFNR




GECGGGGSGGGGSGGGGSEPKSSDKTHTCP




PCPAPELLGGPSVFLFPPKPKDTLMISRTP




EVTCVVVDVSHEDPEVKFNWYVDGVEVHNA




KTKPREEQYNSTYRVVSVLTVLHQDWLNGK




EYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPCREEMTKNQVSLWCLVKGFYPSDI




AVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYT




QKSLSLSPGK









Table 63 below shows the heavy chain and light chain nucleotide sequences of the engineered antibodies targeting EGFR.











TABLE 63





Name
Sequence
SEQ ID NO







EGM01 HC
CAAGTACAGTTGAAACAATCAGGGCCTGGTTTGGTGCAGC
600



CTTCCCAATCACTTAGCATCACCTGCACTGTCTCAGGGTT




CAGTCTTACAAACTACGGCGTACACTGGGTACGGCAAAGC




CCTGGTAAGTGCCTGGAGTGGCTTGGGGTTATATGGTCTG




GAGGGAATACCGACTATAACACACCCTTTACCAGCAGGCT




GTCCATCAATAAAGATAACTCTAAATCCCAGGTCTTCTTT




AAAATGAACTCCCTCCAGTCTAATGACACTGCCATATATT




ACTGTGCTAGAGCATTGACTTACTACGATTATGAGTTCGC




ATATTGGGGACAGGGTACTCTGGTCACCGTATCCGCTGCT




AGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCT




CAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCT




GGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGG




AACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTG




CTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGT




TGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATAC




ATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAG




ATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACAC




GTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCG




TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCA




TGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGA




CGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC




GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGC




GGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGT




CCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAG




TACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA




TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGA




ACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATG




ACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCT




TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGG




GCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG




GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCG




TGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATG




CTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG




AAGAGCCTCTCCCTGTCTCCGGGTAAA






EGM01 LC
GACATCTTGCTTACTCAATCACCTGTAATACTTTCAGTTT
601



CACCAGGTGAACGCGTTAGCTTCTCTTGTAGAGCCTCCCA




ATCTATAGGTACTAATATCCATTGGTATCAGCAGAGAACC




AACGGGTCTCCTCGTTTGCTCATTAAATATGCAAGCGAAT




CAATCTCAGGGATTCCTAGCCGTTTTAGTGGCTCTGGCAG




TGGTACTGATTTCACACTCAGCATCAATTCTGTAGAGAGC




GAAGATATTGCAGACTACTATTGCCAACAGAACAATAATT




GGCCCACAACCTTCGGGTGTGGCACAAAATTGGAACTCAA




ACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCA




TCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTT




GTTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACA




GTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAA




GAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACA




GTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGA




AAAACACAAGGTGTACGCATGCGAGGTGACACACCAAGGT




CTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAAT




GTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGG




CGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGC




CCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAG




TCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGAT




CTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG




AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG




ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA




GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC




ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA




AGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA




CAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCA




AGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTA




TCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG




CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACT




CCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGA




CAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCC




GTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGTAAA






EGM02 HC
CAAGTGCAGCTTCAAGAGTCTGGACCAGGGCTGGTCAAGC
602



CCTCCCAAACCTTGAGCCTCACCTGTACTGTTTCCGGGGG




CAGCATAAGTTCTGGTGATTACTACTGGAGTTGGATACGC




CAACCTCCCGGAAAATGTCTGGAGTGGATTGGGTATATCT




ATTATAGTGGCTCAACAGACTACAATCCTTCTCTCAAGAG




TCGGGTAACTATGAGCGTAGATACAAGTAAAAACCAATTT




TCCCTTAAAGTCAATAGCGTTACAGCCGCTGACACTGCAG




TTTACTACTGTGCCCGTGTTTCAATCTTCGGTGTCGGCAC




TTTCGATTACTGGGGTCAGGGTACTCTGGTTACCGTGTCA




TCCGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCC




CTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGG




CTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTC




AGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACAT




TTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTC




TTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAG




ACATACATCTGCAATGTCAACCACAAACCCTCAAATACAA




AGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAAC




TCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGG




GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA




CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT




GGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAAC




TGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAA




AGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC




AAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAG




CCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCC




CCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAG




GAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCA




AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAG




CAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC




GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGC




TCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT




CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTAC




ACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EGM02 LC
GAGATTGTTATGACCCAAAGCCCTGCAACACTTAGTTTGT
603



CTCCAGGAGAGCGCGCCACCCTTTCTTGTCGTGCATCCCA




AAGCGTTAGCAGCTATCTCGCCTGGTATCAGCAGAAACCC




GGACAGGCTCCACGATTGCTGATCTACGACGCAAGTAATA




GAGCTACAGGAATACCTGCTCGTTTCTCAGGCTCTGGATC




TGGCACTGATTTCACCTTGACCATAAGCAGCCTGGAGCCC




GAGGATTTCGCTGTATATTATTGCCATCAATACGGGAGTA




CCCCCCTCACATTCGGTTGCGGGACTAAGGCCGAAATTAA




ACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCA




TCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTT




GTTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACA




GTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAA




GAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACA




GTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGA




AAAACACAAGGTGTACGCATGCGAGGTGACACACCAAGGT




CTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAAT




GTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGG




CGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGC




CCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAG




TCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGAT




CTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG




AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG




ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA




GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC




ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA




AGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA




CAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCA




AGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTA




TCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG




CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACT




CCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGA




CAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCC




GTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGTAAA






EGM03 HC
CAGGTACAACTTCAAGAAAGTGGTCCAGGTCTTGTAAAAC
604



CCTCAGAAACTTTGAGTCTCACTTGTACCGTCAGTGGCGG




AAGTGTAAGTTCTGGCGATTACTACTGGACCTGGATACGC




CAGTCTCCAGGCAAATGTCTGGAGTGGATAGGCCACATCT




ACTACAGCGGGAACACCAATTACAATCCATCTCTTAAATC




AAGGTTGACAATTTCAATAGACACCAGTAAGACCCAGTTT




TCTCTCAAACTTAGCAGTGTAACAGCAGCAGATACTGCAA




TCTACTACTGCGTTAGAGACCGTGTTACAGGGGCTTTCGA




CATCTGGGGGCAGGGAACTATGGTTACCGTCTCTTCTGCT




AGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCT




CAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCT




GGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGG




AACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTG




CTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGT




TGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATAC




ATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAG




ATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACAC




GTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCG




TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCA




TGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGA




CGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC




GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGC




GGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGT




CCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAG




TACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA




TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGA




ACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATG




ACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCT




TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGG




GCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG




GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCG




TGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATG




CTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG




AAGAGCCTCTCCCTGTCTCCGGGTAAA






EGM03 LC
GACATACAGATGACACAGAGTCCTAGCTCATTGTCAGCCT
605



CTGTCGGTGACCGCGTCACTATCACCTGCCAAGCCAGCCA




AGACATATCAAATTATCTTAACTGGTACCAGCAAAAGCCT




GGAAAGGCTCCAAAACTGCTGATTTACGACGCCTCTAATT




TGGAGACCGGGGTTCCCTCTAGGTTCAGCGGGTCTGGTTC




AGGCACCGACTTTACATTCACTATCTCAAGTCTCCAGCCA




GAGGACATCGCTACATACTTTTGCCAACATTTTGACCATC




TGCCCCTGGCATTTGGGTGTGGCACCAAGGTAGAAATTAA




GCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCA




TCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTT




GTTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACA




GTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAA




GAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACA




GTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGA




AAAACACAAGGTGTACGCATGCGAGGTGACACACCAAGGT




CTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAAT




GTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGG




CGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGC




CCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAG




TCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGAT




CTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG




AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG




ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA




GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC




ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA




AGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGA




GAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA




CAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCA




AGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTA




TCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG




CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACT




CCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGA




CAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCC




GTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGTAAA






EGM04 HC
CAAGTCCAACTGGTCCAATCTGGGGCAGAGGTCAAGAAAC
606



CTGGCGCAAGCGTAAAGGTATCCTGTAAAGCATCTGGCTA




CACATTCACTTCACATTGGATGCACTGGGTTCGGCAGGCA




CCTGGGCAATGTCTTGAATGGATTGGGGAGTTTAACCCCA




GTAACGGGAGGACTAACTACAATGAAAAGTTCAAGTCCAA




AGCAACCATGACCGTCGATACCAGCACAAACACTGCCTAC




ATGGAACTTTCATCATTGCGATCTGAAGACACAGCAGTAT




ATTACTGTGCCAGTAGGGATTACGACTACGACGGTCGCTA




CTTCGACTATTGGGGGCAAGGTACTTTGGTAACAGTGAGT




AGTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCC




CTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGG




CTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTC




AGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACAT




TTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTC




TTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAG




ACATACATCTGCAATGTCAACCACAAACCCTCAAATACAA




AGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAAC




TCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGG




GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA




CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT




GGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAAC




TGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAA




AGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC




AAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAG




CCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCC




CCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAG




GAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCA




AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAG




CAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC




GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGC




TCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT




CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTAC




ACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EGM04 LC
GACATACAGATGACACAATCCCCATCTAGCCTGTCCGCAA
607



GTGTTGGGGACCGTGTCACTATAACATGCTCAGCATCATC




ATCAGTGACTTATATGTACTGGTACCAGCAAAAGCCCGGA




AAGGCACCTAAACTGCTCATTTATGACACCAGCAATCTTG




CTTCCGGGGTTCCTTCTCGATTTTCCGGTTCTGGCAGCGG




TACTGACTATACTTTTACTATCAGTTCTCTGCAACCTGAA




GACATCGCAACTTACTATTGTCAACAATGGTCCAGCCACA




TCTTTACTTTTGGATGTGGGACAAAAGTCGAAATTAAACG




TACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCC




GACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTT




TGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTG




GAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAAGAA




AGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTC




TGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAA




ACACAAGGTGTACGCATGCGAGGTGACACACCAAGGTCTT




TCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTG




GTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGG




TAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCA




CCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCT




TCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTC




CCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGC




CACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG




GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGA




GCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACC




GTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGT




GCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAA




AACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG




GTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGA




ACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCC




CAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG




GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG




ACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA




GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG




ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC




TCTCCCTGTCTCCGGGTAAA






EGM05 HC
CAAGTACAACTTGTTCAATCTGGAGCAGAGGTTAAGAAAC
608



CCGGATCTTCCGTTAAGGTTAGTTGCAAGGCCTCCGGGTT




TACTTTCACTGACTATAAAATCCATTGGGTCCGGCAGGCC




CCTGGGCAGTGTCTTGAATGGATGGGCTACTTCAACCCAA




ATTCTGGTTATTCCACTTATGCCCAGAAGTTTCAAGGCAG




GGTCACCATCACTGCCGACAAGTCTACTTCAACCGCCTAT




ATGGAACTTAGCAGTCTGCGATCAGAGGATACAGCAGTCT




ACTACTGCGCCAGACTGTCACCCGGCGGTTATTATGTGAT




GGATGCTTGGGGCCAGGGCACCACTGTTACAGTATCCTCT




GCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTT




CCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTG




CCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGT




TGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTC




CTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTC




TGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACA




TACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGG




TAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCA




CACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGA




CCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCC




TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGT




GGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGG




TACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGC




CGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAG




CGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG




GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCC




CCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG




AGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAG




ATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAG




GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAA




TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG




CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCA




CCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTC




ATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG




CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






EGM05 LC
GACATTCAGATGACTCAGTCCCCATCCTCTCTGTCTGCCA
609



GCGTGGGAGATAGGGTCACCATAACTTGTCGGGCATCCCA




AGGGATCAATAACTACCTCAATTGGTATCAACAAAAACCT




GGCAAGGCTCCTAAAAGGCTGATTTATAACACTAACAATC




TCCAAACCGGGGTGCCAAGTCGCTTTAGTGGGTCAGGGAG




TGGAACAGAGTTTACTCTTACTATCTCCAGCCTCCAGCCC




GAGGACTTTGCCACTTACTATTGCCTCCAACACAACTCAT




TTCCAACATTTGGTTGTGGCACTAAACTTGAAATTAAACG




TACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCC




GACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTT




TGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTG




GAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAAGAA




AGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTC




TGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAA




ACACAAGGTGTACGCATGCGAGGTGACACACCAAGGTCTT




TCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTG




GTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGG




TAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCA




CCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCT




TCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTC




CCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGC




CACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG




GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGA




GCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACC




GTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGT




GCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAA




AACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG




GTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGA




ACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCC




CAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG




GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG




ACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA




GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG




ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC




TCTCCCTGTCTCCGGGTAAA









Table 64 below shows the polypeptide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting EGFR. Table 65 below shows the nucleotide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting EGFR.














TABLE 64










SEQ ID



Name

Sequence
NO









EGM01
VH
QVQLKQSGPGLVQPSQSLSITCTVS
610





GFSLTNYGVHWVRQSPGKCLEWLGV






IWSGGNTDYNTPFTSRLSINKDNSK






SQVFFKMNSLQSNDTAIYYCARALT






YYDYEFAYWGQGTLVTVSA





VL
DILLTQSPVILSVSIGERVSFSCRA
611





SQSIGTNIHWYQQRTNGSPRLLIKY






ASESISGIPSRFSGSGSGTDFTLSI






NSVESEDIADYYCQQNNNWPTTFGC






GTKLELK








EGM02
VH
QVQLQESGPGLVKPSQTLSLTCTVS
612





GGSISSGDYYWSWIRQPPGKCLEWI






GYIYYSGSTDYNPSLKSRVTMSVDT






SKNQFSLKVNSVTAADTAVYYCARV






SIFGVGTFDYWGQGTLVTVSS





VL
EIVMTQSPATLSLSPGERATLSCRA
613





SQSVSSYLAWYQQKPGQAPRLLIYD






ASNRATGIPARFSGSGSGTDFTLTI






SSLEPEDFAVYYCHQYGSTPLTFGC






GTKAEIK








EGM03
VH
QVQLQESGPGLVKPSETLSLTCTVS
614





GGSVSSGDYYWTWIRQSPGKCLEWI






GHIYYSGNTNYNPSLKSRLTISIDT






SKTQFSLKLSSVTAADTAIYYCVRD






RVTGAFDIWGQGTMVTVSS





VL
DIQMTQSPSSLSASVGDRVTITCQA
615





SQDISNYLNWYQQKPGKAPKLLIYD






ASNLETGVPSRFSGSGSGTDFTFTI






SSLQPEDIATYFCQHFDHLPLAFGC






GTKVEIK








EGM04
VH
QVQLVQSGAEVKKPGASVKVSCKAS
616





GYTFTSHWMHWVRQAPGQCLEWIGE






FNPSNGRTNYNEKFKSKATMTVDTS






TNTAVYNELSSLRSEDTAVYYCASR






DYDYDGRYFDYWGQGTLVTVSS





VL
DIQMTQSPSSLSASVGDRVTITCSA
617





SSSVTYMYWYQQKPGKAPKLLIYDT






SNLASGVPSRFSGSGSGTDYTFTIS






SLQPEDIATTYCQQWSSHIFTFGQG






TKVEIK








EGM05
VH
QVQLVQSGAEVKKPGSSVKVSCKAS
618





GFTFTDVKIHWVRQAPGQCLEWMGY






FNPNGSYSTYAQKFQGVTITADKST






STAYMELSSLRSEDTAVYYCARLSP






GGYYVMDAWGQGTTVTVSS





VL
DIQMTQSPSSLSASVGDRVTITCRA
619





SQGINNYLNWYQQKPGKAPKRLIYN






TNNLQTGVPSRFSGSGSGTEFTLTI






SSLQPEDFATYYCLQHNSFPTFGQG






TKLEIK



















TABLE 65





Name
Sequence
SEQ ID NO


















EGM01
VH
CAAGTACAGTTGAAACAATCAGGGCCTGGTTTGGTGCAGCCTTCCCAATCACTTAGCATCA
620




CCTGCACTGTCTCAGGGTTCAGTCTTACAAACTACGGCGTACACTGGGTACGGCAAAGCCC





TGGTAAGTGCCTGGAGTGGCTTGGGGTTATATGGTCTGGAGGGAATACCGACTATAACACA





CCCTTTACCAGCAGGCTGTCCATCAATAAAGATAACTCTAAATCCCAGGTCTTCTTTAAAA





TGAACTCCCTCCAGTCTAATGACACTGCCATATATTACTGTGCTAGAGCATTGACTTACTA





CCCTTTACCAGCAGGCTGTCCATCAATAAAGATAACTCTAAATCCCAGGTCTTCTTTAAAA





TGAACTCCCTCCAGTCTAATGACACTGCCATATATTACTGTGCTAGAGCATTGACTTACTA





CGATTATGAGTTCGCATATTGGGGACAGGGTACTCTGGTCACCGTATCCGCT




VL
GACATCTTGCTTACTCAATCACCTGTAATACTTTCAGTTTCACCAGGTGAACGCGTTAGCT
621




TCTCTTGTAGAGCCTCCCAATCTATAGGTACTAATATCCATTGGTATCAGCAGAGAACCAA





CGGGTCTCCTCGTTTGCTCATTAAATATGCAAGCGAATCAATCTCAGGGATTCCTAGCCGT





TTTAGTGGCTCTGGCAGTGGTACTGATTTCACACTCAGCATCAATTCTGTAGAGAGCGAAG





ATATTGCAGACTACTATTGCCAACAGAACAATAATTGGCCCACAACCTTCGGGTGTGGCAC





AAAATTGGAACTCAAA






EMG02
VH
CAAGTGCAGCTTCAAGAGTCTGGACCAGGGCTGGTCAAGCCCTCCCAAACCTTGAGCCTCA
622




CCTGTACTGTTTCCGGGGGCAGCATAAGTTCTGGTGATTACTACTGGAGTTGGATACGCCA





ACCTCCCGGAAAATGTCTGGAGTGGATTGGGTATATCTATTATAGTGGCTCAACAGACTAC





AATCCTTCTCTCAAGAGTCGGGTAACTATGAGCGTAGATACAAGTAAAAACCAATTTTCCC





TTAAAGTCAATAGCGTTACAGCCGCTGACACTGCAGTTTACTACTGTGCCCGTGTTTCAAT





CTTCGGTGTCGGCACTTTCGATTACTGGGGTCAGGGTACTCTGGTTACCGTGTCATCC




VL
GAGATTGTTATGACCCAAAGCCCTGCAACACTTAGTTTGTCTCCAGGAGAGCGCGCCACCC
623




TTTCTTGTCGTGCATCCCAAAGCGTTAGCAGCTATCTCGCCTGGTATCAGCAGAAACCCGG





ACAGGCTCCACGATTGCTGATCTACGACGCAAGTAATAGAGCTACAGGAATACCTGCTCGT





TTCTCAGGCTCTGGATCTGGCACTGATTTCACCTTGACCATAAGCAGCCTGGAGCCCGAGG





ATTTCGCTGTATATTATTGCCATCAATACGGGAGTACCCCCCTCACATTCGGTTGCGGGAC





TAAGGCCGAAATTAAA






EMG03
VH
GACATACAGATGACACAGAGTCCTAGCTCATTGTCAGCCTCTGTCGGTGACCGCGTCACTA
624




TCACCTGCCAAGCCAGCCAAGACATATCAAATTATCTTAACTGGTACCAGCAAAAGCCTGG





AAAGGCTCCAAAACTGCTGATTTACGACGCCTCTAATTTGGAGACCGGGGTTCCCTCTAGG





TTCAGCGGGTCTGGTTCAGGCACCGACTTTACATTCACTATCTCAAGTCTCCAGCCAGAGG





ACATCGCTACATACTTTTGCCAACATTTTGACCATCTGCCCCTGGCATTTGGGTGTGGCAC





CAAGGTAGAAATTAAG




VL
CAGGTACAACTTCAAGAAAGTGGTCCAGGTCTTGTAAAACCCTCAGAAACTTTGAGTCTCA
625




CTTGTACCGTCAGTGGCGGAAGTGTAAGTTCTGGCGATTACTACTGGACCTGGATACGCCA





GTCTCCAGGCAAATGTCTGGAGTGGATAGGCCACATCTACTACAGCGGGAACACCAATTAC





AATCCATCTCTTAAATCAAGGTTGACAATTTCAATAGACACCAGTAAGACCCAGTTTTCTC





TCAAACTTAGCAGTGTAACAGCAGCAGATACTGCAATCTACTACTGCGTTAGAGACCGTGT





TACAGGGGCTTTCGACATCTGGGGGCAGGGAACTATGGTTACCGTCTCTTCT






EGM04
VH
CAAGTCCAACTGGTCCAATCTGGGGCAGAGGTCAAGAAACCTGGCGCAAGCGTAAAGGTAT
626




CCTGTAAAGCATCTGGCTACACATTCACTTCACATTGGATGCACTGGGTTCGGCAGGCACC





TGGGCAATGTCTTGAATGGATTGGGGAGTTTAACCCCAGTAACGGGAGGACTAACTACAAT





GAAAAGTTCAAGTCCAAAGCAACCATGACCGTCGATACCAGCACAAACACTGCCTACATGG





AACTTTCATCATTGCGATCTGAAGACACAGCAGTATATTACTGTGCCAGTAGGGATTACGA





CTACGACGGTCGCTACTTCGACTATTGGGGGCAAGGTACTTTGGTAACAGTGAGTAGT




VL
GACATACAGATGACACAATCCCCATCTAGCCTGTCCGCAAGTGTTGGGGACCGTGTCACTA
627




TAACATGCTCAGCATCATCATCAGTGACTTATATGTACTGGTACCAGCAAAAGCCCGGAAA





GGCACCTAAACTGCTCATTTATGACACCAGCAATCTTGCTTCCGGGGTTCCTTCTCGATTT





TCCGGTTCTGGCAGCGGTACTGACTATACTTTTACTATCAGTTCTCTGCAACCTGAAGACA





TCGCAACTTACTATTGTCAACAATGGTCCAGCCACATCTTTACTTTTGGATGTGGGACAAA





AGTCGAAATTAAA






EMG05
VH
CAAGTACAACTTGTTCAATCTGGAGCAGAGGTTAAGAAACCCGGATCTTCCGTTAAGGTTA
628




GTTGCAAGGCCTCCGGGTTTACTTTCACTGACTATAAAATCCATTGGGTCCGGCAGGCCCC





TGGGCAGTGTCTTGAATGGATGGGCTACTTCAACCCAAATTCTGGTTATTCCACTTATGCC





CAGAAGTTTCAAGGCAGGGTCACCATCACTGCCGACAAGTCTACTTCAACCGCCTATATGG





AACTTAGCAGTCTGCGATCAGAGGATACAGCAGTCTACTACTGCGCCAGACTGTCACCCGG





CGGTTATTATGTGATGGATGCTTGGGGCCAGGGCACCACTGTTACAGTATCCTCT




VL
GACATTCAGATGACTCAGTCCCCATCCTCTCTGTCTGCCAGCGTGGGAGATAGGGTCACCA
629




TAACTTGTCGGGCATCCCAAGGGATCAATAACTACCTCAATTGGTATCAACAAAAACCTGG





CAAGGCTCCTAAAAGGCTGATTTATAACACTAACAATCTCCAAACCGGGGTGCCAAGTCGC





TTTAGTGGGTCAGGGAGTGGAACAGAGTTTACTCTTACTATCTCCAGCCTCCAGCCCGAGG





ACTTTGCCACTTACTATTGCCTCCAACACAACTCATTTCCAACATTTGGTTGTGGCACTAA





ACTTGAAATTAAA









Table 66 below shows the heavy chain and light chain CDR sequences of the engineered antibodies targeting EGFR.












TABLE 66





Name
CDR
Sequence
SEQ ID NO







EGM01
CDR-H1
NYGVH
175



CDR-H2
VIWSGGNTDYNTPFTS
176



CDR-H3
ALTYYDYEFAY
177



CDR-L1
RASQSIGTNIH
178



CDR-L2
YASESIS
179



CDR-L3
QQNNNWPTT
180





EGM02
CDR-H1
DYYWS
187



CDR-H2
YIYYSGSTDYNPSLKS
188



CDR-H3
VSIFGVGTFDY
189



CDR-L1
RASQSVSSYLA
190



CDR-L2
DASNRAT
191



CDR-L3
HQYGSTPLT
192





EGM03
CDR-H1
DYYWT
181



CDR-H2
HIYYSGNTNYNPSLKS
182



CDR-H3
DRVTGAFDI
183



CDR-L1
QASQDISNYLN
184



CDR-L2
DASNLET
185



CDR-L3
QHFDHLPLA
186





EGM04
CDR-H1
SHWMH
630



CDR-H2
EFNPSNGRTNYNEKFKS
631



CDR-H3
RDYDYDGRYFDY
632



CDR-L1
SASSSVTYMY
633



CDR-L2
DTSNLAS
634



CDR-L3
QQWSSHIFT
635





EGM05
CDR-H1
DYKIH
193



CDR-H2
YFNPNSGYSTYAQKFQG
194



CDR-H3
LSPGGYYVMDA
195



CDR-L1
RASQGINNYLN
196



CDR-L2
NTNNLQT
197



CDR-L3
LQHNSFPT
198









The EGFR protein binding constants of EGM01 to EGM05 were determined using the Octet Red96e (Sartorius). In order to analyze the binding constants of the antibodies, the antibodies were loaded onto the anti-human Fab-CH1 2nd generation (FAB2G) biosensor (Sartorius, 18-5125). Then, the human EGFR recombinant proteins (Sino Biologicals, 10692-H08H) were added in a binding reaction (300 seconds) and a dissociation reaction (600 seconds) at various concentrations (FIG. 49), and the affinities of antibodies for EGFR were calculated (FIG. 49, Table 67). Table 67 below illustrates the binding constants of the engineered antibodies targeting EGFR.














TABLE 67







Antibodies
KD (nM)
Ka (1/Ms)
Kd (1/s)





















EGM01
0.6446
6.00E+05
3.87E−04



EGM02
0.3946
7.30E+05
2.88E−04



EGM03
0.1518
4.28E+05
6.51E−05



EGM04
0.6421
6.31E+05
4.05E−04



EGM05
0.1989
4.08E+05
8.11E−05










Example 21. Design, Preparation and Analysis of Novel Antibody Targeting CD33

The variant light chain and heavy chain polypeptide sequences of the antibodies that specifically recognize the CD33 protein are shown in Table 68. For GPM01, expression vector consisting of the sequences corresponding to Fc-Hole (SEQ ID NO: 7), 33-1 HC (SEQ ID NO: 636), and 33-1 LC (SEQ ID NO: 637) were co-transfected into EXPICHO-S™ (Gibco, A29127) (FIG. 41a, Table 64), and purification and analysis were performed in the same manner as described in Example 1. Expression, purification and analysis were performed for 33-2, 33-3, 33-4, 33-5, 33-6, and 33-7 in the same manner as mentioned above (FIGS. 41a to 41b, and Tables 68 and Table 69). 33-1, 33-2, and 33-3 bind monovalently to different epitopes of the antigen and have structures consisting of two Fc domains (FIG. 41a). 33-4, 33-5, 33-6, and 33-7 have structures in which the variable regions of the CD33 antibody are linked with a polypeptide linker (SEQ ID NO: 48, SEQ ID NO: 50), and bind biparatopically to CD33, and have two Fc domains (FIG. 41b).











TABLE 68





Name
Sequence
SEQ ID NO







33-1 HC
EVQLVQSGAEVKKPGSSVKVSCKASGYTITDSNIHWVRQAPGQCLEWIGYIYPYNGGTD
636



YNQKFKNRATLTVDNPTNTAYEMLSSLRSEDTAFYYCVNGNPWLAYWGQGTLVTVSSAS




TKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




LYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTRYVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCR




EEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-1 LC
DIQLTQSPSTLSASVGDRVTITCRASESLDNYGIRFLTWFQQKPGKAPKLLMYAASNQG
637



SGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQTKEVPWSFGCGTKVEVKRTVAAPS




VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY




SLSSTLTLSKADYEKHKVVACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPK




SSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW




YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI




SKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTP




PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-2 HC
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQCLEWIGYIYPYNGGTG
638



YNQKFNSKATITADESTNTAYMELSSLRSEDTAVYYCARGRPAMDYWGQGTLVTVSSAS




TKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




LYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTRYVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCR




EEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






32-2 LC
DIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKLLIYAASNQG
639



SGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPWTFGQCTKVEIKRTVAAPS




VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY




SLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPK




SSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW




YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNAKLPAPIEKTI




SKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTP




PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-3 HC
QVQLQQPGAEVVKPGASVKMSCKASGYTFTSYYIHWIKQTPGQCLEWVGVIYPGNDDIS
640



YNQKFQGKATLTADKSSTTAYMQLSSLTSEDSAVYYCAREVRLRYFDVWGQGTTVTVSS




ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS




SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP




CREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV




DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-3 LC
EIVLTQSPGSLAVSPGERVTMSCKSSQSVFFSSSQKNYLAWYQQIPGQSPRLLIYWAST
641



RESGVPDRFTGSGSGTDFTLTISSVQPEDLAIYYCHQYLSSRTFGCGTKLEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST




YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEP




KSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKT




ISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTT




PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-4 HC
EVQLVQSGAEVKKPGSSVKVSCKASGYTITDSNIHWVRQAPGQSLEWIGYIYPYNGGTD
642



YNQKFKNRATLTVDNPTNTAYMELSSLRSEDTAFYYCVNGNPWLAYWGQGTLVTVSSAS




TKGPSVFPLAPQVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQCLEWI




GYIYPYNGGTGYNQKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGRPAMDYWG




QGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV




HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTC




PPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH




NAKTKPREEQYNSTRYVVSVLTVLHQDWLNGKEYCKCVSNKALPAPIEKTISKAKGQPR




EPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS




FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-4 LC
DIQLTQSPSTLSASVGDRVTITCRASESLDNYGIRFLTWFQQKPGKAPKLLMYAASNQG
643



SGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQTKEVPWSFGQGTKVEVKRTVAAPS




VFIFPPDIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGAKPKLLIY




AASNQGSGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPWTFGCGTKVEIKR




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQD




SKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGG




GGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP




EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA




PIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPEN




NYKTIPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-5 HC
QVQLQQPGAEVKKPGASVKMSCKASGYTFTSYYIHWIKQTPGQGLEWVGVIYPGNDDIS
644



YNQKFQGKATLTADKSSTTAYMQLSSLTSEDSAVYYCAREVRLRYFDVWGQGTTVTVSS




ASKTGPSVFPLAPQVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQCLE




WIGYIYPYNGGTGYNQKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGRPAMDY




WGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS




GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTH




TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ




PREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD




GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-5 LC
EIVLTQSPGSLAVSPGERVTMSCKSSQSVFFSSSQKNYLAWYQQIFGQSPRLLIYWAST
645



RESGVPDRFTGSGSGTDFTLTISSVQPEDLAIYYCHQYLSSRTFGQGTKLEIKRTVAAP




SVFIFPPDIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKLLI




YAASNQGSGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPWTFGCGTKVEIK




RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ




DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSG




GGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED




PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP




APIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-6 HC
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQGLEWIGYIYPYNGGTG
646



YNQKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGRPAMDYWGQGTLVTVSSAS




TKGPSVFPLAPEVQLVQSGAEVKKPGSSVKVSCKASGYTITDSNIHWVRQAPGQCLEWI




GYIYPYNGGTDYNQKFKNRATLTVDNPTNTAYMELSSLRSEDTAFYYCVNGNPWLAYWG




QGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV




HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTC




PPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH




NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR




EPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS




FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-6 LC
DIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKLLIYAASNQG
647



SGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPWTFGQGTKVEIKRTVAAPS




VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY




SLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPK




SSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW




YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI




SKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTP




PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-7 HC
QVQLVQSGAEVKKPGSSVTVSCKASGYTFTDYNMHWVRQAPGQGLEWIGYIYPYNGGTG
648



YNQKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGRPAMDYWGQGTLVTVSSAS




TKGPSVFPLAPQVQLQQPGAEVKKPGASVKMSCKASGYTFTSYYIHWIKQTPGQGLEWV




GVIYPGNDDISYNQKFQGKATLTADKSSTTAYMQLSSLTSEDSAVYYCAREVRLRYFDV




WGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS




GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTYTYICNVNHKPSNTKVDKKVEPKSCDKTH




TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ




PREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD




GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






33-7 LC
DIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKLLIYAASNQG
649



SGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPWTFGQGTKVEIKRTVAAPS




VFIFPPEIVLTQSPGSLAVSPGERVTMSCKSSQSVFFSSSQKNYLAWYQQIPGQSPRLL




IYWASTRESGVPDRFTGSGSGTDFTLTISSVQPEDLAIYYCHQYLSSRTFGCGTKLEIK




RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ




DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSG




GGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED




PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP




APEIKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


















TABLE 69





Name
Sequence
SEQ ID NO







33-1 HC
GAGGTTCAGTTGGTTCAGTCAGGAGCAGAGGTCAAAAAACCTGGAAGCTCTGTCAAAGT
650



TAGTTGTAAGGCCAGTGGATACACCATAACCGATTCAAATATACATTGGGTTAGGCAAG




CACCAGGACAGTGCTTGGAATGGATCGGGTACATCTATCCATATAATGGGGGCACCGAT




TACAACCAAAAGTTTAAGAATCGCGCCACACTCACTGTTGATAATCCAACCAATACAGC




ATACATGGAGTTGAGCAGTCTTCGGTCCGAGGACACTGCTTTTTACTATTGTGTGAACG




GTAACCCATGGTTGGCCTATTGGGGCCAAGGTACACTTGTAACAGTTTCATCTGCTAGC




ACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGAC




AGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGA




ACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGC




TTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATA




CATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAA




AGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGA




CCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC




TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACT




GGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC




AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG




CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCA




TCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGG




GAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAG




CGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC




CTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAG




AGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAA




CCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






33-1 LC
GATATACAACTGACTCAGAGTCCCAGCACTCTCAGTGCAAGTGTAGGCGATAGAGTAAC
651



TATAACCTGTCGCGCCTCAGAATCTCTTGATAATTATGGGATCCGATTTCTTACTTGGT




TTCAGCAAAAGCCTGGTAAAGCTCCTAAATTGCTCATGTATGCCGCCAGTAATCAGGGT




TCAGGAGTTCCTAGTCGTTTCTCTGGGTCAGGAAGCGGCACAGAATTTACCCTTACAAT




TTCCAGCCTCCAGCCCGACGATTTCGCCACTTACTATTGCCAACAAACTAAAGAGGTTC




CTTGGAGTTTTGGGTGTGGCACCAAGGTAGAAGTAAAACGTACGGTGGCAGCTCCCAGC




GTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTG




TTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCC




TTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTAC




AGTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGC




ATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAG




AATGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAG




AGTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACC




GTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTG




AGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGG




TACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAA




CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCA




AGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC




TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGA




GGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCG




ACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCT




CCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAG




CAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACC




ACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






33-2 HC
CAGGTACAGCTTGTGCAATCTGGAGCTGAGGTCAAAAAACCAGGAAGTTCTGTAAAGGT
652



GTCTTGTAAGGCATCTGGTTACACATTTACCGATTACAACATGCATTGGGTACGTCAAG




CCCCTGGCCAGTGCCTGGAATGGATCGGATATATATACCCCTACAACGGTGGAACAGGT




TACAACCAAAAATTCAAAAGCAAGGCTACTATCACTGCCGACGAGAGCACTAACACCGC




TTACATGGAACTGTCTTCCTTGCGTTCAGAAGACACTGCCGTGTATTATTGTGCTCGGG




GGCGACCCGCAATGGACTATTGGGGCCAAGGTACATTGGTGACTGTCAGTTCCGCTAGC




ACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGAC




AGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGA




ACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGC




TTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATA




CATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAA




AGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGA




CCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC




TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACT




GGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC




AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG




CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCA




TCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGG




GAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAG




CGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC




CTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAG




AGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAA




CCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






33-2 LC
GACATCCAAATGACACAGTCCCCTAGCTCACTTTCAGCAAGCGTGGGGGACCGAGTTAC
653



TATCACATGCCGCGCAAGTGAGTCTGTGGACAACTATGGAATATCATTCATGAACTGGT




TCCAGCAGAAACCTGGGAAAGCACCCAAGCTGCTTATCTACGCAGCAAGTAATCAGGGT




AGTGGCGTCCCTTCTCGATTCAGTGGGAGCGGTAGCGGCACCGACTTCACCCTTACCAT




CTCATCACTTCAACCCGATGATTTTGCTACCTACTATTGCCAGCAATCCAAGGAAGTTC




CTTGGACCTTCGGGTGTGGGACAAAGGTAGAGATTAAACGTACGGTGGCAGCTCCCAGC




GTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTG




TTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCC




TTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTAC




AGTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGC




ATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAG




AATGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAG




AGTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACC




GTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTG




AGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGG




TACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAA




CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCA




AGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC




TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGA




GGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCG




ACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCT




CCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAG




CAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACC




ACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






33-3 HC
CAAGTCCAACTTCAGCAGCCTGGAGCTGAGGTAGTGAAACCCGGCGCATCTGTAAAAAT
654



GAGCTGCAAAGCATCAGGTTACACATTTACATCCTACTACATCCATTGGATCAAGCAAA




CACCAGGCCAATGTCTTGAGTGGGTTGGCGTCATTTACCCAGGAAACGATGATATATCT




TACAATCAGAAATTTCAAGGGAAAGCCACACTTACAGCCGACAAGAGTTCCACAACTGC




ATATATGCAACTCTCCTCCCTGACATCTGAAGACAGTGCCGTATACTATTGTGCTCGTG




AAGTCAGGCTCAGATACTTTGACGTGTGGGGTCAAGGCACAACCGTCACCGTCAGTAGC




GCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGG




GGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCA




GTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGC




AGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCA




GACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCG




AACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTG




GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCG




GACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGT




TCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG




CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCT




GAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA




AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCA




TGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTA




TCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGA




CCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTG




GACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCT




GCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






33-3 LC
GAGATAGTCCTCACCCAATCACCAGGTAGTCTGGCTGTTAGCCCAGGTGAGCGAGTTAC
655



TATGTCTTGCAAGTCCTCTCAATCTGTGTTCTTTTCATCAAGTCAGAAGAATTATCTTG




CCTGGTATCAGCAGATTCCTGGTCAATCTCCCCGACTGCTTATTTACTGGGCTTCAACT




CGGGAGTCAGGGGTTCCCGACCGATTCACAGGGTCTGGGTCAGGAACTGACTTTACCCT




TACTATCAGCTCTGTGCAGCCTGAAGACCTCGCAATATATTATTGTCATCAGTACCTCT




CTTCTCGCACTTTTGGATGTGGCACCAAATTGGAGATTAAGCGTACGGTGGCAGCTCCC




AGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGT




TTGTTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATG




CCCTTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACT




TACAGTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTA




CGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGG




GAGAATGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCA




AAGAGTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGG




ACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCC




CTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAAC




TGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTA




CAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATG




GCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACC




ATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCG




GGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCA




GCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG




CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA




GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACA




ACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






33-4 HC
GAGGTTCAGTTGGTTCAGTCAGGAGCAGAGGTCAAAAAACCTGGAAGCTCTGTCAAAGT
656



TAGTTGTAAGGCCAGTGGATACACCATAACCGATTCAAATATACATTGGGTTAGGCAAG




CACCAGGCACAGTCTTGGAATGGATCGGGTACATCTATCCATATAATGGGGGCACCGAT




TACAACCAAAAGTTTAAGAATCGCGCCACACTCACTGTTGATAATCCAACCAATACAGC




ATACATGGAGTTGAGCAGTCTTCGGTCCGAGGACACTGCTTTTTACTATTGTGTGAACG




GTAACCCATGGTTGGCCTATTGGGGCCAAGGTACACTTGTAACAGTTTCATCCGCTAGC




ACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTCAGGTACAGCTTGTGCAATCTGGAGC




TGAGGTCAAAAAACCAGGAAGTTCTGTAAAGGTGTCTTGTAAGGCATCTGGTTACACAT




TTACCGATTACAACATGCATTGGGTACGTCAAGCCCCTGGCCAGTGCCTGGAATGGATC




GGATATATATACCCCTACAACGGTGGAACAGGTTACAACCAAAAATTCAAAAGCAAGGC




TACTATCACTGCCGACGAGAGCACTAACACCGCTTACATGGAACTGTCTTCCTTGCGTT




CAGAAGACACTGCCGTGTATTATTGTGCTCGGGGGCGACCCGCAATGGACTATTGGGGC




CAAGGTACATTGGTGACTGTCAGTTCCGCTAGCACCAAAGGACCTAGTGTTTTTCCTCT




TGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGG




ATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTT




CATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGAC




AGTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACAAACCCT




CAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGC




CCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAA




ACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACG




TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCAT




AATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGT




CCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA




ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA




GAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAG




CCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCA




ATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC




TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT




CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCC




TGTCTCCGGGTAAA






33-4 LC
GATATACAACTGACTCAGAGTCCCAGCACTCTCAGTGCAAGTGTAGGCGATAGAGTAAC
657



TATAACCTGTCGCGCCTCAGAATCTCTTGATAATTATGGGATCCGATTTCTTACTTGGT




TTCAGCAAAAGCCTGGTAAAGCTCCTAAATTGCTCATGTATGCCGCCAGTAATCAGGGT




TCAGGAGTTCCTAGTCGTTTCTCTGGGTCAGGAAGCGGCACAGAATTTACCCTTACAAT




TTCCAGCCTCCAGCCCGACGATTTCGCCACTTACTATTGCCAACAAACTAAAGAGGTTC




CTTGGAGTTTTGGGCAAGGCACCAAGGTAGAAGTAAAACGTACGGTGGCCGCTCCCTCC




GTTTTTATCTTTCCCCCAGACATCCAAATGACACAGTCCCCTAGCTCACTTTCAGCAAG




CGTGGGGGACCGAGTTACTATCACATGCCGCGCAAGTGAGTCTGTGGACAACTATGGAA




TATCATTCATGAACTGGTTCCAGCAGAAACCTGGGAAAGCACCCAAGCTGCTTATCTAC




GCAGCAAGTAATCAGGGTAGTGGCGTCCCTTCTCGATTCAGTGGGAGCGGTAGCGGCAC




CGACTTCACCCTTACCATCTCATCACTTCAACCCGATGATTTTGCTACCTACTATTGCC




AGCAATCCAAGGAAGTTCCTTGGACCTTCGGGTGTGGGACAAAGGTAGAGATTAAACGT




ACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGG




CACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGT




GGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGAT




TCCAAAGATTCCACTTACAGTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGA




AAAACACAAGGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTA




AGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGC




GGCGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACC




TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCA




TGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCT




GAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCC




GCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACC




AGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCC




CCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACAC




CCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCA




AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC




AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAA




GCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGC




ATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






33-5 HC
CAAGTCCAACTTCAGCAGCCTGGAGCTGAGGTAGTGAAACCCGGCGCATCTGTAAAAAT
658



GAGCTGCAAAGCATCAGGTTACACATTTACATCCTACTACATCCATTGGATCAAGCAAA




CACCAGGCCAAGGTCTTGAGTGGGTTGGCGTCATTTACCCAGGAAACGATGATATATCT




TACAATCAGAAATTTCAAGGGAAAGCCACACTTACAGCCGACAAGAGTTCCACAACTGC




ATATATGCAACTCTCCTCCCTGACATCTGAAGACAGTGCCGTATACTATTGTGCTCGTG




AAGTCAGGCTCAGATACTTTGACGTGTGGGGTCAAGGCACAACCGTCACCGTCAGTAGC




GCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTCAGGTACAGCTTGTGCAATC




TGGAGCTGAGGTCAAAAAACCAGGAAGTTCTGTAAAGGTGTCTTGTAAGGCATCTGGTT




ACACATTTACCGATTACAACATGCATTGGGTACGTCAAGCCCCTGGCCAGTGCCTGGAA




TGGATCGGATATATATACCCCTACAACGGTGGAACAGGTTACAACCAAAAATTCAAAAG




CAAGGCTACTATCACTGCCGACGAGAGCACTAACACCGCTTACATGGAACTGTCTTCCT




TGCGTTCAGAAGACACTGCCGTGTATTATTGTGCTCGGGGGCGACCCGCAATGGACTAT




TGGGGCCAAGGTACATTGGTGACTGTCAGTTCCGCTAGCACCAAAGGACCTAGTGTTTT




TCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGG




TCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCT




GGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGT




TGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACA




AACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCAC




ACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCC




CCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGG




TGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG




GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG




TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG




CCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCA




GGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG




AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC




GGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA




CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC




TCTCCCTGTCTCCGGGTAAA






33-5 LC
GAGATAGTCCTCACCCAATCACCAGGTAGTCTGGCTGTTAGCCCAGGTGAGCGAGTTAC
659



TATGTCTTGCAAGTCCTCTCAATCTGTGTTCTTTTCATCAAGTCAGAAGAATTATCTTG




CCTGGTATCAGCAGATTCCTGGTCAATCTCCCCGACTGCTTATTTACTGGGCTTCAACT




CGGGAGTCAGGGGTTCCCGACCGATTCACAGGGTCTGGGTCAGGAACTGACTTTACCCT




TACTATCAGCTCTGTGCAGCCTGAAGACCTCGCAATATATTATTGTCATCAGTACCTCT




CTTCTCGCACTTTTGGACAGGGCACCAAATTGGAGATTAAGCGTACGGTGGCCGCTCCC




TCCGTTTTTATCTTTCCCCCAGACATCCAAATGACACAGTCCCCTAGCTCACTTTCAGC




AAGCGTGGGGGACCGAGTTACTATCACATGCCGCGCAAGTGAGTCTGTGGACAACTATG




GAATATCATTCATGAACTGGTTCCAGCAGAAACCTGGGAAAGCACCCAAGCTGCTTATC




TACGCAGCAAGTAATCAGGGTAGTGGCGTCCCTTCTCGATTCAGTGGGAGCGGTAGCGG




CACCGACTTCACCCTTACCATCTCATCACTTCAACCCGATGATTTTGCTACCTACTATT




GCCAGCAATCCAAGGAAGTTCCTTGGACCTTCGGGTGTGGGACAAAGGTAGAGATTAAA




CGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAG




TGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTAC




AGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAA




GATTCCAAAGATTCCACTTACAGTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTA




CGAAAAACACAAGGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAA




CTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGA




GGCGGCGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGC




ACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCC




TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGAC




CCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA




GCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGC




ACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCA




GCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTA




CACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGG




TCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG




AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAG




CAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGA




TGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






33-6 HC
CAGGTACAGCTTGTGCAATCTGGAGCTGAGGTCAAAAAACCAGGAAGTTCTGTAAAGGT
660



GTCTTGTAAGGCATCTGGTTACACATTTACCGATTACAACATGCATTGGGTACGTCAAG




CCCCTGGCCAGGGCCTGGAATGGATCGGATATATATACCCCTACAACGGTGGAACAGGT




TACAACCAAAAATTCAAAAGCAAGGCTACTATCACTGCCGACGAGAGCACTAACACCGC




TTACATGGAACTGTCTTCCTTGCGTTCAGAAGACACTGCCGTGTATTATTGTGCTCGGG




GGCGACCCGCAATGGACTATTGGGGCCAAGGTACATTGGTGACTGTCAGTTCCGCTAGC




ACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTGAGGTTCAGTTGGTTCAGTCAGGAGC




AGAGGTCAAAAAACCTGGAAGCTCTGTCAAAGTTAGTTGTAAGGCCAGTGGATACACCA




TAACCGATTCAAATATACATTGGGTTAGGCAAGCACCAGGACAGTGCTTGGAATGGATC




GGGTACATCTATCCATATAATGGGGGCACCGATTACAACCAAAAGTTTAAGAATCGCGC




CACACTCACTGTTGATAATCCAACCAATACAGCATACATGGAGTTGAGCAGTCTTCGGT




CCGAGGACACTGCTTTTTACTATTGTGTGAACGGTAACCCATGGTTGGCCTATTGGGGC




CAAGGTACACTTGTAACAGTTTCATCTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCT




TGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGG




ATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTT




CATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGAC




AGTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACAAACCCT




CAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGC




CCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAA




ACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACG




TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCAT




AATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGT




CCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA




ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA




GAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAG




CCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCA




ATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC




TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT




CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCC




TGTCTCCGGGTAAA






33-6 LC
GACATCCAAATGACACAGTCCCCTAGCTCACTTTCAGCAAGCGTGGGGGACCGAGTTAC
661



TATCACATGCCGCGCAAGTGAGTCTGTGGACAACTATGGAATATCATTCATGAACTGGT




TCCAGCAGAAACCTGGGAAAGCACCCAAGCTGCTTATCTACGCAGCAAGTAATCAGGGT




AGTGGCGTCCCTTCTCGATTCAGTGGGAGCGGTAGCGGCACCGACTTCACCCTTACCAT




CTCATCACTTCAACCCGATGATTTTGCTACCTACTATTGCCAGCAATCCAAGGAAGTTC




CTTGGACCTTCGGGCAAGGGACAAAGGTAGAGATTAAACGTACGGTGGCAGCTCCCAGC




GTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTG




TTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCC




TTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTAC




AGTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGC




ATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAG




AATGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAG




AGTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACC




GTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTG




AGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGG




TACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAA




CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCA




AGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC




TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGA




GGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCG




ACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCT




CCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAG




CAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACC




ACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






33-7 HC
CAGGTACAGCTTGTGCAATCTGGAGCTGAGGTCAAAAAACCAGGAAGTTCTGTAAAGGT
662



GTCTTGTAAGGCATCTGGTTACACATTTACCGATTACAACATGCATTGGGTACGTCAAG




CCCCTGGCCAGGGCCTGGAATGGATCGGATATATATACCCCTACAACGGTGGAACAGGT




TACAACCAAAAATTCAAAAGCAAGGCTACTATCACTGCCGACGAGAGCACTAACACCGC




TTACATGGAACTGTCTTCCTTGCGTTCAGAAGACACTGCCGTGTATTATTGTGCTCGGG




GGCGACCCGCAATGGACTATTGGGGCCAAGGTACATTGGTGACTGTCAGTTCCGCTAGC




ACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTCAAGTCCAACTTCAGCAGCCTGGAGC




TGAGGTAGTGAAACCCGGCGCATCTGTAAAAATGAGCTGCAAAGCATCAGGTTACACAT




TTACATCCTACTACATCCATTGGATCAAGCAAACACCAGGCCAATGTCTTGAGTGGGTT




GGCGTCATTTACCCAGGAAACGATGATATATCTTACAATCAGAAATTTCAAGGGAAAGC




CACACTTACAGCCGACAAGAGTTCCACAACTGCATATATGCAACTCTCCTCCCTGACAT




CTGAAGACAGTGCCGTATACTATTGTGCTCGTGAAGTCAGGCTCAGATACTTTGACGTG




TGGGGTCAAGGCACAACCGTCACCGTCAGTAGCGCTAGCACCAAAGGACCTAGTGTTTT




TCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGG




TCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCT




GGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGT




TGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGCAATGTCAACCACA




AACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGTGACAAAACTCAC




ACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCC




CCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGG




TGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG




GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT




CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG




TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG




CCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCA




GGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG




AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC




GGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA




CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC




TCTCCCTGTCTCCGGGTAAA






33-7 LC
GACATCCAAATGACACAGTCCCCTAGCTCACTTTCAGCAAGCGTGGGGGACCGAGTTAC
663



TATCACATGCCGCGCAAGTGAGTCTGTGGACAACTATGGAATATCATTCATGAACTGGT




TCCAGCAGAAACCTGGGAAAGCACCCAAGCTGCTTATCTACGCAGCAAGTAATCAGGGT




AGTGGCGTCCCTTCTCGATTCAGTGGGAGCGGTAGCGGCACCGACTTCACCCTTACCAT




CTCATCACTTCAACCCGATGATTTTGCTACCTACTATTGCCAGCAATCCAAGGAAGTTC




CTTGGACCTTCGGGCAAGGGACAAAGGTAGAGATTAAACGTACGGTGGCCGCTCCCTCC




GTTTTTATCTTTCCCCCAGAGATAGTCCTCACCCAATCACCAGGTAGTCTGGCTGTTAG




CCCAGGTGAGCGAGTTACTATGTCTTGCAAGTCCTCTCAATCTGTGTTCTTTTCATCAA




GTCAGAAGAATTATCTTGCCTGGTATCAGCAGATTCCTGGTCAATCTCCCCGACTGCTT




ATTTACTGGGCTTCAACTCGGGAGTCAGGGGTTCCCGACCGATTCACAGGGTCTGGGTC




AGGAACTGACTTTACCCTTACTATCAGCTCTGTGCAGCCTGAAGACCTCGCAATATATT




ATTGTCATCAGTACCTCTCTTCTCGCACTTTTGGATGTGGCACCAAATTGGAGATTAAG




CGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAG




TGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTAC




AGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAA




GATTCCAAAGATTCCACTTACAGTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTA




CGAAAAACACAAGGTGTACGCATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAA




CTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGA




GGCGGCGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGC




ACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCC




TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGAC




CCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA




GCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGC




ACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCA




GCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTA




CACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGG




TCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG




AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAG




CAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGA




TGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA









Table 70 below shows the polypeptide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting CD33. Table 71 below shows the nucleotide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting CD33.











TABLE 70





Name
Sequence
SEQ ID NO


















33-1
VH
EVQLVQSGAEVKKFGSSVKVSCKASGYTITDSNIHWVRQAPGQCLEWIGYIYPYNGGTDYN
664




QKFKNRATLTVDNPTNTAYMELSSLRSEDTAFYYCVNGNFWLAYWGQGTLVTVSS




VL
DIQLTQSPSTLSASVGDRVTITCRASESLDNYGIRFLTWFQQKPGKAPKLLMYAASNQGSG
665




VPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQTKEVPWSFGCGTKVEIK






33-2
VH
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQCLEWIGYIYPYNGGTGYN
666




QKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGRPAMDYWGQGTLVTVSS




VL
DIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKLLIYAASNQGSG
667




VPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPWTFGCGTKVEIK






33-3
VH
QVQLQQPGAEVVKPGASVKMSCKASGYTFTSYYIHWIKQTPGQCLEWVGVIYPGNDDISYN
668




QKFQGKATLTADKSSTTAYMQLSSLTSEDSAVYYCAREVRLRYFDVWGQGTTVTVSS




VL
EIVLTQSPGSLAVSPGERVTMSCKSSQSVFFSSSQKNYLAWYQQIPGQSPRLLIYWASTRE
669




SGVPDRFTGSGSGTDFTLTISSVQPEDLAIYYCHQYLSSRTFGCGTKLEIK






33-4
VH1
EVQLVQSGAEVKKPGSSVKVSCKASGYTITDSNIHWVRQAPGQSLEWIGYIYPYNGGTDYN
670




QKFKNRATLTVDNPTNTAYMELSSLRSEDTAFYYCVNGNPWLAYWGQGTLVTVSS




VH2
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQCLEWIGYIYPYNGGTGYN
666




QKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGRPAMDYWGQGLTVTVSS




VL1
DIQLTQSPSTLSASVGDRVTITCRASESLDNYGIRFLTWFQQKPGKAPKLLMYAASNQGSG
671




VPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQTKEVPWSFGQGTKVEVK




VL2
DIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKLLIYAASNQGSG
667




VPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPWTFGCGTKVEIK






33-5
VH1
QVQLQQPGAEVKKPFASVKMSCKASGYTFTSYYIHWIKQTPGQGLEWVGVIYPGNDDISYN
672




QKFQGKATLTADKSSTTAYMQLSSLTSEDSAVYYCAREVRLRYFDVWGQGTTVTVSS




VH2
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQCLEWIGYIYPYNGGTGYN
666




QKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGRPAMDYWGQGTLVTVSS




VL1
EIVLTQSPGSLAVSPGERVTMSCKSSQSVFFSSSQKNYLAWYQQIPGQSPRLLIYWASTRE
673




SGVPDRFTGSGSGTDDTLTISSVQPEDLAIYYCHQYLSSRTFGQGTKLEIK




VL2
DIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKLLIYAASNQGSG
667




VPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPWTFGCGTKVEIK






33-6
VH1
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQGLEWIGYIYPYNGGTGYN
674




QKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGRPAMDYWGQGTLVTVSS
664



VH2
EVQLVQSGAEVKKPGSSVKVSCKASGYTITDSNIHWVRQAPGQCLEWIGYIYPYNGGTDYN





QKFKNRATLTVDNPTNTAYMELSSLRSEDTAFYYCVNGNPWLAYWGQGTLVTVSS
675



VL1
DIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKLLIYAASNQGSG





VPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPWTFGQGTKVEIK
665



VL2
DIQLTQSPSTLSASVGDRVTITCRASESLDNYGIRFLTWFQQKPGKAPKLLMYAASNQGSG





VPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQTKEVPWSFGCGTKVEVK






33-7
VH1
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQGLEWIGYIYPYNGGTGYN
674




QKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGRPAMDYWGQGTLVTVSS




VH2
QVQLQQPGAEVKKPGASVKMSCKASGYTFTSYYIHWIKQTPGQCLEWVGVIYPGNDDISYN
668




QKFQGKATLTADKSSTTAYMQLSSLTSEDSAVYYVAREVRLRYFDVWGQGTTVTVSS




VL1
DIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKLLIYAASNQGSG
675




VPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPWTFGQGTKVEIK




VL2
EIVLTQSPGSLAVSPGERVTMSCKSSQSVFFSSSQKNYLAWYQQIPGQSPRLLIYWASTRE
669




SGVPSRFTGSGSGTDFTLTISSVQPEDLAIYYCHQYLSSRTFGCGTKLEIK


















TABLE 71





Name
Sequence
SEQ ID NO


















33-1
VH
GAGGTTCAGTTGGTTCAGTCAGGAGCAGAGGTCAAAAAACCTGGAAGCTCTGTCAAAGTTA
676




GTTGTAAGGCCAGTGGATACACCATAACCGATTCAAATATACATTGGGTTAGGCAAGCACC





AGGACAGTGCTTGGAATGGATCGGGTACATCTATCCATATAATGGGGGCACCGATTACAAC





CAAAAGTTTAAGAATCGCGCCACACTCACTGTTGATAATCCAACCAATACAGCATACATGG





AGTTGAGCAGTCTTCGGTCCGAGGACACTGCTTTTTACTATTGTGTGAACGGTAACCCATG





GTTGGCCTATTGGGGCCAAGGTACACTTGTAACAGTTTCATCT




VL
GATATACAACTGACTCAGAGTCCCAGCACTCTCAGTGCAAGTGTAGGCGATAGAGTAACTA
677




TAACCTGTCGCGCCTCAGAATCTCTTGATAATTATGGGATCCGATTTCTTACTTGGTTTCA





GCAAAAGCCTGGTAAAGCTCCTAAATTGCTCATGTATGCCGCCAGTAATCAGGGTTCAGGA





GTTCCTAGTCGTTTCTCTGGGTCAGGAAGCGGCACAGAATTTACCCTTACAATTTCCAGCC





TCCAGCCCGACGATTTCGCCACTTACTATTGCCAACAAACTAAAGAGGTTCCTTGGAGTTT





TGGGTGTGGCACCAAGGTAGAAGTAAAA






33-2
VH
CAGGTACAGCTTGTGCAATCTGGAGCTGAGGTCAAAAAACCAGGAAGTTCTGTAAAGGTGT
678




CTTGTAAGGCATCTGGTTACACATTTACCGATTACAACATGCATTGGGTACGTCAAGCCCC





TGGCCAGTGCCTGGAATGGATCGGATATATATACCCCTACAACGGTGGAACAGGTTACAAC





CAAAAATTCAAAAGCAAGGCTACTATCACTGCCGACGAGAGCACTAACACCGCTTACATGG





AACTGTCTTCCTTGCGTTCAGAAGACACTGCCGTGTATTATTGTGCTCGGGGGCGACCCGC





AATGGACTATTGGGGCCAAGGTACATTGGTGACTGTCAGTTCC




VL
GACATCCAAATGACACAGTCCCCTAGCTCACTTTCAGCAAGCGTGGGGGACCGAGTTACTA
679




TCACATGCCGCGCAAGTGAGTCTGTGGACAACTATGGAATATCATTCATGAACTGGTTCCA





GCAGAAACCTGGGAAAGCACCCAAGCTGCTTATCTACGCAGCAAGTAATCAGGGTAGTGGC





GTCCCTTCTCGATTCAGTGGGAGCGGTAGCGGCACCGACTTCACCCTTACCATCTCATCAC





TTCAACCCGATGATTTTGCTACCTACTATTGCCAGCAATCCAAGGAAGTTCCTTGGACCTT





CGGGTGTGGGACAAAGGTAGAGATTAAA






33-3
VH
CAAGTCCAACTTCAGCAGCCTGGAGCTGAGGTAGTGAAACCCGGCGCATCTGTAAAAATGA
680




GCTGCAAAGCATCAGGTTACACATTTACATCCTACTACATCCATTGGATCAAGCAAACACC





AGGCCAATGTCTTGAGTGGGTTGGCGTCATTTACCCAGGAAACGATGATATATCTTACAAT





CAGAAATTTCAAGGGAAAGCCACACTTACAGCCGACAAGAGTTCCACAACTGCATATATGC





AACTCTCCTCCCTGACATCTGAAGACAGTGCCGTATACTATTGTGCTCGTGAAGTCAGGCT





CAGATACTTTGACGTGTGGGGTCAAGGCACAACCGTCACCGTCAGTAGC




VL
GAGATAGTCCTCACCCAATCACCAGGTAGTCTGGCTGTTAGCCCAGGTGAGCGAGTTACTA
681




TGTCTTGCAAGTCCTCTCAATCTGTGTTCTTTTCATCAAGTCAGAAGAATTATCTTGCCTG





GTATCAGCAGATTCCTGGTCAATCTCCCCGACTGCTTATTTACTGGGCTTCAACTCGGGAG





TCAGGGGTTCCCGACCGATTCACAGGGTCTGGGTCAGGAACTGACTTTACCCTTACTATCA





GCTCTGTGCAGCCTGAAGACCTCGCAATATATTATTGTCATCAGTACCTCTCTTCTCGCAC





TTTTGGATGTGGCACCAAATTGGAGATTAAG






33-4
VH1
GAGGTTCAGTTGGTTCAGTCAGGAGCAGAGGTCAAAAAACCTGGAAGCTCTGTCAAAGTTA
682




GTTGTAAGGCCAGTGGATACACCATAACCGATTCAAATATACATTGGGTTAGGCAAGCACC





AGGACAGTCCTTGGAATGGATCGGGTACATCTATCCATATAATGGGGGCACCGATTACAAC





CAAAAGTTTAAGAATCGCGCCACACTCACTGTTGATAATCCAACCAATACAGCATACATGG





AGTTGAGCAGTCTTCGGTCCGAGGACACTGCTTTTTACTATTGTGTGAACGGTAACCCATG





GTTGGCCTATTGGGGCCAAGGTACACTTGTAACAGTTTCATCC




VH2
CAGGTACAGCTTGTGCAATCTGGAGCTGAGGTCAAAAAACCAGGAAGTTCTGTAAAGGTGT
678




CTTGTAAGGCATCTGGTTACACATTTACCGATTACAACATGCATTGGGTACGTCAAGCCCC





TGGCCAGTGCCTGGAATGGATCGGATATATATACCCCTACAACGGTGGAACAGGTTACAAC





CAAAAATTCAAAAGCAAGGCTACTATCACTGCCGACGAGAGCACTAACACCGCTTACATGG





AACTGTCTTCCTTGCGTTCAGAAGACACTGCCGTGTATTATTGTGCTCGGGGGCGACCCGC





AATGGACTATTGGGGCCAAGGTACATTGGTGACTGTCAGTTCC




VL1
GATATACAACTGACTCAGAGTCCCAGCACTCTCAGTGCAAGTGTAGGCGATAGAGTAACTA
683




TAACCTGTCGCGCCTCAGAATCTCTTGATAATTATGGGATCCGATTTCTTACTTGGTTTCA





GCAAAAGCCTGGTAAAGCTCCTAAATTGCTCATGTATGCCGCCAGTAATCAGGGTTCAGGA





GTTCCTAGTCGTTTCTCTGGGTCAGGAAGCGGCACAGAATTTACCCTTACAATTTCCAGCC





TCCAGCCCGACGATTTCGCCACTTACTATTGCCAACAAACTAAAGAGGTTCCTTGGAGTTT





TGGGCAAGGCACCAAGGTAGAAGTAAAA




VL2
GACATCCAAATGACACAGTCCCCTAGCTCACTTTCAGCAAGCGTGGGGGACCGAGTTACTA
679




TCACATGCCGCGCAAGTGAGTCTGTGGACAACTATGGAATATCATTCATGAACTGGTTCCA





GCAGAAACCTGGGAAAGCACCCAAGCTGCTTATCTACGCAGCAAGTAATCAGGGTAGTGGC





GTCCCTTCTCGATTCAGTGGGAGCGGTAGCGGCACCGACTTCACCCTTACCATCTCATCAC





TTCAACCCGATGATTTTGCTACCTACTATTGCCAGCAATCCAAGGAAGTTCCTTGGACCTT





CGGGTGTGGGACAAAGGTAGAGATTAAA






33-5
VH1
CAAGTCCAACTTCAGCAGCCTGGAGCTGAGGTAGTGAAACCCGGCGCATCTGTAAAAATGA
684




GCTGCAAAGCATCAGGTTACACATTTACATCCTACTACATCCATTGGATCAAGCAAACACC





AGGCCAAGGTCTTGAGTGGGTTGGCGTCATTTACCCAGGAAACGATGATATATCTTACAAT





CAGAAATTTCAAGGGAAAGCCACACTTACAGCCGACAAGAGTTCCACAACTGCATATATGC





AACTCTCCTCCCTGACATCTGAAGACAGTGCCGTATACTATTGTGCTCGTGAAGTCAGGCT





CAGATACTTTGACGTGTGGGGTCAAGGCACAACCGTCACCGTCAGTAGC




VH2
CAGGTACAGCTTGTGCAATCTGGAGCTGAGGTCAAAAAACCAGGAAGTTCTGTAAAGGTGT
678




CTTGTAAGGCATCTGGTTACACATTTACCGATTACAACATGCATTGGGTACGTCAAGCCCC





TGGCCAGTGCCTGGAATGGATCGGATATATATACCCCTACAACGGTGGAACAGGTTACAAC





CAAAAATTCAAAAGCAAGGCTACTATCACTGCCGACGAGAGCACTAACACCGCTTACATGG





AACTGTCTTCCTTGCGTTCAGAAGACACTGCCGTGTATTATTGTGCTCGGGGGCGACCCGC





AATGGACTATTGGGGCCAAGGTACATTGGTGACTGTCAGTTCC




VL1
GAGATAGTCCTCACCCAATCACCAGGTAGTCTGGCTGTTAGCCCAGGTGAGCGAGTTACTA
685




TGTCTTGCAAGTCCTCTCAATCTGTGTTCTTTTCATCAAGTCAGAAGAATTATCTTGCCTG





GTATCAGCAGATTCCTGGTCAATCTCCCCGACTGCTTATTTACTGGGCTTCAACTCGGGAG





TCAGGGGTTCCCGACCGATTCACAGGGTCTGGGTCAGGAACTGACTTTACCCTTACTATCA





GCTCTGTGCAGCCTGAAGACCTCGCAATATATTATTGTCATCAGTACCTCTCTTCTCGCAC





TTTTGGACAGGGCACCAAATTGGAGATTAAG




VL2
GACATCCAAATGACACAGTCCCCTAGCTCACTTTCAGCAAGCGTGGGGGACCGAGTTACTA
679




TCACATGCCGCGCAAGTGAGTCTGTGGACAACTATGGAATATCATTCATGAACTGGTTCCA





GCAGAAACCTGGGAAAGCACCCAAGCTGCTTATCTACGCAGCAAGTAATCAGGGTAGTGGC





GTCCCTTCTCGATTCAGTGGGAGCGGTAGCGGCACCGACTTCACCCTTACCATCTCATCAC





TTCAACCCGATGATTTTGCTACCTACTATTGCCAGCAATCCAAGGAAGTTCCTTGGACCTT





CGGGTGTGGGACAAAGGTAGAGATTAAA






33-6
VH1
CAGGTACAGCTTGTGCAATCTGGAGCTGAGGTCAAAAAACCAGGAAGTTCTGTAAAGGTGT
686




CTTGTAAGGCATCTGGTTACACATTTACCGATTACAACATGCATTGGGTACGTCAAGCCCC





TGGCCAGGGCCTGGAATGGATCGGATATATATACCCCTACAACGGTGGAACAGGTTACAAC





CAAAAATTCAAAAGCAAGGCTACTATCACTGCCGACGAGAGCACTAACACCGCTTACATGG





AACTGTCTTCCTTGCGTTCAGAAGACACTGCCGTGTATTATTGTGCTCGGGGGCGACCCGC





AATGGACTATTGGGGCCAAGGTACATTGGTGACTGTCAGTTCC




VH2
GAGGTTCAGTTGGTTCAGTCAGGAGCAGAGGTCAAAAAACCTGGAAGCTCTGTCAAAGTTA
676




GTTGTAAGGCCAGTGGATACACCATAACCGATTCAAATATACATTGGGTTAGGCAAGCACC





AGGACAGTGCTTGGAATGGATCGGGTACATCTATCCATATAATGGGGGCACCGATTACAAC





CAAAAGTTTAAGAATCGCGCCACACTCACTGTTGATAATCCAACCAATACAGCATACATGG





AGTTGAGCAGTCTTCGGTCCGAGGACACTGCTTTTTACTATTGTGTGAACGGTAACCCATG





GTTGGCCTATTGGGGCCAAGGTACACTTGTAACAGTTTCATCT




VL1
GACATCCAAATGACACAGTCCCCTAGCTCACTTTCAGCAAGCGTGGGGGACCGAGTTACTA
687




TCACATGCCGCGCAAGTGAGTCTGTGGACAACTATGGAATATCATTCATGAACTGGTTCCA





GCAGAAACCTGGGAAAGCACCCAAGCTGCTTATCTACGCAGCAAGTAATCAGGGTAGTGGC





GTCCCTTCTCGATTCAGTGGGAGCGGTAGCGGCACCGACTTCACCCTTACCATCTCATCAC





TTCAACCCGATGATTTTGCTACCTACTATTGCCAGCAATCCAAGGAAGTTCCTTGGACCTT





CGGGCAAGGGACAAAGGTAGAGATTAAA




VL2
GATATACAACTGACTCAGAGTCCCAGCACTCTCAGTGCAAGTGTAGGCGATAGAGTAACTA
677




TAACCTGTCGCGCCTCAGAATCTCTTGATAATTATGGGATCCGATTTCTTACTTGGTTTCA





GCAAAAGCCTGGTAAAGCTCCTAAATTGCTCATGTATGCCGCCAGTAATCAGGGTTCAGGA





GTTCCTAGTCGTTTCTCTGGGTCAGGAAGCGGCACAGAATTTACCCTTACAATTTCCAGCC





TCCAGCCCGACGATTTCGCCACTTACTATTGCCAACAAACTAAAGAGGTTCCTTGGAGTTT





TGGGTGTGGCACCAAGGTAGAAGTAAAA






33-7
VH1
CAGGTACAGCTTGTGCAATCTGGAGCTGAGGTCAAAAAACCAGGAAGTTCTGTAAAGGTGT
686




CTTGTAAGGCATCTGGTTACACATTTACCGATTACAACATGCATTGGGTACGTCAAGCCCC





TGGCCAGGGCCTGGAATGGATCGGATATATATACCCCTACAACGGTGGAACAGGTTACAAC





CAAAAATTCAAAAGCAAGGCTACTATCACTGCCGACGAGAGCACTAACACCGCTTACATGG





AACTGTCTTCCTTGCGTTCAGAAGACACTGCCGTGTATTATTGTGCTCGGGGGCGACCCGC





AATGGACTATTGGGGCCAAGGTACATTGGTGACTGTCAGTTCC




VH2
CAAGTCCAACTTCAGCAGCCTGGAGCTGAGGTAGTGAAACCCGGCGCATCTGTAAAAATGA
680




GCTGCAAAGCATCAGGTTACACATTTACATCCTACTACATCCATTGGATCAAGCAAACACC





AGGCCAATGTCTTGAGTGGGTTGGCGTCATTTACCCAGGAAACGATGATATATCTTACAAT





CAGAAATTTCAAGGGAAAGCCACACTTACAGCCGACAAGAGTTCCACAACTGCATATATGC





AACTCTCCTCCCTGACATCTGAAGACAGTGCCGTATACTATTGTGCTCGTGAAGTCAGGCT





CAGATACTTTGACGTGTGGGGTCAAGGCACAACCGTCACCGTCAGTAGC




VL1
GACATCCAAATGACACAGTCCCCTAGCTCACTTTCAGCAAGCGTGGGGGACCGAGTTACTA
687




TCACATGCCGCGCAAGTGAGTCTGTGGACAACTATGGAATATCATTCATGAACTGGTTCCA





GCAGAAACCTGGGAAAGCACCCAAGCTGCTTATCTACGCAGCAAGTAATCAGGGTAGTGGC





GTCCCTTCTCGATTCAGTGGGAGCGGTAGCGGCACCGACTTCACCCTTACCATCTCATCAC





TTCAACCCGATGATTTTGCTACCTACTATTGCCAGCAATCCAAGGAAGTTCCTTGGACCTT





CGGGCAAGGGACAAAGGTAGAGATTAAA




VL2
GAGATAGTCCTCACCCAATCACCAGGTAGTCTGGCTGTTAGCCCAGGTGAGCGAGTTACTA
681




TGTCTTGCAAGTCCTCTCAATCTGTGTTCTTTTCATCAAGTCAGAAGAATTATCTTGCCTG





GTATCAGCAGATTCCTGGTCAATCTCCCCGACTGCTTATTTACTGGGCTTCAACTCGGGAG





TCAGGGGTTCCCGACCGATTCACAGGGTCTGGGTCAGGAACTGACTTTACCCTTACTATCA





GCTCTGTGCAGCCTGAAGACCTCGCAATATATTATTGTCATCAGTACCTCTCTTCTCGCAC





TTTTGGATGTGGCACCAAATTGGAGATTAAG









Table 72 below shows the heavy chain and light chain CDR sequences of the engineered antibodies targeting CD33.













TABLE 72






Name
CDR
Sequence
SEQ ID NO








33-1
CDR-H1
DSNIH
688




CDR-H2
YIYTYNGGTDYNQKFKN
689




CDR-H3
GNPWLAY
690




CDR-L1
RASESLDNYGIRFLT
691




CDR-L2
AASNQGS
692




CDR-L3
QQTKEVTWS
693






33-2
CDR-H1
DYNMH
694




CDR-H2
YIYPYNGGTGYNQKFKS
695




CDR-H3
GRPAMDY
696




CDR-L1
RASESVDNYGISFMN
697




CDR-L2
AASNQGS
698




CDR-L3
QQSKEVPWT
699






33-3
CDR-H1
SYYIH
700




CDR-H2
VIYPGNDDISYNQKFQG
701




CDR-H3
EVRLRYFDV
702




CDR-L1
KSSQSVFFSSSQKNYLA
703




CDR-L3
WASTRES
704




CDR-L3
HQYLSSRT
705






33-4
V1 CDR-H1
DSNIH
688




V1 CDR-H2
YIYPYNGGTDYNQKFKN
689




V1 CDR-H3
GNPWLAY
690




V1 CDR-L1
RASESLDNYGIRFLT
691




V1 CDR-L2
AASNQGS
692




V1 CDR-L3
QQTKEVPWS
693




V2 CDR-H1
DYNMH
694




V2 CDR-H2
YIYPYNGGTGYNQKFKS
695




V2 CDR-H3
GRPAMDY
696




V2 CDR-L1
RASESVDNYGISFMN
697




V2 CDR-L2
AASNQGS
698




V2 CDR-L3
QQSKEVPWT
699






33-5
V1 CDR-H1
SYYIH
700




V1 CDR-H2
VIYTGNDDISYNQKFQG
701




V1 CDR-H3
EVRLRYFDV
702




V1 CDR-L1
KSSQSVFFSSSQKNYLA
703




V1 CDR-L2
WASTRES
704




V1 CDR-L3
HQYLSSRT
705




V2 CDR-H1
DYNMH
694




V2 CDR-H2
YIYPYNGGTGYNQKFKS
695




V2 CDR-H3
GRPAMDY
696




V2 CDR-L1
RASESVDNYGISFMN
697




V2 CDR-L2
AASNQGS
698




V2 CDR-L3
QQSKEVPWT
699






33-6
V1 CDR-H1
DYNMH
694




V1 CDR-H2
YIYPYNGGTGYNQKFKS
695




V1 CDR-H3
GRPAMDY
696




V1 CDR-L1
RASESVDNYGISFMN
697




V1 CDR-L2
AASNQGS
698




V1 CDR-L3
QQSKEVPWT
699




V2 CDR-H1
DSNIH
688




V2 CDR-H2
YIYPYNGGTDYNQKFKN
689




V2 CDR-H3
GNPWLAY
690




V2 CDR-L1
RASESLDNYGIRFLT
691




V2 CDR-L2
AASNQGS
692




V2 CDR-L3
QQTKEVPWS
693






33-7
V1 CDR-H1
DYNMH
694




V1 CDR-H2
YIYPYNGGTGYNQKFKS
695




V1 CDR-H3
GRPAMDY
696




V1 CDR-L1
RASESVDNYGISFMN
697




V1 CDR-L2
AASNQGS
698




V1 CDR-L3
QQSKEVPWT
699




V2 CDR-H1
DYNMH
694




V2 CDR-H2
YIYPYNGGTGYNQKFKS
695




V2 CDR-H3
GRPAMDY
696




V2 CDR-L1
RASESVDNYGISFMN
697




V2 CDR-L2
AASNQGS
698




V2 CDR-L3
QQSKEVPWT
699









The CD33 protein binding constants of 33-1, 33-2, 33-3, 33-4, 33-5, 33-6, and 33-7 were determined using Octet Red96e (Sartorius). In order to analyze the binding constants of the seven antibodies, the human CD33 recombinant protein (Sino Biologicals, 12238-H08H) was loaded onto the Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120). Then, the seven antibodies were added in a binding reaction (600 seconds) and a dissociation reaction (1,200 seconds) at various concentrations, and their affinities for CD33 were calculated (FIG. 50, Table 73). Table 73 below illustrates the binding constants of the engineered antibodies targeting CD33.














TABLE 73





Antibodies
Antigen
Binding mode
KD (nM)
Ka (1/Ms)
Kd (1/s)




















33-1
rhCD33
Monovalent
1.7835
2.80E+05
4.99E−04


33-2
rhCD33
Monovalent
5.5540
8.01E+05
4.45E−03


33-3
rhCD33
Monovalent
0.5163
2.24E+05
1.16E−04


33-4
rhCD33
Biparatopic
0.0851
2.79E+05
8.11E+02


33-5
rhCD33
Biparatopic
0.0641
2.01E+05
4.07E+02


33-6
rhCD33
Biparatopic
0.0772
3.60E+05
1.08E+03


33-7
rhCD33
Biparatopic
0.1290
1.37E+05
1.24E+02









Example 22. Design, Preparation and Analysis of Antibody Structure Targeting CEACAM5

The light chain and heavy chain variant polypeptide sequences of the antibodies that specifically bind to the CEACAM5 protein are shown in Table 74. For CEA01, expression vectors consisting of the sequences corresponding to Fc-Hole (SEQ ID NO: 7), CEA01 HC (SEQ ID NO: 590), and CEA01 LC (SEQ ID NO: 591) were co-transfected into EXPICHO-S™ (Gibco, A29127) (FIG. 41a, Table 74), and purification and analysis were performed in the same manner as described in Example 1. Expression, purification and analysis were performed for CEA02, CEA03, and CEA04 in the same manner as mentioned above (Table 74).











TABLE 74







SEQ


Name
Sequence
ID NO







CEA01 HC
EVQLVESGGGVVQPGRSLRLSCSASGFDFTTYWMSWVRQAPGKCLEWIGEIHPDSSTIN
706



YAPSLKDRFTISRDNAKNTLFLQMDSLRPEDTGVYFCASLYFGFPWFAYWGQGTPVTVS




SASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ




SSGLYSLSSVVYVYSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEL




LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLY




VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






CEA01 LC
DIQLTQSPSSLSASVGDRVTITCKASQDVGTSVAWYQQKPGKAPKLLIYWTSTRHTGVT
707



SRFSGSGSGTDFTFTISSLQPEDIATYYCQQYSLYRSFGCGTKVEIKRTVAAPSVFIFP




PSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST




LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSSDKT




HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS




DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






CEA02 HC
EVQLVESGGGLVQPGRSLRLSCAASGFTVSSYWMHWVRQAPGKCLEWVGFILNKANGGT
708



TEYAASVKGRFTISRDDSKNTLYLQMNSLRAEDTAVYYCARDRGLRFYFDYWGWGTTVT




VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV




LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAP




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






CEA02 LC
QAVLTQPASLSASPGASASLTCTLRRGINVGAYSIYWYQQKPGSPPQYLLRYKSDSDKQ
709



QGAGVSSRFSASKDASANAGILLISGLQSEDEADYYCMIWHSGASAVFGCGTKLTVLGQ




PKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQ




SNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSGGGGSGGGGSGGGG




SEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI




EKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






CEA03 HC
EVQLQQSGPGLVRPSQTLSLTCTASGFNIKDNYMHWVRQPPGRCLEWIGWIDPENGDTE
710



YAPKFRGRVTMLADTSKNQFSLRLSSVTAADTAVYYCHVLIYAGYLAMDYWGQGTLVTV




SSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL




QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE




LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCVMHEALHNHYTQKSLSLSPGK






CEA03 LC
DIQMTQSPSSLSASVGDRVTITCSASSSVTYMHWYQQKPGKAPKLWIYSTSNLASGVPS
711



RFSGSGSGTDYTFTISSLQPEDIATYYCQQRSTYPLTFGCGTKLEIKRTVAAPSVFIFP




PSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST




LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPKSSDKT




HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS




DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHTQKSLSLSPGK






CEA04 HC
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYMHWVRQAPGKCLEWVARIDPANGNSK
712



YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAPFGYYVSDYAMAYWGQGTLVT




VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV




LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAP




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






CEA04 LC
DIQLTQSPSSLSASVGDRVTITCRAGESVDIFGVGFLHWYQQKPGKAPKLLIYRASNLE
713



SGVPSRFSGSGSRTDFTLTISSLQPEDFATYYCQQTNEDPYTFGCGTKVEIKRTVAAPS




VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY




SLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSEPK




SSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW




YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI




SKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTP




PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK









Table 75 below shows the heavy chain and light chain nucleotide sequences of the engineered antibodies targeting CEACAM5.











TABLE 75







SEQ


Name
Sequence
ID NO







CEA01 HC
GAAGTGCAACTCGTAGAATCCGGCGGGGGCGTCGTACAGCCCGGCCGTTCTTTGAGACT
714



TAGCTGTAGTGCTTCTGGGTTTGACTTCACTACATACTGGATGTCATGGGTAAGACAGG




CACCTGGCAAGTGCCTTGAATGGATCGGTGAAATCCATCCCGACAGCTCCACAATCAAC




TACGCCCCAAGTTTGAAAGACCGGTTCACCATATCTCGTGACAACGCCAAGAATACATT




GTTCCTTCAGATGGATAGTCTTCGTCCAGAGGATACTGGGGTATATTTTTGTGCCAGCT




TGTATTTTGGCTTCCCCTGGTTCGCTTATTGGGGCCAAGGTACACCCGTCACTGTCTCT




TCTGCTAGCACCAAAGGACCTAGTGTTTTTGGTGTTGCCCCTTCCTCAAAGTCTACCTC




TGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTG




TCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAA




AGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCAC




TCAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAG




TCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTC




CTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTC




CCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA




AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAG




GAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTG




GCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCG




AGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCC




CCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTT




CTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACA




AGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACC




GTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGC




TCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






CEA01 LC
GACATCCAACTTACCCAGTCACCCTCATCTCTTAGTGCCTCTGTAGGGGACCGAGTTAC
715



TATTACATGTAAAGCCAGTCAAGATGTTGGCACCTCAGTAGCATGGTATCAACAAAAGC




CTGGTAAAGCCCCAAAACTGCTGATCTATTGGACAAGCACACGACATACAGGAGTGCCA




AGTCGCTTCAGCGGTTCAGGTTCAGGCACAGATTTTACATTCACTATATCAAGCCTGCA




ACCCGAGGACATTGCCACATATTACTGCCAGCAATATAGTCTGTATCGTAGCTTCGGAT




GTGGCACCAAGGTTGAAATTAAGCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCC




CCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTT




CTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACA




GCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTGTCCAGCACA




TTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGACACA




CCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGG




GCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGACAAAACT




CACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTT




CCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG




TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG




GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT




GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA




AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG




CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAA




CCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGT




GGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCC




GACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGG




GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGTAAA






CEA02 HC
GAAGTTCAACTGGTGGAGTCTGGCGGCGGACTTGTCCAGCCAGGGCGAAGCCTGCGTCT
716



CTCATGCGCTGCCTCCGGTTTCACTGTTTCTTCATACTGGATGCACTGGGTAAGACAGG




CTCCTGGCAAGTGTCTTGAATGGGTGGGCTTCATTTTGAACAAGGCAAACGGCGGGACT




ACCGAATACGCTGCCAGCGTTAAGGGTCGATTCACCATCTCAAGGGATGATTCTAAAAA




CACATTGTACCTTCAGATGAACTCTCTGAGGGCCGAGGACACAGCAGTCTACTATTGCG




CTAGAGATAGGGGGCTTAGATTCTATTTTGACTACTGGGGGCAGGGAACAACTGTCACC




GTTTCCAGTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTC




TACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTG




TCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTC




CTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCT




CGGCACTCAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATA




AAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCT




GAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCAT




GATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTG




AGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCG




CGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA




GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCC




CCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACC




CTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAA




AGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACA




ACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAG




CTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCA




TGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






CEA02 LC
CAGGCAGTGCTTACTCAGCCTGCTTCACTCTCTGCCTCACCAGGAGCATCTGCAAGCCT
717



CACCTGCACATTGCGTCGAGGTATAAACGTAGGCGCTTACTCAATTTACTGGTACCAGC




AGAAACCTGGGAGCCCACCTCAATACCTCCTCCGATACAAGAGCGATTCTGATAAGCAA




CAGGGCAGTGGTGTATCCAGCAGATTTTCCGCCAGCAAGGATGCAAGCGCTAATGCAGG




TATTCTTCTCATTTCAGGCTTGCAAAGCGAGGACGAAGCAGACTACTACTGCATGATTT




GGCACTCCGGTGCCTCCGCAGTTTTTGGCTGCGGAACAAAGCTTACAGTCCTTGGTCAG




CCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCAAGCCAA




CAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCT




GGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAA




AGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTC




CCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGG




CCCCTACAGAATGTTCAGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGT




AGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACT




CCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT




CCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC




AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA




GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACT




GGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC




GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCC




CCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCT




TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC




AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCAC




CGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG




CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






CEA03 HC
GAGGTACAACTGCAGCAAAGCGGTCCAGGCCTTGTTCGGCCTAGCCAGACTCTGTCACT
718



GACCTGTACCGCAAGCGGTTTCAATATCAAGGACAACTATATGCACTGGGTCCGCCAGC




CTCCAGGACGCTGTTTGGAGTGGATAGGATGGATAGACCCAGAAAATGGGGATACCGAA




TACGCTCCAAAATTTCGTGGACGAGTTACCATGCTGGCCGATACATCCAAAAACCAGTT




TTCTCTGAGGCTCTCCAGCGTGACAGCCGCAGATACCGCCGTATATTACTGTCATGTGT




TGATCTATGCCGGGTATCTTGCAATGGATTACTGGGGACAGGGCACTCTCGTAACAGTC




TCTTCAGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTAC




CTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCA




CTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTT




CAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGG




CACTCAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAA




AAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAA




CTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGAT




CTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGG




TCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGG




GAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGA




CTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA




TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTG




CCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGG




CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACT




ACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTC




ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGA




GGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






CEA03 LC
GACATACAAATGACCCAAAGCCCAAGCTCATTGAGCGCCTCCGTAGGAGATCGCGTAAC
719



AATAACCTGCAGCGCCAGCAGTTCAGTAACTTATATGCACTGGTATCAGCAGAAGCCAG




GTAAGGCTCCCAAACTGTGGATATATAGCACCAGCAACCTGGCATCTGGTGTACCCTCT




CGATTTAGTGGCAGTGGTTCTGGAACAGACTATACCTTCACTATATCTTCTCTTCAGCC




TGAGGATATAGCCACTTACTATTGCCAGCAACGTTCCACTTACCCCCTGACTTTTGGGT




GTGGTACAAAGTTGGAAATAAAGCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCC




CCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTT




CTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACA




GCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTGTCCAGCACA




TTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGACACA




CCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGG




GCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGACAAAACT




CACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTT




CCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG




TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTG




GAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT




GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA




AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG




CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAA




CCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGT




GGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCC




GACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGG




GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGTAAA






CEA04 HC
GAAGTGCAGTTGGTGGAGTCTGGGGGCGGGTTGGTCCAACCAGGAGGCTCTCTGCGACT
720



CTCTTGCGCAGCATCAGGCTTCAACATAAAGGACACATATATGCACTGGGTTCGGCAGG




CTCCCGGAAAATGTCTTGAATGGGTCGCCCGAATTGATCCTGCAAATGGGAACAGTAAA




TACGCAGATTCAGTTAAAGGCCGCTTCACTATCAGCGCAGATACATCCAAAAACACCGC




ATACCTTCAGATGAACTCACTCCGTGCAGAAGACACTGCAGTCTACTATTGCGCTCCCT




TCGGTTACTACGTCTCTGACTATGCAATGGCTTACTGGGGCCAAGGAACCTTGGTGACT




GTATCTTCTGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTC




TACCTCTGGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTG




TCACTGTCAGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTC




CTTCAAAGCAGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCT




CGGCACTCAGACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATA




AAAAAGTCGAACCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCT




GAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCAT




GATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTG




AGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCG




CGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA




GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCC




CCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACC




CTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAA




AGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACA




ACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAG




CTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCA




TGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






CEA04 LC
GATATACAGCTTACACAATCACCCTCCTCCCTGTCTGCCTCCGTAGGAGATAGAGTAAC
721



AATCACATGCAGAGCTGGCGAGAGTGTTGATATATTCGGTGTTGGATTTTTGCACTGGT




ACCAACAGAAACCAGGGAAAGCACCTAAGCTCTTGATTTATAGAGCTTCTAACCTTGAG




AGCGGGGTGCCTAGTAGGTTTTCTGGGTCAGGAAGTCGGACCGATTTTACTCTCACAAT




TTCATCCCTTCAGCCCGAAGACTTTGCAACCTACTACTGTCAGCAGACAAACGAAGACC




CCTATACATTCGGATGTGGTACAAAGGTGGAGATTAAACGTACGGTGGCAGCTCCCAGC




GTTTTTATCTTTCCCCCATCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTG




TTTGCTGAATAACTTCTATCCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCC




TTCAGAGCGGTAACAGCCAAGAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTAC




AGTCTGTCCAGCACATTGACACTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGC




ATGCGAGGTGACACACCAAGGTCTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAG




AATGTGGTGGTGGGGGCAGCGGGGGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAG




AGTAGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACC




GTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTG




AGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGG




TACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAA




CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCA




AGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC




TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGA




GGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCG




ACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCT




CCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAG




CAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACC




ACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA









Table 76 below shows the polypeptide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting CEACAM5. Table 77 below shows the nucleotide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting CEACAM5.











TABLE 76







SEQ


Name
Sequence
ID NO


















CEA01
VH
EVQLVESGGGVVQPGRSLRLSCSASGFDFTTYW
819




MSWVRQAPGKCLEWIGEIHPDSSTINYAPSLKD





RFTISRDNAKNTLFLQMDSLRPEDTGVYFCASL





YFGFPWFAYWGQGTPVTVSS




VL
DIQLTQSPSSLSASVGDRVTITCKASQDVGTSV
820




AWYQQKPGKAPKLLIYWTSTRHTGVPSRFSGSG





SGTDFTFTISSLQPEDIATYYCQQYSLYRSFGC





GTKVEIK






CEA02
VH
EVQLVESGGGLVQPGRSLRLSCAASGFTVSSYW
821




MHWVRQAPGKCLEWVGFILNKANGGTTEYAASV





KGRFTISRDDSKNTLYLQMNSLRAEDTAVYYCA





RDRGLRFYFDYWGQGTTVTVSS




VL
QAVLTQPASLSASPGASASLTCTLRRGINVGAY
822




SIYWYQQKPGSPPQYLLRYKSDSDKQQGSGVSS





RFSASKDASANAGILLISGLQSEDEADYYCMIW





HSGASAVFGCGTKLTVL






CEA03
VH
EVQLQQSGPGLVRPSQTLSLTCTASGFNIKDNY
823




MHWVRQPPGRCLEWIGWIDPENGDTEYAPKFRG





RVTMLADTSKNQFSLRLSSVTAADTAVYYCHVL





IYAGYLAMDYWGQGTLVTVSS




VL
DIQMTQSPSSLSASVGDRVTITCSASSSVTYMH
824




WYQQKPGKAPKLWIYSTSNLASGVPSRFSGSGS





GTDYTFTISSLQPEDIATYYCQQRSTYPLTFGC





GTKLEIK






CEA04
VH
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTY
825




MHWVRQAPGKCLEWVARIDPANGNSKYADSVKG





RFTISADTSKNTAYLQMNSLRAEDTAVYYCAPF





GYYVSDYAMAYWGQGTLVTVSS




VL
DIQLTQSPSSLSASVGDRVTITCRAGESVDIFG
826




VGFLHWYQQKPGKAPKLLIYRASNLESGVPSRF





SGSGSRTDFTLTISSLQPEDFATYYCQQTNEDP





YTFGCGTKVEIK


















TABLE 77







SEQ


Name
Sequence
ID NO


















CEA01
VH
GAAGTGCAACTCGTAGAATCCGGCGGGGGCGTCGTACAGCCCGGC
827




CGTTCTTTGAGACTTAGCTGTAGTGCTTCTGGGTTTGACTTCACTAC





ATACTGGATGTCATGGGTAAGACAGGCACCTGGCAAGTGCCTTGA





ATGGATCGGTGAAATCCATCCCGACAGCTCCACAATCAACTACGC





CCCAAGTTTGAAAGACCGGTTCACCATATCTCGTGACAACGCCAA





GAATACATTGTTCCTTCAGATGGATAGTCTTCGTCCAGAGGATACT





GGGGTATATTTTTGTGCCAGCTTGTATTTTGGCTTCCCCTGGTTCGC





TTATTGGGGCCAAGGTACACCCGTCACTGTCTCTTCT




VL
GACATCCAACTTACCCAGTCACCCTCATCTCTTAGTGCCTCTGTAG
722




GGGACCGAGTTACTATTACATGTAAAGCCAGTCAAGATGTTGGCA





CCTCAGTAGCATGGTATCAACAAAAGCCTGGTAAAGCCCCAAAAC





TGCTGATCTATTGGACAAGCACACGACATACAGGAGTGCCAAGTC





GCTTCAGCGGTTCAGGTTCAGGCACAGATTTTACATTCACTATATC





AAGCCTGCAACCCGAGGACATTGCCACATATTACTGCCAGCAATA





TAGTCTGTATCGTAGCTTCGGATGTGGCACCAAGGTTGAAATTAAG






CEA02
VH
GAAGTTCAACTGGTGGAGTCTGGCGGCGGACTTGTCCAGCCAGGG
723




CGAAGCCTGCGTCTCTCATGCGCTGCCTCCGGTTTCACTGTTTCTTC





ATACTGGATGCACTGGGTAAGACAGGCTCCTGGCAAGTGTCTTGA





ATGGGTGGGCTTCATTTTGAACAAGGCAAACGGCGGGACTACCGA





ATACGCTGCCAGCGTTAAGGGTCGATTCACCATCTCAAGGGATGAT





TCTAAAAACACATTGTACCTTCAGATGAACTCTCTGAGGGCCGAGG





ACACAGCAGTCTACTATTGCGCTAGAGATAGGGGGCTTAGATTCTA





TTTTGACTACTGGGGGCAGGGAACAACTGTCACCGTTTCCAGT




VL
CAGGCAGTGCTTACTCAGCCTGCTTCACTCTCTGCCTCACCAGGAG
724




CATCTGCAAGCCTCACCTGCACATTGCGTCGAGGTATAAACGTAGG





CGCTTACTCAATTTACTGGTACCAGCAGAAACCTGGGAGCCCACCT





CAATACCTCCTCCGATACAAGAGCGATTCTGATAAGCAACAGGGC





AGTGGTGTATCCAGCAGATTTTCCGCCAGCAAGGATGCAAGCGCT





AATGCAGGTATTCTTCTCATTTCAGGCTTGCAAAGCGAGGACGAAG





CAGACTACTACTGCATGATTTGGCACTCCGGTGCCTCCGCAGTTTT





TGGCTGCGGAACAAAGCTTACAGTCCTT






CEA03
VH
GAGGTACAACTGCAGCAAAGCGGTCCAGGCCTTGTTCGGCCTAGC
725




CAGACTCTGTCACTGACCTGTACCGCAAGCGGTTTCAATATCAAGG





ACAACTATATGCACTGGGTCCGCCAGCCTCCAGGACGCTGTTTGGA





GTGGATAGGATGGATAGACCCAGAAAATGGGGATACCGAATACGC





TCCAAAATTTCGTGGACGAGTTACCATGCTGGCCGATACATCCAAA





AACCAGTTTTCTCTGAGGCTCTCCAGCGTGACAGCCGCAGATACCG





CCGTATATTACTGTCATGTGTTGATCTATGCCGGGTATCTTGCAAT





GGATTACTGGGGACAGGGCACTCTCGTAACAGTCTCTTCA




VL
GACATACAAATGACCCAAAGCCCAAGCTCATTGAGCGCCTCCGTA
726




GGAGATCGCGTAACAATAACCTGCAGCGCCAGCAGTTCAGTAACT





TATATGCACTGGTATCAGCAGAAGCCAGGTAAGGCTCCCAAACTG





TGGATATATAGCACCAGCAACCTGGCATCTGGTGTACCCTCTCGAT





TTAGTGGCAGTGGTTCTGGAACAGACTATACCTTCACTATATCTTC





TCTTCAGCCTGAGGATATAGCCACTTACTATTGCCAGCAACGTTCC





ACTTACCCCCTGACTTTTGGGTGTGGTACAAAGTTGGAAATAAAG






CEA04
VH
GAAGTGCAGTTGGTGGAGTCTGGGGGCGGGTTGGTCCAACCAGGA
727




GGCTCTCTGCGACTCTCTTGCGCAGCATCAGGCTTCAACATAAAGG





ACACATATATGCACTGGGTTCGGCAGGCTCCCGGAAAATGTCTTGA





ATGGGTCGCCCGAATTGATCCTGCAAATGGGAACAGTAAATACGC





AGATTCAGTTAAAGGCCGCTTCACTATCAGCGCAGATACATCCAA





AAACACCGCATACCTTCAGATGAACTCACTCCGTGCAGAAGACAC





TGCAGTCTACTATTGCGCTCCCTTCGGTTACTACGTCTCTGACTATG





CAATGGCTTACTGGGGCCAAGGAACCTTGGTGACTGTATCTTCT




VL
GATATACAGCTTACACAATCACCCTCCTCCCTGTCTGCCTCCGTAG
728




GAGATAGAGTAACAATCACATGCAGAGCTGGCGAGAGTGTTGATA





TATTCGGTGTTGGATTTTTGCACTGGTACCAACAGAAACCAGGGAA





AGCACCTAAGCTCTTGATTTATAGAGCTTCTAACCTTGAGAGCGGG





GTGCCTAGTAGGTTTTCTGGGTCAGGAAGTCGGACCGATTTTACTC





TCACAATTTCATCCCTTCAGCCCGAAGACTTTGCAACCTACTACTG





TCAGCAGACAAACGAAGACCCCTATACATTCGGATGTGGTACAAA





GGTGGAGATTAAA









Table 78 below shows the heavy chain and light chain CDR sequences of the engineered antibodies targeting CEACAM5.













TABLE 78






Name
CDR
Sequence
SEQ ID NO








CEA01
CDR-H1
TYWMS
729




CDR-H2
EIHPDSSTINYAPSLKD
730




CDR-H3
LYFGFPWFAY
731




CDR-L1
KASQDVGTSVA
732




CDR-L2
WTSTRHT
733




CDR-L3
QQYSLYRS
734






CEA02
CDR-H1
SYWMH
735




CDR-H2
FILNKANGGTTEYAASVKG
736




CDR-H3
DRGLRFYFDY
737




CDR-L1
TLRRGINVGAYSIY
738




CDR-L2
SDKQQGS
739




CDR-L3
MIWHSGASAV
740






CEA03
CDR-H1
DNYMH
741




CDR-H2
WIDPENGDTEYAPKFRG
742




CDR-H3
LIYAGYLAMDY
743




CDR-L1
SASSSVTYMH
744




CDR-L2
STSNLAS
745




CDR-L3
QQRSTYPLT
746






CEA04
CDR-H1
DTYMH
747




CDR-H2
RIDPANGNSKYADSVKG
748




CDR-H3
FGYYVSDYAMAY
749




CDR-L1
RAGESVDIFGVGFLH
750




CDR-L2
RASNLES
751




CDR-L3
QQTNEDPYT
752









In order to analyze the binding constants, the human CEACAM5 recombinant protein (Sino Biologicals, 11077-H08H) was loaded onto the Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120). Then, the antibodies were added in a binding reaction (600 seconds) and a dissociation reaction (1,200 seconds) at various concentrations, and their affinities for human CEACAM5 were calculated (FIG. 51, Table 79). Table 79 below illustrates the binding constants of the engineered antibodies targeting human CEACAM5.














TABLE 79







Antibodies
KD (nM)
Ka (1/Ms)
Kd (1/s)





















CEA01
1.5740
1.76E+05
2.78E−04



CEA02
19.2395
2.03E+04
3.90E−04



CEA03
274.7780
1.13E+04
3.09E−03



CEA04
1.7856
2.05E+05
3.66E−04










Example 23. Design, Preparation and Analysis of Antibody Structure Targeting TROP2, Mesothelin or LIV-1

The variant light chain and heavy chain polypeptide sequences of the antibody T01 that specifically binds to the TROP2 protein are shown in Table 80. For T01I, expression vectors consisting of the sequences corresponding to Fc-Hole (SEQ ID NO: 7), T01 HC (SEQ ID NO: 753), and T01 LC (SEQ ID NO: 754) were co-transfected into EXPICHO-S™ (Gibco, A29127) (FIG. 41a, Table 80), and purification and analysis were performed in the same manner as described in Example 1. The variant light chain and heavy chain polypeptide sequences of the antibody MSM01 that specifically binds to the mesothelin protein are shown in Table 80. For MSM01, expression vectors consisting of the sequences corresponding to Fc-Hole (SEQ ID NO: 7), MSM01 HC (SEQ ID NO: 755), and MSM01 LC (SEQ ID NO: 756) were co-transfected into EXPICHO-S™ (Gibco, A29127) (FIG. 41a, Table 80), and purification and analysis were performed in the same manner as described in Example 1. The variant light chain and heavy chain polypeptide sequences of the antibody LIM01 that specifically binds to the LIV-1 protein are shown in Table 80. For LIM01, expression vectors consisting of the sequences corresponding to Fc-Hole (SEQ ID NO: 7), LIM01 HC (SEQ ID NO: 757), and LIM01 LC (SEQ ID NO: 758) were co-transfected into EXPICHO-S™ (Gibco, A29127) (FIG. 41a, Table 80), and purification and analysis were performed in the same manner as described in Example 1.












TABLE 80





Target


SEQ


Antigen
Name
Sequence
ID NO







Human
T01 HC
QVQLQQSGSELKKPGASVKVSCKASGYTFTNYGMNWVKQAPGQC
753


TROP2

LKWMGWINTYTGEPTYTDDFKGRFAFSLDTSVSTAYLQISSLKAD





DTAVYFCARGGFGSSYWYFDVWGQGSLVTVSSASTKGPSVFPLAP





SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS





SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDK





THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE





DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD





WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEM





TKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS





FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK




T01 LC
DIQLTQSPSSLSASVGDRVSITCKASQDVSIAVAWYQQKPGKAPKL
754




LIYSASYRYTGVPDRFSGSGSGTDFTLTISSLQPEDFAVYYCQQHYI





TPLTFGCGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFY





PREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKAD





YEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGS





EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV





VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL





TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL





PPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPP





VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGK






Human
MSM01
QVQLQQSGPELEKPGASVKISCKASGYSFTGYTMNWVKQSHGKCL
755


Mesothelin
HC
EWIGLITPYNGASSYNQKFRGKATLTVDKSSSTAYMDLLSLTSEDS





AVYFCARGGYDGRGFDYWGQGTTVTVSSASTKGPSVFPLAPSSKS





TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL





YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT





CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE





VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN





GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKN





QVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL





YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK




MSM01
DIELTQSPAIMSASPGEKVTMTCSASSSVSYMHWYQQKSGTSPKR
756



LC
WIYDTSKLASGVPGRFSGSGSGNSYSLTISSVEAEDDATYYCQQWS





KHPLTFGCGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF





YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA





DYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGG





SEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV





VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL





TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL





PPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPP





VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGK






Human
LIM01
EIQLQQSGPELMKPGASVKISCKASTYSFTRYFMHWVKQSHGECLE
757


LIV-1
HC
WIGYIDPFNGGTGYNQKFKGKATLTVDKSSSTAYMHLSSLTSEDSA





VYYCVTYGSDYFDYWGQGTTLTVSSASTKGPSVFPLAPSSKSTSGG





TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS





VVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCP





APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN





WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY





KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSL





WCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT





VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK




LIM01
DIVMTQPQKFMSTSVGDRVSVTCKASQNVETDVVWYQQKPGQPP
758



LC
KALIYSASYRHSGVPDRFTGSGSGTNFTLTISTVQSEDLAEYFCQQY





NNYPFTFGCGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNN





FYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK





ADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGG





GSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC





VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV





LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT





LPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTP





PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGK









Table 81 below shows the heavy chain and light chain nucleotide sequences of the engineered antibodies targeting TROP2, mesothelin, or LIV-1.












TABLE 81





Target


SEQ


Ag
Name
Sequence
ID NO







Human
T01 HC
CAGGTGCAGCTCCAGCAGTCTGGTTCCGAGCTGAAGAAACCTGGGGCTTCAGTCAAAGTC
759


TROP2

TCTTGCAAGGCTTCAGGTTACACTTTCACCAATTATGGTATGAACTGGGTCAAGCAAGCT





CCTGGTCAGTGTTTGAAGTGGATGGGGTGGATAAACACATATACTGGCGAACCTACATAC





ACCGACGACTTCAAGGGACGCTTCGCCTTCTCTCTTGACACAAGTGTCTCAACAGCATAT





CTCCAAATCAGTAGCCTTAAGGCCGACGACACAGCAGTTTATTTTTGCGCTAGGGGTGGA





TTCGGATCTTCTTACTGGTATTTCGATGTCTGGGGACAAGGAAGTCTGGTCACAGTTTCC





AGCGCTAGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCT





GGGGGGACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTC





AGTTGGAACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGC





AGCGGCTTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAG





ACATACATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAA





CCAAAGTCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGG





GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC





CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAAC





TGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC





AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC





AAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC





TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAG





GAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGAC





ATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC





GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGG





TGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTAC





ACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA




T01 LC
GACATACAACTCACACAATCTCCCTCTTCTTTGTCAGCTTCCGTTGGGGACAGGGTGTCA
760




ATTACTTGCAAAGCCTCTCAAGATGTTTCTATAGCTGTAGCCTGGTATCAACAGAAACCC





GGAAAAGCTCCCAAGTTGTTGATTTATAGTGCTAGTTATAGGTACACTGGCGTGCCAGAT





AGATTCAGTGGTAGCGGTTCTGGGACCGACTTTACCTTGACTATTTCTTCCCTGCAACCT





GAGGATTTTGCCGTTTACTATTGCCAACAACATTATATTACTCCCCTTACTTTTGGGTGT





GGGACCAAGGTAGAAATCAAGCGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCA





TCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTAT





CCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAA





GAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTGTCCAGCACATTGACA





CTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGACACACCAAGGT





CTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGG





GGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGC





CCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAA





CCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG





AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT





GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC





ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA





GCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA





CAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGG





TGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG





CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTC





TACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCC





GTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





AAA






Human
MSM01 HC
CAGGTTCAATTGCAGCAGTCTGGACCAGAATTGGAGAAGCCTGGCGCAAGCGTCAAAATA
761


Mesothelin

TCTTGCAAGGCTTCAGGTTACAGTTTCACCGGATACACTATGAACTGGGTCAAGCAAAGC





CACGGCAAGTGTCTTGAATGGATAGGATTGATTACTCCATACAATGGCGCTTCATCATAC





AATCAGAAGTTTAGGGGCAAGGCAACTTTGACCGTGGATAAGTCATCATCTACCGCATAT





ATGGACCTCTTGAGCCTCACAAGTGAAGACTCAGCTGTTTACTTTTGTGCCAGAGGAGGG





TATGATGGGCGAGGATTCGACTATTGGGGTCAAGGAACCACCGTGACAGTAAGCTCTGCT





AGCACCAAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGG





ACAGCCGCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGG





AACTCTGGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGC





TTGTACTCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATAC





ATCTGCAATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAG





TCTTGTGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCG





TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG





GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC





GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC





ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAG





TACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA





GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATG





ACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC





GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG





GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAG





CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG





AAGAGCCTCTCCCTGTCTCCGGGTAAA




MSM01 LC
GACATAGAGTTGACTCAATCTCCAGCAATCATGTCAGCCTCACCCGGAGAAAAGGTCACC
762




ATGACTTGTTCTGCAAGTTCCAGCGTTTCTTATATGCATTGGTACCAGCAGAAGTCAGGG





ACTAGCCCTAAGAGATGGATTTACGATACCTCCAAACTGGCCTCCGGGGTGCCAGGCCGG





TTTAGTGGCAGTGGAAGCGGTAACAGCTACTCTTTGACCATATCTAGCGTGGAAGCAGAG





GACGACGCTACTTATTACTGTCAACAGTGGTCTAAGCACCCACTGACCTTCGGCTGTGGT





ACAAAGCTCGAAATAAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCATCC





GACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTATCCA





CGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAAGAA





AGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTGTCCAGCACATTGACACTG





AGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGACACACCAAGGTCTT





TCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGGGGC





GGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGCCCA





CCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCC





AAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGC





CACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC





AAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACC





GTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCC





CTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG





GTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGC





CTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG





GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC





AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG





ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA






Human
LIM01 HC
GAGATACAGTTGCAGCAAAGCGGACCCGAGCTTATGAAACCAGGAGCTAGTGTGAAAATT
763


LIV-1

AGCTGCAAGGCTAGCACCTACTCTTTTACTCGCTATTTTATGCATTGGGTTAAACAGTCA





CATGGTGAGTGTTTGGAATGGATCGGGTACATTGATCCCTTTAATGGAGGGACTGGCTAC





AACCAGAAGTTTAAAGGAAAAGCCACTCTCACTGTTGACAAAAGTAGTAGTACAGCATAT





ATGCACCTCAGTTCCCTTACCAGTGAAGATAGCGCAGTTTACTATTGTGTCACTTACGGA





TCAGACTACTTCGACTATTGGGGACAGGGTACAACCCTTACAGTCTCCAGTGCTAGCACC





AAAGGACCTAGTGTTTTTCCTCTTGCCCCTTCCTCAAAGTCTACCTCTGGGGGGACAGCC





GCTCTGGGCTGCCTGGTCAAGGATTATTTCCCAGAGCCTGTCACTGTCAGTTGGAACTCT





GGAGCCTTGACTTCTGGTGTTCATACATTTCCTGCTGTCCTTCAAAGCAGCGGCTTGTAC





TCATTGTCTTCTGTTGTGACAGTACCCTCAAGCAGCCTCGGCACTCAGACATACATCTGC





AATGTCAACCACAAACCCTCAAATACAAAGGTAGATAAAAAAGTCGAACCAAAGTCTTGT





GACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTC





TTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA





TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC





GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTAC





CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAG





TGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA





GGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAG





AACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG





TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCC





GACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGG





AACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC





CTCTCCCTGTCTCCGGGTAAA




LIM01 LC
GACATAGTGATGACCCAACCACAAAAGTTTATGTCAACCTCCGTTGGAGATCGTGTTTCT
764




GTCACTTGTAAGGCATCACAGAATGTAGAGACAGACGTAGTCTGGTATCAGCAGAAACCT





GGTCAGCCACCTAAAGCACTCATCTACAGTGCAAGTTACCGACATTCTGGCGTACCCGAC





AGATTTACTGGGTCTGGTTCTGGTACAAATTTCACTCTCACCATCTCAACCGTCCAATCA





GAAGACTTGGCCGAGTATTTTTGCCAGCAATATAACAATTATCCCTTTACATTCGGATGT





GGGACCAAACTCGAAATCAAACGTACGGTGGCAGCTCCCAGCGTTTTTATCTTTCCCCCA





TCCGACGAGCAGCTCAAGAGTGGCACTGCCTCTGTAGTTTGTTTGCTGAATAACTTCTAT





CCACGTGAAGCAAAAGTACAGTGGAAGGTCGATAATGCCCTTCAGAGCGGTAACAGCCAA





GAAAGTGTTACCGAGCAAGATTCCAAAGATTCCACTTACAGTCTGTCCAGCACATTGACA





CTGAGTAAGGCTGATTACGAAAAACACAAGGTGTACGCATGCGAGGTGACACACCAAGGT





CTTTCATCTCCTGTAACTAAGAGCTTTAACCGGGGAGAATGTGGTGGTGGGGGCAGCGGG





GGCGGAGGTAGTGGAGGCGGCGGTAGTGAACCAAAGAGTAGTGACAAAACTCACACGTGC





CCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAA





CCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG





AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT





GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC





ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAA





GCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA





CAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGG





TGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG





CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTC





TACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCC





GTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





AAA









Table 82 below shows the polypeptide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting TROP2, mesothelin, or LIV-1. Table 83 below shows the nucleotide sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the engineered antibodies targeting TROP2, mesothelin, or LIV-1.












TABLE 82








SEQ


Antigen
Name
Sequence
ID NO



















Human
T01
VH
QVQLQQSGSELKKPGASVKV
765


TROP2


SCKASGYTFTNYGMNWVKQA






PGQCLKWMGWINTYTGEPTY






TDDFKGRFAFSLDTSVSTAY






LQISSLKADDTAVYFCARGG






FGSSYWYFDVWGQGSLVTVS






S





VL
DIQLTQSPSSLSASVGDRVS
766





ITCKASQDVSIAVAWYQQKP






GKAPKLLIYSASYRYTGVPD






RFSGSGSGTDFTLTISSLQP






EDFAVYYCQQHYITPLTFGC






GTKVEIK






Human
MSM01
VH
QVQLQQSGPELEKPGASVKI
767


Mesothelin


SCKASGYSFTGYTMNWVKQS






HGKCLEWIGLITPYNGASSY






NQKFRGKATLTVDKSSSTAY






MDLLSLTSEDSAVYFCARGG






YDGRGFDYWGQGTTVTVSS





VL
DIELTQSPAIMSASPGEKVT
768





MTCSASSSVSYMHWYQQKSG






TSPKRWIYDTSKLASGVPGR






FSGSGSGNSYSLTISSVEAE






DDATYYCQQWSKHPLTFGCG






TKLEIK






Human
LIM01
VH
EIQLQQSGPELMKPGASVKI
769


LIV-1


SCKASTYSFTRYFMHWVKQS






HGECLEWIGYIDPFNGGTGY






NQKFKGKATLTVDKSSSTAY






MHLSSLTSEDSAVYYCVTYG






SDYFDYWGQGTTLTVSS





VL
DIVMTQPQKFMSTSVGDRVS
770





VTCKASQNVETDVVWYQQKP






GQPPKALIYSASYRHSGVPD






RFTGSGSGTNFTLTISTVQS






EDLAEYFCQQYNNYPFTFGC






GTKLEIK



















TABLE 83








SEQ


Antigen
Name
Sequence
ID NO



















Human
T01
VH
CAGGTGCAGCTCCAGCAGTCTGGTTCCGAGCTGAAGAAAC
771


TROP2


CTGGGGCTTCAGTCAAAGTCTCTTGCAAGGCTTCAGGTTA






CACTTTCACCAATTATGGTATGAACTGGGTCAAGCAAGCT






CCTGGTCAGTGTTTGAAGTGGATGGGGTGGATAAACACAT






ATACTGGCGAACCTACATACACCGACGACTTCAAGGGACG






CTTCGCCTTCTCTCTTGACACAAGTGTCTCAACAGCATATC






TCCAAATCAGTAGCCTTAAGGCCGACGACACAGCAGTTTA






TTTTTGCGCTAGGGGTGGATTCGGATCTTCTTACTGGTATT






TCGATGTCTGGGGACAAGGAAGTCTGGTCACAGTTTCCAG






C





VL
GACATACAACTCACACAATCTCCCTCTTCTTTGTCAGCTTC
772





CGTTGGGGACAGGGTGTCAATTACTTGCAAAGCCTCTCAA






GATGTTTCTATAGCTGTAGCCTGGTATCAACAGAAACCCG






GAAAAGCTCCCAAGTTGTTGATTTATAGTGCTAGTTATAG






GTACACTGGCGTGCCAGATAGATTCAGTGGTAGCGGTTCT






GGGACCGACTTTACCTTGACTATTTCTTCCCTGCAACCTGA






GGATTTTGCCGTTTACTATTGCCAACAACATTATATTACTC






CCCTTACTTTTGGGTGTGGGACCAAGGTAGAAATCAAG






Human
MSM01
VH
CAGGTTCAATTGCAGCAGTCTGGACCAGAATTGGAGAAGC
773


Mesothelin


CTGGCGCAAGCGTCAAAATATCTTGCAAGGCTTCAGGTTA






CAGTTTCACCGGATACACTATGAACTGGGTCAAGCAAAGC






CACGGCAAGTGTCTTGAATGGATAGGATTGATTACTCCAT






ACAATGGCGCTTCATCATACAATCAGAAGTTTAGGGGCAA






GGCAACTTTGACCGTGGATAAGTCATCATCTACCGCATAT






ATGGACCTCTTGAGCCTCACAAGTGAAGACTCAGCTGTTT






ACTTTTGTGCCAGAGGAGGGTATGATGGGCGAGGATTCGA






CTATTGGGGTCAAGGAACCACCGTGACAGTAAGCTCT





VL
GACATAGAGTTGACTCAATCTCCAGCAATCATGTCAGCCT
774





CACCCGGAGAAAAGGTCACCATGACTTGTTCTGCAAGTTC






CAGCGTTTCTTATATGCATTGGTACCAGCAGAAGTCAGGG






ACTAGCCCTAAGAGATGGATTTACGATACCTCCAAACTGG






CCTCCGGGGTGCCAGGCCGGTTTAGTGGCAGTGGAAGCGG






TAACAGCTACTCTTTGACCATATCTAGCGTGGAAGCAGAG






GACGACGCTACTTATTACTGTCAACAGTGGTCTAAGCACC






CACTGACCTTCGGCTGTGGTACAAAGCTCGAAATAAAA






Human
LIM01
VH
GAGATACAGTTGCAGCAAAGCGGACCCGAGCTTATGAAA
775


LIV-1


CCAGGAGCTAGTGTGAAAATTAGCTGCAAGGCTAGCACCT






ACTCTTTTACTCGCTATTTTATGCATTGGGTTAAACAGTCA






CATGGTGAGTGTTTGGAATGGATCGGGTACATTGATCCCT






TTAATGGAGGGACTGGCTACAACCAGAAGTTTAAAGGAA






AAGCCACTCTCACTGTTGACAAAAGTAGTAGTACAGCATA






TATGCACCTCAGTTCCCTTACCAGTGAAGATAGCGCAGTTT






ACTATTGTGTCACTTACGGATCAGACTACTTCGACTATTGG






GGACAGGGTACAACCCTTACAGTCTCCAGT





VL
GACATAGTGATGACCCAACCACAAAAGTTTATGTCAACCT
776





CCGTTGGAGATCGTGTTTCTGTCACTTGTAAGGCATCACAG






AATGTAGAGACAGACGTAGTCTGGTATCAGCAGAAACCTG






GTCAGCCACCTAAAGCACTCATCTACAGTGCAAGTTACCG






ACATTCTGGCGTACCCGACAGATTTACTGGGTCTGGTTCTG






GTACAAATTTCACTCTCACCATCTCAACCGTCCAATCAGA






AGACTTGGCCGAGTATTTTTGCCAGCAATATAACAATTAT






CCCTTTACATTCGGATGTGGGACCAAACTCGAAATCAAA









Table 84 below shows the heavy chain and light chain CDR sequences of the engineered antibodies targeting TROP2, mesothelin, or LIV-1.













TABLE 84









SEQ


Antigen
Name
CDR
Sequence
ID NO







Human
CEA01
CDR-H1
NYGMN
260


TROP2

CDR-H2
WINTYTGEPTYTDDFKG
261




CDR-H3
GGFGSSYWYFDV
262




CDR-L1
KASQDVSIAVA
263




CDR-L2
SASYRYT
264




CDR-L3
QQHYITPLT
265





Human
MSM01
CDR-H1
GYTMN
777


Mesothelin

CDR-H2
LITPYNGASSYNQKFRG
778




CDR-H3
GGYDGRGFDY
779




CDR-L1
SASSSVSYMH
780




CDR-L2
DTSKLAS
781




CDR-L3
QQWSKHPLT
782





Human
LIM01
CDR-H1
RYFMH
783


LIV-1

CDR-H2
YIDPFNGGTGYNQKFKG
784




CDR-H3
YGSDYFDY
785




CDR-L1
KASQNVETDVV
786




CDR-L2
SASYRHS
787




CDR-L3
QQYNNYP
788









In order to analyze the binding constants, the human TROP2 recombinant protein (Sino Biologicals, 10428-H08H), the human mesothelin recombinant protein (Sino Biologicals, 13128-H08H) or the human LIV-1 recombinant protein (Acro biosystems, LV1-H5223) was loaded onto the Anti-Penta-HIS (HIS1K) biosensor (Sartorius, 18-5120). Then, the antibodies were added in a binding reaction and a dissociation reaction at various concentrations, and the affinities of each antibody for the human antigen was calculated (FIG. 52, Table 85). Table 85 below illustrates the binding constants of the engineered antibodies targeting TROP2, mesothelin, or LIV-1.













TABLE 85





Antigens
Antibodies
KD (nM)
Ka (1/Ms)
Kd (1/s)



















Human TROP2
T01
1.2008
2.67E+05
3.21E−04


Human Mesothelin
MSM01
7.1771
1.59E+05
1.14E−03


Human LIV-1
LIM01
0.8072
3.84E+05
3.10E−04








Claims
  • 1. A fusion protein comprising: (a) an antigen-binding site consisting of a first polypeptide comprising at least one complementarity-determining region (CDR) sequence and a second polypeptide comprising at least one complementarity-determining region (CDR) sequence, wherein the first polypeptide and the second polypeptide form a dimer, and the antigen-binding site is capable of specifically binding to a target antigen,(b) a first Fc domain or a variant thereof that is a dimer consisting of two polypeptide sequences, one of which is bound to the first polypeptide of the antigen-binding site, and(c) a second Fc domain or a variant thereof that is a dimer consisting of two polypeptide sequences, one of which is bound to the second polypeptide of the antigen-binding site.
  • 2. The fusion protein according to claim 1, wherein the first polypeptide of the antigen-binding site comprises CDR1, CDR2, and CDR3 of an antibody heavy chain, and the second polypeptide of the antigen-binding site comprises CDR1, CDR2, and CDR3 of an antibody light chain.
  • 3. The fusion protein according to claim 2, wherein the first polypeptide of the antigen-binding site further comprises a CH1 region of an antibody heavy chain, and/or the second polypeptide of the antigen-binding site further comprises a constant region of an antibody light chain.
  • 4. The fusion protein according to claim 1, wherein the antigen-binding site specifically binds to a protein expressed on the cell surface.
  • 5. The fusion protein according to claim 1, wherein the antigen-binding site specifically binds to a cancer antigen.
  • 6. The fusion protein according to claim 1, wherein the fusion protein induces improved antitumor activity compared to an IgG-based antibody of a conventional structure having the same antigen-binding site.
  • 7. The fusion protein according to claim 1, wherein the antigen-binding site specifically binds to any one selected from the group consisting of PD-L1, EGFR, EGFRvIII, BCMA, CD22, CD25, CD30, CD33, CD37, CD38, CD52, CD56, CD123, c-Met, DLL3, DR4, DR5, GD2, nectin-4, RANKL, SLAMF7, Trop-2, LIV-1, claudin 18.2, IL13α2, CD3, HER2, HER3, FGFR2, FGFR3, GPC3, ROR1, Folα, CD20, CD19, CTLA-4, VEGFR, NCAM1, ICAM-1, ICAM-2, CEACAM5, CEACAM6, carcinoembryonic antigen (CEA), CA-125, alphafetoprotein (AFP), MUC-1, MUC-16, PSMA, PSCA, epithelial tumor antigen (ETA), melanoma-associated antigen (MAGE), immature laminin receptor, TAG-72, HPV E6/E7, BING-4, calcium-activated chloride channel 2, cyclin-B1, 9D7, Ep-CAM, EphA2, EphA3, mesothelin, SAP-1, survivin, and virus-derived antigens.
  • 8. The fusion protein according to claim 1, wherein the first Fc domain and the second Fc domain are each a wild type Fc domain or an Fc domain variant.
  • 9. The fusion protein according to claim 8, wherein the Fc region is an Fc region of IgG, IgA, IgE, IgD, or IgM or a variant thereof.
  • 10. The fusion protein according to claim 8, wherein the first Fc domain variant and the second Fc domain variant each independently comprise a knob variant or a hole variant that promotes the formation of an Fc heterodimer (heterodimeric Fc); and/orthe first Fc domain variant and the second Fc domain variant each independently comprise a variant that promotes the formation of a heterodimer by electrostatic steering mechanism.
  • 11. The fusion protein according to claim 1, wherein the fusion protein comprises polypeptides of the following structural formulas (I), (II), (III), and (IV): N′—X-(L1)n-A-C′  (I);N′—Y-(L2)m-B—C′  (II);N′—C—C′  (III); andN′-D-C′  (IV)wherein, in the structural formulas (I), (II), (III), and (IV),N′ is the N-terminus of each polypeptide,C′ is the C-terminus of each polypeptide, refers to a linkage,A, B, C, and D are monomeric polypeptide sequences of an Fc domain each comprising the CH2 and CH3 regions of an immunoglobulin, and optionally further comprising CH4 and/or a hinge sequence, wherein A forms a dimer with one of C or D to form the first Fc domain (b), and B forms a dimer with the remaining one of C or D to form the second Fc domain (c);L1 and L2 are each peptide linker,n and m are each independently 0 or 1,X is a first polypeptide sequence of the antigen-binding site, which comprises heavy chain CDR1, CDR2, and CDR3 sequences of an antibody that specifically binds to a first antigen, or a heavy chain variable region of an antibody that specifically binds to a first antigen;Y is a second polypeptide sequence of the antigen-binding site, which comprises light chain CDR1, CDR2, and CDR3 sequences of an antibody that specifically binds to a first antigen, or a light chain variable region of an antibody that specifically binds to a first antigen; andX and Y pair with each other to form the antigen-binding site (a) that specifically binds to an antigen.
  • 12. The fusion protein according to claim 11, wherein X in the structural formula (I) further comprises a heavy chain CH1 region, and/orY in the structural formula (II) further comprises a light chain constant region.
  • 13. The fusion protein according to claim 1, wherein the fusion protein comprises polypeptides of the following structural formulas (I′), (II′), (III), and (IV): N′—VD1-(L3)p-X-(L1)n-A-C′  (I′);N′—VD2-(L4)q-Y-(L2)m-B—C′  (II′);N′—C—C′  (III); andN′-D-C′  (IV)wherein, in the structural formulas (I′), (II′), (III), and (IV),N′ is the N-terminus of each polypeptide,C′ is the C-terminus of each polypeptide, refers to a linkage,A, B, C, and D are monomeric polypeptide sequences of an Fc domain each comprising the CH2 and CH3 regions of an immunoglobulin, and optionally further comprising CH4 and/or a hinge sequence, wherein A forms a dimer with one of C or D to form the first Fc domain (b), and B forms a dimer with the remaining one of C or D to form the second Fc domain (c);L1, L2, L3, and L4 are each peptide linker,n, m, p, and q are each 0 or 1,VD1 consists of a heavy chain or light chain variable region of an antibody that specifically binds to an antigen, or CDR1, CDR2, and CDR3 of an antibody heavy chain or light chain;VD2 consists of a light chain or heavy chain variable region of an antibody that specifically binds to an antigen, or CDR1, CDR2, and CDR3 of an antibody heavy chain or light chain;VD1 and VD2 pair with each other to form a second antibody variable region that specifically binds to a second antigen,X comprises a heavy chain or light chain variable region of an antibody that specifically binds to an antigen, or CDR1, CDR2, and CDR3 of an antibody heavy chain or light chain;Y comprises a light chain or heavy chain variable region of an antibody that specifically binds to an antigen, or CDR1, CDR2, and CDR3 of an antibody heavy chain or light chain; andX and Y pair with each other to form a first antibody variable region that specifically binds to a first antigen, andVD1-(L3)p-X forms a first polypeptide sequence of the antigen-binding site (a), and VD2-(L4)q-Y forms a second polypeptide sequence of the antigen-binding site (a).
  • 14. The fusion protein according to claim 13, wherein the heavy chain variable region further comprises a heavy chain CH1 region, andthe light chain variable region further comprises a light chain constant region.
  • 15. The fusion protein according to claim 11, wherein the Fc domain monomer comprises a knob variant or a hole variant that promotes the formation of an Fc heterodimer (heterodimeric Fc); orthe Fc domain monomer comprises a variant that promotes the formation of a heterodimer by electrostatic steering mechanism.
  • 16. The fusion protein according to claim 12, wherein the binding between X and Y is achieved i) through a disulfide bond formed by Cys present in CH1 and a light chain constant region,ii) through a disulfide bond formed by Cys present in a heavy chain variable region and a light chain variable region, oriii) through a disulfide bond formed by Cys present in CH1 and a light chain constant region, and a disulfide bond formed by Cys present in a heavy chain variable region and a light chain variable region.
  • 17. The fusion protein according to claim 14, wherein the binding between X and Y further comprises, in addition to a disulfide bond present between CH1233 and CL214 based on Kabat numbering system, i) a disulfide bond present between VH105 and VL43;ii) a disulfide bond present between VH44 and VL100; oriii) a disulfide bond present between CH1122 and CL121.
  • 18. (canceled)
  • 19. The method according to claim 21, wherein the cancer is any one selected from the group consisting of gastric cancer, liver cancer, lung cancer, large intestine cancer, breast cancer, prostate cancer, gallbladder cancer, bladder cancer, kidney cancer, esophageal cancer, skin cancer, rectal cancer, osteosarcoma, multiple myeloma, glioma, ovarian cancer, pancreatic cancer, cervical cancer, endometrial cancer, thyroid cancer, laryngeal cancer, testicular cancer, mesothelioma, acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, chronic lymphoblastic leukemia, brain tumor, neuroblastoma, retinoblastoma, head and neck cancer, salivary gland cancer, and lymphoma.
  • 20. A transformed cell expressing the fusion protein according to claim 1.
  • 21. A method for treating or preventing cancer, comprising administering the fusion protein according to claim 1 to a subject in need of cancer treatment or cancer prevention.
  • 22. (canceled)
  • 23. (canceled)
Priority Claims (1)
Number Date Country Kind
10-2021-0142135 Oct 2021 KR national
PCT Information
Filing Document Filing Date Country Kind
PCT/KR2022/015981 10/22/2022 WO