Antigenic peptides of SARS coronavirus and uses thereof

Abstract
The present invention pertains to antigenic peptides of SARS-CoV and their use in diagnostic test methods and in the treatment of condition resulting from SARS-CoV. Furthermore, this invention provides antibodies capable of specifically recognizing the peptides of the invention. The antibodies can also advantageously be used in diagnostic test methods and in the treatment of condition resulting from SARS-CoV.
Description
STATEMENT ACCORDING TO 37 C.F.R. § 1.52(e)(5) SEQUENCE LISTING SUBMITTED ON COMPACT DISC

Pursuant to 37 C.F.R. § 1.52(e)(1)(ii), a compact disc containing an electronic version of the Sequence Listing has been submitted concomitant with this application, the contents of which are hereby incorporated by reference. A second compact disc is submitted and is an identical copy of the first compact disc. The discs are labeled “copy 1” and “copy 2,” respectively, and each disc contains one file entitled “2578-7587US seq list” which is 395 KB and created on Mar. 13, 2006.


FIELD OF THE INVENTION

Various embodiments generally relate to biotechnology. More specifically, various embodiments relate to medicine. Even more specifically, various embodiments relate to antigenic peptides of SARS coronavirus and uses thereof.


BACKGROUND OF THE INVENTION

Recently, a new and in several cases deadly clinical syndrome was observed in the human population, now called severe acute respiratory syndrome (SARS) (Holmes, 2003). The syndrome is caused by a novel coronavirus (Ksiazek et al., 2003), referred to as the SARS-CoV. The genome sequence of SARS-CoV has been determined (Rota et al., 2003; Marra et al., 2003). However, much remains to be learnt about this virus, and means and methods for diagnostics and treatment of the virus and the syndrome are needed. The present invention provides means and methods for use in diagnostics, treatment and prevention of SARS-CoV.


SUMMARY OF THE INVENTION

The present invention pertains to antigenic peptides of SARS-CoV. Furthermore, the invention provides fusion proteins comprising these peptides and antibodies against these peptides. The use of the peptides, fusion proteins and antibodies in the treatment of a condition resulting from SARS-CoV and a diagnostic test method for determining the presence of antibodies recognizing SARS-CoV in a sample or for determining the presence of SARS-CoV in a sample are also contemplated in the present invention.







DETAILED DESCRIPTION OF THE INVENTION

In a first aspect, the invention provides antigenic peptides of SARS-CoV, particularly the SARS-CoV strain called Urbani. In the present invention, binding of sera from SARS patients to a series of overlapping 15-mer peptides, which were either in linear form or in looped/cyclic form, of the proteins from SARS-CoV Urbani was analyzed by means of PEPSCAN analysis (see inter alia WO 84/03564, WO 93/09872, Slootstra et al. 1996). The complete genome of SARS-CoV Urbani can be found under EMBL-database accession number AY278741, “SARS coronavirus Urbani, complete genome.” The coding sequence (CDS) of the proteins of SARS-CoV Urbani is also shown under EMBL-database accession number AY278741. In the present invention is disclosed that several of the SARS-CoV Urbani proteins (or potential proteins) called protein X1 (the protein-id of protein X1 is AAP13446, see also SEQ ID NO:1), protein X2 (the protein-id of protein X2 is AAP13447, see also SEQ ID NO:2), E protein (the protein-id of the envelope protein, E protein, is AAP13443, see also SEQ ID NO:3), M protein (the protein-id of the small membrane protein, M protein, is AAP13444, see also SEQ ID NO:4), protein X3 (the protein-id of protein X3 is AAP13448, see also SEQ ID NO:5), protein X4 (the protein-id of protein X4 is AAP13449, see also SEQ ID NO:6), protein X5 (the protein-id of protein X5 is AAP13450, see also SEQ ID NO:7), and N protein (the protein-id of the nucleocapsid protein, N protein, is AAP13445, see also SEQ ID NO:8) comprise antigenic peptides.


The complete genome and the amino acid sequence of (potential) proteins of other SARS-CoV strains including, but not limited to, TOR2, Frankfurt 1 and HSR 1 can also be found in the EMBL-database. The accession number in the EMBL-database of the complete genome of the strains TOR2, Frankfurt 1 and HSR 1 is AY274119, AY291315 and AY323977, respectively. Under these accession numbers the amino acid sequence of (potential) proteins of these strains can also be found. Because the Urbani proteins indicated above are also found in identical or highly homologous form in other SARS-CoV strains, the antigenic peptides found in the present invention may not only be used for detection of the SARS-CoV strain Urbani and the prevention and/or treatment of a condition resulting from the SARS-CoV strain Urbani, but may also be useful in detecting SARS-CoV in general and preventing and/or treating a condition resulting from SARS-CoV in general.


In one embodiment, the invention provides a peptide having an amino acid sequence selected from the group consisting of RFFTLGSITAQPVKI (SEQ ID NO:9), FFTLGSITAQPVKID (SEQ ID NO:10), FTLGSITAQPVKIDN (SEQ ID NO:11), TLGSITAQPVKIDNA (SEQ ID NO:12), LGSITAQPVKIDNAS (SEQ ID NO:13), GSITAQPVKIDNASP (SEQ ID NO:14), SITAQPVKIDNASPA (SEQ ID NO:15), ITAQPVKIDNASPAS (SEQ ID NO:16), TAQPVKIDNASPAST (SEQ ID NO:17), AQPVKIDNASPASTV (SEQ ID NO:18), QPVKIDNASPASTVH (SEQ ID NO:19), PVKIDNASPASTVHA (SEQ ID NO:20), VKIDNASPASTVHAT (SEQ ID NO:21), KIDNASPASTVHATA (SEQ ID NO:22), IDNASPASTVHATAT (SEQ ID NO:23), DNASPASTVHATATI (SEQ ID NO:24), NASPASTVHATATIP (SEQ ID NO:25), ASPASTVHATATIPL (SEQ ID NO:26), SPASTVHATATIPLQ (SEQ ID NO:27), PASTVHATATIPLQA (SEQ ID NO:28), ASTVHATATIPLQAS (SEQ ID NO:29), STVHATATIPLQASL (SEQ ID NO:30), TVHATATIPLQASLP (SEQ ID NO:31), VHATATIPLQASLPF (SEQ ID NO:32), INACRIIMRCWLCWK (SEQ ID NO:33), NACRIIMRCWLCWKC (SEQ ID NO:34), ACRIIMRCWLCWKCK (SEQ ID NO:35), CRIIMRCWLCWKCKS (SEQ ID NO:36), RIIMRCWLCWKCKSK (SEQ ID NO:37), IIMRCWLCWKCKSKN (SEQ ID NO:38), IMRCWLCWKCKSKNP (SEQ ID NO:39), MRCWLCWKCKSKNPL (SEQ ID NO:40), RCWLCWKCKSKNPLL (SEQ ID NO:41), CWLCWKCKSKNPLLY (SEQ ID NO:42), WLCWKCKSKNPLLYD (SEQ ID NO:43), LCWKCKSKNPLLYDA (SEQ ID NO:44), CWKCKSKNPLLYDAN (SEQ ID NO:45), YDANYFVCWHTHNYD (SEQ ID NO:46), DANYFVCWHTHNYDY (SEQ ID NO:47), ANYFVCWHTHNYDYC (SEQ ID NO:48), NYFVCWHTHNYDYCI (SEQ ID NO:49), YFVCWHTHNYDYCIP (SEQ ID NO:50), FVCWHTHNYDYCIPY (SEQ ID NO:51), VCWHTHNYDYCIPYN (SEQ ID NO:52), CWHTHNYDYCIPYNS (SEQ ID NO:53), WHTHNYDYCIPYNSV (SEQ ID NO:54), HTHNYDYCIPYNSVT (SEQ ID NO:55), THNYDYCIPYNSVTD (SEQ ID NO:56), HNYDYCIPYNSVTDT (SEQ ID NO:57), NYDYCIPYNSVTDTI (SEQ ID NO:58), YDYCIPYNSVTDTIV (SEQ ID NO:59), DYCIPYNSVTDTIVV (SEQ ID NO:60), YCIPYNSVTDTIVVT (SEQ ID NO:61), GDGISTPKLKEDYQI (SEQ ID NO:62), DGISTPKLKEDYQIG (SEQ ID NO:63), GISTPKLKEDYQIGG (SEQ ID NO:64), ISTPKLKEDYQIGGY (SEQ ID NO:65), STPKLKEDYQIGGYS (SEQ ID NO:66), TPKLKEDYQIGGYSE (SEQ ID NO:67), PKLKEDYQIGGYSED (SEQ ID NO:68), KLKEDYQIGGYSEDR (SEQ ID NO:69), LKEDYQIGGYSEDRH (SEQ ID NO:70), KEDYQIGGYSEDRHS (SEQ ID NO:71), EDYQIGGYSEDRHSG (SEQ ID NO:72), DYQIGGYSEDRHSGV (SEQ ID NO:73), YQIGGYSEDRHSGVK (SEQ ID NO:74), QIGGYSEDRHSGVKD (SEQ ID NO:75), IGGYSEDRHSGVKDY (SEQ ID NO:76), GGYSEDRHSGVKDYV (SEQ ID NO:77), GYSEDRHSGVKDYVV (SEQ ID NO:78), YSEDRHSGVKDYVVV (SEQ ID NO:79), SEDRHSGVKDYVVVH (SEQ ID NO:80), EDRHSGVKDYVVVHG (SEQ ID NO:81), DRHSGVKDYVVVHGY (SEQ ID NO:82), RHSGVKDYVVVHGYF (SEQ ID NO:83), HSGVKDYVVVHGYFT (SEQ ID NO:84), SGVKDYVVVHGYFTE (SEQ ID NO:85), GVKDYVVVHGYFTEV (SEQ ID NO:86), ATFFIFNKLVKDPPN (SEQ ID NO:87), TFFIFNKLVKDPPNV (SEQ ID NO:88), FFIFNKLVKDPPNVQ (SEQ ID NO:89), FIFNKLVKDPPNVQI (SEQ ID NO:90), IFNKLVKDPPNVQIH (SEQ ID NO:91), FNKLVKDPPNVQIHT (SEQ ID NO:92), NKLVKDPPNVQIHTI (SEQ ID NO:93), KLVKDPPNVQIHTID (SEQ ID NO:94), LVKDPPNVQIHTIDG (SEQ ID NO:95), VKDPPNVQIHTIDGS (SEQ ID NO:96), KDPPNVQIHTIDGSS (SEQ ID NO:97), DGSSGVANPAMDPIY (SEQ ID NO:98), GSSGVANPAMDPIYD (SEQ ID NO:99), SSGVANPAMDPIYDE (SEQ ID NO:100), SGVANPAMDPIYDEP (SEQ ID NO:101), GVANPAMDPIYDEPT (SEQ ID NO:102), VANPAMDPIYDEPTT (SEQ ID NO:103), ANPAMDPIYDEPTTT (SEQ ID NO:104), NPAMDPIYDEPTTTT (SEQ ID NO:105), PAMDPIYDEPTTTTS (SEQ ID NO:106), AMDPIYDEPTTTTSV (SEQ ID NO:107), MDPIYDEPTTTTSVP (SEQ ID NO:108), DPIYDEPTTTTSVPL (SEQ ID NO:109), MMPTTLFAGTHITMT (SEQ ID NO:110), MPTTLFAGTHITMTT (SEQ ID NO:111), PTTLFAGTHITMTTV (SEQ ID NO:112), TTLFAGTHITMTTVY (SEQ ID NO:113), TLFAGTHITMTTVYH (SEQ ID NO:114), LFAGTHITMTTVYHI (SEQ ID NO:115), FAGTHITMTTVYHIT (SEQ ID NO:116), AGTHITMTTVYHITV (SEQ ID NO:117), GTHITMTTVYHITVS (SEQ ID NO:118), FQHQNSKKTTKLVVI (SEQ ID NO:119), QHQNSKKTTKLVVIL (SEQ ID NO:120), HQNSKKTTKLVVILR (SEQ ID NO:121), QNSKKTTKLVVILRI (SEQ ID NO:122), NSKKTTKLVVILRIG (SEQ ID NO:123), SKKTTKLVVILRIGT (SEQ ID NO:124), KKTTKLVVILRIGTQ (SEQ ID NO:125), KTTKLVVILRIGTQV (SEQ ID NO:126), TTKLVVILRIGTQVL (SEQ ID NO:127), TKLVVILRIGTQVLK (SEQ ID NO:128), KLVVILRIGTQVLKT (SEQ ID NO:129), LRIGTQVLKTMSLYM (SEQ ID NO:130), RIGTQVLKTMSLYMA (SEQ ID NO:131), IGTQVLKTMSLYMAI (SEQ ID NO:132), GTQVLKTMSLYMAIS (SEQ ID NO:133), TQVLKTMSLYMAISP (SEQ ID NO:134), QVLKTMSLYMAISPK (SEQ ID NO:135), VLKTMSLYMAISPKF (SEQ ID NO:136), LKTMSLYMAISPKFT (SEQ ID NO:137), KTMSLYMAISPKFTT (SEQ ID NO:138), MMSRRRLLACLCKHK (SEQ ID NO:139), MSRRRLLACLCKHKK (SEQ ID NO:140), SRRRLLACLCKHKKV (SEQ ID NO:141), RRRLLACLCKHKKVS (SEQ ID NO:142), RRLLACLCKHKKVST (SEQ ID NO:143), RLLACLCKHKKVSTN (SEQ ID NO:144), LLACLCKHKKVSTNL (SEQ ID NO:145), LACLCKHKKVSTNLC (SEQ ID NO:146), ACLCKHKKVSTNLCT (SEQ ID NO:147), CLCKHKKVSTNLCTH (SEQ ID NO:148), LCKHKKVSTNLCTHS (SEQ ID NO:149), CKHKKVSTNLCTHSF (SEQ ID NO:150), KHKKVSTNLCTHSFR (SEQ ID NO:151), HKKVSTNLCTHSFRK (SEQ ID NO:152), KKVSTNLCTHSFRKK (SEQ ID NO:153), KVSTNLCTHSFRKKQ (SEQ ID NO:154), VSTNLCTHSFRKKQV (SEQ ID NO:155), STNLCTHSFRKKQVR (SEQ ID NO:156), LCAYCCNIVNVSLVK (SEQ ID NO:157), CAYCCNIVNVSLVKP (SEQ ID NO:158), AYCCNIVNVSLVKPT (SEQ ID NO:159), YCCNIVNVSLVKPTV (SEQ ID NO:160), CCNIVNVSLVKPTVY (SEQ ID NO:161), CNIVNVSLVKPTVYV (SEQ ID NO:162), NIVNVSLVKPTVYVY (SEQ ID NO:163), IVNVSLVKPTVYVYS (SEQ ID NO:164), VNVSLVKPTVYVYSR (SEQ ID NO:165), NVSLVKPTVYVYSRV (SEQ ID NO:166), VSLVKPTVYVYSRVK (SEQ ID NO:167), SLVKPTVYVYSRVKN (SEQ ID NO:168), LVKPTVYVYSRVKNL (SEQ ID NO:169), VKPTVYVYSRVKNLN (SEQ ID NO:170), KPTVYVYSRVKNLNS (SEQ ID NO:171), PTVYVYSRVKNLNSS (SEQ ID NO:172), TVYVYSRVKNLNSSE (SEQ ID NO:173), VYVYSRVKNLNSSEG (SEQ ID NO:174), YVYSRVKNLNSSEGV (SEQ ID NO:175), VYSRVKNLNSSEGVP (SEQ ID NO:176), YSRVKNLNSSEGVPD (SEQ ID NO:177), SRVKNLNSSEGVPDL (SEQ ID NO:178), RVKNLNSSEGVPDLL (SEQ ID NO:179), VKNLNSSEGVPDLLV (SEQ ID NO:180), MADNGTITVEELKQL (SEQ ID NO:181), ADNGTITVEELKQLL (SEQ ID NO:182), DNGTITVEELKQLLE (SEQ ID NO:183), NGTITVEELKQLLEQ (SEQ ID NO:184), GTITVEELKQLLEQW (SEQ ID NO:185), TITVEELKQLLEQWN (SEQ ID NO:186), ITVEELKQLLEQWNL (SEQ ID NO:187), TVEELKQLLEQWNLV (SEQ ID NO:188), VEELKQLLEQWNLVI (SEQ ID NO:189), EELKQLLEQWNLVIG (SEQ ID NO:190), QFAYSNRNRFLYIIK (SEQ ID NO:191), FAYSNRNRFLYIIKL (SEQ ID NO:192), AYSNRNRFLYIIKLV (SEQ ID NO:193), YSNRNRFLYIIKLVF (SEQ ID NO:194), SNRNRFLYIIKLVFL (SEQ ID NO:195), NRNRFLYIIKLVFLW (SEQ ID NO:196), RNRFLYIIKLVFLWL (SEQ ID NO:197), NRFLYIIKLVFLWLL (SEQ ID NO:198), RFLYIIKLVFLWLLW (SEQ ID NO:199), FLYIIKLVFLWLLWP (SEQ ID NO:200), INWVTGGIAIAMACI (SEQ ID NO:201), NWVTGGIAIAMACIV (SEQ ID NO:202), WVTGGIAIAMACIVG (SEQ ID NO:203), VTGGIAIAMACIVGL (SEQ ID NO:204), TGGIAIAMACIVGLM (SEQ ID NO:205), GGIAIAMACIVGLMW (SEQ ID NO:206), GIAIAMACIVGLMWL (SEQ ID NO:207), IAIAMACIVGLMWLS (SEQ ID NO:208), LMWLSYFVASFRLFA (SEQ ID NO:209), MWLSYFVASFRLFAR (SEQ ID NO:210), WLSYFVASFRLFART (SEQ ID NO:211), LSYFVASFRLFARTR (SEQ ID NO:212), SYFVASFRLFARTRS (SEQ ID NO:213), YFVASFRLFARTRSM (SEQ ID NO:214), FVASFRLFARTRSMW (SEQ ID NO:215), VASFRLFARTRSMWS (SEQ ID NO:216), NILLNVPLRGTIVTR (SEQ ID NO:217), ILLNVPLRGTIVTRP (SEQ ID NO:218), LLNVPLRGTIVTRPL (SEQ ID NO:219), LNVPLRGTIVTRPLM (SEQ ID NO:220), NVPLRGTIVTRPLME (SEQ ID NO:221), VPLRGTIVTRPLMES (SEQ ID NO:222), PLRGTIVTRPLMESE (SEQ ID NO:223), LRGTIVTRPLMESEL (SEQ ID NO:224), RGTIVTRPLMESELV (SEQ ID NO:225), GTIVTRPLMESELVI (SEQ ID NO:226), TIVTRPLMESELVIG (SEQ ID NO:227), IVTRPLMESELVIGA (SEQ ID NO:229), VTRPLMESELVIGAV (SEQ ID NO:230), TRPLMESELVIGAVI (SEQ ID NO:231), RPLMESELVIGAVII (SEQ ID NO:232), VIGAVIIRGHLRMAG (SEQ ID NO:233), IGAVIIRGHLRMAGH (SEQ ID NO:234), GAVIIRGHLRMAGHP (SEQ ID NO:235), AVIIRGHLRMAGHPL (SEQ ID NO:236), VIIRGHLRMAGHPLG (SEQ ID NO:237), IIRGHLRMAGHPLGR (SEQ ID NO:238), IRGHLRMAGHPLGRC (SEQ ID NO:239), RGHLRMAGHPLGRCD (SEQ ID NO:240), GHLRMAGHPLGRCDI (SEQ ID NO:241), HLRMAGHPLGRCDIK (SEQ ID NO:242), LRMAGHPLGRCDIKD (SEQ ID NO:243), RMAGHPLGRCDIKDL (SEQ ID NO:244), MAGHPLGRCDIKDLP (SEQ ID NO:245), AGHPLGRCDIKDLPK (SEQ ID NO:246), GHPLGRCDIKDLPKE (SEQ ID NO:247), HPLGRCDIKDLPKEI (SEQ ID NO:248), PLGRCDIKDLPKEIT (SEQ ID NO:249), LGRCDIKDLPKEITV (SEQ ID NO:250), GRCDIKDLPKEITVA (SEQ ID NO:251), TLSYYKLGASQRVGT (SEQ ID NO:252), LSYYKLGASQRVGTD (SEQ ID NO:253), SYYKLGASQRVGTDS (SEQ ID NO:254), YYKLGASQRVGTDSG (SEQ ID NO:255), YKLGASQRVGTDSGF (SEQ ID NO:256), KLGASQRVGTDSGFA (SEQ ID NO:257), LGASQRVGTDSGFAA (SEQ ID NO:258), GASQRVGTDSGFAAY (SEQ ID NO:259), ASQRVGTDSGFAAYN (SEQ ID NO:260), IGNYKLNTDHAGSND (SEQ ID NO:261), GNYKLNTDHAGSNDN (SEQ ID NO:262), NYKLNTDHAGSNDNI (SEQ ID NO:263), YKLNTDHAGSNDNIA (SEQ ID NO:264), KLNTDHAGSNDNIAL (SEQ ID NO:265), LNTDHAGSNDNIALL (SEQ ID NO:266), NTDHAGSNDNIALLV (SEQ ID NO:267), TDHAGSNDNIALLVQ (SEQ ID NO:268), AEILIIIMRTFRIAI (SEQ ID NO:269), EILIIIMRTFRIAIW (SEQ ID NO:270), ILIIIMRTFRIAIWN (SEQ ID NO:271), LIIIMRTFRIAIWNL (SEQ ID NO:272), IIIMRTFRIAIWNLD (SEQ ID NO:273), IIMRTFRIAIWNLDV (SEQ ID NO:274), IMRTFRIAIWNLDVI (SEQ ID NO:275), MRTFRIAIWNLDVII (SEQ ID NO:276), RTFRIAIWNLDVIIS (SEQ ID NO:277), VIISSIVRQLFKPLT (SEQ ID NO:278), IISSIVRQLFKPLTK (SEQ ID NO:279), ISSIVRQLFKPLTKK (SEQ ID NO:280), SSIVRQLFKPLTKKN (SEQ ID NO:281), SIVRQLFKPLTKKNY (SEQ ID NO:282), IVRQLFKPLTKKNYS (SEQ ID NO:283), VRQLFKPLTKKNYSE (SEQ ID NO:284), RQLFKPLTKKNYSEL (SEQ ID NO:285), QLFKPLTKKNYSELD (SEQ ID NO:286), LFKPLTKKNYSELDD (SEQ ID NO:287), FKPLTKKNYSELDDE (SEQ ID NO:288), KPLTKKNYSELDDEE (SEQ ID NO:289), PLTKKNYSELDDEEP (SEQ ID NO:290), LTKKNYSELDDEEPM (SEQ ID NO:291), TKKNYSELDDEEPME (SEQ ID NO:292), KKNYSELDDEEPMEL (SEQ ID NO:293), KNYSELDDEEPMELD (SEQ ID NO:294), NYSELDDEEPMELDY (SEQ ID NO:295), YSELDDEEPMELDYP (SEQ ID NO:296), ELYHYQECVRGTTVL (SEQ ID NO:297), LYHYQECVRGTTVLL (SEQ ID NO:298), YHYQECVRGTTVLLK (SEQ ID NO:299), HYQECVRGTTVLLKE (SEQ ID NO:300), YQECVRGTTVLLKEP (SEQ ID NO:301), QECVRGTTVLLKEPC (SEQ ID NO:302), ECVRGTTVLLKEPCP (SEQ ID NO:303), CVRGTTVLLKEPCPS (SEQ ID NO:304), VRGTTVLLKEPCPSG (SEQ ID NO:305), RGTTVLLKEPCPSGT (SEQ ID NO:306), GTTVLLKEPCPSGTY (SEQ ID NO:307), TTVLLKEPCPSGTYE (SEQ ID NO:308), TVLLKEPCPSGTYEG (SEQ ID NO:309), CPSGTYEGNSPFHPL (SEQ ID NO:310), PSGTYEGNSPFHPLA (SEQ ID NO:311), SGTYEGNSPFHPLAD (SEQ ID NO:312), GTYEGNSPFHPLADN (SEQ ID NO:313), TYEGNSPFHPLADNK (SEQ ID NO:314), YEGNSPFHPLADNKF (SEQ ID NO:315), EGNSPFHPLADNKFA (SEQ ID NO:316), GNSPFHPLADNKFAL (SEQ ID NO:317), NSPFHPLADNKFALT (SEQ ID NO:318), SPFHPLADNKFALTC (SEQ ID NO:319), PFHPLADNKFALTCT (SEQ ID NO:320), FHPLADNKFALTCTS (SEQ ID NO:321), HPLADNKFALTCTST (SEQ ID NO:322), PLADNKFALTCTSTH (SEQ ID NO:323), LADNKFALTCTSTHF (SEQ ID NO:324), ADNKFALTCTSTHFA (SEQ ID NO:325), DNKFALTCTSTHFAF (SEQ ID NO:326), FIRQEEVQQELYSPL (SEQ ID NO:327), IRQEEVQQELYSPLF (SEQ ID NO:328), RQEEVQQELYSPLFL (SEQ ID NO:329), QEEVQQELYSPLFLI (SEQ ID NO:330), EEVQQELYSPLFLIV (SEQ ID NO:331), EVQQELYSPLFLIVA (SEQ ID NO:332), VQQELYSPLFLIVAA (SEQ ID NO:333), RWHTMVQTCTPNVTI (SEQ ID NO:334), WHTMVQTCTPNVTIN (SEQ ID NO:335), HTMVQTCTPNVTINC (SEQ ID NO:336), TMVQTCTPNVTINCQ (SEQ ID NO:337), MVQTCTPNVTINCQD (SEQ ID NO:338), PNVTINCQDPAGGAL (SEQ ID NO:339), NVTINCQDPAGGALI (SEQ ID NO:340), VTINCQDPAGGALIA (SEQ ID NO:341), TINCQDPAGGALIAR (SEQ ID NO:342), INCQDPAGGALIARC (SEQ ID NO:343), NCQDPAGGALIARCW (SEQ ID NO:344), CQDPAGGALIARCWY (SEQ ID NO:345), QDPAGGALIARCWYL (SEQ ID NO:346), IARCWYLHEGHQTAA (SEQ ID NO:347), ARCWYLHEGHQTAAF (SEQ ID NO:348), RCWYLHEGHQTAAFR (SEQ ID NO:349), CWYLHEGHQTAAFRD (SEQ ID NO:350), WYLHEGHQTAAFRDV (SEQ ID NO:351), YLHEGHQTAAFRDVL (SEQ ID NO:352), LHEGHQTAAFRDVLV (SEQ ID NO:353), HEGHQTAAFRDVLVV (SEQ ID NO:354), EGHQTAAFRDVLVVL (SEQ ID NO:355), GHQTAAFRDVLVVLN (SEQ ID NO:356), HQTAAFRDVLVVLNK (SEQ ID NO:357), NNAATVLQLPQGTTL (SEQ ID NO:358), NAATVLQLPQGTTLP (SEQ ID NO:359), AATVLQLPQGTTLPK (SEQ ID NO:360), ATVLQLPQGTTLPKG (SEQ ID NO:361), TVLQLPQGTTLPKGF (SEQ ID NO:362), VLQLPQGTTLPKGFY (SEQ ID NO:363), LQLPQGTTLPKGFYA (SEQ ID NO:364), QLPQGTTLPKGFYAE (SEQ ID NO:365), LPQGTTLPKGFYAEG (SEQ ID NO:366), PQGTTLPKGFYAEGS (SEQ ID NO:367), QGTTLPKGFYAEGSR (SEQ ID NO:368), GTTLPKGFYAEGSRG (SEQ ID NO:369), TTLPKGFYAEGSRGG (SEQ ID NO:370), TLPKGFYAEGSRGGS (SEQ ID NO:371), NSPARMASGGGETAL (SEQ ID NO:372), SPARMASGGGETALA (SEQ ID NO:373), PARMASGGGETALAL (SEQ ID NO:374), ARMASGGGETALALL (SEQ ID NO:375), RMASGGGETALALLL (SEQ ID NO:376), MASGGGETALALLLL (SEQ ID NO:377), ASGGGETALALLLLD (SEQ ID NO:378), QQGQTVTKKSAAEAS (SEQ ID NO:379), QGQTVTKKSAAEASK (SEQ ID NO:380), GQTVTKKSAAEASKK (SEQ ID NO:381), QTVTKKSAAEASKKP (SEQ ID NO:382), TVTKKSAAEASKKPR (SEQ ID NO:383), VTKKSAAEASKKPRQ (SEQ ID NO:384), TKKSAAEASKKPRQK (SEQ ID NO:385), KKSAAEASKKPRQKR (SEQ ID NO:386), KSAAEASKKPRQKRT (SEQ ID NO:387), SAAEASKKPRQKRTA (SEQ ID NO:388), AAEASKKPRQKRTAT (SEQ ID NO:389), KPRQKRTATKQYNVT (SEQ ID NO:390), PRQKRTATKQYNVTQ (SEQ ID NO:391), RQKRTATKQYNVTQA (SEQ ID NO:392), QKRTATKQYNVTQAF (SEQ ID NO:393), KRTATKQYNVTQAFG (SEQ ID NO:394), RTATKQYNVTQAFGR (SEQ ID NO:395), TATKQYNVTQAFGRR (SEQ ID NO:396), FGRRGPEQTQGNFGD (SEQ ID NO:397), GRRGPEQTQGNFGDQ (SEQ ID NO:398), RRGPEQTQGNFGDQD (SEQ ID NO:399), RGPEQTQGNFGDQDL (SEQ ID NO:400), GPEQTQGNFGDQDLI (SEQ ID NO:401), PEQTQGNFGDQDLIR (SEQ ID NO:402), EQTQGNFGDQDLIRQ (SEQ ID NO:403), QTQGNFGDQDLIRQG (SEQ ID NO:404), IKLDDKDPQFKDNVI (SEQ ID NO:405), KLDDKDPQFKDNVIL (SEQ ID NO:406), LDDKDPQFKDNVILL (SEQ ID NO:407), DDKDPQFKDNVILLN (SEQ ID NO:408), DKDPQFKDNVILLNK (SEQ ID NO:409), KDPQFKDNVILLNKH (SEQ ID NO:410), DPQFKDNVILLNKHI (SEQ ID NO:411), PQFKDNVILLNKHID (SEQ ID NO:412), QFKDNVILLNKHIDA (SEQ ID NO:413), QPLPQRQKKQPTVTL (SEQ ID NO:414), PLPQRQKKQPTVTLL (SEQ ID NO:415), LPQRQKKQPTVTLLP (SEQ ID NO:416), PQRQKKQPTVTLLPA (SEQ ID NO:417), QRQKKQPTVTLLPAA (SEQ ID NO:418), RQKKQPTVTLLPAAD (SEQ ID NO:419) and QKKQPTVTLLPAADM (SEQ ID NO:420).


The peptides above are recognized in linear and/or looped/cyclic form by at least one of the following sera: serum derived from an individual that has been infected by SARS-CoV and has recovered from SARS (serum called SARS-green); serum derived from an individual in which the virus was still detectable by PCR and who suffered a prolonged and severe form of the illness (serum called SARS-yellow); sera derived from individuals which have been and/or are infected by SARS-CoV (sera called 1a (individual 1, early serum), 1b (individual 1, late serum) and 2 (individual 2), 6 (individual 6), 37 (individual 37), 62 (individual 62) and London. It is clear for a person skilled in the art that the term “individuals that have been infected by SARS-CoV” as used herein also encompasses individuals that have been infected by SARS-CoV and are recovered from SARS.


In an embodiment of the invention, the invention encompasses a peptide having an amino acid sequence selected from the group consisting of RFFTLGSITAQPVKI (SEQ ID NO:9), FFTLGSITAQPVKID (SEQ ID NO:10), FTLGSITAQPVKIDN (SEQ ID NO:11), TLGSITAQPVKIDNA (SEQ ID NO:12), LGSITAQPVKIDNAS (SEQ ID NO:13), GSITAQPVKIDNASP (SEQ ID NO:14), SITAQPVKIDNASPA (SEQ ID NO:15), ITAQPVKIDNASPAS (SEQ ID NO:16), TAQPVKIDNASPAST (SEQ ID NO:17), AQPVKIDNASPASTV (SEQ ID NO:18), QPVKIDNASPASTVH (SEQ ID NO:19), PVKIDNASPASTVHA (SEQ ID NO:20), VKIDNASPASTVHAT (SEQ ID NO:21), KIDNASPASTVHATA (SEQ ID NO:22), IDNASPASTVHATAT (SEQ ID NO:23), DNASPASTVHATATI (SEQ ID NO:24), NASPASTVHATATIP (SEQ ID NO:25), ASPASTVHATATIPL (SEQ ID NO:26), SPASTVHATATIPLQ (SEQ ID NO:27), PASTVHATATIPLQA (SEQ ID NO:28), ASTVHATATIPLQAS (SEQ ID NO:29), STVHATATIPLQASL (SEQ ID NO:30), TVHATATIPLQASLP (SEQ ID NO:31), VHATATIPLQASLPF (SEQ ID NO:32), INACRIIMRCWLCWK (SEQ ID NO:33), NACRIIMRCWLCWKC (SEQ ID NO:34), ACRIIMRCWLCWKCK (SEQ ID NO:35), CRIIMRCWLCWKCKS (SEQ ID NO:36), RIIMRCWLCWKCKSK (SEQ ID NO:37), IIMRCWLCWKCKSKN (SEQ ID NO:38), IMRCWLCWKCKSKNP (SEQ ID NO:39), MRCWLCWKCKSKNPL (SEQ ID NO:40), RCWLCWKCKSKNPLL (SEQ ID NO:41), CWLCWKCKSKNPLLY (SEQ ID NO:42), WLCWKCKSKNPLLYD (SEQ ID NO:43), LCWKCKSKNPLLYDA (SEQ ID NO:44), CWKCKSKNPLLYDAN (SEQ ID NO:45), YDANYFVCWHTHNYD (SEQ ID NO:46), DANYFVCWHTHNYDY (SEQ ID NO:47), ANYFVCWHTHNYDYC (SEQ ID NO:48), NYFVCWHTHNYDYCI (SEQ ID NO:49), YFVCWHTHNYDYCIP (SEQ ID NO:50), FVCWHTHNYDYCIPY (SEQ ID NO:51), VCWHTHNYDYCIPYN (SEQ ID NO:52), CWHTHNYDYCIPYNS (SEQ ID NO:53), WHTHNYDYCIPYNSV (SEQ ID NO:54), HTHNYDYCIPYNSVT (SEQ ID NO:55), THNYDYCIPYNSVTD (SEQ ID NO:56), HNYDYCIPYNSVTDT (SEQ ID NO:57), NYDYCIPYNSVTDTI (SEQ ID NO:58), YDYCIPYNSVTDTIV (SEQ ID NO:59), DYCIPYNSVTDTIVV (SEQ ID NO:60), YCIPYNSVTDTIVVT (SEQ ID NO:61), GDGISTPKLKEDYQI (SEQ ID NO:62), DGISTPKLKEDYQIG (SEQ ID NO:63), GISTPKLKEDYQIGG (SEQ ID NO:64), ISTPKLKEDYQIGGY (SEQ ID NO:65), STPKLKEDYQIGGYS (SEQ ID NO:66), TPKLKEDYQIGGYSE (SEQ ID NO:67), PKLKEDYQIGGYSED (SEQ ID NO:68), KLKEDYQIGGYSEDR (SEQ ID NO:69), LKEDYQIGGYSEDRH (SEQ ID NO:70), KEDYQIGGYSEDRHS (SEQ ID NO:71), EDYQIGGYSEDRHSG (SEQ ID NO:72), DYQIGGYSEDRHSGV (SEQ ID NO:73), YQIGGYSEDRHSGVK (SEQ ID NO:74), QIGGYSEDRHSGVKD (SEQ ID NO:75), IGGYSEDRHSGVKDY (SEQ ID NO:76), GGYSEDRHSGVKDYV (SEQ ID NO:77), GYSEDRHSGVKDYVV (SEQ ID NO:78), YSEDRHSGVKDYVVV (SEQ ID NO:79), SEDRHSGVKDYVVVH (SEQ ID NO:80), EDRHSGVKDYVVVHG (SEQ ID NO:81), DRHSGVKDYVVVHGY (SEQ ID NO:82), RHSGVKDYVVVHGYF (SEQ ID NO:83), HSGVKDYVVVHGYFT (SEQ ID NO:84), SGVKDYVVVHGYFTE (SEQ ID NO:85), GVKDYVVVHGYFTEV (SEQ ID NO:86), ATFFIFNKLVKDPPN (SEQ ID NO:87), TFFIFNKLVKDPPNV (SEQ ID NO:88), FFIFNKLVKDPPNVQ (SEQ ID NO:89), FIFNKLVKDPPNVQI (SEQ ID NO:90), IFNKLVKDPPNVQIH (SEQ ID NO:91), FNKLVKDPPNVQIHT (SEQ ID NO:92), NKLVKDPPNVQIHTI (SEQ ID NO:93), KLVKDPPNVQIHTID (SEQ ID NO:94), LVKDPPNVQIHTIDG (SEQ ID NO:95), VKDPPNVQIHTIDGS (SEQ ID NO:96), KDPPNVQIHTIDGSS (SEQ ID NO:97), DGSSGVANPAMDPIY (SEQ ID NO:98), GSSGVANPAMDPIYD (SEQ ID NO:99), SSGVANPAMDPIYDE (SEQ ID NO:100), SGVANPAMDPIYDEP (SEQ ID NO:101), GVANPAMDPIYDEPT (SEQ ID NO:102), VANPAMDPIYDEPTT (SEQ ID NO:103), ANPAMDPIYDEPTTT (SEQ ID NO:104), NPAMDPIYDEPTTTT (SEQ ID NO:105), PAMDPIYDEPTTTTS (SEQ ID NO:106), AMDPIYDEPTTTTSV (SEQ ID NO:107), MDPIYDEPTTTTSVP (SEQ ID NO:108) and DPIYDEPTTTTSVPL (SEQ ID NO:109). These peptides are peptides of protein X1 from SARS-CoV Urbani. The above peptides having an amino acid sequence selected from the group consisting of INACRIIMRCWLCWK (SEQ ID NO:33), NACRIIMRCWLCWKC (SEQ ID NO:34), ACRIIMRCWLCWKCK (SEQ ID NO:35), CRIIMRCWLCWKCKS (SEQ ID NO:36), RIIMRCWLCWKCKSK (SEQ ID NO:37), IIMRCWLCWKCKSKN (SEQ ID NO:38), IMRCWLCWKCKSKNP (SEQ ID NO:39), MRCWLCWKCKSKNPL (SEQ ID NO:40), RCWLCWKCKSKNPLL (SEQ ID NO:41), CWLCWKCKSKNPLLY (SEQ ID NO:42), WLCWKCKSKNPLLYD (SEQ ID NO:43), LCWKCKSKNPLLYDA (SEQ ID NO:44) and CWKCKSKNPLLYDAN (SEQ ID NO:45) are peptides that are recognized in linear form. All of the other above peptides are recognized in linear as well as looped/cyclic form.


In another embodiment of the invention, the invention encompasses a peptide having an amino acid sequence selected from the group consisting of MMPTTLFAGTHITMT (SEQ ID NO:110), MPTTLFAGTHITMTT (SEQ ID NO:111), PTTLFAGTHITMTTV (SEQ ID NO:112), TTLFAGTHITMTTVY (SEQ ID NO:113), TLFAGTHITMTTVYH (SEQ ID NO:114), LFAGTHITMTTVYHI (SEQ ID NO:115), FAGTHITMTTVYHIT (SEQ ID NO:116), AGTHITMTTVYHITV (SEQ ID NO:117), GTHITMTTVYHITVS (SEQ ID NO:118), FQHQNSKKTTKLVVI (SEQ ID NO:119), QHQNSKKTTKLVVIL (SEQ ID NO:120), HQNSKKTTKLVVILR (SEQ ID NO:121), QNSKKTTKLVVILRI (SEQ ID NO:122), NSKKTTKLVVILRIG (SEQ ID NO:123), SKKTTKLVVILRIGT (SEQ ID NO:124), KKTTKLVVILRIGTQ (SEQ ID NO:125), KTTKLVVILRIGTQV (SEQ ID NO:126), TTKLVVILRIGTQVL (SEQ ID NO:127), TKLVVILRIGTQVLK (SEQ ID NO:128), KLVVILRIGTQVLKT (SEQ ID NO:129), LRIGTQVLKTMSLYM (SEQ ID NO:130), RIGTQVLKTMSLYMA (SEQ ID NO:131), IGTQVLKTMSLYMAI (SEQ ID NO:132), GTQVLKTMSLYMAIS (SEQ ID NO:133), TQVLKTMSLYMAISP (SEQ ID NO:134), QVLKTMSLYMAISPK (SEQ ID NO:135), VLKTMSLYMAISPKF (SEQ ID NO:136), LKTMSLYMAISPKFT (SEQ ID NO:137), KTMSLYMAISPKFTT (SEQ ID NO:138), MMSRRRLLACLCKHK (SEQ ID NO:139), MSRRRLLACLCKHKK (SEQ ID NO:140), SRRRLLACLCKHKKV (SEQ ID NO:141), RRRLLACLCKHKKVS (SEQ ID NO:142), RRLLACLCKHKKVST (SEQ ID NO:143), RLLACLCKHKKVSTN (SEQ ID NO:144), LLACLCKHKKVSTNL (SEQ ID NO:145), LACLCKHKKVSTNLC (SEQ ID NO:146), ACLCKHKKVSTNLCT (SEQ ID NO:147), CLCKHKKVSTNLCTH (SEQ ID NO:148), LCKHKKVSTNLCTHS (SEQ ID NO:149), CKHKKVSTNLCTHSF (SEQ ID NO:150), KHKKVSTNLCTHSFR (SEQ ID NO:151), HKKVSTNLCTHSFRK (SEQ ID NO:152), KKVSTNLCTHSFRKK (SEQ ID NO:153), KVSTNLCTHSFRKKQ (SEQ ID NO:154), VSTNLCTHSFRKKQV (SEQ ID NO:155) and STNLCTHSFRKKQVR (SEQ ID NO:156). These peptides are peptides of protein X2 from SARS-CoV Urbani. The above peptides having an amino acid sequence selected from the group consisting of MMSRRRLLACLCKHK (SEQ ID NO:139), MSRRRLLACLCKHKK (SEQ ID NO:140), SRRRLLACLCKHKKV (SEQ ID NO:141), RRRLLACLCKHKKVS (SEQ ID NO:142), RRLLACLCKHKKVST (SEQ ID NO:143), RLLACLCKHKKVSTN (SEQ ID NO:144), LLACLCKHKKVSTNL (SEQ ID NO:145), LACLCKHKKVSTNLC (SEQ ID NO:146), ACLCKHKKVSTNLCT (SEQ ID NO:147), CLCKHKKVSTNLCTH (SEQ ID NO:148), LCKHKKVSTNLCTHS (SEQ ID NO:149), CKHKKVSTNLCTHSF (SEQ ID NO:150), KHKKVSTNLCTHSFR (SEQ ID NO:151), HKKVSTNLCTHSFRK (SEQ ID NO:152), KKVSTNLCTHSFRKK (SEQ ID NO:153), KVSTNLCTHSFRKKQ (SEQ ID NO:154), VSTNLCTHSFRKKQV (SEQ ID NO:155) and STNLCTHSFRKKQVR (SEQ ID NO:156) are recognized in linear form. All of the other above peptides are recognized in linear as well as looped/cyclic form.


In another embodiment of the invention, the invention encompasses a peptide having an amino acid sequence from the group consisting of LCAYCCNIVNVSLVK (SEQ ID NO:157), CAYCCNIVNVSLVKP (SEQ ID NO:158), AYCCNIVNVSLVKPT (SEQ ID NO:159), YCCNIVNVSLVKPTV (SEQ ID NO:160), CCNIVNVSLVKPTVY (SEQ ID NO:161), CNIVNVSLVKPTVYV (SEQ ID NO:162), NIVNVSLVKPTVYVY (SEQ ID NO:163), IVNVSLVKPTVYVYS (SEQ ID NO:164), VNVSLVKPTVYVYSR (SEQ ID NO:165), NVSLVKPTVYVYSRV (SEQ ID NO:166), VSLVKPTVYVYSRVK (SEQ ID NO:167), SLVKPTVYVYSRVKN (SEQ ID NO:168), LVKPTVYVYSRVKNL (SEQ ID NO:169), VKPTVYVYSRVKNLN (SEQ ID NO:170), KPTVYVYSRVKNLNS (SEQ ID NO:171), PTVYVYSRVKNLNSS (SEQ ID NO:172), TVYVYSRVKNLNSSE (SEQ ID NO:173), VYVYSRVKNLNSSEG (SEQ ID NO:174), YVYSRVKNLNSSEGV (SEQ ID NO:175), VYSRVKNLNSSEGVP (SEQ ID NO:176), YSRVKNLNSSEGVPD (SEQ ID NO:177), SRVKNLNSSEGVPDL (SEQ ID NO:178), RVKNLNSSEGVPDLL (SEQ ID NO:179) and VKNLNSSEGVPDLLV (SEQ ID NO:180). These peptides are peptides of the E protein from SARS-CoV Urbani. All these peptides are recognized in linear as well as looped/cyclic form.


In another embodiment of the invention, the invention encompasses a peptide having an amino acid sequence selected from the group consisting of MADNGTITVEELKQL (SEQ ID NO:181), ADNGTITVEELKQLL (SEQ ID NO:182), DNGTITVEELKQLLE (SEQ ID NO:183), NGTITVEELKQLLEQ (SEQ ID NO:184), GTITVEELKQLLEQW (SEQ ID NO:185), TITVEELKQLLEQWN (SEQ ID NO:186), ITVEELKQLLEQWNL (SEQ ID NO:187), TVEELKQLLEQWNLV (SEQ ID NO:188), VEELKQLLEQWNLVI (SEQ ID NO:189), EELKQLLEQWNLVIG (SEQ ID NO:190), QFAYSNRNRFLYIIK (SEQ ID NO:191), FAYSNRNRFLYIIKL (SEQ ID NO:192), AYSNRNRFLYIIKLV (SEQ ID NO:193), YSNRNRFLYIIKLVF (SEQ ID NO:194), SNRNRFLYIIKLVFL (SEQ ID NO:195), NRNRFLYIIKLVFLW (SEQ ID NO:196), RNRFLYIIKLVFLWL (SEQ ID NO:197), NRFLYIIKLVFLWLL (SEQ ID NO:198), RFLYIIKLVFLWLLW (SEQ ID NO:199), FLYIIKLVFLWLLWP (SEQ ID NO:200), INWVTGGIAIAMACI (SEQ ID NO:201), NWVTGGIAIAMACIV (SEQ ID NO:202), WVTGGIAIAMACIVG (SEQ ID NO:203), VTGGIAIAMACIVGL (SEQ ID NO:204), TGGIAIAMACIVGLM (SEQ ID NO:205), GGIAIAMACIVGLMW (SEQ ID NO:206), GIAIAMACIVGLMWL (SEQ ID NO:207), IAIAMACIVGLMWLS (SEQ ID NO:208), LMWLSYFVASFRLFA (SEQ ID NO:209), MWLSYFVASFRLFAR (SEQ ID NO:210), WLSYFVASFRLFART (SEQ ID NO:211), LSYFVASFRLFARTR (SEQ ID NO:212), SYFVASFRLFARTRS (SEQ ID NO:213), YFVASFRLFARTRSM (SEQ ID NO:214), FVASFRLFARTRSMW (SEQ ID NO:215), VASFRLFARTRSMWS (SEQ ID NO:216), NILLNVPLRGTIVTR (SEQ ID NO:217), ILLNVPLRGTIVTRP (SEQ ID NO:218), LLNVPLRGTIVTRPL (SEQ ID NO:219), LNVPLRGTIVTRPLM (SEQ ID NO:220), NVPLRGTIVTRPLME (SEQ ID NO:221), VPLRGTIVTRPLMES (SEQ ID NO:222), PLRGTIVTRPLMESE (SEQ ID NO:223), LRGTIVTRPLMESEL (SEQ ID NO:224), RGTIVTRPLMESELV (SEQ ID NO:225), GTIVTRPLMESELVI (SEQ ID NO:226), TIVTRPLMESELVIG (SEQ ID NO:227), IVTRPLMESELVIGA (SEQ ID NO:229), VTRPLMESELVIGAV (SEQ ID NO:230), TRPLMESELVIGAVI (SEQ ID NO:231), RPLMESELVIGAVII (SEQ ID NO:232), VIGAVIIRGHLRMAG (SEQ ID NO:233), IGAVIIRGHLRMAGH (SEQ ID NO:234), GAVIIRGHLRMAGHP (SEQ ID NO:235), AVIIRGHLRMAGHPL (SEQ ID NO:236), VIIRGHLRMAGHPLG (SEQ ID NO:237), IIRGHLRMAGHPLGR (SEQ ID NO:238), IRGHLRMAGHPLGRC (SEQ ID NO:239), RGHLRMAGHPLGRCD (SEQ ID NO:240), GHLRMAGHPLGRCDI (SEQ ID NO:241), HLRMAGHPLGRCDIK (SEQ ID NO:242), LRMAGHPLGRCDIKD (SEQ ID NO:243), RMAGHPLGRCDIKDL (SEQ ID NO:244), MAGHPLGRCDIKDLP (SEQ ID NO:245), AGHPLGRCDIKDLPK (SEQ ID NO:246), GHPLGRCDIKDLPKE (SEQ ID NO:247), HPLGRCDIKDLPKEI (SEQ ID NO:248), PLGRCDIKDLPKEIT (SEQ ID NO:249), LGRCDIKDLPKEITV (SEQ ID NO:250), GRCDIKDLPKEITVA (SEQ ID NO:251), TLSYYKLGASQRVGT (SEQ ID NO:252), LSYYKLGASQRVGTD (SEQ ID NO:253), SYYKLGASQRVGTDS (SEQ ID NO:254), YYKLGASQRVGTDSG (SEQ ID NO:255), YKLGASQRVGTDSGF (SEQ ID NO:256), KLGASQRVGTDSGFA (SEQ ID NO:257), LGASQRVGTDSGFAA (SEQ ID NO:258), GASQRVGTDSGFAAY (SEQ ID NO:259), ASQRVGTDSGFAAYN (SEQ ID NO:260), IGNYKLNTDHAGSND (SEQ ID NO:261), GNYKLNTDHAGSNDN (SEQ ID NO:262), NYKLNTDHAGSNDNI (SEQ ID NO:263), YKLNTDHAGSNDNIA (SEQ ID NO:264), KLNTDHAGSNDNIAL (SEQ ID NO:265), LNTDHAGSNDNIALL (SEQ ID NO:266), NTDHAGSNDNIALLV (SEQ ID NO:267) and TDHAGSNDNIALLVQ (SEQ ID NO:268). These peptides are peptides of the M protein from SARS-CoV Urbani. The above peptides having an amino acid sequence selected from the group consisting of QFAYSNRNRFLYIIK (SEQ ID NO:191), FAYSNRNRFLYIIKL (SEQ ID NO:192), AYSNRNRFLYIIKLV (SEQ ID NO:193), YSNRNRFLYIIKLVF (SEQ ID NO:194), SNRNRFLYIIKLVFL (SEQ ID NO:195), NRNRFLYIIKLVFLW (SEQ ID NO:196), RNRFLYIIKLVFLWL (SEQ ID NO:197), NRFLYIIKLVFLWLL (SEQ ID NO:198), RFLYIIKLVFLWLLW (SEQ ID NO:199), FLYIIKLVFLWLLWP (SEQ ID NO:200), LMWLSYFVASFRLFA (SEQ ID NO:209), MWLSYFVASFRLFAR (SEQ ID NO:210), WLSYFVASFRLFART (SEQ ID NO:211), LSYFVASFRLFARTR (SEQ ID NO:212), SYFVASFRLFARTRS (SEQ ID NO:213), YFVASFRLFARTRSM (SEQ ID NO:214), FVASFRLFARTRSMW (SEQ ID NO:215), VASFRLFARTRSMWS (SEQ ID NO:216), NILLNVPLRGTIVTR (SEQ ID NO:217), ILLNVPLRGTIVTRP (SEQ ID NO:218), LLNVPLRGTIVTRPL (SEQ ID NO:219), LNVPLRGTIVTRPLM (SEQ ID NO:220), NVPLRGTIVTRPLME (SEQ ID NO:221), VPLRGTIVTRPLMES (SEQ ID NO:222), PLRGTIVTRPLMESE (SEQ ID NO:223), LRGTIVTRPLMESEL (SEQ ID NO:224), RGTIVTRPLMESELV (SEQ ID NO:225), GTIVTRPLMESELVI (SEQ ID NO:226), TIVTRPLMESELVIG (SEQ ID NO:227), IVTRPLMESELVIGA (SEQ ID NO:229), VTRPLMESELVIGAV (SEQ ID NO:230), TRPLMESELVIGAVI (SEQ ID NO:231) and RPLMESELVIGAVII (SEQ ID NO:232) are recognized in looped/cyclic form. All of the other above peptides are recognized in linear as well as looped/cyclic form.


In another embodiment of the invention, the invention encompasses a peptide having an amino acid sequence selected from the group consisting of AEILIIIMRTFRIAI (SEQ ID NO:269), EILIIIMRTFRIAIW (SEQ ID NO:270), ILIIIMRTFRIAIWN (SEQ ID NO:271), LIIIMRTFRIAIWNL (SEQ ID NO:272), IIIMRTFRIAIWNLD (SEQ ID NO:273), IIMRTFRIAIWNLDV (SEQ ID NO:274), IMRTFRIAIWNLDVI (SEQ ID NO:275), MRTFRIAIWNLDVII (SEQ ID NO:276), RTFRIAIWNLDVIIS (SEQ ID NO:277), VIISSIVRQLFKPLT (SEQ ID NO:278), IISSIVRQLFKPLTK (SEQ ID NO:279), ISSIVRQLFKPLTKK (SEQ ID NO:280), SSIVRQLFKPLTKKN (SEQ ID NO:281), SIVRQLFKPLTKKNY (SEQ ID NO:282), IVRQLFKPLTKKNYS (SEQ ID NO:283), VRQLFKPLTKKNYSE (SEQ ID NO:284), RQLFKPLTKKNYSEL (SEQ ID NO:285), QLFKPLTKKNYSELD (SEQ ID NO:286), LFKPLTKKNYSELDD (SEQ ID NO:287), FKPLTKKNYSELDDE (SEQ ID NO:288), KPLTKKNYSELDDEE (SEQ ID NO:289), PLTKKNYSELDDEEP (SEQ ID NO:290), LTKKNYSELDDEEPM (SEQ ID NO:291), TKKNYSELDDEEPME (SEQ ID NO:292), KKNYSELDDEEPMEL (SEQ ID NO:293), KNYSELDDEEPMELD (SEQ ID NO:294), NYSELDDEEPMELDY (SEQ ID NO:295) and YSELDDEEPMELDYP (SEQ ID NO:296). These peptides are peptides of the protein X3 from SARS-CoV Urbani. All of the above peptides are recognized in linear and looped/cyclic form.


In another embodiment, the invention encompasses a peptide having an amino acid sequence selected from the group consisting of ELYHYQECVRGTTVL (SEQ ID NO:297), LYHYQECVRGTTVLL (SEQ ID NO:298), YHYQECVRGTTVLLK (SEQ ID NO:299), HYQECVRGTTVLLKE (SEQ ID NO:300), YQECVRGTTVLLKEP (SEQ ID NO:301), QECVRGTTVLLKEPC (SEQ ID NO:302), ECVRGTTVLLKEPCP (SEQ ID NO:303), CVRGTTVLLKEPCPS (SEQ ID NO:304), VRGTTVLLKEPCPSG (SEQ ID NO:305), RGTTVLLKEPCPSGT (SEQ ID NO:306), GTTVLLKEPCPSGTY (SEQ ID NO:307), TTVLLKEPCPSGTYE (SEQ ID NO:308), TVLLKEPCPSGTYEG (SEQ ID NO:309), CPSGTYEGNSPFHPL (SEQ ID NO:310), PSGTYEGNSPFHPLA (SEQ ID NO:311), SGTYEGNSPFHPLAD (SEQ ID NO:312), GTYEGNSPFHPLADN (SEQ ID NO:313), TYEGNSPFHPLADNK (SEQ ID NO:314), YEGNSPFHPLADNKF (SEQ ID NO:315), EGNSPFHPLADNKFA (SEQ ID NO:316), GNSPFHPLADNKFAL (SEQ ID NO:317), NSPFHPLADNKFALT (SEQ ID NO:318), SPFHPLADNKFALTC (SEQ ID NO:319), PFHPLADNKFALTCT (SEQ ID NO:320), FHPLADNKFALTCTS (SEQ ID NO:321), HPLADNKFALTCTST (SEQ ID NO:322), PLADNKFALTCTSTH (SEQ ID NO:323), LADNKFALTCTSTHF (SEQ ID NO:324), ADNKFALTCTSTHFA (SEQ ID NO:325), DNKFALTCTSTHFAF (SEQ ID NO:326), FIRQEEVQQELYSPL (SEQ ID NO:327), IRQEEVQQELYSPLF (SEQ ID NO:328), RQEEVQQELYSPLFL (SEQ ID NO:329), QEEVQQELYSPLFLI (SEQ ID NO:330), EEVQQELYSPLFLIV (SEQ ID NO:331), EVQQELYSPLFLIVA (SEQ ID NO:332) and VQQELYSPLFLIVAA (SEQ ID NO:333). These peptides are peptides of protein X4 from SARS-CoV Urbani. The above peptides having an amino acid sequence selected from the group consisting of FIRQEEVQQELYSPL (SEQ ID NO:327), IRQEEVQQELYSPLF (SEQ ID NO:328), RQEEVQQELYSPLFL (SEQ ID NO:329), QEEVQQELYSPLFLI (SEQ ID NO:330), EEVQQELYSPLFLIV (SEQ ID NO:331), EVQQELYSPLFLIVA (SEQ ID NO:332) and VQQELYSPLFLIVAA (SEQ ID NO:333) are recognized in looped/cyclic form, while all other of the above peptides are recognized in linear and looped/cyclic form.


In another embodiment, the invention encompasses a peptide having an amino acid sequence selected from the group consisting of RWHTMVQTCTPNVTI (SEQ ID NO:334), WHTMVQTCTPNVTIN (SEQ ID NO:335), HTMVQTCTPNVTINC (SEQ ID NO:336), TMVQTCTPNVTINCQ (SEQ ID NO:337), MVQTCTPNVTINCQD (SEQ ID NO:338), PNVTINCQDPAGGAL (SEQ ID NO:339), NVTINCQDPAGGALI (SEQ ID NO:340), VTINCQDPAGGALIA (SEQ ID NO:341), TINCQDPAGGALIAR (SEQ ID NO:342), INCQDPAGGALIARC (SEQ ID NO:343), NCQDPAGGALIARCW (SEQ ID NO:344), CQDPAGGALIARCWY (SEQ ID NO:345), QDPAGGALIARCWYL (SEQ ID NO:346), IARCWYLHEGHQTAA (SEQ ID NO:347), ARCWYLHEGHQTAAF (SEQ ID NO:348), RCWYLHEGHQTAAFR (SEQ ID NO:349), CWYLHEGHQTAAFRD (SEQ ID NO:350), WYLHEGHQTAAFRDV (SEQ ID NO:351), YLHEGHQTAAFRDVL (SEQ ID NO:352), LHEGHQTAAFRDVLV (SEQ ID NO:353), HEGHQTAAFRDVLVV (SEQ ID NO:354), EGHQTAAFRDVLVVL (SEQ ID NO:355), GHQTAAFRDVLVVLN (SEQ ID NO:356) and HQTAAFRDVLVVLNK (SEQ ID NO:357). These peptides are peptides of protein X5 from SARS-CoV Urbani. All of these peptides are recognized in linear as well as looped/cyclic form.


In another embodiment of the invention, the peptide has an amino acid sequence selected from the group consisting of NNAATVLQLPQGTTL (SEQ ID NO:358), NAATVLQLPQGTTLP (SEQ ID NO:359), AATVLQLPQGTTLPK (SEQ ID NO:360), ATVLQLPQGTTLPKG (SEQ ID NO:361), TVLQLPQGTTLPKGF (SEQ ID NO:362), VLQLPQGTTLPKGFY (SEQ ID NO:363), LQLPQGTTLPKGFYA (SEQ ID NO:364), QLPQGTTLPKGFYAE (SEQ ID NO:365), LPQGTTLPKGFYAEG (SEQ ID NO:366), PQGTTLPKGFYAEGS (SEQ ID NO:367), QGTTLPKGFYAEGSR (SEQ ID NO:368), GTTLPKGFYAEGSRG (SEQ ID NO:369), TTLPKGFYAEGSRGG (SEQ ID NO:370), TLPKGFYAEGSRGGS (SEQ ID NO:371), NSPARMASGGGETAL (SEQ ID NO:372), SPARMASGGGETALA (SEQ ID NO:373), PARMASGGGETALAL (SEQ ID NO:374), ARMASGGGETALALL (SEQ ID NO:375), RMASGGGETALALLL (SEQ ID NO:376), MASGGGETALALLLL (SEQ ID NO:377), ASGGGETALALLLLD (SEQ ID NO:378), QQGQTVTKKSAAEAS (SEQ ID NO:379), QGQTVTKKSAAEASK (SEQ ID NO:380), GQTVTKKSAAEASKK (SEQ ID NO:381), QTVTKKSAAEASKKP (SEQ ID NO:382), TVTKKSAAEASKKPR (SEQ ID NO:383), VTKKSAAEASKKPRQ (SEQ ID NO:384), TKKSAAEASKKPRQK (SEQ ID NO:385), KKSAAEASKKPRQKR (SEQ ID NO:386), KSAAEASKKPRQKRT (SEQ ID NO:387), SAAEASKKPRQKRTA (SEQ ID NO:388), AAEASKKPRQKRTAT (SEQ ID NO:389), KPRQKRTATKQYNVT (SEQ ID NO:390), PRQKRTATKQYNVTQ (SEQ ID NO:391), RQKRTATKQYNVTQA (SEQ ID NO:392), QKRTATKQYNVTQAF (SEQ ID NO:393), KRTATKQYNVTQAFG (SEQ ID NO:394), RTATKQYNVTQAFGR (SEQ ID NO:395), TATKQYNVTQAFGRR (SEQ ID NO:396), FGRRGPEQTQGNFGD (SEQ ID NO:397), GRRGPEQTQGNFGDQ (SEQ ID NO:398), RRGPEQTQGNFGDQD (SEQ ID NO:399), RGPEQTQGNFGDQDL (SEQ ID NO:400), GPEQTQGNFGDQDLI (SEQ ID NO:401), PEQTQGNFGDQDLIR (SEQ ID NO:402), EQTQGNFGDQDLIRQ (SEQ ID NO:403), QTQGNFGDQDLIRQG (SEQ ID NO:404), IKLDDKDPQFKDNVI (SEQ ID NO:405), KLDDKDPQFKDNVIL (SEQ ID NO:406), LDDKDPQFKDNVILL (SEQ ID NO:407), DDKDPQFKDNVILLN (SEQ ID NO:408), DKDPQFKDNVILLNK (SEQ ID NO:409), KDPQFKDNVILLNKH (SEQ ID NO:410), DPQFKDNVILLNKHI (SEQ ID NO:411), PQFKDNVILLNKHID (SEQ ID NO:412), QFKDNVILLNKHIDA (SEQ ID NO:413), QPLPQRQKKQPTVTL (SEQ ID NO:414), PLPQRQKKQPTVTLL (SEQ ID NO:415), LPQRQKKQPTVTLLP (SEQ ID NO:416), PQRQKKQPTVTLLPA (SEQ ID NO:417), QRQKKQPTVTLLPAA (SEQ ID NO:418), RQKKQPTVTLLPAAD (SEQ ID NO:419) and QKKQPTVTLLPAADM (SEQ ID NO:420). These peptides are peptides of the N protein from SARS-CoV Urbani. The above peptides having an amino acid sequence selected from the group consisting of QQGQTVTKKSAAEAS (SEQ ID NO:379), QGQTVTKKSAAEASK (SEQ ID NO:380), GQTVTKKSAAEASKK (SEQ ID NO:381), QTVTKKSAAEASKKP (SEQ ID NO:382), TVTKKSAAEASKKPR (SEQ ID NO:383), VTKKSAAEASKKPRQ (SEQ ID NO:384), TKKSAAEASKKPRQK (SEQ ID NO:385), KKSAAEASKKPRQKR (SEQ ID NO:386), KSAAEASKKPRQKRT (SEQ ID NO:387), SAAEASKKPRQKRTA (SEQ ID NO:388), AAEASKKPRQKRTAT (SEQ ID NO:389), FGRRGPEQTQGNFGD (SEQ ID NO:397), GRRGPEQTQGNFGDQ (SEQ ID NO:398), RRGPEQTQGNFGDQD (SEQ ID NO:399), RGPEQTQGNFGDQDL (SEQ ID NO:400), GPEQTQGNFGDQDLI (SEQ ID NO:401), PEQTQGNFGDQDLIR (SEQ ID NO:402), EQTQGNFGDQDLIRQ (SEQ ID NO:403) and QTQGNFGDQDLIRQG (SEQ ID NO:404) are recognized in linear form. The above peptides having an amino acid sequence selected from the group consisting of QPLPQRQKKQPTVTL (SEQ ID NO:414), PLPQRQKKQPTVTLL (SEQ ID NO:415), LPQRQKKQPTVTLLP (SEQ ID NO:416), PQRQKKQPTVTLLPA (SEQ ID NO:417), QRQKKQPTVTLLPAA (SEQ ID NO:418), RQKKQPTVTLLPAAD (SEQ ID NO:419) and QKKQPTVTLLPAADM (SEQ ID NO:420) are recognized in looped/cyclic form. All of the other above peptides are recognized in linear and looped/cyclic form. A particularly interesting region due to its high reactivity with several sera is the region of the N protein containing the continuous series of linear and/or looped peptides starting with the sequence AATVLQLPQGTTLPK (SEQ ID NO:360) and ending with the peptide QGTTLPKGFYAEGSR (SEQ ID NO:368), thereby having the minimal sequence QGTTLPK (SEQ ID NO:606) in common.


All the oligopeptides identified above are good candidates to represent a neutralizing epitope of SARS-CoV, particularly SARS-CoV Urbani and/or other strains comprising the above oligopeptides. They may be used in therapy and/or prevention of conditions resulting from an infection with SARS-CoV as described herein and may also be used in diagnostic test methods as described herein.


In a further aspect of the invention, peptides mentioned above may be coupled/linked to each other. Peptides of the embodiments of the invention may be coupled/linked to peptides of other embodiments of the invention or the same embodiment of the invention. The peptides may be linear and/or looped/cyclic. A combination peptide may also constitute of more than two peptides. The peptides of the invention can be linked directly or indirectly via for instance a spacer of variable length. Furthermore, the peptides can be linked covalently or non-covalently. They may also be part of a fusion protein or conjugate.


A combination peptide which contains different peptides from one embodiment of the invention, i.e. from one protein, may mimic/simulate a discontinuous and/or conformational epitope. Such an epitope may be more antigenic than the single peptides. In general, the peptides should be in such a form as to be capable of mimicking/simulating a discontinuous and/or conformational epitope.


Obviously, the person skilled in the art may make modifications to the peptide without departing from the scope of the invention, e.g. by systematic length variation and/or replacement of residues and/or combination with other peptides. Peptides can be synthesized by known solid phase peptide synthesis techniques. The synthesis allows for one or more amino acids not corresponding to the original peptide sequence to be added to the amino or carboxyl terminus of the peptides. Such extra amino acids are useful for coupling the peptides to each other, to another peptide, to a large carrier protein or to a solid support. Amino acids that are inter alia useful for these purposes include tyrosine, lysine, glutamic acid, aspartic acid, cysteine and derivatives thereof. Additional protein modification techniques may be used, e.g., NH2-acetylation or COOH-terminal amidation, to provide additional means for coupling the peptides to another protein or peptide molecule or to a support, for example, polystyrene or polyvinyl microtiter plates, glass tubes or glass beads or particles and chromatographic supports, such as paper, cellulose and cellulose derivates, and silica. If the peptide is coupled to such a support, it may also be used for affinity purification of SARS-CoV recognizing antibodies.


In an embodiment the peptides of the invention can have a looped/cyclic form. Linear peptides can be made by chemically converting the structures to looped/cyclic forms. It is well known in the art that cyclization of linear peptides can modulate bioactivity by increasing or decreasing the potency of binding to the target protein. Linear peptides are very flexible and tend to adopt many different conformations in solution. Cyclization acts to constrain the number of available conformations, and thus, favor the more active or inactive structures of the peptide. Cyclization of linear peptides is accomplished either by forming a peptide bond between the free N-terminal and C-terminal ends (homodetic cyclopeptides) or by forming a new covalent bond between amino acid backbone and/or side chain groups located near the N- or C-terminal ends (heterodetic cyclopeptides). The latter cyclizations use alternate chemical strategies to form covalent bonds, for example, disulfides, lactones, ethers, or thioethers. However, cyclization methods other than the ones described above can also be used to form cyclic/looped peptides. Generally, linear peptides of more than five residues can be cyclized relatively easily. The propensity of the peptide to form a beta-turn conformation in the central four residues facilitates the formation of both homo- and heterodetic cyclopeptides. The looped/cyclic peptides of the invention preferably comprise a cysteine residue at position 2 and 14. Preferably, they contain a linker between the cysteine residues. The looped/cyclic peptides of the invention are recognized by antibodies in the serum of individuals that have been and/or are infected with SARS-CoV.


Alternatively, the peptides of the invention may be prepared by expression of the peptides or of a larger peptide including the desired peptide from a corresponding gene (whether synthetic or natural in origin) in a suitable host. The larger peptide may contain a cleavage site whereby the peptide of interest may be released by cleavage of the fused molecule.


The resulting peptides may then be tested for binding to sera from subjects that have been previously infected with SARS-CoV, to sera from infected subjects or to purified (recombinant) SARS-CoV antibodies in a way essentially as described herein. If such a peptide can still be bound by the sera or antibody, it is considered as a functional fragment or analogue of the peptides according to the invention. Also, even stronger antigenic peptides may be identified in this manner, which peptides may be used for vaccination purposes or for generating strongly neutralizing antibodies for therapeutic and/or prophylactic purposes. The peptides may also be used in diagnostic tests. Therefore the invention also provides the peptides comprising a part (or even consisting of a part) of a peptide according to the invention, wherein said part is recognized by antibodies present in serum derived from a subject/individual that has been and/or is infected by SARS-CoV or wherein said part is recognized by a recombinant monoclonal antibody such as the antibody 03-018.


Furthermore, the invention provides peptides consisting of an analogue of a peptide according to the invention, wherein one or more amino acids are substituted for another amino acid, and wherein said analogue is recognized by antibodies present in serum derived from a subject/individual that has been and/or is infected by SARS-CoV or wherein said part is recognized by a recombinant monoclonal antibody such as the antibody 03-018. Alternatively, further embodiments comprise analogues of the various embodiments of the present invention comprising an amino acid sequence containing insertions, deletions or combinations thereof of one or more amino acids compared to the amino acid sequences of the parent peptides. Furthermore, analogues can comprise truncations of the amino acid sequence at either or both the amino or carboxy termini of the peptides. Analogues according to the invention may have the same or different, either higher or lower, antigenic properties compared to the parent peptides, but are still recognized by antibodies present in serum derived from an individual that has been and/or is infected by SARS-CoV or by a recombinant monoclonal antibody such as the antibody 03-018. That part of a 15-mer still representing immunogenic activity consists of about 6-12, preferably 7-11, more preferably 8-10, even more preferably 9 amino acids within the 15-mer.


The peptides, parts thereof or analogues thereof according to the invention may be used directly as peptides, but may also be used conjugated to an immunogenic carrier, which may be, e.g. a polypeptide or polysaccharide. If the carrier is a polypeptide, the desired conjugate may be expressed as a fusion protein. Alternatively, the peptide and the carrier may be obtained separately and then conjugated. This conjugation may be covalently or non-covalently. A fusion protein is a chimeric protein, comprising the peptide according to the invention, and another protein or part thereof not being a SARS-CoV protein. Such fusion proteins may for instance be used to raise antibodies for diagnostic, prophylactic or therapeutic purposes or to directly immunize, i.e. vaccinate, humans or animals. Any protein or part thereof or even peptide may be used as fusion partner for the peptide according to the invention to form a fusion protein, and non-limiting examples are bovine serum albumin, keyhole limpet hemocyanin, etc.


The peptides may be labeled (signal-generating) or unlabeled. This depends on the type of assay used. Labels which may be coupled to the peptides are those known in the art and include, but are not limited to, enzymes, radionuclides, fluorogenic and chromogenic substrates, cofactors, biotin/avidin, colloidal gold, and magnetic particles.


It is another aspect of the invention to provide nucleic acid molecules encoding peptides, parts thereof or analogues thereof or fusion proteins according to the invention. Such nucleic acid molecules may suitably be used in the form of plasmids for propagation and expansion in bacterial or other hosts. Moreover, recombinant DNA techniques well known to the person skilled in the art can be used to obtain nucleic acid molecules encoding analogues of the peptides according to the invention, e.g. by mutagenesis of the sequences encoding the peptides according to the invention. The skilled man will appreciate that analogues of the nucleic acid molecules are also intended to be a part of the present invention. Analogues are also nucleic acid sequences that can be directly translated, using the standard genetic code, to provide an amino acid sequence identical to that translated from the parent nucleic acid molecules. Another aspect of nucleic acid molecules according to the present invention, is their potential for use in gene-therapy or vaccination applications. Therefore, in another embodiment of the invention, nucleic acid molecules according to the invention are provided wherein said nucleic acid molecule is present in a gene delivery vehicle. A “gene delivery vehicle” as used herein refers to an entity that can be used to introduce nucleic acid molecules into cells, and includes liposomes, naked DNA, plasmid DNA, optionally coupled to a targeting moiety such as an antibody with specificity for an antigen presenting cell, recombinant viruses, and the like. Preferred gene therapy vehicles of the present invention will generally be viral vectors, such as comprised within a recombinant retrovirus, herpes simplex virus (HSV), adenovirus, adeno-associated virus (AAV), cytomegalovirus (CMV), and the like. Such applications of the nucleic acid sequences according to the invention are included in the present invention. The person skilled in the art will be aware of the possibilities of recombinant viruses for administering sequences of interest to cells. The administration of the nucleic acids of the invention to cells can result in an enhanced immune response. Alternatively, the nucleic acid encoding the peptides of the invention can be used as naked DNA vaccines, e.g. immunization by injection of purified nucleic acid molecules into humans or animals.


In another aspect, the invention provides antibodies recognizing the peptides, parts or analogues thereof of the invention. Antibodies can be obtained according to routine methods well known to the person skilled in the art, including but not limited to immunization of animals such as mice, rabbits, goats, and the like, or by antibody, phage or ribosome display methods (see e.g. Using Antibodies: A Laboratory Manual, Edited by: E. Harlow, D. Lane (1998), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Current Protocols in Immunology, Edited by: J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober (2001), John Wiley & Sons Inc., New York; and Phage Display: A Laboratory Manual. Edited by: C. F. Barbas, D. R. Burton, J. K. Scott and G. J. Silverman (2001), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., the disclosures of which are incorporated herein by reference).


The antibodies of the invention can be intact immunoglobulin molecules such as polyclonal or monoclonal antibodies, in particular human monoclonal antibodies, or the antibodies can be functional fragments thereof, i.e. fragments that are still capable of binding to the antigen. These fragments include, but not limited to, Fab, F(ab′), F(ab′)2, Fv, dAb, Fd, complementarity determining region (CDR) fragments, single-chain antibodies (scFv), bivalent single-chain antibodies, diabodies, triabodies, tetrabodies, and (poly)peptides that contain at least a fragment of an immunoglobulin that is sufficient to confer specific antigen binding to the (poly)peptides. The antibodies of the invention can be used in non-isolated or isolated form. Furthermore, the antibodies of the invention can be used alone or in a mixture/composition comprising at least one antibody (or variant or fragment thereof) of the invention. Antibodies of the invention include all the immunoglobulin classes and subclasses known in the art. Depending on the amino acid sequence of the constant domain of their heavy chains, binding molecules can be divided into the five major classes of intact antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgA1, IgA2, IgG1, IgG2, IgG3 and IgG4. The above mentioned antigen-binding fragments may be produced synthetically or by enzymatic or chemical cleavage of intact immunoglobulins or they may be genetically engineered by recombinant DNA techniques. The methods of production are well known in the art and are described, for example, in Antibodies: A Laboratory Manual, Edited by: E. Harlow and D. Lane (1988), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., which is incorporated herein by reference. A binding molecule or antigen-binding fragment thereof may have one or more binding sites. If there is more than one binding site, the binding sites may be identical to one another or they may be different.


The antibodies of the invention can be naked or unconjugated antibodies. A naked or unconjugated antibody is intended to refer to an antibody that is not conjugated, operatively linked or otherwise physically or functionally associated with an effector moiety or tag, such as inter alia a toxic substance, a radioactive substance, a liposome, an enzyme. It will be understood that naked or unconjugated antibodies do not exclude antibodies that have been stabilized, multimerized, humanized or in any other way manipulated, other than by the attachment of an effector moiety or tag. Accordingly, all post-translationally modified naked and unconjugated antibodies are included herewith, including where the modifications are made in the natural antibody-producing cell environment, by a recombinant antibody-producing cell, and are introduced by the hand of man after initial antibody preparation. Of course, the term naked or unconjugated antibody does not exclude the ability of the antibody to form functional associations with effector cells and/or molecules after administration to the body, as some of such interactions are necessary in order to exert a biological effect. The lack of associated effector group or tag is therefore applied in definition to the naked or unconjugated binding molecule in vitro, not in vivo.


Alternatively, the antibodies as described in the present invention can be conjugated to tags and be used for detection and/or analytical and/or diagnostic purposes. The tags used to label the antibodies for those purposes depend on the specific detection/analysis/diagnosis techniques and/or methods used such as inter alia immunohistochemical staining of tissue samples, flow cytometric detection, scanning laser cytometric detection, fluorescent immunoassays, enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), bioassays (e.g., neutralization assays, growth inhibition assays), Western blotting applications, etc. For immunohistochemical staining of tissue samples preferred labels are enzymes that catalyze production and local deposition of a detectable product. Enzymes typically conjugated to antibodies to permit their immunohistochemical visualization are well-known and include, but are not limited to, alkaline phosphatase, P-galactosidase, glucose oxidase, horseradish peroxidase, and urease. Typical substrates for production and deposition of visually detectable products include, but are not limited to, o-nitrophenyl-beta-D-galactopyranoside (ONPG), o-phenylenediamine dihydrochloride (OPD), p-nitrophenyl phosphate (PNPP), p-nitrophenyl-beta-D-galactopryanoside (PNPG), 3′,3′diaminobenzidine (DAB), 3-amino-9-ethylcarbazole (AEC), 4-chloro-1-naphthol (CN), 5-bromo-4-chloro-3-indolyl-phosphate (BCIP), ABTS, BluoGal, iodonitrotetrazolium (INT), nitroblue tetrazolium chloride (NBT), phenazine methosulfate (PMS), phenolphthalein monophosphate (PMP), tetramethyl benzidine (TMB), tetranitroblue tetrazolium (TNBT), X-Gal, X-Gluc, and X-glucoside. Other substrates that can be used to produce products for local deposition are luminescent substrates. For example, in the presence of hydrogen peroxide, horseradish peroxidase can catalyze the oxidation of cyclic diacylhydrazides such as luminol. Next to that, binding molecules of the immunoconjugate of the invention can also be labeled using colloidal gold or they can be labeled with radioisotopes, such as 33p, 32p, 35S, 3H, and 125I. When the antibodies of the present invention are used for flow cytometric detections, scanning laser cytometric detections, or fluorescent immunoassays, they can usefully be labeled with fluorophores. A wide variety of fluorophores useful for fluorescently labeling the antibodies of the present invention include, but are not limited to, Alexa Fluor and Alexa Fluor&commat dyes, BODIPY dyes, Cascade Blue, Cascade Yellow, Dansyl, lissamine rhodamine B, Marina Blue, Oregon Green 488, Oregon Green 514, Pacific Blue, rhodamine 6G, rhodamine green, rhodamine red, tetramethylrhodamine, Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, fluorescein isothiocyanate (FITC), allophycocyanin (APC), R-phycoerythrin (PE), peridinin chlorophyll protein (PerCP), Texas Red, fluorescence resonance energy tandem fluorophores such as PerCP-Cy5.5, PE-Cy5, PE-Cy5.5, PE-Cy7, PE-Texas Red, and APC-Cy7. When the antibodies of the present invention are used for secondary detection using labeled avidin, streptavidin, captavidin or neutravidin, the antibodies may be labeled with biotin.


Next to that, the antibodies of the invention may be conjugated to photoactive agents or dyes such as fluorescent and other chromogens or dyes to use the so obtained immunoconjugates in photoradiation, phototherapy, or photodynamic therapy. The photoactive agents or dyes include, but are not limited to, photofrin.RTM, synthetic diporphyrins and dichlorins, phthalocyanines with or without metal substituents, chloroaluminum phthalocyanine with or without varying substituents, O-substituted tetraphenyl porphyrins, 3,1-meso tetrakis (o-propionamido phenyl) porphyrin, verdins, purpurins, tin and zinc derivatives of octaethylpurpurin, etiopurpurin, hydroporphyrins, bacteriochlorins of the tetra(hydroxyphenyl) porphyrin series, chlorins, chlorin e6, mono-1-aspartyl derivative of chlorin e6, di-1-aspartyl derivative of chlorin e6, tin(IV) chlorin e6, meta-tetrahydroxyphenylchlorin, benzoporphyrin derivatives, benzoporphyrin monoacid derivatives, tetracyanoethylene adducts of benzoporphyrin, dimethyl acetylenedicarboxylate adducts of benzoporphyrin, Diels-Adler adducts, monoacid ring “a” derivative of benzoporphyrin, sulfonated aluminum PC, sulfonated AlPc, disulfonated, tetrasulfonated derivative, sulfonated aluminum naphthalocyanines, naphthalocyanines with or without metal substituents and with or without varying substituents, anthracenediones, anthrapyrazoles, aminoanthraquinone, phenoxazine dyes, phenothiazine derivatives, chalcogenapyrylium dyes, cationic selena and tellurapyrylium derivatives, ring-substituted cationic PC, pheophorbide derivative, naturally occurring porphyrins, hematoporphyrin, ALA-induced protoporphyrin IX, endogenous metabolic precursors, 5-aminolevulinic acid benzonaphthoporphyrazines, cationic imminium salts, tetracyclines, lutetium texaphyrin, tin-etio-purpurin, porphycenes, benzophenothiazinium and combinations thereof.


When the antibodies of the invention are used for in vivo diagnostic use, the antibodies can also be made detectable by conjugation to e.g. magnetic resonance imaging (MRI) contrast agents, such as gadolinium diethylenetriaminepentaacetic acid, to ultrasound contrast agents or to X-ray contrast agents, or by radioisotopic labeling.


The antibodies according to the invention may be capable of neutralizing SARS-CoV infectivity and are useful for therapeutic purposes against this virus. Assays to detect and measure virus neutralizing activity of antibodies are well known in the art. For example, a SARS-CoV neutralization assay can be performed on Vero cells (ATCC CCL 81). Antibodies of the invention are mixed with virus suspension and incubated for one hour at 37° C. The obtained suspension is then inoculated onto sub-confluent Vero cells (approximately 80% density) grown in 96-well cell-culture plates. The inoculated cells are cultured for 3-4 days at 37° C. and observed daily for the development of cytopathic effect (CPE). CPE is compared to the positive control (virus inoculated cells) and negative controls (mock-inoculated cells or cells incubated with antibody only). Alternatively, the antibodies may inhibit or down-regulate SARS-CoV replication, are complement fixing antibodies capable of assisting in the lysis of enveloped SARS-CoV and/or act as opsonins and augment phagocytosis of SARS-CoV either by promoting its uptake via Fc or C3b receptors or by agglutinating SARS-CoV to make it more easily phagocytosed.


The invention also provides nucleic acid molecules encoding the antibodies according to the invention.


It is another aspect of the invention to provide vectors, i.e. nucleic acid constructs, comprising one or more nucleic acid molecules according to the present invention. The nucleic acid molecule may either encode the peptides, parts or analogues thereof or fusion proteins of the invention or encode the antibodies of the invention. Vectors can be derived from plasmids such as inter alia F, R1, RP1, Col, pBR322, TOL, Ti, etc; cosmids; phages such as lambda, lambdoid, M13, Mu, P1, P22, Qp, T-even, T-odd, T2, T4, T7, etc; plant viruses such as inter alia alfalfa mosaic virus, bromovirus, capillovirus, carlavirus, carnovirus, caulivirus, clostervirus, comovirus, cryptovirus, cucumovirus, dianthovirus, fabavirus, fijivirus, furovirus, geminivirus, hordeivirus, ilarvirus, luteovirus, machlovirus, marafivirus, necrovirus, nepovirus, phytorepvirus, plant rhabdovirus, potexvirus, potyvirus, sobemovirus, tenuivirus, tobamovirus, tobravirus, tomato spotted wilt virus, tombusvirus, tymovirus, etc; or animal viruses such as inter alia adenovirus, arenaviridae, baculoviridae, bimaviridae, bunyaviridae, calciviridae, cardioviruses, coronaviridae, corticoviridae, cystoviridae, Epstein-Barr virus, enteroviruses, filoviridae, flaviviridae, Foot-and-Mouth disease virus, hepadnaviridae, hepatitis viruses, herpesviridae, immunodeficiency viruses, influenza virus, inoviridae, iridoviridae, orthomyxoviridae, papovaviruses, paramyxoviridae, parvoviridae, picomaviridae, poliovirus, polydnaviridae, poxviridae, reoviridae, retroviruses, rhabdoviridae, rhinoviruses, Semliki Forest virus, tetraviridae, togaviridae, toroviridae, vaccinia virus, vescular stomatitis virus, etc. Vectors can be used for cloning and/or for expression of the peptides, parts or analogues thereof of the invention or antibodies of the invention of the invention and might even be used for gene therapy purposes. Vectors comprising one or more nucleic acid molecules according to the invention operably linked to one or more expression-regulating nucleic acid molecules are also covered by the present invention. The choice of vector is dependent on the recombinant procedures followed and the host used. Introduction of vectors in host cells can be effected by inter alia calcium phosphate transfection, virus infection, DEAE-dextran mediated transfection, lipofectamin transfection or electroporation. Vectors may be autonomously replicating or may replicate together with the chromosome into which they have been integrated. Preferably, the vectors contain one or more selection markers. Useful markers are dependent on the host cells of choice and are well known to persons skilled in the art. They include, but are not limited to, kanamycin, neomycin, puromycin, hygromycin, zeocin, thymidine kinase gene from Herpes simplex virus (HSV-TK), dihydrofolate reductase gene from mouse (dhfr). Vectors comprising one or more nucleic acid molecules encoding the peptides, parts or analogues thereof or antibodies as described above operably linked to one or more nucleic acid molecules encoding proteins or peptides that can be used to isolate these molecules are also covered by the invention. These proteins or peptides include, but are not limited to, glutathione-S-transferase, maltose binding protein, metal-binding polyhistidine, green fluorescent protein, luciferase and beta-galactosidase.


Hosts containing one or more copies of the vectors mentioned above are an additional subject of the present invention. Preferably, the hosts are cells. Preferably, the cells are suitably used for the manipulation and propagation of nucleic acid molecules. Suitable cells include, but are not limited to, cells of mammalian, plant, insect, fungal or bacterial origin. Bacterial cells include, but are not limited to, cells from Gram positive bacteria such as several species of the genera Bacillus, Streptomyces and Staphylococcus or cells of Gram negative bacteria such as several species of the genera Escherichia, such as Escherichia coli, and Pseudomonas. In the group of fungal cells preferably yeast cells are used. Expression in yeast can be achieved by using yeast strains such as inter alia Pichia pastoris, Saccharomyces cerevisiae and Hansenula polymorpha. Furthermore, insect cells such as cells from Drosophila and Sf9 can be used as host cells. Besides that, the host cells can be plant cells such as inter alia cells from crop plants such as forestry plants, or cells from plants providing food and raw materials such as cereal plants, or medicinal plants, or cells from ornamentals, or cells from flower bulb crops. Transformed (transgenic) plants or plant cells are produced by known methods, for example, Agrobacterium-mediated gene transfer, transformation of leaf discs, protoplast transformation by polyethylene glycol-induced DNA transfer, electroporation, sonication, microinjection or bolistic gene transfer. Additionally, a suitable expression system can be a baculovirus system. Expression systems using mammalian cells such as Chinese Hamster Ovary (CHO) cells, COS cells, BHK cells or Bowes melanoma cells are preferred in the present invention. Mammalian cells provide expressed proteins with posttranslational modifications that are most similar to natural molecules of mammalian origin. Since the present invention deals with molecules that may have to be administered to humans, a completely human expression system would be particularly preferred. Therefore, even more preferably, the host cells are human cells. Examples of human cells are inter alia HeLa, 911, AT1080, A549, 293 and HEK293T cells. Preferred mammalian cells are human retina cells such as 911 cells or the cell line marketed under the trademark PER.C6® (PER.C6 is a registered trademark of Crucell Holland B.V.). For the purposes of this application “PER.C6” refers to cells deposited under number 96022940 or ancestors, passages up-stream or downstream as well as descendants from ancestors of deposited cells, as well as derivatives of any of the foregoing.


In a further aspect, the invention is directed to a peptide, part or analogue thereof according to the invention, or a fusion protein according to the invention or a nucleic acid molecule encoding a peptide, part or analogue thereof according to the invention or a nucleic acid molecule encoding a fusion protein of the invention for use as a medicament. In other words, the invention is directed to a method of detection and/or prevention and/or treatment wherein a peptide, part or analogue thereof according to the invention, or a fusion protein according to the invention or a nucleic acid molecule encoding a peptide, part or analogue thereof according to the invention or a nucleic acid molecule encoding a fusion protein of the invention is used. Preferably, the peptides, parts or analogues thereof of the invention may for example be for use as an immunogen, preferably a vaccine.


If the peptides, parts and analogues thereof of the invention are in the form of a vaccine, they are preferably formulated into compositions. A composition may also comprise more than one peptide of the invention. These peptides may be different or identical and may be linked, covalently or non-covalently, to each other or not linked to each other. They may be linear and/or looped/cyclic. For formulation of such compositions, an immunogenically effective amount of at least one of the peptides of the invention is admixed with a physiologically acceptable carrier suitable for administration to animals including man. The peptides may be covalently attached to each other, to other peptides, to a protein carrier or to other carriers, incorporated into liposomes or other such vesicles, or complexed with an adjuvant or adsorbent as is known in the vaccine art. Alternatively, the peptides are not complexed with the any of the above molecules and are merely admixed with a physiologically acceptable carrier such as normal saline or a buffering compound suitable for administration to animals including man. As with all immunogenic compositions for eliciting antibodies, the immunogenically effective amounts of the peptides of the invention must be determined. Factors to be considered include the immunogenicity of the native peptide, whether or not the peptide will be complexed with or covalently attached to an adjuvant or carrier protein or other carrier and route of administration for the composition, i.e. intravenous, intramuscular, subcutaneous, etc., and number of immunizing doses to be administered. Such factors are known in the vaccine art and it is well within the reach of a skilled artisan to make such determinations without undue experimentation. The peptides, parts or analogues thereof or compositions comprising these compounds may elicit an antibody response upon administrating to human or animal subjects. Such an antibody response protects against further infection by SARS-CoV and/or will retard the onset or progress of the symptoms associated with SARS.


Most preferably, they can be used in the prevention and/or treatment of a condition resulting from a SARS-CoV.


In yet another aspect, antibodies of the invention can be used as a medicament, preferably in the treatment of a condition resulting from a SARS-CoV. In a specific embodiment, they can be used with any other medicament available to treat a condition resulting from a SARS-CoV. In other words, the invention also pertains to a method of prevention and/or treatment, wherein the antibodies, fragments or functional variants thereof according to the invention are used.


The antibodies of the invention can also be used for detection of the SARS-CoV, e.g. for diagnostic purposes. Therefore, the invention provides a diagnostic test method for determining the presence of SARS-CoV in a sample, characterized in that said sample is put into contact with an antibody according to the invention. Preferably the antibody is contacted with the sample under conditions which allow the formation of an immunological complex between the antibodies and SARS-CoV or fragments or (poly)peptides thereof that may be present in the sample. The formation of an immunological complex, if any, indicating the presence of SARS-CoV in the sample, is then detected and measured by suitable means. The sample may be a biological sample including, but not limited to blood, serum, urine, tissue or other biological material from (potentially) infected subjects, or a nonbiological sample such as water, drink, etc. The (potentially) infected subjects may be human subjects, but also animals that are suspected as carriers of SARS-CoV might be tested for the presence of SARS-CoV using these antibodies. Detection of binding may be according to standard techniques known to a person skilled in the art, such as an ELISA, Western blot, RIA, etc. The antibodies may suitably be included in kits for diagnostic purposes. It is therefore another aspect of the invention to provide a kit of parts for the detection of SARS-CoV comprising an antibody according to the invention.


The antibodies of the invention may be used to purify SARS-CoV or a fragment thereof. Antibodies against peptides of specific proteins of SARS-CoV such as the proteins mentioned herein, may also be used to purify the proteins. Purification techniques for viruses and proteins are well known to the skilled artisan.


Also the peptides of the invention can be used directly for the detection of SARS-CoV recognizing antibodies, for instance for diagnostic purposes. It is therefore an object of the invention to provide methods for determining the presence of antibodies recognizing SARS-CoV in a sample, characterized in that said sample is put into contact with a peptide (or part thereof, analogue thereof, fusion protein or conjugate) of the invention. Preferably the peptide is contacted with the sample under conditions which allow the formation of an immunological complex between the peptide and any antibodies to SARS-CoV that may be present in the sample. The formation of an immunological complex, if any, indicating the presence of antibodies to SARS-CoV in the sample, is then detected and measured by suitable means. Such methods include, inter alia, homogeneous and heterogeneous binding immunoassays, such as radioimmunoassays (RIA), ELISA and Western blot analyses. Further, the assay protocols using the novel peptides allow for competitive and non-competitive binding studies to be performed. The sample used in the diagnostic test method may for instance be blood, urine, tissue material or other material from (potentially) infected subjects. The peptide may however also be used to diagnose prior exposure to the SARS-CoV. Preferred assay techniques, especially for large-scale clinical screening of patient sera and blood and blood-derived products are ELISA and Western blot techniques. ELISA tests are particularly preferred. For use as reagents in these assays, the peptides of the invention are conveniently bonded to the inside surface of microtiter wells. The peptides may be directly bonded to the microtiter well. However, maximum binding of the peptides to the wells might be accomplished by pretreating the wells with polylysine prior to the addition of the peptides. Furthermore, the novel peptides may be covalently attached by known means to a carrier protein, such as BSA, with the resulting conjugate being used to coat the wells. Generally the peptides are used in a concentration of between 0.01 to 100 μg/ml for coating, although higher as well as lower amounts may also be used. Samples are then added to the peptide coated wells where an immunological complex forms if antibodies to SARS-CoV are present in the sample. A signal generating means may be added to aid detection of complex formation. A detectable signal is produced if SARS-CoV specific antibodies are present in the sample.


EXAMPLES
Example 1
Identification of Epitopes Recognized by Human Sera of Individuals Which have been and/or are Infected by SARS-CoV by Means of PEPSCAN-ELISA

Overlapping 15-mer linear and looped/cyclic peptides were synthesized from several proteins of SARS-CoV Urbani. The complete genome of SARS-CoV Urbani can be found under EMBL-database accession number AY278741, “SARS coronavirus Urbani, complete genome.” The coding sequence (CDS) of the proteins is also shown under EMBL-database accession number AY278741.


Linear as well as looped/cyclic peptides were prepared from the SARS-CoV Urbani proteins called protein X1 (the protein-id of protein X1 is AAP13446, see also SEQ ID NO:1), protein X2 (the protein-id of protein X2 is AAP13447, see also SEQ ID NO:2), E protein (the protein-id of the envelope protein, E protein, is AAP13443, see also SEQ ID NO:3), M protein (the protein-id of the small membrane protein, M protein, is AAP13444, see also SEQ ID NO:4), protein X3 (the protein-id of protein X3 is AAP13448, see also SEQ ID NO:5), protein X4 (the protein-id of protein X4 is AAP13449, see also SEQ ID NO:6), protein X5 (the protein-id of protein X5 is AAP13450, see also SEQ ID NO:7), and N protein (the protein-id of the nucleocapsid protein, N protein, is AAP13445, see also SEQ ID NO:8).


Next, the prepared peptides were screened using credit-card format mini-PEPSCAN cards (455 peptide formats/card) as described previously (Slootstra et al., 1996; WO 93/09872). All peptides were acetylated at the amino terminus.


In all looped peptides position-2 and position-14 were replaced by a cysteine (acetyl-XCXXXXXXXXXXCX-minicard). If other cysteines besides the cysteines at position-2 and position-14 were present in a prepared peptide, the other cysteines were replaced by an alanine. The looped peptides were synthesized using standard Fmoc-chemistry and deprotected using trifluoric acid with scavengers. Subsequently, the deprotected peptides were reacted on the cards with an 0.5 mM solution of 1,3-bis(bromomethyl)benzene in ammonium bicarbonate (20 mM, pH 7.9)/acetonitril (1:1 (v/v)). The cards were gently shaken in the solution for 30-60 minutes, while completely covered in the solution. Finally, the cards were washed extensively with excess of H2O and sonicated in disrupt-buffer containing 1% SDS/0.1% beta-mercaptoethanol in PBS (pH 7.2) at 70° C. for 30 minutes, followed by sonication in H2O for another 45 minutes.


The binding of antibodies to each linear and looped peptide was tested in a PEPSCAN-based enzyme-linked immuno assay (ELISA). The 455-well creditcard-format polypropylene cards, containing the covalently linked peptides, were incubated with serum (diluted 1/1000 in blocking solution which contains 5% horse-serum (v/v) and 5% ovalbumin (w/v)) (4° C., overnight). Before use, the serum was heat-inactivated at 56° C. for 1 hour. After washing the peptides were incubated with anti-human antibody peroxidase (dilution 1/1000) (1 hour, 25° C.), and subsequently, after washing the peroxidase substrate 2,2′-azino-di-3-ethylbenzthiazoline sulfonate (ABTS) and 2 μl/ml 3% H2O2 were added. After 1 hour the color development was measured. The color development of the ELISA was quantified with a CCD-camera and an image processing system. The setup consists of a CCD-camera and a 55 mm lens (Sony CCD Video Camera XC-77RR, Nikon micro-nikkor 55 mm f/2.8 lens), a camera adaptor (Sony Camera adaptor DC-77RR) and the Image Processing Software package Optimas , version 6.5 (Media Cybernetics, Silver Spring, Md. 20910, U.S.A.). Optimas runs on a pentium II computer system.


The serum derived from an individual that has been infected by SARS-CoV and has recovered from SARS (serum called SARS-green) and the serum derived from an individual in which the virus was still detectable by PCR and who suffered a prolonged and severe form of the illness (serum called SARS-yellow) and the sera derived from individuals which have been and/or are still infected by SARS-CoV (the sera called 1a (individual 1, early serum), 1b (individual 1, late serum), 2 (individual 2), 6 (individual 6), 37 (individual 37), 62 (individual 62) and London) were tested for binding to the 15-mer linear and looped/cyclic peptides synthesized as described supra. Additionally, two control sera were tested for binding the 15-mer linear and looped/cyclic peptides synthesized as described supra. One control serum was a pooled serum of ten healthy LUMC (Leids Universitair Medisch Centrum) hospital workers and the second control serum was a commercial negative donor pooled serum from the Dutch bloodbank. Next to that, a rabbit serum obtained by immunizing a rabbit with the SARS-CoV strain Frankfurt 1 was tested for binding the 15-mer linear and looped/cyclic peptides synthesized as described supra. The SARS-CoV was concentrated and partially purified by sucrose-gradient ultracentrifugation. After that, the purified SARS-CoV was gamma-irradiated for inactivation (approximately 35 kGy), mixed with complete Freund adjuvans and used for immunization purposes. Immunization was performed according to the art well known to the skilled artisan.


See Table 1 for results of the binding of the different above sera to linear peptides of protein X1 of SARS-CoV Urbani. See Table 2 for results of the binding of the different above sera to looped/cyclic peptides of protein X1 of SARS-CoV Urbani.


See Table 3 for results of the binding of the different above sera to linear peptides of protein X2 of SARS-CoV Urbani. See Table 4 for results of the binding of the different above sera to looped/cyclic peptides of protein X2 of SARS-CoV Urbani.


See Table 5 for results of the binding of the different above sera to linear peptides of protein E of SARS-CoV Urbani. See Table 6 for results of the binding of the different above sera to looped/cyclic peptides of protein E of SARS-CoV Urbani.


See Table 7 for results of the binding of the different above sera to linear peptides of protein M of SARS-CoV Urbani. See Table 8 for results of the binding of the different above sera to looped/cyclic peptides of protein M of SARS-CoV Urbani.


See Table 9 for results of the binding of the different above sera to linear peptides of protein X3 of SARS-CoV Urbani. See Table 10 for results of the binding of the different above sera to looped/cyclic peptides of protein X3 of SARS-CoV Urbani.


See Table 11 for results of the binding of the different above sera to linear peptides of protein X4 of SARS-CoV Urbani. See Table 12 for results of the binding of the different above sera to looped/cyclic peptides of protein X4 of SARS-CoV Urbani.


See Table 13 for results of the binding of the different above sera to linear peptides of protein X5 of SARS-CoV Urbani. See Table 14 for results of the binding of the different above sera to looped/cyclic peptides of protein X5 of SARS-CoV Urbani.


See Table 15 for results of the binding of the different above sera to linear peptides of protein N of SARS-CoV Urbani.


See Table 16 for results of the binding of the different above sera to looped/cyclic peptides of protein N of SARS-CoV Urbani.


See Table 17 for results of the binding of the two control sera to linear and looped/cyclic peptides of protein X1 of SARS-CoV Urbani. The following peptides were recognized by at least one of the control sera in linear form, looped/cyclic form or in both forms:

DNASPASTVHATATI,(SEQ ID NO: 421)NASPASTVHATATIP,(SEQ ID NO: 422)ASPASTVHATATIPL,(SEQ ID NO: 423)SPASTVHATATIPLQ,(SEQ ID NO: 424)PASTVHATATIPLQA,(SEQ ID NO: 425)ASTVHATATIPLQAS,(SEQ ID NO: 426)STVHATATIPLQASL,(SEQ ID NO: 427)TVHATATIPLQASLP,(SEQ ID NO: 428)VHATATIPLQASLPF,(SEQ ID NO: 429)AVFQSATKIIALNKR,(SEQ ID NO: 430)VFQSATKIIALNKRW,(SEQ ID NO: 431)FQSATKIIALNKRWQ,(SEQ ID NO: 432)QSATKIIALNKRWQL,(SEQ ID NO: 433)SATKIIALNKRWQLA,(SEQ ID NO: 434)ATKIIALNKRWQLAL,(SEQ ID NO: 435)TKIIALNKRWQLALY,(SEQ ID NO: 436)KIIALNKRWQLALYK,(SEQ ID NO: 437)IIALNKRWQLALYKG(SEQ ID NO: 438)andIALNKRWQLALYKGF.(SEQ ID NO: 439)


See Table 18 for results of the binding of the two control sera to linear and looped/cyclic peptides of protein X2 of SARS-CoV Urbani. The following peptides were recognized by at least one of the control sera in linear form, looped/cyclic form or in both forms:

MMPTTLFAGTHITMT,(SEQ ID NO: 440)MPTTLFAGTHITMTT,(SEQ ID NO: 441)PTTLFAGTHITMTTV,(SEQ ID NO: 442)TTLFAGTHITMTTVY,(SEQ ID NO: 443)TLFAGTHITMTTVYH,(SEQ ID NO: 444)LFAGTHITMTTVYHI,(SEQ ID NO: 445)FAGTHITMTTVYHIT,(SEQ ID NO: 446)AGTHITMTTVYHITV(SEQ ID NO: 447)andGTHITMTTVYHITVS.(SEQ ID NO: 448)


See Table 19 for results of the binding of the two control sera to linear and looped/cyclic peptides of protein E of SARS-CoV Urbani.


See Table 20 for results of the binding of the two control sera to linear and looped/cyclic peptides of protein M of SARS-CoV Urbani. The following peptides were recognized by at least one of the control sera in linear form, looped/cyclic form or in both forms:

GTITVEELKQLLEQW,(SEQ ID NO: 449)TITVEELKQLLEQWN,(SEQ ID NO: 450)ITVEELKQLLEQWNL,(SEQ ID NO: 451)TVEELKQLLEQWNLV,(SEQ ID NO: 452)VEELKQLLEQWNLVI,(SEQ ID NO: 453)EELKQLLEQWNLVIG,(SEQ ID NO: 454)VIGAVIIRGHLRMAG,(SEQ ID NO: 455)IGAVIIRGHLRMAGH,(SEQ ID NO: 456)GAVIIRGHLRMAGHP,(SEQ ID NO: 457)AVIIRGHLRMAGHPL,(SEQ ID NO: 458)VIIRGHLRMAGHPLG,(SEQ ID NO: 459)IIRGHLRMAGHPLGR,(SEQ ID NO: 460)IRGHLRMAGHPLGRC,(SEQ ID NO: 461)RGHLRMAGHPLGRCD,(SEQ ID NO: 462)GHLRMAGHPLGRCDI(SEQ ID NO: 463)andHLRMAGHPLGRCDIK.(SEQ ID NO: 464)


See Table 21 for results of the binding of the two control sera to linear and looped/cyclic peptides of protein X3 of SARS-CoV Urbani.


See Table 22 for results of the binding of the two control sera to linear and looped/cyclic peptides of protein X4 of SARS-CoV Urbani. The following peptides were recognized by at least one of the control sera in linear form, looped/cyclic form or in both forms:

TYEGNSPFHPLADNK,(SEQ ID NO: 465)YEGNSPFHPLADNKF,(SEQ ID NO: 466)EGNSPFHPLADNKFA,(SEQ ID NO: 467)GNSPFHPLADNKFAL,(SEQ ID NO: 468)NSPFHPLADNKFALT(SEQ ID NO: 469)andSPFHPLADNKFALTC.(SEQ ID NO: 470)


See Table 23 for results of the binding of the two control sera to linear and looped/cyclic peptides of protein X5 of SARS-CoV Urbani. The following peptides were recognized by at least one of the control sera in linear form, looped/cyclic form or in both forms:

IARCWYLHEGHQTAA,(SEQ ID NO: 471)ARCWYLHEGHQTAAF,(SEQ ID NO: 472)RCWYLHEGHQTAAFR,(SEQ ID NO: 473)CWYLHEGHQTAAFRD,(SEQ ID NO: 474)WYLHEGHQTAAFRDV,(SEQ ID NO: 475)YLHEGHQTAAFRDVL,(SEQ ID NO: 476)LHEGHQTAAFRDVLV(SEQ ID NO: 477)andHEGHQTAAFRDVLVV.(SEQ ID NO: 478)


See Table 24 for results of the binding of the two control sera to linear and looped/cyclic peptides of protein N of SARS-CoV Urbani. The following peptides were recognized by at least one of the control sera in linear form, looped/cyclic form or in both forms:

AATVLQLPQGTTLPK,(SEQ ID NO: 479)ATVLQLPQGTTLPKG,(SEQ ID NO: 480)TVLQLPQGTTLPKGF,(SEQ ID NO: 481)NSTPGSSRGNSPARM,(SEQ ID NO: 482)STPGSSRGNSPARMA,(SEQ ID NO: 483)TPGSSRGNSPARMAS,(SEQ ID NO: 484)PGSSRGNSPARMASG,(SEQ ID NO: 485)GSSRGNSPARMASGG,(SEQ ID NO: 486)LDDKDPQFKDNVILL,(SEQ ID NO: 487)DDKDPQFKDNVILLN,(SEQ ID NO: 488)DKDPQFKDNVILLNK,(SEQ ID NO: 489)KDPQFKDNVILLNKH(SEQ ID NO: 490)andDPQFKDNVILLNKHI.(SEQ ID NO: 491)


In Table 25 the results of the binding of the rabbit serum to linear and looped/cyclic peptides of protein X1 of SARS-CoV Urbani are shown. The following peptides were recognized by the rabbit serum in linear form, looped/cyclic form or in both forms: AVFQSATKIIALNKR (SEQ ID NO:492), VFQSATKIIALNKRW (SEQ ID NO:493), FQSATKIIALNKRWQ (SEQ ID NO:494), QSATKIIALNKRWQL (SEQ ID NO:495), SATKIIALNKRWQLA (SEQ ID NO:496), ATKIIALNKRWQLAL (SEQ ID NO:497), TKIIALNKRWQLALY (SEQ ID NO:498), KIIALNKRWQLALYK (SEQ ID NO:499), IIALNKRWQLALYKG (SEQ ID NO:500), IALNKRWQLALYKGF (SEQ ID NO:501), ALNKRWQLALYKGFQ (SEQ ID NO:502), LNKRWQLALYKGFQF (SEQ ID NO:503), NKRWQLALYKGFQFI (SEQ ID NO:504), LQCINACRIIMRCWL (SEQ ID NO:505), QCINACRIIMRCWLC (SEQ ID NO:506), CINACRIIMRCWLCW (SEQ ID NO:507), INACRIIMRCWLCWK (SEQ ID NO:508), NACRIIMRCWLCWKC (SEQ ID NO:509) and ACRIIMRCWLCWKCK (SEQ ID NO:510).


In Table 26 the results of the binding of the rabbit serum to linear and looped/cyclic peptides of protein X2 of SARS-CoV Urbani are shown. The following peptides were recognized by the rabbit serum in linear form, looped/cyclic form or in both forms: TAFQHQNSKKTTKLV (SEQ ID NO:511), AFQHQNSKKTTKLVV (SEQ ID NO:512), FQHQNSKKTTKLVVI (SEQ ID NO:513), QHQNSKKTTKLVVIL (SEQ ID NO:514), HQNSKKTTKLVVILR (SEQ ID NO:515), QNSKKTTKLVVILRI (SEQ ID NO:516), NSKKTTKLVVILRIG (SEQ ID NO:517), SKKTTKLVVILRIGT (SEQ ID NO:518), KKTTKLVVILRIGTQ (SEQ ID NO:519), KTTKLVVILRIGTQV (SEQ ID NO:520) and TTKLVVILRIGTQVL (SEQ ID NO:521).


In Table 27 the results of the binding of the rabbit serum to linear and looped/cyclic peptides of protein E of SARS-CoV Urbani are shown.


In Table 28 the results of the binding of the rabbit serum to linear and looped/cyclic peptides of protein M of SARS-CoV Urbani are shown. The following peptides were recognized by the rabbit serum in linear form, looped/cyclic form or in both forms: MADNGTITVEELKQL (SEQ ID NO:522), ADNGTITVEELKQLL (SEQ ID NO:523), DNGTITVEELKQLLE (SEQ ID NO:524), NGTITVEELKQLLEQ (SEQ ID NO:525), GTITVEELKQLLEQW (SEQ ID NO:526), TITVEELKQLLEQWN (SEQ ID NO:527), ITVEELKQLLEQWNL (SEQ ID NO:528), TVEELKQLLEQWNLV (SEQ ID NO:529) and VEELKQLLEQWNLVI (SEQ ID NO:530).


In Table 29 the results of the binding of the rabbit serum to linear and looped/cyclic peptides of protein X3 of SARS-CoV Urbani are shown.


In Table 30 the results of the binding of the rabbit serum to linear and looped/cyclic peptides of protein X4 of SARS-CoV Urbani are shown. The following peptides were recognized by the rabbit serum in linear form, looped/cyclic form or in both forms: FACADGTRHTYQLRA (SEQ ID NO:531), ACADGTRHTYQLRAR (SEQ ID NO:532), CADGTRHTYQLRARS (SEQ ID NO:533), ADGTRHTYQLRARSV (SEQ ID NO:534), DGTRHTYQLRARSVS (SEQ ID NO:535), GTRHTYQLRARSVSP (SEQ ID NO:536), TRHTYQLRARSVSPK (SEQ ID NO:537), RHTYQLRARSVSPKL (SEQ ID NO:538), HTYQLRARSVSPKLF (SEQ ID NO:539), TYQLRARSVSPKLFI (SEQ ID NO:540), YQLRARSVSPKLFIR (SEQ ID NO:541), QLRARSVSPKLFIRQ (SEQ ID NO:542), LRARSVSPKLFIRQE (SEQ ID NO:543) and RARSVSPKLFIRQEE (SEQ ID NO:544).


In Table 31 the results of the binding of the rabbit serum to linear and looped/cyclic peptides of protein X5 of SARS-CoV Urbani are shown.


In Table 32 the results of the binding of the rabbit serum to linear and looped/cyclic peptides of protein N of SARS-CoV Urbani are shown. The following peptides were recognized by the rabbit serum in linear form, looped/cyclic form or in both forms: NGPQSNQRSAPRITF (SEQ ID NO:592), GPQSNQRSAPRITFG (SEQ ID NO:593), PQSNQRSAPRITFGG (SEQ ID NO:594), QSNQRSAPRITFGGP (SEQ ID NO:595), SGPDDQIGYYRRATR (SEQ ID NO:545), GPDDQIGYYRRATRR (SEQ ID NO:546), PDDQIGYYRRATRRV (SEQ ID NO:547), DDQIGYYRRATRRVR (SEQ ID NO:548), DQIGYYRRATRRVRG (SEQ ID NO:549), QIGYYRRATRRVRGG (SEQ ID NO:550), IGYYRRATRRVRGGD (SEQ ID NO:551), GYYRRATRRVRGGDG (SEQ ID NO:552), RNSTPGSSRGNSPAR (SEQ ID NO:553), NSTPGSSRGNSPARM (SEQ ID NO:554), STPGSSRGNSPARMA (SEQ ID NO:555), TPGSSRGNSPARMAS (SEQ ID NO:556), PGSSRGNSPARMASG (SEQ ID NO:557), GSSRGNSPARMASGG (SEQ ID NO:558), PRQKRTATKQYNVTQ (SEQ ID NO:559), RQKRTATKQYNVTQA (SEQ ID NO:560), QKRTATKQYNVTQAF (SEQ ID NO:561), KRTATKQYNVTQAFG (SEQ ID NO:562), RTATKQYNVTQAFGR (SEQ ID NO:563), TATKQYNVTQAFGRR (SEQ ID NO:564), ATKQYNVTQAFGRRG (SEQ ID NO:565), TKQYNVTQAFGRRGP (SEQ ID NO:566), KQYNVTQAFGRRGPE (SEQ ID NO:567), QYNVTQAFGRRGPEQ (SEQ ID NO:568), YNVTQAFGRRGPEQT (SEQ ID NO:569), NVTQAFGRRGPEQTQ (SEQ ID NO:570), VTQAFGRRGPEQTQG (SEQ ID NO:571) and TQAFGRRGPEQTQGN (SEQ ID NO:572).


The oligopeptides identified by the rabbit serum might be (additional) good candidates to represent epitopes of the SARS-CoV. The peptides may be advantageously used in diagnostic test methods as described herein. They may also be used in therapy and/or prevention of conditions resulting from an infection with SARS-CoV as described herein.


Relevant binding of a peptide to a serum was calculated as follows. The average OD-value for each serum was calculated for each protein (sum of OD-values of all peptides/total number of peptides). Next, the standard deviation of this average was calculated. The standard deviation was multiplied by 2 and the obtained value was added to the average value to obtain the correction factor. The OD-value of each peptide was then divided by this correction factor. If a value of 0.9 or higher was found, then relevant binding was considered to be present between the specific peptide and the respective serum. Particularly, domains (response of clustering of reactive peptides reactive with several individual sera) comprising several relevant peptides were claimed in the present invention. These domains are indicated (colored grey) in the above-mentioned tables.


Any of the above peptides could form the basis for diagnostic kits comprising the peptides, vaccines (as peptide, DNA, or vector vaccine) or for raising neutralizing antibodies to treat and/or prevent SARS or for raising antibodies to detect SARS-CoV.


Example 2
Selection of Phage Carrying Single-Chain Fv Fragments Specifically Recognizing SARS-CoV

Antibody fragments were selected using antibody phage display libraries and technology, essentially as described in U.S. Pat. No. 6,265,150 and in WO 98/15833, both of which are incorporated herein in their entirety. All procedures were performed at room temperature unless stated otherwise. An inactivated SARS-CoV preparation (Frankfurt 1 strain) was prepared as follows. Medium from Vero cells which were infected with SARS-CoV strain Frankfurt 1 was harvested as soon as cyotopathic effect (CPE) was observed. Cell debris was removed by centrifugation of the harvested medium for 15 minutes at 3000 rpm. The obtained supernatant was collected, spun again for 15 minutes at 3000 rpm and transferred to a clean tube. Subsequently, ultracentrifuge tubes were filled with 10 ml sterile 25% glycerol in PBS. 20 ml of the cleared supernatant was gently applied on the glycerol cushion and the tubes were spun for 2 hours at 20,000 rpm at 4° C. The supernatant was discarded and the virus pellets were resuspended in 1 ml TNE buffer (10 mM Tris-HCl pH 7.4, 1 mM EDTA, 200 mM NaCl) and stored at −80° C. Next, the resuspended virus pellets were gamma-irradiated at 45 kGy on dry ice. Subsequently, they were tested for the absence of infectivity in cell culture. If absence of infectivity was established, the thus obtained inactivated SARS-CoV preparation was used for selection of single-chain phage antibodies specifically binding to SARS-CoV.


The inactivated virus preparation and heat-inactivated fetal bovine serum (FBS) were coated overnight at 4° C. onto the surface of separate Maxisorp™ plastic tubes (Nunc). The tubes were blocked for two hours in 3 ml PBS containing 2% FBS and 2% fat free milk powder (2% PBS-FM). After two hours the FBS-coated tube was emptied and washed three times with PBS. To this tube, 500 μl (approximately 1013 cfu) of a phage display library expressing single-chain Fv fragments (scFvs) essentially prepared as described by De Kruif et al. (1995a) and references therein (which are incorporated herein in their entirety), 500 μl 4% PBS-FM and 2 ml 2% PBS-FM were added. The tube was sealed and rotated slowly at room temperature for two hours. Subsequently, the obtained blocked phage library (3 ml) was transferred to a SARS-CoV preparation-coated tube that had been washed three times with PBS. Tween-20 was added to a final concentration of 0.05% and binding was allowed to proceed for two hours on a slowly rotating wheel at room temperature or at 37° C. The tube was emptied and washed ten times with PBS containing 0.05% Tween-20, followed by washing ten times with PBS. 1 ml glycine-HCL (0.05 M, pH 2.2) was added to elute bound phages, and the tube was rotated slowly for ten minutes. For neutralization purposes, the eluted phages were added to 500 μl 1 M Tris-HCl pH 7.4. To this mixture, 5 ml of exponentially growing XL-1 blue bacterial culture was added. The obtained culture was incubated for thirty minutes at 37° C. without shaking. Then, the bacteria were plated on TYE agar plates containing ampicillin, tetracycline and glucose. After overnight incubation of the plates at 37° C., the colonies were scraped from the plates and used to prepare an enriched phage library, essentially as described by De Kruif et al. (1995a) and WO 02/103012 (both are incorporated by reference herein). Briefly, scraped bacteria were used to inoculate 2TY medium containing ampicillin, tetracycline and glucose and grown at a temperature of 37° C. to an OD600 nm of ˜0.3. CT or VCSM13 helper phages were added and allowed to infect the bacteria after which the medium was changed to 2TY containing ampicillin, tetracycline and kanamycin. Incubation was continued overnight at 30° C. The next day, the bacteria were removed from the 2TY medium by centrifugation after which the phages in the obtained supernatant were precipitated using polyethylene glycol 6000/NaCl. Finally, the phages were dissolved in a small volume of PBS containing 1% BSA, filter-sterilized and used for a next round of selection. The selection/re-infection procedure was performed two or three times. After each round of selection, individual E. coli colonies were used to prepare monoclonal phage antibodies. Essentially, individual colonies were grown to log-phase and infected with VCSM13 helper phages after which phage antibody production was allowed to proceed overnight. Phage antibody containing supernatants were tested in ELISA for binding activity to the SARS-CoV preparation which was coated to 96-well plates. In the above described selection, the phage antibodies called SC03-001, SC03-002, SC03-003, SC03-005, SC03-006, SC03-007, SC03-008, SC03-009, SC03-0010, SC03-012, SC03-013, SC03-014 and SC03-015 were obtained.


To overcome selection of previously identified phage antibodies, alternative selections in the presence of scFvs corresponding to the previous selected phage antibodies were performed as follows. ScFvs of the phage antibodies SC03-001, SC03-002, SC03-003, SC03-005, SC03-006, SC03-007, SC03-008, SC03-009, SC03-010, SC03-012, SC03-013, SC03-014 and SC03-015 were produced as described before in De Kruif et al. (1995b). The amino acid sequence of the scFvs is shown in SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584 and SEQ ID NO:585, respectively. The buffer of the scFvs was adjusted to 1×PBS. Then the scFvs were mixed with 500 μl (approximately 1013 cfu) of a phage display library expressing single-chain Fv fragments essentially prepared as described by De Kruif et al. (1995a) and references therein (which are incorporated herein in their entirety). Next, the obtained mixture was blocked in an FBS-coated tube as described above and subsequently selection was carried out with the obtained blocked mixture essentially as described above for the blocked phage library. In this alternative selection, the phage antibodies called SC03-016, SC03-017 and SC03-018 were obtained.

SC03-001 (SEQ ID NO: 573):                            SMAEVQLVESGGGLVKPGGSLRLSCAASGFTFSGYSMNWVRQAPGKGLEWVSSISGGSTYYADSRKGRFTISRDNSKNTLYLQMNNLRAEDTAVYYCARHRFRHVFDYWGQGTLVTVLEGTGGSGGTGSGTGTSELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRAAASC03-002 (SEQ ID NO: 574):                            SMAEVQLVESGGGLVKPGGSLRLSCAASGFTFSGYSMSWVRQAPGKGLEWVGRTRNKANSYTTEYAASVKGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCARYYSRSLKAFDYWGQGTLVTVLEGTGGSGGTGSGTGTSELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRAAASC03-003 (SEQ ID NO: 575):                            SMAEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYPMNWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRSYFRRFDYWGQGTLVTVLEGTGGSGGTGSGTGTSELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRAAASC03-005 (SEQ ID NO: 576):                             SMAEVQLVESGGGLIQPGGSLRLSCAASGFTFSGYTMSWVRQAPGQGLEWVSSISGGSTYYADSRKGRFTISRDNSKNTLYLQMNNLRAEDTAVYYCAKGGGRPYNPFDYWGQGTLVTVLEGTGGSGGTGSGTGTSELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRAAASC03-006 (SEQ ID NO: 577):                             SMAEVQLVESGGGLVQPGGSLRLSCAASGFTFSGYPMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDGSPRTPSFDYWGQGTLVTVLEGTGGSGGTGSGTGTSELDIQMTQSPHSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVGVYYCQQRFRTPVTFGQGTKLEIKRAAASC03-007 (SEQ ID NO: 578):                            SMAEVQLVESGGGLVQPRGSLRLSCAASGFTFSDYRMNWVRQAPGKGLERVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGYWTSLTGFDYWGQGTLVTVLEGTGGSGGTGSGTGTSELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRAAASC03-008 (SEQ ID NO: 579):                            SMAEVQLVESGGGVVQPGRSLRLSCAASGFTFSSYPMNWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRVRPRRFDYWGQGTLVTVLEGTGGSGGTGSGTGTSELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRAAASC03-009 (SEQ ID NO: 580):                            SMAEVQLVESGGGVVQPGRSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSSISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGLFMVTTYAFDYWGQGTLVTVLEGTGGSGGTGSGTGTSELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRAAASC03-010 (SEQ ID NO: 581):                            SMAEVQLVESGGGVVQPGRSLRLSCATSGFTFSGYTMHWVRQAPGKGLEWVSSISGGSTYYADSRKGRFTISRDNSKNTLYLQMNNLRAEDTAVYYCAKGGGLPYLSFDYWGQGTLVTVLEGTGGSGGTGSGTGTSELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRAAASC03-012 (SEQ ID NO: 582):                              AMAQVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISAYNGNTNYAQKLQGRVTMTTDTSTSTAYMELSSLRSDDTAVYYCARMFRKSSFDSWGQGTLVTVSRGGGGSGGGGSGGGGSSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHVVFGGGTKLTVLGAAASC03-013 (SEQ ID NO: 583):                           AMAEVQLVESGGGLVQPGGSLRLSCAASGFTFSDHYMDWVRQAPGKGLEWVGRTRNKANSYTTEYAASVKGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCAKGLTPLYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRAAASC03-014 (SEQ ID NO: 584):                           AMAEVQLVESGGGLVQPGGSLRLSCAASGFTFSDHYMDWVRQAPGKGLEWVGRTRNKANSYTTEYAASVKGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCARGISPFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRAAASC03-015 (SEQ ID NO: 585):                           AMAEVQLVESGGGVVRPGGSLRLSCAASGFTFDDYGMSWVRQAPGKGLEWVSGINWNGGSTGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARGLSLRPWGQGTLVTVSRGGGGSGGGGSGGGGSSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHVVFGGGTKLTVLGAAA


Example 3
Validation of the SARS-CoV Specific Single-Chain Phage Antibodies

Selected single-chain phage antibodies that were obtained in the screens described above, were validated in ELISA for specificity, i.e. binding to the SARS-CoV preparation prepared as described supra. Additionally, the single-chain phage antibodies were also tested for binding to 10% FBS. For this purpose, the SARS-CoV preparation or 10% FBS preparation was coated to Maxisorp™ ELISA plates. After coating, the plates were blocked in 2% PBS-FM. The selected single-chain phage antibodies were incubated in an equal volume of 4% PBS-FM to obtain blocked phage antibodies. The plates were emptied, washed three times with PBS, after which the blocked phage antibodies were added. Incubation was allowed to proceed for one hour, the plates were washed in PBS containing 0.05% Tween-20 and bound phage antibodies were detected (using OD 492 nm measurement) using an anti-M13 antibody conjugated to peroxidase. As a control, the procedure was performed simultaneously using no single-chain phage antibody or control single-chain phage antibody directed against thyroglobulin (SC02-006) (see De Kruif et al. 1995a and 1995b) or control single-chain phage antibody directed against CD46 (SC02-300). Both controls served as a negative control. As shown in Table 33 the selected phage antibodies called SC03-001, SC03-002, SC03-003, SC03-005, SC03-006, SC03-007, SC03-008, SC03-009, SC03-0010, SC03-012, SC03-013, SC03-014 and SC03-015 displayed significant binding to the immobilized SARS-CoV preparation, while no binding to FBS was observed.


As shown in Table 34 the selected phage antibody called SC03-018 displayed significant binding to the immobilized SARS-CoV preparation, while no binding to FBS was observed. The selected phage antibody called SC03-016 and SC03-017 displayed binding to the immobilized SARS-CoV preparation compared to binding to FBS, although in a lesser amount than SC03-018. The amino acid sequence of SC03-018 is shown in SEQ ID NO:586. The amino acid sequence of the heavy chain CDR3 region of SC03-018 is shown in SEQ ID NO:587.

SC03-018 (SEQ ID NO: 586):                            AMAEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFNPFTSFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRAAA


Heavy chain CDR3 of SC03-018 (SEQ ID NO:587): FNPFTSFDY


Next, fully human immunoglobulin molecules (human monoclonal anti-SARS-CoV antibodies) were constructed from the selected anti-SARS-CoV single chain Fvs according to standard techniques known to the skilled person in the art. Subsequently, the recombinant human monoclonal antibodies were purified over protein-A columns and size-exclusion columns using standard purification methods used generally for immunoglobulins (see for instance WO 00/63403 which is incorporated by reference herein).


The nucleotide sequence of the heavy chain of the antibody called 03-018 is shown in SEQ ID NO:588. The amino acid sequence of the heavy chain of 03-018 is shown in SEQ ID NO:589. The nucleotide sequence of the light chain of 03-018 is shown in SEQ ID NO:590. The amino acid sequence of 03-018 is shown in SEQ ID NO:591. The amino acid sequence of the heavy chain CDR3 region of 03-018 is shown in SEQ ID NO:587.

Nucleotide sequence of heavy chain of 03-018 (SEQ ID NO: 588):gag gtg cag ctg gtg gag tct ggg gga ggc ttg gta cag cct ggg gggtcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttt agc agc tatgcc atg agc tgg gtc cgc cag gct cca ggg aag ggg ctg gag tgg gtctca gct att agt ggt agt ggt ggt agc aca tac tac gca gac tcc gtgaag ggc cgg ttc acc atc tcc aga gac aat tcc aag aac acg ctg tatctg caa atg aac agc ctg aga gcc gag gac acg gcc gtg tat tac tgtgca aag ttt aat ccg ttt act tcc ttt gac tac tgg ggc cag ggc accctg gtg acc gtc tcc agc gct agc acc aag ggc ccc agc gtg ttc cccctg gcc ccc agc agc aag agc acc agc ggc ggc aca gcc gcc ctg ggctgc ctg gtg aag gac tac ttc ccc gag ccc gtg acc gtg agc tgg aacagc ggc gcc ttg acc agc ggc gtg cac acc ttc ccc gcc gtg ctg cagagc agc ggc ctg tac agc ctg agc agc gtg gtg acc gtg ccc agc agcagc ctg ggc acc cag acc tac atc tgc aac gtg aac cac aag ccc agcaac acc aag gtg gac aaa cgc gtg gag ccc aag agc tgc gac aag acccac acc tgc ccc ccc tgc cct gcc ccc gag ctg ctg ggc gga ccc tccgtg ttc ctg ttc ccc ccc aag ccc aag gac acc ctc atg atc agc cggacc ccc gag gtg acc tgc gtg gtg gtg gac gtg agc cac gag gac cccgag gtg aag ttc aac tgg tac gtg gac ggc gtg gag gtg cac aac gccaag acc aag ccc cgg gag gag cag tac aac agc acc tac cgg gtg gtgagc gtg ctc acc gtg ctg cac cag gac tgg ctg aac ggc aag gag tacaag tgc aag gtg agc aac aag gcc ctg cct gcc ccc atc gag aag accatc agc aag gcc aag ggc cag ccc cgg gag ccc cag gtg tac acc ctgccc ccc agc cgg gag gag atg acc aag aac cag gtg tcc ctc acc tgtctg gtg aag ggc ttc tac ccc agc gac atc gcc gtg gag tgg gag agcaac ggc cag ccc gag aac aac tac aag acc acc ccc cct gtg ctg gacagc gac ggc agc ttc ttc ctg tac agc aag ctc acc gtg gac aag agccgg tgg cag cag ggc aac gtg ttc agc tgc agc gtg atg cac gag gccctg cac aac cac tac acc cag aag agc ctg agc ctg agc ccc ggc aagAmino acid sequence of heavy chain of 03-018 (SEQ ID NO: 589):EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFNPFTSFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKNucleotide sequence of light chain of 03-018 (SEQ ID NO: 590):gac att cag atg acc cag tct cca tcc tcc ctg tct gca tct gta ggagac aga gtc acc atc act tgc cgg gca agt cag agc att agc agc tactta aat tgg tat cag cag aaa cca ggg aaa gcc cct aag ctc ctg atctat gct gca tcc agt ttg caa agt ggg gtc cca tca agg ttc agt ggcagt gga tct ggg aca gat ttc act ctc acc atc agc agt ctg caa cctgaa gat ttt gca act tac tac tgt caa cag agt tac agt acc cct ccaacg ttc ggc caa ggg acc aag gtg gag atc aaa cgg acc gtg gcc gctccc agc gtg ttc atc ttc ccc ccc tcc gac gag cag ctg aag agc ggcacc gcc agc gtg gtg tgc ctg ctg aac aac ttc tac ccc cgg gag gccaag gtg cag tgg aag gtg gac aac gcc ctg cag agc ggc aac agc caggag agc gtg acc gag cag gac agc aag gac tcc acc tac agc ctg agcagc acc ctc acc ctg agc aag gcc gac tac gag aag cac aag gtg tacgcc tgc gag gtg acc cac cag ggc ctg agc agc ccc gtg acc aag agcttc aac cgg ggc gag tgtAmino acid sequence of light chain of 03-018 (SEQ ID NO: 591):DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC


Example 4
Characterization of Antibody 03-018

To determine which antigen is detected by the human monoclonal anti-SARS-CoV antibody called 03-018, the following sandwich ELISA was performed. For the detection of bound antigens different anti-SARS-CoV rabbit antisera were used. The sandwich ELISA was performed as follows. 03-018 or the control antibody called 02-300 (an antibody against CD46) were immobilized over night at 4° C. to Maxisorp™ ELISA plates at a concentration of 5 μg/ml in coating buffer (50 mM carbonate buffer, pH 9.6). The plates were washed three times with PBS and blocked with PBS containing 1% BSA. Next, a gamma-irradiated SARS-CoV preparation prepared as described herein was denatured by diluting the preparation 1:10 in RIPA buffer (150 mM NaCl, 1% Nonidet P-40, 0.5% deoxycholate, 0.1% sodium dodecyl sulphate, 50 mM Tris, pH 8.0) followed by an incubation of 1 hour at room temperature. Subsequently, the denatured virus preparation was diluted 1:10 in PBS containing 1% BSA and the immobilized human IgGs were incubated with the denatured virus preparation for one hour at room temperature. To recognize which proteins of the SARS-CoV were detected by the immobilized recombinant human monoclonal anti-SARS-CoV antibody polyclonal rabbit antibodies recognizing the complete SARS-CoV, the spike protein of SARS-CoV (Imgenex IMG-542 or IMG-557) or the nucleocapsid protein of SARS-CoV (Imgenex IMG-543) were used. Finally, bound rabbit IgG was detected (using OD 492 nm measurement) using an anti-rabbit-IgG-HRP-conjugate (Dako).


Detection by means of a polyclonal serum against complete SARS-CoV showed that the recombinant human monoclonal anti-SARS-CoV antibody called 03-018 was capable of binding both a native and a denatured SARS-CoV preparation (data not shown). An increased signal after denaturation was observed which might have been caused by the exposure of more antigenic sites upon denaturation. Detection by means of two polyclonal rabbit antibodies against the SARS-CoV spike protein (the antibodies called IMG-542 and IMG-557) or a polyclonal antibody against the SARS-CoV nucleocapsid protein (the antibody called IMG-543) indicated that 03-018 is directed to the nucleocapsid (N) protein of SARS-CoV (data not shown).


Furthermore, wells of ELISA plates were coated overnight with 5 μg/ml anti-myc antibody in 50 mM bicarbonate buffer pH 9.6. The wells of the plates were washed three times with PBS containing 0.05% Tween and blocked for 2 hours at 37° C. with PBS containing 1% BSA. The wells coated with anti-myc antibody were incubated with myc-tagged full length N protein from transfected HEK293T cell lysates diluted in PBS containing 1% BSA for 1 hour at room temperature. The wells were washed three times with PBS containing 0.05% Tween. Next, they were incubated with the above mentioned antibodies. 03-018 bound specifically to the N protein, while not binding the control protein, i.e. bivalent myc-tagged scFv 02-300 (data not shown). Based on the above it was concluded that the recombinant human monoclonal anti-SARS-CoV antibody called 03-018 is directed to the nucleocapsid protein of SARS-CoV.


Example 5
Identification of Epitopes Recognized by 03-018 by Means of PEPSCAN-ELISA

PEPSCAN-ELISA was performed essentially as described above. 15-mer linear and looped/cyclic peptides were synthesized from proteins of SARS-CoV and screened using credit-card format mini-PEPSCAN cards (455 peptide formats/card) as described previously (see inter alia WO 84/03564, WO 93/09872, Slootstra et al. 1996). In short, series of overlapping peptides, which were either in linear form or in looped/cyclic form, of all the (potential) proteins of SARS-CoV Urbani, these proteins being called spike protein (the protein-id of the surface spike glycoprotein in the EMBL-database is AAP13441), protein X1 (the protein-id of protein X1 is AAP13446), protein X2 (the protein-id of protein X2 is AAP13447), E protein (the protein-id of the small envelope protein, E protein, is AAP13443), M protein (the protein-id of the membrane protein, M protein, is AAP13444), protein X3 (the protein-id of protein X3 is AAP13448), protein X4 (the protein-id of protein X4 is AAP13449), protein X5 (the protein-id of protein X5 is AAP13450), and N protein (the protein-id of the nucleocapsid protein, N protein, is AAP13445), were produced and tested for binding to the recombinant human anti-SARS-CoV antibody 03-018 (1 μg/ml; diluted in blocking solution which contains 5% horse-serum (v/v) and 5% ovalbumin (w/v)) by means of PEPSCAN analysis.


Because the Urbani proteins indicated above are also found in identical or highly homologous form in other SARS-CoV strains, the antigenic peptides found in the analysis method may not only be used for detection of the SARS-CoV strain Urbani and the prevention and/or treatment of a condition resulting from the SARS-CoV strain Urbani, but may also be useful in detecting SARS-CoV in general and preventing and/or treating a condition resulting from SARS-CoV in general. The accession number in the EMBL-database of the complete genome of the strains TOR2, Frankfurt 1 and HSR 1 is AY274119, AY291315 and AY323977, respectively. Under these accession numbers the amino acid sequence of the other (potential) proteins of these strains can be found.


Particularly interesting appear to be domains comprising several relevant peptides. These domains are indicated (colored grey) in Table 35. The recombinant human anti-SARS-CoV antibody called 03-018 specifically reacted with peptides of the nucleocapsid (N) protein. The peptides recognized include NGPQSNQRSAPRITF (SEQ ID NO:592), GPQSNQRSAPRITFG (SEQ ID NO:593), PQSNQRSAPRITFGG (SEQ ID NO:594), QSNQRSAPRITFGGP (SEQ ID NO:595), SNQRSAPRITFGGPT (SEQ ID NO:596), NQRSAPRITFGGPTD (SEQ ID NO:597), QRSAPRITFGGPTDS (SEQ ID NO:598), RSAPRITFGGPTDST (SEQ ID NO:599), SAPRITFGGPTDSTD (SEQ ID NO:600), APRITFGGPTDSTDN (SEQ ID NO:601), PRITFGGPTDSTDNN (SEQ ID NO:602), RITFGGPTDSTDNNQ (SEQ ID NO:603) and ITFGGPTDSTDNNQN (SEQ ID NO:604). Highest binding of 03-018 was found with a continuous series of linear and looped peptides, starting with the sequence GPQSNQRSAPRITFG (SEQ ID NO:593) and ending with the peptide RSAPRITFGGPTDST (SEQ ID NO:599), thereby having the minimal sequence RSAPRITFG (SEQ ID NO:605) in common. The peptides NGPQSNQRSAPRITF (SEQ ID NO:592), GPQSNQRSAPRITFG (SEQ ID NO:593), PQSNQRSAPRITFGG (SEQ ID NO:594) and QSNQRSAPRITFGGP (SEQ ID NO:595) were also recognized by antibodies from a rabbit serum derived from a rabbit that has been immunized with SARS-CoV strain Frankfurt 1 (see Table 32). Through the above approach, the minimal binding site of 03-018 was mapped to residues 11-19 of the N protein, which corresponds with the sequence RSAPRITFG. Interestingly, this linear epitope is conserved in the N protein sequence of all published human SARS-CoV and animal SARS-CoV-like isolates but is absent in other members of the family of Coronaviridae. This suggests that the peptides found, in particular the ones having the minimal binding site of 03-018 are useful in the prevention, treatment and/or detection of SARS-CoV in general.

TABLE 1Binding of the sera called SARS-yellow, SARS-green, 1a,1b, 2, 6, 37, 62 and London to linear peptides of protein X1 ofSARS-CoV Urbani.SEQPeptideIDsequence1a1b263762yellowgreenLondonNOMDLFMRFFTLGSITA0.80.70.70.50.70.70.50.60.3607DLFMRFFTLGSITAQ0.70.50.40.10.60.50.40.20.2608LFMRFFTLGSITAQP0.80.70.60.50.60.60.60.20.3609FMRFFTLGSITAQPV0.80.60.80.50.70.70.70.30.3610MRFFTLGSITAQPVK0.60.40.40.60.60.40.40.20.5611embedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageHATATIPLQASLPFG0.90.80.60.60.80.70.40.20.3612ATATIPLQASLPFGW0.90.70.70.70.70.80.50.40.4613TATIPLQASLPFGWL0.90.80.60.70.70.70.30.50.3614ATIPLQASLPFGWLV0.70.50.60.60.70.70.30.20.3615TIPLQASLPFGWLVI0.80.50.60.50.70.80.40.40.3616IPLQASLPFGWLVIG0.80.60.60.50.70.60.50.40.3617PLQASLPFGWLVIGV0.80.50.50.50.70.70.60.40.3618LQASLPFGWLVIGVA0.70.60.60.40.70.70.60.30.2619QASLPFGWLVIGVAF0.70.60.60.40.60.60.50.10.2620ASLPFGWLVIGVAFL0.70.50.60.50.60.60.40.20.3621SLPFGWLVIGVAFLA0.70.60.50.40.60.50.40.20.2622LPFGWLVIGVAFLAV0.80.60.70.50.70.80.70.30.3623PFGWLVIGVAFLAVF0.70.50.50.40.70.60.70.30.3624FGWLVIGVAFLAVFQ0.70.50.50.40.60.60.50.10.3625GWLVIGVAFLAVFQS0.70.60.50.50.60.60.50.20.3626WLVIGVAFLAVFQSA0.60.50.50.40.70.60.40.30.3627LVIGVAFLAVFQSAT0.70.60.60.40.60.60.40.30.3628VIGVAFLAVFQSATK0.50.40.40.40.50.40.20.10.2629IGVAFLAVFQSATKI0.60.50.60.50.60.60.30.20.2630GVAFLAVFQSATKII0.70.60.80.70.60.60.20.30.2631VAFLAVFQSATKIIA0.60.50.50.70.60.60.40.20.2632AFLAVFQSATKIIAL0.70.40.50.40.60.50.30.30.2633FLAVFQSATKIIALN0.60.40.50.40.60.60.40.30.2634LAVFQSATKIIALNK0.70.50.50.60.60.50.40.30.2635AVFQSATKIIALNKR0.80.60.60.80.70.60.50.30.3492VFQSATKIIALNKRW0.80.60.60.60.70.80.50.20.3493FQSATKIIALNKRWQ0.80.60.60.60.70.70.40.40.3494QSATKIIALNKRWQL0.80.70.70.70.70.80.50.40.4495SATKIIALNKRWQLA0.80.60.60.70.70.80.50.30.4496ATKIIALNKRWQLAL0.70.60.60.70.80.80.70.30.4497TKIIALNKRWQLALY0.70.50.61.00.70.70.50.20.3498KIIALNKRWQLALYK0.80.70.71.00.80.80.50.40.4499IIALNKRWQLALYKG0.70.40.50.70.60.50.50.30.3500IALNKRWQLALYKGF0.80.70.60.90.70.70.50.40.3501ALNKRWQLALYKGFQ0.70.60.50.50.60.50.40.20.2502LNKRWQLALYKGFQF0.60.70.80.80.60.60.30.30.3503NKRWQLALYKGFQFI0.70.50.70.80.60.60.30.30.3504KRWQLALYKGFQFIC0.60.50.50.60.60.50.20.10.2636RWQLALYKGFQFICN0.70.50.50.40.60.50.20.30.3637WQLALYKGFQFICNL0.60.20.40.50.30.40.40.30.2638QLALYKGFQPICNLL0.60.50.40.50.60.60.50.20.2639LALYKGFQFICNLLL0.70.50.50.40.50.60.50.20.2640ALYKGFQFICNLLLL0.60.50.40.40.50.50.50.20.2641LYKGFQFICNLLLLF0.60.50.50.40.50.40.40.20.2642YKGFQFICNLLLLFV0.90.80.90.90.71.00.60.40.8643KGFQFICNLLLLFVT0.60.50.60.50.60.70.60.20.3644GFQFICNLLLLFVTI0.60.50.50.40.50.60.50.20.3645FQFICNLLLLFVTIY0.60.50.50.30.50.50.50.10.2646QFICNLLLLFVTIYS0.60.50.60.40.50.60.40.00.2647FICNLLLLFVTIYSH0.60.60.60.40.50.50.40.20.3648ICNLLLLFVTIYSHL0.60.60.50.40.60.50.40.30.2649CNLLLLFVTIYSHLL0.70.50.50.40.60.40.40.10.2650NLLLLFVTIYSHLLL0.70.50.50.40.50.40.30.10.2651LLLLFVTIYSHLLLV0.70.50.80.40.50.40.30.30.2652LLLFVTIYSHLLLVA0.70.50.60.30.50.40.30.00.2653LLFVTIYSHLLLVAA0.70.20.50.40.60.50.30.30.2654LFVTIYSHLLLVAAG0.70.40.60.30.60.50.50.20.2655FVTIYSHLLLVAAGM0.70.50.60.40.50.50.50.30.2656VTIYSHLLLVAAGME0.80.70.50.40.60.60.60.30.3657TIYSHLLLVAAGMEA0.60.50.40.30.50.40.50.30.2658IYSHLLLVAAGMEAQ0.60.50.50.40.60.60.30.20.3659YSHLLLVAAGMEAQF0.70.60.50.50.60.70.40.30.3660SHLLLVAAGMEAQFL0.80.70.70.60.80.80.70.30.3661HLLLVAAGMEAQFLY0.90.70.60.50.70.70.60.20.3662LLLVAAGMEAQFLYL0.90.80.60.50.60.60.60.10.2663LLVAAGMEAQFLYLY0.80.70.60.50.60.50.40.10.3664LVAAGMEAQFLYLYA0.80.70.60.40.60.50.30.20.2665VAAGMEAQFLYLYAL0.70.60.50.40.50.40.30.20.2666AAGMEAQFLYLYALI0.70.60.60.50.50.50.30.20.2667AGMEAQFLYLYALIY0.70.60.60.40.50.40.20.10.2668GMEAQFLYLYALIYF0.80.60.60.50.50.40.30.10.2669MEAQFLYLYALIYFL0.70.60.50.40.50.40.20.00.2670EAQFLYLYALIYFLQ0.70.40.60.40.50.40.20.10.2671AQFLYLYALIYFLQC0.60.50.50.30.60.40.40.20.2672QFLYLYALIYFLQCI0.70.50.50.40.60.50.50.20.2673FLYLYALIYFLQCIN0.70.50.50.40.50.60.50.20.2674LYLYALIYFLQCINA0.70.50.40.30.50.50.50.20.2675YLYALIYFLQCINAC0.70.50.50.50.60.50.30.20.4676LYALIYFLQCINACR0.70.50.50.50.60.60.40.10.3677YALIYFLQCINACRI0.70.50.50.40.60.60.40.20.3678ALIYFLQCINACRII0.60.60.50.40.70.60.40.10.3679LIYFLQCINACRIIM0.70.60.60.50.60.60.40.20.3680IYFLQCINACRIIMR0.70.60.60.50.70.70.50.20.3681YFLQCINACRIIMRC0.70.60.50.50.60.60.30.30.2682FLQCINACRIIMRCW0.80.60.60.70.70.60.40.30.3683LQCINACRIIMRCWL0.70.50.50.60.70.60.30.10.3505QCINACRIIMRCWLC0.80.60.50.80.70.70.30.20.4506CINACRIIMRCWLCW0.80.50.50.70.60.70.40.20.4507embedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageWKCKSKNPLLYDANY0.80.80.60.70.80.70.50.40.3684KCKSKNPLLYDANYF0.70.40.50.50.60.50.40.20.2685CKSKNPLLYDANYFV0.80.50.50.60.70.50.20.20.3686KSKNPLLYDANYFVC0.70.40.40.40.50.40.30.20.2687SKNPLLYDANYFVCW0.70.50.40.50.50.40.40.20.2688KNPLLYDANYFVCWH0.80.50.50.40.60.50.30.40.3689NPLLYDANYFVCWHT0.90.60.60.50.80.70.40.40.3690PLLYDANYFVCWHTH0.90.80.60.60.80.80.50.40.4691LLYDANYFVCWHTHN0.90.70.60.70.70.80.50.40.4692LYDANYFVCWHTHNY0.90.80.50.70.80.80.50.40.4693embedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageCIPYNSVTDTIVVTE0.70.60.50.50.70.60.50.30.3694IPYNSVTDTIVVTEG0.70.50.50.40.60.40.40.30.2695PYNSVTDTIVVTEGD0.50.40.40.40.50.40.30.20.2696YNSVTDTIVVTEGDG0.60.50.40.40.50.50.40.30.2697NSVTDTIVVTEGDGI0.60.50.40.40.50.40.60.20.2698SVTDTIVVTEGDGIS0.60.50.40.40.50.50.40.10.2699VTDTIVVTEGDGIST0.60.50.30.40.50.40.30.10.2700TDTIVVTEGDGISTP0.60.50.40.50.50.40.20.30.2701DTIVVTEGDGISTPK0.50.40.30.40.40.30.10.20.2702TIVVTEGDGISTPKL0.60.50.50.60.60.50.30.30.3703IVVTEGDGISTPKLK0.50.50.30.40.50.30.10.10.2704VVTEGDGISTPKLKE0.50.40.30.20.40.30.10.10.3705VTEGDGISTPKLKED0.50.40.30.30.40.30.20.10.3706TEGDGISTPKLKEDY0.50.30.40.20.40.30.00.10.2707EGDGISTPKLKEDYQ0.60.30.60.30.50.40.20.20.3708embedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageVKDYVVVHGYFTEVY0.70.60.40.40.60.50.40.20.2709KDYVVVHGYFTEVYY0.70.60.50.40.60.50.30.20.2710DYVVVHGYFTEVYYQ0.60.50.40.40.60.40.30.30.2711YVVVHGYFTEVYYQL0.70.60.50.30.50.40.20.10.2712VVVHGYFTEVYYQLE0.80.60.60.40.60.40.30.30.2713VVHGYFTEVYYQLES0.80.70.40.30.50.40.30.20.2714VHGYFTEVYYQLEST0.70.50.40.40.40.30.30.10.2715HGYFTEVYYQLESTQ0.60.40.40.30.40.40.00.20.2716GYFTEVYYQLESTQI0.70.50.50.40.60.50.40.30.3717YFTEVYYQLESTQIT0.70.60.40.40.60.60.30.30.3718FTEVYYQLESTQITT0.80.70.50.50.70.70.50.50.3719TEVYYQLESTQITTD0.80.80.50.50.90.60.60.50.4720EVYYQLESTQITTDT0.70.60.40.50.70.40.30.20.3721VYYQLESTQITTDTG0.60.50.40.40.60.50.30.20.2722YYQLESTQITTDTGI0.70.70.40.50.70.50.30.20.2723YQLESTQITTDTGIE0.60.50.40.50.60.50.50.40.2724QLESTQITTDTGIEN0.60.50.40.40.50.50.40.20.3725LESTQITTDTGIENA0.60.50.40.40.50.40.20.10.2726ESTQITTDTGIENAT0.60.40.30.40.50.50.10.20.2727STQITTDTGIENATF0.50.40.40.50.60.40.20.30.2728TQITTDTGIENATFF0.70.60.50.60.70.50.50.70.3729QITTDTGIENATFFI0.70.60.40.40.60.40.30.30.3730ITTDTGIENATFFIF0.80.70.60.50.60.50.50.30.3731TTDTGIENATEFIFN0.80.50.60.50.60.50.50.40.3732TDTGIENATFFIFNK0.70.40.50.70.60.50.00.50.3733DTGIENATFFIFNKL0.70.50.50.40.70.60.40.30.4734TGIENATFFIFNKLV0.70.50.60.50.70.70.60.40.3735GIENATFFIFNKLVK0.60.50.50.50.60.60.50.20.3736IENATFFIFNKLVKD0.60.50.50.30.50.50.40.20.2737ENATFFIFNKLVKDP0.60.40.50.40.50.40.20.00.2738NATFFIFNKLVKDPP0.60.50.40.40.50.40.20.20.2739embedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageDPPNVQIHTIDGSSG0.50.40.30.30.50.40.20.20.2740PPNVQIHTIDGSSGV0.60.50.40.40.70.60.40.30.3741PNVQIHTIDGSSGVA0.60.40.50.40.70.60.40.20.3742NVQIHTIDGSSGVAN0.70.50.50.40.70.60.40.30.3743VQIHTIDGSSGVANP0.70.50.60.60.70.60.40.20.3744QIHTIDGSSGVANPA0.60.50.60.50.70.60.30.40.3745IHTIDGSSGVANPAM0.70.70.80.50.70.80.60.50.5746HTIDGSSGVANPAMD0.70.70.50.50.70.70.40.60.3747TIDGSSGVANPAMDP0.60.60.60.60.60.60.30.40.4748IDGSSGVANPAMDPI0.70.60.70.50.60.60.40.30.4749embedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded image









TABLE 2










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to looped/cyclic peptides of


protein X1 of SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
yellow
green
London
NO





MDLFMRFFTLGSITA
0.5
0.3
0.4
1.0
0.4
0.5
0.5
0.4
0.8
607


DLFMRFFTLGSITAQ
0.5
0.3
0.3
0.3
0.5
0.5
0.2
0.2
0.2
608


LFMRFFTLGSITAQP
0.5
0.3
0.4
0.3
0.5
0.5
0.4
0.3
0.2
609


FMRFFTLGSITAQPV
0.5
0.3
0.4
0.4
0.5
0.5
0.3
0.2
0.2
610


MRFFTLGSITAQPVK
0.3
0.1
0.1
0.2
0.2
0.3
0.1
0.1
0.2
611




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




HATATIPLQASLPFG
0.8
0.6
0.5
0.5
0.6
0.6
0.4
0.4
0.2
612


ATATIPLQASLPFGW
0.6
0.5
0.5
0.5
0.7
0.7
0.4
0.3
0.3
613


TATIPLQASLPFGWL
0.7
0.6
0.5
0.5
0.8
0.8
0.5
0.5
0.3
614


ATIPLQASLPFGWLV
0.6
0.5
0.6
0.4
0.7
0.7
0.3
0.4
0.3
615


TIPLQASLPFGWLVI
0.6
0.4
0.5
0.4
0.6
0.7
0.5
0.4
0.2
616


IPLQASLPFGWLVIG
0.6
0.4
0.4
0.3
0.5
0.6
0.3
0.3
0.2
617


PLQASLPFGWLVIGV
0.5
0.3
0.4
0.4
0.5
0.7
0.4
0.3
0.2
618


LQASLPFGWLVIGVA
0.4
0.3
0.3
0.3
0.4
0.5
0.4
0.2
0.2
619


QASLPFGWLVIGVAF
0.4
0.3
0.2
0.3
0.4
0.4
0.2
0.2
0.2
620


ASLPFGWLVIGVAFL
0.5
0.3
0.4
0.2
0.3
0.4
0.3
0.2
0.2
621


SLPFGWLVIGVAFLA
0.3
0.2
0.2
0.0
0.3
0.3
0.2
0.3
0.2
622


LPFGWLVIGVAFLAV
0.5
0.3
0.4
0.3
0.6
0.6
0.3
0.3
0.2
623


PFGWLVIGVAFLAVF
0.5
0.4
0.5
0.2
0.5
0.5
0.5
0.4
0.2
624


FGWLVIGVAFLAVFQ
0.7
0.8
0.7
0.5
0.6
0.7
0.6
0.4
0.3
625


GWLVIGVAFLAVFQS
0.7
0.5
0.7
0.4
0.6
0.8
0.6
0.4
0.3
626


WLVIGVAFLAVFQSA
0.5
0.3
0.4
0.2
0.5
0.5
0.5
0.2
0.2
627


LVIGVAFLAVFQSAT
0.8
0.6
0.7
0.7
0.8
1.0
0.7
0.5
0.3
628


VIGVAFLAVFQSATK
0.4
0.3
0.3
0.6
0.4
0.4
0.5
0.2
0.7
629


IGVAFLAVFQSATKI
0.5
0.4
0.4
0.3
0.5
0.6
0.3
0.2
0.2
630


GVAFLAVFQSATKII
0.6
0.4
0.6
0.5
0.6
0.6
0.3
0.3
0.4
631


VAFLAVFQSATKIIA
0.6
0.4
0.6
0.7
0.6
0.6
0.5
0.4
0.7
632


AFLAVFQSATKIIAL
0.5
0.4
0.5
1.3
0.6
0.6
0.6
0.3
1.6
633


FLAVFQSATKIIALN
0.6
0.4
0.5
1.0
0.5
0.6
0.4
0.3
1.4
634


LAVFQSATKIIALNK
0.5
0.4
0.5
0.6
0.5
0.6
0.5
0.3
0.7
635


AVFQSATKIIALNKR
0.4
0.4
0.6
0.7
0.6
0.6
0.4
0.2
0.9
492


VFQSATKIIALNKRW
0.5
0.4
0.4
0.6
0.4
0.6
0.2
0.2
0.3
493


FQSATKIIALNKRWQ
0.5
0.3
0.4
0.5
0.5
0.5
0.2
0.3
0.2
494


QSATKIIALNKRWQL
0.4
0.4
0.5
0.6
0.6
0.6
0.4
0.4
0.4
495


SATKIIALNKRWQLA
1.2
0.8
1.2
0.9
1.0
1.5
0.9
1.0
0.5
496


ATKIIALNKRWQLAL
0.6
0.4
0.5
0.5
0.6
0.7
0.6
0.3
0.3
497


TKIIALNKRWQLALY
0.6
0.4
0.5
0.5
0.6
0.6
0.5
0.3
0.3
498


KIIALNKRWQLALYK
0.7
0.5
0.7
0.8
0.8
0.7
0.5
0.3
0.3
499


IIALNKRWQLALYKG
0.6
0.4
0.5
0.6
0.6
0.6
0.5
0.2
0.4
500


IALNKRWQLALYKGF
0.5
0.4
0.5
0.4
0.5
0.7
0.6
0.4
0.3
501


ALNKRWQLALYKGFQ
0.8
0.6
0.7
0.6
0.6
0.7
0.6
0.4
0.3
502


LNKRWQLALYKGFQF
0.6
0.4
0.5
0.5
0.5
0.6
0.4
0.1
0.3
503


NKRWQLALYKGFQFI
0.6
0.4
0.5
0.5
0.6
0.7
0.5
0.2
0.4
504


KRWQLALYKGFQFIC
0.6
0.4
0.5
0.8
0.6
0.6
0.5
0.3
1.1
636


RWQLALYKGFQFICN
0.6
0.4
0.5
0.9
0.6
0.6
0.6
0.3
1.4
637


WQLALYKGFQFICNL
0.6
0.3
0.4
1.3
0.5
0.5
0.5
0.3
1.5
638


QLALYKGFQFICNLL
0.5
0.4
0.4
1.2
0.5
0.5
0.5
0.3
1.5
639


LALYKGFQFICNLLL
0.5
0.3
0.4
1.4
0.5
0.5
0.5
0.2
1.4
640


ALYKGFQFICNLLLL
0.4
0.3
0.3
1.3
0.4
0.4
0.4
0.2
1.4
641


LYKGFQFICNLLLLF
0.5
0.3
0.3
1.5
0.4
0.5
0.3
0.2
1.7
642


YKGFQFICNLLLLFV
0.3
0.0
0.0
0.3
0.2
0.3
0.0
0.3
0.2
643


KGFQFICNLLLLFVT
0.6
0.4
0.4
1.0
0.6
0.6
0.6
0.4
1.1
644


GFQFICNLLLLFVTI
0.5
0.3
0.3
0.3
0.5
0.5
0.4
0.2
0.2
645


FQFICNLLLLFVTIY
0.2
0.0
0.0
0.2
0.0
0.2
0.0
0.4
0.1
646


QFICNLLLLFVTIYS
0.5
0.4
0.6
0.3
0.5
0.5
0.5
0.2
0.2
647


FICNLLLLFVTIYSH
0.5
0.3
0.4
0.2
0.5
0.5
0.5
0.3
0.2
648


ICNLLLLFVTIYSHL
0.4
0.3
0.4
0.2
0.4
0.5
0.4
0.2
0.2
649


CNLLLLFVTIYSHLL
0.5
0.4
0.4
0.3
0.5
0.5
0.4
0.2
0.2
650


NLLLLFVTIYSHLLL
0.5
0.4
0.4
0.2
0.4
0.5
0.4
0.2
0.2
651


LLLLFVTIYSHLLLV
0.5
0.3
0.5
0.3
0.6
0.6
0.5
0.2
0.2
652


LLLFVTIYSHLLLVA
0.5
0.3
0.4
0.2
0.5
0.4
0.4
0.2
0.2
653


LLFVTIYSHLLLVAA
0.4
0.3
0.3
0.2
0.4
0.5
0.4
0.2
0.2
654


LFVTIYSHLLLVAAG
0.5
0.3
0.4
0.2
0.5
0.5
0.4
0.3
0.2
655


FVTIYSHLLLVAAGM
0.5
0.3
0.3
0.3
0.5
0.5
0.3
0.2
0.2
656


VTIYSHLLLVAAGME
0.5
0.4
0.5
0.3
0.5
0.4
0.3
0.3
0.2
657


TIYSHLLLVAAGMEA
0.5
0.4
0.3
0.3
0.5
0.5
0.3
0.2
0.2
658


IYSHLLLVAAGMEAQ
0.5
0.4
0.3
0.3
0.5
0.5
0.2
0.2
0.2
659


YSHLLLVAAGMEAQF
0.4
0.4
0.5
0.3
0.7
0.5
0.3
0.5
0.3
660


SHLLLVAAGMEAQFL
0.2
0.5
0.1
0.1
0.1
0.2
0.0
0.5
0.1
661


HLLLVAAGMEAQFLY
0.5
0.6
0.6
0.1
0.6
0.6
0.3
0.4
0.2
662


LLLVAAGMEAQFLYL
0.6
0.5
0.6
0.3
0.7
0.7
0.6
0.5
0.2
663


LLVAAGMEAQFLYLY
0.6
0.5
0.6
0.3
0.6
0.6
0.5
0.4
0.2
664


LVAAGMEAQFLYLYA
0.5
0.4
0.5
0.3
0.5
0.5
0.6
0.3
0.2
665


VAAGMEAQFLYLYAL
0.5
0.4
0.4
0.3
0.5
0.5
0.5
0.3
0.2
666


AAGMEAQFLYLYALI
0.6
0.4
0.5
0.3
0.6
0.6
0.4
0.3
0.2
667


AGMEAQFLYLYALIY
0.5
0.4
0.4
0.3
0.5
0.6
0.3
0.2
0.2
668


GMEAQFLYLYALIYF
0.6
0.4
0.5
0.3
0.4
0.5
0.4
0.3
0.2
669


MEAQFLYLYALIYFL
0.5
0.3
0.4
0.2
0.8
0.5
0.4
0.2
0.2
670


EAQFLYLYALIYFLQ
0.5
0.3
0.4
0.2
0.5
0.5
0.3
0.2
0.2
671


AQFLYLYALIYFLQC
0.5
0.3
0.4
0.2
0.4
0.5
0.3
0.3
0.2
672


QFLYLYALTYFLQCI
0.5
0.3
0.3
0.2
0.5
0.5
0.3
0.2
0.2
673


FLYLYALIYFLQCIN
0.4
0.3
0.3
0.2
0.4
0.4
0.3
0.2
0.2
674


LYLYALIYFLQCINA
0.3
0.3
0.2
0.3
0.4
0.4
0.3
0.2
0.2
675


YLYALIYFLQCINAC
0.4
0.2
0.3
0.2
0.4
0.4
0.2
0.1
0.2
676


LYALIYFLQCINACR
0.4
0.3
0.6
0.7
0.6
0.5
0.2
0.2
1.2
677


YALIYFLQCINACRI
0.2
0.1
0.1
0.0
0.1
0.2
0.0
0.2
0.1
678


ALIYFLQCINACRII
0.3
0.2
0.4
0.9
0.3
0.3
0.1
0.3
1.3
679


LIYFLQCINACRIIM
0.2
0.4
0.7
1.2
0.2
0.4
0.6
0.6
1.1
680


IYFLQCINACRIIMR
0.6
0.4
0.8
1.0
0.6
0.7
0.6
0.2
1.6
681


YFLQCINACRIIMRC
0.6
0.4
0.4
1.6
0.5
0.6
0.6
0.2
1.6
682


FLQCINACRIIMRCW
0.6
0.4
0.5
0.7
0.6
0.6
0.6
0.2
1.0
683


LQCINACRIIMRCWL
0.5
0.3
0.6
1.4
0.6
0.9
0.4
0.2
1.7
505


QCINACRIIMRCWLC
0.6
0.4
0.6
0.8
0.6
0.7
0.4
0.2
1.4
506


CINACRIIMRCWLCW
0.7
0.4
0.6
0.7
0.6
0.7
0.5
0.3
0.8
507


INACRIIMRCWLCWK
0.6
0.4
0.6
0.6
0.5
0.6
0.5
0.3
0.4
 33


NACRIIMRCWLCWKC
0.6
0.5
0.5
0.6
0.5
0.7
0.4
0.3
0.3
 34


ACRTIMRCWLCWKCK
0.7
0.9
0.6
0.3
0.8
0.5
0.7
1.2
0.2
 35


CRIIMRCWLCWKCKS
0.5
0.4
0.5
0.5
0.6
0.6
0.4
0.2
0.4
 36


RIIMRCWLCWKCKSK
0.2
0.2
0.1
0.1
0.2
0.3
0.1
0.1
0.1
 37


IIMRCWLCWKCKSKN
0.5
0.3
0.3
0.5
0.4
0.5
0.3
0.2
0.2
 38


IMRCWLCWKCKSKNP
0.3
0.1
0.1
0.2
0.3
0.3
0.0
0.1
0.1
 39


MRCWLCWKCKSKNPL
0.2
0.2
0.0
0.1
0.2
0.3
0.2
0.1
0.2
 40


RCWLCWKCKSKNPLL
0.7
0.5
0.7
0.8
0.8
0.7
0.7
0.4
0.4
 41


CWLCWKCKSKNPLLY
0.7
0.4
0.5
0.7
0.7
0.7
0.5
0.3
0.3
 42


WLCWKCKSKNPLLYD
0.8
0.6
0.6
0.6
0.9
0.7
0.6
0.4
0.3
 43


LCWKCKSKNPLLYDA
0.8
0.5
0.7
0.8
0.7
0.8
0.7
0.3
0.3
 44


CWKCKSKNPLLYDAN
0.7
0.6
0.5
0.4
0.7
0.6
0.6
0.2
0.3
 45


WKCKSKNPLLYDANY
0.6
0.5
0.4
0.3
0.6
0.6
0.5
0.3
0.2
684


KCKSKNPLLYDANYF
0.7
0.5
0.4
0.4
0.8
0.7
0.5
0.3
0.3
685


CKSKNPLLYDANYFV
0.8
0.6
0.5
0.4
0.8
0.8
0.5
0.3
0.2
686


KSKNPLLYDANYFVC
0.6
0.5
0.4
0.3
0.6
0.6
0.4
0.4
0.2
687


SKNPLLYDANYFVCW
0.6
0.5
0.5
0.4
0.6
0.6
0.5
0.4
0.2
688


KNPLLYDANYFVCWH
0.6
0.5
0.4
0.4
0.6
0.6
0.4
0.3
0.2
689


NPLLYDANYFVCWHT
0.5
0.4
0.4
0.3
0.5
0.6
0.4
0.3
0.2
690


PLLYDANYFVCWHTH
0.6
0.6
0.4
0.4
0.7
0.7
0.4
0.3
0.2
691


LLYDANYFVCWHTHN
0.6
0.5
0.4
0.4
0.6
0.6
0.4
0.3
0.2
692


LYDANYFVCWHTHNY
0.6
0.5
0.4
0.4
0.6
0.6
0.3
0.3
0.2
693




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




CIPYNSVTDTIVVTE
0 4
0.4
0.5
0.2
0.6
0.5
0.4
0.3
0.2
694


IPYNSVTDTIVVTEG
0.5
0.4
0.4
0.3
0.5
0.5
0.2
0.3
0.2
695


PYNSVTDTIVVTEGD
0.4
0.3
0.3
0.1
0.3
0.3
0.4
0.5
0.2
696


YNSVTDTIVVTEGDG
0.4
0.3
0.2
0.2
0.4
0.3
0.3
0.3
0.2
697


NSVTDTIVVTEGDGI
0.4
0.3
0.2
0.2
0.4
0.4
0.3
0.3
0.2
698


SVTDTIVVTEGDGIS
0.3
0.2
0.1
0.1
0.3
0.3
0.2
0.2
0.1
699


VTDTIVVTEGDGIST
0.4
0.3
0.2
0.1
0.4
0.4
0.5
0.2
0.2
700


TDTIVVTEGDGISTP
0.4
0.3
0.2
0.2
0.3
0.3
0.4
0.2
0.1
701


DTIVVTEGDGISTPK
0.3
0.2
0.1
0.2
0.3
0.3
0.1
0.1
0.2
702


TIVVTEGDGISTPKL
0.7
0.7
0.5
0.4
0.7
0.6
0.5
0.6
0.2
703


IVVTEGDGISTPKLK
0.3
0.2
0.1
0.1
0.2
0.3
0.1
0.0
0.1
704


VVTEGDGISTPKLKE
0.3
0.3
0.1
0.2
0.3
0.3
0.2
0.1
0.2
705


VTEGDGISTPKLKED
0.3
0.2
0.1
0.1
0.3
0.3
0.1
0.1
0.2
706


TEGDGISTPKLKEDY
0.5
0.4
0.5
0.4
0.4
0.4
0.3
0.3
0.2
707


EGDGISTPKLKEDYQ
0.4
0.3
0.2
0.2
0.3
0.3
0.1
0.2
0.2
708




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




VKDYVVVHGYFTEVY
0.5
0.4
0.4
0.2
0.6
0.5
0.5
0.2
0.2
709


KDYVVVHGYFTEVYY
0.5
0.4
0.4
0.2
0.6
0.5
0.5
0.2
0.2
710


DYVVVHGYFTEVYYQ
0.6
0.5
0.5
0.3
0.7
0.7
0.5
0.3
0.2
711


YVVVHGYFTEVYYQL
0.6
0.5
0.5
0.3
0.4
0.4
0.4
0.2
0.2
712


VVVHGYFTEVYYQLE
0.6
0.5
0.5
0.3
0.5
0.5
0.4
0.3
0.2
713


VVHGYFTEVYYQLES
0.6
0.4
0.4
0.3
0.6
0.5
0.4
0.2
0.2
714


VHGYFTEVYYQLEST
0.5
0.4
0.5
0.3
0.5
0.6
0.5
0.3
0.2
715


HGYFTEVYYQLESTQ
0.5
0.4
0.4
0.3
0.5
0.5
0.4
0.3
0.2
716


GYFTEVYYQLESTQI
0.6
0.5
0.5
0.4
0.6
0.6
0.4
0.4
0.2
717


YFTEVYYQLESTQIT
0.5
0.5
0.3
0.2
0.4
0.4
0.3
0.2
0.2
718


FTEVYYQLESTQITT
0.5
0.5
0.4
0.4
0.7
0.5
0.4
0.3
0.2
719


TEVYYQLESTQITTD
0.5
0.5
0.2
0.3
0.5
0.4
0.3
0.3
0.2
720


EVYYQLESTQITTDT
0.5
0.4
0.1
0.2
0.5
0.5
0.3
0.3
0.2
721


VYYQLESTQITTDTG
0.4
0.2
0.1
0.1
0.4
0.3
0.1
0.2
0.2
722


YYQLESTQITTDTGI
0.4
0.3
0.2
0.2
0.5
0.4
0.3
0.3
0.2
723


YQLESTQITTDTGIE
0.4
0.3
0.1
0.1
0.3
0.3
0.2
0.2
0.1
724


QLESTQITTDTGIEN
0.4
0.3
0.3
0.2
0.5
0.5
0.4
0.4
0.2
725


LESTQITTDTGIENA
0.4
0.3
0.2
0.2
0.3
0.4
0.3
0.2
0.2
726


ESTQITTDTGIENAT
0.4
0.2
0.1
0.2
0.3
0.3
0.3
0.1
0.2
727


STQITTDTGIENATF
0.6
0.4
0.3
0.3
0.6
0.6
0.4
0.4
0.2
728


TQITTDTGIENATFF
0.5
0.3
0.2
0.3
0.4
0.5
0.4
0.3
0.2
729


QITTDTGIENATFFI
0.7
0.7
0.6
0.5
1.0
0.9
0.5
0.5
0.3
730


ITTDTGIENATFFIF
0.7
0.6
0.6
0.5
0.9
0.8
0.7
0.6
0.3
731


TTDTGIENATFFIFN
0.6
0.6
0.7
0.6
1.0
0.9
0.5
0.6
0.3
732


TDTGIENATFFIFNK
0.5
0.5
0.5
0.5
0.7
0.7
0.5
0.4
0.3
733


DTGIENATFFIFNKL
0.6
0.5
0.6
0.2
0.7
0.6
0.6
0.4
0.2
734


TGIENATFFIFNKLV
0.6
0.5
0.6
0.5
0.7
0.7
0.4
0.2
0.3
735


GIENATFFIFNKLVK
0.6
0.4
0.5
0.5
0.6
0.6
0.5
0.2
0.2
736


IENATFFIFNKLVKD
0.5
0.4
0.4
0.2
0.5
0.5
0.3
0.1
0.2
737


ENATFFIFNKLVKDP
0.4
0.3
0.5
0.4
0.4
0.5
0.2
0.2
0.2
738


NATFFIFNKLVKDPP
0.5
0.3
0.3
0.4
0.4
0.4
0.0
0.2
0.2
739




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




DPPNVQIHTIDGSSG
0.4
0.2
0.2
0.2
0.3
0.3
0.2
0.2
0.2
740


PPNVQIHTIDGSSGV
0.5
0.4
0.3
0.4
0.6
0.5
0.3
0.4
0.2
741


PNVQIHTIDGSSGVA
0.4
0.3
0.2
0.2
0.3
0.3
0.2
0.2
0.2
742


NVQIHTIDGSSGVAN
0.2
0.2
0.1
0.1
0.3
0.3
0.1
0.2
0.2
743


VQIHTIDGSSGVANP
0.4
0.4
0.3
0.3
0.4
0.5
0.1
0.3
0.2
744


QIHTIDGSSGVANPA
0.4
0.3
0.4
0.2
0.4
0.3
0.1
0.2
0.2
745


IHTIDGSSGVANPAM
0.5
0.4
0.3
0.2
0.3
0.3
0.2
0.3
0.2
746


HTIDGSSGVANPAMD
0.3
0.2
0.1
0.1
0.3
0.2
0.1
0.1
0.1
747


TIDGSSGVANPAMDP
0.5
0.4
0.4
0.3
0.3
0.3
0.2
0.3
0.2
748


IDGSSGVANPAMDPI
0.8
0.7
0.5
0.3
0.7
0.6
0.4
0.6
0.3
749




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image


















TABLE 3










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to linear peptides of protein X2 of


SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
London
yellow
green
NO




















embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




THITMTTVYHITVSQ
0.6
0.5
0.4
0.6
0.7
0.4
0.4
0.5
0.4
750


HITMTTVYHITVSQI
0.6
0.6
0.5
0.4
0.6
0.3
0.4
0.7
0.2
751


ITMTTVYHITVSQIQ
0.7
0.2
0.3
0.5
0.7
0.4
0.5
0.0
0.2
752


TMTTVYHITVSQIQL
0.6
0.2
0.4
0.5
0.7
0.3
0.4
0.7
0.2
753


MTTVYHITVSQIQLS
0.7
0.6
0.5
0.5
0.6
0.5
0.5
0.6
0.2
754


TTVYHITVSQIQLSL
0.7
0.5
0.5
0.5
0.7
0.6
0.4
0.8
0.1
755


TVYHITVSQIQLSLL
0.6
0.5
0.5
0.4
0.6
0.4
0.4
0.7
0.1
756


VYHITVSQIQLSLLK
0.6
0.5
0.5
0.5
0.7
0.4
0.4
0.7
0.2
757


YHITVSQIQLSLLKV
0.6
0.5
0.5
0.5
0.7
0.5
0.4
0.6
0.1
758


HITVSQIQLSLLKVT
0.6
0.5
0.5
0.5
0.7
0.5
0.4
0.8
0.2
759


ITVSQIQLSLLKVTA
0.6
0.5
0.4
0.5
0.6
0.4
0.4
0.7
0.1
760


TVSQIQLSLLKVTAF
0.5
0.4
0.4
0.5
0.6
0.4
0.3
0.6
0.1
761


VSQIQLSLLKVTAFQ
0.5
0.4
0.4
0.5
0.6
0.3
0.3
0.4
0.1
762


SQIQLSLLKVTAFQH
0.6
0.5
0.4
0.5
0.5
0.4
0.3
0.3
0.2
763


QIQLSLLKVTAFQHQ
0.5
0.4
0.4
0.4
0.6
0.3
0.3
0.4
0.2
764


IQLSLLKVTAFQHQN
0.5
0.4
0.4
0.5
0.6
0.3
0.3
0.3
0.2
765


QLSLLKVTAFQHQNS
0.5
0.4
0.3
0.4
0.5
0.3
0.3
0.1
0.1
766


LSLLKVTAFQHQNSK
0.4
0.1
0.1
0.2
0.4
0.2
0.2
0.0
0.1
767


SLLKVTAFQHQNSKK
0.4
0.0
0.1
0.0
0.4
0.1
0.1
0.0
0.0
768


LLKVTAFQHQNSKKT
0.2
0.0
0.1
0.2
0.5
0.1
0.2
0.1
0.1
769


LKVTAFQHQNSKKTT
0.5
0.4
0.3
0.3
0.5
0.3
0.2
0.7
0.2
770


KVTAFQHQNSKKTTK
0.3
0.2
0.2
0.2
0.3
0.2
0.1
0.4
0.0
771


VTAFQHQNSKKTTKL
0.4
0.4
0.2
0.3
0.5
0.3
0.1
0.7
0.1
772


TAFQHQNSKKTTKLV
0.7
0.5
0.5
0.7
0.7
0.4
0.4
0.8
0.1
511


AFQHQNSKKTTKLVV
0.6
0.5
0.6
0.9
0.8
0.4
0.4
0.7
0.2
512




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




LVVILRIGTQVLKTM
0.7
0.5
0.5
0.4
0.6
0.7
0.5
0.7
0.5
773


VVILRIGTQVLKTMS
0.6
0.5
0.5
0.5
0.6
0.6
0.4
0.6
0.5
774


VILRIGTQVLKTMSL
0.6
0.5
0.5
0.5
0.6
0.6
0.4
0.4
0.4
775


ILRIGTQVLKTMSLY
0.7
0.5
0.4
0.4
0.6
0.6
0.4
0.5
0.4
776




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




TMSLYMAISPKFTTS
0.5
0.0
0.4
0.3
0.2
0.7
0.4
0.0
0.5
777


MSLYMAISPKFTTSL
0.8
0.7
0.4
0.3
0.6
0.6
0.4
0.3
0.5
778


SLYMAISPKFTTSLS
0.7
0.5
0.5
0.4
0.6
0.6
0.6
0.6
0.6
779


LYMAISPKFTTSLSL
0.7
0.5
0.5
0.3
0.6
0.6
0.3
0.6
0.5
780


YMAISPKFTTSLSLH
0.7
0.6
0.4
0.4
0.6
0.6
0.4
0.6
0.5
781


MAISPKFTTSLSLHK
0.7
0.7
0.7
0.6
0.7
0.7
0.5
0.5
0.5
782


AISPKFTTSLSLHKL
0.6
0.5
0.5
0.6
0.6
0.6
0.5
0.5
0.4
783


ISPKFTTSLSLHKLL
0.5
0.4
0.4
0.5
0.5
0.6
0.4
0.4
0.5
784


SPKFTTSLSLHKLLQ
0.6
0.4
0.4
0.4
0.5
0.5
0.4
0.3
0.5
785


PKFTTSLSLHKLLQT
0.6
0.4
0.5
0.3
0.5
0.6
0.4
0.3
0.5
786


KFTTSLSLHKLLQTL
0.5
0.4
0.4
0.6
0.5
0.6
0.5
0.5
0.4
787


FTTSLSLHKLLQTLV
0.5
0.5
0.4
0.6
0.5
0.5
0.4
0.4
0.5
788


TTSLSLHKLLQTLVL
0.5
0.5
0.3
0.5
0.5
0.5
0.5
0.3
0.6
789


TSLSLHKLLQTLVLK
0.7
0.6
0.5
1.0
0.6
0.7
0.6
0.6
0.7
790


SLSLHKLLQTLVLKM
0.6
0.5
0.3
0.5
0.4
0.5
0.4
0.3
0.6
791


LSLHKLLQTLVLKML
0.7
0.4
0.3
0.3
0.4
0.5
0.4
0.2
0.4
792


SLHKLLQTLVLKMLH
0.7
0.5
0.3
0.3
0.4
0.6
0.3
0.1
0.4
793


LHKLLQTLVLKMLHS
0.6
0.0
0.4
0.3
0.4
0.5
0.4
0.3
0.6
794


HKLLQTLVLKMLHSS
0.5
0.5
0.4
0.2
0.5
0.5
0.4
0.5
0.4
795


KLLQTLVLKMLHSSS
0.6
0.6
0.4
0.3
0.5
0.6
0.4
0.4
0.5
796


LLQTLVLKMLHSSSL
0.6
0.5
0.3
0.3
0.5
0.5
0.4
0.5
0.5
797


LQTLVLKMLHSSSLT
0.7
0.5
0.5
0.4
0.6
0.6
0.4
0.7
0.5
798


QTLVLKMLHSSSLTS
0.7
0.5
0.5
0.5
0.5
0.6
0.4
0.7
0.5
799


TLVLKMLHSSSLTSL
0.7
0.5
0.4
0.4
0.5
0.6
0.4
0.4
0.4
800


LVLKMLHSSSLTSLL
0.6
0.4
0.3
0.3
0.4
0.5
0.3
0.4
0.5
801


VLKMLHSSSLTSLLK
0.6
0.5
0.5
0.5
0.5
0.6
0.4
0.5
0.5
802


LKMLHSSSLTSLLKT
0.6
0.5
0.6
0.4
0.6
0.6
0.5
0.6
0.5
803


KMLHSSSLTSLLKTH
0.6
0.5
0.5
0.6
0.5
0.6
0.9
0.4
0.6
804


MLHSSSLTSLLKTHR
0.6
0.4
0.4
0.6
0.5
0.5
0.6
0.5
0.5
805


LHSSSLTSLLKTHRM
0.6
0.5
0.4
0.5
0.5
0.5
0.6
0.6
0.6
806


HSSSLTSLLKTHRMC
0.6
0.5
0.3
0.5
0.5
0.6
0.5
0.4
0.5
807


SSSLTSLLKTHRMCK
0.6
0.5
0.4
0.8
0.6
0.7
0.6
0.2
0.6
808


SSLTSLLKTHRMCKY
0.6
0.5
0.4
0.5
0.5
0.6
0.4
0.3
0.5
809


SLTSLLKTHRMCKYT
0.8
0.4
0.4
0.4
0.3
0.7
0.4
0.3
0.5
810


LTSLLKTHRMCKYTQ
0.7
0.3
0.5
0.5
0.6
0.6
0.5
0.4
0.2
811


TSLLKTHRMCKYTQS
0.7
0.7
0.6
0.5
0.7
0.7
0.5
0.8
0.6
812


SLLKTHRMCKYTQST
0.8
0.6
0.6
0.6
0.6
0.7
0.6
0.7
0.7
813


LLKTHRMCKYTQSTA
0.8
0.5
0.6
0.6
0.7
0.7
0.5
0.8
0.6
814


LKTHRMCKYTQSTAL
0.8
0.6
0.5
0.6
0.7
0.7
0.5
0.8
0.5
815


KTHRMCKYTQSTALQ
0.7
0.5
0.6
0.5
0.7
0.6
0.5
0.8
0.5
816


THRMCKYTQSTALQE
0.9
0.8
0.5
0.6
0.7
0.8
0.7
0.8
0.6
817


HRMCKYTQSTALQEL
0.9
0.8
0.5
0.5
0.8
0.8
0.5
0.8
0.8
818


RMCKYTQSTALQELL
0.8
0.7
0.5
0.4
0.7
0.8
0.5
0.6
0.6
819


MCKYTQSTALQELLI
0.8
0.7
0.6
0.5
0.6
0.8
0.5
0.7
0.8
820


CKYTQSTALQELLIQ
0.7
0.5
0.5
0.4
0.7
0.7
0.5
0.6
0.7
821


KYTQSTALQELLIQQ
0.7
0.6
0.4
0.5
0.6
0.6
0.5
0.6
0.6
822


YTQSTALQELLIQQW
0.6
0.5
0.4
0.4
0.5
0.6
0.5
0.6
0.6
823


TQSTALQELLIQQWI
0.7
0.6
0.3
0.7
0.6
0.6
0.7
0.7
0.6
824


QSTALQELLIQQWIQ
0.6
0.4
0.4
0.4
0.5
0.5
0.5
0.4
0.6
825


STALQELLIQQWIQF
0.6
0.4
0.3
0.3
0.5
0.6
0.4
0.3
0.5
826


TALQELLIQQWIQFM
0.8
0.6
0.3
0.2
0.5
0.5
0.4
0.4
0.5
827


ALQELLIQQWIQFMM
0.7
0.6
0.4
0.4
0.6
0.6
0.5
0.4
0.7
828


LQELLIQQWIQFMMS
0.7
0.6
0.3
0.3
0.5
0.5
0.4
0.6
0.5
829


QELLIQQWIQFMMSR
0.7
0.4
0.4
0.3
0.5
0.5
0.4
0.6
0.6
830


ELLIQQWIQFMMSRR
0.7
0.5
0.4
0.3
0.6
0.6
0.4
0.8
0.6
831


LLIQQWIQFMMSRRR
0.7
0.5
0.5
0.5
0.6
0.6
0.4
0.8
0.5
832


LIQQWIQFMMSRRRL
0.7
0.4
0.4
0.7
0.6
0.5
0.5
0.8
0.4
833


IQQWIQFMMSRRRLL
0.6
0.5
0.4
0.6
0.6
0.5
0.4
0.8
0.3
834


QQWIQFMMSRRRLLA
0.6
0.4
0.4
0.8
0.6
0.6
0.5
0.6
0.6
835


QWIQFMMSRRRLLAC
0.7
0.5
0.5
0.7
0.6
0.6
0.5
0.6
0.5
836


WIQFMMSRRRLLACL
0.6
0.4
0.4
0.5
0.5
0.6
0.5
0.7
0.5
837


IQFMMSRRRLLACLC
0.7
0.5
0.4
0.6
0.6
0.7
0.5
0.8
0.6
838


QFMMSRRRLLACLCK
0.7
0.5
0.5
0.6
0.5
0.6
0.6
0.4
0.4
839


FMMSRRRLLACLCKH
0.7
0.5
0.5
0.7
0.6
0.6
0.7
0.5
0.5
840




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image


















TABLE 4










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to looped/cyclic peptides of


protein X2 of SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
London
yellow
green
NO




















embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




THITMTTVYHITVSQ
0.6
0.6
0.3
0.2
0.5
0.6
0.2
0.5
0.3
750


HITMTTVYHITVSQI
0.6
0.6
0.3
0.3
0.6
0.7
0.2
0.5
0.4
751


ITMTTVYHITVSQIQ
0.4
0.5
0.2
0.2
0.4
0.5
0.2
0.3
0.3
752


TMTTVYHITVSQIQL
0.4
0.4
0.3
0.2
0.4
0.5
0.2
0.3
0.3
753


MTTVYHITVSQIQLS
0.5
0.5
0.3
0.3
0.5
0.6
0.2
0.4
0.4
754


TTVYHITVSQIQLSL
0.5
0.5
0.3
0.3
0.4
0.5
0.2
0.4
0.2
755


TVYHITVSQIQLSLL
0.4
0.4
0.3
0.2
0.4
0.5
0.2
0.3
0.2
756


VYHITVSQIQLSLLK
0.5
0.2
0.2
0.6
0.4
0.6
1.3
0.3
0.3
757


YHITVSQIQLSLLKV
0.4
0.4
0.4
0.1
0.4
0.5
0.2
0.4
0.3
758


HITVSQIQLSLLKVT
0.5
0.5
0.5
0.4
0.5
0.6
0.8
0.6
0.4
759


ITVSQIQLSLLKVTA
0.5
0.5
0.4
1.4
0.5
0.5
1.4
0.6
0.3
760


TVSQIQLSLLKVTAF
0.5
0.5
0.4
1.0
0.4
0.6
1.4
0.7
0.4
761


VSQIQLSLLKVTAFQ
0.5
0.4
0.4
0.6
0.4
0.6
0.8
0.6
0.3
762


SQIQLSLLKVTAFQH
0.5
0.5
0.4
0.6
0.4
0.6
1.0
0.7
0.2
763


QIQLSLLKVTAFQHQ
0.6
0.5
0.4
0.6
0.4
0.6
0.7
0.6
0.4
764


IQLSLLKVTAFQHQN
0.5
0.6
0.3
0.4
0.4
0.6
0.2
0.5
0.2
765


QLSLLKVTAFQHQNS
0.5
0.5
0.3
0.3
0.4
0.6
0.3
0.3
0.2
766


LSLLKVTAFQHQNSK
0.3
0.2
0.1
0.1
0.2
0.3
0.1
0.2
0.1
767


SLLKVTAFQHQNSKK
0.3
0.2
0.1
0.1
0.2
0.4
0.1
0.2
0.1
768


LLKVTAFQHQNSKKT
0.4
0.3
0.2
0.2
0.3
0.4
0.2
0.3
0.3
769


LKVTAFQHQNSKKTT
0.3
0.2
0.1
0.1
0.2
0.4
0.1
0.2
0.1
770


KVTAFQHQNSKKTTK
0.2
0.2
0.0
0.0
0.2
0.3
0.1
0.1
0.0
771


VTAFQHQNSKKTTKL
0.4
0.3
0.1
0.3
0.3
0.5
0.2
0.5
0.2
772


TAFQHQNSKKTTKLV
0.3
0.3
0.2
0.3
0.2
0.4
0.2
0.3
0.1
511


AFQHQNSKKTTKLVV
0.5
0.5
0.4
0.4
0.5
0.6
0.2
0.5
0.3
512




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




LVVILRIGTQVLKTM
0.6
0.6
0.4
0.4
0.4
0.7
0.3
0.5
0.4
773


VVILRIGTQVLKTMS
0.4
0.4
0.3
0.3
0.3
0.4
0.2
0.4
0.3
774


VILRIGTQVLKTMSL
0.6
0.6
0.4
0.5
0.5
0.7
0.2
0.4
0.3
775


ILRIGTQVLKTMSLY
0.6
0.5
0.3
0.5
0.5
0.6
0.3
0.6
0.3
776




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




TMSLYMAISPKFTTS
0.6
0.6
0.4
0.4
0.5
0.7
0.2
0.6
0.4
777


MSLYMAISPKFTTSL
0.7
0.6
0.4
0.5
0.5
0.8
0.4
0.5
0.3
778


SLYMAISPKFTTSLS
0.6
0.6
0.3
0.4
0.4
0.5
0.3
0.6
0.5
779


LYMAISPKFTTSLSL
0.6
0.5
0.5
0.5
0.5
0.7
0.6
0.5
0.4
780


YMAISPKFTTSLSLH
0.6
0.6
0.4
0.5
0.5
0.6
0.4
0.4
0.4
781


MAISPKFTTSLSLHK
0.5
0.5
0.4
0.4
0.4
0.6
0.2
0.5
0.4
782


AISPKFTTSLSLHKL
0.6
0.6
0.4
0.8
0.5
0.7
1.1
0.4
0.3
783


ISPKFTTSLSLHKLL
0.5
0.5
0.4
0.4
0.4
0.7
0.3
0.3
0.2
784


SPKFTTSLSLHKLLQ
0.5
0.5
0.3
0.4
0.3
0.5
0.2
0.3
0.2
785


PKFTTSLSLHKLLQT
0.5
0.4
0.3
0.3
0.4
0.6
0.3
0.3
0.3
786


KFTTSLSLHKLLQTL
0.5
0.4
0.5
0.4
0.5
0.5
0.6
0.3
0.4
787


FTTSLSLHKLLQTLV
2.1
2.5
1.2
0.8
1.3
1.7
1.0
1.3
1.7
788


TTSLSLHKLLQTLVL
0.5
0.4
0.4
0.5
0.5
0.6
1.3
0.5
0.3
789


TSLSLHKLLQTLVLK
0.5
0.4
0.3
0.3
0.4
0.6
0.2
0.5
0.4
790


SLSLHKLLQTLVLKM
0.5
0.5
0.3
0.9
0.4
0.5
1.2
0.7
0.3
791


LSLHKLLQTLVLKML
0.5
0.4
0.3
0.6
0.4
0.6
1.3
0.6
0.2
792


SLHKLLQTLVLKMLH
0.6
0.5
0.4
0.3
0.4
0.7
0.3
0.5
0.3
793


LHKLLQTLVLKMLHS
0.6
0.5
0.4
0.6
0.4
0.6
1.0
0.7
0.4
794


HKLLQTLVLKMLHSS
0.6
0.6
0.4
0.4
0.5
0.7
0.3
0.5
0.3
795


KLLQTLVLKMLHSSS
0.5
0.5
0.3
0.5
0.4
0.6
0.4
0.4
0.3
796


LLQTLVLKMLHSSSL
0.5
0.5
0.3
0.7
0.4
0.6
1.1
0.5
0.3
797


LQTLVLKMLHSSSLT
0.4
0.4
0.3
0.5
0.3
0.4
0.5
0.3
0.3
798


QTLVLKMLHSSSLTS
0.6
0.4
0.3
0.5
0.4
0.6
0.9
0.4
0.3
799


TLVLKMLHSSSLTSL
0.7
0.6
0.5
1.0
0.5
0.7
1.0
0.5
0.3
800


LVLKMLHSSSLTSLL
0.6
0.5
0.3
0.4
0.4
0.6
0.2
0.4
0.3
801


VLKMLHSSSLTSLLK
0.4
0.2
0.1
0.1
0.2
0.4
0.1
0.2
0.2
802


LKMLHSSSLTSLLKT
0.5
0.5
0.3
0.3
0.4
0.6
0.2
0.2
0.3
803


KMLHSSSLTSLLKTH
0.3
0.4
0.2
0.2
0.2
0.3
0.2
0.3
0.7
804


MLHSSSLTSLLKTHR
0.5
0.5
0.5
0.2
0.3
0.5
0.2
0.5
0.4
805


LHSSSLTSLLKTHRM
0.4
0.4
0.3
0.2
0.3
0.4
0.2
0.3
0.3
806


HSSSLTSLLKTHRMC
0.4
0.4
0.3
0.2
0.3
0.4
0.2
0.4
0.3
807


SSSLTSLLKTHRMCK
0.3
0.4
0.1
0.1
0.2
0.3
0.1
0.5
0.3
808


SSLTSLLKTHRMCKY
0.5
0.5
0.4
0.3
0.3
0.6
0.2
0.6
0.2
809


SLTSLLKTHRMCKYT
0.3
0.3
0.1
0.2
0.2
0.4
0.2
0.3
0.2
810


LTSLLKTHRMCKYTQ
0.4
0.3
0.2
0.2
0.3
0.4
0.2
0.3
0.2
811


TSLLKTHRMCKYTQS
0.4
0.3
0.2
0.2
0.2
0.4
0.2
0.3
0.2
812


SLLKTHRMCKYTQST
0.3
0.2
0.1
0.2
0.3
0.4
0.2
0.2
0.1
813


LLKTHRMCKYTQSTA
0.4
0.3
0.2
0.3
0.2
0.4
0.2
0.2
0.2
814


LKTHRMCKYTQSTAL
0.6
0.6
0.4
0.5
0.5
0.6
0.2
0.6
0.3
815


KTHRMCKYTQSTALQ
0.4
0.4
0.2
0.4
0.2
0.4
0.2
0.2
0.2
816


THRMCKYTQSTALQE
0.5
0.6
0.2
0.2
0.3
0.4
0.2
0.3
0.5
817


HRMCKYTQSTALQEL
0.6
0.6
0.4
1.0
0.5
0.6
1.5
0.5
0.5
818


RMCKYTQSTALQELL
0.7
0.7
0.4
0.3
0.4
0.7
0.2
0.3
0.6
819


MCKYTQSTALQELLI
0.6
0.6
0.5
0.3
0.7
0.8
0.2
0.4
0.7
820


CKYTQSTALQELLIQ
0.6
0.6
0.5
0.4
0.3
0.4
0.3
0.3
0.4
821


KYTQSTALQELLIQQ
0.8
1.0
0.7
0.7
0.8
1.0
0.5
0.8
0.9
822


YTQSTALQELLIQQW
0.6
0.5
0.5
0.2
0.4
0.6
0.2
0.3
0.3
823


TQSTALQELLIQQWI
0.6
0.5
0.4
0.2
0.6
0.6
0.2
0.5
0.5
824


QSTALQELLIQQWIQ
0.6
0.5
0.4
0.2
0.4
0.6
0.2
0.4
0.4
825


STALQELLIQQWIQF
0.6
0.5
0.4
0.2
0.4
0.6
0.2
0.5
0.3
826


TALQELLIQQWIQFM
0.7
0.5
0.4
0.3
0.5
0.7
0.2
0.5
0.5
827


ALQELLIQQWIQFMM
0.7
0.5
0.4
0.2
0.5
0.7
0.2
0.5
0.4
828


LQELLIQQWIQFMMS
0.6
0.5
0.3
0.2
0.4
0.6
0.2
0.3
0.2
829


QELLIQQWIQFMMSR
0.5
0.5
0.6
0.6
0.5
0.7
1.2
0.5
0.3
830


ELLIQQWIQFMMSRR
0.5
0.4
0.5
0.3
0.5
0.6
0.2
0.4
0.4
831


LLIQQWIQFMMSRRR
0.5
0.5
0.7
0.3
0.5
0.7
0.2
0.4
0.3
832


LIQQWIQFMMSRRRL
0.5
0.5
0.8
0.5
0.5
0.8
0.9
0.5
0.3
833


IQQWIQFMMSRRRLL
0.4
0.4
0.5
0.4
0.5
0.7
0.2
0.5
0.4
834


QQWIQFMMSRRRLLA
0.6
0.5
0.6
0.4
0.6
0.8
0.3
0.4
0.5
835


QWIQFMMSRRRLLAC
0.5
0.4
0.3
0.3
0.5
0.5
0.2
0.4
0.4
836


WIQFMMSRRRLLACL
0.4
0.3
0.1
0.3
0.3
0.3
0.3
0.4
0.2
837


IQFMMSRRRLLACLC
0.4
0.2
0.5
0.3
0.2
0.3
0.4
0.5
0.2
838


QFMMSRRRLLACLCK
0.4
0.5
0.5
0.1
0.4
0.5
0.2
0.3
0.4
839


FMMSRRRLLACLCKH
0.4
0.4
0.3
0.5
0.3
0.4
1.2
0.5
0.3
840


MMSRRRLLACLCKHK
0.2
0.2
0.1
0.0
0.2
0.3
0.1
0.2
0.1
139


MSRRRLLACLCKHKK
0.2
0.1
0.0
0.1
0.2
0.3
0.1
0.1
0.1
140


SRRRLLACLCKHKKV
0.2
0.2
0.1
0.0
0.2
0.3
0.1
0.2
0.2
141


RRRLLACLCKHKKVS
0.2
0.1
0.0
0.1
0.2
0.3
0.1
0.1
0.1
142


RRLLACLCKHKKVST
0.2
0.1
0.1
0.2
0.2
0.4
0.2
0.2
0.2
143


RLLACLCKHKKVSTN
0.3
0.2
0.3
0.3
0.3
0.5
0.2
0.4
0.3
144


LLACLCKHKKVSTNL
0.4
0.4
0.4
0.4
0.5
0.7
0.2
0.4
0.3
145


LACLCKHKKVSTNLC
0.3
0.3
0.2
0.2
0.3
0.4
0.2
0.3
0.2
146


ACLCKHKKVSTNLCT
0.3
0.3
0.2
0.2
0.3
0.4
0.2
0.3
0.3
147


CLCKHKKVSTNLCTH
0.3
0.3
0.3
0.3
0.4
0.5
0.2
0.4
0.3
148


LCKHKKVSTNLGTHS
0.3
0.4
0.3
0.3
0.3
0.4
0.3
0.5
0.3
149


CKHKKVSTNLCTHSF
0.7
0.7
0.4
0.3
0.6
0.5
0.3
0.9
0.4
150


KHKKVSTNLCTHSFR
0.5
0.0
0.7
0.4
0.2
0.4
0.1
0.1
0.3
151


HKKVSTNLCTHSFRK
0.6
0.4
0.8
0.6
0.5
0.7
0.3
0.6
0.3
152


KKVSTNLCTHSFRKK
0.5
0.3
0.7
0.5
0.5
0.6
0.2
0.5
0.3
153


KVSTNLCTHSFRKKQ
0.4
0.3
0.5
0.5
0.4
0.6
0.2
0.5
0.3
154


VSTNLCTHSFRKKQV
0.5
0.3
0.6
0.5
0.5
0.6
0.1
0.4
0.3
155


STNLCTHSFRKKQVR
0.5
0.3
0.5
0.6
0.5
0.5
0.2
0.5
0.2
156
















TABLE 5










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to linear peptides of protein E of


SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
yellow
London
green
NO





MYSFVSEETGTLIVN
0.8
0.8
0.6
0.6
0.8
0.8
0.1
0.6
0.6
841


YSFVSEETGTLIVNS
0.8
0.7
0.5
0.5
0.6
0.5
0.6
0.7
0.7
842


SFVSEETGTLIVNSV
0.9
0.7
0.6
0.6
0.8
0.8
0.1
0.5
0.5
843


VSEETGTLIVNSVLL
0.8
0.5
0.3
0.4
0.5
0.7
0.1
0.5
0.4
844


FVSEETGTLIVNSVL
0.8
0.6
0.5
0.4
0.4
0.5
0.4
0.8
0.6
845


SEETGTLIVNSVLLF
0.9
0.7
0.3
0.7
0.7
0.7
0.1
0.5
0.4
846


EETGTLIVNSVLLFL
0.8
0.7
0.4
0.6
0.8
0.7
0.2
0.5
0.5
847


ETGTLIVNSVLLFLA
0.8
0.7
0.8
0.5
0.4
0.4
0.4
0.8
0.6
848


TGTLIVNSVLLPLAF
0.7
0.5
0.3
0.6
0.7
0.6
0.2
0.4
0.4
849


GTLIVNSVLLFLAFV
0.8
0.7
0.4
0.9
0.8
0.7
0.2
0.5
0.4
850


TLIVNSVLLFLAFVV
0.7
0.5
0.4
0.5
0.5
0.3
0.3
0.6
0.6
851


LIVNSVLLFLAFVVF
0.8
0.6
0.4
0.7
0.6
0.6
0.3
0.4
0.4
852


IVNSVLLFLAFVVFL
0.8
0.6
0.4
0.7
0.7
0.6
0.2
0.4
0.3
853


VNSVLLFLAFVVFLL
0.9
0.1
1.1
0.6
0.5
0.2
0.6
1.4
0.7
854


NSVLLFLAFVVFLLV
0.8
0.6
0.6
0.9
0.7
0.7
0.2
0.6
0.3
855


SVLLFLAFVVFLLVT
0.8
0.7
0.5
0.9
0.8
0.7
0.3
0.5
0.5
856


VLLFLAFVVFLLVTL
0.8
0.9
0.8
0.9
0.8
0.8
0.3
0.6
0.5
857


LLFLAFVVFLLVTLA
0.8
0.6
0.5
0.7
0.7
0.7
0.2
0.5
0.4
858


LFLAFVVFLLVTLAI
0.9
0.5
0.9
0.7
0.7
0.7
0.2
0.8
0.5
859


FLAFVVFLLVTLAIL
0.7
0.5
0.2
0.4
0.3
0.1
0.3
0.4
0.7
860


LAFVVFLLVTLAILT
0.8
0.5
0.5
0.7
0.7
0.7
0.1
0.6
0.3
861


AFVVFLLVTLAILTA
0.8
0.6
0.4
0.6
0.7
0.7
0.2
0.6
0.4
862


FVVFLLVTLAILTAL
0.6
0.4
0.5
0.3
0.4
0.3
0.2
0.5
0.5
863


VVFLLVTLAILTALR
0.7
0.4
0.4
0.6
0.6
0.6
0.1
0.5
0.5
864


VFLLVTLAILTALRL
0.7
0.4
0.4
0.5
0.6
0.6
0.0
0.5
0.4
865


FLLVTLAILTALRLC
0.6
0.5
0.6
0.3
0.3
0.3
0.2
0.6
0.5
866


LLVTLAILTALRLCA
0.8
0.4
0.5
0.4
0.6
0.6
0.0
0.5
0.4
867


LVTLAILTALRLCAY
0.8
0.5
0.6
0.7
0.7
0.7
0.1
0.5
0.3
868


VTLAILTALRLCAYC
0.6
0.5
0.6
0.3
0.4
0.4
0.2
0.5
0.5
869


TLAILTALRLCAYCC
0.8
0.9
0.3
0.6
0.7
0.7
0.2
0.5
0.5
870


LAILTALRLCAYCCN
0.8
0.7
0.5
0.5
0.8
0.8
0.2
0.5
0.5
871


AILTALRLCAYCCNI
0.6
0.4
0.5
0.3
0.4
0.4
0.1
0.5
0.5
872


ILTALRLCAYCCNIV
0.8
0.7
0.4
0.8
0.7
0.8
0.2
0.5
0.5
873


LTALRLCAYCCNIVN
0.9
0.8
0.4
0.7
0.8
0.7
0.2
0.5
0.3
874


TALRLCAYCCNIVNV
0.7
0.5
0.5
0.4
0.5
0.5
0.2
0.5
0.6
875


ALRLCAYCCNIVNVS
0.9
0.8
0.5
0.7
0.8
0.7
0.2
0.5
0.5
876


LRLCAYCCNIVNVSL
0.7
0.6
0.4
0.6
0.7
0.7
0.3
0.5
0.3
877


RLCAYCCNIVNVSLV
0.6
0.5
0.6
0.4
0.5
0.4
0.2
0.5
0.5
878




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image


















TABLE 6










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to looped/cyclic peptides of protein E


of SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
yellow
London
green
NO





MYSFVSEETGTLIVN
0.7
0.5
0.6
0.5
0.7
0.8
0.8
0.4
0.4
841


YSFVSEETGTLIVNS
0.7
0.5
0.7
0.4
0.8
0.8
0.7
0.4
0.4
842


SFVSEETGTLIVNSV
0.5
0.4
0.5
0.4
0.6
0.7
0.7
0.5
0.4
843


VSEETGTLIVNSVLL
0.7
0.6
0.6
0.5
0.7
0.9
0.7
0.5
0.6
844


FVSEETGTLIVNSVL
0.6
0.6
0.4
0.5
0.6
0.8
0.8
0.5
0.6
845


SEETGTLIVNSVLLF
0.4
0.3
0.3
0.5
0.4
0.7
0.5
0.5
0.4
846


EETGTLIVNSVLLFL
0.4
0.3
0.3
0.4
0.4
0.7
0.5
0.4
0.3
847


ETGTLIVNSVLLFLA
0.5
0.4
0.5
0.4
0.5
0.7
0.5
0.4
0.3
848


TGTLIVNSVLLFLAF
0.4
0.3
0.4
0.3
0.3
0.6
0.4
0.3
0.2
849


GTLIVNSVLLFLAFV
0.2
0.0
0.6
0.3
0.2
0.4
0.0
0.4
0.4
850


TLIVNSVLLFLAFVV
0.6
0.5
0.7
0.4
0.7
0.6
0.6
0.4
0.5
851


LIVNSVLLFLAFVVF
0.5
0.4
0.5
0.4
0.5
0.6
0.5
0.3
0.2
852


IVNSVLLFLAFVVFL
0.6
0.4
0.5
0.3
0.6
0.6
0.7
0.3
0.2
853


VNSVLLFLAFVVFLL
0.6
0.4
0.5
0.3
0.6
0.7
0.6
0.3
0.4
854


NSVLLFLAFVVFLLV
0.6
0.5
0.6
0.4
0.7
0.7
0.7
0.3
0.4
855


SVLLFLAFVVFLLVT
0.6
0.5
0.5
0.4
0.6
0.6
0.6
0.4
0.6
856


VLLFLAFVVFLLVTL
0.6
0.5
0.5
0.4
0.6
0.8
0.6
0.4
0.3
857


LLFLAFVVFLLVTLA
0.7
0.4
0.6
0.4
0.7
0.7
0.7
0.4
0.4
858


LFLAFVVFLLVTLAI
0.5
0.5
0.6
0.5
0.6
0.7
0.9
0.5
0.7
859


FLAFVVFLLVTLAIL
0.5
0.5
0.6
0.5
0.6
0.7
0.5
0.4
0.4
860


LAFVVFLLVTLAILT
0.5
0.5
0.5
0.5
0.6
0.6
0.4
0.5
0.5
861


AFVVFLLVTLAILTA
0.5
0.4
0.4
0.5
0.5
0.6
0.5
0.4
0.5
862


FVVFLLVTLAILTAL
0.4
0.4
0.4
0.6
0.5
0.6
0.6
0.4
0.4
863


VVFLLVTLAILTALR
0.5
0.3
0.5
0.5
0.4
0.7
0.5
0.5
0.2
864


VFLLVTLAILTALRL
0.4
0.2
0.4
0.2
0.4
0.5
0.5
0.3
0.2
865


FLLVTLAILTALRLC
0.3
0.0
0.5
1  
0.6
0.6
0.5
1.2
0.3
866


LLVTLAILTALRLCA
0.7
0.1
0.6
0.4
0.3
0.8
0.3
0.4
0.6
867


LVTLAILTALRLCAY
0.6
0.5
1.0
0.4
0.7
0.6
0.4
0.4
0.6
868


VTLAILTALRLCAYC
0.7
0.5
0.9
0.6
0.6
0.8
0.7
0.5
0.5
869


TLAILTALRLCAYCC
0.7
0.6
0.7
0.7
0.7
0.7
0.9
0.5
0.5
870


LAILTALRLCAYCCN
0.8
0.4
0.6
0.5
0.6
0.7
0.8
0.4
0.5
871


AILTALRLCAYCCNI
0.8
0.6
0.7
0.5
0.7
0.8
0.9
0.4
0.5
872


ILTALRLCAYCCNIV
0.9
0.6
1.0
0.7
0.7
0.8
0.6
0.6
0.6
873


LTALRLCAYCCNIVN
0.6
0.4
0.7
0.5
0.7
0.7
0.4
0.3
0.3
874


TALRLCAYCCNIVNV
0.7
0.4
0.8
0.6
0.7
0.9
0.9
0.5
0.7
875


ALRLCAYCCNIVNVS
0.8
0.8
0.7
0.7
0.7
0.8
0.7
0.6
0.6
876


LRLCAYCCNIVNVSL
0.7
0.4
0.5
0.4
0.6
0.6
0.6
0.4
0.6
877


RLCAYCCNIVNVSLV
0.7
0.7
0.7
0.7
0.6
0.8
0.6
0.5
0.8
878




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image


















TABLE 7










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to linear peptides of protein M of


SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
yellow
London
green
NO




















embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




ELKQLLEQWNLVIGF
0.8
0.8
0.5
0.6
0.6
0.5
0.3
0.6
0.5
879


LKQLLEQWNLVIGFL
0.7
0.5
0.6
0.7
0.7
0.7
0.1
1.0
0.2
880


KQLLEQWNLVIGFLF
0.7
0.6
0.4
0.3
0.3
0.4
0.2
0.3
0.4
881


QLLEQWNLVIGFLFL
0.7
0.4
0.5
0.4
0.6
0.6
0.0
0.4
0.2
882


LLEQWNLVIGFLFLA
0.7
0.6
0.4
0.2
0.4
0.4
0.2
0.3
0.3
883


LEQWNLVIGFLFLAW
0.6
0.4
0.6
0.5
0.6
0.7
0.1
0.4
0.3
884


EQWNLVIGFLFLAWI
0.7
0.5
0.5
0.5
0.4
0.5
0.3
0.4
0.4
885


QWNLVIGFLFLAWIM
0.7
0.4
0.6
0.4
0.7
0.8
0.1
0.3
0.2
886


WNLVIGFLFLAWIML
0.7
0.6
0.4
0.3
0.4
0.4
0.2
0.3
0.4
887


NLVIGFLFLAWIMLL
0.7
0.5
0.5
0.3
0.6
0.7
0.0
0.3
0.2
888


LVIGFLFLAWIMLLQ
0.7
0.5
0.5
0.4
0.4
0.4
0.1
0.3
0.4
889


VIGFLFLAWIMLLQF
0.7
0.4
0.4
0.3
0.7
0.7
0.0
0.3
0.2
890


IGFLFLAWIMLLQFA
0.7
0.6
0.5
0.9
0.4
0.5
0.2
0.6
0.5
891


GFLFLAWIMLLQFAY
0.7
0.5
0.5
0.3
0.7
0.7
0.0
0.3
0.2
892


FLFLAWIMLLQFAYS
0.7
0.6
0.4
0.4
0.4
0.4
0.2
0.3
0.4
893


LFLAWIMLLQFAYSN
0.7
0.5
0.3
0.3
0.6
0.7
0.0
0.2
0.2
894


FLAWIMLLQFAYSNR
0.7
0.6
0.5
0.4
0.4
0.4
0.2
0.4
0.5
895


LAWIMLLQFAYSNRN
0.6
0.5
0.4
0.2
0.7
0.7
0.0
0.2
0.3
896


AWIMLLQFAYSNRNR
0.7
0.6
0.5
0.5
0.4
0.4
0.2
0.3
0.6
897


WIMLLQFAYSNRNRF
0.6
0.5
0.5
0.3
0.7
0.7
0.1
0.3
0.3
898


IMLLQFAYSNRNRFL
0.7
0.5
0.4
0.4
0.4
0.3
0.2
0.3
0.4
899


MLLQFAYSNRNRFLY
0.6
0.4
0.5
0.2
0.8
0.7
0.1
0.2
0.2
900


LLQFAYSNRNRFLYI
0.7
0.6
0.4
0.3
0.3
0.3
0.2
0.3
0.5
901


LQFAYSNRNRFLYII
0.7
0.5
0.6
0.3
0.7
0.7
0.0
0.2
0.2
902


QFAYSNRNRFLYIIK
0.7
0.6
0.5

0.4
0.9
0.3
0.4
0.5
191


FAYSNRNRFLYIIKL
0.6
0.4
0.7
0.3
0.7
0.7
0.1
0.3
0.2
192


AYSNRNRFLYIIKLV
0.7
0.6
0.6
0.6
0.4
0.5
0.2
0.3
0.5
193


YSNRNRFLYIIKLVF
0.7
0.5
0.6
0.3
0.7
0.7
0.1
0.3
0.3
194


SNRNRFLYIIKLVFL
0.6
0.5
0.4
0.5
0.4
0.4
0.3
0.3
0.4
195


NRNRFLYIIKLVFLW
0.7
0.4
0.6
0.3
0.7
0.7
0.1
0.3
0.3
196


RNRFLYIIKLVFLWL
0.6
0.5
0.4
0.5
0.4
0.5
0.3
0.3
0.4
197


NRFLYIIKLVFLWLL
0.7
0.5
0.5
0.3
0.7
0.7
0.1
0.3
0.3
198


RFLYIIKLVFLWLLW
0.7
0.7
0.6
0.8
0.4
0.4
0.3
0.6
0.6
199


FLYIIKLVFLWLLWP
0.8
0.5
1.0
0.3
0.8
0.9
0.1
0.3
0.3
200


LYIIKLVFLWLLWPV
0.8
0.6
0.6
0.4
0.4
0.4
0.2
0.3
0.5
903


YIIKLVFLWLLWPVT
0.8
0.6
0.9
0.4
0.7
0.8
0.1
0.3
0.4
904


IIKLVFLWLLWPVTL
0.7
0.5
0.4
0.4
0.3
0.3
0.2
0.3
0.4
905


IKLVFLWLLWPVTLA
0.7
0.5
0.7
0.5
0.6
0.7
0.1
0.6
0.3
906


KLVFLWLLWPVTLAC
0.7
0.6
0.5
0.4
0.5
0.5
0.2
0.4
0.4
907


LVFLWLLWPVTLACF
0.7
0.5
0.4
0.6
0.6
0.8
0.1
0.7
0.2
908


VFLWLLWPVTLACFV
0.8
0.6
0.6
0.4
0.5
0.5
0.3
0.5
0.6
909


FLWLLWPVTLACFVL
0.6
0.4
0.5
0.3
0.6
0.7
0.1
0.4
0.2
910


LWLLWPVTLACFVLA
0.7
0.6
0.4
0.5
0.4
0.4
0.2
0.4
0.4
911


WLLWPVTLACFVLAA
0.6
0.5
0.5
0.4
0.6
0.6
0.0
0.3
0.3
912


LLWPVTLACFVLAAV
0.7
0.5
0.6
0.4
0.5
0.5
0.1
0.3
0.5
913


LWPVTLACFVLAAVY
0.7
0.6
0.6
0.3
0.7
0.8
0.0
0.3
0.2
914


WPVTLACFVLAAVYR
0.7
0.5
0.4
0.3
0.4
0.4
0.2
0.3
0.4
915


PVTLACFVLAAVYRI
0.7
0.5
0.5
0.3
0.6
0.7
0.0
0.3
0.2
916


VTLACFVLAAVYRIN
0.7
0.6
0.5
0.4
0.4
0.5
0.1
0.3
0.5
917


TLACFVLAAVYRINW
0.7
0.5
0.5
0.3
0.8
0.8
0.0
0.3
0.3
918


LACFVLAAVYRINWV
0.7
0.7
0.6
0.4
0.5
0.5
0.3
0.4
0.6
919


ACFVLAAVYRINWVT
0.7
0.6
0.5
0.3
0.8
0.9
0.0
0.3
0.3
920


CFVLAAVYRINWVTG
0.8
0.6
0.6
0.6
0.4
0.4
0.2
0.4
0.5
921


FVLAAVYRINWVTGG
0.9
0.7
0.6
0.3
0.8
0.8
0.1
0.3
0.3
922


VLAAVYRINWVTGGI
0.8
0.7
0.7
0.5
0.6
0.6
0.2
0.4
0.6
923


LAAVYRINWVTGGIA
0.7
0.5
0.6
0.3
0.8
0.9
0.1
0.3
0.3
924


AAVYRINWVTGGIAI
0.9
0.7
0.7
0.5
0.6
0.5
0.3
0.4
0.6
925


AVYRINWVTGGIAIA
0.7
0.6
0.6
0.2
0.8
0.8
0.1
0.3
0.3
926


VYRINWVTGGIAIAM
0.9
0.8
0.8
1.0
0.6
0.6
0.3
0.6
0.7
927


YRINWVTGGIAIAMA
0.7
0.6
0.7
0.3
0.8
0.8
0.1
0.3
0.3
928


RINWVTGGIAIAMAC
0.7
0.7
0.6
0.8
0.5
0.5
0.3
0.5
0.6
929




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




AIAMACIVGLMWLSY
0.7
0.5
0.6
0.4
0.7
0.7
0.1
0.4
0.3
930


IAMACIVGLMWLSYF
0.6
0.5
0.4
0.3
0.3
0.3
0.2
0.3
0.3
931


AMACIVGLMWLSYFV
0.7
0.5
0.6
0.4
0.6
0.6
0.1
0.4
0.2
932


MACIVGLMWLSYFVA
0.7
0.5
0.4
0.3
0.4
0.4
0.2
0.3
0.3
933


ACIVGLMWLSYFVAS
0.7
0.5
0.5
0.4
0.6
0.7
0.1
0.3
0.2
934


CIVGLMWLSYFVASF
0.7
0.5
0.3
0.3
0.4
0.4
0.1
0.3
0.3
935


IVGLMWLSYFVASFR
0.6
0.4
0.5
0.3
0.5
0.7
0.1
0.3
0.2
936


VGLMWLSYFVASFRL
0.6
0.5
0.4
0.5
0.4
0.4
0.1
0.5
0.4
937


GLMWLSYFVASFRLF
0.7
0.4
0.4
0.6
0.5
0.6
0.1
0.4
0.3
938


LMWLSYFVASFRLFA
0.6
0.4
0.4
0.3
0.3
0.4
0.1
0.3
0.5
209


MWLSYFVASFRLFAR
0.6
0.3
0.5
0.3
0.6
0.7
0.1
0.3
0.2
210


WLSYFVASFRLFART
0.6
0.5
0.4
0.4
0.4
0.4
0.1
0.3
0.4
211


LSYFVASFRLFARTR
0.7
0.4
0.4
0.4
0.6
0.7
0.1
0.3
0.2
212


SYFVASFRLFARTRS
0.7
0.6
0.5
0.5
0.4
0.4
0.1
0.3
0.4
213


YFVASFRLFARTRSM
0.6
0.4
0.4
0.4
0.4
0.6
0.1
0.3
0.3
214


FVASFRLFARTRSMW
0.9
1.1
0.7
1.3
0.6
0.6
0.3
0.9
0.7
215


VASFRLEARTRSMWS
0.7
0.5
0.5
0.3
0.7
0.8
0.0
0.3
0.3
216


ASFRLFARTRSMWSF
0.7
0.6
0.5
0.7
0.4
0.4
0.2
0.3
0.4
939


SFRLFARTRSMWSFN
0.8
0.7
0.5
0.2
0.8
0.7
0.1
0.3
0.4
940


FRLFARTRSMWSFNP
0.8
0.5
0.6
0.5
0.5
0.5
0.2
0.4
0.6
941


RLFARTRSMWSFNPE
0.9
0.9
0.6
0.4
1.0
0.9
0.1
0.4
0.5
942


LFARTRSMWSFNPET
0.8
0.7
0.5
0.6
0.5
0.5
0.2
0.4
0.5
943


FARTRSMWSFNPETN
0.8
0.7
0.7
0.4
0.9
0.8
0.1
0.4
0.3
944


ARTRSMWSFNPETNI
0.9
0.8
0.6
0.7
0.6
0.5
0.3
0.4
0.7
945


RTRSMWSFNPETNIL
0.9
0.8
0.8
0.4
0.9
0.9
0.1
0.3
0.3
946


TRSMWSFNPETNILL
0.8
0.7
0.5
0.5
0.5
0.4
0.3
0.3
0.5
947


RSMWSFNPETNILLN
0.8
0.6
0.6
0.3
0.8
0.7
0.1
0.3
0.2
948


SMWSFNPETNILLNV
0.8
0.7
0.5
0.5
0.5
0.5
0.2
0.4
0.5
949


MWSFNPETNILLNVP
0.8
0.5
0.8
0.4
0.9
0.9
0.1
0.3
0.3
950


WSFNPETNILLNVPL
1.5
1.7
1.3
1.0
0.9
1.3
1.1
1.0
1.5
951


SFNPETNILLNVPLR
0.7
0.4
0.5
0.3
0.7
0.7
0.1
0.3
0.3
952


PNPETNILLNVPLRG
0.8
0.6
0.5
0.5
0.5
0.4
0.2
0.3
0.5
953


NPETNILLNVPLRGT
0.8
0.6
0.8
0.3
0.9
0.9
0.1
0.3
0.3
954


PETNILLNVPLRGTI
0.8
0.6
0.7
0.4
0.9
0.5
0.3
0.4
0.5
955


ETNILLNVPLRGTIV
0.7
0.5
0.5
0.4
0.6
0.7
0.1
0.4
0.3
956


TNILLNVPLRGTIVT
0.6
0.5
0.6
0.4
0.4
0.5
0.2
0.3
0.5
957


NILLNVPLRGTIVTR
0.7
0.5
0.8
0.4
0.6
0.7
0.1
0.4
0.3
217


ILLNVPLRGTIVTRP
0.6
0.4
0.4
0.2
0.4
0.4
0.2
0.3
0.4
218


LLNVPLRGTIVTRPL
0.8
0.5
0.5
0.5
0.6
0.7
0.1
0.4
0.3
219


LNVPLRGTIVTRPLM
0.7
0.5
0.6
0.5
0.5
0.5
0.1
0.4
0.4
220


NVPLRGTIVTRPLME
0.8
0.6
0.4
0.3
0.7
0.8
0.1
0.3
0.4
221


VPLRGTIVTRPLMES
0.7
0.6
0.7
0.4
0.6
0.5
0.4
0.4
0.5
222


PLRGTIVTRPLMESE
0.8
0.7
0.4
0.4
0.8
0.7
0.0
0.3
0.5
223


LRGTIVTRPLMESEL
0.7
0.5
0.3
0.3
0.5
0.4
1.0
0.3
0.4
224


RGTIVTRPLMESELV
0.9
0.6
0.6
0.4
0.9
0.9
0.1
0.3
0.3
225


GTIVTRPLMESELVI
0.8
0.7
0.7
0.5
0.6
0.7
0.2
0.3
0.7
226


TIVTRPLMESELVIG
0.8
0.6
0.6
0.4
0.7
0.9
0.1
0.3
0.3
227


IVTRPLMESELVIGA
0.8
0.7
0.6
0.4
0.6
0.6
0.5
0.3
0.6
229


VTRPLMESELVIGAV
0.8
0.6
0.9
0.2
1.0
0.9
0.1
0.3
0.3
230


TRPLMESELVIGAVI
0.8
0.7
0.7
0.6
0.7
0.6
0.2
0.3
0.8
231


RPLMESELVIGAVII
0.8
0.6
0.7
0.3
0.6
0.9
0.1
0.4
0.3
232


PLMESELVIGAVIIR
0.7
0.6
0.7
0.4
0.7
0.5
0.2
0.3
0.5
958


LMESELVIGAVIIRG
0.7
0.5
0.7
0.3
0.9
0.8
0.1
0.3
0.3
959


MESELVIGAVIIRGH
0.8
0.7
0.8
0.6
0.5
0.5
0.2
0.4
0.7
960


ESELVIGAVIIRGHL
0.8
0.6
0.8
0.3
0.9
0.8
0.1
0.3
0.3
961


SELVIGAVIIRGHLR
0.7
0.6
0.6
0.7
0.5
0.4
0.3
0.4
0.5
962


ELVIGAVIIRGHLRM
0.8
0.6
0.7
0.3
0.8
0.8
0.1
0.3
0.3
963


LVIGAVIIRGHLRMA
0.7
0.5
0.5
0.6
0.4
0.4
0.3
0.3
0.4
964




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




RCDIKDLPKEITVAT
0.7
0.5
0.5
0.3
0.5
0.6
0.2
0.3
0.5
965


CDIKDLPKEITVATS
0.6
0.3
0.3
0.3
0.5
0.7
0.0
0.3
0.2
966


DIKDLPKEITVATSR
0.7
0.5
0.5
0.5
0.6
0.5
0.2
0.4
0.5
967


IKDLPKEITVATSRT
0.7
0.5
0.6
0.3
0.8
0.8
0.0
0.3
0.2
968


KDLPKEITVATSRTL
0.7
0.6
0.6
0.5
0.5
0.5
0.2
0.3
0.5
969


DLPKEITVATSRTLS
0.7
0.2
0.7
0.2
0.5
0.7
0.0
0.3
0.3
970


LPKEITVATSRTLSY
0.7
0.5
0.6
0.4
0.4
0.5
0.2
0.3
0.4
971


PKEITVATSRTLSYY
0.6
0.4
0.5
0.2
0.8
0.7
0.1
0.3
0.1
972


KEITVATSRTLSYYK
0.7
0.6
0.6
0.0
0.5
0.6
0.2
0.3
0.4
973


EITVATSRTLSYYKL
0.7
0.5
0.6
0.4
0.8
0.9
0.1
0.3
0.4
974


ITVATSRTLSYYKLG
0.6
0.4
0.5
0.5
0.4
0.4
0.2
0.3
0.5
975


TVATSRTLSYYKLGA
0.7
0.6
0.7
0.6
0.8
0.8
0.1
0.4
0.3
976


VATSRTLSYYKLGAS
0.6
0.5
0.6
0.8
0.5
0.5
0.3
0.3
0.4
977


ATSRTLSYYKLGASQ
0.7
0.5
0.7
0.3
0.8
0.7
0.1
0.3
0.2
978


TSRTLSYYKLGASQR
0.7
0.7
0.7
0.9
0.7
0.5
0.5
0.5
0.7
979


SRTLSYYKLGASQRV
0.8
0.5
0.8
0.4
0.8
0.8
0.1
0.3
0.2
980


RTLSYYKLGASQRVG
0.7
0.6
0.7
0.8
0.5
0.5
0.4
0.3
0.5
981




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




SQRVGTDSGFAAYNR
0.8
0.6
0.4
0.6
0.5
0.4
0.5
0.4
0.5
982


QRVGTDSGFAAYNRY
0.7
0.5
0.5
0.3
0.7
0.7
0.1
0.3
0.3
983


RVGTDSGFAAYNRYR
0.7
0.1
0.5
0.5
0.6
0.2
0.3
0.3
0.5
984


VGTDSGFAAYNRYRI
0.8
0.4
0.4
0.3
0.6
0.7
0.1
0.3
0.3
985


GTDSGFAAYNRYRIG
0.6
0.4
0.4
0.7
0.6
0.5
0.2
0.3
0.4
986


TDSGFAAYNRYRIGN
0.6
0.4
0.5
0.4
0.4
0.6
0.0
0.3
0.3
987


DSGFAAYNRYRIGNY
0.6
0.4
0.4
0.5
0.4
0.4
0.1
0.3
0.3
988


SGFAAYNRYRIGNYK
0.8
0.4
0.6
0.8
0.7
0.8
0.0
0.4
0.3
989


GFAAYNRYRIGNYKL
0.6
0.4
0.4
0.8
0.5
0.5
0.1
0.4
0.3
990


FAAYNRYRIGNYKLN
0.6
0.3
0.5
0.4
0.5
0.7
0.0
0.3
0.2
991


AAYNRYRIGNYKLNT
0.7
0.5
0.7
0.8
0.6
0.5
0.2
0.4
0.5
992


AYNRYRIGNYKLNTD
0.7
0.2
0.3
0.4
0.5
0.7
0.0
0.5
0.2
993


YNRYRIGNYKLNTDH
0.7
0.6
0.4
0.5
0.5
0.4
0.1
0.5
0.4
994


NRYRIGNYKLNTDHA
0.8
0.6
0.5
0.3
0.5
0.6
0.1
0.2
0.2
995


RYRIGNYKLNTDHAG
0.7
0.5
0.4
0.2
0.6
0.5
0.2
0.5
0.4
996


YRIGNYKLNTDHAGS
0.7
0.6
0.5
0.2
0.8
0.7
0.1
0.5
0.2
997


RIGNYKLNTDHAGSN
0.7
0.5
0.6
0.3
0.5
0.6
0.1
0.6
0.6
998




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image


















TABLE 8










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to looped/cyclic peptides of protein M


of SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
London
yellow
green
NO




















embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




ELKQLLEQWNLVIGF
0.6
0.6
0.5
0.8
0.7
0.5
0.3
0.9
0.7
879


LKQLLEQWNLVIGFL
0.6
0.6
0.4
0.8
0.5
0.7
0.2
0.7
0.4
880


KQLLEQWNLVIGFLF
0.7
0.6
0.5
1.0
0.5
0.7
0.3
0.8
0.4
881


QLLEQWNLVIGFLFL
0.5
0.5
0.4
0.5
0.5
0.4
0.2
0.7
0.3
882


LLEQWNLVIGFLFLA
0.5
0.2
0.4
0.4
0.4
0.4
0.2
0.4
0.2
883


LEQWNLVIGELFLAW
0.6
0.3
0.7
0.5
0.7
0.6
0.2
0.6
0.3
884


EQWNLVIGFLFLAWI
0.7
0.6
0.6
0.4
0.7
0.7
0.2
0.6
0.4
885


QWNLVIGFLFLAWIM
0.7
0.6
0.6
0.6
0.5
0.7
0.2
0.8
0.3
886


WNLVIGFLFLAWIML
0.6
0.5
0.6
0.4
0.6
0.6
0.2
0.7
0.3
887


NLVIGFLFLAWIMLL
0.7
0.6
0.5
0.6
0.6
0.7
0.3
0.5
0.3
888


LVIGFLFLAWIMLLQ
0.7
0.6
0.8
0.5
0.7
0.7
0.2
0.7
0.3
889


VIGFLFLAWIMLLQF
0.7
0.4
0.5
0.5
0.5
0.7
0.2
0.6
0.3
890


IGFLFLAWIMLLQFA
0.8
0.7
0.6
0.9
0.7
0.8
0.3
0.5
0.3
891


GFLFLAWIMLLQFAY
0.6
0.6
0.5
0.6
0.6
0.6
0.2
0.4
0.3
892


FLFLAWIMLLQFAYS
0.8
0.7
0.6
0.9
0.7
0.8
0.3
0.4
0.3
893


LFLAWIMLLQFAYSN
0.8
0.6
0.6
0.7
0.7
0.7
0.3
0.6
0.3
894


FLAWIMLLQFAYSNR
0.8
0.8
0.6
0.9
0.7
0.6
0.7
0.7
0.5
895


LAWIMLLQFAYSNRN
0.7
0.7
0.4
0.7
0.6
0.6
0.2
0.3
0.4
896


AWIMLLQFAYSNRNR
0.7
0.7
0.6
1.1
0.6
0.6
0.6
0.7
0.4
897


WIMLLQFAYSNRNRF
0.7
0.6
0.4
0.8
0.4
0.6
0.2
0.3
0.2
898


IMLLQFAYSNRNRFL
0.6
0.4
0.6
1.0
0.6
0.5
0.6
0.6
0.3
899


MLLQFAYSNRNRFLY
0.8
0.2
0.6
1.3
0.6
0.5
0.3
0.3
0.2
900


LLQFAYSNRNRFLYI
0.7
0.5
0.6
0.6
0.5
0.4
0.2
0.5
0.1
901


LQFAYSNRNRFLYII
0.7
0.5
0.5
0.7
0.6
0.6
0.2
0.5
0.4
902




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




LYIIKLVFLWLLWPV
0.6
0.5
0.5
0.7
0.6
0.6
0.2
0.3
0.3
903


YIIKLVFLWLLWPVT
0.8
0.8
0.6
0.8
0.7
0.7
0.3
0.5
0.4
904


IIKLVFLWLLWPVTL
0.6
0.7
0.5
0.5
0.5
0.6
0.2
0.4
0.3
905


IKLVFLWLLWPVTLA
0.7
0.8
0.6
0.9
0.8
0.8
0.3
0.5
0.3
906


KLVFLWLLWPVTLAC
0.6
0.2
0.6
0.7
0.6
0.6
0.2
0.5
0.3
907


LVFLWLLWPVTLACF
0.6
0.5
0.7
0.6
0.7
0.7
0.2
0.4
0.3
908


VFLWLLWPVTLACFV
0.7
0.0
0.7
0.5
0.7
0.7
0.2
0.8
0.3
909


FLWLLWPVTLACFVL
0.6
0.5
0.6
0.4
0.6
0.6
0.2
0.7
0.2
910


LWLLWPVTLACFVLA
0.7
0.4
0.6
0.5
0.7
0.6
0.2
0.6
0.2
911


WLLWPVTLACFVLAA
0.7
0.3
0.7
0.5
0.7
0.7
0.2
0.7
0.3
912


LLWPVTLACFVLAAV
0.9
0.5
0.9
0.6
0.8
0.8
0.3
0.9
0.4
913


LWPVTLACFVLAAVY
0.7
0.5
0.7
0.6
0.7
0.6
0.2
0.5
0.2
914


WPVTLACFVLAAVYR
0.8
0.6
0.8
1.1
0.8
1.1
0.4
0.4
0.2
915


PVTLACFVLAAVYRI
0.7
0.6
0.6
0.7
0.7
0.7
0.2
0.6
0.2
916


VTLACFVLAAVYRIN
0.8
0.6
0.6
0.8
0.7
0.7
0.3
0.6
0.2
917


TLACFVLAAVYRINW
0.7
0.5
0.6
0.7
0.6
0.6
0.3
0.5
0.2
918


LACFVLAAVYRINWV
0.7
0.5
0.9
0.7
0.6
0.7
0.3
0.4
0.3
919


ACFVLAAVYRINWVT
0.7
0.7
0.5
1.0
0.7
0.6
0.3
0.5
0.3
920


CFVLAAVYRINWVTG
0.6
0.6
0.5
0.8
0.6
0.7
0.2
0.4
0.3
921


FVLAAVYRINWVTGG
0.7
0.6
0.5
0.8
0.5
0.6
0.3
0.4
0.3
922


VLAAVYRINWVTGGI
0.6
0.5
0.6
0.7
0.6
0.5
0.2
0.6
0.2
923


LAAVYRINWVTGGIA
0.8
0.2
0.5
0.7
0.5
0.5
0.2
0.3
0.3
924


AAVYRINWVTGGIAI
0.6
0.4
0.6
0.5
0.7
0.4
0.2
0.7
0.0
925


AVYRINWVTGGIAIA
0.8
0.4
0.6
0.6
0.7
0.7
0.2
0.7
0.4
926


VYRINWVTGGIAIAM
0.7
0.4
0.6
0.5
0.7
1.1
0.2
0.8
0.3
927


YRINWVTGGIAIAMA
0.6
0.4
0.6
0.5
0.5
0.6
0.2
0.8
0.0
928


RINWVTGGIAIAMAC
0.7
0.2
0.6
0.4
0.7
0.7
0.2
0.7
0.3
929




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




AIAMACIVGLMWLSY
0.5
0.3
0.4
0.6
0.5
0.4
0.2
0.8
4.4
930


IAMACIVGLMWLSYF
0.6
0.4
0.4
0.7
0.4
0.4
0.2
0.6
0.3
931


AMACIVGLMWLSYFV
0.7
0.7
0.6
0.9
0.6
0.5
0.2
0.6
0.4
932


MACIVGLMWLSYFVA
0.7
0.4
0.4
0.5
0.4
0.5
0.2
0.4
0.2
933


ACIVGLMWLSYFVAS
0.6
0.3
0.5
0.6
0.5
0.4
0.2
0.4
0.2
934


CIVGLMWLSYFVASF
0.5
0.2
0.4
0.4
0.6
0.4
0.2
0.5
0.0
935


IVGLMWLSYFVASFR
0.7
0.5
1.0
0.7
0.7
0.7
0.2
0.6
0.1
936


VGLMWLSYFVASFRL
0.6
0.3
0.5
0.5
0.6
0.5
0.2
0.8
0.2
937


GLMWLSYFVASFRLF
0.6
0.2
0.6
0.8
0.5
0.6
0.3
0.7
0.3
938




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




ASFRLFARTRSMWSF
0.6
0.5
0.5
0.9
0.5
0.5
0.2
0.6
0.2
939


SFRLFARTRSMWSFN
0.6
0.5
0.5
0.8
0.6
0.6
0.2
0.5
0.3
940


FRLFARTRSMWSFNP
0.7
0.5
0.6
0.8
0.6
0.6
0.3
0.5
0.3
941


RLFARTRSMWSFNPE
0.7
0.8
0.5
0.8
0.6
0.6
0.2
0.4
0.4
942


LFARTRSMWSFNPET
0.7
0.5
0.6
0.5
0.7
0.6
0.2
0.7
0.3
943


FARTRSMWSFNPETN
0.9
0.6
0.6
0.7
0.9
0.8
0.3
0.5
0.0
944


ARTRSMWSPNPETNI
0.7
0.1
0.9
0.6
0.8
0.8
0.2
0.7
0.1
945


RTRSMWSFNPETNIL
0.7
0.3
0.8
0.7
0.9
0.9
0.2
0.7
0.0
946


TRSMWSFNPETNILL
1.0
0.4
0.8
0.9
1.1
1.1
0.3
0.7
0.5
947


RSMWSFNPETNILLN
0.8
0.4
0.8
0.7
0.8
0.8
0.2
0.7
0.4
948


SMWSFNPETNILLNV
0.7
0.1
0.8
0.6
0.8
0.7
0.2
0.7
0.2
949


MWSFNPETNILLNVP
0.8
0.7
0.9
0.5
0.8
0.8
0.2
0.6
0.3
950


WSFNPETNILLNVPL
0.8
0.5
0.6
0.5
0.7
0.7
0.2
0.8
0.2
951


SFNPETNILLNVPLR
0.8
0.7
0.9
0.8
0.7
0.8
0.3
1.0
0.3
952


FNPETNILLNVPLRG
0.8
0.8
0.7
0.7
0.9
0.8
0.3
0.8
0.3
953


NPETNILLNVPLRGT
0.8
0.7
0.9
0.7
0.7
0.7
0.3
0.7
0.4
954


PETNILLNVPLRGTI
0.6
0.6
0.7
0.9
0.8
0.8
0.3
0.6
0.0
955


ETNILLNVPLRGTIV
0.5
0.6
0.7
0.8
0.4
0.5
0.2
0.5
0.2
956


TNILLNVPLRGTIVT
0.6
0.4
0.6
0.8
0.7
0.6
0.2
0.4
0.2
957




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




PLMESELVIGAVIIR
0.7
0.6
0.7
0.8
0.8
0.8
0.2
0.7
0.3
958


LMESELVIGAVIIRG
0.6
0.6
0.5
0.4
0.6
0.6
0.2
0.5
0.3
959


MESELVIGAVIIRGH
0.7
0.5
0.6
0.7
0.7
0.6
0.2
0.6
0.2
960


ESELVIGAVIIRGHL
0.6
0.5
0.6
0.5
0.5
0.5
0.2
0.4
0.2
961


SELVIGAVIIRGHLR
0.8
0.7
0.8
0.6
0.8
0.8
0.2
0.9
0.3
962


ELVIGAVIIRGHLRM
0.8
0.4
0.7
0.7
0.7
0.6
0.2
0.6
0.3
963


LVIGAVIIRGHLRMA
0.8
0.4
0.8
1.2
0.7
0.8
0.4
0.7
0.3
964




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




RCDIKDLPKEITVAT
0.6
0.4
0.6
0.6
0.6
0.6
0.2
0.7
0.4
965


GDIKDLPKEITVATS
0.6
0.3
0.6
0.5
0.6
0.6
0.2
0.6
0.4
966


DIKDLPKEITVATSR
0.6
0.6
0.7
0.8
0.9
0.7
0.3
0.7
0.4
967


IKDLPKEITVATSRT
0.4
0.4
0.5
0.4
0.6
0.6
0.2
0.9
0.3
968


KDLPKEITVATSRTL
0.6
0.6
0.7
1.1
0.6
0.6
1.1
0.9
0.3
969


DLPKEITVATSRTLS
0.5
0.5
0.6
0.8
0.7
0.6
0.4
0.7
0.4
970


LPKEITVATSRTLSY
0.6
0.4
0.6
0.6
0.6
0.5
0.2
0.5
0.3
971


PKEITVATSRTLSYY
0.6
0.6
0.6
0.7
0.6
0.6
0.2
0.4
0.4
972


KEITVATSRTLSYYK
0.6
0.5
0.8
1.3
0.6
0.5
0.4
0.5
0.2
973


EITVATSRTLSYYKL
0.6
0.4
0.5
0.5
0.5
0.5
0.2
0.5
0.3
974


ITVATSRTLSYYKLG
1.0
0.6
0.8
1.1
0.3
0.6
0.4
0.4
0.4
975


TVATSRTLSYYKLGA
0.8
0.4
0.6
1.1
0.5
0.5
0.3
0.5
0.4
976


VATSRTLSYYKLGAS
0.8
0.6
0.7
0.6
0.7
0.6
0.2
0.6
0.3
977


ATSRTLSYYKLGASQ
0.8
0.2
0.6
0.8
0.6
0.5
0.3
0.7
0.3
978


TSRTLSYYKLGASQR
0.7
0.3
0.7
1.3
0.6
0.6
0.7
0.9
0.3
979


SRTLSYYKLGASQRV
0.9
0.3
0.7
0.9
0.8
0.7
0.3
0.8
0.4
980


RTLSYYKLGASQRVG
0.8
0.5
0.7
1.5
0 6
0 7
1.0
0.8
0.4
981




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




SQRVGTDSGFAAYNR
0.5
0.4
0.7
0.6
0.2
0.5
0.2
0.6
0.4
982


QRVGTDSGFAAYNRY
0.6
0.5
0.5
0.6
0.6
0.5
0.2
0.6
0.3
983


RVGTDSGFAAYNRYR
0.8
0.5
0.6
1.4
0.7
0.6
0.4
0.5
0.3
984


VGTDSGFAAYNRYRI
0.7
0.4
0.7
0.6
0.7
0.8
0.2
0.5
0.4
985


GTDSGFAAYNRYRIG
0.8
0.5
0.6
0.8
0.7
0.6
0.3
0.9
0.4
986


TDSGFAAYNRYRIGN
0.7
0.5
0.6
0.9
0.7
0.7
0.2
0.8
0.1
987


DSGFAAYNRYRIGNY
0.8
0.6
0.6
0.6
0.7
0.6
0.2
0.8
0.4
988


SGFAAYNRYRIGNYK
0.9
0.6
0.9
1.4
0.7
0.7
0.3
0.7
0.2
989


GFAAYNRYRIGNYKL
0.7
0.2
0.6
0.7
0.6
0.5
0.2
0.5
0.2
990


FAAYNRYRIGNYKLN
0.8
0.4
0.7
1.3
0.6
0.6
0.7
0.8
0.2
991


AAYNRYRTGNYKLNT
0.7
0.5
0.8
1.3
0.5
0.7
0.5
0.7
0.3
992


AYNRYRIGNYKLNTD
0.8
0.7
0.5
1.0
0.6
0.6
0.4
0.6
0.2
993


YNRYRIGNYKLNTDH
0.8
0.7
0.7
1.1
0.5
0.6
0.6
0.7
0.3
994


NRYRIGNYKLNTDHA
0.8
0.6
0.5
0.7
0.6
0.5
0.4
0.9
0.3
995


RYRIGNYKLNTDHAG
0.7
0.6
0.6
0.9
0.6
0.6
0.4
0.8
0.3
996


YRIGNYKLNTDHAGS
0.8
0.6
0.5
0.8
0.7
0.6
0.4
0.6
0.3
997


RIGNYKLNTDHAGSN
0.6
0.5
0.5
0.7
0.6
0.6
0.4
0.6
0.2
998




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image


















TABLE 9










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to linear peptides of protein X3 of


SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
yellow
green
London
NO





MFHLVDFQVTIAEIL
0.8
0.7
0.7
0.5
0.7
0.8
0.6
0.3
0.7
 999


FHLVDFQVTIAEILI
0.8
0.6
0.7
0.4
0.7
0.6
0.9
0.5
0.6
1000


HLVDFQVTIAEILII
0.8
0.6
0.7
0.5
0.7
0.6
0.5
0.4
0.6
1001


LVDFQVTIAEILIII
0.8
0.6
0.7
0.5
0.6
0.6
0.7
0.4
0.6
1002


VDFQVTIAETLIIIM
0.8
0.5
0.7
0.5
0.5
0.6
0.6
0.4
0.6
1003


DFQVTIAEILIIIMR
0.7
0.5
0.6
0.5
0.6
0.6
0.5
0.4
0.6
1004


FQVTIAEILIIIMRT
0.7
0.3
0.6
0.6
0.3
0.5
1.1
0.5
0.7
1005


QVTIAEILIIIMRTF
0.7
0.4
0.5
0.5
0.4
0.7
0.2
0.4
0.7
1006


VTIAEILIIIMRTFR
0.7
0.3
0.7
0.7
0.4
0.6
0.3
0.5
0.6
1007


TIAEILIIIMRTFRI
0.8
0.3
0.7
0.7
0.6
0.7
0.3
0.3
0.7
1008


IAETLIITMRTFRIA
0.8
0.5
0.6
0.0
0.6
0.7
0.3
0.3
0.7
1009







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







TFRIAIWNLDVIISS
0.8
0.5
0.6
0.5
0.6
0.7
0.6
0.4
0.7
1010


FRIAIWNLDVIISSI
0.8
0.5
0.6
0.4
0.5
0.7
0.7
0.4
0.7
1011


RIAIWNLDVIISSIV
0.7
0.3
0.6
0.5
0.5
0.7
0.4
0.3
0.7
1012


IAIWNLDVIISSIVR
0.7
0.5
0.6
0.5
0.5
0.6
0.4
0.3
0.6
1013


AIWNLDVIISSTVRQ
0.8
0.4
0.6
0.5
0.6
0.6
0.3
0.3
0.6
1014


IWNLDVIISSIVRQL
0.7
0.3
0.5
0.5
0.6
0.6
0.2
0.4
0.6
1015


WNLDVIISSIVRQLF
0.7
0.2
0.4
0.4
0.6
0.6
0.2
0.2
0.5
1016


NLDVIISSIVRQLFK
0.7
0.2
0.4
0.6
0.6
0.6
0.3
0.3
0.7
1017


LDVIISSIVRQLFKP
0.8
0.3
0.9
0.3
0.7
0.6
0.1
0.4
0.5
1018


DVIISSIVRQLFKPL
0.7
0.4
0.5
0.3
0.6
0.6
0.2
0.3
0.6
1019







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image


















TABLE 10










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to looped/cyclic peptides of protein X3


of SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
London
yellow
green
NO





MFHLVDFQVTIAEIL
0.8
0.6
0.8
0.6
1.0
0.8
0.3
0.8
0.6
 999


FHLVDFQVTIAEILI
0.8
0.4
0.8
0.5
0.7
0.7
0.2
0.8
0.3
1000


HLVDFQVTIAEILII
0.7
0.4
0.6
0.4
0.6
0.7
0.2
0.7
0.2
1001


LVDFQVTIAEILIII
0.7
0.4
0.6
0.3
0.5
0.6
0.2
0.6
0.2
1002


VDFQVTIAEILIIIM
0.7
0.4
0.6
0.3
0.6
0.6
0.2
0.8
0.3
1003


DFQVTIAEILIIIMR
0.7
0.4
0.7
0.4
0.7
0.5
0.2
0.7
0.2
1004


FQVTIAEILIIIMRT
0.5
0.2
0.5
0.3
0.6
0.4
0.2
0.6
0.2
1005


QVTIAEILIIIMRTF
0.7
0.3
0.5
0.5
0.6
0.4
0.2
0.7
0.2
1006


VTIAEILIIIMRTFR
0.7
0.4
0.7
0.7
0.6
0.5
0.3
0.6
0.2
1007


TIAEILIIIMRTFRI
0.7
0.4
0.6
0.4
0.3
0.4
0.2
0.5
0.4
1008


IAEILIIIMRTFRIA
0.7
0.3
0.5
0.7
0.4
0.4
0.8
0.6
0.2
1009







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







TFRIAIWNLDVIISS
0.7
0.5
0.6
0.3
0.6
0.7
0.2
0.5
0.2
1010


FRIAIWNLDVIISSI
0.7
0.5
0.7
0.3
0.6
0.6
0.2
0.8
0.2
1011


RIAIWNLDVIISSIV
0.8
0.5
0.8
0.4
0.6
0.7
0.2
1.0
0.3
1012


IAIWNLDVIISSIVR
0.7
0.3
0.6
0.4
0.6
0.5
0.2
0.6
0.0
1013


AIWNLDVIISSIVRQ
0.5
0.5
0.4
0.4
0.6
0.5
0.2
0.6
0.4
1014


IWNLDVIISSIVRQL
0.5
0.4
0.5
0.6
0.5
0.4
0.2
0.6
0.3
1015


WNLDVIISSIVRQLF
0.5
0.3
0.4
0.4
0.4
0.4
0.2
0.5
0.2
1016


NLDVIISSIVRQLFK
0.5
0.4
0.5
0.8
0.5
0.4
1.8
0.6
0.2
1017


LDVIISSIVRQLFKP
0.6
0.3
0.5
0.4
0.5
0.5
0.2
0.3
0.2
1018


DVIISSIVRQLFKPL
0.6
0.2
0.5
0.6
0.5
0.4
0.6
0.5
0.4
1019







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image


















TABLE 11










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to linear peptides of protein X4 of


SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
yellow
green
London
NO





MKIILFLTLIVFTSC
0.6
0.5
0.4
0.4
0.7
0.7
0.5
0.4
0.7
1020


KIILFLTLIVFTSCE
0.8
0.9
0.7
0.7
1.1
0.9
0.9
0.7
0.8
1021


IILFLTLIVFTSCEL
0.8
0.8
0.6
0.5
0.9
0.8
0.7
0.6
0.7
1022


ILFLTLIVFTSCELY
0.7
0.6
0.5
0.5
0.7
0.7
0.4
0.6
0.6
1023


LFLTLIVFTSCELYH
0.7
0.7
0.5
0.5
0.7
0.7
0.6
0.7
0.6
1024


FLTLIVFTSCELYHY
0.7
0.6
0.5
0.5
0.7
0.7
0.6
0.6
0.6
1025


LTLIVFTSCELYHYQ
0.7
0.6
0.5
0.5
0.7
0.8
0.4
0.7
0.7
1026


TLIVFTSCELYHYQE
0.8
0.8
0.5
0.6
0.9
0.9
0.6
1.1
0.8
1027


LIVFTSCELYHYQEC
0.8
0.8
0.6
0.6
1.0
1.0
0.6
1.1
0.8
1028


IVFTSCELYHYQECV
0.8
0.9
0.6
0.8
1.0
1.0
0.4
0.9
0.8
1029


VFTSCELYHYQECVR
0.8
0.6
0.4
0.7
0.8
0.8
0.3
0.7
0.7
1030


FTSCELYHYQECVRG
0.8
0.7
0.5
0.9
0.8
0.8
0.3
0.5
0.9
1031


TSCELYHYQECVRGT
0.7
0.6
0.3
0.7
0.7
0.8
0.3
0.5
0.7
1032


SCELYHYQECVRGTT
0.8
0.6
0.4
0.5
0.7
0.6
0.2
0.5
0.8
1033


CELYHYQECVRGTTV
0.8
0.7
0.5
0.6
0.9
0.8
0.6
0.7
0.9
1034







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







VLLKEPCPSGTYEGN
0.8
0.7
0.4
0.7
0.7
0.8
0.1
0.6
0.8
1035


LLKEPCPSGTYEGNS
0.8
0.6
0.3
0.6
0.6
0.8
0.2
0.5
0.8
1036


LKEPCPSGTYEGNSP
0.7
0.4
0.4
0.3
0.6
0.7
0.2
0.5
0.9
1037


KEPCPSGTYEGNSPF
0.7
0.6
0.4
0.4
0.7
0.8
0.7
0.6
0.8
1038


EPCPSGTYEGNSPFH
0.7
0.5
0.4
0.5
0.6
0.7
0.9
0.6
0.7
1039


PCPSGTYEGNSPFHP
0.7
0.5
0.4
0.5
0.7
0.7
0.7
0.5
0.7
1040







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







NKFALTCTSTHFAFA
0.6
0.5
0.4
0.3
0.7
0.7
0.5
0.4
0.7
1041


KFALTCTSTHFAFAC
0.8
0.6
0.5
0.8
0.8
0.8
0.6
0.4
0.8
1042


FALTCTSTHFAFACA
0.7
0.5
0.4
0.5
0.7
0.7
0.6
0.5
0.7
1043


ALTCTSTHFAFACAD
0.8
0.8
0.5
0.6
0.9
0.9
0.7
0.8
0.8
1044


LTCTSTHFAFACADG
0.8
0.8
0.5
0.6
0.8
0.8
0.5
0.8
0.8
1045


TCTSTHFAFACADGT
0.8
0.7
0.5
0.7
0.7
0.9
0.6
0.6
0.8
1046


CTSTHFAFACADGTR
0.7
0.7
0.5
0.6
0.7
0.8
0.4
0.6
0.7
1047


TSTHFAFACADGTRH
0.7
0.6
0.5
0.7
0.7
0.8
0.2
0.6
0.8
1048


STHFAFACADGTRHT
0.7
0.6
0.5
0.7
0.7
0.8
0.3
0.6
0.8
1049


THFAFACADGTRHTY
0.7
0.5
0.5
0.6
0.6
0.7
0.2
0.5
0.7
1050


HFAFACADGTRHTYQ
0.7
0.5
0.4
0.6
0.6
0.6
0.1
0.6
0.6
1051


FAFACADGTRHTYQL
0.7
0.5
0.3
0.5
0.6
0.7
0.2
0.4
0.6
1052


AFACADGTRHTYQLR
0.6
0.4
0.4
0.5
0.6
0.7
0.2
0.4
0.6
1053


FACADGTRHTYQLRA
0.7
0.4
0.4
0.4
0.6
0.7
0.2
0.5
0.8
 531


ACADGTRHTYQLRAR
0.7
0.6
0.5
0.6
0.7
0.8
0.5
0.7
0.7
 532


CADGTRHTYQLRARS
0.6
0.5
0.5
0.6
0.7
0.7
0.7
0.6
0.8
 533


ADGTRHTYQLRARSV
0.7
0.6
0.6
0.5
0.7
0.7
0.7
0.6
0.7
 534


DGTRHTYQLRARSVS
0.6
0.5
0.8
0.8
0.8
0.7
0.5
0.4
0.7
 535


GTRHTYQLRARSVSP
0.7
0.6
0.8
0.6
0.8
0.8
0.8
0.6
0.8
 536


TRHTYQLRARSVSPK
0.8
0.7
0.7
1.3
1.0
0.9
0.9
0.6
0.8
 537


RHTYQLRARSVSPKL
0.8
0.6
0.6
1.1
0.9
0.8
0.6
0.7
0.8
 538


HTYQLRARSVSPKLF
0.7
0.8
0.6
1.0
1.0
0.9
0.5
0.7
0.8
 539


TYQLRARSVSPKLFI
0.8
0.6
0.7
0.9
0.8
0.9
0.6
0.7
0.9
 540


YQLRARSVSPKLFIR
0.7
0.6
0.6
0.7
0.8
0.7
0.6
0.7
0.8
 541


QLRARSVSPKLFIRQ
0.7
0.6
0.6
0.9
0.7
0.7
0.3
0.6
0.8
 542


LRARSVSPKLFIRQE
0.7
0.6
0.5
0.8
0.7
0.8
0.3
0.6
0.8
 543


RARSVSPKLFIRQEE
0.8
0.6
0.4
0.6
0.7
0.8
0.1
0.6
0.8
 544


ARSVSPKLFIRQEEV
0.7
0.6
0.5
0.6
0.7
0.7
0.1
0.6
0.7
1054


RSVSPKLFIRQEEVQ
0.7
0.4
0.4
0.5
0.6
0.7
0.2
0.5
0.6
1055


SVSPKLFIRQEEVQQ
0.7
0.5
0.3
0.5
0.7
0.7
0.3
0.4
0.6
1056


VSPKLFIRQEEVQQE
0.7
0.5
0.3
0.3
0.7
0.7
0.3
0.6
0.8
1057


SPKLFIRQEEVQQEL
0.7
0.5
0.3
0.4
0.7
0.7
0.5
0.8
0.7
1058


PKLFIRQEEVQQELY
0.7
0.6
0.4
0.5
0.8
0.8
0.8
0.7
0.8
10S9


KLFIRQEEVQQELYS
0.7
0.5
0.4
0.5
0.7
0.8
0.4
0.6
0.7
1060


LFIRQEEVQQELYSP
0.8
0.7
0.6
0.5
0.7
0.8
0.7
0.6
0.8
1061


FTRQEEVQQELYSPL
0.8
0.6
0.5
0.5
0.8
0.7
0.7
0.5
0.7
 327


IRQEEVQQELYSPLF
0.7
0.6
0.5
0.5
0.8
0.8
0.7
0.8
0.7
 328


RQEEVQQELYSPLFL
0.8
0.6
0.5
0.5
0.8
0.8
0.7
0.7
0.7
 329


QEEVQQELYSPLFLI
0.8
0.9
0.6
0.6
0.8
0.8
0.8
1.0
0.8
 330


EEVQQELYSPLFLIV
0.7
0.6
0.6
0.6
0.7
0.8
0.8
0.7
0.7
 331


EVQQELYSPLFLIVA
0.7
0.6
0.4
0.9
0.8
0.7
0.6
0.8
1.0
 332


VQQELYSPLFLIVAA
0.7
0.6
0.6
0.9
0.7
0.7
0.5
0.6
0.9
 333


QQELYSPLFLIVAAL
0.7
0.5
0.5
0.7
0.7
0.6
0.6
0.6
0.8
1062


QELYSPLFLIVAALV
0.7
0.5
0.8
0.6
0.7
0.7
0.2
0.5
0.7
1063


ELYSPLFLIVAALVF
0.7
0.4
0.4
0.4
0.6
0.6
0.2
0.5
0.5
1064


LYSPLFLIVAALVFL
0.6
0.4
0.4
0.5
0.6
0.6
0.2
0.5
0.6
1065


YSPLFLIVAALVFLI
0.7
0.3
0.5
0.5
0.7
0.7
0.4
0.5
0.7
1066


SPLFLIVAALVFLIL
0.6
0.2
0.5
0.2
0.6
0.6
0.3
0.5
0.6
1067


PLFLIVAALVFLILC
0.5
0.4
0.3
0.3
0.6
0.7
0.4
0.5
0.6
1068


LFLIVAALVFLILCF
0.6
0.5
0.3
0.4
0.6
0.6
0.7
0.6
0.7
1069


FLIVAALVFLILCFT
0.6
0.5
0.4
0.5
0.7
0.7
0.7
0.5
0.6
1070


LIVAALVFLILCFTI
0.7
0.5
0.5
0.4
0.6
0.6
0.4
0.5
0.6
1071


IVAALVFLILCFTIK
0.6
0.6
0.4
0.5
0.7
0.7
0.6
0.5
0.7
1072


VAALVFLILCFTTKR
0.6
0.5
0.4
0.5
0.7
0.7
0.5
0.5
0.6
1073


AALVFLILCFTIKRK
0.7
0.8
0.6
0.8
0.8
0.8
0.7
0.7
0.8
1074


ALVFLILCFTIKRKT
0.7
0.6
0.7
0.7
0.7
0.8
0.4
0.7
0.8
1075


LVFLILCFTIKRKTE
0.7
0.6
0.5
0.7
0.7
0.8
0.6
0.7
0.8
1076
















TABLE 12










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to looped/cyclic peptides of protein X4


of SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
yellow
green
London
NO





MKIILFLTLIVFTSC
0.6
0.0
0.5
0.5
0.6
0.5
0.6
0.3
0.2
1020


KIILFLTLIVFTSCE
0.9
0.2
0.8
0.6
0.9
0.9
0.8
0.7
0.4
1021


IILFLTLIVFTSCEL
0.7
0.1
0.6
0.5
0.7
0.7
0.6
0.4
0.2
1022


ILFLTLIVFTSCELY
0.7
0.4
0.7
0.6
0.7
0.7
0.6
0.4
0.3
1023


LFLTLIVFTSCELYH
0.9
0.8
0.8
0.7
0.9
0.9
0.6
0.7
0.3
1024


FLTLIVFTSCELYHY
0.8
1.7
0.8
0.5
0.7
0.7
0.7
0.3
0.3
1025


LTLIVFTSCELYHYQ
0.8
0.7
0.7
0.5
0.7
0.7
0.7
0.4
0.3
1026


TLIVFTSCELYHYQE
0.8
0.8
0.8
0.6
0.9
0.8
0.9
1.0
0.3
1027


LIVFTSCELYHYQEC
0.8
0.6
0.6
0.5
0.7
0.7
0.6
0.5
0.3
1028


IVFTSCELYHYQECV
0.9
0.8
0.8
0.6
1.0
0.8
0.6
0.8
0.3
1029


VFTSCELYHYQECVR
0.8
0.7
0.7
0.7
0.8
0.7
0.5
0.7
0.3
1030


FTSGELYHYQECVRG
0.8
0.7
0.6
0.6
0.8
0.7
0.5
0.6
0.3
1031


TSCELYHYQECVRGT
0.9
0.9
0.7
0.9
0.7
0.7
0.4
0.7
0.4
1032


SCELYHYQECVRGTT
0.5
0.4
0.5
0.5
0.6
0.5
0.2
0.2
0.3
1033


CELYHYQECVRGTTV
0.8
0.4
0.8
0.5
0.8
0.6
0.4
0.2
0.3
1034







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







VLLKEPCPSGTYEGN
0.8
0.7
0.6
0.7
0.8
0.7
0.4
0.5
0.3
1035


LLKEPCPSGTYEGNS
0.8
0.6
0.6
0.7
0.7
0.5
0.2
0.7
0.3
1036


LKEPCPSGTYEGNSP
0.6
0.5
0.5
0.3
0.5
0.6
0.2
0.6
0.3
1037


KEPCPSGTYEGNSPF
0.8
0.6
0.6
0.6
0.7
0.6
0.3
0.4
0.3
1038


EPCPSGTYEGNSPFH
0.8
0.6
0.7
0.6
0.7
0.6
0.5
0.5
0.4
1039


PCPSGTYEGNSPFHP
0.7
0.1
0.7
0.5
0.7
0.7
0.4
0.4
0.3
1040







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







NKFALTCTSTHFAFA
0.9
0.4
0.8
0.6
0.7
0.9
0.7
0.8
0.3
1041


KFALTCTSTHFAFAC
1.0
0.7
0.9
0.7
0.7
0.9
0.8
0.8
0.4
1042


FALTCTSTHFAFACA
0.8
0.5
0.7
0.5
0.6
0.7
0.7
0.5
0.3
1043


ALTCTSTHFAFACAD
0.8
0.7
0.7
0.7
0.9
0.9
0.8
0.8
0.3
1044


LTCTSTHFAFACADG
0.6
0.3
0.6
0.5
0.5
0.6
0.4
0.4
0.3
1045


TCTSTHFAFACADGT
0.8
0.6
0.8
0.6
0.7
0.8
0.8
0.5
0.3
1046


CTSTHFAFACADGTR
0.7
0.4
0.6
0.6
0.7
0.7
1.0
0.4
0.3
1047


TSTHFAFACADGTRH
0.8
0.7
0.6
0.7
0.7
0.8
0.7
0.6
0.4
1048


STHFAFACADGTRHT
0.7
0.5
0.6
0.5
0.6
0.5
0.6
0.5
0.3
1049


THFAFACADGTRHTY
0.7
0.5
0.5
0.5
0.6
0.6
0.5
0.4
0.3
1050


HFAFACADGTRHTYQ
0.6
0.5
0.6
0.6
0.6
0.5
0.4
0.2
0.2
1051


FAFACADGTRHTYQL
0.8
0.5
0.9
0.5
0.6
0.5
0.4
0.5
0.2
1052


AFACADGTRHTYQLR
0.6
0.4
0.8
0.9
0.6
0.5
0.4
0.5
0.4
1053


FACADGTRHTYQLRA
0.7
0.6
0.6
0.3
0.7
0.7
0.3
0.8
0.4
 531


ACADGTRHTYQLRAR
0.7
0.3
0.6
0.6
0.7
0.6
0.5
0.5
0.3
 532


CADGTRHTYQLRARS
0.7
0.4
0.8
0.6
0.7
0.6
0.6
0.0
0.3
 533


ADGTRHTYQLRARSV
0.7
0.4
0.6
0.7
0.7
0.6
0.6
0.5
0.3
 534


DGTRHTYQLRARSVS
0.8
0.5
0.8
0.8
0.7
0.7
0.7
0.6
0.4
 535


GTRHTYQLRARSVSP
0.8
0.5
1.0
0.6
0.7
0.8
0.7
0.5
0.3
 536


TRHTYQLRARSVSPK
0.8
0.4
0.8
0.9
0.7
0.6
0.7
0.7
0.4
 537


RHTYQLRARSVSPKL
0.8
0.5
0.7
0.8
0.7
0.6
0.7
0.4
0.3
 538


HTYQLRARSVSPKLF
0.8
0.5
0.8
0.8
0.6
0.6
0.8
0.4
0.3
 539


TYQLRARSVSPKLFI
0.9
0.7
0.8
1.3
0.6
0.8
0.9
0.2
1.4
 540


YQLRARSVSPKLFIR
0.7
0.4
0.6
1.2
0.7
0.6
0.9
0.4
1.4
 541


QLRARSVSPKLFIRQ
0.7
0.6
0.8
0.9
0.6
0.6
0.8
0.4
0.4
 542


LRARSVSPKLFIRQE
0.8
0.6
0.6
0.8
0.7
0.7
0.7
0.6
0.4
 543


RARSVSPKLFIRQEE
0.8
0.7
0.6
0.8
0.7
0.7
0.7
0.7
0.5
 544


ARSVSPKLFIRQEEV
0.8
0.5
0.7
0.5
0.7
0.6
0.5
0.6
0.3
1054


RSVSPKLFIRQEEVQ
0.6
0.5
0.5
0.5
0.7
0.6
0.5
0.4
0.3
1055


SVSPKLFIRQEEVQQ
0.7
0.6
0.6
0.4
0.7
0.6
0.4
0.7
0.3
1056


VSPKLFIRQEEVQQE
0.6
1.0
0.8
0.4
0.9
0.8
0.5
1.2
0.6
1057


SPKLFIRQEEVQQEL
0.8
0.6
0.7
0.6
0.8
0.6
0.5
0.2
0.4
1058


PKLFIRQEEVQQELY
0.8
0.6
0.5
0.5
0.7
0.6
0.4
0.5
0.4
1059


KLFIRQEEVQQELYS
0.7
0.6
0.6
0.4
0.7
0.6
0.6
0.8
0.3
1060


LFIRQEEVQQELYSP
0.7
0.5
0.7
0 5
0.7
0.8
0.7
0.8
0.3
1061







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







EVQQELYSPLFLIVA
0.7
0.6
0.6
0.5
0.7
0.6
0.9
0.3
0.3
 332


VQQELYSPLFLIVAA
0.8
0.5
0.7
0.5
0.7
0.7
0.8
0.4
0.3
 333


QQELYSPLFLIVAAL
0.7
0.4
0.6
0.4
0.6
0.6
0.7
0.5
0.3
1062


QELYSPLFLIVAALV
0.6
0.4
0.6
0.3
0.6
0.6
0.5
0.6
0.3
1063


ELYSPLFLIVAALVF
0.6
0.4
0.6
0.4
0.6
0.6
0.6
0.5
0.2
1064


LYSPLFLIVAALVFL
0.5
0.3
0.4
0.4
0.5
0.5
0.4
0.4
0.2
1065


YSPLFLIVAALVFLI
0.7
0.3
0.6
0.4
0.6
0.6
0.4
0.6
0.3
1066


SPLFLIVAALVFLIL
0.6
0.4
0.7
0.3
0.7
0.2
0.3
0.6
0.4
1067


PLFLIVAALVFLILC
0.5
0.1
0.2
0.5
0.0
0.1
0.1
0.2
0.1
1068


LFLIVAALVFLILCF
0.8
0.4
0.7
0.3
0.5
0.5
0.5
0.4
0.2
1069


FLIVAALVFLILCFT
0.7
0.4
0.7
0.4
0.7
0.6
0.5
0.5
0.3
1070


LIVAALVFLTLCFTI
0.6
0.3
0.5
0.3
0.6
0.6
0.5
0.4
0.2
1071


IVAALVFLILCFTIK
0.7
0.4
0.6
1.4
0.7
0.7
0.7
0.5
3.0
1072


VAALVFLILCFTIKR
0.8
0.4
0.7
0.6
0.7
0.7
0.5
0.4
0.3
1073


AALVFLILCFTIKRK
0.8
0.5
0.7
0.7
0.6
0.7
0.5
0.4
0.5
1074


ALVFLILCFTIKRKT
0.8
0.5
0.8
0.9
0.6
0.7
0.6
0.5
1.1
1075


LVFLILCFTIKRKTE
0.7
0.4
0.6
0.7
0.6
0.7
0.7
0.2
0.4
1076
















Table 13










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to linear peptides of protein X5 of


SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
yellow
green
London
NO





MCLKILVRYNTRGNT
0.8
0.6
0.8
1.4
0.9
0.9
0.7
0.9
0.8
1077


CLKILVRYNTRGNTY
0.7
0.7
0.8
0.8
0.7
0.8
0.3
0.7
0.7
1078


LKILVRYNTRGNTYS
0.7
0.6
0.8
0.8
0.7
0.8
0.3
0.6
0.7
1079


KILVRYNTRGNTYST
0.7
0.5
0.7
0.7
0.7
0.8
0.1
0.5
0.7
1080


ILVRYNTRGNTYSTA
0.7
0.4
0.6
0.7
0.6
0.7
0.2
0.5
0.6
1081


LVRYNTRGNTYSTAW
0.7
0.4
0.5
0.4
0.6
0.7
0.3
0.4
0.6
1082


VRYNTRGNTYSTAWL
0.7
0.4
0.4
0.7
0.6
0.7
0.4
0.4
0.7
1083


RYNTRGNTYSTAWLC
0.8
0.4
0.5
0.9
0.4
0.7
0.2
0.6
1.0
1084


YNTRGNTYSTAWLCA
0.8
0.6
0.6
0.8
0.7
0.7
0.4
0.7
0.8
1085


NTRGNTYSTAWLCAL
0.9
0.6
0.6
0.7
0.7
0.7
0.5
0.6
0.7
1086


TRGNTYSTAWLCALG
0.8
0.6
0.6
0.6
0.8
0.8
0.5
0.6
0.7
1087


RGNTYSTAWLCALGK
0.9
0.6
0.9
0.7
0.8
0.8
0.3
0.6
0.8
1088


GNTYSTAWLCALGKV
0.8
0.6
0.9
0.6
0.7
0.8
0.4
0.6
0.7
1089


NTYSTAWLCALGKVL
0.7
0.4
0.5
0.6
0.6
0.7
0.3
0.4
0.6
1090


TYSTAWLCALGKVLP
0.8
0.6
0.9
0.6
0.7
0.8
0.4
0.7
0.7
1091


YSTAWLCALGKVLPF
0.7
0.6
0.7
0.6
0.6
0.8
0.4
0.5
0.8
1092


STAWLCALGKVLPFH
0.8
0.6
0.6
0.7
0.7
0.8
0.3
0.6
0.7
1093


TAWLCALGKVLPFHR
0.7
0.5
0.6
0.5
0.7
0.7
0.3
0.7
0.6
1094


AWLCALGKVLPFHRW
0.8
0.6
0.8
0.6
0.8
0.9
0.2
0.6
0.8
1095


WLCALGKVLPFHRWH
0.7
0.6
0.7
0.8
0.7
0.8
0.2
0.6
0.8
1096


LCALGKVLPFHRWHT
0.7
0.6
0.7
0.5
0.7
0.8
0.2
0.6
0.9
1097


CALGKVLPFHRWHTM
0.7
0.5
0.7
0.7
0.8
0.7
0.1
0.7
0.7
1098


ALGKVLPFHRWHTMV
0.9
0.5
0.7
0.6
0.6
0.7
0.2
0.5
0.7
1099


LGKVLPFHRWHTMVQ
0.7
0.4
0.6
0.5
0.6
0.6
0.2
0.4
0.6
1100


GKVLPFHRWHTMVQT
0.8
0.0
0.6
0.3
0.5
0.8
0.1
0.3
0.8
1101


KVLPFHRWHTMVQTC
0.9
0.6
0.7
0.5
0.7
0.7
0.2
0.6
1.2
1102


VLPFHRWHTMVQTCT
0.8
0.6
0.7
0.5
0.7
0.7
0.4
0.6
0.8
1103


LPFHRWHTMVQTCTP
0.8
0.7
0.9
0.6
0.8
0.8
0.4
0.6
0.9
1104


PFHRWHTMVQTCTPN
0.7
0.7
0.7
0.7
0.7
0.7
0.4
0.5
0.7
1105


FHRWHTMVQTCTPNV
0.8
0.7
0.9
0.5
0.7
0.7
0.4
0.5
0.7
1106


HRWHTMVQTCTPNVT
0.7
0.6
0.8
0.5
0.7
0.8
0.5
0.5
0.7
1107







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







VQTCTPNVTINCQDP
0.7
0.8
0.7
0.8
0.7
0.8
0.3
0.7
0.8
1108


QTCTPNVTINCQDPA
0.8
0.7
0.6
0.8
0.8
0.8
0.1
0.8
0.9
1109


TCTPNVTINCQDPAG
0.8
0.6
0.6
0.8
0.7
0.8
0.2
0.8
0.8
1110


CTPNVTINCQDPAGG
1.0
0.8
0.6
0.6
0.7
0.7
0.0
0.5
0.8
1111


TPNVTINCQDPAGGA
0.8
0.4
0.4
0.1
0.8
0.5
0.0
0.4
0.6
1112







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







DPAGGALIARCWYLH
0.7
0.6
0.4
0.5
0.8
0.7
0.2
0.6
0.6
1113


PAGGALIARCWYLHE
0.8
0.9
0.6
0.8
0.9
0.9
0.3
0.9
0.7
1114


AGGALIARCWYLHEG
0.8
0.7
0.5
0.7
0.8
0.9
0.5
0.7
0.7
1115


GGALIARCWYLHEGH
0.8
0.7
0.6
0.8
0.7
0.8
0.3
0.7
0.7
1116


GALIARCWYLHEGHQ
0.7
0.6
0.6
0.7
0.7
0.7
0.1
0.6
0.6
1117


ALIARCWYLHEGHQT
0.6
0.5
0.6
0.5
0.7
0.7
0.2
0.7
0.6
1118


LIARCWYLHEGHQTA
0.7
0.6
0.6
0.1
0.8
0.9
0.0
0.6
0.6
1119







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







QTAAFRDVLVVLNKR
0.5
0.5
0.6
0.6
0.5
0.4
0.6
0.2
0.5
1120


TAAFRDVLVVLNKRT
0.5
0.6
0.6
0.6
0.5
0.5
0.7
0.2
0.5
1121


AAFRDVLVVLNKRTN
0.6
0.6
0.6
0.8
0.5
0.4
0.8
0.1
0.6
1122
















TABLE 14










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to looped/cyclic peptides of protein X5


of SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
yellow
green
London
NO





MCLKILVRYNTRGNT
0.5
0.3
0.5
0.4
0.5
0.7
0.8
0.2
0.4
1077


CLKILVRYNTRGNTY
0.5
0.2
0.5
0.4
0.5
0.7
0.8
0.4
0.2
1078


LKILVRYNTRGNTYS
0.5
0.4
0.6
0.5
0.5
0.7
0.8
0.4
0.2
1079


KILVRYNTRGNTYST
0.5
0.3
0.5
0.5
0.5
0.7
0.6
0.3
0.3
1080


ILVRYNTRGNTYSTA
0.5
0.3
0.6
0.6
0.4
0.8
0.8
0.3
0.2
1081


LVRYNTRGNTYSTAW
0.4
0.2
0.4
0.3
0.5
0.6
0.5
0.3
0.2
1082


VRYNTRGNTYSTAWL
0.5
0.3
0.4
0.3
0.6
0.4
0.6
0.6
0.2
1083


RYNTRGNTYSTAWLC
0.5
0.0
0.3
0.1
0.0
0.2
0.6
0.1
0.2
1084


YNTRGNTYSTAWLCA
0.3
0.2
0.4
0.4
0.0
0.2
0.6
0.2
0.2
1085


NTRGNTYSTAWLCAL
0.4
0.2
0.4
0.2
0.5
0.7
0.5
0.3
0.1
1086


TRGNTYSTAWLCALG
0.4
0.1
0.4
0.3
0.4
0.6
0.3
0.3
0.2
1087


RGNTYSTAWLCALGK
0.4
0.3
0.6
0.9
0.5
0.7
0.5
0.3
1.4
1088


GNTYSTAWLCALGKV
0.4
0.2
0.5
0.3
0.5
0.7
0.5
0.3
0.2
1089


NTYSTAWLCALGKVL
0.4
0.3
0.5
1.1
0.5
0.6
0.6
0.3
2.3
1090


TYSTAWLCALGKVLP
0.5
0.3
1.1
0.4
0.6
0.8
0.5
0.3
0.2
1091


YSTAWLCALGKVLPF
0.5
0.3
0.5
0.6
0.5
0.8
0.9
0.2
0.4
1092


STAWLCALGKVLPFH
0.6
0.4
0.6
0.5
0.4
0.7
1.0
0.3
0.2
1093


TAWLCALGKVLPFHR
0.4
0.3
0.6
0.9
0.4
0.7
0.8
0.2
1.3
1094


AWLCALGKVLPFHRW
0.4
0.3
0.5
0.4
0.5
0.7
0.5
0.5
0.2
1095


WLCALGKVLPFHRWH
0.5
0.4
0.6
0.7
0.5
0.7
0.6
0.5
0.5
1096


LCALGKVLPFHRWHT
0.4
0.2
0.5
0.4
0.4
0.6
0.4
0.4
0.2
1097


CALGKVLPFHRWHTM
0.4
0.2
0.6
0.4
0.5
0.3
0.4
0.4
0.2
1098


ALGKVLPFHRWHTMV
0.4
0.0
0.6
0.3
0.5
0.5
0.1
0.6
0.2
1099


LGKVLPFHRWHTMVQ
0.6
0.3
0.2
0.3
0.5
0.3
0.2
0.2
0.2
1100


GKVLPFHRWHTMVQT
0.8
0.5
0.6
0.4
0.6
0.5
0.4
0.5
0.3
1101


KVLPFHRWHTMVQTC
0.7
0.7
0.6
0.7
0.6
0.6
0.3
0.4
0.4
1102


VLPFHRWHTMVQTCT
0.7
0.5
0.7
0.4
0.5
0.3
0.3
1.4
0.2
1103


LPFHRWHTMVQTGTP
0.5
0.4
0.5
0.3
0.4
0.3
0.2
0.3
0.2
1104


PFHRWHTMVQTCTPN
0.6
0.5
0.6
0.3
0.5
0.3
0.3
0.3
0.2
1105


FHRWHTMVQTCTPNV
0.7
0.6
0.6
0.3
0.5
0.4
0.4
0.5
0.2
1106


HRWHTMVQTCTPNVT
0.6
0.5
0.5
0.3
0.3
0.3
0.2
0.3
0.1
1107







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







VQTCTPNVTINCQDP
0.6
0.5
0.7
0.2
0.6
0.6
0.3
0.3
0.3
1108


QTCTPNVTINCQDPA
0.4
0.1
0.3
0.2
0.3
0.2
0.1
0.0
0.1
1109


TCTPNVTINCQDPAG
0.2
0.0
0.1
0.1
0.1
0.1
0.0
0.2
0.1
1110


CTPNVTINCQDPAGG
0.6
0.8
0.3
0.3
0.4
0.3
0.4
0.4
0.2
1111


TPNVTINCQDPAGGA
0.4
0 4
0.3
0.1
0.4
0.2
0.2
0.2
0.1
1112







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







DPAGGALIARCWYLH
0.8
0.5
0.5
0.4
0.7
0.6
0.3
0.6
0.2
1113


PAGGALIARCWYLHE
0.8
0.6
0.6
0.4
0.7
0.7
0.5
0.6
0.3
1114


AGGALIARCWYLHEG
0.7
0.4
0.5
0.5
0.6
0.5
0.4
0.4
0.2
1115


GGALIARCWYLHEGH
0.7
0.6
0.6
0.4
0.7
0.7
0.3
0.7
0.3
1116


GALIARCWYLHEGHQ
0.4
0.4
0.7
0.3
0.4
0.3
0.3
0.8
0.1
1117


ALIARCWYLHEGHQT
0.6
0.1
0.5
0.3
0.4
0.4
0.0
0.0
0.1
1118


LIARCWYLHEGHQTA
0.4
0.4
0.2
0.1
0.3
0.1
0.0
0.6
0.0
1119







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







QTAAFRDVLVVLNKR
0.6
0.5
0.6
0.8
0.6
0.6
0.4
0.3
0.5
1120


TAAFRDVLVVLNKRT
0.7
0.6
0.7
0.9
0.6
0.6
0.5
0.5
1.1
1121


AAFRDVLVVLNKRTN
0.6
0.4
0.6
0.8
0.6
0.5
0.3
0.4
1.0
1122
















TABLE 15










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to linear peptides of protein N of


SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
London
yellow
green
NO





MSDNGPQSNQRSAPR
0.2
0.1
0.2
0.2
0.6
0.6
0.5
0.5
0.3
1123


SDNGPQSNQRSAPRI
0.2
0.0
0.1
0.2
0.2
0.4
0.5
0.5
0.0
1124


DNGPQSNQRSAPRIT
0.2
0.1
0.3
0.2
0.6
0.5
0.4
0.5
0.4
1125


NGPQSNQRSAPRITF
0.2
0.1
0.2
0.2
0.8
0.5
0.4
0.5
0.4
 592


GPQSNQRSAPRITFG
0.2
0.1
0.2
0.1
0.6
0.7
0.4
0.5
0.4
 593


PQSNQRSAPRITFGG
0.3
0.2
0.2
0.1
0.6
0.6
0.4
0.5
0.3
 594


QSNQRSAPRITFGGP
0.2
0.1
0.2
0.1
0.7
0.7
0.4
0.5
0.5
 595


SNQRSAPRITFGGPT
0.2
0.1
0.2
0.1
0.6
0.6
0.4
0.5
0.2
 596


NQRSAPRITFGGPTD
0.2
0.1
0.1
0.1
0.7
0.6
0.5
0.5
0.3
 597


QRSAPRITFGGPTDS
0.2
0.1
0.1
0.1
0.6
0.6
0.5
0.5
0.2
 598


RSAPRITFGGPTDST
0.2
0.1
0.1
0.1
0.6
0.6
0.5
0.5
0.4
 599


SAPRITFGGPTDSTD
0.2
0.2
0.1
0.1
0.7
0.6
0.5
0.4
0.6
 600


APRITFGGPTDSTDN
0.2
0.2
0.2
0.2
0.8
0.7
0.6
0.3
0.6
 601


PRITFGGPTDSTDNN
0.2
0.1
0.2
0.1
0.7
0.6
0.5
0.3
0.6
 602


RITFGGPTDSTDNNQ
0.2
0.1
0.2
0.1
0.8
0.6
0.5
1.3
0.5
 603


ITFGGPTDSTDNNQN
0.2
0.1
0.1
0.1
0.7
0.6
0.5
0.4
0.3
 604


TFGGPTDSTDNNQNG
0.3
0.1
0.2
0.2
0.8
0.6
0.6
0.5
0.5
1126


FGGPTDSTDNNQNGG
0.3
0.1
0.1
0.1
0.6
0.5
0.5
0.5
0.0
1127


GGPTDSTDNNQNGGR
0.3
0.1
0.3
0.2
0.7
0.7
0.6
0.6
0.6
1128


GPTDSTDNNQNGGRN
0.3
0.2
0.4
0.2
0.8
0.6
0.6
0.6
0.6
1129


PTDSTDNNQNGGRNG
0.3
0.2
0.3
0.2
1.2
0.8
0.7
0.7
0.6
1130


TDSTDNNQNGGRNGA
0.3
0.2
0.2
0.3
1.0
0.8
0.6
0.7
1.0
1131


DSTDNNQNGGRNGAR
0.2
0.1
0.2
0.2
1.0
0.8
0.5
0.5
0.5
1132


STDNNQNGGRNGARP
0.2
0.1
0.2
0.1
0.8
0.7
0.5
0.6
0.4
1133


TDNNQNGGRNGARPK
0.3
0.2
0.4
0.2
0.8
1.0
0.6
0.7
0.8
1134


DNNQNGGRNGARPKQ
0.2
0.1
0.3
0.1
0.6
0.7
0.5
0.6
0.6
1135


NNQNGGRNGARPKQR
0.2
0.2
0.2
0.3
0.7
0.8
0.5
0.6
0.5
1136


NQNGGRNGARPKQRR
0.2
0.1
0.3
0.3
0.8
0.7
0.5
0.6
0.5
1137


QNGGRNGARPKQRRP
0.2
0.1
0.3
0.2
0.7
0.8
0.5
0.7
0.5
1138


NGGRNGARPKQRRPQ
0.2
0.1
0.2
0.2
0.7
0.7
0.5
0.5
0.5
1139


GGRNGARPKQRRPQG
0.3
0.2
0.3
0.2
0.7
0.8
0.5
0.6
2.6
1140


GRNGARPKQRRPQGL
0.2
0.1
0.2
0.2
0.7
0.6
0.4
0.4
0.4
1141


RNGARPKQRRPQGLP
0.2
0.1
0.2
0.2
0.6
0.6
0.5
0.5
0.4
1142


NGARPKQRRPQGLPN
0.2
0.1
0.2
0.1
0.7
0.5
0.4
0.5
0.3
1143


GARPKQRRPQGLPNN
0.2
0.1
0.2
0.1
0.4
0.6
0.5
0.6
0.3
1144


ARPKQRRPQGLPNNT
0.2
0.1
0.3
0.2
0.7
0.6
0.5
0.5
0.5
1145


RPKQRRPQGLPNNTA
0.3
0.1
0.3
0.2
0.7
0.6
0.5
0.7
0.5
1146


PKQRRPQGLPNNTAS
0.2
0.1
0.4
0.2
0.9
0.7
0.6
0.6
0.6
1147


KQRRPQGLPNNTASW
0.2
0.1
0.2
0.1
0.7
0.6
0.4
0.5
0.3
1148


QRRPQGLPNNTASWF
0.2
0.1
0.1
0.2
0.6
0.7
0.4
0.7
0.2
1149


RRPQGLPNNTASWFT
0.2
0.1
0.1
0.1
0.6
0.6
0.4
0.6
0.2
1150


RPQGLPNNTASWFTA
0.3
0.1
0.2
0.2
0.7
0.7
0.5
0.4
0.3
1151


PQGLPNNTASWFTAL
0.2
0.1
0.2
0.1
0.7
0.7
0.4
0.5
0.2
1152


QGLPNNTASWFTALT
0.2
0.1
0.2
0.1
0.6
0.7
0.4
0.6
0.2
1153


GLPNNTASWFTALTQ
0.2
0.1
0.2
0.1
0.7
0.6
0.4
0.4
0.4
1154


LPNNTASWFTALTQH
0.2
0.1
0.2
0.1
0.7
0.7
0.4
0.5
0.3
1155


PNNTASWFTALTQHG
0.2
0.1
0.2
0.2
0.7
0.7
0.5
0.4
0.3
1156


NNTASWFTALTQHGK
0.2
0.1
0.2
0.1
0.7
0.6
0.4
0.5
0.4
1157


NTASWFTALTQHGKE
0.2
0.1
0.1
0.1
0.7
0.5
0.4
0.5
0.4
1158


TASWFTALTQHGKEE
0.2
0.1
0.1
0.1
0.7
0.4
0.4
0.5
0.3
1159


ASWFTALTQHGKEEL
0.2
0.1
0.1
0.1
0.9
0.6
0.5
0.4
0.4
1160


SWFTALTQHGKEELR
0.2
0.1
0.2
0.1
0.6
0.6
0.5
0.5
0.2
1161


WFTALTQHGKEELRF
0.3
0.2
0.3
0.2
1.2
0.9
0.7
0.5
0.4
1162


FTALTQHGKEELRFP
0.3
0.2
0.3
0.2
0.8
0.7
0.5
0.6
0.7
1163


TALTQHGKEELRFPR
0.2
0.1
0.2
0.1
0.7
0.6
0.5
0.5
0.4
1164


ALTQHGKEELRFPRG
0.3
0.2
0.3
0.2
0.9
0.8
0.5
0.6
0.6
1165


LTQHGKEELRFPRGQ
0.2
0.1
0.3
0.2
0.6
0.7
0.4
0.6
0.3
1166


TQHGKEELRFPRGQG
0.3
0.2
0.3
0.2
0.7
0.8
0.5
0.6
0.4
1167


QHGKEELRFPRGQGV
0.2
0.2
0.3
0.1
0.7
0.7
0.5
0.6
0.4
1168


HGKEELRFPRGQGVP
0.2
0.2
0.3
0.1
0.7
0.7
0.5
0.7
0.5
1169


GKEELRFPRGQGVPI
0.3
0.1
0.3
0.2
0.7
0.7
0.5
0.6
0.6
1170


KEELRFPRGQGVPIN
0.2
0.1
0.3
0.2
0.7
0.6
0.5
0.5
0.5
1171


EELRFPRGQGVPINT
0.2
0.1
0.3
0.2
0.7
0.7
0.5
0.6
0.4
1172


ELRFPRGQGVPINTN
0.2
0.1
0.3
0.1
0.7
0.7
0.5
0.6
0.4
1173


LRFPRGQGVPINTNS
0.2
0.1
0.3
0.2
0.6
0.6
0.5
0.5
0.4
1174


RFPRGQGVPINTNSG
0.2
0.1
0.3
0.1
0.7
0.7
0.5
0.6
0.4
1175


FPRGQGVPINTNSGP
0.2
0.1
0.3
0.2
0.7
0.6
0.5
0.6
0.3
1176


PRGQGVPINTNSGPD
0.2
0.1
0.1
0.1
0.6
0.4
0.4
0.6
0.2
1177


RGQGVPINTNSGPDD
0.2
0.1
0.1
0.1
0.3
0.4
0.4
0.6
0.4
1178


GQGVPINTNSGPDDQ
0.3
0.1
0.2
0.2
0.8
0.6
0.6
0.6
0.5
1179


QGVPINTNSGPDDQI
0.3
0.2
0.2
0.2
0.9
0.6
0.5
0.6
0.6
1180


GVPINTNSGPDDQIG
0.3
0.1
0.2
0.2
0.8
0.6
0.5
0.5
0.5
1181


VPINTNSGPDDQIGY
0.3
0.2
0.2
0.2
0.8
0.7
0.4
0.5
0.4
1182


PINTNSGPDDQIGYY
0.2
0.2
0.2
0.2
0.9
0.7
0.4
0.6
0.3
1183


INTNSGPDDQIGYYR
0.3
0.2
0.2
0.2
0.9
0.7
0.4
0.7
0.2
1184


NTNSGPDDQIGYYRR
0.2
0.1
0.2
0.2
0.6
0.6
0.4
0.7
0.3
1185


TNSGPDDQIGYYRRA
0.3
0.2
0.2
0.2
0.7
0.7
0.5
0.6
0.4
1186


NSGPDDQIGYYRRAT
0.2
0.1
0.1
0.2
0.7
0.6
0.4
0.5
0.1
1187


SGPDDQTGYYRRATR
0.2
0.1
0.2
0.2
0.6
0.6
0.4
0.6
0.4
 545


GPDDQIGYYRRATRR
0.2
0.1
0.2
0.2
0.6
0.6
0.4
0.6
0.3
 546


PDDQIGYYRRATRRV
0.2
0.1
0.2
0.2
0.6
0.5
0.4
0.6
0.3
 547


DDQIGYYRRATRRVR
0.3
0.1
0.3
0.3
0.7
0.9
0.7
0.6
0.6
 548


DQIGYYRRATRRVRG
0.2
0.1
0.3
0.2
0.7
0.6
0.5
0.6
0.4
 549


QIGYYRRATRRVRGG
0.3
0.1
0.2
0.2
0.6
0.6
0.5
0.6
0.2
 550


IGYYRRATRRVRGGD
0.2
0.1
0.1
0.2
0.5
0.4
0.4
0.6
0.2
 551


GYYRRATRRVRGGDG
0.3
0.1
0.1
0.2
0.3
0.4
0.4
0.6
0.2
 552


YYRRATRRVRGGDGK
0.3
0.1
0.3
0.3
0.7
0.6
0.5
0.5
0.3
1188


YRRATRRVRGGDGKM
0.3
0.1
0.3
0.3
0.8
0.7
0.5
0.6
0.4
1189


RRATRRVRGGDGKMK
0.2
0.1
0.3
0.3
0.8
0.7
0.5
0.6
0.3
1190


RATRRVRGGDGKMKE
0.2
0.1
0.4
0.2
0.8
0.7
0.5
0.6
0.3
1191


ATRRVRGGDGKMKEL
0.3
0.1
0.3
0.3
0.8
0.7
0.5
0.6
0.3
1192


TRRVRGGDGKMKELS
0.3
0.2
0.3
0.3
0.7
0.8
0.5
0.7
0.3
1193


RRVRGGDGKMKELSP
0.3
0.2
0.4
0.2
0.7
0.8
0.6
0.8
0.4
1194


RVRGGDGKMKELSPR
0.3
0.2
0.3
0.2
0.7
0.8
0.5
0.7
0.6
1195


VRGGDGKMKELSPRW
0.2
0.1
0.2
0.2
0.6
0.6
0.4
0.7
0.4
1196


RGGDGKMKELSPRWY
0.2
0.1
0.2
0.2
0.7
0.6
0.5
0.6
0.3
1197


GGDGKMKELSPRWYF
0.3
0.1
0.2
0.2
0.6
0.7
0.4
0.7
0.2
1198


GDGKMKELSPRWYFY
0.2
0.1
0.2
0.1
0.5
0.6
0.4
0.6
0.3
1199


DGKMKELSPRWYFYY
0.2
0.1
0.2
0.1
0.5
0.5
0.4
0.5
0.4
1200


GKMKELSPRWYFYYL
0.2
0.1
0.1
0.1
0.5
0.5
0.4
0.6
0.2
1201


KMKELSPRWYFYYLG
0.2
0.1
0.1
0.1
0.5
0.5
0.4
0.6
0.1
1202


MKELSPRWYFYYLGT
0.2
0.1
0.1
0.1
0.5
0.4
0.4
0.6
0.2
1203


KELSPRWYFYYLGTG
0.2
0.1
0.1
0.1
0.4
0.4
0.4
0.5
0.1
1204


ELSPRWYFYYLGTGP
0.2
0.2
0.3
0.2
0.8
0.7
0.5
0.7
0.4
1205


LSPRWYFYYLGTGPE
0.3
0.3
0.2
0.2
1.0
0.9
0.5
0.6
0.9
1206


SPRWYFYYLGTGPEA
0.3
0.2
0.2
0.2
0.9
0.9
0.5
0.6
0.6
1207


PRWYFYYLGTGPEAS
0.3
0.2
0.2
0.2
0.9
0.7
0.5
0.6
0.5
1208


RWYFYYLGTGPEASL
0.3
0.2
0.2
0.2
0.8
0.8
0.4
0.6
0.3
1209


WYFYYLGTGPEASLP
0.3
0.2
0.3
0.2
0.9
0.8
0.5
0.7
0.3
1210


YFYYLGTGPEASLPY
0.3
0.1
0.3
0.2
0.7
0.8
0.4
0.7
0.0
1211


FYYLGTGPEASLPYG
0.3
0.1
0.2
0.2
0.6
0.7
0.5
0.7
0.4
1212


YYLGTGPEASLPYGA
0.3
0.2
0.2
0.2
0.7
0.7
0.4
0.8
0.2
1213


YLGTGPEASLPYGAN
0.2
0.1
0.2
0.2
0.7
0.6
0.5
0.6
0.3
1214


LGTGPEASLPYGANK
0.3
0.1
0.3
0.2
0.7
0.7
0.5
0.7
0.5
1215


GTGPEASLPYGANKE
0.3
0.1
0.3
0.2
0.9
0.9
0.7
0.6
0.7
1216


TGPEASLPYGANKEG
0.3
0.2
0.3
0.3
0.7
0.9
0.7
0.6
0.8
1217


GPEASLPYGANKEGI
0.3
0.2
0.3
0.3
0.8
0.9
0.6
0.6
0.7
1218


PEASLPYGANKEGIV
0.3
0.1
0.2
0.2
0.7
0.7
0.5
0.6
0.3
1219


EASLPYGANKEGIVW
0.2
0.1
0.2
0.1
0.5
0.5
0.4
0.6
0.2
1220


ASLPYGANKEGIVWV
0.2
0.1
0.2
0.1
0.6
0.5
0.4
0.5
0.1
1221


SLPYGANKEGIVWVA
0.3
0.1
0.2
0.2
0.8
1.2
0.6
0.7
0.5
1222


LPYGANKEGIVWVAT
0.2
0.2
0.3
0.2
0.7
0.7
0.5
0.6
0.3
1223


PYGANKEGIVWVATE
0.3
0.2
0.2
0.2
1.0
0.8
0.7
0.6
0.8
1224


YGANKEGIVWVATEG
0.3
0.1
0.2
0.2
0.8
0.7
0.4
0.7
0.4
1225


GANKEGIVWVATEGA
0.2
0.1
0.2
0.1
0.7
0.6
0.4
0.6
0.2
1226


ANKEGIVWVATEGAL
0.2
0.1
0.2
0.2
0.8
0.7
0.4
0.7
0.4
1227


NKEGIVWVATEGALN
0.3
0.1
0.2
0.2
0.7
0.6
0.4
0.9
0.4
1228


KEGIVWVATEGALNT
0.2
0.1
0.2
0.2
0.7
0.6
0.4
0.7
0.5
1229


EGIVWVATEGALNTP
0.3
0.2
0.3
0.2
0.8
0.7
0.5
0.6
0.4
1230


GIVWVATEGALNTPK
0.3
0.2
0.5
0.3
0.9
0.9
0.6
0.8
1.0
1231


IVWVATEGALNTPKD
0.2
0.1
0.2
0.2
0.7
0.7
0.6
0.6
0.3
1232


VWVATEGALNTPKDH
0.2
0.1
0.2
0.2
0.8
0.7
0.6
0.6
0.5
1233


WVATEGALNTPKDHI
0.2
0.1
0.3
0.2
0.7
0.9
0.6
0.6
0.6
1234


VATEGALNTPKDHIG
0.3
0.1
0.2
0.2
0.7
1.1
0.7
0.6
0.5
1235


ATEGALNTPKDHIGT
0.2
0.1
0.3
0.1
0.7
0.7
0.5
0.6
0.4
1236


TEGALNTPKDHIGTR
0.2
0.1
0.2
0.2
0.7
0.7
0.5
0.6
0.6
1237


EGALNTPKDHIGTRN
0.2
0.1
0.2
0.2
0.6
0.6
0.6
0.5
0.1
1238


GALNTPKDHIGTRNP
0.3
0.1
0.2
0.2
0.7
0.7
0.5
0.7
0.4
1239


ALNTPKDHIGTRNPN
0.3
0.1
0.3
0.2
0.7
0.6
0.5
0.5
0.4
1240


LNTPKDHTGTRNPNN
0.2
0.1
0.3
0.2
0.7
0.6
0.5
0.6
0.2
1241


NTPKDHIGTRNPNNN
0.3
0.1
0.3
0.2
0.8
0.7
0.4
0.6
0.4
1242


TPKDHIGTRNPNNNA
0.3
0.1
0.3
0.2
0.9
0.8
0.5
0.7
0.4
1243


PKDHIGTRNPNNNAA
0.3
0.1
0.3
0.2
0.8
0.9
0.5
0.8
0.4
1244


KDHIGTRNPNNNAAT
0.3
0.2
0.4
0.3
0.9
0.8
0.5
0.8
0.5
1245


DHIGTRNPNNNAATV
0.3
0.1
0.3
0.2
0.7
0.7
0.5
0.7
0.5
1246


HIGTRNPNNNAATVL
0.3
0.2
0.4
0.2
0.9
0.8
0.5
0.7
0.5
1247


IGTRNPNNNAATVLQ
0.3
0.1
0.4
0.2
0.7
0.8
0.5
0.6
0.5
1248


GTRNPNNNAATVLQL
0.3
0.1
0.3
0.2
0.7
0.7
0.5
0.6
0.3
1249


TRNPNNNAATVLQLP
0.3
0.1
0.3
0.2
0.6
0.7
0.5
0.7
0.3
1250


RNPNNNAATVLQLPQ
0.2
0.1
0.3
0.2
0.6
0.7
0.5
0.6
0.3
1251


NPNNNAATVLQLPQG
0.4
0.2
0.4
0.3
0.8
0.9
0.8
0.8
0.6
1252


PNNNAATVLQLPQGT
0.2
0.1
0.2
0.1
0.6
0.6
0.5
0.7
0.3
1253


NNNAATVLQLPQGTT
0.2
0.1
0.2
0.1
0.7
0.5
0.5
0.7
0.4
1254







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







LPKGFYAEGSRGGSQ
0.2
0.1
0.2
0.1
0.6
0.6
0.4
0.5
0.2
1255


PKGFYAEGSRGGSQA
0.3
0.1
0.2
0.2
0.6
0.6
0.5
0.5
0.0
1256


KGFYAEGSRGGSQAS
0.2
0.1
0.2
0.2
0.6
0.5
0.4
0.5
0.2
1257


GFYAEGSRGGSQASS
0.3
0.1
0.2
0.4
0.7
0.5
0.4
0.4
0.1
1258


FYAEGSRGGSQASSR
0.3
0.2
0.2
0.3
0.7
0.8
0.5
0.6
0.4
1259


YAEGSRGGSQASSRS
0.3
0.1
0.3
0.4
0.7
0.7
0.5
0.6
0.6
1260


AEGSRGGSQASSRSS
0.3
0.2
0.3
0.3
0.7
0.7
0.5
0.6
0.4
1261


EGSRGGSQASSRSSS
0.3
0.2
0.3
0.4
0.9
0.8
0.5
0.6
0.6
1262


GSRGGSQASSRSSSR
0.3
0.1
0.3
0.4
0.7
0.8
0.5
0.8
0.2
1263


SRGGSQASSRSSSRS
0.3
0.1
0.3
0.4
0.6
0.7
0.4
0.9
0.1
1264


RGGSQASSRSSSRSR
0.3
0.1
0.3
0.4
0.7
0.7
0.5
0.7
0.3
1265


GGSQASSRSSSRSRG
0.3
0.1
0.3
0.4
0.7
0.7
0.5
0.9
0.7
1266


GSQASSRSSSRSRGN
0.3
0.1
0.4
0.4
0.7
0.6
0.6
0.7
0.3
1267


SQASSRSSSRSRGNS
0.2
0.1
0.2
0.4
0.6
0.6
0.4
0.6
0.2
1268


QASSRSSSRSRGNSR
0.2
0.1
0.3
0.3
0.6
0.6
0.5
0.6
0.2
1269


ASSRSSSRSRGNSRN
0.2
0.1
0.2
0.2
0.6
0.5
0.5
0.7
0.3
1270


SSRSSSRSRGNSRNS
0.2
0.1
0.2
0.2
0.5
0.6
0.5
0.7
0.3
1271


SRSSSRSRGNSRNST
0.2
0.1
0.2
0.2
0.4
0.6
0.4
0.7
0.2
1272


RSSSRSRGNSRNSTP
0.3
0.1
0.2
0.2
0.5
0.6
0.5
0.5
0.2
1273


SSSRSRGNSRNSTPG
0.4
0.2
0.2
0.1
0.5
0.5
0.5
0.6
0.2
1274


SSRSRGNSRNSTPGS
0.8
0.5
0.1
0.2
0.6
0.5
0.4
0.5
0.1
1275


SRSRGNSRNSTPGSS
1.0
0.6
0.3
0.2
0.7
0.7
0.5
0.6
0.4
1276


RSRGNSRNSTPGSSR
0.7
0.4
0.2
0.2
0.7
0.6
0.5
0.6
0.2
1277


SRGNSRNSTPGSSRG
0.7
0.4
0.2
0.2
0.7
0.7
0.5
0.7
0.4
1278


RGNSRNSTPGSSRGN
0.7
0.4
0.2
0.2
0.7
0.7
0.4
0.8
0.2
1279


GNSRNSTPGSSRGNS
0.7
0.5
0.2
0.2
0.7
0.7
0.5
0.7
0.2
1280


NSRNSTPGSSRGNSP
0.6
0.4
0.3
0.4
0.9
0.9
1.4
1.0
0.4
1281


SRNSTPGSSRGNSPA
0.7
0.5
0.4
0.2
0.8
0.9
0.6
0.7
0.4
1282


RNSTPGSSRGNSPAR
0.6
0.3
0.3
0.2
0.7
0.7
0.4
0.7
0.4
 553


NSTPGSSRGNSPARM
0.7
0.5
0.4
0.6
1.2
1.2
1.6
1.5
1.8
 554


STPGSSRGNSPARMA
0.5
0.3
0.4
0.3
0.7
0.8
0.5
0.7
0.8
 555


TPGSSRGNSPARMAS
0.3
0.2
0.3
0.2
0.8
0.7
0.5
0.8
0.6
 556


PGSSRGNSPARMASG
0.3
0.2
0.3
0.2
0.6
0.6
0.5
0.7
0.5
 557


GSSRGNSPARMASGG
0.4
0.2
0.2
0.2
0.5
0.7
0.5
0.7
0.8
 558


SSRGNSPARMASGGG
0.4
0.3
0.2
0.2
0.5
0.6
0.5
0.7
1.0
1283


SRGNSPARMASGGGE
0.3
0.2
0.1
0.2
0.6
0.6
0.6
0.6
0.2
1284


RGNSPARMASGGGET
0.3
0.1
0.2
0.2
0.5
0.5
0.5
0.5
0.1
1285


GNSPARMASGGGETA
0.3
0.1
0.2
0.2
0.6
0.6
0.6
0.5
0.2
1286







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







SGGGETALALLLLDR
0.3
0.1
0.2
0.2
0.7
0.7
0.4
0.5
0.1
1287


GGGETALALLLLDRL
0.2
0.1
0.1
0.1
0.7
0.5
0.4
0.6
0.2
1288


GGETALALLLLDRLN
0.2
0.1
0.2
0.2
0.6
0.6
0.4
0.5
0.4
1289


GETALALLLLDRLNQ
0.2
0.1
0.2
0.1
0.5
0.6
0.5
0.6
0.2
1290


ETALALLLLDRLNQL
0.2
0.1
0.1
0.1
0.6
0.4
0.5
0.5
0.3
1291


TALALLLLDRLNQLE
0.3
0.2
0.2
0.2
0.7
0.7
0.5
0.6
0.8
1292


ALALLLLDRLNQLES
0.3
0.2
0.1
0.2
0.5
0.6
0.5
0.5
0.4
1293


LALLLLDRLNQLESK
0.2
0.1
0.1
0.1
0.5
0.5
0.7
0.5
0.4
1294


ALLLLDRLNQLESKV
0.2
0.1
0.2
0.1
0.7
0.4
0.6
0.5
0.2
1295


LLLLDRLNQLESKVS
0.2
0.1
0.2
0.1
0.7
0.4
0.7
0.4
0.4
1296


LLLDRLNQLESKVSG
0.3
0.2
0.4
0.2
0.8
0.6
0.9
0.7
1.1
1297


LLDRLNQLESKVSGK
0.2
0.1
0.3
0.2
0.7
0.6
0.5
0.7
0.4
1298


LDRLNQLESKVSGKG
0.3
0.2
0.3
0.3
0.5
0.6
0.5
0.7
0.8
1299


DRLNQLESKVSGKGQ
0.3
0.1
0.3
0.2
0.8
0.7
0.5
0.7
0.5
1300


RLNQLESKVSGKGQQ
0.3
0.2
0.3
0.2
0.7
0.9
0.6
0.7
0.4
1301


LNQLESKVSGKGQQQ
0.3
0.1
0.3
0.2
0.7
0.9
0.6
0.7
0.4
1302


NQLESKVSGKGQQQQ
0.3
0.2
0.3
0.2
0.7
0.8
0.6
0.7
0.5
1303


QLESKVSGKGQQQQG
0.3
0.1
0.3
0.2
0.7
0.8
0.6
0.8
0.5
1304


LESKVSGKGQQQQGQ
0.3
0.1
0.2
0.1
0.6
0.6
0.5
0.7
0.4
1305


ESKVSGKGQQQQGQT
0.2
0.1
0.2
0.2
0.6
0.7
0.5
0.7
0.4
1306


SKVSGKGQQQQGQTV
0.2
0.1
0.3
0.1
0.5
0.6
0.5
0.7
0.3
1307


KVSGKGQQQQGQTVT
0.3
0.1
0.3
0.2
0.6
0.6
0.5
0.6
0.6
1308


VSGKGQQQQGQTVTK
1.2
0.6
0.6
0.4
0.9
1.2
0.6
1.0
0.5
1309


SGKGQQQQGQTVTKK
0.3
0.1
0.2
0.4
0.7
0.9
0.6
0.7
0.5
1310


GKGQQQQGQTVTKKS
0.3
0.1
0.3
0.3
0.7
0.7
0.5
0.7
0.2
1311


KGQQQQGQTVTKKSA
0.3
0.1
0.2
0.3
0.7
0.8
0.6
0.6
0.4
1312


GQQQQGQTVTKKSAA
0.3
0.1
0.3
0.3
0.8
0.8
0.5
0.5
0.1
1313


QQQQGQTVTKKSAAE
0.8
0.3
0.7
0.2
0.7
0.7
0.7
0.9
0.3
1314


QQQGQTVTKKSAAEA
0.6
0.2
0.5
0.2
0.5
0.5
0.6
0.6
0.3
1315







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







AEASKKPRQKRTATK
0.2
0.1
0.2
0.3
0.7
0.7
0.4
0.7
0.4
1316


EASKKPRQKRTATKQ
0.2
0.1
0.3
0.3
0.7
0.7
0.5
0.6
0.3
1317


ASKKPRQKRTATKQY
0.2
0.1
0.3
0.2
0.7
0.6
0.5
0.5
0.3
1318


SKKPRQKRTATKQYN
0.2
0.1
0.3
0.2
0.6
0.7
0.5
0.4
0.1
1319


KKPRQKRTATKQYNV
0.2
0.1
0.3
0.2
0.8
0.8
0.7
0.6
0.1
1320







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







ATKQYNVTQAFGRRG
0.3
0.2
0.2
0.2
0.7
0.6
0.5
0.8
0.3
 565


TKQYNVTQAFGRRGP
0.3
0.1
0.2
0.2
0.8
0.7
0.5
0.7
0.5
 566


KQYNVTQAFGRRGPE
0.3
0.1
0.1
0.2
0.6
0.7
0.5
0.6
0.3
 567


QYNVTQAFGRRGPEQ
0.3
0.1
0.1
0.2
0.6
0.6
0.4
0.6
0.5
 568


YNVTQAFGRRGPEQT
0.3
0.1
0.2
0.2
0.7
0.7
0.5
0.6
0.6
 569


NVTQAFGRRGPEQTQ
0.2
0.1
0.2
0.2
0.6
0.7
0.5
0.6
0.5
 570


VTQAFGRRGPEQTQG
0.3
0.1
0.1
0.2
0.6
0.5
0.5
0.7
0.5
 571


TQAFGRRGPEQTQGN
0.2
0.1
0.2
0.2
0.6
0.5
0.5
0.5
0.3
 572


QAFGRRGPEQTQGNF
0.3
0.1
0.2
0.2
0.6
0.8
0.7
0.4
0.2
1321


AFGRRGPEQTQGNFG
0.2
0.1
0.2
0.3
0.5
0.7
0.8
0.6
0.4
1322







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







TQGNFGDQDLIRQGT
0.3
0.2
0.2
0.2
0.9
0.8
0.6
0.6
0.6
1323


QGNFGDQDLIRQGTD
0.3
0.2
0.2
0.2
0.8
0.8
0.5
0.8
0.6
1324


GNFGDQDLIRQGTDY
0.3
0.2
0.2
0.2
0.8
0.7
0.6
0.8
0.5
1325


NFGDQDLIRQGTDYK
0.3
0.2
0.2
0.2
0.7
0.7
0.6
0.6
0.8
1326


FGDQDLIRQGTDYKH
0.3
0.2
0.2
0.2
0.7
0.7
0.6
0.6
0.7
1327


GDQDLIRQGTDYKHW
0.2
0.1
0.2
0.3
0.6
0.7
0.9
0.7
0.5
1328


DQDLIRQGTDYKHWP
0.3
0.1
0.2
0.2
0.7
0.6
0.8
0.7
0.5
1329


QDLIRQGTDYKHWPQ
0.2
0.1
0.2
0.2
0.6
0.5
0.4
0.4
0.2
1330


DLIRQGTDYKHWPQI
0.2
0.1
0.2
0.2
0.6
0.6
0.9
0.6
0.4
1331


LIRQGTDYKHWPQIA
0.3
0.2
0.4
0.2
0.8
0.9
0.9
0.6
0.4
1332


IRQGTDYKHWPQIAQ
0.2
0.1
0.2
0.2
0.7
0.6
0.9
0.6
0.3
1333


RQGTDYKHWPQIAQF
0.3
0.2
0.2
0.2
0.7
0.8
0.7
0.6
0.3
1334


QGTDYKHWPQIAQFA
0.3
0.2
0.2
0.2
0.8
0.8
0.7
0.7
0.2
1335


GTDYKHWPQIAQFAP
0.3
0.1
0.2
0.2
0.7
0.8
0.6
0.7
0.6
1336


TDYKHWPQIAQFAPS
0.3
0.2
0.2
0.2
0.8
0.9
0.7
0.7
0.4
1337


DYKHWPQIAQFAPSA
0.3
0.2
0.2
0.2
0.9
0.9
0.7
0.8
0.4
1338


YKHWPQIAQFAPSAS
0.3
0.1
0.2
0.2
0.8
0.7
0.6
0.7
0.4
1339


KHWPQIAQFAPSASA
0.3
0.1
0.3
0.2
0.8
0.7
0.7
0.8
0.6
1340


HWPQIAQFAPSASAF
0.3
0.2
0.2
0.2
0.8
0.7
0.6
0.8
0.4
1341


WPQIAQFAPSASAFF
0.2
0.1
0.1
0.2
0.6
0.5
0.5
0.7
0.3
1342


PQIAQFAPSASAFFG
0.2
0.1
0.2
0.1
0.6
0.6
0.5
0.6
0.6
1343


QIAQFAPSASAFFGM
0.3
0.1
0.2
0.2
0.7
0.6
0.5
0.7
0.7
1344


IAQFAPSASAFFGMS
0.2
0.1
0.1
0.1
0.6
0.5
0.4
0.6
0.2
1345


AQFAPSASAFFGMSR
0.2
0.1
0.1
0.1
0.5
0.4
0.4
0.6
0.1
1346


QFAPSASAFFGMSRI
0.2
0.1
0.1
0.1
0.4
0.4
0.4
0.5
0.1
1347


FAPSASAFFGMSRIG
0.2
0.1
0.2
0.1
0.6
0.5
0.4
0.5
0.4
1348


APSASAFFGMSRIGM
0.2
0.1
0.2
0.1
0.5
0.5
0.6
0.4
0.2
1349


PSASAFFGMSRIGME
0.2
0.1
0.1
0.1
0.6
0.5
0.5
0.6
0.1
1350


SASAFFGMSRTGMEV
0.3
0.2
0.2
0.2
0.7
0.6
0.5
0.7
0.4
1351


ASAFFGMSRIGMEVT
0.2
0.3
0.2
0.2
0.7
0.7
0.8
0.7
0.3
1352


SAFFGMSRIGMEVTP
0.3
0.2
0.2
0.2
0.7
0.8
0.6
0.7
0.3
1353


AFFGMSRIGMEVTPS
0.3
0.1
0.2
0.2
0.6
0.7
0.5
0.5
0.2
1354


FFGMSRIGMEVTPSG
0.3
0.1
0.2
0.2
0.7
0.7
0.6
0.8
0.3
1355


FGMSRIGMEVTPSGT
0.3
0.1
0.2
0.2
0.8
0.7
0.6
0.7
0.3
1356


GMSRIGMEVTPSGTW
0.3
0.1
0.2
0.2
0.7
0.7
0.5
0.7
0.5
1357


MSRIGMEVTPSGTWL
0.3
0.1
0.2
0.2
0.6
0.7
0.5
0.6
0.3
1358


SRIGMEVTPSGTWLT
0.2
0.1
0.2
0.2
0.7
0.6
0.5
0.6
0.4
1359


RIGMEVTPSGTWLTY
0.2
0.1
0.1
0.1
0.4
0.4
0.3
0.9
0.5
1360


IGMEVTPSGTWLTYH
0.2
0.1
0.1
0.2
0.6
0.6
0.5
0.5
0.3
1361


GMEVTPSGTWLTYHG
0.3
0.1
0.1
0.2
0.5
0.6
0.5
0.7
0.2
1362


MEVTPSGTWLTYHGA
0.3
0.1
0.1
0.2
0.6
0.5
0.5
0.7
0.2
1363


EVTPSGTWLTYHGAI
0.2
0.1
0.1
0.2
0.7
0.5
0.4
0.5
0.1
1364


VTPSGTWLTYHGAIK
0.3
0.1
0.2
0.2
0.7
0.8
0.7
0.5
0.5
1365


TPSGTWLTYHGAIKL
0.2
0.1
0.2
0.2
0.7
0.6
0.7
0.5
0.3
1366


PSGTWLTYHGAIKLD
0.3
0.2
0.2
0.2
1.0
0.8
0.7
0.7
0.6
1367


SGTWLTYHGAIKLDD
0.2
0.1
0.1
0.1
0.7
0.5
0.6
0.6
0.5
1368


GTWLTYHGAIKLDDK
0.2
0.1
0.2
0.1
0.7
0.7
0.5
0.7
0.4
1369


TWLTYHGAIKLDDKD
0.2
0.1
0.1
0.2
0.6
0.6
0.5
0.6
0.3
1370


WLTYHGAIKLDDKDP
0.3
0.2
0.2
0.2
0.7
0.8
0.6
0.7
0.3
1371


LTYHGAIKLDDKDPQ
0.2
0.1
0.2
0.2
0.6
1.0
0.5
0.7
0.2
1372


TYHGAIKLDDKDPQF
0.3
0.1
0.1
0.2
0.8
1.1
0.6
0.7
0.4
1373


YHGAIKLDDKDPQFK
0.3
0.2
0.3
0.2
0.8
1.6
0.7
0.7
0.9
1374


HGAIKLDDKDPQFKD
0.2
0.1
0.2
0.1
0.8
0.7
0.6
0.6
0.4
1375


GAIKLDDKDPQFKDN
0.2
0.1
0.2
0.2
0.7
0.9
0.6
0.7
0.5
1376


AIKLDDKDPQFKDNV
0.2
0.1
0.2
0.2
0.8
0.9
0.6
0.6
0.7
1377







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







FKDNVILLNKHIDAY
0.2
0.1
0.2
0.2
0.6
0.6
0.5
0.7
0.2
1378


KDNVILLNKHIDAYK
0.3
0.2
0.3
0.3
0.7
0.8
0.6
0.8
0.4
1379


DNVILLNKHIDAYKT
0.2
0.1
0.2
0.1
0.6
0.6
0.5
0.6
0.2
1380


NVILLNKHIDAYKTF
0.2
0.1
0.2
0.1
0.7
0.6
0.5
0.6
0.3
1381


VILLNKHIDAYKTFP
0.2
0.1
0.2
0.2
0.7
0.7
0.5
0.5
0.4
1382


ILLNKHIDAYKTFPP
0.2
0.1
0.2
0.2
0.7
0.7
0.5
0.5
0.3
1383


LLNKHIDAYKTFPPT
0.2
0.1
0.2
0.2
0.7
0.6
0.5
0.6
0.5
1384


LNKHIDAYKTFPPTE
0.2
0.1
0.1
0.1
0.7
0.5
0.4
0.5
0.4
1385


NKHIDAYKTFPPTEP
0.2
0.1
0.1
0.2
0.6
0.5
0.5
0.6
0.3
1386


KHTDAYKTFPPTEPK
0.3
0.1
0.3
0.2
0.7
0.8
0.5
0.8
0.5
1387


HIDAYKTFPPTEPKK
0.2
0.1
0.2
0.2
0.6
0.6
0.4
0.5
0.2
1388


IDAYKTFPPTEPKKD
0.3
0.1
0.3
0.2
0.7
0.9
0.4
0.6
0.4
1389


DAYKTFPPTEPKKDK
0.3
0.2
0.3
0.3
0.8
1.1
0.6
0.7
0.4
1390


AYKTFPPTEPKKDKK
0.2
0.1
0.3
0.2
0.7
0.8
0.6
0.7
0.3
1391


YKTFPPTEPKKDKKK
0.2
0.1
0.5
0.2
0.7
0.7
0.5
0.8
0.2
1392


KTFPPTEPKKDKKKK
0.2
0.1
0.4
0.2
0.8
0.6
0.4
0.8
0.1
1393


TFPPTEPKKDKKKKT
0.2
0.1
0.9
0.3
0.8
0.8
0.5
0.9
0.3
1394


FPPTEPKKDKKKKTD
0.2
0.1
1.3
0.2
0.6
0.7
0.6
0.6
0.1
1395


PPTEPKKDKKKKTDE
0.2
0.1
2.0
0.2
0.6
0.7
0.5
0.6
0.3
1396


PTEPKKDKKKKTDEA
0.2
0.1
2.0
0.2
0.6
0.7
0.5
0.5
0.2
1397


TEPKKDKKKKTDEAQ
0.2
0.1
2.5
0.2
0.7
0.7
0.6
0.6
0.5
1398


EPKKDKKKKTDEAQP
0.2
0.1
2.4
0.2
0.7
0.7
0.7
0.6
0.5
1399


PKKDKKKKTDEAQPL
0.2
0.1
2.5
0.2
0.7
0.7
0.5
0.5
0.1
1400


KKDKKKKTDEAQPLP
0.3
0.2
1.9
0.2
0.7
0.7
0.6
0.6
0.4
1401


KDKKKKTDEAQPLPQ
0.2
0.1
0.2
0.2
0.7
0.6
0.6
0.5
0.5
1402


DKKKKTDEAQPLPQR
0.2
0.1
0.2
0.2
0.6
0.6
0.5
0.6
0.5
1403


KKKKTDEAQPLPQRQ
0.3
0.1
0.3
0.3
0.7
0.7
0.8
0.9
0.6
1404


KKKTDEAQPLPQRQK
0.2
0.1
0.2
0.7
0.9
0.6
1.1
1.0
0.4
1405


KKTDEAQPLPQRQKK
0.2
0.1
0.3
0.4
0.7
0.6
1.7
1.1
0.2
1406


KTDEAQPLPQRQKKQ
0.3
0.2
0.3
0.3
0.9
0.9
1.4
1.5
0.6
1407


TDEAQPLPQRQKKQP
0.2
0.2
0.3
0.2
0.7
0.7
1.2
1.0
0.7
1408


DEAQPLPQRQKKQPT
0.2
0.2
0.3
0.3
0.8
0.7
1.5
1.6
0.6
1409


EAQPLPQRQKKQPTV
0.2
0.2
0.3
0.3
0.7
0.7
1.2
1.3
0.4
1410


AQPLPQRQKKQPTVT
0.3
0.2
0.4
0.4
0.7
0.8
1.6
1.4
0.3
1411


QPLPQRQKKQPTVTL
0.2
0.2
0.3
0.4
0.6
0.6
1.3
1.3
0.2
 414


PLPQRQKKQPTVTLL
0.2
0.1
0.2
0.2
0.5
0.6
1.0
1.0
0.2
 415


LPQRQKKQPTVTLLP
0.2
0.2
0.3
0.1
0.7
0.7
0.5
0.7
0.4
 416


PQRQKKQPTVTLLPA
0.3
0.2
0.3
0.2
0.7
0.7
0.5
0.6
0.5
 417


QRQKKQPTVTLLPAA
0.3
0.1
0.3
0.2
0.7
0.8
0.6
0.6
0.7
 418


RQKKQPTVTLLPAAD
0.3
0.2
0.2
0.2
0.7
0.8
0.6
0.6
0.6
 419


QKKQPTVTLLPAADM
0.3
0.2
0.2
0.2
0.7
0.6
0.6
0.5
0.4
 420


KKQPTVTLLPAADMD
0.3
0.2
0.2
0.2
1.0
0.7
0.6
0.5
1.3
1412


KQPTVTLLPAADMDD
0.3
0.2
0.2
0.2
1.2
0.8
0.6
1.1
2.4
1413


QPTVTLLPAADMDDF
0.3
0.2
0.2
0.2
1.1
0.7
0.5
0.7
1.9
1414


PTVTLLPAADMDDFS
0.3
0.2
0.2
0.1
1.4
0.9
0.6
0.7
1.9
1415


TVTLLPAADMDDFSR
0.2
0.1
0.1
0.2
0.7
0.5
0.5
0.5
0.3
1416


VTLLPAADMDDFSRQ
0.3
0.1
0.2
0.1
0.6
0.6
0.6
0.6
0.3
1417


TLLPAADMDDFSRQL
0.3
0.2
0.2
0.4
1.0
0.7
0.6
0.7
0.7
1418


LLPAADMDDFSRQLQ
0.3
0.2
0.3
0.3
0.8
0.6
0.6
0.6
0.4
1419


LPAADMDDFSRQLQN
0.2
0.2
0.4
0.3
0.7
0.6
0.5
0.6
0.2
1420


PAADMDDFSRQLQNS
0.3
0.2
0.2
0.6
0.8
0.7
0.6
0.5
0.3
1421


AADMDDFSRQLQNSM
0.3
0.2
0.2
1.2
0.7
0.6
0.7
0.7
0.4
1422


ADMDDFSRQLQNSMS
0.3
0.2
0.2
1.5
0.7
0.6
0.8
0.7
0.3
1423


DMDDFSRQLQNSMSG
0.2
0.2
0.2
0.3
0.8
0.7
0.7
0.7
0.3
1424


MDDFSRQLQNSMSGA
0.2
0.1
0.3
0.2
0.8
0.7
0.8
0.7
0.6
1425


DDFSRQLQNSMSGAS
0.2
0.1
0.2
0.2
0.8
0.7
0.7
0.6
0.4
1426


DFSRQLQNSMSGASA
0.2
0.1
0.2
0.2
0.7
0.6
0.5
0.5
0.3
1427


FSRQLQNSMSGASAD
0.2
0.1
0.1
0.2
0.7
0.6
0.6
0.4
0.6
1428


SRQLQNSMSGASADS
0.2
0.1
0.2
0.2
0.8
0.6
0.6
0.5
0.5
1429


RQLQNSMSGASADST
0.2
0.2
0.2
0.2
0.7
0.6
0.6
0.5
0.3
1430


QLQNSMSGASADSTQ
0.2
0.1
0.2
0.1
0.7
0.5
0.6
0.6
0.3
1431


LQNSMSGASADSTQA
0.2
0.1
0.1
0.2
0.6
0.4
0.6
0.6
0.4
1432
















TABLE 16










Binding of the sera called SARS-yellow, SARS-green, 1a,


1b, 2, 6, 37, 62 and London to looped/cyclic peptides of protein N


of SARS-CoV Urbani.



























SEQ


Peptide









ID


sequence
1a
1b
2
6
37
62
London
yellow
green
NO





MSDNGPQSNQRSAPR
0.2
0.1
0.4
0.3
0.4
0.4
0.4
0.1
0.4
1123


SDNGPQSNQRSAPRI
0.3
0.0
0.3
0.3
0.5
0.4
0.4
0.1
0.2
1124


DNGPQSNQRSAPRIT
0.2
0.1
0.1
0.2
0.5
0.3
0.2
0.1
0.2
1125


NGPQSNQRSAPRITF
0.3
0.2
0.5
0.3
0.8
0.6
0.5
0.6
0.5
 592


GPQSNQRSAPRITFG
0.3
0.2
0.3
0.3
0.6
0.4
0.4
0.8
0.3
 593


PQSNQRSAPRITFGG
0.5
0.3
0.5
0.5
0.8
0.7
0.5
0.6
0.4
 594


QSNQRSAPRITFGGP
0.5
0.3
0.6
0.4
0.8
0.7
0.5
0.7
0.5
 595


SNQRSAPRITFGGPT
0.4
0.2
0.4
0.4
0.7
0.4
0.9
0.6
0.3
 596


NQRSAPRITFGGPTD
0.4
0.3
0.4
0.2
0.6
0.4
0.4
0.7
0.5
 597


QRSAPRITFGGPTDS
0.4
0.3
0.4
0.4
0.7
0.5
0.9
0.6
0.4
 598


RSAPRITFGGPTDST
0.3
0.2
0.3
0.2
0.5
0.4
0.3
0.5
0.4
 599


SAPRITFGGPTDSTD
0.3
0.2
0.2
0.1
0.5
0.3
0.3
0.4
0.9
 600


APRITFGGPTDSTDN
0.4
0.2
0.3
0.2
0.6
0.6
0.2
0.4
0.6
 601


PRITFGGPTDSTDNN
0.3
0.2
0.3
0.2
0.7
0.5
0.3
0.4
0.8
 602


RITFGGPTDSTDNNQ
0.3
0.2
0.2
0.2
0.5
0.3
0.3
0.2
0.4
 603


ITFGGPTDSTDNNQN
0.3
0.2
0.3
0.2
0.6
0.5
0.4
0.3
0.7
 604


TFGGPTDSTDNNQNG
0.3
0.2
0.3
0.2
0.4
0.3
0.3
0.1
0.5
1126


FGGPTDSTDNNQNGG
0.2
0.1
0.2
0.1
0.4
0.2
0.2
0.1
0.3
1127


GGPTDSTDNNQNGGR
0.3
0.1
0.4
0.2
0.5
0.3
0.3
0.2
0.2
1128


GPTDSTDNNQNGGRN
0.4
0.4
0.6
0.3
0.9
0.6
0.5
0.4
1.4
1129


PTDSTDNNQNGGRNG
0.3
0.2
0.3
0.2
0.5
0.3
0.4
0.5
0.4
1130


TDSTDNNQNGGRNGA
0.4
0.3
0.6
0.3
0.7
0.3
0.6
0.7
0.8
1131


DSTDNNQNGGRNGAR
0.4
0.3
0.5
0.3
0.7
0.4
0.5
0.5
0.8
1132


STDNNQNGGRNGARP
0.3
0.2
0.3
0.2
0.5
0.2
0.3
0.3
0.4
1133


TDNNQNGGRNGARPK
0.2
0.1
0.2
0.2
0.4
0.2
0.3
0.3
0.1
1134


DNNQNGGRNGARPKQ
0.4
0.2
0.4
0.3
0.6
0.4
0.4
0.4
0.4
1135


NNQNGGRNGARPKQR
0.2
0.1
0.2
0.2
0.4
0.3
0.3
0.3
0.1
1136


NQNGGRNGARPKQRR
0.2
0.1
0.2
0.2
0.4
0.3
0.3
0.3
0.2
1137


QNGGRNGARPKQRRP
0.3
0.1
0.3
0.2
0.6
0.4
0.3
0.5
0.6
1138


NGGRNGARPKQRRPQ
0.3
0.2
0.3
0.3
0.6
0.5
0.3
0.5
0.4
1139


GGRNGARPKQRRPQG
0.2
0.1
0.2
0.2
0.4
0.3
0.2
0.2
0.2
1140


GRNGARPKQRRPQGL
0.2
0.1
0.2
0.2
0.4
0.3
0.3
0.3
0.2
1141


RNGARPKQRRPQGLP
0.2
0.1
0.3
0.2
0.5
0.4
0.4
0.2
0.3
1142


NGARPKQRRPQGLPN
0.3
0.2
0.3
0.4
0.6
0.5
0.5
0.4
0.4
1143


GARPKQRRPQGLPNN
0.3
0.1
0.4
0.3
0.4
0.5
0.4
0.2
0.4
1144


ARPKQRRPQGLPNNT
0.2
0.1
0.4
0.2
0.5
0.5
0.3
0.2
0.2
1145


RPKQRRPQGLPNNTA
0.3
0.1
0.3
0.3
0.5
0.5
0.4
0.3
0.2
1146


PKQRRPQGLPNNTAS
0.5
0.5
0.8
0.4
0.8
0.7
0.6
0.9
3.1
1147


KQRRPQGLPNNTASW
0.4
0.2
0.4
0.4
0.6
0.5
0.6
0.7
0.3
1148


QRRPQGLPNNTASWF
0.5
0.3
0.5
0.4
0.7
0.6
0.5
0.6
0.7
1149


RRPQGLPNNTASWFT
0.4
0.3
0.5
0.3
0.6
0.5
0.4
0.5
0.6
1150


RPQGLPNNTASWFTA
0.5
0.3
0.5
0.4
0.9
0.8
0.5
0.7
0.5
1151


PQGLPNNTASWFTAL
0.5
0.3
0.6
0.3
1.0
0.9
0.6
0.9
0.4
1152


QGLPNNTASWFTALT
0.4
0.3
0.5
0.3
0.7
0.7
0.5
0.7
0.6
1153


GLPNNTASWFTALTQ
0.4
0.2
0.4
0.3
0.7
0.7
0.4
0.5
0.6
1154


LPNNTASWFTALTQH
0.4
0.3
0.4
0.3
0.8
0.7
0.3
0.7
0.7
1155


PNNTASWFTALTQHG
0.4
0.2
0.3
0.2
0.6
0.5
0.3
0.6
0.7
1156


NNTASWFTALTQHGK
0.2
0.1
0.2
0.1
0.4
0.2
0.2
0.1
0.1
1157


NTASWFTALTQHGKE
0.2
0.2
0.2
0.1
0.4
0.3
0.3
0.3
0.3
1158


TASWFTALTQHGKEE
0.2
0.1
0.1
0.1
0.4
0.2
0.3
0.2
0.1
1159


ASWFTALTQHGKEEL
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.1
0.2
1160


SWFTALTQHGKEELR
0.2
0.1
0.2
0.1
0.3
0.2
0.2
0.0
0.1
1161


WFTALTQHGKEELRF
0.4
0.2
0.4
0.2
0.8
0.6
0.4
0.4
0.5
1162


FTALTQHGKEELRFP
0.2
0.1
0.3
0.1
0.4
0.3
0.2
0.1
0.0
1163


TALTQHGKEELRFPR
0.4
0.3
0.6
0.5
0.8
0.6
0.6
0.7
0.7
1164


ALTQHGKEELRFPRG
0.2
0.1
0.2
0.1
0.5
0.2
0.3
0.3
0.1
1165


LTQHGKEELRFPRGQ
0.4
0.2
0.4
0.3
0.6
0.4
0.4
0.4
0.3
1166


TQHGKEELRFPRGQG
0.3
0.2
0.3
0.2
0.5
0.3
0.4
0.4
0.2
1167


QHGKEELRFPRGQGV
0.4
0.3
0.5
0.4
0.6
0.4
0.6
0.7
0.4
1168


HGKEELRFPRGQGVP
0.3
0.2
0.4
0.2
0.5
0.3
0.4
0.5
0.2
1169


GKEELRFPRGQGVPI
0.5
0.4
0.8
0.3
0.9
1.1
0.6
0.7
0.9
1170


KEELRFPRGQGVPIN
0.4
0.3
0.5
0.4
0.7
0.5
0.7
0.6
0.4
1171


EELRFPRGQGVPINT
0.6
0.4
0.8
0.5
1.0
1.2
0.7
0.8
0.9
1172


ELRFPRGQGVPINTN
0.4
0.3
0.5
0.3
0.7
0.6
0.5
0.4
0.7
1173


LRFPRGQGVPINTNS
0.3
0.2
0.4
0.2
0.6
0.4
0.4
0.4
0.6
1174


RFPRGQGVPINTNSG
0.3
0.2
0.4
0.2
0.5
0.4
0.3
0.4
0.5
1175


FPRGQGVPINTNSGP
0.3
0.2
0.4
0.2
0.5
0.4
0.4
0.4
0.4
1176


PRGQGVPINTNSGPD
0.2
0.1
0.2
0.1
0.3
0.2
0.2
0.1
0.1
1177


RGQGVPINTNSGPDD
0.2
0.1
0.2
0.1
0.3
0.2
0.2
0.0
0.2
1178


GQGVPINTNSGPDDQ
0.2
0.1
0.3
0.1
0.4
0.1
0.3
0.1
0.1
1179


QGVPINTNSGPDDQI
0.5
0.4
0.6
0.4
0.6
1.0
0.6
1.7
1.3
1180


GVPINTNSGPDDQIG
0.3
0.2
0.2
0.1
0.5
0.3
0.3
0.2
0.3
1181


VPINTNSGPDDQIGY
0.5
0.4
0.4
0.2
0.9
0.7
0.5
0.7
1.1
1182


PINTNSGPDDQIGYY
0.4
0.4
0.4
0.2
0.7
0.5
0.4
0.5
0.8
1183


INTNSGPDDQIGYYR
0.4
0.3
0.4
0.2
0.7
0.5
0.4
0.5
0.5
1184


NTNSGPDDQIGYYRR
0.5
0.4
0.5
0.3
0.9
0.8
0.5
0.6
0.6
1185


TNSGPDDQIGYYRRA
0.5
0.4
0.5
0.3
0.9
0.8
0.6
0.7
0.6
1186


NSGPDDQIGYYRRAT
0.5
0.3
0.5
0.3
1.0
0.7
0.5
0.6
0.5
1187


SGPDDQIGYYRRATR
0.4
0.3
0.5
0.4
0.8
0.7
0.5
0.7
0.5
 545


GPDDQIGYYRRATRR
0.4
0.3
0.5
0.4
0.8
0.8
0.5
0.9
0.6
 546


PDDQIGYYRRATRRV
0.4
0.3
0.6
0.5
0.9
0.8
0.5
0.7
0.8
 547


DDQIGYYRRATRRVR
0.4
0.2
0.5
0.4
0.9
0.7
0.5
0.5
0.4
 548


DQIGYYRRATRRVRG
0.3
0.2
0.5
0.3
0.9
0.8
0.5
0.7
0.6
 549


QIGYYRRATRRVRGG
0.3
0.2
0.4
0.3
0.7
0.6
0.4
0.6
0.4
 550


IGYYRRATRRVRGGD
0.3
0.2
0.5
0.3
0.7
0.6
0.4
0.5
0.3
 551


GYYRRATRRVRGGDG
0.3
0.1
0.4
0.2
0.5
0.4
0.3
0.2
0.2
 552


YYRRATRRVRGGDGK
0.2
0.1
0.2
0.1
0.4
0.2
0.2
0.1
0.0
1188


YRRATRRVRGGDGKM
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.1
0.2
1189


RRATRRVRGGDGKMK
0.2
0.1
0.1
0.1
0.4
0.3
0.2
0.2
0.0
1190


RATRRVRGGDGKMKE
0.2
0.1
0.2
0.1
0.5
0.2
0.2
0.3
0.0
1191


ATRRVRGGDGKMKEL
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.4
0.1
1192


TRRVRGGDGKMKELS
0.2
0.1
0.2
0.2
0.4
0.3
0.3
0.2
0.0
1193


RRVRGGDGKMKELSP
0.3
0.1
0.3
0.2
0.4
0.3
0.4
0.3
0.1
1194


RVRGGDGKMKELSPR
0.3
0.2
0.4
0.4
0.6
0.5
0.4
0.6
0.1
1195


VRGGDGKMKELSPRW
0.3
0.2
0.5
0.2
0.6
0.6
0.5
0.3
0.1
1196


RGGDGKMKELSPRWY
0.3
0.2
0.4
0.3
0.5
0.4
0.4
0.4
0.3
1197


GGDGKMKELSPRWYF
0.3
0.2
0.6
0.3
0.6
0.6
0.5
0.6
0.5
1198


GDGKMKELSPRWYFY
0.4
0.3
0.6
0.3
0.7
0.6
0.5
0.7
0.5
1199


DGKMKELSPRWYFYY
0.4
0.3
0.5
0.4
0.8
0.7
0.5
0.5
0.4
1200


GKMKELSPRWYFYYL
0.3
0.2
0.5
0.4
0.8
0.8
0.7
0.6
0.4
1201


KMKELSPRWYFYYLG
0.3
0.2
0.4
0.3
0.7
0.7
0.4
0.6
0.4
1202


MKELSPRWYFYYLGT
0.4
0.2
0.4
0.2
0.7
0.6
0.4
0.4
0.4
1203


KELSPRWYFYYLGTG
0.4
0.2
0.4
0.3
0.7
0.5
0.4
0.3
0.4
1204


ELSPRWYFYYLGTGP
0.3
0.2
0.4
0.2
0.8
0.7
0.4
0.5
0.3
1205


LSPRWYFYYLGTGPE
0.3
0.3
0.5
0.2
0.8
0.8
0.3
0.5
0.6
1206


SPRWYFYYLGTGPEA
0.6
0.3
0.5
0.4
0.9
1.1
0.7
0.7
0.6
1207


PRWYFYYLGTGPEAS
0.4
0.3
0.5
0.3
1.0
0.8
0.5
0.8
0.9
1208


RWYFYYLGTGPEASL
0.4
0.4
0.5
0.3
1.1
0.9
0.5
0.7
0.8
1209


WYFYYLGTGPEASLP
0.4
0.3
0.4
0.3
0.7
0.5
0.4
0.5
0.4
1210


YFYYLGTGPEASLPY
0.4
0.3
0.5
0.3
0.9
0.7
0.4
0.6
0.4
1211


FYYLGTGPEASLPYG
0.4
0.3
0.4
0.2
0.7
0.6
0.5
0.7
0.4
1212


YYLGTGPEASLPYGA
0.4
0.4
0.4
0.3
0.9
0.7
0.5
0.7
0.5
1213


YLGTGPEASLPYGAN
0.4
0.3
0.4
0.2
0.8
0.7
0.5
0.6
0.6
1214


LGTGPEASLPYGANK
0.3
0.2
0.5
0.2
0.5
0.4
0.4
0.5
0.4
1215


GTGPEASLPYGANKE
0.2
0.2
0.2
0.1
0.4
0.3
0.3
0.2
0.2
1216


TGPEASLPYGANKEG
0.3
0.2
0.5
0.4
0.6
0.5
0.6
0.4
0.7
1217


GPEASLPYGANKEGI
0.3
0.2
0.4
0.2
0.6
0.5
0.4
0.3
0.5
1218


PEASLPYGANKEGIV
0.3
0.2
0.4
0.2
0.4
0.3
0.3
0.2
0.3
1219


EASLPYGANKEGIVW
0.3
0.2
0.4
0.2
0.7
0.6
0.5
0.2
0.5
1220


ASLPYGANKEGIVWV
0.4
0.3
0.7
0.3
1.0
1.0
0.6
0.3
0.8
1221


SLPYGANKEGIVWVA
0.3
0.2
0.5
0.3
0.7
0.6
0.4
0.4
0.3
1222


LPYGANKEGIVWVAT
0.5
0.3
0.6
0.4
0.9
0.8
0.5
0.4
0.4
1223


PYGANKEGIVWVATE
0.4
0.3
0.5
0.3
0.9
0.9
0.5
0.7
0.8
1224


YGANKEGIVWVATEG
0.4
0.3
0.5
0.3
0.8
0.7
0.4
0.7
0.4
1225


GANKEGIVWVATEGA
0.2
0.1
0.2
0.1
0.5
0.3
0.3
0.4
0.2
1226


ANKEGTVWVATEGAL
0.4
0.3
0.3
0.2
0.6
0.5
0.3
0.6
0.4
1227


NKEGIVWVATEGALN
0.3
0.2
0.4
0.2
0.6
0.4
0.3
0.4
0.3
1228


KEGIVWVATEGALNT
0.3
0.2
0.4
0.2
0.6
0.5
0.4
0.5
0.3
1229


EGIVWVATEGALNTP
0.3
0.2
0.4
0.2
0.7
0.6
0.3
0.6
0.4
1230


GIVWVATEGALNTPK
0.3
0.1
0.4
0.2
0.5
0.4
0.4
0.3
0.3
1231


IVWVATEGALNTPKD
0.3
0.2
0.3
0.1
0.5
0.3
0.3
0.2
0.9
1232


VWVATEGALNTPKDH
0.3
0.3
0.6
0.4
0.6
0.6
1.2
0.6
0.7
1233


WVATEGALNTPKDHI
0.3
0.2
0.3
0.2
0.5
0.4
0.4
0.2
0.4
1234


VATEGALNTPKDHIG
0.3
0.2
0.3
0.2
0.4
0.3
0.3
0.2
0.2
1235


ATEGALNTPKDHIGT
0.3
0.2
0.4
0.2
0.4
0.3
0.3
0.2
0.3
1236


TEGALNTPKDHIGTR
0.3
0.2
0.5
0.4
0.5
0.6
0.4
0.4
0.6
1237


EGALNTPKDHIGTRN
0.3
0.2
0.5
0.3
0.6
0.3
0.5
0.2
0.4
1238


GALNTPKDHIGTRNP
0.2
0.1
0.5
0.2
0.5
0.3
0.4
0.2
0.2
1239


ALNTPKDHIGTRNPN
0.4
0.3
0.5
0.3
0.5
0.5
0.3
0.0
0.5
1240


LNTPKDHIGTRNPNN
0.4
0.3
0.4
0.3
0.6
0.5
0.5
0.4
0.4
1241


NTPKDHIGTRNPNNN
0.4
0.3
0.4
0.3
0.6
0.3
0.4
0.4
0.4
1242


TPKDHIGTRNPNNNA
0.3
0.3
0.3
0.2
0.5
0.3
0.3
0.3
0.3
1243


PKDHIGTRNPNNNAA
0.4
0.3
0.3
0.3
0.5
0.3
0.3
0.2
0.2
1244


KDHIGTRNPNNNAAT
0.4
0.3
0.5
0.4
0.5
0.4
0.4
0.3
0.1
1245


DHIGTRNPNNNAATV
0.5
0.4
0.8
0.5
1.1
0.8
0.7
0.6
0.5
1246


HIGTRNPNNNAATVL
0.6
0.5
0.9
0.6
1.2
1.3
0.7
0.8
0.9
1247


IGTRNPNNNAATVLQ
0.4
0.3
0.7
0.4
0.9
0.8
0.6
0.5
0.7
1248


GTRNPNNNAATVLQL
0.4
0.3
0.7
0.4
0.9
0.9
0.5
0.5
0.6
1249


TRNPNNNAATVLQLP
0.4
0.3
0.7
0.3
0.6
0.5
0.5
0.5
0.8
1250


RNPNNNAATVLQLPQ
0.4
0.4
0.7
0.3
0.8
0.9
0.6
0.4
0.6
1251


NPNNNAATVLQLPQG
0.4
0.4
0.5
0.3
0.9
0.9
0.5
0.5
0.7
1252


PNNNAATVLQLPQGT
0.5
0.4
0.8
0.3
1.0
0.9
0.7
0.5
0.7
1253


NNNAATVLQLPQGTT
0.4
0.3
0.5
0.2
0.6
0.5
0.5
0.4
0.5
1254







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







LPKGFYAEGSRGGSQ
0.3
0.2
0.3
0.2
0.5
0.4
0.4
0.2
0.3
1255


PKGFYAEGSRGGSQA
0.3
0.3
0.3
0.2
0.4
0.5
0.3
0.2
0.4
1256


KGFYAEGSRGGSQAS
0.3
0.2
0.3
0.2
0.4
0.3
0.3
0.1
0.1
1257


GFYAEGSRGGSQASS
0.3
0.2
0.4
0.3
0.3
0.2
0.3
0.1
0.3
1258


FYAEGSRGGSQASSR
0.3
0.2
0.4
0.3
0.6
0.6
0.4
0.3
0.4
1259


YAEGSRGGSQASSRS
0.3
0.2
0.3
0.2
0.4
0.2
0.3
0.1
0.3
1260


AEGSRGGSQASSRSS
0.4
0.2
0.4
0.5
0.5
0.5
0.4
0.4
0.4
1261


EGSRGGSQASSRSSS
0.4
0.3
0.4
0.6
0.6
0.4
0.4
0.7
0.7
1262


GSRGGSQASSRSSSR
0.6
0.8
0.7
0.5
0.9
0.7
0.7
1.6
1.2
1263


SRGGSQASSRSSSRS
0.4
0.3
0.3
0.3
0.5
0.3
0.3
0.2
0.2
1264


RGGSQASSRSSSRSR
0.2
0.2
0.4
0.3
0.2
0.1
0.1
0.3
0.2
1265


GGSQASSRSSSRSRG
0.3
0.2
0.4
0.4
0.5
0.4
0.4
0.3
0.0
1266


GSQASSRSSSRSRGN
0.4
0.2
0.4
0.3
0.7
0.6
0.5
0.5
0.1
1267


SQASSRSSSRSRGNS
0.3
0.2
0.3
0.2
0.5
0.4
0.4
0.3
0.0
1268


QASSRSSSRSRGNSR
0.3
0.2
0.4
0.3
0.5
0.4
0.4
0.4
0.1
1269


ASSRSSSRSRGNSRN
0.3
0.2
0.4
0.3
0.6
0.5
0.4
0.4
0.2
1270


SSRSSSRSRGNSRNS
0.3
0.3
0.4
0.3
0.5
0.6
0.5
0.4
0.3
1271


SRSSSRSRGNSRNST
0.3
0.2
0.3
0.3
0.5
0.4
0.4
0.4
0.2
1272


RSSSRSRGNSRNSTP
0.2
0.2
0.2
0.1
0.5
0.3
0.3
0.3
0.2
1273


SSSRSRGNSRNSTPG
0.2
0.1
0.3
0.2
0.4
0.3
0.3
0.1
0.1
1274


SSRSRGNSRNSTPGS
0.3
0.1
0.3
0.1
0.4
0.3
0.3
0.1
0.0
1275


SRSRGNSRNSTPGSS
0.5
0.4
0.3
0.1
0.3
0.3
0.3
0.0
0.0
1276


RSRGNSRNSTPGSSR
0.3
0.1
0.2
0.2
0.2
0.1
0.2
0.1
0.1
1277


SRGNSRNSTPGSSRG
0.6
0.4
0.2
0.2
0.4
0.3
0.3
0.2
0.1
1278


RGNSRNSTPGSSRGN
0.8
0.6
0.4
0.4
0.6
0.5
0.4
0.5
0.3
1279


GNSRNSTPGSSRGNS
0.6
0.5
0.4
0.4
0.5
0.5
0.3
0.5
0.1
1280


NSRNSTPGSSRGNSP
0.6
0.5
0.5
0.4
0.6
0.5
0.4
0.3
0.3
1281


SRNSTPGSSRGNSPA
0.6
0.6
0.4
0.4
0.5
0.5
0.4
0.4
0.3
1282


RNSTPGSSRGNSPAR
0.4
0.3
0.4
0.3
0.5
0.5
0.5
0.5
0.1
 553


NSTPGSSRGNSPARM
0.8
0.7
0.6
0.4
0.6
0.6
0.5
0.4
0.4
 554


STPGSSRGNSPARMA
0.3
0.2
0.4
0.4
0.6
0.5
0.5
0.5
0.2
 555


TPGSSRGNSPARMAS
0.4
0.2
0.5
0.4
0.6
0.6
0.5
0.5
0.4
 556


PGSSRGNSPARMASG
0.4
0.2
0.5
0.4
0.6
0.6
0.5
0.4
0.5
 557


GSSRGNSPARMASGG
0.4
0.3
0.7
0.4
0.6
0.6
0.9
0.5
0.7
 558


SSRGNSPARMASGGG
0.4
0.2
0.5
0.4
0.4
0.5
0.8
0.5
0.6
1283


SRGNSPARMASGGGE
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.1
0.2
1284


RGNSPARMASGGGET
0.4
0.3
0.4
0.3
0.4
0.4
0.8
0.1
0.1
1285


GNSPARMASGGGETA
0.2
0.1
0.3
0.1
0.2
0.2
0.3
0.0
0.3
1286







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







SGGGETALALLLLDR
0.4
0.2
0.5
0.3
0.7
0.7
0.5
0.7
0.1
1287


GGGETALALLLLDRL
0.4
0.3
0.5
0.2
0.8
0.7
0.4
0.7
0.3
1288


GGETALALLLLDRLN
0.4
0.3
0.5
0.2
0.7
0.7
0.5
0.7
0.3
1289


GETALALLLLDRLNQ
0.4
0.2
0.4
0.2
0.7
0.7
0.5
0.6
0.3
1290


ETALALLLLDRLNQL
0.4
0.3
0.4
0.2
0.7
0.6
0.5
0.5
0.4
1291


TALALLLLDRLNQLE
0.4
0.3
0.5
0.3
0.8
0.7
0.5
0.5
0.7
1292


ALALLLLDRLNQLES
0.4
0.2
0.4
0.2
0.8
0.7
0.5
0.5
0.4
1293


LALLLLDRLNQLESK
0.3
0.2
0.4
0.2
0.5
0.5
0.4
0.4
0.6
1294


ALLLLDRLNQLESKV
0.4
0.3
0.5
0.3
1.0
0.9
0.5
0.5
0.7
1295


LLLLDRLNQLESKVS
0.2
0.1
0.2
0.1
0.4
0.2
0.3
0.0
0.2
1296


LLLDRLNQLESKVSG
0.3
0.1
0.4
0.1
0.5
0.3
0.3
0.2
0.6
1297


LLDRLNQLESKVSGK
0.2
0.1
0.2
0.1
0.4
0.4
0.3
0.1
0.0
1298


LDRLNQLESKVSGKG
0.4
0.3
0.4
0.3
0.4
0.4
0.4
0.3
0.2
1299


DRLNQLESKVSGKGQ
0.4
0.3
0.6
0.4
0.6
0.4
0.4
0.8
0.4
1300


RLNQLESKVSGKGQQ
0.4
0.3
0.5
0.4
0.6
0.7
0.4
0.8
0.4
1301


LNQLESKVSGKGQQQ
0.4
0.3
0.6
0.4
0.6
0.6
0.5
0.8
0.5
1302


NQLESKVSGKGQQQQ
0.4
0.2
0.5
0.3
0.6
0.5
0.5
0.6
0.3
1303


QLESKVSGKGQQQQG
0.5
0.4
0.7
0.5
0.6
0.7
0.7
1.1
0.7
1304


LESKVSGKGQQQQGQ
0.4
0.3
0.7
0.5
0.7
0.6
1.8
0.7
0.4
1305


ESKVSGKGQQQQGQT
0.6
0.4
0.8
0.4
0.7
0.7
0.8
0.9
0.7
1306


SKVSGKGQQQQGQTV
0.4
0.2
0.7
0.4
0.6
0.6
0.8
0.6
0.5
1307


KVSGKGQQQQGQTVT
0.3
0.2
0.5
0.3
0.4
0.4
0.6
0.3
0.5
1308


VSGKGQQQQGQTVTK
0.9
0.3
0.5
0.3
0.5
0.5
0.5
0.6
0.5
1309


SGKGQQQQGQTVTKK
0.3
0.2
0.3
0.3
0.6
0.5
0.4
0.3
0.2
1310


GKGQQQQGQTVTKKS
1.4
0.6
0.7
0.4
0.5
0.6
0.4
0.5
0.6
1311


KGQQQQGQTVTKKSA
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.1
0.0
1312


GQQQQGQTVTKKSAA
0.2
0.1
0.3
0.1
0.4
0.4
0.3
0.1
0.1
1313


QQQQGQTVTKKSAAE
0.3
0.1
0.3
0.1
0.3
0.2
0.2
0.1
0.0
1314


QQQGQTVTKKSAAEA
0.5
0.3
0.7
0.5
0.6
0.7
0.6
0.6
0.9
1315


QQGQTVTKKSAAEAS
0.5
0.4
0.5
0.3
0.6
0.5
0.4
0.5
0.8
 379


QGQTVTKKSAAEASK
0.2
0.1
0.2
0.1
0.4
0.2
0.3
0.2
0.1
 380


GQTVTKKSAAEASKK
0.2
0.1
0.2
0.1
0.4
0.2
0.3
0.2
0.0
 381


QTVTKKSAAEASKKP
0.3
0.2
0.4
0.2
0.5
0.3
0.3
0.2
0.0
 382


TVTKKSAAEASKKPR
0.2
0.1
0.2
0.1
0.5
0.3
0.3
0.2
0.0
 383


VTKKSAAEASKKPRQ
0.3
0.2
0.6
0.3
0.6
0.4
0.5
0.7
0.6
 384


TKKSAAEASKKPRQK
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.2
0.0
 385


KKSAAEASKKPRQKR
0.2
0.1
0.3
0.2
0.5
0.3
0.4
0.3
0.2
 386


KSAAEASKKPRQKRT
0.2
0.1
0.2
0.1
0.4
0.2
0.3
0.1
0.1
 387


SAAEASKKPRQKRTA
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.2
0.1
 388


AAEASKKPRQKRTAT
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.2
0.1
 389


AEASKKPRQKRTATK
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.2
0.1
1316


EASKKPRQKRTATKQ
0.3
0.2
0.4
0.3
0.6
0.5
0.5
0.4
0.3
1317


ASKKPRQKRTATKQY
0.3
0.1
0.3
0.2
0.5
0.5
0.4
0.2
0.1
1318


SKKPRQKRTATKQYN
0.3
0.1
0.4
0.3
0.6
0.6
0.5
0.3
0.1
1319


KKPRQKRTATKQYNV
0.3
0.1
0.4
0.3
0.6
0.5
0.5
0.4
0.1
1320







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







ATKQYNVTQAFGRRG
0.4
0.3
0.5
0.5
0.7
0.7
1.2
0.8
0.2
 565


TKQYNVTQAFGRRGP
0.4
0.2
0.5
0.3
0.7
0.7
0.5
0.6
0.4
 566


KQYNVTQAFGRRGPE
0.0
0.0
0.1
0.2
0.0
0.0
0.2
0.0
0.4
 567


QYNVTQAFGRRGPEQ
0.4
0.2
0.4
0.4
0.7
0.6
0.5
0.5
0.4
 568


YNVTQAFGRRGPEQT
0.3
0.2
0.3
0.1
0.5
0.3
0.3
0.3
0.2
 569


NVTQAFGRRGPEQTQ
0.3
0.2
0.3
0.2
0.5
0.4
0.4
0.3
0.3
 570


VTQAFGRRGPEQTQG
0.3
0.2
0.2
0.1
0.4
0.3
0.3
0.3
0.2
 571


TQAFGRRGPEQTQGN
0.3
0.2
0.4
0.3
0.5
0.5
0.4
0.2
0.3
 572


QAFGRRGPEQTQGNF
0.3
0.2
0.3
0.2
0.3
0.3
0.3
0.2
0.2
1321


AFGRRGPEQTQGNFG
0.3
0.1
0.3
0.1
0.3
0.3
0.3
0.1
0.1
1322


FGRRGPEQTQGNFGD
0.3
0.1
0.2
0.1
0.4
0.1
0.2
0.2
0.2
 397


GRRGPEQTQGNFGDQ
0.4
0.3
0.4
0.2
0.5
0.6
0.5
0.5
0.4
 398


RRGPEQTQGNFGDQD
0.3
0.2
0.2
0.1
0.4
0.2
0.2
0.4
0.6
 399


RGPEQTQGNFGDQDL
0.4
0.4
0.4
0.2
0.6
0.5
0.4
0.6
0.6
 400


GPEQTQGNFGDQDLI
0.4
0.4
0.4
0.2
0.6
0.4
0.3
0.6
0.9
 401


PEQTQGNFGDQDLIR
0.4
0.4
0.4
0.2
0.6
0.4
0.4
0.6
0.4
 402


EQTQGNFGDQDLIRQ
0.3
0.1
0.4
0.3
0.2
0.3
0.3
0.3
1.3
 403


QTQGNFGDQDLIRQG
0.5
0.4
0.5
0.3
0.9
0.9
0.6
0.8
0.4
 404


TQGNFGDQDLIRQGT
0.4
0.3
0.4
0.2
0.7
0.7
0.5
0.6
0.5
1323


QGNFGDQDLIRQGTD
0.4
0.3
0.3
0.2
0.6
0.5
0.4
0.6
0.7
1324


GNFGDQDLIRQGTDY
0.5
0.3
0.5
0.3
0.8
0.8
0.5
0.6
0.7
1325


NFGDQDLIRQGTDYK
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.1
0.2
1326


FGDQDLIRQGTDYKH
0.4
0.3
0.4
0.2
0.7
0.6
0.4
0.5
0.7
1327


GDQDLIRQGTDYKHW
0.4
0.2
0.4
0.3
0.6
0.5
0.4
0.3
0.4
1328


DQDLIRQGTDYKHWP
0.2
0.1
0.3
0.1
0.4
0.3
0.3
0.1
0.1
1329


QDLIRQGTDYKHWPQ
0.3
0.2
0.3
0.2
0.5
0.4
0.4
0.3
0.2
1330


DLIRQGTDYKHWPQI
0.4
0.2
0.4
0.2
0.6
0.6
0.4
0.3
0.2
1331


LIRQGTDYKHWPQIA
0.4
0.5
0.5
0.3
0.6
0.5
0.3
1.1
1.0
1332


IRQGTDYKHWPQIAQ
0.4
0.2
0.4
0.2
0.6
0.6
0.4
0.4
0.3
1333


RQGTDYKHWPQIAQF
0.5
0.4
0.5
0.3
0.8
0.9
0.5
0.8
0.4
1334


QGTDYKHWPQIAQFA
0.4
0.3
0.4
0.3
0.6
0.6
0.5
0.7
0.3
1335


GTDYKHWPQIAQFAP
0.5
0.3
0.5
0.3
0.7
0.7
0.5
0.7
0.5
1336


TDYKHWPQIAQFAPS
0.6
0.5
0.8
0.5
0.9
1.3
0.7
0.9
0.6
1337


DYKHWPQIAQFAPSA
0.4
0.3
0.4
0.2
0.6
0.6
0.5
0.7
0.2
1338


YKHWPQIAQFAPSAS
0.5
0.3
0.5
0.3
0.7
0.7
0.5
0.6
0.4
1339


KHWPQIAQFAPSASA
0.3
0.1
0.3
0.3
0.2
0.4
0.5
0.2
0.4
1340


HWPQIAQFAPSASAF
0.5
0.3
0.5
0.4
0.8
1.0
0.6
0.6
0.6
1341


WPQIAQFAPSASAFF
0.5
0.3
0.5
0.3
0.8
0.9
0.5
0.6
0.5
1342


PQIAQFAPSASAFFG
0.4
0.3
0.4
0.3
0.7
0.7
0.5
0.5
0.4
1343


QIAQFAPSASAFFGM
0.5
0.3
0.5
0.3
0.8
0.8
0.5
0.5.
0.5
1344


IAQFAPSASAFFGMS
0.4
0.2
0.4
0.3
0.7
0.6
0.4
0.4
0.4
1345


AQFAPSASAFFGMSR
0.3
0.2
0.6
0.5
0.8
0.6
2.1
0.4
0.2
1346


QFAPSASAFFGMSRI
0.4
0.2
0.4
0.2
0.6
0.7
0.4
0.3
0.5
1347


FAPSASAFFGMSRIG
0.3
0.1
0.4
0.3
0.5
0.4
0.9
0.5
0.0
1348


APSASAFFGMSRIGM
0.4
0.3
0.7
0.4
0.7
0.9
2.0
0.6
0.5
1349


PSASAFFGMSRIGME
0.4
0.3
0.3
0.2
0.6
0.4
0.3
0.4
0.3
1350


SASAFFGMSRIGMEV
0.5
0.3
0.6
0.5
0.8
0.6
1.6
0.9
0.4
1351


ASAFFGMSRIGMEVT
0.3
0.2
0.3
0.1
0.5
0.4
0.3
0.6
0.3
1352


SAFFGMSRIGMEVTP
0.4
0.3
0.4
0.2
0.5
0.4
0.4
0.5
0.4
1353


AFFGMSRIGMEVTPS
0.4
0.3
0.4
0.2
0.6
0.6
0.4
0.5
0.4
1354


EFGMSRIGMEVTPSG
0.3
0.2
0.4
0.1
0.5
0.4
0.3
0.4
0.1
1355


FGMSRIGMEVTPSGT
0.3
0.2
0.4
0.2
0.4
0.3
0.3
0.3
0.2
1356


GMSRIGMEVTPSGTW
0.3
0.2
0.3
0.2
0.5
0.5
0.4
0.5
0.3
1357


MSRIGMEVTPSGTWL
0.4
0.3
0.5
0.3
0.6
0.7
0.5
0.5
0.7
1358


SRIGMEVTPSGTWLT
0.3
0.2
0.4
0.2
0.5
0.5
0.4
0.4
0.5
1359


RIGMEVTPSGTWLTY
0.4
0.2
0.5
0.3
0.7
0.8
0.6
0.5
0.5
1360


IGMEVTPSGTWLTYH
0.5
0.3
0.5
0.3
0.8
1.0
0.6
0.5
0.7
1361


GMEVTPSGTWLTYHG
0.4
0.2
0.4
0.3
0.7
0.8
0.5
0.5
0.4
1362


MEVTPSGTWLTYHGA
0.4
0.3
0.5
0.3
0.7
0.8
0.5
0.4
0.5
1363


EVTPSGTWLTYHGAI
0.4
0.3
0.5
0.3
0.8
0.9
0.5
0.4
0.7
1364


VTPSGTWLTYHGAIK
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.2
0.0
1365


TPSGTWLTYHGAIKL
0.4
0.2
0.4
0.2
0.8
0.8
0.5
0.4
0.3
1366


PSGTWLTYHGAIKLD
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.1
0.1
1367


SGTWLTYHGAIKLDD
0.8
0.5
0.7
0.4
1.0
1.2
0.8
1.6
1.8
1368


GTWLTYHGAIKLDDK
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.5
0.1
1369


TWLTYHGAIKLDDKD
0.2
0.2
0.2
0.1
0.4
0.3
0.2
0.3
0.3
1370


WLTYHGAIKLDDKDP
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.2
0.0
1371


LTYHGAIKLDDKDPQ
0.3
0.1
0.3
0.1
0.5
0.3
0.4
0.4
0.1
1372


TYHGAIKLDDKDPQF
0.2
0.1
0.2
0.1
0.3
0.2
0.3
0.2
0.0
1373


YHGAIKLDDKDPQFK
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.1
0.1
1374


HGAIKLDDKDPQFKD
0.2
0.1
0.2
0.1
0.5
0.3
0.3
0.3
0.3
1375


GAIKLDDKDPQFKDN
0.3
0.2
0.4
0.2
0.5
0.5
0.4
0.5
0.8
1376


AIKLDDKDPQFKDNV
0.3
0.2
0.3
0.2
0.5
0.4
0.4
0.2
0.4
1377







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image









embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







FKDNVILLNKHIDAY
0.5
0.3
0.5
0.3
0.8
0.8
0.5
0.5
0.2
1378


KDNVILLNKHIDAYK
0.3
0.2
0.2
0.1
0.4
0.3
0.3
0.4
0.1
1379


DNVILLNKHIDAYKT
0.4
0.3
0.4
0.2
0.7
0.7
0.5
0.8
0.3
1380


NVILLNKHTDAYKTF
0.5
0.3
0.4
0.3
0.7
0.7
0.9
0.7
0.3
1381


VILLNKHIDAYKTFP
0.3
0.1
0.3
0.2
0.5
0.4
0.4
0.3
0.2
1382


ILLNKHIDAYKTFPP
0.4
0.3
0.5
0.3
0.7
0.7
0.5
0.7
0.5
1383


LLNKHIDAYKTFPPT
0.3
0.1
0.3
0.2
0.4
0.3
0.3
0.4
0.3
1384


LNKHIDAYKTFPPTE
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.1
0.2
1385


NKHIDAYKTFPPTEP
0.3
0.1
0.2
0.1
0.4
0.3
0.3
0.2
0.3
1386


KHIDAYKTFPPTEPK
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.1
0.1
1387


HIDAYKTFPPTEPKK
0.2
0.1
0.2
0.1
0.3
0.2
0.3
0.0
0.0
1388


IDAYKTFPPTEPKKD
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.0
0.0
1389


DAYKTFPPTEPKKDK
0.2
0.1
0.2
0.1
0.3
0.2
0.2
0.1
0.0
1390


AYKTFPPTEPKKDKK
0.1
0.1
0.2
0.0
0.2
0.1
0.1
0.0
0.0
1391


YKTFPPTEPKKDKKK
0.2
0.1
0.1
0.0
0.4
0.2
0.3
0.2
0.0
1392


KTFPPTEPKKDKKKK
0.2
0.1
0.2
0.0
0.4
0.2
0.2
0.2
0.0
1393


TFPPTEPKKDKKKKT
0.2
0.1
0.3
0.1
0.4
0.4
0.3
0.3
0.1
1394


FPPTEPKKDKKKKTD
0.2
0.1
0.2
0.1
0.4
0.2
0.2
0.1
0.0
1395


PPTEPKKDKKKKTDE
0.2
0.1
0.2
0.1
0.4
0.2
0.2
0.2
0.0
1396


PTEPKKDKKKKTDEA
0.2
0.1
0.3
0.1
0.3
0.3
0.3
0.2
0.0
1397


TEPKKDKKKKTDEAQ
0.2
0.1
1.9
0.1
0.4
0.3
0.3
0.2
0.0
1398


EPKKDKKKKTDEAQP
0.2
0.1
2.1
0.1
0.4
0.3
0.3
0.1
0.0
1399


PKKDKKKKTDEAQPL
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.2
0.1
1400


KKDKKKKTDEAQPLP
0.2
0.1
2.3
0.2
0.3
0.3
0.3
0.1
0.1
1401


KDKKKKTDEAQPLPQ
0.2
0.1
0.2
0.2
0.4
0.3
0.4
0.1
0.1
1402


DKKKKTDEAQPLPQR
0.2
0.1
0.2
0.1
0.4
0.3
0.3
0.3
0.3
1403


KKKKTDEAQPLPQRQ
0.2
0.1
0.3
0.1
0.4
0.3
0.3
0.2
0.1
1404


KKKTDEAQPLPQRQK
0.2
0.1
0.1
0.0
0.3
0.2
0.3
0.0
0.0
1405


KKTDEAQPLPQRQKK
0.2
0.1
0.1
0.0
0.4
0.2
0.2
0.0
0.0
1406


KTDEAQPLPQRQKKQ
0.3
0.1
0.3
0.6
0.3
0.1
0.7
0.5
0.2
1407


TDEAQPLPQRQKKQP
0.2
0.0
0.2
0.1
0.1
0.0
0.1
0.1
0.0
1408


DEAQPLPQRQKKQPT
0.2
0.1
0.2
0.1
0.3
0.2
0.3
0.2
0.0
1409


EAQPLPQRQKKQPTV
0.2
0.1
0.2
0.2
0.3
0.2
0.3
0.5
0.2
1410


AQPLPQRQKKQPTVT
0.2
0.1
0.2
0.1
0.3
0.2
0.2
0.2
0.3
1411







embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image







KKQPTVTLLPAADMD
0.3
0.2
0.2
0.1
0.4
0.2
0.2
0.2
0.7
1412


KQPTVTLLPAADMDD
0.3
0.2
0.2
0.0
0.4
0.3
0.2
0.3
0.6
1413


QPTVTLLPAADMDDF
0.3
0.2
0.2
0.1
0.5
0.3
0.2
0.4
0.4
1414


PTVTLLPAADMDDFS
0.2
0.2
0.3
0.1
0.4
0.2
0.2
0.1
0.7
1415


TVTLLPAADMDDFSR
0.3
0.2
0.2
0.0
0.4
0.1
0.2
0.2
0.5
1416


VTLLPAADMDDFSRQ
0.3
0.1
0.2
0.0
0.1
0.4
0.1
0.2
0.2
1417


TLLPAADMDDFSRQL
0.4
0.2
0.5
0.1
0.4
0.1
0.2
0.4
0.0
1418


LLPAADMDDFSRQLQ
0.3
0.1
0.4
0.1
0.5
0.2
0.3
0.3
0.2
1419


LPAADMDDFSRQLQN
0.3
0.2
0.5
0.4
0.6
0.4
0.3
0.6
0.5
1420


PAADMDDFSRQLQNS
0.3
0.1
0.3
1.1
0.6
0.3
0.3
0.3
0.3
1421


AADMDDFSRQLQNSM
0.3
0.2
0.3
1.6
0.5
0.3
0.2
0.2
0.2
1422


ADMDDFSRQLQNSMS
0.3
0.2
0.2
0.0
0.4
0.3
0.2
0.2
0.1
1423


DMDDFSRQLQNSMSG
0.3
0.1
0.3
0.0
0.4
0.2
0.2
0.2
0.0
1424


MDDFSRQLQNSMSGA
0.4
0.1
0.4
0.1
0.4
0.4
0.3
0.2
0.3
1425


DDFSRQLQNSMSGAS
0.3
0.1
0.3
0.1
0.4
0.3
0.2
0.1
0.2
1426


DFSRQLQNSMSGASA
0.3
0.1
0.4
0.2
0.4
0.2
0.3
0.2
0.4
1427


FSRQLQNSMSGASAD
0.2
0.1
0.2
0.1
0.4
0.2
0.2
0.0
0.0
1428


SRQLQNSMSGASADS
0.2
0.1
0.3
0.1
0.4
0.3
0.2
0.2
0.3
1429


RQLQNSMSGASADST
0.2
0.1
0.3
0.1
0.4
0.2
0.2
0.2
0.1
1430


QLQNSMSGASADSTQ
0.3
0.1
0.4
0.1
0.4
0.1
0.3
0.1
0.1
1431


LQNSMSGASADSTQA
0.2
0.1
0.4
0.0
0.5
0.1
0.1
0.0
0.0
1432
















TABLE 17










Binding of two control sera to linear and looped/cyclic


peptides of the protein X1 of SARS-CoV Urbani.













Control
Control serum
Control
Control Serum




serum LUMC
Blood-bank
serum LUMC
Blood-Bank


Peptide
linear
linear
looped
Looped
SEQ


sequence
peptides
peptides
peptides
peptides
ID NO





MDLFMRFFTLGSITA
0.6
0.7
0.6
0.6
607 


DLFMRFFTLGSITAQ
0.6
0.6
0.5
0.5
608 


LFMRFFTLGSITAQP
0.6
0.7
0.5
0.7
609 


FMRFFTLGSITAQPV
0.7
0.7
0.6
0.6
610 


MRFFTLGSITAQPVK
0.7
0.4
0.4
0.2
611 


RFFTLGSITAQPVKI
1.1
1.0
0.7
0.8
 9


FFTLGSITAQPVKID
0.5
0.5
0.3
0.2
10


FTLGSITAQPVKIDN
0.6
0.5
1.2
1.6
11


TLGSITAQPVKTDNA
0.7
0.5
0.6
0.6
12


LGSITAQPVKIDNAS
0.5
0.4
0.4
0.4
13


GSITAQPVKIDNASP
0.6
0.6
0.5
0.6
14


SITAQPVKIDNASPA
0.6
0.6
0.4
0.4
15


ITAQPVKIDNASPAS
0.7
0.7
0.5
0.5
16


TAQPVKIDNASPAST
0.6
0.7
0.6
0.5
17


AQPVKIDNASPASTV
0.6
0.7
1.0
1.0
18


QPVKIDNASPASTVH
0.6
0.6
0.6
0.6
19


PVKIDNASPASTVHA
0.5
0.7
0.9
0.7
20


VKIDNASPASTVHAT
0.7
0.7
0.6
0.5
21


KIDNASPASTVHATA
0.7
0.6
0.7
0.6
22


IDNASPASTVHATAT
0.7
0.8
0.6
0.7
23




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




HATATIPLQASLPFG
0.6
0.8
0.7
0.7
612 


ATATIPLQASLPFGW
0.7
0.9
0.7
0.8
613 


TATIPLQASLPFGWL
0.8
1.0
0.8
0.8
614 


ATIPLQASLPFGWLV
0.5
0.8
0.7
0.7
615 


TIPLQASLPFGWLVI
0.7
0.8
0.7
0.7
616 


IPLQASLPFGWLVIG
0.8
0.7
0.6
0.6
617 


PLQASLPFGWLVIGV
0.9
0.8
0.5
0.7
618 


LQASLPFGWLVIGVA
0.5
0.8
0.5
0.6
619 


QASLPFGWLVIGVAF
0.6
0.7
0.4
0.4
620 


ASLPFGWLVIGVAFL
0.6
0.6
0.6
0.4
621 


SLPFGWLVIGVAFLA
0.6
0.6
0.3
0.4
622 


LPFGWLVIGVAFLAV
0.7
0.7
0.4
0.5
623 


PFGWLVIGVAFLAVF
0.5
0.5
0.5
0.5
624 


FGWLVIGVAFLAVFQ
0.5
0.5
0.7
0.6
625 


GWLVIGVAFLAVFQS
0.6
0.5
0.7
0.8
626 


WLVIGVAFLAVFQSA
0.6
0.6
0.5
0.5
627 


LVIGVAFLAVFQSAT
0.6
0.6
1.0
1.1
628 


VIGVAFLAVFQSATK
0.5
0.5
0.5
0.5
629 


IGVAFLAVPQSATKI
0.8
0.8
0.5
0.5
630 


GVAFLAVFQSATKII
0.7
0.5
0.7
0.7
631 


VAFLAVFQSATKIIA
0.5
0.6
0.7
0.7
632 


AFLAVFQSATKIIAL
0.5
0.5
0.6
0.7
633 


FLAVFQSATKIIALN
0.6
0.6
0.7
0.6
634 


LAVFQSATKIIALNK
0.6
0.7
0.6
0.5
635 




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




ALNKRWQLALYKGFQ
0.6
0.6
0.8
0.9
502 


LNKRWQLALYKGFQF
0.6
0.8
0.6
0.6
503 


NKRWQLALYKGFQFI
0.6
0.6
0.7
0.7
504 


KRWQLALYKGFQFIC
0.5
0.6
0.7
0.7
636 


RWQLALYKGFQFICN
0.4
0.6
0.6
0.6
637 


WQLALYKGFQFTCNL
0.6
0.6
0.7
0.6
638 


QLALYKGFQFICNLL
0.5
0.6
0.6
0.5
639 


LALYKGFQFICNLLL
0.5
0.6
0.6
0.6
640 


ALYKGFQFICNLLLL
0.5
0.6
0.5
0.5
641 


LYKGFQFICNLLLLF
0.5
0.5
0.6
0.4
642 


YKGFQFICNLLLLFV
0.8
1.0
0.4
0.4
643 


KGFQFICNLLLLFVT
0.7
0.7
0.5
0.5
644 


GFQFICNLLLLFVTI
0.5
0.4
0.5
0.4
645 


FQFICNLLLLFVTIY
0.5
0.5
0.3
0.4
646 


QFICNLLLLFVTIYS
0.6
0.6
0.5
0.5
647 


FICNLLLLFVTTYSH
0.5
0.6
0.5
0.5
648 


ICNLLLLFVTIYSHL
0.5
0.5
0.4
0.5
649 


CNLLLLFVTIYSHLL
0.4
0.4
0.5
0.5
650 


NLLLLFVTIYSHLLL
0.5
0.4
0.6
0.5
651 


LLLLFVTIYSHLLLV
0.6
0.5
0.5
0.6
652 


LLLFVTIYSHLLLVA
0.4
0.4
0.5
0.5
653 


LLFVTIYSHLLLVAA
0.4
0.5
0.6
0.4
654 


LFVTIYSHLLLVAAG
0.4
0.5
0.6
0.6
655 


FVTIYSHLLLVAAGM
0.5
0.6
0.5
0.6
656 


VTIYSHLLLVAAGME
0.5
0.5
0.6
0.4
657 


TIYSHLLLVAAGMEA
0.4
0.4
0.6
0.5
658 


IYSHLLLVAAGMEAQ
0.5
0.5
0.5
0.4
659 


YSHLLLVAAGMEAQF
0.5
0.6
0.6
0.4
660 


SHLLLVAAGMEAQFL
0.7
0.7
0.2
0.4
661 


HLLLVAAGMEAQFLY
0.7
0.6
0.4
0.6
662 


LLLVAAGMEAQFLYL
1.0
0.6
0.7
0.5
663 


LLVAAGMEAQFLYLY
0.7
0.5
0.6
0.5
664 


LVAAGMEAQFLYLYA
1.1
0.4
0.6
0.5
665 


VAAGMEAQFLYLYAL
0.9
0.5
0.8
0.5
666 


AAGMEAQFLYLYALI
0.9
0.5
0.7
0.5
667 


AGMEAQFLYLYALIY
0.6
0.5
0.6
0.5
668 


GMEAQFLYLYALIYF
0.6
0.4
0.8
0.5
669 


MEAQFLYLYALIYFL
0.5
0.2
0.5
0.4
670 


EAQFLYLYALIYFLQ
0.5
0.3
0.5
0.4
671 


AQFLYLYALIYFLQC
0.5
0.4
0.5
0.4
672 


QFLYLYALIYFLQCI
0.4
0.5
0.6
0.5
673 


FLYLYALIYFLQCIN
0.5
0.5
0.4
0.5
674 


LYLYALIYFLQCINA
0.5
0.5
0.4
0.5
675 


YLYALIYFLQCINAC
0.6
0.5
0.5
0.5
676 


LYALIYFLQCINACR
0.6
0.7
0.6
0.4
677 


YALIYFLQCINACRI
0.6
0.6
0.2
0.3
678 


ALIYFLQCINACRII
0.5
0.5
0.3
0.5
679 


LIYFLQCINACRIIM
0.6
0.6
0.7
0.9
680 


IYFLQCINACRIIMR
0.7
0.7
0.6
0.6
681 


YFLQCINACRIIMRC
0.7
0.8
0.6
0.6
682 


FLQCINACRIIMRCW
0.9
0.8
0.6
0.6
683 


LQCINACRIIMRCWL
0.7
0.9
0.6
0.7
505 


QCINACRIIMRCWLC
0.7
0.9
0.7
0.6
506 


CINACRIIMRCWLCW
0.8
0.7
0.7
0.8
507 


INACRIIMRCWLCWK
0.4
0.9
0.6
0.7
33


NACRIIMRCWLCWKC
0.5
1.0
0.6
0.8
34


ACRIIMRCWLCWKCK
0.8
1.0
0.3
0.1
35


CRIIMRCWLCWKCKS
0.3
0.4
0.7
0.7
36


RIIMRCWLCWKCKSK
0.2
0.3
0.3
0.3
37


IIMRCWLCWKCKSKN
0.4
0.5
0.6
0.6
38


IMRCWLCWKCKSKNP
0.5
0.5
0.2
0.4
39


MRCWLCWKCKSKNPL
0.8
0.9
0.4
0.2
40


RCWLGWKCKSKNPLL
1.0
1.2
0.7
0.7
41


CWLCWKCKSKNPLLY
0.7
0.9
0.7
0.6
42


WLCWKCKSKNPLLYD
0.7
0.6
0.8
0.7
43


LCWKCKSKNPLLYDA
0.7
0.7
0.8
0.8
44


CWKCKSKNPLLYDAN
0.8
0.7
0.7
0.7
45


WKCKSKNPLLYDANY
0.8
0.7
0.5
0.6
684 


KCKSKNPLLYDANYF
0.5
0.6
0.7
0.7
685 


CKSKNPLLYDANYFV
0.8
0.5
0.8
0.6
686 


KSKNPLLYDANYFVC
0.7
0.3
0.6
0.5
687 


SKNPLLYDANYFVCW
0.5
0.4
0.6
0.6
688 


KNPLLYDANYFVCWH
0.4
0.4
0.7
0.6
689 


NPLLYDANYFVCWHT
0.6
0.6
0.6
0.7
690 


PLLYDANYFVCWHTH
0.6
0.7
0.6
0.6
691 


LLYDANYFVCWHTHN
0.7
0.8
0.5
0.6
692 


LYDANYFVCWHTHNY
0.7
0.8
0.5
0.7
693 


YDANYFVCWHTHNYD
0.7
0.7
0.4
0.3
46


DANYFVCWHTHNYDY
0.8
0.8
1.0
0.5
47


ANYFVCWHTHNYDYC
0.7
0.7
0.6
0.5
48


NYFVCWHTHNYDYCI
0.6
0.6
0.6
0.6
49


YFVCWHTHNYDYCIP
0.7
0.6
0.6
0.6
50


FVCWHTHNYDYCIPY
0.7
0.6
0.6
0.5
51


VCWHTHNYDYCIPYN
0.8
0.7
0.6
0.7
52


CWHTHNYDYCIPYNS
0.7
0.6
0.6
0.6
53


WHTHNYDYCIPYNSV
0.8
0.7
0.9
0.7
54


HTHNYDYCIPYNSVT
0.7
0.6
0.6
0.6
55


THNYDYCIPYNSVTD
0.6
0.5
0.7
0.7
56


HNYDYCIPYNSVTDT
0.4
0.3
0.6
0.7
57


NYDYCIPYNSVTDTI
0.6
0.6
0.7
0.6
58


YDYCIPYNSVTDTIV
0.7
0.6
0.6
0.5
59


DYCIPYNSVTDTIVV
0.6
0.7
0.9
0.7
60


YCIPYNSVTDTIVVT
0.7
0.8
0.7
0.7
61


CIPYNSVTDTIVVTE
0.6
0.5
0.5
0.6
694 


IPYNSVTDTIVVTEG
0.5
0.4
0.4
0.6
695 


PYNSVTDTIVVTEGD
0.3
0.4
0.4
0.4
696 


YNSVTDTIVVTEGDG
0.4
0.4
0.4
0.3
697 


NSVTDTIVVTEGDGI
0.4
0.3
0.5
0.4
698 


SVTDTIVVTEGDGIS
0.4
0.4
0.3
0.3
699 


VTDTIVVTEGDGIST
0.4
0.4
0.4
0.4
700 


TDTIVVTEGDGISTP
0.5
0.5
0.4
0.4
701 


DTIVVTEGDGISTPK
0.3
0.4
0.3
0.4
702 


TIVVTEGDGISTPKL
0.5
0.5
0.7
0.6
703 


IVVTEGDGISTPKLK
0.3
0.3
0.3
0.3
704 


VVTEGDGISTPKLKE
0.2
0.3
0.3
0.3
705 


VTEGDGISTPKLKED
0.2
0.2
0.3
0.3
706 


TEGDGISTPKLKEDY
0.2
0.2
0.5
0.5
707 


EGDGISTPKLKEDYQ
0.3
0.2
0.4
0.4
708 


GDGISTPKLKEDYQI
0.5
0.6
0.4
0.4
62


DGISTPKLKEDYQIG
0.6
0.5
0.3
0.3
63


GISTPKLKEDYQIGG
0.4
0.5
0.4
0.4
64


ISTPKLKEDYQIGGY
1.0
0.7
0.5
0.7
65


STPKLKEDYQIGGYS
0.7
0.7
0.3
0.2
66


TPKLKEDYQIGGYSE
0.6
0.5
0.9
0.7
67


PKLKEDYQIGGYSED
0.4
0.4
0.7
0.5
68


KLKEDYQIGGYSEDR
0.5
0.5
0.6
0.5
69


LKEDYQIGGYSEDRH
0.5
0.5
0.5
0.4
70


KEDYQIGGYSEDRHS
0.5
0.5
0.4
0.3
71


EDYQIGGYSEDRHSG
0.4
0.4
0.5
0.4
72


DYQIGGYSEDRHSGV
0.5
0.6
0.7
0.5
73


YQIGGYSEDRHSGVK
0.4
0.3
0.3
0.3
74


QIGGYSEDRHSGVKD
0.5
0.3
0.4
0.3
75


IGGYSEDRHSGVKDY
0.5
0.4
0.6
0.7
76


GGYSEDRHSGVKDYV
0.4
0.6
0.5
0.4
77


GYSEDRHSGVKDYVV
0.8
0.8
0.6
0.6
78


YSEDRHSGVKDYVVV
0.6
0.7
0.8
0.7
79


SEDRHSGVKDYVVVH
0.8
1.0
0.5
0.5
80


EDRHSGVKDYVVVHG
0.9
0.9
0.7
1.1
81


DRHSGVKDYVVVHGY
0.7
0.7
0.4
0.6
82


RHSGVKDYVVVHGYF
0.5
0.6
0.6
0.7
83


HSGVKDYVVVHGYFT
0.8
0.7
2.3
2.2
84


SGVKDYVVVHGYFTE
0.6
0.5
0.5
0.2
85


GVKDYVVVHGYFTEV
0.7
0.5
1.3
1.1
86


VKDYVVVHGYFTEVY
0.5
0.5
0.6
0.5
709 


KDYVVVHGYFTEVYY
0.6
0.5
0.5
0.5
710 


DYVVVHGYFTEVYYQ
0.7
0.5
0.7
0.5
711 


YVVVHGYFTEVYYQL
1.0
0.4
0.9
0.5
712 


VVVHGYFTEVYYQLE
1.1
0.5
0.7
0.4
713 


VVHGYFTEVYYQLES
0.8
0.4
0.6
0.4
714 


VHGYFTEVYYQLEST
0.5
0.4
0.7
0.5
715 


HGYFTEVYYQLESTQ
0.3
0.4
0.5
0.5
716 


GYFTEVYYQLESTQI
0.4
0.4
0.7
0.6
717 


YFTEVYYQLESTQIT
0.4
0.4
0.5
0.4
718 


FTEVYYQLESTQITT
0.5
0.6
0.6
0.6
719 


TEVYYQLESTQITTD
0.5
0.5
0.4
0.4
720 


EVYYQLESTQITTDT
0.4
0.4
0.4
0.5
721 


VYYQLESTQITTDTG
0.4
0.4
0.3
0.3
722 


YYQLESTQITTDTGI
0.5
0.4
0.4
0.4
723 


YQLESTQITTDTGIE
0.4
0.4
0.4
0.3
724 


QLESTQITTDTGIEN
0.5
0.3
0.5
0.5
725 


LESTQITTDTGIENA
0.4
0.3
0.4
0.4
726 


ESTQITTDTGIENAT
0.5
0.4
0.4
0.4
727 


STQITTDTGIENATF
0.6
0.5
0.6
0.5
728 


TQITTDTGIENATFF
0.8
0.6
0.5
0.5
729 


QITTDTGIENATFFI
0.6
0.5
0.8
0.5
730 


ITTDTGIENATFFIF
0.9
0.4
0.9
0.6
731 


TTDTGIENATFFIFN
1.0
0.6
0.8
0.8
732 


TDTGIENATFFIFNK
0.4
0.6
0.6
0.8
733 


DTGIENATFFIFNKL
0.5
0.6
0.9
0.7
734 


TGIENATFFIFNKLV
0.7
0.8
0.7
0.8
735 


GIENATFFIFNKLVK
0.5
0.6
0.5
0.5
736 


IENATFFIFNKLVKD
0.3
0.4
0.5
0.5
737 


ENATFFIFNKLVKDP
0.4
0.5
0.4
0.7
738 


NATFFIFNKLVKDPP
0.4
0.4
0.4
0.3
739 


ATFFIFNKLVKDPPN
0.5
0.5
0.8
0.8
87


TFFIFNKLVKDPPNV
0.6
0.7
0.6
0.6
88


FFIFNKLVKDPPNVQ
0.7
0.6
0.6
0.5
89


FIFNKLVKDPPNVQI
0.8
0.8
0.7
0.8
90


IFNKLVKDPPNVQIH
1.0
1.1
0.6
0.6
91


FNKLVKDPPNVQIHT
0.9
0.8
0.7
0.8
92


NKLVKDPPNVQIHTI
0.9
1.0
0.9
0.8
93


KLVKDPPNVQIHTID
0.5
0.4
0.4
0.4
94


LVKDPPNVQIHTIDG
0.4
0.4
0.7
0.6
95


VKDPPNVQIHTIDGS
0.4
0.4
0.6
0.5
96


KDPPNVQIHTIDGSS
0.3
0.3
1.1
1.1
97


DPPNVQIHTIDGSSG
0.3
0.3
0.5
0.4
740 


PPNVQIHTIDGSSGV
0.5
0.5
0.7
0.5
741 


PNVQIHTIDGSSGVA
0.6
0.5
0.5
0.5
742 


NVQIHTIDGSSGVAN
0.5
0.5
0.4
0.4
743 


VQIHTIDGSSGVANP
0.5
0.5
0.4
0.3
744 


QIHTIDGSSGVANPA
0.6
0.6
0.4
0.2
745 


IHTIDGSSGVANPAM
0.8
0.7
0.4
0.4
746 


HTIDGSSGVANPAMD
0.5
0.4
0.2
0.3
747 


TIDGSSGVANPAMDP
0.6
0.4
0.4
0.4
748 


IDGSSGVANPAMDPI
0.6
0.6
0.7
0.6
749 


DGSSGVANPAMDPIY
0.8
0.9
0.4
0.5
98


GSSGVANPAMDPIYD
0.7
0.6
0.4
0.4
99


SSGVANPAMDPIYDE
0.5
0.5
0.7
0.7
100 


SGVANPAMDPIYDEP
0.3
0.4
0.5
0.5
101 


GVANPAMDPIYDEPT
0.3
0.4
0.6
0.5
102 


VANPAMDPIYDEPTT
0.2
0.4
0.5
0.5
103 


ANPAMDPIYDEPTTT
0.3
0.4
0.4
0.4
104 


NPAMDPIYDEPTTTT
0.3
0.4
0.4
0.4
105 


PAMDPIYDEPTTTTS
0.4
0.4
0.4
0.5
106 


AMDPIYDEPTTTTSV
0.6
0.8
0.7
0.7
107 


MDPIYDEPTTTTSVP
0.5
0.6
0.3
0.3
108 


DPIYDEPTTTTSVPL
0.5
0.5
0.7
0.8
109 
















TABLE 18










Binding of two control sera to linear and looped/cyclic


peptides of the protein X2 of SARS-CoV Urbani.













Control
Control serum
Control serum
Control Serum




serum LUMC
Blood-bank
LUMC
Blood-Bank


Peptide
linear
linear
looped
Looped
SEQ


sequence
peptides
peptides
peptides
peptides
ID NO















embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




THITMTTVYHITVSQ
0.8
0.3
0.7
0.6
750


HITMTTVYHITVSQI
0.5
0.5
0.6
0.7
751


ITMTTVYHITVSQIQ
0.4
0.4
0.5
0.5
752


TMTTVYHITVSQIQL
0.8
0.6
0.5
0.6
753


MTTVYHITVSQIQLS
0.6
0.6
0.5
0.6
754


TTVYHTTVSQIQLSL
0.7
0.6
0.5
0.6
755


TVYHITVSQIQLSLL
0.5
0.5
0.5
0.6
756


VYHITVSQIQLSLLK
0.7
0.5
0.4
0.6
757


YHITVSQIQLSLLKV
0.7
0.6
0.4
0.3
758


HITVSQIQLSLLKVT
0.8
0.6
0.5
0.6
759


ITVSQIQLSLLKVTA
0.6
0.5
0.7
0.6
760


TVSQIQLSLLKVTAF
0.6
0.5
0.7
0.7
761


VSQIQLSLLKVTAFQ
0.8
0.5
0.6
0.6
762


SQIQLSLLKVTAFQH
0.7
0.5
0.6
0.6
763


QIQLSLLKVTAFQHQ
0.7
0.4
0.6
0.6
764


IQLSLLKVTAFQHQN
0.7
0.4
0.6
0.6
765


QLSLLKVTAFQHQNS
0.6
0.4
0.6
0.5
766


LSLLKVTAFQHQNSK
0.4
0.1
0.3
0.4
767


SLLKVTAFQHQNSKK
0.0
0.2
0.3
0.4
768


LLKVTAFQHQNSKKT
0.3
0.3
0.5
0.4
769


LKVTAFQHQNSKKTT
0.8
0.4
0.4
0.3
770


KVTAFQHQNSKKTTK
0.3
0.2
0.3
0.3
771


VTAFQHQNSKKTTKL
0.5
0.3
0.5
0.5
772


TAFQHQNSKKTTKLV
0.9
0.6
0.4
0.4
511


AFQHQNSKKTTKLVV
0.7
0.6
0.6
0.7
512


FQHQNSKKTTKLVVI
0.7
0.5
0.5
0.4
119


QHQNSKKTTKLVVIL
0.6
0.5
0.5
0.6
120


HQNSKKTTKLVVILR
0.8
0.5
0.6
0.6
121


QNSKKTTKLVVILRI
0.8
0.5
0.7
0.7
122


NSKKTTKLVVILRIG
0.9
0.4
0.7
0.7
123


SKKTTKLVVILRIGT
0.8
0.6
0.7
0.7
124


KKTTKLVVILRIGTQ
0.5
0.4
0.8
0.6
125


KTTKLVVILRIGTQV
0.5
0.4
0.7
0.7
126


TTKLVVILRIGTQVL
0.3
0.3
0.7
0.6
127


TKLVVILRIGTQVLK
0.5
0.7
0.7
0.6
128


KLVVILRIGTQVLKT
0.4
0.8
0.6
0.7
129


LVVILRIGTQVLKTM
0.7
0.7
0.6
0.8
773


VVILRIGTQVLKTMS
0.5
0.7
0.3
0.3
774


VILRIGTQVLKTMSL
0.5
0.8
0.7
0.7
775


ILRIGTQVLKTMSLY
0.4
0.6
0.7
0.7
776


LRIGTQVLKTMSLYM
0.4
0.6
0.7
0.7
130


RIGTQVLKTMSLYMA
0.5
0.8
0.5
0.6
131


IGTQVLKTMSLYMAI
0.5
0.8
1.0
0.9
132


GTQVLKTMSLYMAIS
0.6
0.6
0.6
0.7
133


TQVLKTMSLYMAISP
0.7
0.7
0.8
0.7
134


QVLKTMSLYMAISPK
0.7
0.9
0.4
0.4
135


VLKTMSLYMAISPKF
0.5
0.9
0.6
0.7
136


LKTMSLYMAISPKFT
0.6
0.7
0.6
0.6
137


KTMSLYMAISPKFTT
0.6
0.7
1.0
0.7
138


TMSLYMAISPKFTTS
0.7
0.5
0.8
0.8
777


MSLYMAISPKFTTSL
0.6
0.7
0.9
0.8
778


SLYMAISPKFTTSLS
0.6
0.7
0.9
0.6
779


LYMAISPKFTTSLSL
0.3
0.6
0.8
0.7
780


YMAISPKFTTSLSLH
0.4
0.7
0.7
0.7
781


MAISPKFTTSLSLHK
0.7
1.0
0.6
0.7
782


AISPKFTTSLSLHKL
0.6
0.8
0.6
0.8
783


ISPKFTTSLSLHKLL
0.3
0.7
0.5
0.7
784


SPKFTTSLSLHKLLQ
0.3
0.5
0.6
0.5
785


PKFTTSLSLHKLLQT
0.4
0.7
0.4
0.7
786


KFTTSLSLHKLLQTL
0.4
0.6
0.5
0.5
787


FTTSLSLHKLLQTLV
0.5
0.6
1.6
2.0
788


TTSLSLHKLLQTLVL
0.4
0.6
0.6
0.6
789


TSLSLHKLLQTLVLK
0.6
0.9
0.6
0.6
790


SLSLHKLLQTLVLKM
0.3
0.4
0.7
0.6
791


LSLHKLLQTLVLKML
0.2
0.5
0.7
0.6
792


SLHKLLQTLVLKMLH
0.3
0.6
0.7
0.7
793


LHKLLQTLVLKMLHS
0.3
0.5
0.7
0.8
794


HKLLQTLVLKMLHSS
0.4
0.6
0.7
0.7
795


KLLQTLVLKMLHSSS
0.3
0.7
0.6
0.7
796


LLQTLVLKMLHSSSL
0.3
0.5
0.6
0.6
797


LQTLVLKMLHSSSLT
0.5
0.7
0.5
0.5
798


QTLVLKMLHSSSLTS
0.4
0.7
0.6
0.5
799


TLVLKMLHSSSLTSL
0.5
0.9
0.7
0.9
800


LVLKMLHSSSLTSLL
0.2
0.5
0.6
0.7
801


VLKMLHSSSLTSLLK
0.4
0.7
0.3
0.5
802


LKMLHSSSLTSLLKT
0.4
0.7
0.5
0.6
803


KMLHSSSLTSLLKTH
0.5
0.7
0.4
0.3
804


MLHSSSLTSLLKTHR
0.4
0.5
0.5
0.6
805


LHSSSLTSLLKTHRM
0.4
0.7
0.4
0.4
806


HSSSLTSLLKTHRMC
0.4
0.8
0.5
0.5
807


SSSLTSLLKTHRMCK
0.7
1.0
0.4
0.4
808


SSLTSLLKTHRMCKY
0.4
0.8
0.6
0.7
809


SLTSLLKTHRMCKYT
0.4
0.8
0.5
0.4
810


LTSLLKTHRMCKYTQ
0.4
0.5
0.5
0.4
811


TSLLKTHRMCKYTQS
0.9
1.0
0.4
0.4
812


SLLKTHRMCKYTQST
0.8
0.9
0.4
0.4
813


LLKTHRMCKYTQSTA
0.6
0.7
0.4
0.4
814


LKTHRMCKYTQSTAL
0.6
0.7
0.6
0.7
815


KTHRMCKYTQSTALQ
0.5
0.6
0.4
0.5
816


THRMCKYTQSTALQE
0.7
0.9
0.4
0.5
817


HRMCKYTQSTALQEL
0.7
0.9
0.6
0.8
818


RMCKYTQSTALQELL
0.7
0.8
0.6
0.7
819


MCKYTQSTALQELLI
0.7
0.9
0.7
0.8
820


CKYTQSTALQELLIQ
0.5
0.6
0.6
0.4
821


KYTQSTALQELLIQQ
0.5
0.6
1.0
0.9
822


YTQSTALQELLIQQW
0.4
0.5
0.6
0.6
823


TQSTALQELLIQQWI
0.6
0.8
0.6
0.7
824


QSTALQELLIQQWIQ
0.4
0.6
0.6
0.6
825


STALQELLIQQWIQF
0.3
0.6
0.7
0.6
826


TALQELLIQQWIQFM
0.4
0.7
0.7
0.7
827


ALQELLIQQWIQFMM
0.4
0.5
0.7
0.7
828


LQELLIQQWIQFMMS
0.3
0.5
0.6
0.6
829


QELLIQQWIQFMMSR
0.3
0.5
0.5
0.7
830


ELLIQQWIQFMMSRR
0.4
0.5
0.5
0.6
831


LLIQQWTQFMMSRRR
0.4
0.5
0.5
0.6
832


LIQQWIQFMMSRRRL
0.5
0.7
0.6
0.4
833


IQQWIQFMMSRRRLL
0.5
0.7
0.6
0.5
834


QQWIQFMMSRRRLLA
0.6
0.8
0.5
0.7
835


QWIQFMMSRRRLLAC
0.5
0.8
0.4
0.3
836


WIQFMMSRRRLLACL
0.4
0.6
0.3
0.3
837


IQFMMSRRRLLACLC
0.6
0.8
0.4
0.3
838


QFMMSRRRLLACLCK
0.5
0.7
0.4
0.3
839


FMMSRRRLLACLCKH
0.4
0.7
0.5
0.6
840


MMSRRRLLACLCKHK
0.5
0.8
0.2
0.2
139


MSRRRLLACLCKHKK
0.5
0.7
0.2
0.3
140


SRRRLLACLCKHKKV
0.6
0.9
0.2
0.2
141


RRRLLACLCKHKKVS
0.6
0.7
0.2
0.3
142


RRLLACLCKHKKVST
0.7
0.9
0.3
0.2
143


RLLACLCKHKKVSTN
0.7
0.9
0.4
0.3
144


LLACLCKHKKVSTNL
0.8
0.8
0.7
0.5
145


LACLCKHKKVSTNLC
0.7
0.8
0.4
0.3
146


ACLCKHKKVSTNLCT
0.8
0.9
0.3
0.2
147


CLCKHKKVSTNLCTH
0.9
1.0
0.3
0.4
148


LCKHKKVSTNLCTHS
0.7
0.8
0.4
0.3
149


CKHKKVSTNLCTHSF
1.0
0.8
0.4
0.1
150


KHKKVSTNLCTHSFR
0.6
0.9
0.7
0.5
151


HKKVSTNLCTHSFRK
0.9
0.8
0.8
0.5
152


KKVSTNLCTHSFRKK
0.4
0.7
0.8
0.5
153


KVSTNLCTHSFRKKQ
0.8
1.0
0.7
0.4
154


VSTNLCTHSFRKKQV
0.6
0.8
0.7
0.5
155


STNLCTHSFRKKQVR
0.8
0.9
0.8
0.5
156

















TABLE 19










Binding of two control sera to linear and



looped/cyclic peptides of the protein E of


SARS-CoV Urbani.
















Con-







Control
trol
Control




Control
serum
serum
Serum




serum
Blood-
LUMC
Blood-




LUMC
bank
looped
Bank
SEQ


Peptide
linear
linear
pep-
Looped
ID


sequence
peptides
peptides
tides
peptides
NO





MYSFVSEETGTLIVN
0.7
0.8
0.8
0.6
841






YSFVSEETGTLIVNS
1.0
0.7
0.8
0.6
842





SFVSEETGTLIVNSV
0.6
0.9
0.7
0.7
843





VSEETGTLIVNSVLL
0.5
0.8
0.7
0.9
844





FVSEETGTLIVNSVL
1.1
0.7
0.7
0.8
845





SEETGTLIVNSVLLF
0.6
0.5
0.5
0.6
846





EETGTLIVNSVLLFL
0.6
0.7
0.4
0.6
847





ETGTLIVNSVLLFLA
0.8
0.5
0.5
0.5
848





TGTLIVNSVLLFLAF
0.3
0.6
0.5
0.4
849





GTLIVNSVLLFLAFV
0.5
0.7
0.3
0.7
850





TLIVNSVLLFLAFVV
0.4
0.6
0.8
0.8
851





LIVNSVLLFLAFVVF
0.3
0.5
0.8
0.8
852





IVNSVLLFLAFVVFL
0.4
0.6
0.7
0.5
853





VNSVLLFLAFVVFLL
0.4
0.5
0.7
0.5
854





NSVLLFLAFVVFLLV
0.7
0.7
0.8
0.6
855





SVLLFLAFVVFLLVT
0.5
0.7
0.7
0.6
856





VLLFLAFVVFLLVTL
0.5
0.8
0.7
0.5
857





LLFLAFVVFLLVTLA
0.4
0.6
0.7
0.5
858





LFLAFVVFLLVTLAI
0.5
0.7
0.7
0.6
859





FLAFVVFLLVTLAIL
0.4
0.4
0.6
0.8
860





LAFVVFLLVTLAILT
0.5
0.6
0.6
0.8
861





AFVVFLLVTLAILTA
0.4
0.5
0.5
0.8
862





FVVFLLVTLAILTAL
0.5
0.5
0.6
0.7
863





VVFLLVTLAILTALR
0.4
0.6
0.6
0.6
864





VFLLVTLAILTALRL
0.3
0.5
0.5
0.4
865





FLLVTLAILTALRLC
0.5
0.6
0.1
0.5
866





LLVTLAILTALRLCA
0.3
0.7
0.8
0.8
867





LVTLAILTALRLCAY
0.3
0.6
0.8
0.6
868





VTLAILTALRLCAYC
0.6
0.5
0.8
0.9
869





TLAILTALRLCAYCC
0.4
0.6
0.8
0.7
870





LAILTALRLCAYCCN
0.6
0.7
0.8
0.7
871





AILTALRLCAYCCNI
0.6
0.6
0.8
0.6
872





ILTALRLCAYCCNIV
0.4
0.8
0.8
0.8
873





LTALRLCAYCCNIVN
0.5
0.7
0.6
0.7
874





TALRLCAYCCNIVNV
0.6
0.5
0.7
0.7
875





ALRLCAYCCNIVNVS
0.5
0.8
0.8
1.1
876





LRLCAYCCNIVNVSL
0.4
0.8
0.6
0.6
877





RLCAYCCNIVNVSLV
0.6
0.8
0.8
0.7
878





LCAYCCNIVNVSLVK
0.8
1.1
0.7
0.8
157





CAYCCNIVNVSLVKP
0.7
1.1
0.7
0.9
158





AYCCNIVNVSLVKPT
0.9
0.9
0.8
0.9
159





YCCNIVNVSLVKPTV
0.6
0.9
0.6
0.7
160





CCNIVNVSLVKPTVY
0.5
0.7
0.5
0.4
161





CNIVNVSLVKPTVYV
0.8
0.7
0.8
0.6
162





NIVNVSLVKPTVYVY
0.4
0.6
0.8
0.6
163





IVNVSLVKPTVYVYS
0.4
0.7
0.9
0.9
164





VNVSLVKPTVYVYSR
0.8
0.6
0.8
0.6
165





NVSLVKPTVYVYSRV
0.5
0.6
0.8
0.7
166





VSLVKPTVYVYSRVK
0.6
0.9
0.9
0.6
167





SLVKPTVYVYSRVKN
1.0
0.7
0.8
0.7
168





LVKPTVYVYSRVKNL
0.4
0.8
0.7
0.7
169





VKPTVYVYSRVKNLN
0.4
0.8
0.8
0.8
170





KPTVYVYSRVKNLNS
0.8
0.7
0.9
0.9
171





PTVYVYSRVKNLNSS
0.5
0.8
0.8
1.1
172





TVYVYSRVKNLNSSE
0.3
0.5
0.9
0.7
173





VYVYSRVKNLNSSEG
0.8
0.5
0.8
0.8
174





YVYSRVKNLNSSEGV
0.6
0.8
0.8
0.9
175





VYSRVKNLNSSEGVP
0.6
0.9
0.7
1.0
176





YSRVKNLNSSEGVPD
0.8
0.6
0.8
0.4
177





SRVKNLNSSEGVPDL
0.7
0.9
0.7
0.5
178





RVKNLNSSEGVPDLL
1.0
1.0
1.0
0.7
179





VKNLNSSEGVPDLLV
1.1
0.7
0.9
0.8
180
















TABLE 20










Binding of two control sera to linear and looped/cyclic


peptides of the protein M of SARS-CoV Urbani.













Control serum
Control serum
Control serum
Control Serum




LUMC
Blood-bank
LUMC
Blood-Bank


Peptide
linear
linear
looped
Looped
SEQ


sequence
peptides
peptides
peptides
peptides
ID NO





MADNGTITVEELKQL
0.6
0.5
0.6
0.4
181


ADNGTITVEELKQLL
0.5
0.7
0.7
0.5
182


DNGTITVEELKQLLE
0.8
0.7
0.7
0.4
183


NGTITVEELKQLLEQ
0.5
0.7
0.8
0.6
184




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




ELKQLLEQWNLVIGF
0.7
0.8
0.7
0.6
879


LKQLLEQWNLVIGFL
0.3
0.7
0.7
0.7
880


KQLLEQWNLVIGFLF
0.6
0.5
0.7
0.6
881


QLLEQWNLVIGFLFL
0.3
0.5
0.7
0.5
882


LLEQWNLVIGFLFLA
0.4
0.5
0.5
0.2
883


LEQWNLVIGFLFLAW
0.3
0.6
0.5
0.6
884


EQWNLVIGFLFLAWI
0.4
0.5
0.7
0.6
885


QWNLVIGFLFLAWIM
0.3
0.7
0.6
0.6
886


WNLVIGFLFLAWIML
0.6
0.6
0.7
0.5
887


NLVIGFLFLAWIMLL
0.3
0.5
0.8
0.6
888


LVIGFLFLAWIMLLQ
0.5
0.6
0.7
0.6
889


VIGFLFLAWIMLLQF
0.3
0.5
0.7
0.7
890


IGFLFLAWIMLLQFA
0.7
0.7
0.8
0.7
891


GFLFLAWIMLLQFAY
0.3
0.7
0.7
0.6
892


FLFLAWIMLLQFAYS
0.5
0.5
0.7
0.8
893


LFLAWIMLLQFAYSN
0.2
0.5
0.6
0.7
894


FLAWIMLLQFAYSNR
0.5
0.5
0.7
0.8
895


LAWIMLLQFAYSNRN
0.2
0.6
0.6
0.6
896


AWIMLLQFAYSNRNR
0.5
0.7
0.7
0.7
897


WIMLLQFAYSNRNRF
0.3
0.7
0.7
0.7
898


IMLLQFAYSNRNRFL
0.6
0.5
0.6
0.5
899


MLLQFAYSNRNRFLY
0.3
0.6
0.5
0.4
900


LLQFAYSNRNRFLYI
0.6
0.6
0.5
0.5
901


LQFAYSNRNRFLYII
0.4
0.6
0.6
0.6
902


QFAYSNRNRFLYIIK
0.8
0.6
0.8
0.6
191


FAYSNRNRFLYIIKL
0.4
0.6
0.6
0.4
192


AYSNRNRFLYIIKLV
0.7
0.7
0.8
0.6
193


YSNRNRFLYIIKLVF
0.4
0.7
0.9
0.6
194


SNRNRFLYIIKLVFL
0.7
0.7
0.9
0.7
195


NRNRFLYIIKLVFLW
0.4
0.7
0.7
0.8
196


RNRFLYIIKLVFLWL
0.7
0.6
0.8
0.7
197


NRFLYIIKLVFLWLL
0.3
0.7
0.6
0.7
198


RFLYIIKLVFLWLLW
0.8
0.7
0.8
0.7
199


FLYIIKLVFLWLLWP
0.4
0.8
0.9
0.8
200


LYIIKLVFLWLLWPV
0.7
0.7
0.6
0.7
903


YIIKLVFLWLLWPVT
0.5
0.8
0.8
0.8
904


IIKLVFLWLLWPVTL
0.6
0.5
0.6
0.7
905


IKLVFLWLLWPVTLA
0.4
0.7
0.7
0.9
906


KLVFLWLLWPVTLAC
0.5
0.7
0.6
0.7
907


LVFLWLLWPVTLACF
0.2
0.5
0.7
0.7
908


VFLWLLWPVTLACFV
0.6
0.6
0.8
0.8
909


FLWLLWPVTLACFVL
0.2
0.4
0.7
0.5
910


LWLLWPVTLACFVLA
0.5
0.5
0.6
0.5
911


WLLWPVTLACFVLAA
0.2
0.4
0.6
0.5
912


LLWPVTLACFVLAAV
0.7
0.7
0.7
0.6
913


LWPVTLACFVLAAVY
0.4
0.6
0.7
0.6
914


WPVTLACFVLAAVYR
0.5
0.7
1.2
0.8
915


PVTLACFVLAAVYRI
0.2
0.5
0.7
0.6
916


VTLACFVLAAVYRIN
0.5
0.5
0.7
0.8
917


TLACFVLAAVYRINW
0.2
0.5
0.7
0.8
918


LACPVLAAVYRINWV
0.6
0.7
0.7
0.7
919


ACFVLAAVYRINWVT
0.3
0.7
0.7
0.7
920


CFVLAAVYRINWVTG
0.6
0.7
0.8
0.6
921


FVLAAVYRINWVTGG
0.5
0.8
0.8
0.6
922


VLAAVYRINWVTGGI
1.0
0.9
0.8
0.8
923


LAAVYRINWVTGGIA
0.5
0.6
0.6
0.4
924


AAVYRINWVTGGIAI
1.0
0.8
0.5
0.8
925


AVYRINWVTGGIAIA
0.5
0.7
0.8
0.8
926


VYRINWVTGGIAIAM
1.0
0.7
0.8
0.7
927


YRINWVTGGIAIAMA
0.6
0.8
0.6
0.7
928


RINWVTGGIAIAMAC
0.8
0.8
0.8
0.5
929


INWVTGGIAIAMACI
0.5
0.8
0.9
0.6
201


NWVTGGIAIAMACIV
0.8
0.7
0.9
0.6
202


WVTGGIAIAMACIVG
0.4
0.8
0.9
0.8
203


VTGGIAIAMACIVGL
1.3
1.1
0.8
0.7
204


TGGIAIAMACIVGLM
0.6
1.1
1.1
1.1
205


GGIAIAMACIVGLMW
0.8
0.8
0.9
0.8
206


GIAIAMACIVGLMWL
0.5
0.8
0.8
0.7
207


IAIAMACIVGLMWLS
0.6
0.5
0.7
0.8
208


AIAMACIVGLMWLSY
0.3
0.7
0.6
0.6
930


IAMACIVGLMWLSYF
0.6
0.5
0.7
0.6
931


AMACIVGLMWLSYFV
0.3
0.6
0.7
0.6
932


MACIVGLMWLSYFVA
0.5
0.5
0.6
0.4
933


ACIVGLMWLSYFVAS
0.3
0.6
0.5
0.6
934


CIVGLMWLSYFVASF
0.5
0.4
0.7
0.6
935


IVGLMWLSYFVASFR
0.2
0.5
0.6
0.7
936


VGLMWLSYFVASFRL
0.5
0.6
0.6
0.6
937


GLMWLSYFVASFRLF
0.2
0.6
0.6
0.7
938


LMWLSYFVASFRLFA
0.4
0.5
0.6
0.6
209


MWLSYFVASFRLFAR
0.2
0.5
0.7
0.7
210


WLSYFVASFRLFART
0.6
0.7
0.8
0.6
211


LSYFVASFRLFARTR
0.3
0.6
1.0
0.8
212


SYFVASFRLFARTRS
0.5
0.6
0.9
1.0
213


YFVASFRLFARTRSM
0.3
0.6
0.7
0.9
214


FVASFRLFARTRSMW
1.0
0.9
0.7
0.6
215


VASFRLFARTRSMWS
0.4
0.7
0.6
0.8
216


ASFRLFARTRSMWSF
0.6
0.7
0.7
0.7
939


SFRLFARTRSMWSFN
0.4
0.6
0.6
0.7
940


FRLFARTRSMWSFNP
0.8
0.8
0.6
0.8
941


RLFARTRSMWSFNPE
0.5
0.8
0.5
0.7
942


LFARTRSMWSFNPET
0.8
0.7
0.6
0.6
943


FARTRSMWSFNPETN
0.5
0.9
0.6
0.8
944


ARTRSMWSFNPETNI
0.9
0.7
0.7
0.6
945


RTRSMWSFNPETNIL
0.7
0.9
0.7
0.7
946


TRSMWSFNPETNILL
0.8
0.7
0.9
0.9
947


RSMWSFNPETNILLN
0.5
0.8
0.7
0.7
948


SMWSFNPETNILLNV
0.8
0.8
0.7
0.8
949


MWSFNPETNILLNVP
0.5
0.9
0.8
0.8
950


WSFNPETNILLNVPL
1.5
1.3
0.8
0.6
951


SFNPETNILLNVPLR
0.4
0.7
1.0
1.0
952


FNPETNILLNVPLRG
0.7
0.6
0.9
0.8
953


NPETNILLNVPLRGT
0.4
0.7
0.9
0.8
954


PETNILLNVPLRGTI
0.8
0.8
0.7
0.8
955


ETNILLNVPLRGTIV
0.3
0.7
0.9
1.0
956


TNILLNVPLRGTIVT
0.7
0.8
0.6
0.8
957


NILLNVPLRGTIVTR
0.3
0.8
0.7
0.8
217


ILLNVPLRGTIVTRP
0.4
0.6
0.5
0.5
218


LLNVPLRGTIVTRPL
0.4
0.7
0.5
0.9
219


LNVPLRGTIVTRPLM
0.5
0.7
0.7
0.6
220


NVPLRGTIVTRPLME
0.4
0.6
0.9
0.7
221


VPLRGTIVTRPLMES
0.6
0.9
0.7
0.6
222


PLRGTIVTRPLMESE
0.3
0.6
0.8
0.5
223


LRGTIVTRPLMESEL
0.5
0.5
0.7
0.7
224


RGTIVTRPLMESELV
0.4
0.7
0.8
0.6
225


GTIVTRPLMESELVI
0.6
0.7
1.0
0.8
226


TIVTRPLMESELVIG
0.5
0.8
1.0
0.9
227


IVTRPLMESELVIGA
0.8
0.7
1.0
0.9
229


VTRPLMESELVIGAV
0.4
0.6
1.0
0.9
230


TRPLMESELVIGAVI
1.0
0.9
1.0
1.1
231


RPLMESELVIGAVII
0.5
0.6
0.8
0.8
232


PLMESELVIGAVIIR
0.8
1.0
0.8
0.9
958


LMESELVIGAVIIRG
0.5
0.8
0.6
0.7
959


MESELVIGAVIIRGH
0.8
0.8
0.6
0.7
960


ESELVIGAVIIRGHL
0.4
0.6
0.5
0.7
961


SELVIGAVIIRGHLR
0.9
0.8
0.6
0.6
962


ELVIGAVIIRGHLRM
0.5
0.7
0.6
0.7
963


LVIGAVIIRGHLRMA
0.7
0.6
0.7
0.7
964




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




LRMAGHPLGRCDIKD
0.5
0.7
0.8
0.8
243


RMAGHPLGRCDIKDL
0.7
0.7
0.8
0.9
244


MAGHPLGRCDIKDLP
0.5
0.7
0.5
0.5
245


AGHPLGRCDIKDLPK
0.8
1.1
0.7
0.9
246


GHPLGRCDIKDLPKE
0.6
0.6
0.7
0.7
247


HPLGRCDIKDLPKEI
0.7
1.0
0.7
1.0
248


PLGRCDIKDLPKEIT
0.4
0.6
0.8
0.9
249


LGRCDIKDLPKEITV
0.5
0.7
0.8
0.8
250


GRCDIKDLPKEITVA
0.1
0.5
0.9
1.0
251


RCDIKDLPKEITVAT
0.5
0.7
0.7
0.6
965


CDIKDLPKEITVATS
0.2
0.4
0.7
0.6
966


DIKDLPKEITVATSR
0.5
0.6
0.9
0.8
967


IKDLPKEITVATSRT
0.4
0.6
0.7
0.5
968


KDLPKEITVATSRTL
0.6
0.7
0.8
0.6
969


DLPKEITVATSRTLS
0.2
0.5
0.7
0.7
970


LPKEITVATSRTLSY
0.7
0.8
0.6
0.6
971


PKEITVATSRTLSYY
0.3
0.5
0.6
0.6
972


KEITVATSRTLSYYK
0.6
0.8
0.7
0.7
973


EITVATSRTLSYYKL
0.4
0.7
0.6
0.7
974


ITVATSRTLSYYKLG
0.7
0.8
0.6
0.5
975


TVATSRTLSYYKLGA
0.6
0.8
0.7
0.7
976


VATSRTLSYYKLGAS
0.6
0.8
0.6
0.5
977


ATSRTLSYYKLGASQ
0.3
0.7
0.6
0.6
978


TSRTLSYYKLGASQR
1.0
0.9
0.8
0.6
979


SRTLSYYKLGASQRV
0.5
0.9
0.8
0.6
980


RTLSYYKLGASQPVG
0.8
0.9
0.8
0.6
981


TLSYYKLGASQRVGT
0.5
0.8
0.8
0.8
252


LSYYKLGASQRVGTD
0.8
0.8
0.7
0.7
253


SYYKLGASQRVGTDS
0.4
0.8
0.7
0.8
254


YYKLGASQRVGTDSG
0.8
1.0
0.7
0.7
255


YKLGASQRVGTDSGF
0.4
0.7
0.9
0.7
256


KLGASQRVGTDSGFA
0.9
0.9
0.9
0.8
257


LGASQRVGTDSGFAA
0.5
0.9
0.8
0.6
258


GASQRVGTDSGFAAY
0.9
0.9
0.7
0.7
259


ASQRVGTDSGFAAYN
0.5
0.8
0.8
0.7
260


SQRVGTDSGFAAYNR
1.0
0.9
0.6
0.7
982


QRVGTDSGFAAYNRY
0.3
0.6
0.8
0.7
983


RVGTDSGFAAYNRYR
0.4
0.7
0.6
0.5
984


VGTDSGFAAYNRYRI
0.3
0.7
0.6
0.5
985


GTDSGFAAYNRYRIG
0.5
0.7
0.7
0.6
986


TDSGFAAYNRYRIGN
0.3
0.7
0.7
0.6
987


DSGFAAYNRYRIGNY
0.5
0.5
0.5
0.5
988


SGFAAYNRYRIGNYK
0.4
0.6
0.8
0.7
989


GFAAYNRYRIGNYKL
0.8
0.7
0.6
0.5
990


FAAYNRYRIGNYKLN
0.3
0.7
0.7
0.6
991


AAYNRYRIGNYKLNT
0.8
0.9
0.7
0.8
992


AYNRYRIGNYKLNTD
0.3
0.6
0.7
0.6
993


YNRYRIGNYKLNTDH
0.6
0.5
0.9
0.8
994


NRYRIGNYKLNTDHA
0.2
0.2
0.7
0.7
995


RYRIGNYKLNTDHAG
0.5
0.7
0.7
0.7
996


YRIGNYKLNTDHAGS
0.3
0.6
0.6
0.6
997


RIGNYKLNTDHAGSN
0.6
0.9
0.8
0.8
998


IGNYKLNTDHAGSND
0.3
0.5
0.8
0.7
261


GNYKLNTDHAGSNDN
0.7
0.6
0.7
0.6
262


NYKLNTDHAGSNDNI
0.5
0.7
0.8
0.6
263


YKLNTDHAGSNDNIA
0.7
0.6
0.6
0.6
264


KLNTDHAGSNDNIAL
0.7
0.9
0.9
1.0
265


LNTDHAGSNDNIALL
0.7
0.6
0.9
0.7
266


NTDHAGSNDNIALLV
0.5
0.8
0.9
1.0
267


TDHAGSNDNIALLVQ
1.0
0.7
1.0
1.0
268

















TABLE 21










Binding of two control sera to linear and



looped/cyclic peptides of the protein X3 of


SARS-CoV Urbani.














Con-

Con-
Con-





trol
Control
trol
trol




serum
serum
serum
Serum




LUMC
Blood-
LUMC
Blood-




linear
bank
looped
Bank
SEQ


Peptide
pep-
linear
pep-
Looped
ID


sequence
tides
peptides
tides
peptides
NO
















MFHLVDFQVTIAEIL
0.9
0.9
1.0
0.8
999






FHLVDFQVTIAEILI
0.6
0.8
0.8
0.7
1000





HLVDFQVTIAEILII
0.7
0.8
0.7
0.9
1001





LVDFQVTIAEILIII
0.9
0.8
0.7
0.6
1002





VDFQVTIAEILIIIM
0.8
0.8
0.8
0.6
1003





DFQVTIAEILIIIMR
0.6
0.8
0.7
0.8
1004





FQVTIAEILIIIMRT
0.4
0.8
0.6
0.7
1005





QVTIAEILIIIMRTF
0.7
0.7
0.7
0.9
1006





VTIAEILIIIMRTFR
0.6
0.8
0.8
0.8
1007





TIAEILIIIMRTFRI
0.6
0.8
0.7
1.1
1008





IAEILIIIMRTFRIA
0.5
0.9
0.9
0.8
1009





AEILIIIMRTFRIAI
0.4
0.7
0.8
0.7
269





EILIIIMRTFRIAIW
0.5
0.8
0.6
0.6
270





ILIIIMRTFRIAIWN
0.5
0.8
0.3
0.7
271





LIIIMRTFRIAIWNL
0.6
0.7
0.7
0.6
272





IIIMRTFRIAIWNLD
0.9
0.9
0.8
0.8
273





IIMRTFRIAIWNLDV
0.7
0.9
0.6
0.9
274





IMRTFRIAIWNLDVI
0.8
0.8
0.8
0.9
275





MRTFRIAIWNLDVII
0.6
0.7
0.8
0.8
276





RTFRIAIWNLDVIIS
0.6
0.7
0.8
0.9
277





TFRIAIWNLDVIISS
0.7
0.8
0.6
0.8
1010





FRIAIWNLDVIISSI
0.6
0.7
0.7
0.8
1011





RIAIWNLDVIISSIV
0.6
0.7
0.8
0.9
1012





IAIWNLDVIISSIVR
0.5
0.6
0.7
0.7
1013





AIWNLDVIISSIVRQ
0.7
0.7
0.7
0.8
1014





IWNLDVIISSIVRQL
0.5
0.6
0.7
0.7
1015





WNLDVIISSIVRQLF
0.3
0.6
0.7
0.8
1016





NLDVIISSIVRQLFK
0.6
0.8
0.8
0.8
1017





LDVIISSIVRQLFKP
0.4
0.6
0.8
0.7
1018





DVIISSIVRQLFKPL
0.4
0.6
0.5
0.5
1019





VIISSIVRQLFKPLT
0.7
0.8
0.8
0.7
278





IISSIVRQLFKPLTK
0.8
0.8
0.6
0.6
279





ISSIVRQLFKPLTKK
0.9
0.8
0.7
0.8
280





SSIVRQLFKPLTKKN
1.1
1.2
0.7
0.8
281





SIVRQLFKPLTKKNY
0.7
0.8
0.8
0.8
282





IVRQLFKPLTKKNYS
0.8
0.9
0.9
0.9
283





VRQLFKPLTKKNYSE
0.7
0.9
0.7
0.9
284





RQLFKPLTKKNYSEL
0.8
0.9
0.7
0.9
285





QLFKPLTKKNYSELD
0.8
0.8
0.8
0.8
286





LFKPLTKKNYSELDD
0.6
0.7
0.9
0.8
287





FKPLTKKNYSELDDE
0.8
0.8
0.8
0.8
288





KPLTKKNYSELDDEE
0.8
0.7
0.7
0.8
289





PLTKKNYSELDDEEP
0.9
0.8
0.8
0.8
290





LTKKNYSELDDEEPM
0.6
0.9
1.0
0.8
291





TKKNYSELDDEEPME
0.4
0.8
0.9
0.4
292





KKNYSELDDEEPMEL
0.4
0.5
0.9
0.6
293





KNYSELDDEEPMELD
0.6
0.7
0.8
0.6
294





NYSELDDEEPMELDY
0.9
0.9
0.9
0.8
295





YSELDDEEPMELDYP
0.9
0.7
0.8
0.8
296
















TABLE 22










Binding of two control sera to linear and looped/cyclic


peptides of the protein X4 of SARS-CoV Urbani.













Control serum
Control serum
Control serum
Control Serum




LUMC
Blood-bank
LUMC
Blood-Bank


Peptide
linear
linear
looped
Looped
SEQ


sequence
peptides
peptides
peptides
peptides
ID NO





MKIILFLTLIVFTSC
0.5
0.6
0.7
0.6
1020 


KIILFLTLIVFTSCE
0.9
0.8
0.9
0.8
1021 


IILFLTLIVFTSCEL
0.9
0.7
0.6
0.7
1022 


ILFLTLIVFTSCELY
0.7
0.6
0.8
0.7
1023 


LFLTLIVFTSCELYH
0.7
0.7
0.9
0.9
1024 


FLTLIVFTSCELYHY
0.7
0.6
0.7
0.6
1025 


LTLIVFTSCELYHYQ
0.7
0.7
0.8
0.7
1026 


TLIVFTSCELYHYQE
0.8
0.7
1.0
0.7
1027 


LIVFTSCELYHYQEC
0.7
0.6
0.8
0.7
1028 


IVFTSCELYHYQECV
0.8
0.8
0.9
0.8
1029 


VFTSCELYHYQECVR
0.5
0.7
0.9
0.7
1030 


FTSCELYHYQECVRG
0.7
0.7
0.8
0.8
1031 


TSCELYHYQECVRGT
0.6
0.6
0.8
0.8
1032 


SCELYHYQECVRGTT
0.3
0.5
0.8
0.6
1033 


CELYHYQECVRGTTV
0.5
0.5
0.6
0.5
1034 


ELYHYQECVRGTTVL
0.6
0.7
0.7
0.7
297


LYHYQECVRGTTVLL
0.6
0.6
0.6
0.7
298


YHYQECVRGTTVLLK
0.7
0.8
0.8
0.7
299


HYQECVRGTTVLLKE
0.7
0.8
1.0
0.9
300


YQECVRGTTVLLKEP
0.7
0.8
0.8
0.9
301


QECVRGTTVLLKEPC
1.0
0.9
0.8
0.9
302


ECVRGTTVLLKEPCP
0.7
0.9
0.8
0.9
303


CVRGTTVLLKEPCPS
0.7
0.8
0.9
0.9
304


VRGTTVLLKEPCPSG
1.0
0.8
0.9
0.8
305


RGTTVLLKEPCPSGT
0.8
0.9
0.8
0.9
306


GTTVLLKEPCPSGTY
0.7
0.7
0.8
0.7
307


TTVLLKEPCPSGTYE
0.9
0.9
1.0
0.9
308


TVLLKEPCPSGTYEG
0.8
0.7
0.8
0.7
309


VLLKEPCPSGTYEGN
0.7
0.8
0.8
0.9
1035 


LLKEPCPSGTYEGNS
0.6
0.6
0.8
0.6
1036 


LKEPCPSGTYEGNSP
0.3
0.6
0.7
0.5
1037 


KEPCPSGTYEGNSPF
0.6
0.6
0.8
0.5
1038 


EPCPSGTYEGNSPFH
0.5
0.6
0.8
0.6
1039 


PCPSGTYEGNSPFHP
0.5
0.6
0.9
0.7
1040 


CPSGTYEGNSPFHPL
0.6
0.7
0.8
0.8
310


PSGTYEGNSPFHPLA
0.7
0.9
0.9
0.8
311


SGTYEGNSPFHPLAD
0.8
0.8
0.8
0.8
312


GTYEGNSPFHPLADN
0.8
0.7
0.7
0.9
313




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




PFHPLADNKFALTCT
0.8
0.7
0.9
0.9
320


FHPLADNKFALTCTS
0.8
0.8
0.8
0.8
321


HPLADNKFALTCTST
0.6
0.7
0.9
0.8
322


PLADNKFALTCTSTH
0.5
0.8
0.7
0.6
323


LADNKFALTCTSTHF
0.7
0.7
0.7
0.7
324


ADNKFALTCTSTHFA
0.9
0.8
0.9
0.7
325


DNKFALTCTSTHFAF
0.6
0.7
0.8
0.6
326


NKFALTCTSTHFAFA
0.5
0.6
0.8
0.9
1041 


KFALTCTSTHFAFAC
0.7
0.7
0.8
0.9
1042 


FALTCTSTHFAFACA
0.6
0.6
0.6
0.7
1043 


ALTCTSTHFAFACAD
0.8
0.7
0.8
0.9
1044 


LTCTSTHFAFACADG
0.8
0.8
0.6
0.7
1045 


TCTSTHFAFACADGT
0.9
0.8
0.8
0.7
1046 


CTSTHFAFACADGTR
0.8
0.7
0.7
0.8
1047 


TSTHFAFACADGTRH
0.8
0.7
0.8
0.8
1048 


STHFAFACADGTRHT
0.5
0.6
0.9
0.7
1049 


THFAFACADGTRHTY
0.7
0.7
0.7
0.7
1050 


HFAFACADGTRHTYQ
0.7
0.6
0.7
0.8
1051 


FAFACADGTRHTYQL
0.5
0.7
0.7
0.8
1052 


AFACADGTRHTYQLR
0.5
0.6
0.8
0.7
1053 


FACADGTRHTYQLRA
0.4
0.7
0.4
0.3
531


ACADGTRHTYQLRAR
0.6
0.6
0.5
0.5
532


CADGTRHTYQLRARS
0.5
0.7
0.6
0.5
533


ADGTRHTYQLRARSV
0.6
0.6
0.6
0.6
534


DGTRHTYQLRARSVS
0.5
0.6
0.7
0.8
535


GTRHTYQLRARSVSP
0.6
0.8
0.8
0.7
536


TRHTYQLRARSVSPK
0.9
0.9
0.7
0.7
537


RHTYQLRARSVSPKL
0.7
0.8
0.7
0.6
538


HTYQLRARSVSPKLF
0.9
1.0
0.7
0.8
539


TYQLRARSVSPKLFI
0.7
1.0
0.9
0.9
540


YQLRARSVSPKLFIR
0.6
0.6
0.7
0.7
541


QLRARSVSPKLFIRQ
0.6
0.7
0.8
0.9
542


LRARSVSPKLFIRQE
0.6
0.6
0.7
0.6
543


RARSVSPKLFIRQEE
0.5
0.6
0.8
0.7
544


ARSVSPKLFIRQEEV
0.6
0.7
0.7
0.7
1054 


RSVSPKLFIRQEEVQ
0.4
0.5
0.7
0.6
1055 


SVSPKLFIRQEEVQQ
0.3
0.6
0.7
0.4
1056 


VSPKLFIRQEEVQQE
0.4
0.5
0.7
0.4
1057 


SPKLFIRQEEVQQEL
0.5
0.5
0.8
0.6
1058 


PKLFIRQEEVQQELY
0.5
0.7
0.7
0.6
1059 


KLFIRQEEVQQELYS
0.5
0.5
0.8
0.8
1060 


LFIRQEEVQQELYSP
0.7
0.7
0.8
0.8
1061 


FIRQEEVQQELYSPL
0.7
0.7
0.9
0.9
327


IRQEEVQQELYSPLF
0.7
0.7
0.9
0.7
328


RQEEVQQELYSPLFL
0.6
0.7
0.9
0.8
329


QEEVQQELYSPLFLI
0.8
0.8
0.8
0.7
330


EEVQQELYSPLFLIV
0.6
0.6
1.0
1.0
331


EVQQELYSPLFLIVA
0.5
0.5
0.8
0.7
332


VQQELYSPLFLIVAA
0.5
0.6
0.6
0.7
333


QQELYSPLFLIVAAL
0.4
0.5
0.6
0.6
1062 


QELYSPLFLIVAALV
0.6
0.6
0.7
0.7
1063 


ELYSPLFLIVAALVF
0.3
0.5
0.7
0.7
1064 


LYSPLFLIVAALVFL
0.4
0.5
0.6
0.6
1065 


YSPLFLIVAALVFLI
0.5
0.6
0.7
0.4
1066 


SPLFLIVAALVFLIL
0.3
0.4
0.5
0.3
1067 


PLFLIVAALVFLILC
0.4
0.4
0.5
0.5
1068 


LFLIVAALVFLILCF
0.4
0.5
0.4
0.7
1069 


FLIVAALVFLILCFT
0.4
0.4
0.6
0.7
1070 


LIVAALVFLILCFTI
0.4
0.6
0.5
0.5
1071 


IVAALVFLILCFTIK
0.5
0.6
0.7
0.8
1072 


VAALVFLILCFTIKR
0.4
0.5
0.6
0.8
1073 


AALVFLILCFTIKRK
0.7
0.9
0.6
0.8
1074 


ALVFLILCFTIKRKT
0.6
0.8
0.7
0.8
1075 


LVFLILCFTIKRKTE
0.6
0.8
0.6
0.8
1076 
















TABLE 23










Binding of two control sera to linear and looped/cyclic


peptides of the protein X5 of SARS-CoV Urbani.













Control serum
Control serum
Control serum
Control Serum




LUMC
Blood-bank
LUMC
Blood-Bank


Peptide
linear
linear
looped
Looped
SEQ


sequence
peptides
peptides
peptides
peptides
ID NO





MCLKILVRYNTRGNT
0.6
0.8
0.5
0.4
1077 


CLKILVRYNTRGNTY
0.4
0.8
0.6
0.4
1078 


LKILVRYNTRGNTYS
0.5
0.7
0.6
0.4
1079 


KILVRYNTRGNTYST
0.6
0.8
0.6
0.5
1080 


ILVRYNTRGNTYSTA
0.5
0.7
0.6
0.4
1081 


LVRYNTRGNTYSTAW
0.5
0.8
0.5
0.3
1082 


VRYNTRGNTYSTAWL
0.5
0.9
0.5
0.3
1083 


RYNTRGNTYSTAWLC
0.3
0.7
0.1
0.0
1084 


YNTRGNTYSTAWLCA
0.6
0.7
0.5
0.5
1085 


NTRGNTYSTAWLCAL
0.7
0.8
0.5
0.4
1086 


TRGNTYSTAWLCALG
0.6
0.7
0.6
0.4
1087 


RGNTYSTAWLCALGK
0.6
1.0
0.6
0.4
1088 


GNTYSTAWLCALGKV
0.5
0.9
0.6
0.4
1089 


NTYSTAWLCALGKVL
0.4
0.8
0.5
0.4
1090 


TYSTAWLCALGKVLP
0.5
0.9
0.6
0.5
1091 


YSTAWLCALGKVLPF
0.5
0.8
0.5
0.4
1092 


STAWLCALGKVLPFH
0.6
0.9
0.6
0.5
1093 


TAWLCALGKVLPFHR
0.4
0.7
0.6
0.4
1094 


AWLCALGKVLPFHRW
0.6
0.9
0.5
0.4
1095 


WLCALGKVLPFHRWH
0.6
0.9
0.6
0.4
1096 


LCALGKVLPFHRWHT
0.5
0.7
0.6
0.4
1097 


CALGKVLPFHRWHTM
0.7
0.8
0.6
0.4
1098 


ALGKVLPFHRWHTMV
0.5
0.8
0.5
0.1
1099 


LGKVLPFHRWHTMVQ
0.5
0.8
0.4
0.4
1100 


GKVLPFHRWHTMVQT
0.3
0.6
0.5
0.5
1101 


KVLPFHRWHTMVQTC
0.4
0.6
0.5
0.6
1102 


VLPFHRWHTMVQTCT
0.5
0.6
0.0
0.6
1103 


LPFHRWHTMVQTCTP
0.5
0.6
0.4
0.5
1104 


PFHRWHTMVQTCTPN
0.5
0.7
0.4
0.5
1105 


FHRWHTMVQTCTPNV
0.5
0.7
0.5
0.4
1106 


HRWHTMVQTGTPNVT
0.4
0.8
0.4
0.4
1107 


RWHTMVQTCTPNVTI
0.6
0.9
0.9
0.9
334


WHTMVQTCTPNVTIN
0.5
1.0
0.4
0.5
335


HTMVQTCTPNVTINC
0.7
0.9
0.6
0.8
336


TMVQTCTPNVTINCQ
0.7
0.7
0.7
0.9
337


MVQTGTPNVTINCQD
0.6
0.8
0.3
0.3
338


VQTCTPNVTINCQDP
0.5
0.6
0.4
0.6
1108 


QTCTPNVTINCQDPA
0.4
0.6
0.3
0.4
1109 


TCTPNVTINCQDPAG
0.5
0.7
0.2
0.4
1110 


CTPNVTINCQDPAGG
0.3
0.7
0.4
0.4
1111 


TPNVTINCQDPAGGA
0.5
0.6
0.2
0.3
1112 


PNVTINCQDPAGGAL
0.7
1.0
0.4
0.4
339


NVTINCQDPAGGALI
0.6
0.8
0.7
0.7
340


VTINCQDPAGGALIA
0.6
0.8
0.5
0.5
341


TINCQDPAGGALIAR
0.6
1.0
1.0
1.3
342


INCQDPAGGALIARC
0.6
1.1
0.7
0.9
343


NCQDPAGGALIARCW
0.3
0.6
0.6
0.8
344


CQDPAGGALIARCWY
0.3
0.7
0.7
0.9
345


QDPAGGALIARCWYL
0.3
0.7
0.6
0.8
346


DPAGGALIARCWYLH
0.3
0.7
0.6
0.8
1113 


PAGGALIARCWYLHE
0.4
0.7
0.5
0.8
1114 


AGGALIARCWYLHEG
0.5
0.6
0.4
0.7
1115 


GGALIARCWYLHEGH
0.4
0.5
0.6
0.6
1116 


GALIARCWYLHEGHQ
0.4
0.6
0.2
0.3
1117 


ALIARCWYLHEGHQT
0.4
0.6
0.1
0.4
1118 


LIARCWYLHEGHQTA
0.4
0.6
0.0
0.3
1119 




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




EGHQTAAFRDVLVVL
0.9
0.7
1.6
0.9
355


GHQTAAFRDVLVVLN
0.8
0.5
0.6
0.6
356


HQTAAFRDVLVVLNK
0.9
0.5
0.6
0.8
357


QTAAFRDVLVVLNKR
0.8
0.6
0.5
0.7
1120 


TAAFRDVLVVLNKRT
0.8
0.7
0.6
0.8
1121 


AAFRDVLVVLNKRTN
0.8
0.6
0.4
0.7
1122 
















TABLE 24










Binding of two control sera to linear and looped/cyclic


peptides of the protein N of SARS-CoV Urbani.













Control serum
Control serum
Control serum
Control Serum




LUMC
Blood-bank
LUMC
Blood-Bank


Peptide
linear
linear
looped
Looped
SEQ


sequence
peptides
peptides
peptides
peptides
ID NO





MSDNGPQSNQRSAPR
0.5
0.6
0.5
0.6
1123 


SDNGPQSNQRSAPRI
0.5
0.6
0.5
0.5
1124 


DNGPQSNQRSAPRIT
0.7
0.7
0.4
0.5
1125 


NGPQSNQRSAPRITF
0.6
0.8
0.8
0.7
592


GPQSNQRSAPRITFG
0.5
0.6
0.8
0.7
593


PQSNQRSAPRITFGG
0.6
0.5
0.7
0.8
594


QSNQRSAPRITFGGP
0.5
0.6
0.9
0.7
595


SNQRSAPRITFGGPT
0.5
0.6
0.7
0.7
596


NQRSAPRITFGGPTD
0.5
0.6
0.7
0.6
597


QRSAPRITFGGPTDS
0.5
0.6
0.7
0.7
598


RSAPRITFGGPTDST
0.5
0.6
0.6
0.6
599


SAPRITFGGPTDSTD
0.5
0.4
0.4
0.5
600


APRITFGGPTDSTDN
0.5
0.6
0.6
0.6
601


PRITFGGPTDSTDNN
0.5
0.6
0.6
0.6
602


RITFGGPTDSTDNNQ
0.5
0.6
0.5
0.6
603


ITFGGPTDSTDNNQN
0.6
0.5
0.7
0.7
604


TFGGPTDSTDNNQNG
0.7
0.8
0.5
0.5
1126 


FGGPTDSTDNNQNGG
0.5
0.6
0.4
0.4
1127 


GGPTDSTDNNQNGGR
0.8
0.7
0.5
0.5
1128 


GPTDSTDNNQNGGRN
0.7
0.8
0.5
0.6
1129 


PTDSTDNNQNGGRNG
0.8
1.0
0.4
0.5
1130 


TDSTDNNQNGGRNGA
0.8
1.1
0.8
0.7
1131 


DSTDNNQNGGRNGAR
0.7
0.8
0.7
0.6
1132 


STDNNQNGGRNGARP
0.6
0.7
0.5
0.5
1133 


TDNNQNGGRNGARPK
0.8
0.9
0.5
0.5
1134 


DNNQNGGRNGARPKQ
0.6
0.8
0.6
0.7
1135 


NNQNGGRNGARPKQR
0.8
0.9
0.6
0.5
1136 


NQNGGRNGARPKQRR
0.8
0.7
0.5
0.6
1137 


QNGGRNGARPKQRRP
0.8
0.6
0.8
0.6
1138 


NGGRNGARPKQRRPQ
0.6
0.6
0.7
0.7
1139 


GGRNGARPKQRRPQG
0.6
0.7
0.5
0.5
1140 


GRNGARPKQRRPQGL
0.6
0.7
0.5
0.5
1141 


RNGARPKQRRPQGLP
0.6
0.8
0.6
0.5
1142 


NGARPKQRRPQGLPN
0.6
0.7
0.6
0.6
1143 


GARPKQRRPQGLPNN
0.7
0.7
0.6
0.5
1144 


ARPKQRRPQGLPNNT
0.6
0.6
0.5
0.6
1145 


RPKQRRPQGLPNNTA
0.7
0.8
0.5
0.4
1146 


PKQRRPQGLPNNTAS
0.7
0.8
1.0
0.8
1147 


KQRRPQGLPNNTASW
0.5
0.7
0.6
0.6
1148 


QRRPQGLPNNTASWF
0.6
0.7
0.9
0.8
1149 


RRPQGLPNNTASWFT
0.7
0.5
0.6
0.7
1150 


RPQGLPNNTASWFTA
0.8
0.8
0.9
0.9
1151 


PQGLPNNTASWFTAL
0.7
0.7
0.9
0.9
1152 


QGLPNNTASWFTALT
0.7
0.6
0.8
0.8
1153 


GLPNNTASWFTALTQ
0.6
0.7
0.7
0.8
1154 


LPNNTASWFTALTQH
0.7
0.7
0.7
0.8
1155 


PNNTASWFTALTQHG
0.7
0.5
0.7
0.7
1156 


NNTASWFTALTQHGK
0.7
0.6
0.4
0.5
1157 


NTASWFTALTQHGKE
0.6
0.5
0.4
0.5
1158 


TASWFTALTQHGKEE
0.5
0.6
0.3
0.4
1159 


ASWFTALTQHGKEEL
0.5
0.7
0.4
0.5
1160 


SWFTALTQHGKEELR
0.7
0.6
0.3
0.4
1161 


WFTALTQHGKEELRF
0.7
0.8
0.5
0.6
1162 


FTALTQHGKEELRFP
0.7
0.7
0.3
0.5
1163 


TALTQHGKEELRFPR
0.6
0.8
0.8
0.8
1164 


ALTQHGKEELRFPRG
0.7
0.9
0.4
0.4
1165 


LTQHGKEELRFPRGQ
0.6
0.8
0.6
0.6
1166 


TQHGKEELRFPRGQG
0.8
0.9
0.6
0.6
1167 


QHGKEELRFPRGQGV
0.7
0.8
0.7
0.7
1168 


HGKEELRFPRGQGVP
0.6
0.8
0.5
0.5
1169 


GKEELRFPRGQGVPI
0.8
0.9
0.9
0.9
1170 


KEELRFPRGQGVPIN
0.7
0.8
0.7
0.7
1171 


EELRFPRGQGVPINT
0.8
0.8
1.1
1.3
1172 


ELRFPRGQGVPINTN
0.8
0.6
0.7
0.7
1173 


LRFPRGQGVPINTNS
0.7
0.7
0.6
0.6
1174 


RFPRGQGVPINTNSG
0.6
0.8
0.5
0.6
1175 


FPRGQGVPINTNSGP
0.7
0.8
0.5
0.6
1176 


PRGQGVPINTNSGPD
0.5
0.7
0.3
0.4
1177 


RGQGVPINTNSGPDD
0.5
0.5
0.4
0.4
1178 


GQGVPINTNSGPDDQ
0.5
0.5
0.3
0.5
1179 


QGVPINTNSGPDDQI
0.6
0.6
0.8
1.1
1180 


GVPINTNSGPDDQIG
0.7
0.7
0.4
0.4
1181 


VPINTNSGPDDQIGY
0.8
0.7
0.7
0.8
1182 


PINTNSGPDDQIGYY
0.7
0.7
0.6
0.5
1183 


INTNSGPDDQIGYYR
0.7
0.8
0.7
0.6
1184 


NTNSGPDDQIGYYRR
0.7
0.7
0.9
0.7
1185 


TNSGPDDQIGYYRRA
0.9
1.2
0.9
0.7
1186 


NSGPDDQIGYYRRAT
0.7
0.7
0.8
0.7
1187 


SGPDDQIGYYRRATR
0.7
0.8
0.9
0.8
545


GPDDQIGYYRRATRR
0.8
0.8
0.9
0.9
546


PDDQIGYYRRATRRV
0.6
0.6
0.8
0.8
547


DDQIGYYRRATRRVR
1.0
1.0
0.8
0.8
548


DQIGYYRRATRRVRG
0.7
0.8
0.7
0.8
549


QIGYYRRATRRVRGG
0.6
0.8
0.7
0.8
550


IGYYRRATRRVRGGD
0.5
0.7
0.7
0.7
551


GYYRRATRRVRGGDG
0.6
0.6
0.5
0.6
552


YYRRATRRVRGGDGK
0.6
0.6
0.2
0.3
1188 


YRRATRRVRGGDGKM
0.7
0.8
0.3
0.4
1189 


RRATRRVRGGDGKMK
0.8
0.8
0.3
0.4
1190 


RATRRVRGGDGKMKE
0.7
0.8
0.3
0.4
1191 


ATRRVRGGDGKMKEL
0.7
0.7
0.5
0.5
1192 


TRRVRGGDGKMKELS
0.8
0.7
0.5
0.5
1193 


RRVRGGDGKMKELSP
0.9
0.9
0.6
0.6
1194 


RVRGGDGKMKELSPR
0.9
0.8
0.7
0.7
1195 


VRGGDGKMKELSPRW
0.8
0.6
0.7
0.7
1196 


RGGDGKMKELSPRWY
0.6
0.6
0.6
0.6
1197 


GGDGKMKELSPRWYF
0.7
0.8
0.7
0.8
1198 


GDGKMKELSPRWYFY
0.6
0.6
0.8
0.7
1199 


DGKMKELSPRWYFYY
0.6
0.8
0.7
0.8
1200 


GKMKELSPRWYFYYL
0.6
0.6
0.7
0.8
1201 


KMKELSPRWYFYYLG
0.5
0.6
0.6
0.8
1202 


MKELSPRWYFYYLGT
0.6
0.7
0.6
0.7
1203 


KELSPRWYFYYLGTG
0.4
0.4
0.6
0.7
1204 


ELSPRWYFYYLGTGP
0.5
0.6
0.5
0.7
1205 


LSPRWYFYYLGTGPE
0.8
0.7
0.6
0.5
1206 


SPRWYFYYLGTGPEA
0.6
0.7
0.8
0.8
1207 


PRWYEYYLGTGPEAS
0.6
0.7
0.7
0.7
1208 


RWYFYYLGTGPEASL
0.7
0.6
0.8
0.7
1209 


WYFYYLGTGPEASLP
0.6
0.7
0.6
0.6
1210 


YFYYLGTGPEASLPY
0.6
0.7
0.8
0.7
1211 


FYYLGTGPEASLPYG
0.7
0.6
0.7
0.7
1212 


YYLGTGPEASLPYGA
0.7
0.7
0.8
0.8
1213 


YLGTGPEASLPYGAN
0.8
0.6
0.7
0.7
1214 


LGTGPEASLPYGANK
0.9
0.9
0.6
0.5
1215 


GTGPEASLPYGANKE
0.8
0.7
0.4
0.4
1216 


TGPEASLPYGANKEG
1.1
0.9
0.6
0.8
1217 


GPEASLPYGANKEGI
0.9
0.9
0.8
0.6
1218 


PEASLPYGANKEGIV
0.7
0.9
0.6
0.5
1219 


EASLPYGANKEGIVW
0.6
0.8
0.6
0.7
1220 


ASLPYGANKEGIVWV
0.6
0.7
0.8
0.9
1221 


SLPYGANKEGIVWVA
0.7
0.9
0.6
0.6
1222 


LPYGANKEGIVWVAT
0.6
0.7
0.6
0.5
1223 


PYGANKEGIVWVATE
0.7
0.7
0.7
0.6
1224 


YGANKEGIVWVATEG
0.6
0.6
0.7
0.7
1225 


GANKEGIVWVATEGA
0.5
0.5
0.5
0.4
1226 


ANKEGIVWVATEGAL
0.6
0.6
0.6
0.5
1227 


NKEGIVWVATEGALN
0.7
0.7
0.6
0.6
1228 


KEGIVWVATEGALNT
0.6
0.7
0.7
0.6
1229 


EGIVWVATEGALNTP
0.8
0.8
0.6
0.6
1230 


GIVWVATEGALNTPK
1.0
1.0
0.5
0.5
1231 


IVWVATEGALNTPKD
0.8
0.8
0.5
0.4
1232 


VWVATEGALNTPKDH
0.8
0.6
0.6
0.8
1233 


WVATEGALNTPKDHI
0.9
0.8
0.5
0.5
1234 


VATEGALNTPKDHIG
0.9
0.9
0.5
0.5
1235 


ATEGALNTPKDHIGT
0.7
0.8
0.5
0.5
1236 


TEGALNTPKDHIGTR
0.9
1.0
0.7
0.7
1237 


EGALNTPKDHIGTRN
0.6
0.7
0.5
0.7
1238 


GALNTPKDHIGTRNP
0.6
0.7
0.4
0.5
1239 


ALNTPKDHIGTRNPN
0.6
0.8
0.4
0.5
1240 


LNTPKDHIGTRNPNN
0.6
0.8
0.6
0.5
1241 


NTPKDHIGTRNPNNN
0.7
0.8
0.6
0.5
1242 


TPKDHIGTRNPNNNA
0.9
0.9
0.6
0.5
1243 


PKDHIGTRNPNNNAA
0.8
0.8
0.6
0.5
1244 


KDHIGTRNPNNNAAT
0.8
0.9
0.6
0.6
1245 


DHIGTRNPNNNAATV
0.7
0.8
1.0
0.9
1246 


HIGTRNPNNNAATVL
0.9
0.9
1.2
1.2
1247 


IGTRNPNNNAATVLQ
0.9
0.8
0.8
0.9
1248 


GTRNPNNNAATVLQL
0.8
0.8
0.8
1.0
1249 


TRNPNNNAATVLQLP
0.8
0.7
0.7
0.8
1250 


RNPNNNAATVLQLPQ
0.7
0.7
0.9
0.8
1251 


NPNNNAATVLQLPQG
0.9
0.9
0.9
0.8
1252 


PNNNAATVLQLPQGT
0.6
0.6
0.8
0.9
1253 


NNNAATVLQLPQGTT
0.7
0.8
0.8
0.7
1254 


NNAATVLQLPQGTTL
0.9
0.9
0.8
0.8
358


NAATVLQLPQGTTLP
0.5
0.7
0.4
0.6
359




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




VLQLPQGTTLPKGFY
0.6
0.7
0.8
0.7
363


LQLPQGTTLPKGFYA
0.8
1.0
0.5
0.5
364


QLPQGTTLPKGFYAE
0.7
0.9
0.6
0.6
365


LPQGTTLPKGFYAEG
0.8
0.8
0.8
0.9
366


PQGTTLPKGFYAEGS
0.6
0.7
0.6
0.6
367


QGTTLPKGFYAEGSR
0.7
0.8
0.7
0.7
368


GTTLPKGFYAEGSRG
0.6
0.6
0.6
0.5
369


TTLPKGFYAEGSRGG
0.7
0.6
0.5
0.6
370


TLPKGFYAEGSRGGS
1.2
0.7
0.5
0.5
371


LPKGFYAEGSRGGSQ
0.6
0.6
0.5
0.6
1255 


PKGFYAEGSRGGSQA
0.7
0.8
0.5
0.5
1256 


KGFYAEGSRGGSQAS
0.5
0.7
0.4
0.5
1257 


GFYAEGSRGGSQASS
0.6
0.7
0.5
0.5
1258 


FYAEGSRGGSQASSR
0.7
0.8
0.8
0.6
1259 


YAEGSRGGSQASSRS
0.7
0.9
0.6
0.4
1260 


AEGSRGGSQASSRSS
0.8
0.8
0.8
0.6
1261 


EGSRGGSQASSRSSS
1.0
1.0
0.8
0.7
1262 


GSRGGSQASSRSSSR
0.7
0.7
0.7
1.1
1263 


SRGGSQASSRSSSRS
0.6
0.7
0.6
0.5
1264 


RGGSQASSRSSSRSR
0.8
0.8
0.6
0.4
1265 


GGSQASSRSSSRSRG
0.8
0.7
0.6
0.6
1266 


GSQASSRSSSRSRGN
0.8
0.8
0.6
0.6
1267 


SQASSRSSSRSRGNS
0.7
0.7
0.6
0.6
1268 


QASSRSSSRSRGNSR
0.7
0.7
0.5
0.5
1269 


ASSRSSSRSRGNSRN
0.7
0.6
0.6
0.6
1270 


SSRSSSRSRGNSRNS
0.7
0.7
0.7
0.7
1271 


SRSSSRSRGNSRNST
0.7
0.7
0.6
0.6
1272 


RSSSRSRGNSRNSTP
0.8
0.9
0.4
0.4
1273 


SSSRSRGNSRNSTPG
0.6
0.7
0.5
0.5
1274 


SSRSRGNSRNSTPGS
0.5
0.6
0.5
0.5
1275 


SRSRGNSRNSTPGSS
0.5
0.7
0.4
0.5
1276 


RSRGNSRNSTPGSSR
0.6
0.8
0.3
0.3
1277 


SRGNSRNSTPGSSRG
0.8
0.9
0.4
0.4
1278 


RGNSRNSTPGSSRGN
0.6
0.8
0.6
0.6
1279 


GNSRNSTPGSSRGNS
0.7
0.8
0.7
0.6
1280 


NSRNSTPGSSRGNSP
0.7
0.9
0.7
0.7
1281 


SRNSTPGSSRGNSPA
0.9
0.9
0.7
0.7
1282 


RNSTPGSSRGNSPAR
0.8
0.9
0.7
0.6
553




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




SSRGNSPARMASGGG
0.9
0.8
0.9
0.8
1283 


SRGNSPARMASGGGE
0.8
0.8
0.4
0.5
1284 


RGNSPARMASGGGET
0.7
0.8
0.5
0.6
1285 


GNSPARMASGGGETA
0.7
0.8
0.4
0.5
1286 


NSPARMASGGGETAL
0.7
0.9
0.4
0.3
372


SPARMASGGGETALA
0.8
0.9
0.2
0.1
373


PARMASGGGETALAL
0.8
1.0
0.9
0.7
374


ARMASGGGETALALL
0.7
0.8
0.8
0.6
375


RMASGGGETALALLL
0.5
0.6
0.8
0.8
376


MASGGGETALALLLL
0.6
0.7
0.9
0.7
377


ASGGGETALALLLLD
0.9
0.8
1.3
1.3
378


SGGGETALALLLLDR
0.6
0.7
0.7
0.7
1287 


GGGETALALLLLDRL
0.6
0.5
0.8
0.7
1288 


GGETALALLLLDRLN
0.6
0.7
0.8
0.8
1289 


GETALALLLLDRLNQ
0.6
0.6
0.7
0.7
1290 


ETALALLLLDRLNQL
0.5
0.5
0.7
0.8
1291 


TALALLLLDRLNQLE
0.7
0.7
0.8
0.8
1292 


ALALLLLDRLNQLES
0.7
0.7
0.8
0.8
1293 


LALLLLDRLNQLESK
0.6
0.7
0.6
0.7
1294 


ALLLLDRLNQLESKV
0.7
0.8
0.8
0.8
1295 


LLLLDRLNQLESKVS
0.6
0.7
0.4
0.4
1296 


LLLDRLNQLESKVSG
0.9
0.8
0.5
0.5
1297 


LLDRLNQLESKVSGK
0.6
0.7
0.2
0.3
1298 


LDRLNQLESKVSGKG
0.8
1.0
0.5
0.5
1299 


DRLNQLESKVSGKGQ
0.7
0.9
0.6
0.6
1300 


RLNQLESKVSGKGQQ
0.7
0.8
0.7
0.6
1301 


LNQLESKVSGKGQQQ
0.7
0.8
0.7
0.7
1302 


NQLESKVSGKGQQQQ
0.9
0.8
0.7
0.7
1303 


QLESKVSGKGQQQQG
0.8
0.8
0.9
1.0
1304 


LESKVSGKGQQQQGQ
0.7
0.8
0.7
0.8
1305 


ESKVSGKGQQQQGQT
0.8
0.7
0.9
1.1
1306 


SKVSGKGQQQQGQTV
0.7
0.6
0.8
0.8
1307 


KVSGKGQQQQGQTVT
0.7
0.8
0.5
0.6
1308 


VSGKGQQQQGQTVTK
1.4
1.0
0.9
0.7
1309 


SGKGQQQQGQTVTKK
1.1
1.0
0.6
0.6
1310 


GKGQQQQGQTVTKKS
1.0
0.9
0.7
0.6
1311 


KGQQQQGQTVTKKSA
0.9
1.0
0.4
0.4
1312 


GQQQQGQTVTKKSAA
0.9
0.9
0.5
0.5
1313 


QQQQGQTVTKKSAAE
0.6
0.6
0.2
0.2
1314 


QQQGQTVTKKSAAEA
0.5
0.6
0.6
0.6
1315 


QQGQTVTKKSAAEAS
0.7
0.8
0.5
0.5
379


QGQTVTKKSAAEASK
1.0
1.1
0.4
0.4
380


GQTVTKKSAAEASKK
0.7
0.7
0.3
0.4
381


QTVTKKSAAEASKKP
0.9
0.8
0.5
0.5
382


TVTKKSAAEASKKPR
1.0
1.0
0.3
0.4
383


VTKKSAAEASKKPRQ
0.9
0.9
0.7
0.6
384


TKKSAAEASKKPRQK
0.9
0.8
0.4
0.4
385


KKSAAEASKKPRQKR
1.0
1.0
0.5
0.5
386


KSAAEASKKPRQKRT
0.7
0.7
0.4
0.4
387


SAAEASKKPRQKRTA
0.8
0.8
0.4
0.4
388


AAEASKKPRQKRTAT
0.9
0.8
0.5
0.5
389


AEASKKPRQKRTATK
0.8
0.8
0.4
0.4
1316 


EASKKPRQKRTATKQ
0.8
0.9
0.6
0.8
1317 


ASKKPRQKRTATKQY
0.6
0.7
0.5
0.6
1318 


SKKPRQKRTATKQYN
0.7
0.8
0.5
0.6
1319 


KKPRQKRTATKQYNV
0.7
0.6
0.5
0.4
1320 


KPRQKRTATKQYNVT
0.7
0.8
0.4
0.4
390


PRQKRTATKQYNVTQ
0.9
1.0
0.9
1.0
391


RQKRTATKQYNVTQA
0.8
0.9
0.8
0.9
392


QKRTATKQYNVTQAF
0.7
0.8
0.8
0.8
393


KRTATKQYNVTQAFG
0.8
0.7
0.6
0.6
394


RTATKQYNVTQAFGR
0.8
0.9
0.9
0.8
395


TATKQYNVTQAFGRR
0.8
0.8
1.0
0.9
396


ATKQYNVTQAFGRRG
0.8
0.9
0.8
0.8
565


TKQYNVTQAFGRRGP
0.8
0.8
0.9
0.9
566


KQYNVTQAFGRRGPE
0.7
0.6
0.5
0.5
567


QYNVTQAFGRRGPEQ
0.6
0.7
0.8
0.8
568


YNVTQAFGRRGPEQT
0.6
0.7
0.5
0.5
569


NVTQAFGRRGPEQTQ
0.7
0.7
0.5
0.5
570


VTQAFGRRGPEQTQG
0.7
0.8
0.5
0.6
571


TQAFGRRGPEQTQGN
0.7
0.8
0.6
0.7
572


QAFGRRGPEQTQGNF
0.7
0.9
0.4
0.4
1321 


AFGRRGPEQTQGNFG
0.5
0.6
0.3
0.4
1322 


FGRRGPEQTQGNFGD
0.6
0.7
0.3
0.4
397


GRRGPEQTQGNFGDQ
0.6
0.6
0.6
0.6
398


RRGPEQTQGNFGDQD
0.6
0.6
0.4
0.3
399


RGPEQTQGNFGDQDL
0.7
0.7
0.6
0.4
400


GPEQTQGNFGDQDLI
0.8
0.8
0.6
0.5
401


PEQTQGNFGDQDLIR
0.9
0.8
0.6
0.5
402


EQTQGNFGDQDLIRQ
1.0
1.0
0.6
0.6
403


QTQGNFGDQDLIRQG
0.9
0.9
0.7
0.8
404


TQGNFGDQDLIRQGT
0.9
0.8
0.8
0.8
1323 


QGNFGDQDLIRQGTD
0.7
0.6
0.6
0.5
1324 


GNFGDQDLIRQGTDY
0.6
0.7
0.9
0.9
1325 


NFGDQDLIRQGTDYK
0.7
0.8
0.4
0.5
1326 


FGDQDLIRQGTDYKH
0.7
0.8
0.7
0.6
1327 


GDQDLIRQGTDYKHW
0.8
0.9
0.5
0.6
1328 


DQDLIRQGTDYKHWP
0.7
0.8
0.4
0.4
1329 


QDLIRQGTDYKHWPQ
0.6
0.7
0.5
0.6
1330 


DLIRQGTDYKHWPQI
0.5
0.6
0.5
0.5
1331 


LIRQGTDYKHWPQIA
0.7
0.7
0.5
0.6
1332 


IRQGTDYKHWPQIAQ
0.7
0.7
0.6
0.5
1333 


RQGTDYKHWPQIAQF
0.7
0.7
0.8
0.7
1334 


QGTDYKHWPQIAQFA
0.6
0.8
0.7
0.6
1335 


GTDYKHWPQIAQFAP
0.6
0.8
0.7
0.8
1336 


TDYKHWPQIAQFAPS
0.8
0.8
1.1
1.2
1337 


DYKHWPQIAQFAPSA
0.8
0.9
0.7
0.6
1338 


YKHWPQIAQFAPSAS
0.7
0.9
0.8
0.8
1339 


KHWPQIAQFAPSASA
0.7
0.8
0.6
0.7
1340 


HWPQIAQFAPSASAF
0.7
0.8
0.8
0.8
1341 


WPQIAQFAPSASAFF
0.6
0.6
0.9
0.8
1342 


PQIAQFAPSASAFFG
0.5
0.7
0.7
0.8
1343 


QIAQFAPSASAFFGM
0.7
0.9
0.7
0.9
1344 


IAQFAPSASAFFGMS
0.6
0.7
0.6
0.8
1345 


AQFAPSASAFFGMSR
0.5
0.7
0.6
0.8
1346 


QFAPSASAFFGMSRI
0.5
0.7
0.6
0.6
1347 


FAPSASAFFGMSRIG
0.6
0.5
0.4
0.4
1348 


APSASAFFGMSRIGM
0.5
0.7
0.6
0.8
1349 


PSASAFFGMSRIGME
0.6
0.6
0.5
0.4
1350 


SASAFFGMSRIGMEV
0.6
0.7
0.7
0.7
1351 


ASAFFGMSRIGMEVT
0.7
0.7
0.4
0.5
1352 


SAFFGMSRIGMEVTP
0.7
0.8
0.5
0.6
1353 


AFFGMSRIGMEVTPS
0.6
0.7
0.8
0.6
1354 


FFGMSRIGMEVTPSG
0.7
0.8
0.5
0.5
1355 


FGMSRIGMEVTPSGT
0.7
0.8
0.5
0.5
1356 


GMSRTGMEVTPSGTW
0.6
0.6
0.5
0.6
1357 


MSRIGMEVTPSGTWL
0.7
0.8
0.7
0.7
1358 


SRIGMEVTPSGTWLT
0.6
0.8
0.6
0.6
1359 


RIGMEVTPSGTWLTY
0.5
0.5
0.7
0.8
1360 


IGMEVTPSGTWLTYH
0.6
0.8
0.8
0.8
1361 


GMEVTPSGTWLTYHG
0.6
0.6
0.7
0.7
1362 


MEVTPSGTWLTYHGA
0.6
0.8
0.8
0.7
1363 


EVTPSGTWLTYHGAI
0.6
0.7
0.7
0.8
1364 


VTPSGTWLTYHGAIK
0.6
0.8
0.3
0.3
1365 


TPSGTWLTYHGAIKL
0.6
0.8
0.5
0.7
1366 


PSGTWLTYHGAIKLD
0.6
0.7
0.4
0.4
1367 


SGTWLTYHGAIKLDD
0.5
0.5
0.8
1.0
1368 


GTWLTYHGAIKLDDK
0.6
0.6
0.4
0.4
1369 


TWLTYHGAIKLDDKD
0.6
0.6
0.4
0.4
1370 


WLTYHGAIKLDDKDP
0.7
0.8
0.4
0.4
1371 


LTYHGAIKLDDKDPQ
0.6
0.7
0.5
0.5
1372 


TYHGAIKLDDKDPQF
0.7
0.8
0.4
0.4
1373 


YHGAIKLDDKDPQFK
0.9
0.9
0.3
0.4
1374 


HGAIKLDDKDPQFKD
0.6
0.6
0.4
0.4
1375 


GAIKLDDKDPQFKDN
0.7
0.7
0.5
0.6
1376 


AIKLDDKDPQFKDNV
0.8
0.7
0.5
0.5
1377 


IKLDDKDPQFKDNVI
0.9
0.9
0.6
0.6
405


KLDDKDPQFKDNVIL
0.7
0.8
0.8
0.7
406




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




PQFKDNVILLNKHID
0.7
0.7
0.8
0.7
412


QFKDNVILLNKHIDA
0.6
0.6
0.8
0.9
413


FKDNVILLNKHIDAY
0.5
0.6
0.8
0.8
1378 


KDNVILLNKHIDAYK
0.7
0.8
0.5
0.5
1379 


DNVILLNKHIDAYKT
0.6
0.5
0.7
0.7
1380 


NVILLNKHIDAYKTF
0.7
0.7
0.7
0.8
1381 


VILLNKHIDAYKTFP
0.8
0.7
0.4
0.5
1382 


ILLNKHIDAYKTFPP
0.7
0.7
0.7
0.6
1383 


LLNKHIDAYKTFPPT
0.7
0.6
0.5
0.5
1384 


LNKHIDAYKTFPPTE
0.5
0.5
0.4
0.4
1385 


NKHIDAYKTFPPTEP
0.5
0.6
0.4
0.5
1386 


KHIDAYKTFPPTEPK
0.7
0.8
0.3
0.3
1387 


HIDAYKTFPPTEPKK
0.7
0.6
0.3
0.4
1388 


IDAYKTFPPTEPKKD
0.6
0.7
0.3
0.4
1389 


DAYKTFPPTEPKKDK
0.6
0.8
0.2
0.2
1390 


AYKTFPPTEPKKDKK
0.6
0.7
0.1
0.3
1391 


YKTFPPTEPKKDKKK
0.6
0.7
0.3
0.3
1392 


KTFPPTEPKKDKKKK
0.7
0.6
0.3
0.3
1393 


TFPPTEPKKDKKKKT
0.7
0.6
0.4
0.5
1394 


FPPTEPKKDKKKKTD
0.6
0.6
0.3
0.4
1395 


PPTEPKKDKKKKTDE
0.7
0.6
0.3
0.4
1396 


PTEPKKDKKKKTDEA
0.6
0.6
0.3
0.4
1397 


TEPKKDKKKKTDEAQ
0.8
0.7
0.4
0.5
1398 


EPKKDKKKKTDEAQP
0.8
0.8
0.3
0.5
1399 


PKKDKKKKTDEAQPL
0.8
0.8
0.3
0.4
1400 


KKDKKKKTDEAQPLP
0.6
0.7
0.4
0.5
1401 


KDKKKKTDEAQPLPQ
0.6
0.6
0.4
0.5
1402 


DKKKKTDEAQPLPQR
0.6
0.8
0.4
0.5
1403 


KKKKTDEAQPLPQRQ
0.9
1.0
0.4
0.6
1404 


KKKTDEAQPLPQRQK
0.8
0.9
0.3
0.4
1405 


KKTDEAQPLPQRQKK
0.7
0.7
0.3
0.4
1406 


KTDEAQPLPQRQKKQ
0.9
0.7
0.4
0.4
1407 


TDEAQPLPQRQKKQP
0.6
0.7
0.2
0.5
1408 


DEAQPLPQRQKKQPT
0.8
0.7
0.3
0.3
1409 


EAQPLPQRQKKQPTV
0.7
0.6
0.4
0.4
1410 


AQPLPQRQKKQPTVT
0.7
0.6
0.3
0.4
1411 


QPLPQRQKKQPTVTL
0.5
0.6
0.9
1.0
414


PLPQRQKKQPTVTLL
0.5
0.7
1.1
1.1
415


LPQRQKKQPTVTLLP
0.7
0.8
0.7
0.8
416


PQRQKKQPTVTLLPA
0.7
0.8
0.7
0.9
417


QRQKKQPTVTLLPAA
0.7
0.8
0.8
1.1
418


RQKKQPTVTLLPAAD
0.8
0.7
0.5
0.6
419


QKKQPTVTLLPAADM
0.6
0.7
0.7
0.9
420


KKQPTVTLLPAADMD
0.6
0.7
0.3
0.3
1412 


KQPTVTLLPAADMDD
0.7
0.7
0.3
0.4
1413 


QPTVTLLPAADMDDF
0.5
0.7
0.5
0.5
1414 


PTVTLLPAADMDDFS
0.7
0.8
0.3
0.3
1415 


TVTLLPAADMDDFSR
0.6
0.6
0.3
0.3
1416 


VTLLPAADMDDFSRQ
0.5
0.5
0.4
0.1
1417 


TLLPAADMDDFSRQL
0.8
0.7
0.4
0.5
1418 


LLPAADMDDFSRQLQ
0.6
0.7
0.4
0.4
1419 


LPAADMDDFSRQLQN
0.7
0.7
0.4
0.4
1420 


PAADMDDFSRQLQNS
0.8
0.8
0.3
0.3
1421 


AADMDDFSRQLQNSM
0.7
0.8
0.3
0.4
1422 


ADMDDFSRQLQNSMS
0.7
0.8
0.2
0.4
1423 


DMDDFSRQLQNSMSG
0.6
0.8
0.3
0.4
1424 


MDDFSRQLQNSMSGA
0.7
1.0
0.5
0.5
1425 


DDFSRQLQNSMSGAS
0.6
0.8
0.3
0.3
1426 


DFSRQLQNSMSGASA
0.6
0.6
0.4
0.5
1427 


FSRQLQNSMSGASAD
0.6
0.7
0.2
0.4
1428 


SRQLQNSMSGASADS
0.7
0.8
0.3
0.5
1429 


RQLQNSMSGASADST
0.6
0.7
0.2
0.4
1430 


QLQNSMSGASADSTQ
0.6
0.8
0.4
0.5
1431 


LQNSMSGASADSTQA
0.5
0.7
0.2
0.0
1432 
















TABLE 25










Binding of a rabbit serum to linear and looped/cyclic


peptides of protein X1 of SARS-CoV Urbani.











Rabbit serum
Rabbit serum



Peptide
linear
looped
SEQ


sequence
peptides
peptides
ID NO





MDLFMRFFTLGSITA
0.5
0.5
607


DLFMRFFTLGSITAQ
0.1
0.3
608


LFMRFFTLGSITAQP
0.5
0.4
609


FMRFFTLGSITAQPV
0.3
0.4
610


MRFFTLGSITAQPVK
0.4
0.2
611


RFFTLGSITAQPVKI
1.7
0.5
 9


FFTLGSITAQPVKID
1.1
0.0
 10


FTLGSITAQPVKIDN
0.7
0.8
 11


TLGSITAQPVKIDNA
0.8
0.4
 12


LGSITAQPVKIDNAS
0.3
0.4
 13


GSITAQPVKIDNASP
0.2
0.4
 14


SITAQPVKIDNASPA
0.1
0.4
 15


ITAQPVKIDNASPAS
0.1
0.3
 16


TAQPVKIDNASPAST
0.1
0.4
 17


AQPVKIDNASPASTV
0.1
0.5
 18


QPVKIDNASPASTVH
0.1
0.4
 19


PVKIDNASPASTVHA
0.1
0.4
 20


VKIDNASPASTVHAT
0.2
0.3
 21


KIDNASPASTVHATA
0.2
0.3
 22


IDNASPASTVHATAT
0.5
0.3
 23


DNASPASTVHATATI
0.7
0.3
 24


NASPASTVHATATIP
0.6
0.3
 25


ASPASTVHATATIPL
1.4
0.5
 26


SPASTVHATATIPLQ
1.0
0.4
 27


PASTVHATATIPLQA
0.9
0.5
 28


ASTVHATATIPLQAS
0.9
0.6
 29


STVHATATIPLQASL
0.6
0.5
 30


TVHATATIPLQASLP
0.4
0.5
 31


VHATATIPLQASLPF
0.1
0.6
 32


HATATIPLQASLPFG
0.1
0.5
612


ATATIPLQASLPFGW
0.1
0.6
613


TATIPLQASLPFGWL
0.1
0.6
614


ATIPLQASLPFGWLV
0.1
0.5
615


TIPLQASLPFGWLVI
0.1
0.5
616


IPLQASLPFGWLVIG
0.1
0.5
617


PLQASLPFGWLVIGV
0.1
0.4
618


LQASLPFGWLVIGVA
0.5
0.4
619


QASLPFGWLVIGVAF
0.3
0.4
620


ASLPFGWLVIGVAFL
1.4
0.3
621


SLPFGWLVIGVAFLA
0.4
0.1
622


LPFGWLVIGVAFLAV
2.0
0.5
623


PFGWLVIGVAFLAVF
1.1
0.5
624


FGWLVIGVAFLAVFQ
1.2
0.5
625


GWLVIGVAFLAVFQS
0.8
0.6
626


WLVIGVAFLAVFQSA
0.5
0.5
627


LVIGVAFLAVFQSAT
0.3
1.2
628


VIGVAFLAVFQSATK
0.1
0.6
629


IGVAFLAVFQSATKI
0.1
0.6
630


GVAFLAVFQSATKII
0.9
0.6
631


VAFLAVFQSATKIIA
0.2
0.6
632


AFLAVFQSATKIIAL
0.2
0.8
633


FLAVFQSATKIIALN
0.6
0.6
634


LAVFQSATKIIALNK
0.1
0.7
635




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




KRWQLALYKGFQFIC
0.1
0.8
636


RWQLALYKGFQFICN
0.3
0.9
637


WQLALYKGFQFICNL
0.5
0.6
638


QLALYKGFQFICNLL
0.3
0.6
639


LALYKGFQFICNLLL
0.2
0.6
640


ALYKGFQFICNLLLL
0.6
0.4
641


LYKGFQFICNLLLLF
0.2
0.3
642


YKGFQFICNLLLLFV
0.3
0.0
643


KGFQFICNLLLLFVT
0.6
0.5
644


GFQFIGNLLLLFVTI
0.9
0.5
645


FQFICNLLLLFVTIY
0.9
0.0
646


QFICNLLLLFVTIYS
0.3
0.5
647


FICNLLLLFVTIYSH
0.1
0.5
648


ICNLLLLFVTIYSHL
0.2
0.5
649


CNLLLLFVTIYSHLL
0.1
0.6
650


NLLLLFVTIYSHLLL
0.2
0.6
651


LLLLFVTIYSHLLLV
0.1
0.5
652


LLLFVTIYSHLLLVA
0.1
0.5
653


LLFVTIYSHLLLVAA
0.1
0.5
654


LFVTIYSHLLLVAAG
0.1
0.6
655


FVTIYSHLLLVAAGM
0.1
0.5
656


VTIYSHLLLVAAGME
0.1
0.5
657


TIYSHLLLVAAGMEA
0.1
0.4
658


IYSHLLLVAAGMEAQ
0.1
0.4
659


YSHLLLVAAGMEAQF
0.1
0.4
660


SHLLLVAAGMEAQFL
0.5
0.0
661


HLLLVAAGMEAQFLY
0.5
0.4
662


LLLVAAGMEAQFLYL
0.2
0.5
663


LLVAAGMEAQFLYLY
0.2
0.5
664


LVAAGMEAQFLYLYA
0.1
0.6
665


VAAGMEAQFLYLYAL
0.1
0.5
666


AAGMEAQFLYLYALI
0.1
0.6
667


AGMEAQFLYLYALIY
0.1
0.6
668


GMEAQFLYLYALIYF
0.1
0.6
669


MEAQFLYLYALIYFL
0.1
0.5
670


EAQFLYLYALIYFLQ
0.1
0.5
671


AQFLYLYALIYFLQC
0.2
0.5
672


QFLYLYALIYFLQCI
0.1
0.4
673


FLYLYALIYFLQCIN
0.1
0.4
674


LYLYALIYFLQCINA
0.1
0.5
675


YLYALIYFLQCINAC
0.1
0.4
676


LYALIYFLQCINACR
0.2
0.6
677


YALIYFLQCINACRI
0.1
0.0
678


ALIYFLQCINACRII
0.7
0.6
679


LIYFLQCINACRIIM
0.1
0.3
680


IYFLQCINACRIIMR
0.5
0.9
681


YFLQCINACRIIMRC
0.1
0.8
682


FLQCINACRIIMRCW
0.1
0.8
683




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




CRIIMRCWLCWKCKS
0.1
0.7
 36


RIIMRCWLCWKCKSK
0.1
0.3
 37


IIMRCWLCWKCKSKN
0.2
0.7
 38


IMRCWLCWKGKSKNP
0.1
0.3
 39


MRCWLCWKCKSKNPL
0.1
0.5
 40


RCWLCWKCKSKNPLL
0.1
0.7
 41


CWLCWKCKSKNPLLY
0.2
0.7
 42


WLCWKCKSKNPLLYD
0.2
0.6
 43


LCWKCKSKNPLLYDA
0.3
0.8
 44


CWKCKSKNPLLYDAN
0.1
0.5
 45


WKCKSKNPLLYDANY
0.1
0.6
684


KCKSKNPLLYDANYF
0.2
0.6
685


CKSKNPLLYDANYFV
0.1
0.6
686


KSKNPLLYDANYFVC
0.1
0.6
687


SKNPLLYDANYFVCW
0.1
0.6
688


KNPLLYDANYFVCWH
0.1
0.7
689


NPLLYDANYFVCWHT
0.2
0.6
690


PLLYDANYFVCWHTH
0.1
0.5
691


LLYDANYFVCWHTHN
0.1
0.5
692


LYDANYFVCWHTHNY
0.1
0.5
693


YDANYFVCWHTHNYD
0.1
0.4
 46


DANYFVCWHTHNYDY
0.1
0.5
 47


ANYFVCWHTHNYDYC
0.1
0.5
 48


NYFVCWHTHNYDYCI
0.1
0.5
 49


YFVCWHTHNYDYCIP
0.1
0.6
 50


FVCWHTHNYDYCIPY
0.1
0.7
 51


VCWHTHNYDYCIPYN
0.1
0.6
 52


CWHTHNYDYCIPYNS
0.1
0.7
 53


WHTHNYDYCIPYNSV
0.1
0.6
 54


HTHNYDYCIPYNSVT
0.1
0.6
 55


THNYDYCIPYNSVTD
0.1
0.6
 56


HNYDYCIPYNSVTDT
0.1
0.5
 57


NYDYCIPYNSVTDTI
0.1
0.5
 58


YDYCIPYNSVTDTIV
0.1
0.5
 59


DYCIPYNSVTDTIVV
0.1
0.5
 60


YCIPYNSVTDTIVVT
0.1
0.5
 61


CIPYNSVTDTIVVTE
0.1
0.4
694


IPYNSVTDTIVVTEG
0.1
0.3
695


PYNSVTDTIVVTEGD
0.1
0.3
696


YNSVTDTIVVTEGDG
0.1
0.5
697


NSVTDTIVVTEGDGI
0.1
0.5
698


SVTDTIVVTEGDGIS
0.1
0.4
699


VTDTIVVTEGDGIST
0.1
0.5
700


TDTIVVTEGDGISTP
0.1
0.3
701


DTIVVTEGDGISTPK
0.1
0.5
702


TIVVTEGDGISTPKL
0.1
0.5
703


IVVTEGDGISTPKLK
0.1
0.4
704


VVTEGDGISTPKLKE
0.1
0.4
705


VTEGDGISTPKLKED
0.0
0.4
706


TEGDGISTPKLKEDY
0.1
0.5
707


EGDGISTPKLKEDYQ
0.1
0.4
708


GDGISTPKLKEDYQI
0.1
0.5
 62


DGISTPKLKEDYQIG
0.1
0.4
 63


GISTPKLKEDYQIGG
0.1
0.3
 64


ISTPKLKEDYQIGGY
0.1
0.4
 65


STPKLKEDYQIGGYS
0.1
0.3
 66


TPKLKEDYQIGGYSE
0.1
1.2
 67


PKLKEDYQIGGYSED
0.1
0.6
 68


KLKEDYQIGGYSEDR
0.1
0.5
 69


LKEDYQIGGYSEDRH
0.1
0.7
 70


KEDYQIGGYSEDRHS
0.1
0.5
 71


EDYQIGGYSEDRHSG
0.1
0.6
 72


DYQIGGYSEDRHSGV
0.1
0.5
 73


YQIGGYSEDRHSGVK
0.1
0.5
 74


QIGGYSEDRHSGVKD
0.1
0.5
 75


IGGYSEDRHSGVKDY
0.1
0.6
 76


GGYSEDRHSGVKDYV
0.1
0.2
 77


GYSEDRHSGVKDYVV
0.1
0.3
 78


YSEDRHSGVKDYVVV
0.1
0.4
 79


SEDRHSGVKDYVVVH
0.1
0.4
 80


EDRHSGVKDYVVVHG
0.1
0.3
 81


DRHSGVKDYVVVHGY
0.1
0.5
 82


RHSGVKDYVVVHGYF
0.1
0.4
 83


HSGVKDYVVVHGYFT
0.1
0.6
 84


SGVKDYVVVHGYFTE
0.1
0.7
 85


GVKDYVVVHGYFTEV
0.1
0.7
 86


VKDYVVVHGYFTEVY
0.1
0.6
709


KDYVVVHGYFTEVYY
0.1
0.5
710


DYVVVHGYFTEVYYQ
0.1
0.6
711


YVVVHGYFTEVYYQL
0.1
0.5
712


VVVHGYFTEVYYQLE
0.1
0.6
713


VVHGYFTEVYYQLES
0.1
0.7
714


VHGYFTEVYYQLEST
0.1
0.6
715


HGYFTEVYYQLESTQ
0.1
0.5
716


GYFTEVYYQLESTQI
0.1
0.5
717


YFTEVYYQLESTQIT
0.1
0.4
718


FTEVYYQLESTQITT
0.1
0.5
719


TEVYYQLESTQITTD
0.1
0.4
720


EVYYQLESTQITTDT
0.1
0.4
721


VYYQLESTQITTDTG
0.1
0.5
722


YYQLESTQITTDTGI
0.1
0.6
723


YQLESTQITTDTGIE
0.1
0.4
724


QLESTQITTDTGIEN
0.1
0.6
725


LESTQITTDTGIENA
0.1
0.5
726


ESTQITTDTGIENAT
0.1
0.5
727


STQITTDTGIENATF
0.1
0.7
728


TQITTDTGIENATFF
0.1
0.6
729


QITTDTGIENATFFI
0.1
1.5
730


ITTDTGIENATFFIF
0.1
0.6
731


TTDTGIENATFFIFN
0.1
0.5
732


TDTGIENATFFIFNK
0.1
0.6
733


DTGIENATFFIFNKL
0.1
0.6
734


TGIENATFFIFNKLV
0.1
0.6
735


GIENATFFIFNKLVK
0.1
0.6
736


IENATFFIFNKLVKD
0.1
0.5
737


ENATFFIFNKLVKDP
0.1
0.5
738


NATFFIFNKLVKDPP
0.1
0.3
739


ATFFIFNKLVKDPPN
0.1
0.6
 87


TFFIFNKLVKDPPNV
0.1
0.5
 88


FFIFNKLVKDPPNVQ
0.1
0.5
 89


FIFNKLVKDPPNVQI
0.1
0.7
 90


IFNKLVKDPPNVQIH
0.1
0.6
 91


FNKLVKDPPNVQIHT
0.1
0.7
 92


NKLVKDPPNVQIHTI
0.1
0.6
 93


KLVKDPPNVQIHTID
0.1
0.4
 94


LVKDPPNVQIHTIDG
0.1
0.5
 95


VKDPPNVQIHTIDGS
0.1
0.5
 96


KDPPNVQIHTIDGSS
0.1
0.9
 97


DPPNVQIHTIDGSSG
0.1
0.4
740


PPNVQIHTIDGSSGV
0.1
0.5
741


PNVQIHTIDGSSGVA
0.1
0.4
742


NVQIHTIDGSSGVAN
0.1
0.3
743


VQIHTIDGSSGVANP
0.1
0.4
744


QIHTIDGSSGVANPA
0.1
0.3
745


IHTIDGSSGVANPAM
0.1
0.5
746


HTIDGSSGVANPAMD
0.1
0.4
747


TIDGSSGVANPAMDP
0.1
0.4
748


IDGSSGVANPAMDPI
0.1
0.5
749


DGSSGVANPAMDPIY
0.1
0.6
 98


GSSGVANPAMDPIYD
0.1
0.5
 99


SSGVANPAMDPIYDE
0.1
0.6
100


SGVANPAMDPIYDEP
1.1
0.6
101


GVANPAMDPIYDEPT
0.1
0.6
102


VANPAMDPIYDEPTT
0.1
0.5
103


ANPAMDPIYDEPTTT
0.1
0.4
104


NPAMDPIYDEPTTTT
0.1
0.3
105


PAMDPIYDEPTTTTS
0.1
0.4
106


AMDPIYDEPTTTTSV
0.1
0.4
107


MDPIYDEPTTTTSVP
0.1
0.3
108


DPIYDEPTTTTSVPL
0.1
0.5
109
















TABLE 26










Binding of a rabbit serum to linear and looped/cyclic


peptides of protein X2 of SARS-CoV Urbani.











Rabbit serum
Rabbit serum



Peptide
linear
looped


sequence
peptides
peptides
SEQ ID NO





MMPTTLFAGTHITMT
0.6
0.6
110


MPTTLFAGTHITMTT
0.7
0.3
111


PTTLFAGTHITMTTV
0.8
0.4
112


TTLFAGTHITMTTVY
0.6
0.3
113


TLFAGTHITMTTVYH
0.7
0.5
114


LFAGTHITMTTVYHI
0.6
0.5
115


FAGTHITMTTVYHIT
0.6
0.4
116


AGTHITMTTVYHITV
0.7
0.5
117


GTHITMTTVYHITVS
2.1
0.4
118


THITMTTVYHITVSQ
0.7
0.4
750


HITMTTVYHITVSQI
0.7
0.4
751


ITMTTVYHITVSQIQ
0.3
0.3
752


TMTTVYHITVSQIQL
0.7
0.4
753


MTTVYHITVSQIQLS
0.7
0.4
754


TTVYHITVSQIQLSL
0.7
0.4
755


TVYHITVSQIQLSLL
0.7
0.3
756


VYHITVSQIQLSLLK
0.9
0.4
757


YHITVSQIQLSLLKV
0.8
0.3
758


HITVSQIQLSLLKVT
0.7
0.4
759


ITVSQIQLSLLKVTA
0.7
0.4
760


TVSQIQLSLLKVTAF
0.6
0.5
761


VSQIQLSLLKVTAFQ
0.6
0.4
762


SQIQLSLLKVTAFQH
0.7
0.5
763


QIQLSLLKVTAFQHQ
0.6
0.5
764


IQLSLLKVTAFQHQN
0.6
0.5
765


QLSLLKVTAFQHQNS
0.6
0.5
766


LSLLKVTAFQHQNSK
0.4
0.3
767


SLLKVTAFQHQNSKK
0.1
0.3
768


LLKVTAFQHQNSKKT
0.6
0.3
769


LKVTAFQHQNSKKTT
0.6
0.3
770


KVTAFQHQNSKKTTK
0.6
0.2
771


VTAFQHQNSKKTTKL
0.6
0.4
772




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




TKLVVILRIGTQVLK
0.3
0.6
128


KLVVILRIGTQVLKT
0.5
0.5
129


LVVILRIGTQVLKTM
0.4
0.6
773


VVILRIGTQVLKTMS
0.4
0.4
774


VILRIGTQVLKTMSL
0.3
0.5
775


ILRIGTQVLKTMSLY
0.3
0.5
776


LRIGTQVLKTMSLYM
0.4
0.4
130


RIGTQVLKTMSLYMA
0.4
0.5
131


IGTQVLKTMSLYMAI
0.1
0.4
132


GTQVLKTMSLYMAIS
0.2
0.4
133


TQVLKTMSLYMAISP
0.1
0.4
134


QVLKTMSLYMAISPK
0.1
0.5
135


VLKTMSLYMAISPKF
0.3
0.5
136


LKTMSLYMAISPKFT
0.1
0.4
137


KTMSLYMAISPKFTT
0.3
0.8
138


TMSLYMAISPKFTTS
0.2
0.5
777


MSLYMAISPKFTTSL
0.3
0.5
778


SLYMAISPKFTTSLS
0.2
0.3
779


LYMAISPKFTTSLSL
0.3
0.5
780


YMAISPKFTTSLSLH
0.3
0.5
781


MAISPKFTTSLSLHK
0.3
0.6
782


AISPKFTTSLSLHKL
0.2
0.4
783


ISPKFTTSLSLHKLL
0.3
0.4
784


SPKFTTSLSLHKLLQ
0.3
0.5
785


PKFTTSLSLHKLLQT
0.2
0.4
786


KFTTSLSLHKLLQTL
0.2
0.4
787


FTTSLSLHKLLQTLV
0.1
0.9
788


TTSLSLHKLLQTLVL
0.1
0.4
789


TSLSLHKLLQTLVLK
0.2
0.5
790


SLSLHKLLQTLVLKM
0.1
0.4
791


LSLHKLLQTLVLKML
0.3
0.5
792


SLHKLLQTLVLKMLH
0.3
0.5
793


LHKLLQTLVLKMLHS
0.2
0.4
794


HKLLQTLVLKMLHSS
0.2
0.4
795


KLLQTLVLKMLHSSS
0.2
0.4
796


LLQTLVLKMLHSSSL
0.2
0.4
797


LQTLVLKMLHSSSLT
0.3
0.3
798


QTLVLKMLHSSSLTS
0.3
0.4
799


TLVLKMLHSSSLTSL
0.2
0.4
800


LVLKMLHSSSLTSLL
0.3
0.4
801


VLKMLHSSSLTSLLK
0.2
0.3
802


LKMLHSSSLTSLLKT
0.2
0.4
803


KMLHSSSLTSLLKTH
0.2
0.2
804


MLHSSSLTSLLKTHR
0.2
0.5
805


LHSSSLTSLLKTHRM
0.2
0.4
806


HSSSLTSLLKTHRMC
0.2
0.5
807


SSSLTSLLKTHRMCK
0.3
0.2
808


SSLTSLLKTHRMCKY
0.3
0.5
809


SLTSLLKTHRMCKYT
0.1
0.3
810


LTSLLKTHRMCKYTQ
0.3
0.4
811


TSLLKTHRMCKYTQS
0.4
0.4
812


SLLKTHRMCKYTQST
0.3
0.3
813


LLKTHRMCKYTQSTA
0.5
0.3
814


LKTHRMCKYTQSTAL
0.4
0.5
815


KTHRMCKYTQSTALQ
0.3
0.3
816


THRMCKYTQSTALQE
0.3
0.3
817


HRMCKYTQSTALQEL
0.3
0.4
818


RMCKYTQSTALQELL
0.4
0.4
819


MCKYTQSTALQELLI
0.2
0.4
820


CKYTQSTALQELLIQ
0.2
0.2
821


KYTQSTALQELLIQQ
0.4
0.4
822


YTQSTALQELLIQQW
0.3
0.3
823


TQSTALQELLIQQWI
0.3
0.4
824


QSTALQELLIQQWIQ
0.2
0.4
825


STALQELLIQQWIQF
0.3
0.4
826


TALQELLIQQWIQFM
0.4
0.4
827


ALQELLIQQWIQFMM
0.2
0.4
828


LQELLIQQWIQFMMS
0.3
0.3
829


QELLIQQWIQFMMSR
0.3
0.4
830


ELLIQQWIQFMMSRR
0.4
0.4
831


LLIQQWIQFMMSRRR
0.5
0.6
832


LIQQWIQFMMSRRRL
0.3
1.2
833


IQQWIQFMMSRRRLL
0.4
1.0
834


QQWIQFMMSRRRLLA
0.8
1.5
835


QWIQFMMSRRRLLAC
1.0
2.0
836


WIQFMMSRRRLLACL
0.5
1.3
837


IQFMMSRRRLLACLC
0.5
1.1
838


QFMMSRRRLLACLCK
0.5
1.9
839


FMMSRRRLLACLCKH
0.4
0.6
840


MMSRRRLLACLCKHK
0.4
0.3
139


MSRRRLLACLCKHKK
0.2
0.3
140


SRRRLLACLCKHKKV
0.3
0.4
141


RRRLLACLCKHKKVS
0.5
0.2
142


RRLLACLCKHKKVST
0.6
0.3
143


RLLACLCKHKKVSTN
0.3
0.4
144


LLACLCKHKKVSTNL
0.4
0.4
145


LACLCKHKKVSTNLC
0.3
0.3
146


ACLCKHKKVSTNLCT
0.3
0.3
147


CLCKHKKVSTNLCTH
0.4
0.4
148


LCKHKKVSTNLCTHS
0.3
0.3
149


CKHKKVSTNLCTHSF
0.3
0.5
150


KHKKVSTNLCTHSFR
0.4
0.0
151


HKKVSTNLCTHSFRK
0.4
0.1
152


KKVSTNLCTHSFRKK
0.3
0.1
153


KVSTNLCTHSFRKKQ
0.3
0.1
154


VSTNLCTHSFRKKQV
0.3
0.2
155


STNLCTHSFRKKQVR
0.7
0.2
156

















TABLE 27










Binding of a rabbit serum to linear and



looped/cyclic peptides of protein E of


SARS-CoV Urbani.












Rabbit






serum
Rabbit serum



Peptide
linear
looped



sequence
peptides
peptides
SEQ ID NO





MYSFVSEETGTLIVN
0.5
0.2
841






YSFVSEETGTLIVNS
0.2
0.4
842





SFVSEETGTLIVNSV
0.5
0.1
843





VSEETGTLIVNSVLL
0.4
0.1
844





FVSEETGTLIVNSVL
0.3
0.1
845





SEETGTLIVNSVLLF
0.7
0.0
846





EETGTLIVNSVLLFL
0.5
0.0
847





ETGTLIVNSVLLFLA
0.3
0.0
848





TGTLIVNSVLLFLAF
0.5
0.0
849





GTLIVNSVLLFLAFV
0.6
0.0
850





TLIVNSVLLFLAFVV
0.1
0.3
851





LIVNSVLLFLAFVVF
0.5
0.3
852





IVNSVLLFLAFVVFL
0.5
0.5
853





VNSVLLFLAFVVFLL
0.2
0.4
854





NSVLLFLAFVVFLLV
0.6
0.6
855





SVLLFLAFVVFLLVT
0.6
0.2
856





VLLFLAFVVFLLVTL
0.5
0.5
857





LLFLAFVVFLLVTLA
0.6
0.4
858





LFLAFVVFLLVTLAI
0.5
0.3
859





FLAFVVFLLVTLAIL
0.0
0.2
860





LAFVVFLLVTLAILT
0.5
0.2
861





AFVVFLLVTLAILTA
0.7
0.1
862





FVVFLLVTLAILTAL
0.2
0.2
863





VVFLLVTLAILTALR
0.5
0.2
864





VFLLVTLAILTALRL
0.4
0.3
865





FLLVTLAILTALRLC
0.1
0.0
866





LLVTLAILTALRLCA
0.5
0.8
867





LVTLAILTALRLCAY
0.4
0.3
868





VTLAILTALRLCAYC
0.1
0.4
869





TLAILTALRLCAYCC
0.7
0.4
870





LAILTALRLCAYCCN
0.6
0.6
871





AILTALRLCAYCCNI
0.2
0.6
872





ILTALRLCAYCCNIV
0.6
0.6
873





LTALRLCAYCCNIVN
0.6
0.4
874





TALRLCAYCCNIVNV
0.2
0.4
875





ALRLCAYCCNIVNVS
0.7
0.4
876





LRLCAYCCNIVNVSL
0.6
0.2
877





RLCAYCCNIVNVSLV
0.4
0.2
878





LCAYCCNIVNVSLVK
0.7
0.4
157





CAYCCNIVNVSLVKP
0.6
0.2
158





AYCCNIVNVSLVKPT
0.3
0.2
159





YCCNIVNVSLVKPTV
0.7
0.3
160





CCNIVNVSLVKPTVY
0.6
0.0
161





CNIVNVSLVKPTVYV
0.1
0.5
162





NIVNVSLVKPTVYVY
0.5
0.6
163





IVNVSLVKPTVYVYS
0.5
0.5
164





VNVSLVKPTVYVYSR
0.4
0.6
165





NVSLVKPTVYVYSRV
0.5
0.3
166





VSLVKPTVYVYSRVK
1.5
2.0
167





SLVKPTVYVYSRVKN
0.3
0.6
168





LVKPTVYVYSRVKNL
0.6
0.9
169





VKPTVYVYSRVKNLN
0.5
0.7
170





KPTVYVYSRVKNLNS
0.6
0.9
171





PTVYVYSRVKNLNSS
0.7
0.7
172





TVYVYSRVKNLNSSE
0.8
0.3
173





VYVYSRVKNLNSSEG
0.3
0.4
174





YVYSRVKNLNSSEGV
1.2
0.5
175





VYSRVKNLNSSEGVP
0.7
0.0
176





YSRVKNLNSSEGVPD
0.3
0.0
177





SRVKNLNSSEGVPDL
0.7
0.0
178





RVKNLNSSEGVPDLL
0.8
0.6
179





VKNLNSSEGVPDLLV
0.3
0.6
180
















TABLE 28










Binding of a rabbit serum to linear and looped/cyclic


peptides of protein M of SARS-CoV Urbani.











Rabbit serum
Rabbit serum



Peptide
linear
looped
SEQ ID


sequence
peptides
peptides
NO













embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




EELKQLLEQWNLVIG
0.4
0.4
190


ELKQLLEQWNLVIGF
0.0
0.2
879


LKQLLEQWNLVIGFL
0.2
0.1
880


KQLLEQWNLVIGFLP
0.0
0.1
881


QLLEQWNLVIGFLFL
0.2
0.0
882


LLEQWNLVIGFLFLA
0.6
0.0
883


LEQWNLVIGFLFLAW
0.2
0.4
884


EQWNLVIGFLFLAWI
0.2
0.4
885


QWNLVIGFLFLAWIM
0.3
0.3
886


WNLVIGFLFLAWIML
0.2
0.3
887


NLVIGFLFLAWIMLL
0.2
0.2
888


LVIGFLFLAWIMLLQ
0.1
0.3
889


VIGFLFLAWIMLLQF
0.3
0.3
890


IGFLFLAWIMLLQFA
0.2
0.3
891


GFLFLAWIMLLQFAY
0.3
0.4
892


FLFLAWIMLLQFAYS
0.2
0.3
893


LFLAWIMLLQFAYSN
0.7
0.3
894


FLAWIMLLQFAYSNR
0.3
0.5
895


LAWIMLLQFAYSNRN
0.8
0.1
896


AWIMLLQFAYSNRNR
0.3
0.4
897


WIMLLQFAYSNRNRF
0.8
0.3
898


IMLLQFAYSNRNRFL
0.2
0.5
899


MLLQFAYSNRNRFLY
0.5
0.0
900


LLQFAYSNRNRFLYI
0.2
0.4
901


LQFAYSNRNRFLYII
0.6
0.4
902


QFAYSNRNRFLYIIK
0.4
1.2
191


FAYSNRNRFLYIIKL
0.7
0.6
192


AYSNRNRFLYIIKLV
0.3
0.5
193


YSNRNRFLYIIKLVF
0.4
0.5
194


SNRNRFLYIIKLVFL
0.5
0.6
195


NRNRFLYIIKLVFLW
0.5
0.4
196


RNRFLYIIKLVFLWL
0.4
0.5
197


NRFLYIIKLVFLWLL
0.4
0.3
198


RFLYIIKLVFLWLLW
0.2
0.3
199


FLYIIKLVFLWLLWP
0.4
0.4
200


LYIIKLVFLWLLWPV
0.1
0.3
903


YIIKLVFLWLLWPVT
0.4
0.2
904


IIKLVFLWLLWPVTL
0.1
0.0
905


IKLVFLWLLWPVTLA
0.3
0.0
906


KLVFLWLLWPVTLAC
0.1
0.0
907


LVFLWLLWPVTLACF
0.3
0.3
908


VFLWLLWPVTLACFV
0.3
0.3
909


FLWLLWPVTLACFVL
0.3
0.4
910


LWLLWPVTLACFVLA
0.1
0.4
911


WLLWPVTLACFVLAA
0.3
0.3
912


LLWPVTLACFVLAAV
0.2
0.3
913


LWPVTLACFVLAAVY
0.4
0.4
914


WPVTLACFVLAAVYR
0.2
0.4
915


PVTLACFVLAAVYRI
0.4
0.3
916


VTLACFVLAAVYRIN
0.2
0.3
917


TLACFVLAAVYRINW
0.5
0.1
918


LACFVLAAVYRINWV
0.3
0.2
919


ACFVLAAVYRINWVT
0.4
0.3
920


CFVLAAVYRINWVTG
0.2
0.1
921


FVLAAVYRINWVTGG
0.5
0.0
922


VLAAVYRINWVTGGI
0.3
0.0
923


LAAVYRINWVTGGIA
0.4
0.0
924


AAVYRINWVTGGIAI
0.4
0.4
925


AVYRINWVTGGIAIA
0.4
0.5
926


VYRINWVTGGIAIAM
0.3
0.4
927


YRINWVTGGIAIAMA
0.4
0.3
928


RINWVTGGIAIAMAC
0.2
0.4
929


INWVTGGIAIAMACI
0.5
0.4
201


NWVTGGIAIAMACIV
0.2
0.3
202


WVTGGIAIAMACIVG
0.4
0.2
203


VTGGIAIAMACIVGL
0.3
0.4
204


TGGIAIAMACIVGLM
0.5
0.3
205


GGIAIAMACIVGLMW
0.2
0.3
206


GIAIAMACIVGLMWL
0.3
0.1
207


IAIAMACIVGLMWLS
0.1
0.3
208


AIAMACIVGLMWLSY
0.4
0.0
930


IANACIVGLMWLSYF
0.1
0.0
931


AMACIVGLMWLSYFV
0.4
0.1
932


MACIVGLMWLSYFVA
0.2
0.0
933


ACIVGLMWLSYFVAS
0.3
0.8
934


CIVGLMWLSYFVASF
0.1
0.3
935


IVGLMWLSYFVASFR
0.3
0.5
936


VGLMWLSYFVASFRL
0.0
0.4
937


GLMWLSYFVASFRLF
0.2
0.2
938


LMWLSYFVASFRLFA
0.0
0.3
209


MWLSYFVASFRLFAR
0.4
0.5
210


WLSYFVASFRLFART
0.2
0.4
211


LSYFVASFRLFARTR
0.4
0.6
212


SYFVASFRLFARTRS
0.2
0.4
213


YFVASFRLFARTRSM
0.6
0.8
214


FVASFRLFARTRSMW
0.2
0.3
215


VASFRLFARTRSMWS
0.8
0.4
216


ASFRLFARTRSMWSF
0.3
0.2
939


SFRLFARTRSMWSFN
0.8
0.2
940


FRLFARTRSMWSFNP
0.2
0.2
941


RLFARTRSMWSFNPE
0.4
0.0
942


LFARTRSMWSFNPET
0.1
0.3
943


FARTRSMWSFNPETN
0.4
0.3
944


ARTRSMWSFNPETNI
0.2
0.3
945


RTRSMWSFNPETNIL
0.6
0.4
946


TRSMWSFNPETNILL
0.1
0.3
947


RSMWSFNPETNILLN
0.4
0.3
948


SMWSFNPETNILLNV
0.2
0.4
949


MWSFNPETNILLNVP
0.4
0.2
950


WSFNPETNILLNVPL
0.3
0.3
951


SFNPETNILLNVPLR
0.5
0.4
952


FNPETNILLNVPLRG
0.0
0.4
953


NPETNILLNVPLRGT
0.4
0.2
954


PETNILLNVPLRGTI
0.1
0.3
955


ETNILLNVPLRGTIV
0.5
0.0
956


TNILLNVPLRGTIVT
0.2
0.1
957


NILLNVPLRGTIVTR
0.5
0.4
217


ILLNVPLRGTIVTRP
0.0
0.2
218


LLNVPLRGTIVTRPL
0.4
0.0
219


LNVPLRGTIVTRPLM
0.2
0.4
220


NVPLRGTIVTRPLME
0.3
0.5
221


VPLRGTIVTRPLMES
0.1
0.6
222


PLRGTIVTRPLMESE
0.4
0.4
223


LRGTIVTRPLMESEL
0.0
0.5
224


RGTIVTRPLMESELV
0.3
0.3
225


GTIVTRPLMESELVI
0.1
0.5
226


TIVTRPLMESELVIG
0.3
0.3
227


IVTRPLMESELVIGA
0.1
0.4
229


VTRPLMESELVIGAV
0.4
0.2
230


TRPLMESELVIGAVI
0.2
0.3
231


RPLMESELVIGAVII
0.4
0.2
232


PLMESELVIGAVIIR
0.2
0.1
958


LMESELVIGAVIIRG
0.4
0.2
959


MESELVIGAVIIRGH
0.2
0.2
960


ESELVIGAVIIRGHL
0.4
0.1
961


SELVIGAVIIRGHLR
0.2
0.2
962


ELVIGAVIIRGHLRM
0.8
0.1
963


LVIGAVIIRGHLRMA
0.2
1.4
964


VIGAVIIRGHLRMAG
1.5
0.6
233


IGAVIIRGHLRMAGH
0.3
0.8
234


GAVIIRGHLRMAGHP
0.8
0.5
235


AVIIRGHLRMAGHPL
0.3
0.6
236


VIIRGHLRMAGHPLG
0.4
0.6
237


IIRGHLRMAGHPLGR
0.6
2.0
238


IRGHLRMAGHPLGRC
1.2
0.4
239


RGHLRMAGHPLGRCD
0.0
0.3
240


GHLRMAGHPLGRCDI
0.4
0.7
241


HLRMAGHPLGRCDIK
0.0
0.5
242


LRMAGHPLGRCDIKD
0.3
0.1
243


RMAGHPLGRCDIKDL
0.1
0.6
244


MAGHPLGRCDIKDLP
0.4
0.3
245


AGHPLGRCDIKDLPK
0.1
0.1
246


GHPLGRCDTKDLPKE
0.3
0.0
247


HPLGRCDIKDLPKEI
0.2
1.1
248


PLGRCDIKDLPKEIT
0.3
0.4
249


LGRCDIKDLPKEITV
0.1
0.6
250


GRCDIKDLPKEITVA
0.0
0.1
251


RCDIKDLPKEITVAT
0.0
0.3
965


CDIKDLPKEITVATS
0.4
0.6
966


DIKDLPKEITVATSR
0.2
0.3
967


IKDLPKEITVATSRT
0.3
0.2
968


KDLPKEITVATSRTL
0.2
0.3
969


DLPKEITVATSRTLS
0.1
0.3
970


LPKEITVATSRTLSY
0.2
0.2
971


PKEITVATSRTLSYY
0.5
0.2
972


KEITVATSRTLSYYK
0.4
0.5
973


EITVATSRTLSYYKL
0.7
0.1
974


ITVATSRTLSYYKLG
0.2
0.4
975


TVATSRTLSYYKLGA
0.8
0.2
976


VATSRTLSYYKLGAS
0.3
0.7
977


ATSRTLSYYKLGASQ
0.6
0.4
978


TSRTLSYYKLGASQR
0.3
1.1
979


SRTLSYYKLGASQRV
0.6
0.6
980


RTLSYYKLGASQRVG
0.5
1.0
981


TLSYYKLGASQRVGT
0.4
0.5
252


LSYYKLGASQRVGTD
0.2
0.3
253


SYYKLGASQRVGTDS
0.4
0.3
254


YYKLGASQRVGTDSG
0.1
0.0
255


YKLGASQRVGTDSGF
0.4
0.2
256


KLGASQRVGTDSGFA
0.1
0.1
257


LGASQRVGTDSGFAA
0.3
0.1
258


GASQRVGTDSGFAAY
0.1
0.1
259


ASQRVGTDSGFAAYN
0.4
0.1
260


SQRVGTDSGFAAYNR
0.2
0.1
982


QRVGTDSGFAAYNRY
0.4
0.0
983


RVGTDSGFAAYNRYR
0.0
0.3
984


VGTDSGFAAYNRYRI
0.4
0.0
985


GTDSGFAAYNRYRIG
0.2
0.4
986


TDSGFAAYNRYRIGN
0.0
0.5
987


DSGFAAYNRYRIGNY
0.2
0.3
988


SGFAAYNRYRIGNYK
1.2
1.6
989


GFAAYNRYRIGNYKL
0.2
0.5
990


FAAYNRYRIGNYKLN
0.3
0.6
991


AAYNRYRIGNYKLNT
0.4
0.6
992


AYNRYRIGNYKLNTD
0.3
0.3
993


YNRYRIGNYKLNTDH
0.3
0.5
994


NRYRIGNYKLNTDHA
0.2
0.3
995


RYRIGNYKLNTDHAG
0.1
0.2
996


YRIGNYKLNTDHAGS
0.6
0.1
997


RIGNYKLNTDHAGSN
0.1
0.2
998


IGNYKLNTDHAGSND
0.5
0.0
261


GNYKLNTDHAGSNDN
0.0
0.2
262


NYKLNTDHAGSNDNI
0.5
0.0
263


YKLNTDHAGSNDNIA
0.1
0.1
264


KLNTDHAGSNDNIAL
0.4
0.3
265


LNTDHAGSNDNIALL
0.0
0.3
266


NTDHAGSNDNIALLV
0.4
0.4
267


TDHAGSNDNIALLVQ
0.1
0.2
268

















TABLE 29










Binding of a rabbit serum to linear and



looped/cyclic peptides of protein X3 of


SARS-CoV Urbani.












Rabbit






serum
Rabbit serum



Peptide
linear
looped



sequence
peptides
peptides
SEQ ID NO














MFHLVDFQVTIAEIL
0.3
0.4
999






FHLVDFQVTIAEILI
0.3
0.5
1000





HLVDFQVTIAEILII
0.3
0.3
1001





LVDFQVTIAEILIII
0.3
0.3
1002





VDFQVTIAEILIIIM
0.3
0.3
1003





DFQVTIAEILIIIMR
0.3
0.3
1004





FQVTIAEILIIIMRT
0.2
0.3
1005





QVTIAEILIIIMRTF
0.3
0.6
1006





VTIAEILIIIMRTFR
0.2
0.4
1007





TIAEILIIIMRTFRI
0.2
0.0
1008





IAEILIIIMRTFRIA
0.3
0.2
1009





AEILIIIMRTFRIAI
0.3
0.0
269





EILIIIMRTFRIAIW
0.5
0.3
270





ILIIIMRTFRIAIWN
0.5
0.6
271





LIIIMRTFRIAIWNL
0.5
0.3
272





IIIMRTFRIAIWNLD
0.4
0.5
273





IIMRTFRIAIWNLDV
0.3
0.5
274





IMRTFRIAIWNLDVI
0.4
0.6
275





MRTFRIAIWNLDVII
0.3
0.4
276





RTFRIAIWNLDVIIS
0.3
0.4
277





TFRIAIWNLDVIISS
0.3
0.4
1010





FRIAIWNLDVIISSI
0.3
0.2
1011





RIAIWNLDVIISSIV
0.3
0.4
1012





IAIWNLDVIISSIVR
0.3
0.3
1013





AIWNLDVIISSIVRQ
0.3
0.4
1014





IWNLDVIISSIVRQL
0.2
0.4
1015





WNLDVIISSIVRQLF
0.1
0.2
1016





NLDVIISSIVRQLFK
0.3
0.2
1017





LDVIISSIVRQLFKP
0.2
0.0
1018





DVIISSIVRQLFKPL
0.5
0.2
1019





VIISSIVRQLFKPLT
0.5
0.3
278





IISSIVRQLFKPLTK
0.6
0.4
279





ISSIVRQLFKPLTKK
0.3
0.5
280





SSIVRQLFKPLTKKN
0.4
0.5
281





SIVRQLFKPLTKKNY
0.3
0.4
282





IVRQLFKPLTKKNYS
0.4
0.6
283





VRQLFKPLTKKNYSE
0.4
2.2
284





RQLFKPLTKKNYSEL
0.3
0.5
285





QLFKPLTKKNYSELD
0.3
0.3
286





LFKPLTKKNYSELDD
0.3
0.4
287





FKPLTKKNYSELDDE
0.5
0.5
288





KPLTKKNYSELDDEE
0.4
0.5
289





PLTKKNYSELDDEEP
0.2
0.4
290





LTKKNYSELDDEEPM
0.2
0.4
291





TKKNYSELDDEEPME
0.2
0.1
292





KKNYSELDDEEPMEL
0.1
0.0
293





KNYSELDDEEPMELD
0.3
0.2
294





NYSELDDEEPMELDY
0.4
0.3
295





YSELDDEEPMELDYP
0.3
0.3
296
















TABLE 30










Binding of a rabbit serum to linear and looped/cyclic


peptides of protein X4 of SARS-CoV Urbani.











Rabbit serum
Rabbit Serum



Peptide
linear
looped


sequence
peptides
peptides
SEQ ID NO





MKIILFLTLIVFTSC
0.7
0.4
1020 


KIILFLTLIVFTSCE
0.7
0.9
1021 


IILFLTLIVFTSCEL
0.8
0.5
1022 


ILFLTLIVFTSCELY
0.7
0.2
1023 


LFLTLIVFTSCELYH
0.7
0.4
1024 


FLTLIVFTSCELYHY
0.4
0.5
1025 


LTLIVFTSCELYHYQ
0.5
0.3
1026 


TLIVFTSCELYHYQE
0.5
0.8
1027 


LIVFTSCELYHYQEC
0.5
0.5
1028 


IVFTSCELYHYQECV
0.4
0.4
1029 


VFTSCELYHYQECVR
0.5
0.5
1030 


FTSCELYHYQECVRG
0.4
0.3
1031 


TSCELYHYQECVRGT
0.4
0.2
1032 


SCELYHYQECVRGTT
0.4
0.0
1033 


CELYHYQECVRGTTV
0.4
0.2
1034 


ELYHYQECVRGTTVL
0.7
0.7
297


LYHYQECVRGTTVLL
0.6
0.3
298


YHYQECVRGTTVLLK
1.7
0.6
299


HYQECVRGTTVLLKE
0.5
0.5
300


YQECVRGTTVLLKEP
0.5
0.5
301


QECVRGTTVLLKEPC
0.6
0.5
302


ECVRGTTVLLKEPCP
0.6
0.4
303


CVRGTTVLLKEPCPS
0.5
0.5
304


VRGTTVLLKEPCPSG
0.4
0.4
305


RGTTVLLKEPCPSGT
0.4
0.5
306


GTTVLLKEPCPSGTY
0.4
0.4
307


TTVLLKEPCPSGTYE
0.4
0.5
308


TVLLKEPCPSGTYEG
0.2
0.2
309


VLLKEPCPSGTYEGN
0.4
0.3
1035 


LLKEPCPSGTYEGNS
0.3
0.1
1036 


LKEPCPSGTYEGNSP
0.4
0.0
1037 


KEPCPSGTYEGNSPF
0.4
0.3
1038 


EPCPSGTYEGNSPFH
0.6
0.4
1039 


PCPSGTYEGNSPFHP
0.6
0.4
1040 


CPSGTYEGNSPFNPL
0.5
0.7
310


PSGTYEGNSPFHPLA
0.5
0.5
311


SGTYEGNSPFHPLAD
0.6
0.6
312


GTYEGNSPFHPLADN
0.6
0.5
313


TYEGNSPFHPLADNK
0.7
0.4
314


YEGNSPFHPLADNKF
0.6
0.5
315


EGNSPFHPLADNKFA
0.7
0.7
316


GNSPFHPLADNKFAL
0.5
1.0
317


NSPFHPLADNKFALT
0.5
0.7
318


SPFHPLADNKFALTC
0.4
0.5
319


PFHPLADNKFALTCT
0.4
0.4
320


FHPLADNKFALTCTS
0.4
0.2
321


HPLADNKFALTCTST
0.5
0.1
322


PLADNKFALTCTSTH
1.1
0.0
323


LADNKFALTCTSTHF
0.5
0.5
324


ADNKFALTCTSTHFA
0.7
0.2
325


DNKFALTCTSTHFAF
0.7
0.6
326


NKFALTCTSTHFAFA
0.5
0.5
1041 


KFALTCTSTHFAFAC
0.5
0.6
1042 


FALTCTSTHFAFACA
0.6
0.4
1043 


ALTCTSTHFAFACAD
0.6
0.6
1044 


LTCTSTHFAFACADG
0.5
0.3
1045 


TCTSTHFAFACADGT
0.5
0.7
1046 


CTSTHFAFACADGTR
0.4
0.6
1047 


TSTHFAFACADGTRH
0.5
0.7
1048 


STHFAFACADGTRHT
0.4
0.4
1049 


THFAFACADGTRHTY
0.4
0.5
1050 


HFAFACADGTRHTYQ
0.4
0.1
1051 


FAFACADGTRHTYQL
0.5
0.1
1052 


AFACADGTRHTYQLR
0.5
0.1
1053 




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




ARSVSPKLFIRQEEV
0.3
0.2
1054 


RSVSPKLFIRQEEVQ
0.4
0.4
1055 


SVSPKLFIRQEEVQQ
0.4
0.3
1056 


VSPKLFIRQEEVQQE
0.4
0.3
1057 


SPKLFIRQEEVQQEL
0.5
0.0
1058 


PKLFIRQEEVQQELY
0.4
0.4
1059 


KLFIRQEEVQQELYS
0.5
0.5
1060 


LFIRQEEVQQELYSP
0.4
0.4
1061 


FIRQEEVQQELYSPL
0.5
0.5
327


IRQEEVQQELYSPLF
0.4
0.4
328


RQEEVQQELYSPLFL
0.5
0.6
329


QEEVQQELYSPLFLI
0.4
0.4
330


EEVQQELYSPLFLIV
0.4
0.5
331


EVQQELYSPLFLIVA
0.5
0.5
332


VQQELYSPLFLTVAA
0.5
0.2
333


QQELYSPLFLIVAAL
0.4
0.4
1062 


QELYSPLFLIVAALV
0.4
0.5
1063 


ELYSPLFLIVAALVF
0.4
0.5
1064 


LYSPLFLIVAALVFL
0.4
0.3
1065 


YSPLFLIVAALVFLI
0.3
0.5
1066 


SPLFLIVAALVFLIL
0.5
0.8
1067 


PLFLIVAALVFLILC
0.4
0.0
1068 


LFLIVAALVFLILCF
0.3
0.4
1069 


FLIVAALVFLILCFT
0.4
0.3
1070 


LIVAALVFLILCFTI
0.5
0.4
1071 


IVAALVFLILCFTIK
0.4
0.6
1072 


VAALVFLILCFTIKR
0.5
0.6
1073 


AALVFLILCFTIKRK
0.8
0.6
1074 


ALVFLILCFTIKRKT
0.6
0.6
1075 


LVFLILCFTIKRKTE
0.5
0.6
1076 

















TABLE 31










Binding of a rabbit serum to linear and



looped/cyclic peptides of protein X5 of


SARS-CoV Urbani.












Rabbit






serum
Rabbit serum



Peptide
linear
looped



sequence
peptides
peptides
SEQ ID NO














MCLKILVRYNTRGNT
0.7
0.5
1077






CLKILVRYNTRGNTY
1.1
0.2
1078





LKILVRYNTRGNTYS
0.9
0.1
1079





KILVRYNTRGNTYST
0.7
0.4
1080





ILVRYNTRGNTYSTA
0.9
0.8
1081





LVRYNTRGNTYSTAW
0.7
0.3
1082





VRYNTRGNTYSTAWL
0.7
1.2
1083





RYNTRGNTYSTAWLC
0.7
0.0
1084





YNTRGNTYSTAWLCA
0.7
0.0
1085





NTRGNTYSTAWLCAL
0.8
0.5
1086





TRGNTYSTAWLCALG
0.7
0.0
1087





RGNTYSTAWLCALGK
1.3
0.8
1088





GNTYSTAWLCALGKV
0.9
0.6
1089





NTYSTAWLCALGKVL
0.6
0.5
1090





TYSTAWLCALGKVLP
0.6
0.7
1091





YSTAWLCALGKVLPF
0.7
1.0
1092





STAWLCALGKVLPFH
0.5
0.7
1093





TAWLCALGKVLPFHR
0.7
0.8
1094





AWLCALGKVLPFHRW
0.8
0.6
1095





WLCALGKVLPFHRWH
0.6
0.8
1096





LCALGKVLPFHRWHT
0.7
0.7
1097





CALGKVLPFHRWHTM
0.6
1.0
1098





ALGKVLPFHRWHTMV
0.6
0.1
1099





LGKVLPFHRWHTMVQ
0.5
0.3
1100





GKVLPFHRWHTMVQT
0.0
0.3
1101





KVLPFHRWHTMVQTC
0.6
0.5
1102





VLPFHRWHTMVQTCT
0.6
0.0
1103





LPFHRWHTMVQTCTP
0.5
0.3
1104





PFHRWHTMVQTCTPN
0.5
0.4
1105





FHRWHTMVQTCTPNV
0.8
0.4
1106





HRWHTMVQTCTPNVT
0.7
0.3
1107





RWHTMVQTCTPNVTI
0.5
0.6
334





WHTMVQTCTPNVTIN
0.5
0.0
335





HTMVQTCTPNVTINC
0.4
0.2
336





TMVQTCTPNVTINCQ
0.5
0.4
337





MVQTCTPNVTINCQD
0.5
0.2
338





VQTCTPNVTINCQDP
0.5
0.4
1108





QTCTPNVTINCQDPA
0.3
0.0
1109





TCTPNVTINCQDPAG
0.5
0.0
1110





CTPNVTINCQDPAGG
0.4
0.0
1111





TPNVTINCQDPAGGA
0.0
0.1
1112





PNVTINCQDPAGGAL
0.6
0.2
339





NVTINCQDPAGGALI
0.6
0.5
340





VTINCQDPAGGALIA
0.5
0.0
341





TINCQDPAGGALIAR
0.6
0.7
342





INCQDPAGGALIARC
0.5
0.6
343





NCQDPAGGALIARCW
0.5
0.5
344





CQDPAGGALIARCWY
0.5
0.6
345





QDPAGGALIARCWYL
0.5
0.9
346





DPAGGALIARCWYLH
0.3
0.5
1113





PAGGALIARCWYLHE
0.5
0.5
1114





AGGALIARCWYLHEG
0.5
0.4
1115





GGALIARCWYLHEGH
0.5
0.5
1116





GALIARCWYLHEGHQ
0.6
0.0
1117





ALIARCWYLHEGHQT
0.6
0.0
1118





LIARCWYLHEGHQTA
0.8
0.0
1119





IARCWYLHEGHQTAA
0.7
0.3
347





ARCWYLHEGHQTAAF
0.3
0.6
348





RCWYLHEGHQTAAFR
0.9
0.4
349





CWYLHEGHQTAAFRD
0.3
0.4
350





WYLHEGHQTAAFRDV
0.3
0.0
351





YLHEGHQTAAFRDVL
0.2
0.6
352





LHEGHQTAAFRDVLV
0.5
0.7
353





HEGHQTAAFRDVLVV
0.2
0.8
354





EGHQTAAFRDVLVVL
0.3
0.6
355





GHQTAAFRDVLVVLN
0.1
0.5
356





HQTAAFRDVLVVLNK
0.4
0.8
357





QTAAFRDVLVVLNKR
0.4
0.5
1120





TAAFRDVLVVLNKRT
0.3
0.4
1121





AAFRDVLVVLNKRTN
0.5
0.6
1122
















TABLE 32










Binding of a rabbit serum to linear and looped/cyclic


peptides of protein N of SARS-CoV Urbani.











Rabbit serum
Rabbit serum



Peptide
linear
looped
SEQ ID


sequence
peptides
peptides
NO





MSDNGPQSNQRSAPR
0.1
0.4
1123 


SDNGPQSNQRSAPRI
0.1
0.2
1124 


DNGPQSNQRSAPRIT
0.1
0.3
1125 




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




SNQRSAPRITFGGPT
0.4
0.9
596


NQRSAPRITFGGPTD
0.3
0.4
597


QRSAPRITFGGPTDS
0.3
1.2
598


RSAPRITFGGPTDST
0.3
0.7
599


SAPRITFGGPTDSTD
0.2
0.5
600


APRITFGGPTDSTDN
0.2
0.6
601


PRITFGGPTDSTDNN
0.3
0.4
602


RITFGGPTDSTDNNQ
0.3
0.1
603


ITFGGPTDSTDNNQN
0.1
0.3
604


TFGGPTDSTDNNQNG
0.1
0.1
1126 


FGGPTDSTDNNQNGG
0.0
0.1
1127 


GGPTDSTDNNQNGGR
0.1
0.1
1128 


GPTDSTDNNQNGGRN
0.1
0.4
1129 


PTDSTDNNQNGGRNG
0.1
0.1
1130 


TDSTDNNQNGGRNGA
0.1
0.2
1131 


DSTDNNQNGGRNGAR
0.1
0.5
1132 


STDNNQNGGRNGARP
0.1
0.2
1133 


TDNNQNGGRNGARPK
0.2
0.4
1134 


DNNQNGGRNGARPKQ
0.1
0.4
1135 


NNQNGGRNGARPKQR
0.3
0.7
1136 


NQNGGRNGARPKQRR
0.5
1.1
1137 


QNGGRNGARPKQRRP
0.2
0.4
1138 


NGGRNGARPKQRRPQ
0.1
1.1
1139 


GGRNGARPKQRRPQG
0.2
0.8
1140 


GRNGARPKQRRPQGL
0.2
0.7
1141 


RNGARPKQRRPQGLP
0.1
0.2
1142 


NGARPKQRRPQGLPN
0.1
0.3
1143 


GARPKQRRPQGLPNN
0.1
0.2
1144 


ARPKQRRPQGLPNNT
0.2
0.4
1145 


RPKQRRPQGLPNNTA
0.4
0.4
1146 


PKQRRPQGLPNNTAS
0.2
0.2
1147 


KQRRPQGLPNNTASW
0.1
0.6
1148 


QRRPQGLPNNTASWF
0.1
0.6
1149 


RRPQGLPNNTASWFT
0.1
0.4
1150 


RPQGLPNNTASWFTA
0.1
0.5
1151 


PQGLPNNTASWFTAL
0.1
0.6
1152 


QGLPNNTASWFTALT
0.1
0.6
1153 


GLPNNTASWFTALTQ
0.1
0.4
1154 


LPNNTASWFTALTQH
0.1
0.6
1155 


PNNTASWFTALTQHG
0.1
0.4
1156 


NNTASWFTALTQHGK
0.1
0.3
1157 


NTASWFTALTQHGKE
0.1
0.1
1158 


TASWFTALTQHGKEE
0.1
0.7
1159 


ASWFTALTQHGKEEL
0.1
0.1
1160 


SWFTALTQHGKEELR
0.1
0.0
1161 


WFTALTQHGKEELRF
0.1
0.3
1162 


FTALTQHGKEELRFP
0.2
0.1
1163 


TALTQHGKEELRFPR
0.1
0.4
1164 


ALTQHGKEELRFPRG
0.2
0.3
1165 


LTQHGKEELRFPRGQ
0.1
0.4
1166 


TQHGKEELRFPRGQG
0.1
0.3
1167 


QHGKEELRFPRGQGV
0.2
0.5
1168 


HGKEELRFPRGQGVP
0.1
0.3
1169 


GKEELRFPRGQGVPI
0.1
0.6
1170 


KEELRFPRGQGVPIN
0.1
0.6
1171 


EELRFPRGQGVPINT
0.1
0.6
1172 


ELRFPRGQGVPINTN
0.1
0.4
1173 


LRFPRGQGVPINTNS
0.2
0.6
1174 


RFPRGQGVPINTNSG
0.1
0.5
1175 


FPRGQGVPINTNSGP
0.2
0.2
1176 


PRGQGVPINTNSGPD
0.1
0.0
1177 


RGQGVPINTNSGPDD
0.1
0.0
1178 


GQGVPINTNSGPDDQ
0.1
0.0
1179 


QGVPINTNSGPDDQI
0.2
0.8
1180 


GVPINTNSGPDDQIG
0.1
0.2
1181 


VPINTNSGPDDQIGY
0.1
0.3
1182 


PINTNSGPDDQIGYY
0.1
0.4
1183 


INTNSGPDDQIGYYR
0.2
0.5
1184 


NTNSGPDDQIGYYRR
0.1
0.6
1185 


TNSGPDDQIGYYRRA
0.2
0.5
1186 


NSGPDDQIGYYRRAT
0.1
0.5
1187 




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




YYRRATRRVRGGDGK
0.2
0.0
1188 


YRRATRRVRGGDGKM
0.2
0.0
1189 


RRATRRVRGGDGKMK
0.6
0.1
1190 


RATRRVRGGDGKMKE
0.2
0.2
1191 


ATRRVRGGDGKMKEL
0.3
0.3
1192 


TRRVRGGDGKMKELS
0.2
0.3
1193 


RRVRGGDGKMKELSP
0.2
0.4
1194 


RVRGGDGKMKELSPR
0.2
0.6
1195 


VRGGDGKMKELSPRW
0.2
0.4
1196 


RGGDGKMKELSPRWY
0.1
0.4
1197 


GGDGKMKELSPRWYF
0.1
0.5
1198 


GDGKMKELSPRWYFY
0.2
0.6
1199 


DGKMKELSPRWYFYY
0.1
0.6
1200 


GKMKELSPRWYFYYL
0.1
0.7
1201 


KMKELSPRWYFYYLG
0.1
0.6
1202 


MKELSPRWYFYYLGT
0.1
0.4
1203 


KELSPRWYFYYLGTG
0.0
0.4
1204 


ELSPRWYFYYLGTGP
0.1
0.4
1205 


LSPRWYFYYLGTGPE
0.2
1.1
1206 


SPRWYFYYLGTGPEA
0.2
0.6
1207 


PRWYFYYLGTGPEAS
0.2
0.6
1208 


RWYFYYLGTGPEASL
0.2
0.6
1209 


WYPYYLGTGPEASLP
0.1
0.3
1210 


YFYYLGTGPEASLPY
0.1
0.6
1211 


FYYLGTGPEASLPYG
0.1
0.6
1212 


YYLGTGPEASLPYGA
0.1
0.5
1213 


YLGTGPEASLPYGAN
0.1
0.6
1214 


LGTGPEASLPYGANK
0.2
0.4
1215 


GTGPEASLPYGANKE
0.1
0.3
1216 


TGPEASLPYGANKEG
0.1
0.5
1217 


GPEASLPYGANKEGI
0.1
0.3
1218 


PEASLPYGANKEGIV
0.1
0.2
1219 


EASLPYGANKEGIVW
0.1
0.3
1220 


ASLPYGANKEGIVWV
0.2
0.2
1221 


SLPYGANKEGIVWVA
0.2
0.3
1222 


LPYGANKEGIVWVAT
0.2
0.6
1223 


PYGANKEGIVWVATE
0.2
0.2
1224 


YGANKEGIVWVATEG
0.1
0.5
1225 


GANKEGIVWVATEGA
0.2
0.5
1226 


ANKEGIVWVATEGAL
0.1
0.3
1227 


NKEGIVWVATEGALN
0.1
0.2
1228 


KEGIVWVATEGALNT
0.1
0.4
1229 


EGIVWVATEGALNTP
0.1
0.4
1230 


GIVWVATEGALNTPK
0.2
0.5
1231 


IVWVATEGALNTPKD
0.1
0.2
1232 


VWVATEGALNTPKDH
0.1
0.4
1233 


WVATEGALNTPKDHI
0.1
0.2
1234 


VATEGALNTPKDHIG
0.2
0.0
1235 


ATEGALNTPKDHIGT
0.1
0.1
1236 


TEGALNTPKDHIGTR
0.2
0.0
1237 


EGALNTPKDHIGTRN
0.1
0.0
1238 


GALNTPKDHIGTRNP
0.2
0.0
1239 


ALNTPKDHIGTRNPN
0.2
0.2
1240 


LNTPKDHIGTRNPNN
0.2
0.0
1241 


NTPKDHIGTRNPNNN
0.1
0.1
1242 


TPKDHIGTRNPNNNA
0.1
0.4
1243 


PKDHIGTRNPNNNAA
0.2
0.2
1244 


KDHIGTRNPNNNAAT
0.1
0.2
1245 


DHIGTRNPNNNAATV
0.1
0.5
1246 


HIGTRNPNNNAATVL
0.1
0.7
1247 


IGTRNPNNNAATVLQ
0.1
0.4
1248 


GTRNPNNNAATVLQL
0.1
0.6
1249 


TRNPNNNAATVLQLP
0.1
0.5
1250 


RNPNNNAATVLQLPQ
0.1
0.8
1251 


NPNNNAATVLQLPQG
0.1
0.3
1252 


PNNNAATVLQLPQGT
0.0
0.2
1253 


NNNAATVLQLPQGTT
0.1
0.4
1254 


NNAATVLQLPQGTTL
0.2
0.4
358


NAATVLQLPQGTTLP
0.2
0.0
359


AATVLQLPQGTTLPK
0.3
1.2
360


ATVLQLPQGTTLPKG
0.2
0.3
361


TVLQLPQGTTLPKGF
0.3
1.2
362


VLQLPQGTTLPKGFY
0.2
0.4
363


LQLPQGTTLPKGFYA
0.2
1.0
364


QLPQGTTLPKGFYAE
0.2
0.4
365


LPQGTTLPKGFYAEG
0.1
0.7
366


PQGTTLPKGFYAEGS
0.1
0.5
367


QGTTLPKGFYAEGSR
0.1
0.6
368


GTTLPKGFYAEGSRG
0.2
0.3
369


TTLPKGFYAEGSRGG
0.2
0.4
370


TLPKGFYAEGSRGGS
0.5
0.3
371


LPKGFYAEGSRGGSQ
0.1
0.1
1255 


PKGFYAEGSRGGSQA
0.1
0.1
1256 


KGFYAEGSRGGSQAS
0.1
0.1
1257 


GFYAEGSRGGSQASS
0.1
0.0
1258 


FYAEGSRGGSQASSR
0.3
0.4
1259 


YAEGSRGGSQASSRS
0.2
0.0
1260 


AEGSRGGSQASSRSS
0.2
0.6
1261 


EGSRGGSQASSRSSS
0.2
0.7
1262 


GSRGGSQASSRSSSR
0.3
0.6
1263 


SRGGSQASSRSSSRS
0.2
0.5
1264 


RGGSQASSRSSSRSR
0.3
0.7
1265 


GGSQASSRSSSRSRG
0.2
0.5
1266 


GSQASSRSSSRSRGN
0.2
0.7
1267 


SQASSRSSSRSRGNS
0.1
0.6
1268 


QASSRSSSRSRGNSR
0.3
1.1
1269 


ASSRSSSRSRGNSRN
0.3
0.7
1270 


SSRSSSRSRGNSRNS
0.2
0.7
1271 


SRSSSRSRGNSRNST
0.1
0.3
1272 


RSSSRSRGNSRNSTP
0.1
0.2
1273 


SSSRSRGNSRNSTPG
0.1
0.4
1274 


SSRSRGNSRNSTPGS
0.1
0.0
1275 


SRSRGNSRNSTPGSS
0.3
0.7
1276 


RSRGNSRNSTPGSSR
0.4
1.1
1277 


SRGNSRNSTPGSSRG
0.2
0.2
1278 


RGNSRNSTPGSSRGN
0.2
0.7
1279 


GNSRNSTPGSSRGNS
0.2
0.8
1280 


NSRNSTPGSSRGNSP
0.2
0.5
1281 


SRNSTPGSSRGNSPA
0.1
0.6
1282 




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




SSRGNSPARMASGGG
0.2
0.0
1283 


SRGNSPARMASGGGE
0.1
0.2
1284 


RGNSPARMASGGGET
0.1
0.2
1285 


GNSPARMASGGGETA
0.1
0.0
1286 


NSPARMASGGGETAL
0.3
0.3
372


SPARMASGGGETALA
0.2
0.0
373


PARMASGGGETALAL
0.2
0.7
374


ARMASGGGETALALL
0.2
0.0
375


RMASGGGETALALLL
0.2
0.4
376


MASGGGETALALLLL
0.2
1.1
377


ASGGGETALALLLLD
0.1
0.4
378


SGGGETALALLLLDR
0.2
0.7
1287 


GGGETALALLLLDRL
0.1
0.7
1288 


GGETALALLLLDRLN
0.1
0.6
1289 


GETALALLLLDRLNQ
0.2
0.6
1290 


ETALALLLLDRLNQL
0.4
0.6
1291 


TALALLLLDRLNQLE
0.2
0.5
1292 


ALALLLLDRLNQLES
0.2
0.6
1293 


LALLLLDRLNQLESK
0.1
0.6
1294 


ALLLLDRLNQLESKV
0.1
0.4
1295 


LLLLDRLNQLESKVS
0.1
0.0
1296 


LLLDRLNQLESKVSG
0.2
0.2
1297 


LLDRLNQLESKVSGK
0.6
0.1
1298 


LDRLNQLESKVSGKG
0.0
0.4
1299 


DRLNQLESKVSGKGQ
0.3
0.4
1300 


RLNQLESKVSGKGQQ
0.2
0.6
1301 


LNQLESKVSGKGQQQ
0.2
0.4
1302 


NQLESKVSGKGQQQQ
0.2
0.5
1303 


QLESKVSGKGQQQQG
0.1
0.4
1304 


LESKVSGKGQQQQGQ
0.1
0.6
1305 


ESKVSGKGQQQQGQT
0.1
0.6
1306 


SKVSGKGQQQQGQTV
0.1
0.6
1307 


KVSGKGQQQQGQTVT
0.2
0.4
1308 


VSGKGQQQQGQTVTK
0.2
0.4
1309 


SGKGQQQQGQTVTKK
0.2
0.4
1310 


GKGQQQQGQTVTKKS
0.2
0.4
1311 


KGQQQQGQTVTKKSA
0.2
0.0
1312 


GQQQQGQTVTKKSAA
0.2
0.1
1313 


QQQQGQTVTKKSAAE
0.3
0.0
1314 


QQQGQTVTKKSAAEA
0.0
0.0
1315 


QQGQTVTKKSAAEAS
0.2
0.0
379


QGQTVTKKSAAEASK
0.2
0.2
380


GQTVTKKSAAEASKK
0.2
0.2
381


QTVTKKSAAEASKKP
0.2
0.3
382


TVTKKSAAEASKKPR
0.2
0.5
383


VTKKSAAEASKKPRQ
0.1
0.6
384


TKKSAAEASKKPRQK
0.1
0.2
385


KKSAAEASKKPRQKR
0.4
0.8
386


KSAAEASKKPRQKRT
0.1
0.2
387


SAAEASKKPRQKRTA
0.2
0.3
388


AAEASKKPRQKRTAT
0.3
0.5
389


AEASKKPRQKRTATK
0.2
0.1
1316 


EASKKPRQKRTATKQ
0.2
0.2
1317 


ASKKPRQKRTATKQY
0.2
0.4
1318 


SKKPRQKRTATKQYN
0.2
0.1
1319 


KKPRQKRTATKQYNV
0.3
0.0
1320 


KPRQKRTATKQYNVT
0.3
0.0
390




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




QAFGRRGPEQTQGNF
0.1
0.3
1321 


AFGRRGPEQTQGNFG
0.1
0.0
1322 


FGRRGPEQTQGNFGD
0.2
0.0
397


GRRGPEQTQGNFGDQ
0.1
0.2
398


RRGPEQTQGNFGDQD
0.1
0.1
399


RGPEQTQGNFGDQDL
0.2
0.3
400


GPEQTQGNFGDQDLI
0.2
0.3
401


PEQTQGNFGDQDLIR
0.1
0.5
402


EQTQGNFGDQDLIRQ
0.2
0.0
403


QTQGNFGDQDLIRQG
0.1
0.6
404


TQGNFGDQDLIRQGT
0.2
0.6
1323 


QGNFGDQDLIRQGTD
0.2
0.4
1324 


GNFGDQDLIRQGTDY
0.2
0.5
1325 


NFGDQDLIRQGTDYK
0.1
0.1
1326 


FGDQDLIRQGTDYKH
0.1
0.5
1327 


GDQDLIRQGTDYKHW
0.1
0.5
1328 


DQDLIRQGTDYKHWP
0.1
0.1
1329 


QDLIRQGTDYKHWPQ
0.1
0.2
1330 


DLIRQGTDYKHWPQI
0.0
0.5
1331 


LIRQGTDYKHWPQIA
0.2
0.0
1332 


TRQGTDYKHWPQIAQ
0.1
0.3
1333 


RQGTDYKHWPQIAQF
0.2
0.4
1334 


QGTDYKHWPQIAQFA
0.2
0.3
1335 


GTDYKHWPQIAQFAP
0.2
0.5
1336 


TDYKHWPQIAQFAPS
0.2
0.5
1337 


DYKHWPQIAQFAPSA
0.1
0.5
1338 


YKHWPQIAQFAPSAS
0.1
0.5
1339 


KHWPQIAQFAPSASA
0.2
0.0
1340 


HWPQIAQFAPSASAF
0.1
0.7
1341 


WPQIAQFAPSASAFF
0.1
0.6
1342 


PQIAQFAPSASAFFG
0.1
0.5
1343 


QIAQFAPSASAFFGM
0.1
0.5
1344 


IAQFAPSASAFFGMS
0.2
0.4
1345 


AQFAPSASAFFGMSR
0.1
0.7
1346 


QFAPSASAFFGMSRI
0.1
0.4
1347 


FAPSASAFFGMSRIG
0.0
0.3
1348 


APSASAFFGMSRIGM
0.1
0.4
1349 


PSASAFFGMSRIGME
0.1
0.3
1350 


SASAFFGMSRIGMEV
0.1
0.6
1351 


ASAFFGMSRIGMEVT
0.1
0.5
1352 


SAFFGMSRIGMEVTP
0.2
0.5
1353 


AFFGMSRIGMEVTPS
0.1
0.5
1354 


FFGMSRIGMEVTPSG
0.2
0.4
1355 


FGMSRIGMEVTPSGT
0.2
0.3
1356 


GMSRIGMEVTPSGTW
0.1
0.4
1357 


MSRIGMEVTPSGTWL
0.2
0.5
1358 


SRIGMEVTPSGTWLT
0.1
0.4
1359 


RIGMEVTPSGTWLTY
0.0
0.5
1360 


IGMEVTPSGTWLTYH
0.1
0.6
1361 


GMEVTPSGTWLTYHG
0.1
0.4
1362 


MEVTPSGTWLTYHGA
0.1
0.4
1363 


EVTPSGTWLTYHGAI
0.1
0.3
1364 


VTPSGTWLTYHGAIK
0.1
0.1
1365 


TPSGTWLTYHGAIKL
0.1
0.4
1366 


PSGTWLTYHGAIKLD
0.1
0.0
1367 


SGTWLTYHGAIKLDD
0.1
0.5
1368 


GTWLTYHGAIKLDDK
0.1
0.2
1369 


TWLTYHGAIKLDDKD
0.1
0.3
1370 


WLTYHGAIKLDDKDP
0.2
0.2
1371 


LTYHGAIKLDDKDPQ
0.1
0.5
1372 


TYHGAIKLDDKDPQF
0.1
0.2
1373 


YHGAIKLDDKDPQFK
0.2
0.3
1374 


HGAIKLDDKDPQFKD
0.1
0.3
1375 


GAIKLDDKDPQFKDN
0.1
0.3
1376 


AIKLDDKDPQFKDNV
0.1
0.3
1377 


IKLDDKDPQFKDNVI
0.1
0.3
405


KLDDKDPQFKDNVIL
0.1
0.2
406


LDDKDPQFKDNVILL
0.1
0.2
407


DDKDPQFKDNVILLN
0.1
0.4
408


DKDPQFKDNVILLNK
0.1
0.5
409


KDPQFKDNVILLNKH
0.2
0.5
410


DPQFKDNVILLNKHI
0.2
0.7
411


PQFKDNVILLNKHID
0.2
0.4
412


QFKDNVILLNKHIDA
0.1
0.7
413


FKDNVILLNKHIDAY
0.1
0.5
1378 


KDNVILLNKHIDAYK
0.2
0.4
1379 


DNVILLNKHIDAYKT
0.1
0.6
1380 


NVILLNKHIDAYKTF
0.2
0.6
1381 


VILLNKHIDAYKTFP
0.1
0.4
1382 


ILLNKHIDAYKTFPP
0.2
0.6
1383 


LLNKHIDAYKTFPPT
0.2
0.4
1384 


LNKHIDAYKTFPPTE
0.1
0.4
1385 


NKHIDAYKTFPPTEP
0.0
0.3
1386 


KHIDAYKTFPPTEPK
0.1
0.2
1387 


HIDAYKTFPPTEPKK
0.1
0.0
1388 


IDAYKTFPPTEPKKD
0.0
0.2
1389 


DAYKTFPPTEPKKDK
0.1
0.1
1390 


AYKTFPPTEPKKDKK
0.2
0.0
1391 


YKTFPPTEPKKDKKK
0.2
0.2
1392 


KTFPPTEPKKDKKKK
0.1
0.1
1393 


TFPPTEPKKDKKKKT
0.2
0.3
1394 


FPPTEPKKDKKKKTD
0.1
0.1
1395 


PPTEPKKDKKKKTDE
0.2
0.2
1396 


PTEPKKDKKKKTDEA
0.1
0.2
1397 


TEPKKDKKKKTDEAQ
0.2
0.3
1398 


EPKKDKKKKTDEAQP
0.2
0.3
1399 


PKKDKKKKTDEAQPL
0.1
0.0
1400 


KKDKKKKTDEAQPLP
0.1
0.2
1401 


KDKKKKTDEAQPLPQ
0.1
0.0
1402 


DKKKKTDEAQPLPQR
0.1
0.3
1403 


KKKKTDEAQPLPQRQ
0.2
0.1
1404 


KKKTDEAQPLPQRQK
0.2
0.1
1405 


KKTDEAQPLPQRQKK
0.2
0.0
1406 


KTDEAQPLPQRQKKQ
0.0
0.0
1407 


TDEAQPLPQRQKKQP
0.1
0.0
1408 


DEAQPLPQRQKKQPT
0.1
0.0
1409 


EAQPLPQRQKKQPTV
0.1
0.0
1410 


AQPLPQRQKKQPTVT
0.2
0.2
1411 


QPLPQRQKKQPTVTL
0.1
0.7
414


PLPQRQKKQPTVTLL
0.1
0.7
415


LPQRQKKQPTVTLLP
0.2
0.7
416


PQRQKKQPTVTLLPA
0.2
0.7
417


QRQKKQPTVTLLPAA
0.2
0.7
418


RQKKQPTVTLLPAAD
0.1
0.4
419


QKKQPTVTLLPAADM
0.2
0.7
420


KKQPTVTLLPAADMD
0.1
0.2
1412 


KQPTVTLLPAADMDD
0.1
0.1
1413 


QPTVTLLPAADMDDF
0.1
0.0
1414 


PTVTLLPAADMDDFS
0.1
0.0
1415 


TVTLLPAADMDDFSR
0.1
0.3
1416 


VTLLPAADMDDFSRQ
0.0
0.0
1417 


TLLPAADMDDFSRQL
0.1
0.0
1418 


LLPAADMDDFSRQLQ
0.1
0.2
1419 


LPAADMDDFSRQLQN
0.2
0.2
1420 


PAADMDDFSRQLQNS
0.2
0.3
1421 


AADMDDFSRQLQNSM
0.2
0.3
1422 


ADMDDFSRQLQNSMS
0.2
0.4
1423 


DMDDFSRQLQNSMSG
0.2
0.4
1424 


MDDFSRQLQNSMSGA
0.2
0.4
1425 


DDFSRQLQNSMSGAS
0.5
0.3
1426 


DFSRQLQNSMSGASA
0.5
0.6
1427 


FSRQLQNSMSGASAD
0.4
0.1
1428 


SRQLQNSMSGASADS
0.5
0.6
1429 


RQLQNSMSGASADST
0.5
0.3
1430 


QLQNSMSGASADSTQ
0.7
0.5
1431 


LQNSMSGASADSTQA
0.9
0.4
1432 
















TABLE 33










Binding of single-chain (scFv) phage


antibodies to a SARS-CoV preparation


(Frankfurt 1 strain) and to FBS as measured by ELISA.










SARS-CoV preparation
FBS


Name phage antibody
(OD492nm)
(OD492nm)





SC03-001
0.979
0.142


SC03-002
0.841
0.091


SC03-003
0.192
0.092


SC03-005
0.869
0.098


SC03-006
1.056
0.086


SC03-007
0.876
0.096


SC03-008
0.358
0.114


SC03-009
0.760
0.087


SC03-010
0.327
0.082


SC03-012
0.495
0.100


SC03-013
0.979
0.101


SC03-014
0.917
0.089


SC03-015
0.796
0.077


Anti-thyroglobulin
0.108
0.090


(SC02-006)


No phage antibody
0.072
0.083
















TABLE 34










Binding of alternatively selected single-chain (scFv)


phage antibodies to a SARS-CoV preparation (Frankfurt


1 strain) and to FBS as measured by ELISA.










SARS-CoV preparation
FBS


Name phage antibody
(OD492nm)
(OD492nm)





SC03-016
0.313
0.205


SC03-017
0.106
0.059


SC03-018
1.523
0.072


Anti-CD46 (SC02-300)
0.171
0.070


No phage antibody
0.081
0.045
















TABLE 35










Binding of antibody 03-018 to linear and looped/cyclic


peptides of the N protein of SARS-CoV Urbani.











Antibody




Peptides of N
03-018
Antibody 03-018
SEQ


protein
linear peptides
looped peptides
ID NO





MSDNGPQSNQRSAPR
0.1
0.3
1123 


SDNGPQSNQRSAPRI
0.0
0.2
1124 


DNGPQSNQRSAPRIT
0.2
0.3
1125 




embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image






embedded image




embedded image




embedded image




embedded image




TFGGPTDSTDNNQNG
0.1
0.2
1126 


FGGPTDSTDNNQNGG
0.1
0.2
1127 


GGPTDSTDNNQNGGR
0.1
0.2
1128 


GPTDSTDNNQNGGRN
0.2
0.2
1129 


PTDSTDNNQNGGRNG
0.1
0.2
1130 


TDSTDNNQNGGRNGA
0.2
0.2
1131 


DSTDNNQNGGRNGAR
0.2
0.3
1132 


STDNNQNGGRNGARP
0.2
0.2
1133 


TDNNQNGGRNGARPK
0.2
0.2
1134 


DNNQNGGRNGARPKQ
0.2
0.3
1135 


NNQNGGRNGARPKQR
0.2
0.2
1136 


NQNGGRNGARPKQRR
0.2
0.2
1137 


QNGGRNGARPKQRRP
0.2
0.3
1138 


NGGRNGARPKQRRPQ
0.2
0.3
1139 


GGRNGARPKQRRPQG
0.2
0.2
1140 


GRNGARPKQRRPQGL
0.1
0.2
1141 


RNGARPKQRRPQGLP
0.1
0.3
1142 


NGARPKQRRPQGLPN
0.1
0.3
1143 


GARPKQRRPQGLPNN
0.1
0.2
1144 


ARPKQRRPQGLPNNT
0.1
0.2
1145 


RPKQRRPQGLPNNTA
0.1
0.2
1146 


PKQRRPQGLPNNTAS
0.2
0.3
1147 


KQRRPQGLPNNTASW
0.1
0.2
1148 


QRRPQGLPNNTASWF
0.1
0.2
1149 


RRPQGLPNNTASWFT
0.1
0.2
1150 


RPQGLPNNTASWFTA
0.1
0.2
1151 


PQGLPNNTASWFTAL
0.1
0.3
1152 


QGLPNNTASWFTALT
0.1
0.3
1153 


GLPNNTASWFTALTQ
0.1
0.3
1154 


LPNNTASWFTALTQH
0.1
0.3
1155 


PNNTASWFTALTQHG
0.1
0.3
1156 


NNTASWFTALTQHGK
0.1
0.2
1157 


NTASWFTALTQHGKE
0.1
0.2
1158 


TASWFTALTQHGKEE
0.1
0.2
1159 


ASWFTALTQHGKEEL
0.1
0.2
1160 


SWFTALTQHGKEELR
0.1
0.2
1161 


WFTALTQHGKEELRF
0.1
0.2
1162 


FTALTQHGKEELRFP
0.1
0.2
1163 


TALTQHGKEELRFPR
0.1
0.3
1164 


ALTQHGKEELRFPRG
0.2
0.2
1165 


LTQHGKEELRFPRGQ
0.1
0.2
1166 


TQHGKEELRFPRGQG
0.1
0.2
1167 


QHGKEELRFPRGQGV
0.1
0.2
1168 


HGKEELRFPRGQGVP
0.1
0.2
1169 


GKEELRFPRGQGVPI
0.1
0.3
1170 


KEELRFPRGQGVPIN
0.1
0.3
1171 


EELRFPRGQGVPINT
0.1
0.3
1172 


ELRFPRGQGVPINTN
0.1
0.2
1173 


LRFPRGQGVPINTNS
0.1
0.2
1174 


RFPRGQGVPINTNSG
0.1
0.2
1175 


FPRGQGVPINTNSGP
0.1
0.2
1176 


PRGQGVPINTNSGPD
0.1
0.2
1177 


RGQGVPINTNSGPDD
0.1
0.2
1178 


GQGVPINTNSGPDDQ
0.1
0.2
1179 


QGVPINTNSGPDDQI
0.1
0.1
1180 


GVPINTNSGPDDQIG
0.1
0.2
1181 


VPINTNSGPDDQIGY
0.1
0.2
1182 


PINTNSGPDDQIGYY
0.1
0.2
1183 


INTNSGPDDQIGYYR
0.1
0.2
1184 


NTNSGPDDQIGYYRR
0.1
0.3
1185 


TNSGPDDQIGYYRRA
0.1
0.2
1186 


NSGPDDQIGYYRRAT
0.1
0.2
1187 


SGPDDQIGYYRRATR
0.1
0.3
545


GPDDQTGYYRRATRR
0.1
0.3
546


PDDQIGYYRRATRRV
0.1
0.3
547


DDQIGYYRRATRRVR
0.1
0.3
548


DQIGYYRRATRRVRG
0.1
0.3
549


QIGYYRRATRRVRGG
0.1
0.2
550


IGYYRRATRRVRGGD
0.1
0.2
551


GYYRRATRRVRGGDG
0.1
0.2
552


YYRRATRRVRGGDGK
0.1
0.2
1188 


YRRATRRVRGGDGKM
0.1
0.2
1189 


RRATRRVRGGDGKMK
0.1
0.2
1190 


RATRRVRGGDGKMKE
0.1
0.2
1191 


ATRRVRGGDGKMKEL
0.1
0.2
1192 


TRRVRGGDGKMKELS
0.1
0.2
1193 


RRVRGGDGKMKELSP
0.1
0.2
1194 


RVRGGDGKMKELSPR
0.1
0.2
1195 


VRGGDGKMKELSPRW
0.1
0.2
1196 


RGGDGKMKELSPRWY
0.1
0.2
1197 


GGDGKMKELSPRWYF
0.1
0.2
1198 


GDGKMKELSPRWYFY
0.1
0.2
1199 


DGKMKELSPRWYFYY
0.1
0.2
1200 


GKMKELSPRWYFYYL
0.1
0.3
1201 


KMKELSPRWYFYYLG
0.1
0.2
1202 


MKELSPRWYFYYLGT
0.1
0.2
1203 


KELSPRWYFYYLGTG
0.1
0.3
1204 


ELSPRWYFYYLGTGP
0.1
0.2
1205 


LSPRWYFYYLGTGPE
0.1
0.2
1206 


SPRWYFYYLGTGPEA
0.1
0.2
1207 


PRWYFYYLGTGPEAS
0.1
0.2
1208 


RWYFYYLGTGPEASL
0.1
0.2
1209 


WYFYYLGTGPEASLP
0.1
0.2
1210 


YFYYLGTGPEASLPY
0.1
0.2
1211 


FYYLGTGPEASLPYG
0.1
0.2
1212 


YYLGTGPEASLPYGA
0.1
0.2
1213 


YLGTGPEASLPYGAN
0.1
0.2
1214 


LGTGPEASLPYGANK
0.1
0.2
1215 


GTGPEASLPYGANKE
0.1
0.2
1216 


TGPEASLPYGANKEG
0.1
0.2
1217 


GPEASLPYGANKEGI
0.1
0.2
1218 


PEASLPYGANKEGIV
0.1
0.2
1219 


EASLPYGANKEGIVW
0.1
0.2
1220 


ASLPYGANKEGIVWV
0.1
0.3
1221 


SLPYGANKEGIVWVA
0.1
0.2
1222 


LPYGANKEGIVWVAT
0.1
0.2
1223 


PYGANKEGIVWVATE
0.1
0.2
1224 


YGANKEGIVWVATEG
0.1
0.2
1225 


GANKEGIVWVATEGA
0.1
0.2
1226 


ANKEGIVWVATEGAL
0.1
0.2
1227 


NKEGIVWVATEGALN
0.1
0.2
1228 


KEGIVWVATEGALNT
0.1
0.2
1229 


EGIVWVATEGALNTP
0.1
0.2
1230 


GIVWVATEGALNTPK
0.1
0.2
1231 


IVWVATEGALNTPKD
0.1
0.2
1232 


VWVATEGALNTPKDH
0.1
0.3
1233 


WVATEGALNTPKDHI
0.1
0.2
1234 


VATEGALNTPKDHIG
0.2
0.2
1235 


ATEGALNTPKDHIGT
0.1
0.2
1236 


TEGALNTPKDHTGTR
0.2
0.3
1237 


EGALNTPKDHIGTRN
0.1
0.3
1238 


GALNTPKDHIGTRNP
0.1
0.2
1239 


ALNTPKDHIGTRNPN
0.1
0.2
1240 


LNTPKDHIGTRNPNN
0.1
0.2
1241 


NTPKDHIGTRNPNNN
0.1
0.2
1242 


TPKDHIGTRNPNNNA
0.1
0.2
1243 


PKDHIGTRNPNNNAA
0.1
0.2
1244 


KDHIGTRNPNNNAAT
0.1
0.2
1245 


DHIGTRNPNNNAATV
0.1
0.3
1246 


HIGTRNPNNNAATVL
0.1
0.3
1247 


IGTRNPNNNAATVLQ
0.1
0.3
1248 


GTRNPNNNAATVLQL
0.1
0.3
1249 


TRNPNNNAATVLQLP
0.1
0.2
1250 


RNPNNNAATVLQLPQ
0.1
0.2
1251 


NPNNNAATVLQLPQG
0.1
0.3
1252 


PNNNAATVLQLPQGT
0.1
0.3
1253 


NNNAATVLQLPQGTT
0.1
0.3
1254 


NNAATVLQLPQGTTL
0.1
0.3
358


NAATVLQLPQGTTLP
0.1
0.2
359


AATVLQLPQGTTLPK
0.1
0.2
360


ATVLQLPQGTTLPKG
0.1
0.2
361


TVLQLPQGTTLPKGF
0.1
0.3
362


VLQLPQGTTLPKGFY
0.1
0.3
363


LQLPQGTTLPKGFYA
0.1
0.2
364


QLPQGTTLPKGFYAE
0.1
0.2
365


LPQGTTLPKGFYAEG
0.1
0.3
366


PQGTTLPKGFYAEGS
0.1
0.2
367


QGTTLPKGFYAEGSR
0.1
0.2
368


GTTLPKGFYAEGSRG
0.1
0.2
369


TTLPKGFYAEGSRGG
0.1
0.2
370


TLPKGFYAEGSRGGS
0.1
0.2
371


LPKGFYAEGSRGGSQ
0.1
0.2
1255 


PKGFYAEGSRGGSQA
0.1
0.2
1256 


KGFYAEGSRGGSQAS
0.1
0.2
1257 


GFYAEGSRGGSQASS
0.1
0.2
1258 


FYAEGSRGGSQASSR
0.1
0.1
1259 


YAEGSRGGSQASSRS
0.1
0.2
1260 


AEGSRGGSQASSRSS
0.1
0.2
1261 


EGSRGGSQASSRSSS
0.1
0.2
1262 


GSRGGSQASSRSSSR
0.1
0.2
1263 


SRGGSQASSRSSSRS
0.1
0.2
1264 


RGGSQASSRSSSRSR
0.1
0.1
1265 


GGSQASSRSSSRSRG
0.1
0.2
1266 


GSQASSRSSSRSRGN
0.1
0.2
1267 


SQASSRSSSRSRGNS
0.1
0.2
1268 


QASSRSSSRSRGNSR
0.1
0.2
1269 


ASSRSSSRSRGNSRN
0.1
0.2
1270 


SSRSSSRSRGNSRNS
0.1
0.2
1271 


SRSSSRSRGNSRNST
0.1
0.2
1272 


RSSSRSRGNSRNSTP
0.1
0.2
1273 


SSSRSRGNSRNSTPG
0.1
0.2
1274 


SSRSRGNSRNSTPGS
0.1
0.2
1275 


SRSRGNSRNSTPGSS
0.1
0.2
1276 


RSRGNSRNSTPGSSR
0.1
0.2
1277 


SRGNSRNSTPGSSRG
0.1
0.2
1278 


RGNSRNSTPGSSRGN
0.1
0.2
1279 


GNSRNSTPGSSRGNS
0.1
0.2
1280 


NSRNSTPGSSRGNSP
0.1
0.2
1281 


SRNSTPGSSRGNSPA
0.1
0.2
1282 


RNSTPGSSRGNSPAR
0.1
0.2
553


NSTPGSSRGNSPARM
0.2
0.3
554


STPGSSRGNSPARMA
0.1
0.2
555


TPGSSRGNSPARMAS
0.1
0.3
556


PGSSRGNSPARMASG
0.1
0.3
557


GSSRGNSPARMASGG
0.1
0.2
558


SSRGNSPARMASGGG
0.1
0.2
1283 


SRGNSPARMASGGGE
0.1
0.2
1284 


RGNSPARMASGGGET
0.1
0.2
1285 


GNSPARMASGGGETA
0.2
0.2
1286 


NSPARMASGGGETAL
0.1
0.2
372


SPARMASGGGETALA
0.1
0.1
373


PARMASGGGETALAL
0.1
0.3
374


ARMASGGGETALALL
0.1
0.3
375


RMASGGGETALALLL
0.1
0.3
376


MASGGGETALALLLL
0.1
0.3
377


ASGGGETALALLLLD
0.1
0.2
378


SGGGETALALLLLDR
0.1
0.2
1287 


GGGETALALLLLDRL
0.1
0.2
1288 


GGETALALLLLDRLN
0.1
0.2
1289 


GETALALLLLDRLNQ
0.1
0.3
1290 


ETALALLLLDRLNQL
0.1
0.3
1291 


TALALLLLDRLNQLE
0.1
0.2
1292 


ALALLLLDRLNQLES
0.1
0.3
1293 


LALLLLDRLNQLESK
0.1
0.2
1294 


ALLLLDRLNQLESKV
0.1
0.3
1295 


LLLLDRLNQLESKVS
0.2
0.2
1296 


LLLDRLNQLESKVSG
0.1
0.2
1297 


LLDRLNQLESKVSGK
0.1
0.2
1298 


LDRLNQLESKVSGKG
0.1
0.2
1299 


DRLNQLESKVSGKGQ
0.1
0.3
1300 


RLNQLESKVSGKGQQ
0.1
0.2
1301 


LNQLESKVSGKGQQQ
0.1
0.3
1302 


NQLESKVSGKGQQQQ
0.1
0.3
1303 


QLESKVSGKGQQQQG
0.1
0.3
1304 


LESKVSGKGQQQQGQ
0.1
0.3
1305 


ESKVSGKGQQQQGQT
0.1
0.2
1306 


SKVSGKGQQQQGQTV
0.1
0.2
1307 


KVSGKGQQQQGQTVT
0.1
0.2
1308 


VSGKGQQQQGQTVTK
0.1
0.3
1309 


SGKGQQQQGQTVTKK
0.1
0.2
1310 


GKGQQQQGQTVTKKS
0.1
0.2
1311 


KGQQQQGQTVTKKSA
0.1
0.2
1312 


GQQQQGQTVTKKSAA
0.1
0.2
1313 


QQQQGQTVTKKSAAE
0.1
0.2
1314 


QQQGQTVTKKSAAEA
0.1
0.2
1315 


QQGQTVTKKSAAEAS
0.1
0.2
379


QGQTVTKKSAAEASK
0.1
0.2
380


GQTVTKKSAAEASKK
0.1
0.2
381


QTVTKKSAAEASKKP
0.1
0.2
382


TVTKKSAAEASKKPR
0.1
0.2
383


VTKKSAAEASKKPRQ
0.1
0.2
384


TKKSAAEASKKPRQK
0.1
0.2
385


KKSAAEASKKPRQKR
0.1
0.2
386


KSAAEASKKPRQKRT
0.1
0.1
387


SAAEASKKPRQKRTA
0.1
0.2
388


AAEASKKPRQKRTAT
0.1
0.2
389


AEASKKPRQKRTATK
0.1
0.2
1316 


EASKKPRQKRTATKQ
0.1
0.3
1317 


ASKKPRQKRTATKQY
0.1
0.2
1318 


SKKPRQKRTATKQYN
0.1
0.2
1319 


KKPRQKRTATKQYNV
0.1
0.2
1320 


KPRQKRTATKQYNVT
0.1
0.2
390


PRQKRTATKQYNVTQ
0.1
0.2
391


RQKRTATKQYNVTQA
0.1
0.2
392


QKRTATKQYNVTQAF
0.1
0.2
393


KRTATKQYNVTQAFG
0.1
0.2
394


RTATKQYNVTQAFGR
0.1
0.2
395


TATKQYNVTQAFGRR
0.1
0.3
396


ATKQYNVTQAFGRRG
0.1
0.3
565


TKQYNVTQAFGRRGP
0.1
0.3
566


KQYNVTQAFGRRGPE
0.1
0.1
567


QYNVTQAFGRRGPEQ
0.1
0.3
568


YNVTQAFGRRGPEQT
0.1
0.2
569


NVTQAFGRRGPEQTQ
0.1
0.2
570


VTQAFGRRGPEQTQG
0.1
0.2
571


TQAFGRRGPEQTQGN
0.1
0.2
572


QAFGRRGPEQTQGNF
0.1
0.2
1321 


AFGRRGPEQTQGNFG
0.1
0.2
1322 


FGRRGPEQTQGNFGD
0.1
0.1
397


GRRGPEQTQGNFGDQ
0.1
0.2
398


RRGPEQTQGNFGDQD
0.1
0.2
399


RGPEQTQGNFGDQDL
0.1
0.2
400


GPEQTQGNFGDQDLI
0.1
0.2
401


PEQTQGNFGDQDLIR
0.1
0.2
402


EQTQGNFGDQDLIRQ
0.1
0.0
403


QTQGNFGDQDLIRQG
0.1
0.2
404


TQGNFGDQDLIRQGT
0.1
0.2
1323 


QGNFGDQDLIRQGTD
0.1
0.2
1324 


GNFGDQDLIRQGTDY
0.1
0.2
1325 


NFGDQDLIRQGTDYK
0.1
0.2
1326 


FGDQDLIRQGTDYKH
0.1
0.2
1327 


GDQDLIRQGTDYKHW
0.1
0.2
1328 


DQDLIRQGTDYKHWP
0.1
0.2
1329 


QDLIRQGTDYKHWPQ
0.1
0.2
1330 


DLIRQGTDYKHWPQI
0.1
0.2
1331 


LIRQGTDYKHWPQIA
0.1
0.1
1332 


IRQGTDYKHWPQIAQ
0.1
0.2
1333 


RQGTDYKHWPQIAQF
0.1
0.2
1334 


QGTDYKHWPQIAQFA
0.1
0.2
1335 


GTDYKHWPQIAQFAP
0.1
0.2
1336 


TDYKHWPQIAQFAPS
0.1
0.2
1337 


DYKHWPQIAQFAPSA
0.1
0.2
1338 


YKHWPQIAQFAPSAS
0.1
0.2
1339 


KHWPQIAQFAPSASA
0.1
0.2
1340 


HWPQIAQFAPSASAF
0.1
0.2
1341 


WPQIAQFAPSASAFF
0.1
0.3
1342 


PQIAQFAPSASAFFG
0.1
0.2
1343 


QIAQFAPSASAFFGM
0.1
0.3
1344 


IAQFAPSASAFFGMS
0.1
0.3
1345 


AQFAPSASAFFGMSR
0.1
0.3
1346 


QFAPSASAFFGMSRI
0.1
0.3
1347 


FAPSASAFFGMSRIG
0.1
0.2
1348 


APSASAFFGMSRIGM
0.1
0.2
1349 


PSASAFFGMSRIGME
0.1
0.2
1350 


SASAFFGMSRIGMEV
0.1
0.2
1351 


ASAFFGMSRIGMEVT
0.1
0.2
1352 


SAFFGMSRIGMEVTP
0.1
0.2
1353 


AFFGMSRIGMEVTPS
0.1
0.2
1354 


FFGMSRIGMEVTPSG
0.1
0.2
1355 


FGMSRIGMEVTPSGT
0.1
0.2
1356 


GMSRIGMEVTPSGTW
0.1
0.2
1357 


MSRIGMEVTPSGTWL
0.1
0.2
1358 


SRIGMEVTPSGTWLT
0.1
0.2
1359 


RIGMEVTPSGTWLTY
0.1
0.2
1360 


IGMEVTPSGTWLTYH
0.1
0.2
1361 


GMEVTPSGTWLTYHG
0.1
0.2
1362 


MEVTPSGTWLTYHGA
0.1
0.2
1363 


EVTPSGTWLTYHGAI
0.1
0.2
1364 


VTPSGTWLTYHGAIK
0.1
0.2
1365 


TPSGTWLTYHGAIKL
0.1
0.2
1366 


PSGTWLTYHGAIKLD
0.1
0.2
1367 


SGTWLTYHGAIKLDD
0.1
0.2
1368 


GTWLTYHGAIKLDDK
0.1
0.2
1369 


TWLTYHGAIKLDDKD
0.1
0.2
1370 


WLTYHGAIKLDDKDP
0.1
0.2
1371 


LTYHGAIKLDDKDPQ
0.1
0.2
1372 


TYHGAIKLDDKDPQF
0.1
0.1
1373 


YHGAIKLDDKDPQFK
0.1
0.2
1374 


HGAIKLDDKDPQFKD
0.1
0.2
1375 


GAIKLDDKDPQFKDN
0.1
0.2
1376 


AIKLDDKDPQFKDNV
0.1
0.2
1377 


IKLDDKDPQFKDNVI
0.1
0.2
405


KLDDKDPQFKDNVIL
0.1
0.2
406


LDDKDPQFKDNVILL
0.1
0.3
407


DDKDPQFKDNVILLN
0.1
0.3
408


DKDPQFKDNVILLNK
0.1
0.4
409


KDPQFKDNVILLNKH
0.1
0.2
410


DPQFKDNVILLNKHI
0.1
0.3
411


PQFKDNVILLNKHID
0.1
0.2
412


QFKDNVILLNKHIDA
0.1
0.3
413


FKDNVILLNKHIDAY
0.1
0.2
1378 


KDNVILLNKHIDAYK
0.1
0.2
1379 


DNVILLNKHIDAYKT
0.1
0.2
1380 


NVILLNKHIDAYKTF
0.1
0.2
1381 


VILLNKHIDAYKTFP
0.1
0.2
1382 


ILLNKHIDAYKTFPP
0.1
0.2
1383 


LLNKHIDAYKTFPPT
0.1
0.2
1384 


LNKHIDAYKTFPPTE
0.1
0.2
1385 


NKHIDAYKTFPPTEP
0.1
0.2
1386 


KHIDAYKTFPPTEPK
0.1
0.2
1387 


HIDAYKTFPPTEPKK
0.1
0.2
1388 


IDAYKTFPPTEPKKD
0.1
0.2
1389 


DAYKTFPPTEPKKDK
0.1
0.2
1390 


AYKTFPPTEPKKDKK
0.1
0.1
1391 


YKTFPPTEPKKDKKK
0.1
0.2
1392 


KTFPPTEPKKDKKKK
0.1
0.2
1393 


TFPPTEPKKDKKKKT
0.1
0.2
1394 


FPPTEPKKDKKKKTD
0.1
0.2
1395 


PPTEPKKDKKKKTDE
0.1
0.2
1396 


PTEPKKDKKKKTDEA
0.1
0.2
1397 


TEPKKDKKKKTDEAQ
0.1
0.2
1398 


EPKKDKKKKTDEAQP
0.1
0.2
1399 


PKKDKKKKTDEAQPL
0.1
0.2
1400 


KKDKKKKTDEAQPLP
0.1
0.2
1401 


KDKKKKTDEAQPLPQ
0.1
0.2
1402 


DKKKKTDEAQPLPQR
0.1
0.2
1403 


KKKKTDEAQPLPQRQ
0.1
0.2
1404 


KKKTDEAQPLPQRQK
0.1
0.2
1405 


KKTDEAQPLPQRQKK
0.1
0.2
1406 


KTDEAQPLPQRQKKQ
0.1
0.2
1407 


TDEAQPLPQRQKKQP
0.1
0.1
1408 


DEAQPLPQRQKKQPT
0.1
0.2
1409 


EAQPLPQRQKKQPTV
0.1
0.2
1410 


AQPLPQRQKKQPTVT
0.1
0.1
1411 


QPLPQRQKKQPTVTL
0.1
0.3
414


PLPQRQKKQPTVTLL
0.1
0.3
415


LPQRQKKQPTVTLLP
0.1
0.3
416


PQRQKKQPTVTLLPA
0.1
0.3
417


QRQKKQPTVTLLPAA
0.1
0.3
418


RQKKQPTVTLLPAAD
0.1
0.2
419


QKKQPTVTLLPAADM
0.1
0.3
420


KKQPTVTLLPAADMD
0.1
0.2
1412 


KQPTVTLLPAADMDD
0.1
0.2
1413 


QPTVTLLPAADMDDF
0.1
0.2
1414 


PTVTLLPAADMDDFS
0.1
0.2
1415 


TVTLLPAADMDDFSR
0.1
0.2
1416 


VTLLPAADMDDFSRQ
0.1
0.2
1417 


TLLPAADMDDFSRQL
0.1
0.1
1418 


LLPAADMDDFSRQLQ
0.1
0.2
1419 


LPAADMDDFSRQLQN
0.1
0.2
1420 


PAADMDDFSRQLQNS
0.1
0.2
1421 


AADMDDFSRQLQNSM
0.2
0.2
1422 


ADMDDFSRQLQNSMS
0.1
0.1
1423 


DMDDFSRQLQNSMSG
0.1
0.2
1424 


MDDFSRQLQNSMSGA
0.2
0.2
1425 


DDFSRQLQNSMSGAS
0.2
0.2
1426 


DFSRQLQNSMSGASA
0.1
0.2
1427 


FSRQLQNSMSGASAD
0.1
0.2
1428 


SRQLQNSMSGASADS
0.1
0.2
1429 


RQLQNSMSGASADST
0.1
0.2
1430 


QLQNSMSGASADSTQ
0.1
0.2
1431 


LQNSMSGASADSTQA
0.2
0.2
1432 









REFERENCES

De Kruif J, Terstappen L, Boel E and Logtenberg T (1995a), Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc. Natl. Acad. Sci. USA 92:3938.


De Kruif J, Boel E and Logtenberg T (1995b), Selection and application of human single-chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions. J. Mol. Biol. 248:97-105.


Holmes K V. 2003. SARS coronavirus: a new challenge for prevention and therapy. J. Clin. Invest. 111, 1605-1609.


Ksiazek T G, et al. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Eng. J. Med. 348, 1953-1966.


Marra M A, et al. 2003. The genome sequence of the SARS-associated coronavirus. Science 300, 1399-1404.


Rota P A, et al. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394-1399.


Slootstra J W, et al. 1996. Structural aspects of antibody-antigen interaction revealed through small random peptide libraries. Mol. Divers. 1, 87-96.

Claims
  • 1. An isolated peptide having an amino acid sequence selected from the group consisting of SEQ ID NO:9-SEQ ID NO:227, SEQ ID NO:229-SEQ ID NO:420, SEQ ID NO:492-SEQ ID NO:572, SEQ ID NO:592-SEQ ID NO:603, and SEQ ID NO:604.
  • 2. The isolated peptide of claim 1, wherein said isolated peptide has an amino acid sequence selected from the group consisting of SEQ ID NO:358-SEQ ID NO:420, SEQ ID NO:545-SEQ ID NO:572, SEQ ID NO:592-SEQ ID NO:603, and SEQ ID NO:604.
  • 3. The isolated peptide of claim 2, wherein said isolated peptide has an amino acid sequence selected from the group consisting of SEQ ID NO:358-SEQ ID NO:420, SEQ ID NO:545-SEQ ID NO:572, SEQ ID NO:592-SEQ ID NO:594, and SEQ ID NO:595.
  • 4. The isolated peptide of claim 3, wherein said isolated peptide has an amino acid sequence selected from the group consisting of SEQ ID NO:360-SEQ ID NO:367 and SEQ ID NO:368.
  • 5. A peptide comprising a part of the isolated peptide of claim 3, wherein said part comprises the amino acid sequence QGTTLPK (SEQ ID NO:606) and further wherein said part is recognized by antibodies present in serum derived from a subject that has been or is infected by Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V).
  • 6. A second peptide consisting of an analogue of the isolated peptide of claim 3, wherein one or more amino acids of the isolated peptide of claim 3 are substituted, and wherein said analogue is recognized by antibodies present in serum derived from a subject that has been or is infected by Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V).
  • 7. The isolated peptide of claim 2, wherein said isolated peptide has an amino acid sequence selected from the group consisting of SEQ ID NO: 592-SEQ ID NO:603 and SEQ ID NO:604.
  • 8. The isolated peptide of claim 7, wherein said isolated peptide has an amino acid sequence selected from the group consisting of SEQ ID NO: 593-SEQ ID NO:598 and SEQ ID NO:599.
  • 9. A second peptide comprising a part of the isolated peptide of claim 7, wherein said part is recognized by an antibody comprising a heavy chain CDR3 region having the amino acid sequence FNPFTSFDY (SEQ ID NO:587).
  • 10. The second peptide of claim 9, wherein said part comprises an amino acid sequence RSAPRITFG (SEQ ID NO:605).
  • 11. A second peptide consisting of an analogue of the isolated peptide of claim 7, wherein one or more amino acids of the isolated peptide of claim 7 are substituted in the isolated peptide of claim 7, and wherein said analogue is recognized by an antibody comprising a heavy chain CDR3 region having the amino acid sequence FNPFTSFDY (SEQ ID NO:587).
  • 12. A fusion protein or a conjugate, wherein said fusion protein or conjugate comprises the peptide of claim 1.
  • 13. An isolated nucleic acid molecule, wherein said isolated nucleic acid molecule encodes the isolated peptide of claim 1.
  • 14. An isolated antibody, wherein said isolated antibody is able to specifically recognize the isolated peptide of claim 1.
  • 15. The isolated antibody of claim 14, wherein said isolated antibody is a monoclonal antibody.
  • 16. The isolated monoclonal antibody of claim 15, wherein said isolated monoclonal antibody is a human monoclonal antibody.
  • 17. The isolated antibody of claim 14, wherein the isolated antibody has Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V) neutralizing activity.
  • 18. An isolated nucleic acid molecule encoding the isolated antibody of claim 16.
  • 19. A vector comprising at least one isolated nucleic acid molecule of claim 13.
  • 20. A host comprising at least one vector of claim 19.
  • 21. The host of claim 20, wherein the host is a cell.
  • 22. A medicament or immunogen, wherein said medicament or immunogen comprises the isolated peptide of claim 1.
  • 23. A vaccine comprising the isolated peptide of claim 22.
  • 24. A medicament comprising the isolated antibody of claim 14.
  • 25. A method for the detection, prevention and/or treatment of a condition in a subject resulting from a Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V), said method comprising the step of administering a medicament comprising the isolated peptide of claim 1 to the subject.
  • 26. A method for the detection, prevention and/or treatment of a condition in a subject resulting from a Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V), said method comprising the step of administering a medicament comprising the isolated antibody of claim 14 to the subject.
  • 27. A diagnostic test method for determining the presence of an antibody recognizing Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V) in a sample, said method comprising the steps of: contacting said sample with the isolated peptide of claim 1 and determining whether the antibody in the sample binds to the isolated peptide.
  • 28. A diagnostic test method for determining the presence of Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V) in a sample, said method comprising the steps of: contacting said sample with the isolated antibody of claim 14 and determining whether the antibody in the sample binds to a molecule contained within said sample.
  • 29. The diagnostic test method of claim 28, wherein the sample is from a human subject potentially infected with a Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V).
  • 30. An isolated nucleic acid molecule encoding the fusion protein or conjugate of claim 12.
  • 31. An isolated antibody able to specifically recognize the fusion protein or conjugate of claim 12.
  • 32. A medicament comprising the fusion protein or conjugate of claim 12.
  • 33. A medicament comprising the isolated nucleic acid molecule of claim 13.
  • 34. A medicament comprising the isolated nucleic acid molecule of claim 18.
  • 35. A method for the detection, prevention and/or treatment of a condition in a subject resulting from a Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V), said method comprising the step of administering a medicament comprising the fusion protein or conjugate of claim 12 to the subject.
  • 36. A method for the detection, prevention and/or treatment of a condition in a subject resulting from a Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V), said method comprising the step of administering a medicament comprising the isolated nucleic acid molecule of claim 13 to the subject.
  • 37. A method for the detection, prevention and/or treatment of a condition in a subject resulting from a Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V), said method comprising the step of administering a medicament comprising the isolated nucleic acid molecule of claim 18 to the subject.
  • 38. A method for the detection, prevention and/or treatment of a condition in a subject resulting from a Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V), said method comprising the step of administering a medicament comprising the vector of claim 19 to the subject.
  • 39. A diagnostic test method for determining the presence of an antibody recognizing Severe Acute Respiratory Syndrome Coronavirus (SARS-Co-V) in a sample, said method comprising the steps of: contacting said sample with a peptide according to the fusion protein or conjugate of claim 12 and determining whether the isolated antibody in the sample binds to the fusion protein or conjugate of claim 12.
Priority Claims (5)
Number Date Country Kind
PCT/EP03/50308 Jul 2003 WO international
PCT/EP03/50333 Jul 2003 WO international
PCT/EP03/50392 Sep 2003 WO international
PCT/EP03/50761 Oct 2003 WO international
PCT/EP03/50883 Nov 2003 WO international
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT International Patent Application No. PCT/EP2004/051498, filed on Jul. 15, 2004, designating the United States of America, and published, in English, as PCT International Publication No. WO 2005/012337 A2 on Feb. 10, 2005, which application claims priority to International Patent Application No. PCT/EP03/50883 filed Nov. 24, 2003, which claims priority to International Patent Application No. PCT/EP03/50761 filed Oct. 27, 2003, which claims priority to International Patent Application No. PCT/EP03/50392 filed Sep. 2, 2003, which claims priority to International Patent Application No. PCT/EP03/50333 filed Jul. 24, 2003, which in turn claims priority to International Patent Application No. PCT/EP03/50308 filed Jul. 15, 2003, the contents of the entirety of each of which are incorporated by this reference.

Continuations (1)
Number Date Country
Parent PCT/EP04/51498 Jul 2004 US
Child 11332820 Jan 2006 US