Antigens and epitopes derived from Mycobacterium tuberculosis

Information

  • Patent Grant
  • 10703784
  • Patent Number
    10,703,784
  • Date Filed
    Monday, October 1, 2012
    11 years ago
  • Date Issued
    Tuesday, July 7, 2020
    3 years ago
Abstract
The present invention relates to M. tuberculosis proteins and peptides, and subsequences, portions or modifications thereof and methods and compounds comprising the same for eliciting, stimulating, inducing, promoting, increasing, or enhancing an anti-M. tuberculosis immune response in a subject.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 26, 2014, is named 2011-08-02_SEQ_ST25.txt and is 198,614 bytes in size.


FIELD OF THE INVENTION

The present invention relates to M. tuberculosis proteins and peptides, and subsequences, portions or modifications thereof and methods and compounds for eliciting, stimulating, inducing, promoting, increasing, or enhancing an anti-M. tuberculosis immune response.


BACKGROUND OF INVENTION

Tuberculosis is a major threat to global health and one of the major causes of death from infectious disease. One-third of the world's population is latently infected with M. tuberculosis (MTB). Most cases of active disease will arise from this enormous reservoir of latent TB, resulting in further spread of the disease, which embodies a major obstacle in achieving worldwide control of TB (WHO, 2011). Current diagnostics cannot distinguish between active and latent infection, and the only available vaccine against TB has limited efficacy. Further the increasing incidence of drug resistant strains has prompted their inclusion in the list of A-C pathogens, and heightened interest in development of effective vaccines. Therefore, there is a need for the development of novel vaccines and diagnostic strategies (Wallis et al., 2010).


Human T cell responses to MTB involve CD4+, CD8+ and γ∂ T cells (Boom, 1996). CD4 T cells have been shown to be central to the defense against MTB through the discovery that HIV infected patients are more susceptible to primary TB infection, re-infection and re-activation (Barnes et al., 1991). Different types of CD4 T helper (Th) cells develop from naïve T cells under the influence of polarizing signals and master transcription factors. Seminal studies showed that human memory T cells directed against MTB secreted IFN-γ, thus representing the human counterpart of mouse Th1 cells (Del Prete et al., 1991). IFN-γ has an essential role in the protective immunity to mycobacteria, as demonstrated by the increased susceptibility to mycobacteria in individuals with genetic defects in the IFN-γ receptor (Newport et al., 1996). Furthermore, different Th cell subsets differ in expression of chemokine receptors and therefore in migratory capacity and tissue localization (Sallusto et al., 2000). Th1 cells mainly express CCR5 and CXCR3 (Sallusto et al., 1998), while Th17 cells co-express CCR6 and CCR4 and Th22 cells co-express CCR6 and CCR10 (Acosta-Rodriguez et al., 2007; Duhen et al., 2009)


The MTB genome encodes more than 4,000 different ORFs, generally highly conserved amongst different strains, including drug resistant ones. Yet, only a handful of them have been reported as targets of human CD4+ T cells, the key cellular effector of MTB immunity. A genome-wide study determining which MTB antigens are immunodominant is to date lacking.


SUMMARY OF THE INVENTION

The invention is based, in part, on the present inventors' discovery of novel MTB proteins and peptides that are novel MTB antigens and epitopes and characterization of the genome-wide antigen response in latently infected individuals.


Thus the invention provides proteins and peptides, and subsequences, portions or modifications thereof and methods and compounds for eliciting, stimulating, inducing, promoting, increasing, or enhancing an anti-MTB immune response.


Thus in one aspect, there is presently provided a method of providing a subject with protection against a M. tuberculosis (MTB) infection or pathology, or one or more physiological conditions, disorders, illnesses, diseases, symptoms or complications caused by or associated with MTB infection or pathology, the method comprising administering to the subject an amount of a protein or peptide comprising, consisting of or consisting essentially of an amino acid sequence of a M. tuberculosis (MTB) protein or peptide set forth in Table 1 or Table 5, or a subsequence, portion, or modification thereof, sufficient to provide the subject with protection against the MTB infection or pathology, or one or more physiological conditions, disorders, illnesses, diseases, symptoms or complications caused by or associated with MTB infection or pathology. In particular aspects of the present invention, the method comprises vaccinating a subject against a M. tuberculosis (MTB) infection.


In certain embodiments, the protein or peptide of the presently provided methods comprises, consists of or consists essentially of an amino acid sequence of a MTB protein Rv3024c, Rv0289, Rv0290, Rv3330, Rv1788, Rv1791, Rv3125c, Rv0294, Rv2874, Rv3022c, Rv3135, Rv3876, Rv0124, Rv0291, Rv0292, Rv0293c, Rv0297, Rv0299, Rv3012c, Rv3025c, Rv0278c, Rv0279c, Rv0298, Rv0442c, Rv0690c, Rv0985c, Rv0987, Rv1172c, Rv1243c, Rv1317c, Rv1366, Rv1441c, Rv2490c or Rv2853, or a subsequence, portion, homologue, variant or derivative thereof.


In different embodiments of the presently provided methods, the amino acid sequence of the M. tuberculosis (MTB) protein or peptide comprises, consists of or consists essentially of an amino acid sequence derived from or based upon an amino acid sequence of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85.


In different embodiments, the methods of the present invention comprises administering to the subject the protein or peptide in combination with an immunological agent, wherein the subject is administered an amount of the protein or peptide sufficient to vaccinate the subject against the MTB infection when the protein or peptide is administered in combination with the immunological agent.


In certain embodiments, the method comprises eliciting, stimulating, inducing, promoting, increasing or enhancing a T cell response against M. tuberculosis (MTB). In particular embodiments, the method comprises eliciting, stimulating, inducing, promoting, increasing or enhancing a CD4+ T cell response against M. tuberculosis (MTB). In further embodiments, the method comprises eliciting, stimulating, inducing, promoting, increasing or enhancing a CXCR3+CCR6+ memory Th1 cell response against M. tuberculosis (MTB). In still further embodiments of the present methods, the subject is a mammal.


In another aspect, there is presently provided a method of eliciting, stimulating, inducing, promoting, increasing or enhancing an immune response against M. tuberculosis (MTB) in a subject, the method comprising administering to the subject an amount of a protein or peptide comprising, consisting of or consisting essentially of an amino acid sequence of a M. tuberculosis (MTB) protein or peptide set forth in Table 1 or Table 5, or a subsequence, portion, or modification thereof, sufficient to elicit, stimulate, induce, promote, increase or enhance an immune response against MTB in the subject.


In certain embodiments, the protein or peptide of the presently described methods comprises, consists of or consists essentially of an amino acid sequence of a MTB protein Rv3024c, Rv0289, Rv0290, Rv3330, Rv1788, Rv1791, Rv3125c, Rv0294, Rv2874, Rv3022c, Rv3135, Rv3876, Rv0124, Rv0291, Rv0292, Rv0293c, Rv0297, Rv0299, Rv3012c, Rv3025c, Rv0278c, Rv0279c, Rv0298, Rv0442c, Rv0690c, Rv0985c, Rv0987, Rv1172c, Rv1243c, Rv1317c, Rv1366, Rv1441c, Rv2490c or Rv2853, or a subsequence, portion, homologue, variant or derivative thereof.


In different embodiments of the present methods, the amino acid sequence of the M. tuberculosis (MTB) protein or peptide comprises, consists of or consists essentially of an amino acid sequence derived from or based upon an amino acid sequence of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85.


In certain embodiments, the method comprises treating a subject for a M. tuberculosis (MTB) infection, the method comprising administering to the subject an amount of a protein or peptide comprising, consisting of or consisting essentially of an amino acid sequence of a M. tuberculosis (MTB) protein or peptide set forth in Table 1 or Table 5, or a subsequence, portion, or modification thereof, sufficient to treat the subject for the MTB infection.


In particular embodiments of the presently described method of eliciting, stimulating, inducing, promoting, increasing or enhancing an immune response against M. tuberculosis (MTB) in a subject, the immune response against M. tuberculosis (MTB) comprises a CD4+ T cell response. In further embodiments, the immune response against M. tuberculosis (MTB) comprises a CXCR3+CCR6+ memory Th1 cell response. In particular embodiments, the subject is a mammal.


In yet another aspect of the present invention, there is provided a protein or peptide comprising, consisting of or consisting essentially of an amino acid sequence of a M. tuberculosis (MTB) protein or peptide set forth in Table 1 or Table 5, or a subsequence, portion, or modification thereof, wherein the protein or peptide, elicits, stimulates, induces, promotes, increases or enhances an anti-MTB immune response.


In particular embodiments, the present invention provides a protein or peptide comprising, consisting of or consisting essentially of an amino acid sequence of a MTB protein Rv3024c, Rv0289, Rv0290, Rv3330, Rv1788, Rv1791, Rv3125c, Rv0294, Rv2874, Rv3022c, Rv3135, Rv3876, Rv0124, Rv0291, Rv0292, Rv0293c, Rv0297, Rv0299, Rv3012c, Rv3025c, Rv0278c, Rv0279c, Rv0298, Rv0442c, Rv0690c, Rv0985c, Rv0987, Rv1172c, Rv1243c, Rv1317c, Rv1366, Rv1441c, Rv2490c or Rv2853, or a subsequence, portion, homologue, variant or derivative thereof.


In different embodiments of the present invention, the protein or peptide consists of or consists essentially of an amino acid sequence derived from or based upon an amino acid sequence of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85.


In a further embodiment of the present invention, the protein or peptide elicits, stimulates, induces, promotes, increases or enhances CD4+ T cell response. In a particular embodiment, the protein or peptide elicits, stimulates, induces, promotes, increases or enhances a CXCR3+CCR6+ memory Th1 cell response.


In yet another aspect of the present invention, there is provided a pharmaceutical composition comprising a protein or peptide described herein.


Other aspects and features of the present invention will become apparent to those of ordinary skill in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.





DESCRIPTION OF DRAWINGS

In the figures, which illustrate, by way of example only, embodiments of the present invention:



FIG. 1. T cell responses to MTB are restricted to a CXCR3+CCR6+ memory subset. Memory CD4 T cells were sorted into five subsets, 1) CXCR3+CCR6−, 2) CXCR3+CCR6+, 3) CCR4+CCR6−, 4) CCR4+CCR6+, and 5) CCR6+CCR10+. The sorted T cells were polyclonally expanded and analyzed for the presence of MTB−, Influenza A and C. albicans-specific T cells by stimulation with whole cell lysates in the presence of autologous monocytes and assessed for 3H-thymidine incorporation. (A) Shown is proliferation of individual cultures as cpm. Dotted lines represent the cut-off value. (B) Shown is the estimated frequency of antigen-specific T cells per 106 cells in each Th cell subset for the three organisms used for stimulation.



FIG. 2. The T cell response to MTB is restricted to a CXCR3+CCR6+ memory subset. (A, B) Three CD45RACD25CD4+ memory T cell subsets from four LTBI donors were sorted; 1) CCR6+CXCR3; 2) CCR6+CXCR3+; and 3) CCR6. (A) Representative dot plot from one donor; (B) Mean percentages of the T cell subsets on total CD4+ memory T cells. Error bars indicate SD (n=4). (C) T cell libraries were set up from the sorted subsets by polyclonal stimulation and expansion for 3-4 weeks. Libraries were analyzed by stimulation with autologous monocytes with or without MTB whole cell lysate and proliferative response was measured by 3H-thymidine incorporation. Shown is the estimated frequency of MTB-specific T cells per 106 CD4 memory T cells for LTBI donors. (D) Distribution of MTB-specific T cells in the three memory T cell subsets. Data represent mean±SD from four donors. ***, p<0.0001.



FIG. 3. Breadth and dominance at the epitope and antigen level. (A) Epitopes ranked on the basis of magnitude of response. LTBI (black line—% of total response, grey line—total SFC) and TB uninfected (grey dashed line—total SFC) donors. Black dashed lines indicate the top 80 and 175 epitopes. (B) Antigens ranked on the basis of the response frequency for LTBI donors. Black dashed line indicates antigens recognized by >10% of LTBI donors. (C) Antigens ranked on the basis of magnitude of response and response frequency (black line—% of total response, grey line—total SFC). Black dashed line indicates the top 82 antigens.



FIG. 4. Protein categories of identified antigens. The identified antigens (black bars) were divided into protein categories (TubercuList) and compared to the MTB genome (grey bars). Chi-square test, ***, p<0.001, ****, p<0.0001.



FIG. 5. Antigens cluster in antigenic islands in the MTB genome. (A) All antigens recognized on the H37Rv genome map, % donors responding (black bars) and % of total response (dotted grey line). (B) Antigenic islands identified by a 5-gene window spanning the entire MTB genome (top panel); Binomial distribution and Bonferroni correction, *, p<0.01. Proteins within each antigenic island, % donors responding (black bars) and % of total island response (grey bars) and the % of total (all antigens recognized) response per island (middle panel). Cartoons show relative length of proteins, direction of transcription and protein category of each protein. Esx proteins are part of the cell wall and cell processes category.



FIG. 6. Cell wall/cell processes and PE/PPE specific CD4 T cells have a multifunctional phenotype. Epitope-specific IFN-γ, TNFα and IL-2 production by PBMCs from LTBI donors measured after 6 h peptide stimulation. (A, C) % of responding CD4+ expressing each of the seven possible combinations of IFN-γ, TNFα and IL-2 (A) cell wall and cell processes proteins, (C) PE/PPE proteins. Island proteins (black dots) and non-island (grey dots). Each dot represents one donor/epitope combination mean±SD is indicated. (B, D) The fraction of the total cytokine response against (B) cell wall and cell processes, (D) PE/PPE proteins, expressing all 3, 2 or 1 cytokine. (E) Heat-map of each of the seven possible combinations of IFN-γ, TNFα and IL-2 for each individual donor and epitope tested grouped by protein category and island localization. Each column represents one donor. Epitopes tested are SEQ ID Nos: 404, 38 41, 40, 42, 48, 405, 96, 321, 318, 324, 357, 340, 313 in order of appearance.



FIG. 7. Memory phenotype of MTB-specific CD4 T cells using HLA class II tetramers. (A) HLA class II tetramer stained CD4-purified cells from LTBI donors. Tetramer+ cells were isolated following magnetic bead enrichment. Plots are gated on CD4+ T cells, and the numbers indicate the percentage of tetramer+ cells isolated from each of 4 representative donors CD4+ population. DPB1*04:01 AGCQTYKWETFLTSE (SEQ ID No: 293) n=4 donors, DRB1*15:01 MHVSFVMAYPEMLAA (SEQ ID No: 340) n=3, DRB1*15:01MSQIMYNYPAMMAHA (SEQ ID No: 41) n=5 and DRB1*01:01 GEEYLILSARDVLAV (SEQ ID No: 399) n=2. (B) Memory phenotype of tetramer+ cells for one representative donor per tetramer. Plots are gated on total CD4+ T cells (black background) or epitope-specific CD4+ T cells (grey dots). The numbers represent the percentages of tetramer+CD4+ T cells in the gate. (C) Pie chart representation of the proportion of CCR7CD45RA(effector memory), CCR7+CD45RA (central memory), CCR7+CD45RA+ (naïve), and CCR7−CD45RA+ (effector) CD4+ T cells for each tetramer.



FIG. 8. The T cell library approach complements the ex vivo IFN-γ ELISPOT assay. CCR6+CXCR3+ T cell libraries were set up for 4 representative donors. The sorted T cells were polyclonally expanded and analyzed for the presence of antigen-specific T cells by stimulation with peptide pools and measurement of 3H-thymidine incorporation. Shown is proliferation (cpm) of individual cultures from 4 different donors. Dotted lines represent the cut-off value. Response to antigens within genomic islands is shown in black or light grey and labelled Island 1, Island 2 or Island 3; response to antigens outside antigenic islands is shown in white. Antigenic islands are indicated by capped lines.



FIG. 9. Experimental design. Summary of the steps involved in the antigen identification pipeline, showing number of genomes, 15-mer peptides and selected peptides.



FIG. 10. Novelty of the antigens identified as a source of CD4 epitopes in humans. (A) Comparison with IEDB and literature, antigens were divided into four categories; novel, targets of CD4 T cells, CD8 T cells or undefined T cell type. 41% of defined antigens are novel. (B) Overlap of antigens described in this study with antigens described as sources of HLA class I restricted epitopes in the IEDB. (C) Overlap of antigens described in this study with antigens described as serologically reactive by Kunnath-Velayudhan et al. p-values calculated using a Chi-square test.



FIG. 11. Gating strategy for multifunctionality analysis. Cells were first gated based on forward vs. side-scatter, then CD3 vs. CD4 and finally for each cytokine (IFN-γ, TNFα, IL-2). Gates for each cytokine were based on the negative control and they were used for subsequent Boolean gating.





DETAILED DESCRIPTION

While immune reactive antigens have been described for M. tuberculosis (MTB), prior to the present invention the immunological footprint of MTB CD4 T cell recognition was incomplete. As disclosed herein, the present inventors have conducted the first unbiased, truly genome-wide screen for epitopes from MTB by the combined use of epitope predictions and high throughput ELISPOT and T cell library assays using PBMC from individuals latently infected with MTB.


Thus there are presently provided proteins and peptides, and subsequences, portions or modifications thereof, and methods and compounds for eliciting, stimulating, inducing, promoting, increasing, or enhancing an anti-MTB immune response. In particular aspects, there is provided several novel T cell antigens and epitopes which may be used in methods for MTB diagnosis, treatment and vaccination.


Previously identified T cell antigens from MTB are derived from all main protein categories, for about 2% of the approximately 4,000 ORFs of the MTB genome ((Blythe et al., 2007) and Immune Epitope Database (IEDB, iedb.org)), suggesting that protein function or cellular location per se does not determine which proteins can be recognized by the immune system. Previous studies in several complex pathogen systems have identified broad immune responses directed against a relatively large fraction of the genome (Oseroff et al., 2005; Pasquetto et al., 2005; Snyder et al., 2004). These studies were based on bioinformatics predictions and screening of exposed individuals for immune reactivity. By combining HLA class II peptide predictions and modern high throughput techniques such as ex vivo direct analysis, and screening of T cell libraries (Geiger et al., 2009), the present inventors have identified and characterized for the first time the genome-wide antigen response in latently infected individuals. The definition of breadth of responses is key for the design of preventive and therapeutic vaccination strategies that mirrors natural immunity (Kaech et al., 2002; Svenson et al., 2010). In addition, it provides important knowledge for the evaluation of disease progression and performance of vaccine candidates, as well as for development of diagnostics.


As used herein, an “antigen” refers to a substance, including but not limited to a protein, or a subsequence, portion or modification thereof that elicits an immune response when administered to a subject. In particular embodiments, an antigen may be a bacterial protein or peptide (e.g. a MTB protein or peptide). As used herein an “epitope” refers to a region or part of an antigen that elicits an immune response when administered to a subject. In particular embodiments, an epitope may be comprised of a region or part of an MTB protein or peptide.


In certain embodiments of the present invention, the MTB proteins or peptides described herein elicit an immune response. As will be understood by a person skilled in the art, an immune response may be a cellular or humoral immune response and may comprise an antibody response, a T cell response or both an antibody and T cell response. In particular embodiments of the present invention, the MTB protein or peptide is a T cell antigen or epitope.


A MTB protein or peptide as described herein includes a MTB protein or peptide, or a subsequence or portion or modification thereof. In some embodiments, the MTB protein is or peptide is derived from an MTB intermediary metabolism and respiration protein, cell wall and cell processes protein, lipid metabolism protein, information pathway protein, virulence, detoxification or adaptation protein, regulatory protein, PE/PPE protein, insertion sequence and phage protein, Esx protein, secreted protein, secretion system protein or conserved hypothetical protein. As would be understood by a person of skill in the art, a conserved hypothetical protein refers to a protein that is predicted to be expressed by an organism based on nucleic acid or amino acid sequence conservation with a protein of one or more other organisms.


In certain embodiments of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises a sequence set forth in Table 1 or Table 5, or a subsequence, portion or a modification thereof.


In further embodiments of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv3024c, Rv0289, Rv0290, Rv3330, Rv1788, Rv1791, Rv3125c, Rv0294, Rv2874, Rv3022c, Rv3135, Rv3876, Rv0124, Rv0291, Rv0292, Rv0293c, Rv0297, Rv0299, Rv3012c, Rv3025c, Rv0278c, Rv0279c, Rv0298, Rv0442c, Rv0690c, Rv0985c, Rv0987, Rv1172c, Rv1243c, Rv1317c, Rv1366, Rv1441c, Rv2490c or Rv2853.


In accordance with the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, may be derived from or based upon a sequence from any MTB strain, including but not limited to Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A and Mycobacterium tuberculosis K85.


As will be understood by a person skilled in the art, the amino acid sequence or nucleic acid sequence of MTB bacteria of the same strain may, for example due to mutations of the nucleic acid sequence between or within generations. In certain embodiments of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, may be derived from or based upon the sequence of Mycobacterium tuberculosis H37Rv set forth in GenBank accession No. NC_000962, the sequence of Mycobacterium tuberculosis CDC1551 set forth in GenBank accession No. NC_002755, the sequence of Mycobacterium tuberculosis H37Ra set forth in GenBank accession No. NC_009525, the sequence of Mycobacterium tuberculosis F11 set forth in GenBank accession No. NC_009565, the sequence of Mycobacterium tuberculosis KZN 1435 set forth in GenBank accession No. NC_012943, the sequence of Mycobacterium tuberculosis set forth in GenBank accession No. KZN 605 NZ_ABGN00000000, the sequence of Mycobacterium tuberculosis C set forth in GenBank accession No. NZ_AAKR00000000, the sequence of Mycobacterium tuberculosis str. Haarlem set forth in GenBank accession No. NZ_AASN00000000, the sequence of Mycobacterium tuberculosis H37Ra set forth in GenBank accession No. NZ_AAYK00000000, the sequence of Mycobacterium tuberculosis KZN 4207 set forth in GenBank accession No. NZ_ABGL00000000, the sequence of Mycobacterium tuberculosis 94_M4241A set forth in GenBank accession No. NZ_ABLL00000000, the sequence of Mycobacterium tuberculosis 02_1987 set forth in GenBank accession No. NZ_ABLM00000000, the sequence of Mycobacterium tuberculosis T92 set forth in GenBank accession No. NZ_ABLN00000000, the sequence of Mycobacterium tuberculosis EAS054 set forth in GenBank accession No. NZ_ABOV00000000, the sequence of Mycobacterium tuberculosis T85 set forth in GenBank accession No. NZ_ABOW00000000, the sequence of Mycobacterium tuberculosis GM 1503 set forth in GenBank accession No. NZ_ABQG00000000, the sequence of Mycobacterium tuberculosis T17 set forth in GenBank accession No. NZ_ABQH00000000, the sequence of Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’ set forth in GenBank accession No. NZ_ABVM00000000, the sequence of Mycobacterium tuberculosis T46 set forth in GenBank accession No. NZ_ACHO00000000, the sequence of Mycobacterium tuberculosis CPHL_A set forth in GenBank accession No. NZ_ACHP00000000 or the sequence of Mycobacterium tuberculosis K85 M4241A set forth in GenBank accession No. NZ_ACHQ00000000.


In certain embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv3024c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0289 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0290 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv3330 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv1788 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv1791 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv3125c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0294 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv2874 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv3022c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv3135 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv3876 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0124 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0291 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0292 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0293c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0297 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0299 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv3012c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv3025c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0278c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0279c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0298 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0442c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0690c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0985c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv0987 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv1172c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv1243c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv1317c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv1366 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv1441c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv2490c of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85. In other embodiments of the compositions and methods of the present invention, the MTB protein or peptide, or subsequence, portion or modification thereof, comprises an amino acid sequence of protein Rv2853 of Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85.


As disclosed herein, a MTB protein or peptide, or subsequence, portion or modification thereof may elicit a cellular or humoral immune response. In particular embodiments of the present invention, a MTB protein or peptide, or subsequence, portion or modification thereof described herein, elicits, stimulates, promotes or induces an immune response. In certain embodiments, a MTB protein or peptide, or subsequence, portion or modification thereof, elicits, stimulates, promotes or induces a T cell response (e.g. a CD4+ T cell response, including but not limited to a CXCR3+CCR6+ memory Th1 cell response). Such responses can provide protection against (e.g., prophylaxis) an initial MTB infection, or a secondary or subsequent MTB infection. Such T cell responses can also be effective in treatment (e.g., therapeutic) of an initial MTB infection, or a secondary or subsequent MTB infection.


As used herein a “modification” of a MTB protein or peptide, or subsequence, or portion thereof, refers to a modified or variant form of the protein or peptide, or subsequence, or portion thereof. Such modified forms, such as amino acid deletions, additions and substitutions, can also be used in the invention methods and compositions for eliciting, stimulating, inducing, promoting, increasing or enhancing an anti-MTB immune response or protecting, vaccinating or immunizing a subject against MTB, or treatment of a subject for MTB, as set forth herein.


As used herein, a subsequence of a MTB protein or peptide includes or consists of one or more amino acids less than the full length MTB protein or peptide. The term “subsequence” means a fragment or part of the full length molecule. A subsequence of a MTB protein or peptide has one or more amino acids less than the full length MTB protein or peptide (e.g. one or more internal or terminal amino acid deletions from either amino or carboxy-termini). Subsequences therefore can be any length up to the full length native molecule, provided said length is at least one amino acid less than full length native molecule.


Subsequences can vary in size. For example a subsequence of a protein or peptide can be as small as an epitope capable of binding an antibody (i.e., about five amino acids) up to a polypeptide that is one amino acid less than the entire length of a reference polypeptide such as a MTB protein or peptide.


In various embodiments of the present invention, a MTB subsequence is characterized as including or consisting of a subsequence of a protein or amino acid sequence set forth in Table 1 or Table 5. In particular embodiments of the present invention, a MTB subsequence is characterized as including or consisting of a subsequence of an amino acid sequence of protein Rv3024c, Rv0289, Rv0290, Rv3330, Rv1788, Rv1791, Rv3125c, Rv0294, Rv2874, Rv3022c, Rv3135, Rv3876, Rv0124, Rv0291, Rv0292, Rv0293c, Rv0297, Rv0299, Rv3012c, Rv3025c, Rv0278c, Rv0279c, Rv0298, Rv0442c, Rv0690c, Rv0985c, Rv0987, Rv1172c, Rv1243c, Rv1317c, Rv1366, Rv1441c, Rv2490c or Rv2853.


In various embodiments, a MTB subsequence is characterized as including or consisting of a Rv3024c sequence with less than 367 amino acids in length identical to Rv3024c, a Rv0289 sequence with less than 295 amino acids in length identical to Rv0289, a Rv0290 sequence with less than 472 amino acids in length identical to Rv0290, a Rv3330 sequence with less than 405 amino acids in length identical to Rv3330, a Rv1788 sequence with less than 99 amino acids in length identical to Rv1788, a Rv1791 sequence with less than 99 amino acids in length identical to Rv1791, a Rv3125c sequence with less than 391 amino acids in length identical to Rv3125c, a Rv0294 sequence with less than 261 amino acids in length identical to Rv0294, a Rv2874 sequence with less than 695 amino acids in length identical to Rv2874, a Rv3022 sequence with less than 8l amino acids in length identical to Rv3022c, a Rv3135 sequence with less than 409 amino acids in length identical to Rv3135, a Rv3976 sequence with less than 666 amino acids in length identical to Rv3876, a Rv0124 sequence with less than 487 amino acids in length identical to Rv0124, a Rv0291 sequence with less than 461 amino acids in length identical to Rv0291, a Rv0292 sequence with less than 331 amino acids in length identical to Rv0292, a Rv0293c sequence with less than 400 amino acids in length identical to Rv0293c, a Rv0297 sequence with less than 591 amino acids in length identical to Rv0297, a Rv0299 sequence with less than 100 amino acids in length identical to Rv0299, a Rv3012c sequence with less than 99 amino acids in length identical to Rv3012c, a Rv3025c sequence with less than 393 amino acids in length identical to Rv3025c, a Rv0278c sequence with less than 957 amino acids in length identical to Rv0278c, a Rv0279c sequence with less than 837 amino acids in length identical to Rv0279c, a Rv0298 sequence with less than 75 amino acids in length identical to Rv0298, a Rv0442c sequence with less than 487 amino acids in length identical to Rv0442c, a Rv0690c sequence with less than 349 amino acids in length identical to Rv0690c, a Rv0985c sequence with less than 151 amino acids in length identical to Rv0985c, a Rv0987 sequence with less than 855 amino acids in length identical to Rv0987, a Rv1172c sequence with less than 308 amino acids in length identical to Rv1172c, a Rv1243c sequence with less than 562 amino acids in length identical to Rv1243c, a Rv1317c sequence with less than 496 amino acids in length identical to Rv1317c, a Rv166 sequence with less than 273 amino acids in length identical to Rv1366, a Rv1441c sequence with less than 491 amino acids in length identical to Rv1441c, a Rv2490c sequence with less than 111 amino acids in length identical Rv2490c or a Rv2853 sequence with less than 615 amino acids in length identical to Rv2853.


As used herein, subsequences may also include or consist of one or more amino acid additions or deletions, wherein the subsequence does not comprise the full length native/wild type MTB protein or peptide sequence. Accordingly, total subsequence lengths can be greater than the length of the full length native/wild type MTB protein or peptide, for example, where a MTB protein or peptide subsequence is fused or forms a chimera with another polypeptide.


In other embodiments, the methods and compositions described herein may comprise a MTB protein or peptide comprising or consisting of a subsequence, or an amino acid modification of MTB protein or peptide sequence, wherein the protein or peptide elicits, stimulates, induces, promotes, increases or enhances and anti-MTB T cell response (e.g. anti-MTB vCD4+ T cell response), as described herein.


A non-limiting example of a MTB protein or peptide, or subsequence, portion or modification thereof, includes, comprises or consists of a subsequence or portion of a MTB intermediary metabolism and respiration protein, cell wall and cell processes protein, lipid metabolism protein, information pathway protein, virulence, detoxification, or adaptation protein, regulatory proteins PE/PPE protein, insertion sequence and phage protein, Esx protein, secreted protein, secretion system protein or conserved hypothetical protein.


Non-limiting examples of a MTB protein or peptide, or a subsequence, portion or modification thereof includes, comprises or consists of an amino acid sequence of protein Rv3024c, Rv0289, Rv0290, Rv3330, Rv1788, Rv1791, Rv3125c, Rv0294, Rv2874, Rv3022c, Rv3135, Rv3876, Rv0124, Rv0291, Rv0292, Rv0293c, Rv0297, Rv0299, Rv3012c, Rv3025c, Rv0278c, Rv0279c, Rv0298, Rv0442c, Rv0690c, Rv0985c, Rv0987, Rv1172c, Rv1243c, Rv1317c, Rv1366, Rv1441c, Rv2490c or Rv2853.


A non-limiting Rv3024c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 1)


MKVLAAMSGGVDSSVAAARMVDAGHEVVGVHMALSTAPGTLRTGSRGCCSK





EDAADARRVADVLGIPFYVWDFAEKFKEDVINDFVSSYARGETPNPCVRCN





QQIKFAALSARAVALGFDTVATGHYARLSGGRLRRAVDRDKDQSYVLAVLT





AQQLRHAAFPIGDTPKRQIRAEAARRGLAVANKPDSHDICFIPSGNTKAFL





GERIGVRRGVVVDADGVVLASHDGVHGFTIGQRRGLGIAGPGPNGRPRYVT





AIDADTATVHVGDVTDLDVQTLTGRAPVFTAGAAPSGPVDCVVQVRAHGET





VSAVAELIGDALFVQLHAPLRGVARGQTLVLYRPDPAGDEVLGS ATIAGA





SGLSTGGNPGA






A non-limiting Rv0289 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 2)


MDATPNAVELTVDNAWFIAETIGAGTFPWVLAITMPYSDAAQRGAFVDRQR





DELTRMGLLSPQGVINPAVADWIKVVCFPDRWLDLRYVGPASADGACELLR





GIVALRTGTGKTSNKTGNGVVALRNAQLVTFTAMDIDDPRALVPILGVGLA





HRPPARFDEFSLPTRVGARADERLRSGVPLGEVVDYLGIPASARPVVESVF





SGPRSYVEIVAGCNRDGRHTTTEVGLSIVDTSAGRVLVSPSRAFDGEWVST





FSPGTPFAIAVAIQTLTACLPDGQW FPGQRVSRDFSTQSS






A non-limiting Rv0290 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 3)


MSGTVMQIVRVAILADSRLTEMALPAELPLREILPAVQRLVVPSAQNGDGG





QADSGAAVQLSLAPVGGQPFSLDASLDTVGVVDGDLLVLQPVPAGPAAPGI





VEDIADAAMIFSTSRLKPWGIAHIQRGALAAVIAVALLATGLTVTYRVATG





VLAGLLAVAGIAVASALAGLLITIRSPRSGIALSIAALVPIGAALALAVPG





KFGPAQVLLGAAGVAAWSLIALMIPSAERERVVAFFTAAAVVGASVALAAG





AQLLWQLPLLSIGCGLIVAALLVTIQAAQLSALWARFPLPVIPAPGDPTPS





APPLRLLEDLPRRVRVSDAHQSGFIAAAVLLSVLGSVAIAVRPEALSVVGW





YLVAATAAAATLRARVWDSAACKAWLLAQPYLVAGVLLVFYTATGRYVAAF





GAVLVLAVLMLAWVVVALNPGIASPESYSLPLRRLLGLVAAGLDVSLIPVM





AYLVGLFAWVLNR






A non-limiting Rv3330 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 4)


MAFLRSVSCLAAAVFAVGTGIGLPTAAGEPNAAPAACPYKVSTPPAVDSSE





VPAAGEPPLPLVVPPTPVGGNALGGCGIITAPGSAPAPGDVSAEAWLVADL





DSGAVIAARDPHGRHRPASVIKVLVAMASINTLTLNKSVAGTADDAAVEGT





KVGVNTGGTYTVNQLLHGLLMHSGNDAAYALARQLGGMPAALEKINLLAAK





LGGRDTRVATPSGLDGPGMSTSAYDIGLFYRYAWQNPVFADIVATRTFDFP





GHGDHPGYELENDNQLLYNYPGALGGKTGYTDDAGQTFVGAANRDGRRLMT





VLLHGTRQPIPPWEQAAHLLDYGFNTPAGTQIGTLIEPDPSLMSTDRNPAD





RQRVDPQAAARISAADALPVRVGVAVIGALIVFGLIMVARAMNRRPQH






A non-limiting Rv1788 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 5)


MSFVTTQPEALAAAAGSLQGIGSALNAQNAAAATPTTGVVPAAADEVSA





LTAAQFAAHAQIYQAVSAQAA AIHEMFVNTLQMSSGSYAATEAANAAA





AG






A non-limiting Rv1791 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 6)


MSFVTTQPEALAAAAANLQGIGTTMNAQNAAAAAPTTGVVPAAADEVSA





LTAAQFAAHAQMYQTVSAQAA AIHEMFVNTLVASSGSYAATEAANAAA





AG






A non-limiting Rv3125c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 7)


MVLGFSWLPPEINSARMFAGAGSGPLFAAASAWEGLAADLWASASSFES





VLAALTTGPWTGPASMSMAAAASPYVGWLSTVASQAQLAAIQARAAATA





FEAALAATVHPTAVTANRVSLASLIAANVLGQNTPAIAATEFDYLEMWA





QDVAAMVGYHAGAKSVAATLAPFSLPPVSLAGLAAQVGTQVAGMATTAS





AAVTPVVEGAMASVPTVMSGMQSLVSQLPLQHASMLFLPVRILTSPITT





LASMARESATRLGPPAGGLAAANTPNPSGAAIPAFKPLGGRELGAGMSA





GLGQAQLVGSMSVPPTWQGSIPISMASSAMSGLGVPPNPVALTQAAGAA





GGGMPMMLMPMSISGAGAGMPGGLMDRDGAGWHVTQARLTVIPRTGVG






A non-limiting Rv0294 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 8)


MWDPDVYLAFSGHRNRPFYELVSRVGLERARRVVDLGCGPGHLTRYLAR





RWPGAVIEALDSSPEMVAAAAERGIDATTGDLRDWKPKPDTDVVVSNAA





LHWVPEHSDLLVRWVDELAPGSWIAVQIPGNFETPSHAAVRALARREPY





AKLMRDIPFRVGAVVQSPAYYAELLMDTGCKVDVWETTYLHQLTGEHPV





LDWITGSALVPVRERLSDESWQQFRQELIPLLNDAYPPRADGSTIFPFR





RLFMVAEVGGARRSGG






A non-limiting Rv2874 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 9)


MVESRRAAAAASAYASRCGIAPATSQRSLATPPTISVPSGEGRCRCHVA





RGAGRDPRRRLRRRRWCGRCGYHSHLTGGEFDVNRLCQQRSRERSCQLV





AVPADPRPKRQRITDVLTLALVGFLGGLITGISPCILPVLPVIFFSGAQ





SVDAAQVAKPEGAVAVRRKRALSATLRPYRVIGGLVLSFGMVTLLGSAL





LSVLHLPQDAIRWAALVALVAIGAGLIFPRFEQLLEKPFSRIPQKQIVT





RSNGFGLGLALGVLYVPCAGPILAAIVVAGATATIGLGTVVLTATFALG





AALPLLFFALAGQRIAERVGAFRRRQREIRIATGSVTILLAVALVFDLP





AALQRAIPDYTASLQQQISTGTEIREQLNLGGIVNAQNAQLSNCSDGAA





QLESCGTAPDLKGITGWLNTPGNKPIDLKSLRGKVVLIDFWAYSCINCQ





RAIPHVVGWYQAYKDSGLAVIGVHTPEYAFEKVPGNVAKGAANLGISYP





IALDNNYATWTNYRNRYWPAEYLIDATGTVRHIKFGEGDYNVTETLVRQ





LLNDAKPGVKLPQPSSTTTPDLTPRAALTPETYFGVGKVVNYGGGGAYD





EGSAVFDYPPSLAANSFALRGRWALDYQGATSDGNDAAIKLNYHAKDVY





IVVGGTGTLTVVRDGKPATLPISGPPTTHQVVAGYRLASETLEVRPSKG





LQVFSFTYG






A non-limiting Rv3022c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 10)


VTAPVWLASPPEVHSALLSAGPGPGSLQAAAAGWSALSAEYAAVAQELS





VVVAAVGAGVWQGPSAELFVA AYVPYVAWLVQ






A non-limiting Rv3135 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 11)


MVLGFSWLPPEINSARMFAGAGSGPLFAAASAWEGLAADLWASASSFES





VLAALTTGPWTGPASMSMAAAASPYVGWLSTVASQAQLAAIQARAAATA





FEAALAATVHPTAVTANRVSLASLIAANVLGQNTPAIAATEFDYLEMWA





QDVAAMVGYHAGAKSVAATLAPFSLPPVSLAGLAAQVGTQVAGMATTAS





AAVTPVVEGAMASVPTVMSGMQSLVSQLPLQHASMLFLPVRILTSPITT





LASMARESATRLGPPAGGLAAANTPNPSGAAIPAFKPLGGRELGAGMSA





GLGQAQLVGSMSVPPTWQGSIPISMASSAMSGLGVPPNPVALTQAAGAA





GGGMPMMLMPMSISGAGAGMPGGLMDRDGAGWHVTQARLTVIPRTGVG






A non-limiting Rv3876 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 12)


MAADYDKLFRPHEGMEAPDDMAAQPFFDPSASFPPAPASANLPKPNGQT





PPPTSDDLSERFVSAPPPPPPPPPPPPPTPMPIAAGEPPSPEPAASKPP





TPPMPIAGPEPAPPKPPTPPMPIAGPEPAPPKPPTPPMPIAGPAPTPTE





SQLAPPRPPTPQTPTGAPQQPESPAPHVPSHGPHQPRRTAPAPPWAKMP





IGEPPPAPSRPSASPAEPPTRPAPQHSRRARRGHRYRTDTERNVGKVAT





GPSIQARLRAEEASGAQLAPGTEPSPAPLGQPRSYLAPPTRPAPTEPPP





SPSPQRNSGRRAERRVHPDLAAQHAAAQPDSITAATTGGRRRKRAAPDL





DATQKSLRPAAKGPKVKKVKPQKPKATKPPKVVSQRGWRHWVHALTRIN





LGLSPDEKYELDLHARVRRNPRGSYQIAVVGLKGGAGKTTLTAALGSTL





AQVRADRILALDADPGAGNLADRVGRQSGATIADVLAEKELSHYNDIRA





HTSVNAVNLEVLPAPEYSSAQRALSDADWHFIADPASRFYNLVLADCGA





GFFDPLTRGVLSTVSGVVVVASVSIDGAQQASVALDWLRNNGYQDLASR





ACVVINHIMPGEPNVAVKDLVRHFEQQVQPGRVVVMPWDRHIAAGTEIS





LDLLDPIYKRKVLELAAALSDDFERAGRR






A non-limiting Rv0124 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 13)


MSFVSVAPEIVVAAATDLAGIGSAISAANAAAAAPTTAVLAAGADEVSA





AIAALSGHAQAYQALSAQAAAFHQQFVQTLAGGAGAYAAAEAQVEQQLL





AAINAPTQALLGRPLIGNGADGAPGTGQAGGAGGILYGNGGNGGSGAAG





QAGGAGGPAGLIGHGGSGGAGGSGAAGGAGGHGGWLWGNGGVGGSGGAG





VGAGVAGGHGGAGGAAGLWGAGGGGGNGGNGADANIVSGGDGGLGGAGG





GGGWLYGDGGAGGHGGQGAIGLGGGAGGDGGQGGAGRGLWGTGGAGGHG





GQGGGTGGPPLPGQAGMGAAGGAGGLIGNGGAGGDGGVGASGGVAGVGG





AGGNAMLIGHGGAGGAGGDSSFANGAAGGAGGAGGHLFGNGGSGGHGGA





VTAGNTGIGGAGGVGGDARLIGHGGAGGAGGDRAGALVGRDGGPGGNGG





AGGQLYGNGGDGAPGTGGTLQAAVSGLVTALFGAPGQPGDTGQPG






A non-limiting Rv0291 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 14)


MIRAAFACLAATVVVAGWWTPPAWAIGPPVVDAAAQPPSGDPGPVAPME





QRGACSVSGVIPGTDAGVPTPSQTMLNLPAAWQFSRGEGQLVAIIDTGV





QPGPRLPNVDAGGDFVESTDGLTDCDGHGTLVAGIVAGQPGNDGFSGVA





PAARLLSIRAMSTKFSPRTSGGDPQLAQATLDVAVLAGAIVHAADLGAK





VINVSTITCLPADRMVDQAALGAAIRYAAVDKDAVIVAAAGNTGASGSV





SASCDSNPLTDLSRPDDPRNWAGVTSVSIPSWWQPYVLSVASLTSAGQP





SKFSMPGPWVGIAAPGENIASVSNSGDGALANGLPDAHQKLVALSGTSY





AAGYVSGVAALVRSRYPGLNATEVVRRLTATAHRGARESSNIVGAGNLD





AVAALTWQLPAEPGGGAAPAKPVADPPVPAPKDTTPRNVAFAGAAALSV





LVGLTAATVAIARRRREPTE






A non-limiting Rv0292 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 15)


MNPIPSWPGRGRVTLVLLAVVPVALAYPWQSTRDYVLLGVAAAVVIGLF





GFWRGLYFTTIARRGLAILRRRRRIAEPATCTRTTVLVWVGPPASDTNV





LPLTLIARYLDRYGIRADTIRITSRVTASGDCRTWVGLTVVADDNLAAL





QARSARIPLQETAQVAARRLADHLREIGWEAGTAAPDEIPALVAADSRE





TWRGMRHTDSDYVAAYRVSANAELPDTLPAIRSRPAQETWIALEIAYAA





GSSTRYTVAAACALRTDWRPGGTAPVAGLLPQHGNHVPALTALDPRSTR





RLDGHTDAPADLLTRLHWPTPTAGAHRAPLTNAVSRT






A non-limiting Rv0293c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 16)


MSGTFTADAIGPPVPIPDVPGADAGAEGLPSRSVLSARQRILVESSAIA





DVALRTAVASVLSATVTPAVVANALRHVNEGSERSNLNFYAELAAAHDP





AKSFPAPTELPKVTSRPASPLTEWVARGTVDNIAFASGFRAINPTMRQR





WSALTANNIVHAQHWRHRDGPRPTLCVIHGFMGSSYLLNGLFFSLPWYY





GRSGYDVLLYTLPFHGQRAEKFSPFSGFGYFTSLSGFAEAMAQAVYDFR





SIVDYLRHIGVDRIALTGISLGGYTSALLASVESRLEAVIPNCPVVMPA





KLFDEWFPANKLVKLGLRLTNISRDELIAGLAYHGPLNYRPLLPKDRRM





IITGLGDRMAPPEHAVTLWKQWDRCALHWFPGSHLLHVSQLDYLRRMTV





FLQGLMFD






A non-limiting Rv0297 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 17)


MSFVIAQPEMIAAAAGELASIRSAINAANAAAAAQTTGVMSAAADEVST





AVAALFSSHAQAYQAASAQAAAFHAQVVRTLTVDAGAYASAEAANAGPN





MLAAVNAPAQALLGRPLIGNGANGAPGTGQAGGDGGLLFGNGGNGGSGA





PGQAGGAGGAAGFFGNGGNGGDGGAGANGGAGGTAGWFFGFGGNGGAGG





IGVAGINGGLGGAGGDGGNAGFFGNGGNGGMGGAGAAGVNAVNPGLATP





VTPAANGGNGLNLVGVPGTAGGGADGANGSAIGQAGGAGGDGGNASTSG





GIGIAQTGGAGGAGGAGGDGAPGGNGGNGGSVEHTGATGSSASGGNGAT





GGNGGVGAPGGAGGNGGHVSGGSVNTAGAGGKGGNGGTGGAGGPGGHGG





SVLSGPVGDSGNGGAGGDGGAGVSATDIAGTGGRGGNGGHGGLWIGNGG





DGGAGGVGGVGGAGAAGAIGGHGGDGGSVNTPIGGSEAGDGGKGGLGGD





GGGRGIFGQFGAGGAGGAGGVGGAGGAGGTGGGGGNGGAIFNAGTPGAA





GTGGDGGVGGTGAAGGKGGAGGSGGVNGATGADGAKGLDGATGGKGNNG





NPG






A non-limiting Rv0299 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 18)


MIAPGDIAPRRDSEHELYVAVLSNALHRAADTGRVITCPFIPGRVPEDL





LAMVVAVEQPNGTLLPELVQW LHVAALGAPLGNAGVAALREAASVVTA





LLC






A non-limiting Rv3012c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sentience set forth as:









(SEQ ID No: 19)


MSQISRDEVAHLARLARLALTETELDSFAGQLDAILTHVSQIQAVDVTG





VQATDNPLKDVNVTRPDETVP CLTQRQVLDQAPDAVDGRFAVPQILGD





EQ






A non-limiting Rv3025c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 20)


MAYLDHAATTPMHPAAIEAMAAVQRTIGNASSLHTSGRSARRRIEEARE





LIADKLGARPSEVIFTAGGTESDNLAVKGIYWARRDAEPHRRRIVTTEV





EHHAVLDSVNWLVEHEGAHVTWLPTAADGSVSATALREALQSHDDVALV





SVMWANNEVGTILPIAEMSVVAMEFGVPMHSDAIQAVGQLPLDFGASGL





SAMSVAGHKFGGPPGVGALLLRRDVTCVPLMHGGGQERDIRSGTPDVAS





AVGMATAAQIAVDGLEENSARLRLLRDRLVEGVLAEIDDVCLNGADDPM





RLAGNAHFTFRGCEGDALLMLLDANGIECSTGSACTAGVAQPSHVLIAM





GVDAASARGSLRLSLGHTSVEADVDAALEVLPGAVARARRAALAAAGAS





R






A non-limiting Rv0278c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 21)


MSFVIAAPEVIAAAATDLASLGSSISAANAAAAANTTALMAAGADEVST





AIAALFGAHGQAYQALSAQAQAFHAQFVQALTSGGGAYAAAEAAAVSPL





LDPINEFFLANTGRPLIGNGANGAPGTGANGGDGGWLIGNGGAGGSGAA





GVNGGAGGNGGAGGNGGAGGLIGNGGAGGAGGVASSGIGGSGGAGGNAM





LFGAGGAGGAGGGVVALTGGAGGAGGAGGNAGLLFGAAGVGGAGGFTNG





SALGGAGGAGGAGGLFATGGVGGSGGAGSSGGAGGAGGAGGLFGAGGTG





GHGGFADSSFGGVGGAGGAGGLFGAGGEGGSGGHSLVAGGDGGAGGNAG





MLALGAAGGAGGIGGDGGTLTAGGIGGAGGAGGNAGLLFGSGGSGGAGG





FGFADGGQGGPGGNAGTVFGSGGAGGNGGVGQGFAGGIGGAGGTPGLIG





NGGNGGNGGASAVTGGNGGIGGTGVLIGNGGNGGSGGIGAGKAGVGGVS





GLLLGLDGFNAPASTSPLHTLQQNVLNVVNEPFQTLTGRPLIGNGANGT





PGTGADGGAGGWLFGNGANGTPGTGAAGGAGGWLFGNGGNGGHGATNTA





ATATGGAGGAGGILFGTGGNGGTGGIATGAGGIGGAGGAGGVSLLIGSG





GTGGNGGNSIGVAGIGGAGGRGGDAGLLFGAAGTGGHGAAGGVPAGVGG





AGGNGGLFANGGAGGAGGFNAAGGNGGNGGLFGTGGTGGAGTNFGAGGN





GGNGGLFGAGGTGGAAGSGGSGITTGGGGHGGNAGLLSLGASGGAGGSG





GASSLAGGAGGTGGNGALLFGFRGAGGAGGHGGAALTSIQQGGAGGAGG





NGGLLFGSAGAGGAGGSGANALGAGTGGTGGDGGHAGVFGNGGDGGCRR





VWRRYRRQRWCRRQRRADRQRRQRRQRRQSRGHARCRRHRRAAARRERT





QRLAIAGRPATTRGVEGISCSPQMMP






A non-limiting Rv0279c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 22)


MSFVIAAPEVIAAAATDLASLESSIAAANAAAAANTTALLAAGADEVST





AVAALFGAHGQAYQALSAQAQAFHAQFVQALTSGGGAYAAAEAAATSPL





LAPINEFFLANTGRPLIGNGTNGAPGTGANGGDGGWLIGNGGAGGSGAA





GVNGGAGGNGGAGGLIGNGGAGGAGGRASTGTGGAGGAGGAAGMLFGAA





GVGGPGGFAAAFGATGGAGGAGGNGGLFADGGVGGAGGATDAGTGGAGG





SGGNGGLFGAGGTGGPGGFGIFGGGAGGDGGSGGLFGAGGTGGSGGTSI





INVGGNGGAGGDAGMLSLGAAGGAGGSGGSNPDGGGGAGGIGGDGGTLF





GSGGAGGVCGLGFDAGGAGGAGGKAGLLIGAGGAGGAGGGSFAGAGGTG





GAGGAPGLVGNAGNGGNGGASANGAGAAGGAGGSGVLIGNGGNGGSGGT





GAPAGTAGAGGLGGQLLGRDGFNAPASTPLHTLQQQILNAINEPTQALT





GRPLIGNGANGTPGTGADGGAGGWLFGNGGNGGHGATGADGGDGGSGGA





GGILSGIGGTGGSGGIGTTGQGGTGGTGGAALLIGSGGTGGSGGFGLDT





GGAGGRGGDAGLFLGAAGTGGQAALSQNFIGAGGTAGAGGTGGLFANGG





AAGGAGGFGANGGTGGNGLLFGGGTGGAGTLGADGGAGGHGGLFGAGGT





GGAGGSSGGTFGGNGGSGGNAGLLALGASGGAGGSGGSALNVGGTGGVG





GNGGSGGSLFGFGGAGGTGGSSGIGSSGGTGGDGGTAGVFGNGGDGGAG





GFGADTGGNSSSVPNAVLIGNGGNGGNGGKAGGTPGAGGTSGLIIGENG





LNGL






A non-limiting Rv0298 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 23)


MTKEKISVTVDAAVLAAIDADARAAGLNRSEMIEQALRNEHLRVALRDY





TAKTVPALDIDAYAQRVYQAN RAAGS






A non-limiting Rv0442c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No 24)


MTSPHFAWLPPEINSALMFAGPGSGPLIAAATAWGELAEKLLASIASLG





SVTSELTSGAWLGPSAAAMMAVATQYLAWLSTAAAQAEQAAAQAMAIAT





AFEAALAATVQPAVVAANRGLMQLLAATNWFGQNAPALMDVEAAYEQMW





ALDVAAMAGYHFDASAAVAQLAPWQQVLRNLGIDIGKNGQINLGFGNTG





SGNIGNNNIGNNNIGSGNTGTGNIGSGNTGSGNLGLGNLGDGNIGFGNT





GSGNIGFGITGDHQMGFGGFNSGSGNIGFGNSGTGNVGLFNSGSGNIGI





GNSGSLNSGIGTSGTINAGLGSAGSLNTSFWNAGMQNAALGSAAGSEAA





LVSSAGYATGGMSTAALSSGILASALGSTGGLQHGLANVLNSGLTNTPV





AAPASAPVGGLDSGNPNPGSGSAAAGSGANPGLRSPGTSYPSFVNSGSN





DSGLRNTAVREPSTPGSGIPKSNFYPSPDRESAYASPRIGQPVGSE






A non-limiting Rv0690c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 25)


MTGTEHLVHTLRSQGRVCTSSGSPMYRELLELVAADVESGGVFASILAD





QKGAPEGQAVPLRLLGGLHRMVLDGRAPVLRRWYPSTGGTWQAEAAWPD





IVRTATDQPESLRAALDRPPQTNEVGRSAALIGGLLIACLQFDLPIRLF





EIGSSAGLNLRPDRYRYRYLGGEWGLADSPVRIDNAWLGELPPTATVRI





VERHGYDIAPIDVTSPDGELNALSYIWPDQTDRLERLRGAIAVARNIPA





DLHRQAAHAAVAGMTLTDDALTVLWHSITWQYLPADERAAIRAGIDALA





AQADAHCPFVHLTLEPAHQRPGAQIKYLVRMRSWPGGHARVLGECHPHG





PPVTWQ






A non-limiting Rv0985c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 26)


MLKGFKEFLARGNIVDLAVAVVIGTAFTALVTKFTDSIITPLINRIGVN





AQSDVGILRIGIGGGQTIDLNVLLSAAINFFLIAFAVYFLVVLPYNTLR





KKGEVEQPGDTQVVLLTEIRDLLAQTNGDSPGRHGGRGTPSP 





TDGPRASTESQ






A non-limiting Rv0987 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 27)


MNDQAPVAYAPLWRTAWRRLRQRPFQYILLVLGIALGVAMIVAIDVSSN





SAQRAFDLSAAAITGKSTHRLVSGPAGVDQQLYVDLRRHGYDFSAPVIE





GYVLARGLGNRAMQFMGTDPFAESAFRSPLWSNQNIAELGGFLTRPNGV





VLSRQVAQKYGLAVGDRIALQVKGAPTTVTLVGLLTPADEVSNQKLSDL





IIADISTAQELFHMPGRLSHIDLIIKDEATATRIQQRLPAGVRMETSDT





QRDTVKQMTDAFTVNLTALSLIALLVGIFLIYNTVTFNVVQRRPFFAIL





RCLGVTREQLFWLIMTESLVAGLIGTGLGLLIGIWLGEGLIGLVTQTIN





DFYFVINVRNVSVSAESLLKGLIIGIFAAMLATLPPAIEAMRTVPASTL





RRSSLESKITKLMPWLWVAWFGLGSFGVLMLWLPGNNLVVAFVGLFSVL





IALALIAPPLTRFVMLRLAPGLGRLLGPIGRMAPRNIVRSLSRTSIAIA





ALMMAVSLMVGVSISVGSFRQTLANWLEVTLKSDVYVSPPTLTSGRPSG





NLPVDAVRNISKWPGVRDAVMARYSSVFAPDWGREVELMAVSGDISDGK





RPYRWIDGNKDTLWPRFLAGKGVMLSEPMVSRQHLQMPPRPITLMTDSG





PQTFPVLAVFSDYTSDQGVILMDRASYRAHWQDDDVTTMFLFLASGANS





GALIDQLQAAFAGREDIVIQSTHSVREASMFIFDRSFTITIALQLVATV





VAFIGVLSALMSLELDRAHELGVFRAIGMTTRQLWKLMFIETGLMGGMA





GLMALPTGCILAWILVRIINVRSFGWTLQMHFESAHFLRALLVAVVAAL





AAGMYPA WRLGRMTIRTAIREE






A non-limiting Rv1172c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 28)


MSFVFAAPEALAAAAADMAGIGSTLNAANVVAAVPTTGVLAAAADEVST





QVAALLSAHAQGYQQLSRQMMTAFHDQFVQALRASADAYATAEASAAQT





MVNAVNAPARALLGHPLISADASTGGGSNALSRVQSMFLGTGGSSALGG





SAAANAAASGALQLQPTGGASGLSAVGALLPRAGAAAAAALPALAAESI





GNAIKNLYNAVEPWVQYGFNLTAWAVGWLPYIGILAPQINFFYYLGEPI





VQAVLFNAIDFVDGTVTFSQALTNIETATAASINQ FINTEINWIRGFL





PPLPPISPPGFPSLP






A non-limiting Rv1243c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 29)


MEYLIAAQDVLVAAAADLEGIGSALAAANRAAEAPTTGLLAAGADEVSA





AIASLFSGNAQAYQALSAQAAAFHQQFVRALSSAAGSYAAAEAANASPM





QAVLDVVNGPTQLLLGRPLIGDGANGGPGQNGGDGGLLYGNGGNGGSSS





TPGQPGGRGGAAGLIGNGGAGGAGGPGANGGAGGNGGWLYGNGGLGGNG





GAATQIGGNGGNGGHGGNAGLWGNGGAGGAGAAGAAGANGQNPVSHQVT





HATDGADGTTGPDGNGTDAGSGSNAVNPGVGGGAGGIGGDGTNLGQTDV





SGGAGGDGGDGANFASGGAGGNGGAAQSGFGDAVGGNGGAGGNGGAGGG





GGLGGAGGSANVANAGNSIGGNGGAGGNGGIGAPGGAGGAGGNANQDNP





PGGNSTGGNGGAGGDGGVGASADVGGAGGFGGSGGRGGLLLGTGGAGGD





GGVGGDGGIGAQGGSGGNGGNGGIGADGMANQDGDGGDGGNGGDGGAGG





AGGVGGNGGATGGAGGLFGQSGSPGSGAAGGLGGAGGNGGGGGGGTGFN





PGAPGDPGTQGATGANGQHGLNG






A non-limiting Rv1317c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 30)


MHDDFERCYRAIQSKDARFDGWFVVAVLTTGVYCRPSCPVRPPFARNVR





FLPTAAAAQGEGFRACKRCRPDASPGSPEWNVRSDVVARAMRLIADGTV





DRDGVSGLAAQLGYTIRQLERLLQAVVGAGPLALARAQRMQTARVLIET





TNLPFGDVAFAAGFSSIRQFNDTVRLACDGTPTALRARAAARFESATAS





AGTVSLRLPVRAPFAFEGVFGHLAATAVPGCEEVRDGAYRRTLRLPWGN





GIVSLTPAPDHVRCLLVLDDFRDLMTATARCRRLLDLDADPEAIVEALG





ADPDLRAVVGKAPGQRIPRTVDEAEFAVRAVLAQQVSTKAASTHAGRLV





AAYGRPVHDRHGALTHTFPSIEQLAEIDPGHLAVPKARQRTINALVASL





ADKSLVLDAGCDWQRARGQLLALPGVGPWTAEVIAMRGLGDPDAFPASD





LGLRLAAKKLGLPAQRRALTVHSARWRPWRSYATQHLWTTLEHPVNQWP





PQEKIA






A non-limiting Rv1366 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 31)


MVVALVGSAIVDLHSRPPWSNNAVRRLGVALRDGVDPPVDCPSYAEVML





WHADLAAEVQDRIEGRSWSASELLVTSRAKSQDTLLAKLRRRPYLQLNT





IQDIAGVRIDADLLLGEQTRLAREIADHFGADQPAIHDLRDHPHAGYRA





VHVWLRLPAGRVEIQIRTILQSLWANFYELLADAYGRGIRYDERPEQLA





AGVVPAQLQELVGVMQDASADLAMHEAEWQHCAEIEYPGQRAMALGEAS





KNKATVLATTKFRLERAINEAESAGGGG






A non-limiting Rv1441c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 32)


MSNVMVVPGMLSAAAADVASIGAALSAANGAAAPTTAGVLAAGADEVSA





AIASLFSGYARDYQALSAQMARFHQQFVQALTASVGSYAAAEAANASPL





QALEQQVLAAINAPTQTLLGRPLIGNGADGLPGQNGGAGGLLWGNGGNG





GAGDAAHPNGGNGGDAGMFGNGGAGGAGYSPAAGTGAAGGAGGAGGAGG





WLSGNGGAGGNGGTGASGADGGGGLPPVPASPGGNGGGGDAGGAAGMFG





TGGAGGTGGDGGAGGAGDSPNSGANGARGGDGGNGAAGGAGGRLFGNGG





AGGNGGTAGQGGDGGTALGAGGIGGDGGTGGAGGTGGTAGIGGSSAGAG





GAGGDGGAGGTGGGSSMIGGKGGTGGNGGVGGTGGASALTIGNGSSAGA





GGAGGAGGTGGTGGYIESLDGKGQAGNGGNGGNGAAGGAGGGGTGAGGN





GGAGGNGGDGGPSQGGGNPGFGGDGGTGGPGGVGVPDGIGGANGAQGKH





G






A non-limiting Rv2490c sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 33)


MQSMSFDPAVADIGSQVVNNAFQGLQAGAVAWVSLSSLLPAGAEEVSAW





AVTAFTTAATGLLALNQAAQEELRKAGEVFTAIARMYSDADVRAAACLL





EAIPRPGQTLARE






A non-limiting Rv2853 sequence of or from which a protein or peptide, or subsequence, portion or modification thereof can be based upon is a sequence set forth as:









(SEQ ID No: 34)


MLYVVASPDLMTAAATNLAEIGSAISTANGAAALPTVEVVAAAADEVST





QIAALFGAHARSYQTLSTQAAAFHSRFVQALTTAAASYASVEAANASPL





QVALDVINAPAQTLLGRPLIGNGADGSTPGQAGGPGGLLYGNGGNGAAG





GPNQAGGAGGNAGLIGNGGAGGAGGVGAVGGKRGTGGLLFGNGGAGGQG





GLGLAGINGGSGGQGGHGGNAILFGQGGAGGPGGTGAMGVAGTNPTPIG





TAAPGSDGVNQIGNGGNTDLTGGAGGDGNAGSTTVNGGNGGTGGAARNS





SGGTGNSFGGAGGAGGDGANGGDGGAGGEALTEGGATAVSGAGGKGGNA





EASGGAGGNGGKGGFAQATTSVTGGNGGNGGNGHDSNAPGGAGGSGGVG





GDGGRGGLLAGNGGTGGAGGNGGTGGAGAPGGAGGAGGKADIANSLGDN





ATVTGGNGGTGGDGGSALGTGGAGGAGGLGGHGGAGGLLIGNGGAGGAG





GLGGAGGAGGAGGEGGAGGAGGEAIPGGASTNSAGGDGGAGGTGGNGGD





GGAGGAPGLGGAGGAGGWLIGQSGSTGGGGAGGAGGAGGAGGAGGSGGA





GGHGDTTSGKNGSSGTAGFDGNPGQPG






As disclosed herein, presently provided MTB proteins and peptides, or subsequences, portions or modifications thereof include those having all or at least partial sequence identity to one or more exemplary MTB proteins, subsequences, portions or modifications thereof (e.g., sequences set forth in Table 1 or Table 5.). The percent identity of such sequences can be as little as 60%, or can be greater (e.g., 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, etc.). The percent identity can extend over the entire sequence length or a portion of the sequence. In particular aspects, the length of the sequence sharing the percent identity is 2, 3, 4, 5 or more contiguous amino acids, e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, etc. contiguous amino acids. In additional particular aspects, the length of the sequence sharing the percent identity is 20 or more contiguous amino acids, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, etc. contiguous amino acids. In further particular aspects, the length of the sequence sharing the percent identity is 35 or more contiguous amino acids, e.g., 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 47, 48, 49, 50, etc., contiguous amino acids. In yet further particular aspects, the length of the sequence sharing the percent identity is 50 or more contiguous amino acids, e.g., 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 80-85, 85-90, 90-95, 95-100, 100-110, etc. contiguous amino acids.


The term “identity” and grammatical variations thereof, mean that two or more referenced entities are the same. Thus, where two MTB proteins and peptides, or subsequences, portions or modifications thereof are identical, they have the same amino acid sequence. The identity can be over a defined area (region or domain) of the sequence. “Areas, regions or domains” of homology or identity mean that a portion of two or more referenced entities share homology or are the same.


The extent of identity between two sequences can be ascertained using a computer program and mathematical algorithm known in the art. Such algorithms that calculate percent sequence identity (homology) generally account for sequence gaps and mismatches over the comparison region or area. For example, a BLAST (e.g., BLAST 2.0) search algorithm (see, e.g., Altschul et al., J. Mol. Biol. 215:403 (1990), publicly available through NCBI) has exemplary search parameters as follows: Mismatch −2; gap open 5; gap extension 2. For polypeptide sequence comparisons, a BLASTP algorithm is typically used in combination with a scoring matrix, such as PAM100, PAM 250, BLOSUM 62 or BLOSUM 50. FASTA (e.g., FASTA2 and FASTA3) and SSEARCH sequence comparison programs are also used to quantitate the extent of identity (Pearson et al., Proc. Natl. Acad. Sci. USA 85:2444 (1988); Pearson, Methods Mol Biol. 132:185 (2000); and Smith et al., J. Mol. Biol. 147:195 (1981)). Programs for quantitating protein structural similarity using Delaunay-based topological mapping have also been developed (Bostick et al., Biochem Biophys Res Commun. 304:320 (2003)).


In accordance with the invention, modified and variant forms of MTB proteins and peptides, or subsequences or portions thereof are provided. Such forms, referred to as “modifications” or “variants” and grammatical variations thereof, are a MTB protein or peptide, or subsequence or portion thereof that deviates from a reference sequence. For example, certain sequences set forth in Table 5 are considered a modification or variant of MTB protein or peptide, or subsequence or portion thereof. Such modifications may have greater or less activity or function than a reference MTB protein or peptide, or subsequence or portion thereof, such as ability to elicit, stimulate, induce, promote, increase, enhance or activate a CD4+ T cell response. Thus, MTB proteins and peptides, or subsequences or portions thereof include sequences having substantially the same, greater or less relative activity or function as a T cell epitope than a reference T cell epitope (e.g., any of the sequences in Table 5) for example, an ability to elicit, stimulate, induce, promote, increase, enhance or activate an anti-MTB CD4+ T cell response in vitro or in vivo.


Non-limiting examples of modifications include one or more amino acid substitutions (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20-25, 25-30, 30-50, 50-100, or more residues), additions and insertions (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20-25, 25-30, 30-50, 50-100, or more residues) and deletions (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20-25, 25-30, 30-50, 50-100) of a reference MTB protein or peptide, or subsequence or portion thereof. In particular embodiments, a modified or variant sequence retains at least part of a function or an activity of unmodified sequence, and can have less than, approximately the same, or greater, but at least a part of, a function or activity of a reference sequence, for example, the ability to elicit, stimulate, induce, promote, increase, enhance or activate an anti-MTB CD4+ T cell response in vitro or in vivo. Such CD4+ T cell responses elicited include, for example, among others, induced, increased, enhanced, stimulate or activate expression or production of a cytokine (e.g., IFN-gamma, TNF, IL-2 or CD40L), release of a cytotoxin (perforin or granulysin), or apoptosis of a target (e.g. MTB infected) cell.


Specific non-limiting examples of substitutions include conservative and non-conservative amino acid substitutions. A “conservative substitution” is the replacement of one amino acid by a biologically, chemically or structurally similar residue. Biologically similar means that the substitution does not destroy a biological activity. Structurally similar means that the amino acids have side chains with similar length, such as alanine, glycine and serine, or a similar size. Chemical similarity means that the residues have the same charge, or are both hydrophilic or hydrophobic. Particular examples include the substitution of one hydrophobic residue, such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine, glutamic for aspartic acids, or glutamine for asparagine, serine for threonine, and the like.


An addition can be the covalent or non-covalent attachment of any type of molecule to the sequence. Specific examples of additions include glycosylation, acetylation, phosphorylation, amidation, formylation, ubiquitination, and derivatization by protecting/blocking groups and any of numerous chemical modifications. Additional specific non-limiting examples of an addition are one or more additional amino acid residues. Accordingly, MTB sequences including MTB proteins peptides, T cell epitopes, subsequences, portions, and modifications thereof can be a part of or contained within a larger molecule, such as another protein or peptide sequence, such as a fusion or chimera with a different MTB sequence, or a non-MTB protein or peptide, or subsequence or portion or modification thereof. In particular embodiments, an addition is a fusion (chimeric) sequence, an amino acid sequence having one or more molecules not normally present in a reference native (wild type) sequence covalently attached to the sequence.


The term “chimeric” and grammatical variations thereof, when used in reference to a sequence, means that the sequence contains one or more portions that are derived from, obtained or isolated from, or based upon other physical or chemical entities. For example, a chimera of two or more different proteins may have one part a MTB peptide, subsequence, portion or modification, and a second part of the chimera may be from a different MTB protein sequence, or a non-MTB sequence.


Another particular example of a modified sequence having an amino acid addition is one in which a second heterologous sequence, i.e., heterologous functional domain is attached (covalent or non-covalent binding) that confers a distinct or complementary function. Heterologous functional domains are not restricted to amino acid residues. Thus, a heterologous functional domain can consist of any of a variety of different types of small or large functional moieties. Such moieties include nucleic acid, peptide, carbohydrate, lipid or small organic compounds, such as a drug (e.g., an antiviral), a metal (gold, silver), and radioisotope. For example, a tag such as T7 or polyhistidine can be attached in order to facilitate purification or detection of a T cell epitope. Thus, in other embodiments, there is presently provided a MTB protein or peptide, or subsequence or portion thereof and a heterologous domain, wherein the heterologous functional domain confers a distinct function, on the MTB protein or peptide, or subsequence or portion thereof. Such constructs containing a MTB protein or peptide, or subsequence or portion thereof and a heterologous domain are also referred to as chimeras.


Linkers, such as amino acid or peptidomimetic sequences may be inserted between the sequence and the addition (e.g., heterologous functional domain) so that the two entities maintain, at least in part, a distinct function or activity. Linkers may have one or more properties that include a flexible conformation, an inability to form an ordered secondary structure or a hydrophobic or charged character, which could promote or interact with either domain. Amino acids typically found in flexible protein regions include Gly, Asn and Ser. Other near neutral amino acids, such as Thr and Ala, may also be used in the linker sequence. The length of the linker sequence may vary without significantly affecting a function or activity of the fusion protein (see, e.g., U.S. Pat. No. 6,087,329). Linkers further include chemical moieties and conjugating agents, such as sulfo-succinimidyl derivatives (sulfo-SMCC, sulfo-SMPB), disuccinimidyl suberate (DSS), disuccinimidyl glutarate (DSG) and disuccinimidyl tartrate (DST).


Further non-limiting examples of additions are detectable labels. Thus, in another embodiment, the invention provides MTB proteins or peptides, or subsequence or portion thereof that are detectably labeled. Specific examples of detectable labels include fluorophores, chromophores, radioactive isotopes (e.g., S35, P32, I125), electron-dense reagents, enzymes, ligands and receptors. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert a substrate such as 3,3-′,5,5-′-tetramethylbenzidine (TMB) to a blue pigment, which can be quantified.


Another non-limiting example of an addition is an insertion of an amino acid within any MTB protein or peptide, or subsequence or portion thereof (e.g., any MTB protein or sequence set forth herein, such as in Table 1 or Table 5). In particular embodiments, an insertion is of one or more amino acid residues inserted into the amino acid sequence of a MTB protein or peptide, or subsequence or portion thereof, such as any protein or sequence set forth herein, such as in Tables 1 or 5.


Modified and variant MTB proteins or peptides, or subsequences or portions thereof also include one or more D-amino acids substituted for L-amino acids (and mixtures thereof), structural and functional analogues, for example, peptidomimetics having synthetic or non-natural amino acids or amino acid analogues and derivatized forms. Modifications include cyclic structures such as an end-to-end amide bond between the amino and carboxy-terminus of the molecule or intra- or inter-molecular disulfide bond. MTB proteins or peptides, or subsequences or portions thereof may be modified in vitro or in vivo, e.g., post-translationally modified to include, for example, sugar residues, phosphate groups, ubiquitin, fatty acids, lipids, etc.


Specific non-limiting examples of MTB proteins or peptides, or subsequences or portions thereof include an amino acid sequence comprising at least one amino acid deletion from a full length MTB protein sequence. In particular embodiments, a protein subsequence or portion is from about 2 to 957 amino acids in length, provided that said subsequence or portion is at least one amino acid less in length than the full-length mtB protein sequence. In additional particular embodiments, a protein subsequence or portion is from about 2 to 5, 5 to 10, 10 to 15, 15 to 20, 20 to 25, 25 to 50, 50 to 100, 100 to 150, 150 to 200, 200 to 250, 250 to 300, 300 to 350, 350 to 400, 400 to 450, 450 to 500, 500 to 550, 550 to 600, 600 to 650, 650 to 700, 700 to 750, 750 to 800, 800 to 850, 850 to 900, 900 to 950 or 950 to 957 amino acids in length, provided that said subsequence or portion is at least one amino acid less in length than the full-length MTB protein sequence.


MTB proteins or peptides, or subsequences, portions or modifications thereof can be produced by any of a variety of standard protein purification or recombinant expression techniques. For example, a MTB protein or peptide, or a subsequence, portion or modification thereof can be produced by standard peptide synthesis techniques, such as solid-phase synthesis. A portion of the protein may contain an amino acid sequence such as a T7 tag or polyhistidine sequence to facilitate purification of expressed or synthesized protein. The protein may be expressed in a cell and purified. The protein may be expressed as a part of a larger protein (e.g., a fusion or chimera) by recombinant methods.


MTB proteins or peptides, or subsequences, portions or modifications thereof can be made using recombinant DNA technology via cell expression or in vitro translation. Polypeptide sequences including modified forms can also be produced by chemical synthesis using methods known in the art, for example, an automated peptide synthesis apparatus (see, e.g., Applied Biosystems, Foster City, Calif.).


The invention provides isolated and/or purified MTB proteins or peptides, or subsequences, portions or modifications thereof including, comprising or consisting of amino acid sequence of a protein, peptide, subsequence, portion or modification of an MTB intermediary metabolism and respiration protein, cell wall and cell processes protein, lipid metabolism proteins, information pathway protein, virulence, detoxification or adaptation protein, regulatory protein, PE/PPE protein, insertion sequence and phage protein, Esx protein, secreted protein, secretion system protein or conserved hypothetical protein.


In particular embodiments, the present invention provides isolated and/or purified MTB proteins or peptides, or subsequences, portions or modifications thereof that include, comprise or consist of the protein and peptides set forth in Table 1 or Table 5.


In certain embodiments, the present invention provides isolated and/or purified MTB proteins or peptides, or subsequences, portions or modifications thereof that include, comprise or consist of an amino acid sequence of protein Rv3024c, Rv0289, Rv0290, Rv3330, Rv1788, Rv1791, Rv3125c, Rv0294, Rv2874, Rv3022c, Rv3135, Rv3876, Rv0124, Rv0291, Rv0292, Rv0293c, Rv0297, Rv0299, Rv3012c, Rv3025c, Rv0278c, Rv0279c, Rv0298, Rv0442c, Rv0690c, Rv0985c, Rv0987, Rv1172c, Rv1243c, Rv1317c, Rv1366, Rv1441c, Rv2490c or Rv2853.


In particular embodiments, an isolated and/or purified MTB protein or peptide, or subsequence, portion or modification thereof includes a T cell epitope, e.g., as set forth in Tables 1 or 5.


The term “isolated,” when used as a modifier of a composition (e.g., MTB proteins or peptides, or subsequences, portions or modifications thereof, nucleic acids encoding same, etc.), means that the compositions are made by the hand of man or are separated, completely or at least in part, from their naturally occurring in vivo environment. Generally, isolated compositions are substantially free of one or more materials with which they normally associate with in nature, for example, one or more protein, nucleic acid, lipid, carbohydrate, cell membrane. The term “isolated” does not exclude alternative physical forms of the composition, such as fusions/chimeras, multimers/oligomers, modifications (e.g., phosphorylation, glycosylation, lipidation) or derivatized forms, or forms expressed in host cells produced by the hand of man.


An “isolated” composition (e.g., MTB proteins or peptides, or subsequences, portions or modifications thereof) can also be “substantially pure” or “purified” when free of most or all of the materials with which it typically associates with in nature. Thus, an isolated MTB proteins or peptides, or subsequences, portions or modifications thereof, that also is substantially pure or purified does not include polypeptides or polynucleotides present among millions of other sequences, such as peptides of an peptide library or nucleic acids in a genomic or cDNA library, for example.


A “substantially pure” or “purified” composition can be combined with one or more other molecules. Thus, “substantially pure” or “purified” does not exclude combinations of compositions, such as combinations of MTB proteins or peptides, or subsequences, portions or modifications thereof (e.g., multiple, T cell epitopes), and other antigens, agents, drugs or therapies.


The invention also provides nucleic acids encoding MTB proteins or peptides, or subsequences, portions or modifications thereof. Such nucleic acid sequences encode a sequence at least 60% or more (e.g., 65%, 70%, 75%, 80%, 85%, 90%, 95%, etc.) identical to a MTB proteins or peptides, or subsequences, portions or modifications thereof. In an additional embodiment, a nucleic acid encodes a sequence having a modification, such as one or more amino acid additions (insertions), deletions or substitutions of a MTB proteins or peptides, or subsequences, portions or modifications thereof, such as set forth in Tables 1 or 5.


The terms “nucleic acid,” “polynucleotide” and “polynucleoside” and the like refer to at least two or more ribo- or deoxy-ribonucleic acid base pairs (nucleotides/nucleosides) that are linked through a phosphoester bond or equivalent. Nucleic acids include polynucleotides and polynucleosides. Nucleic acids include single, double or triplex, circular or linear, molecules. Exemplary nucleic acids include but are not limited to: RNA, DNA, cDNA, genomic nucleic acid, naturally occurring and non naturally occurring nucleic acid, e.g., synthetic nucleic acid.


Nucleic acids can be of various lengths. Nucleic acid lengths typically range from about 20 bases to 20 Kilobases (Kb), or any numerical value or range within or encompassing such lengths, 10 bases to 10 Kb, 1 to 5 Kb or less, 1000 to about 500 bases or less in length. Nucleic acids can also be shorter, for example, 100 to about 500 bases, or from about 12 to 25, 25 to 50, 50 to 100, 100 to 250, or about 250 to 500 bases in length, or any numerical value or range or value within or encompassing such lengths. In particular aspects, a nucleic acid sequence has a length from about 10-20, 20-30, 30-50, 50-100, 100-150, 150-200, 200-250, 250-300, 300-400, 400-500, 500-1000, 1000-2000 bases, or any numerical value or range within or encompassing such lengths. Shorter nucleic acids are commonly referred to as “oligonucleotides” or “probes” of single- or double-stranded DNA. However, there is no upper limit to the length of such oligonucleotides.


Nucleic acid sequences further include nucleotide and nucleoside substitutions, additions and deletions, as well as derivatized forms and fusion/chimeric sequences (e.g., encoding recombinant polypeptide). For example, due to the degeneracy of the genetic code, nucleic acids include sequences and subsequences degenerate with respect to nucleic acids that encode MTB proteins or peptides, or subsequences, portions or modifications thereof, as well as variants and modifications thereof (e.g., substitutions, additions, insertions and deletions).


Nucleic acids can be produced using various standard cloning and chemical synthesis techniques. Techniques include, but are not limited to nucleic acid amplification, e.g., polymerase chain reaction (PCR), with genomic DNA or cDNA targets using primers (e.g., a degenerate primer mixture) capable of annealing to the encoding sequence. Nucleic acids can also be produced by chemical synthesis (e.g., solid phase phosphoramidite synthesis) or transcription from a gene. The sequences produced can then be translated in vitro, or cloned into a plasmid and propagated and then expressed in a cell (e.g., a host cell such as eukaryote or mammalian cell, yeast or bacteria, in an animal or in a plant).


Nucleic acid may be inserted into a nucleic acid construct in which expression of the nucleic acid is influenced or regulated by an “expression control element.” An “expression control element” refers to a nucleic acid sequence element that regulates or influences expression of a nucleic acid sequence to which it is operatively linked. Expression control elements include, as appropriate, promoters, enhancers, transcription terminators, gene silencers, a start codon (e.g., ATG) in front of a protein-encoding gene, etc.


An expression control element operatively linked to a nucleic acid sequence controls transcription and, as appropriate, translation of the nucleic acid sequence. Expression control elements include elements that activate transcription constitutively, that are inducible (i.e., require an external signal for activation), or derepressible (i.e., require a signal to turn transcription off; when the signal is no longer present, transcription is activated or “derepressed”), or specific for cell-types or tissues (i.e., tissue-specific control elements).


Nucleic acid can also be inserted into a plasmid for propagation into a host cell and for subsequent genetic manipulation. A plasmid is a nucleic acid that can be propagated in a host cell, plasmids may optionally contain expression control elements in order to drive expression of the nucleic acid encoding MTB proteins or peptides, or subsequences, portions or modifications thereof in the host cell. A vector is used herein synonymously with a plasmid and may also include an expression control element for expression in a host cell (e.g., expression vector). Plasmids and vectors generally contain at least an origin of replication for propagation in a cell and a promoter. Plasmids and vectors are therefore useful for genetic manipulation and expression of MTB proteins or peptides, or subsequences, portions or modifications thereof. Accordingly, vectors that include nucleic acids encoding or complementary to MTB proteins or peptides, or subsequences, portions or modifications thereof, are provided.


In accordance with the invention, there are provided particles (e.g., viral particles) and transformed host cells that express and/or are transformed with a nucleic acid that encodes and/or express MTB proteins or peptides, or subsequences, portions or modifications thereof. Particles and transformed host cells include but are not limited to virions, and prokaryotic and eukaryotic cells such as bacteria, fungi (yeast), plant, insect, and animal (e.g., mammalian, including primate and human, CHO cells and hybridomas) cells. For example, bacteria transformed with recombinant bacteriophage nucleic acid, plasmid nucleic acid or cosmid nucleic acid expression vectors; yeast transformed with recombinant yeast expression vectors; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid); insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus); and animal cell systems infected with recombinant virus expression vectors (e.g., retroviruses, adenovirus, vaccinia virus), or transformed animal cell systems engineered for stable expression. The cells may be a primary cell isolate, cell culture (e.g., passaged, established or immortalized cell line), or part of a plurality of cells, or a tissue or organ ex vivo or in a subject (in vivo).


The term “transformed” or “transfected” when used in reference to a cell (e.g., a host cell) or organism, means a genetic change in a cell following incorporation of an exogenous molecule, for example, a protein or nucleic acid (e.g., a transgene) into the cell. Thus, a “transfected” or “transformed” cell is a cell into which, or a progeny thereof in which an exogenous molecule has been introduced by the hand of man, for example, by recombinant DNA techniques.


The nucleic acid or protein can be stably or transiently transfected or transformed (expressed) in the host cell and progeny thereof. The cell(s) can be propagated and the introduced protein expressed, or nucleic acid transcribed. A progeny of a transfected or transformed cell may not be identical to the parent cell, since there may be mutations that occur during replication.


Expression of MTB proteins or peptides, or subsequences, portions or modifications thereof, and nucleic acid in particles or introduction into target cells (e.g., host cells) can also be carried out by methods known in the art. Non-limiting examples include osmotic shock (e.g., calcium phosphate), electroporation, microinjection, cell fusion, etc. Introduction of nucleic acid and polypeptide in vitro, ex vivo and in vivo can also be accomplished using other techniques. For example, a polymeric substance, such as polyesters, polyamine acids, hydrogel, polyvinyl pyrrolidone, ethylene-vinylacetate, methylcellulose, carboxymethylcellulose, protamine sulfate, or lactide/glycolide copolymers, polylactide/glycolide copolymers, or ethylenevinylacetate copolymers. A nucleic acid can be entrapped in microcapsules prepared by coacervation techniques or by interfacial polymerization, for example, by the use of hydroxymethylcellulose or gelatin-microcapsules, or poly (methylmethacrolate) microcapsules, respectively, or in a colloid system. Colloidal dispersion systems include macromolecule complexes, nano-capsules, microspheres, beads, and lipid-based systems, including oil-in-water emulsions, micelles, mixed micelles, and liposomes.


Liposomes for introducing various compositions into cells are known in the art and include, for example, phosphatidylcholine, phosphatidylserine, lipofectin and DOTAP (e.g., U.S. Pat. Nos. 4,844,904, 5,000,959, 4,863,740, and 4,975,282; and GIBCO-BRL, Gaithersburg, Md.). Piperazine based amphilic cationic lipids useful for gene therapy also are known (see, e.g., U.S. Pat. No. 5,861,397). Cationic lipid systems also are known (see, e.g., U.S. Pat. No. 5,459,127). Polymeric substances, microcapsules and colloidal dispersion systems such as liposomes are collectively referred to herein as “vesicles.” Accordingly, viral and non-viral vector means delivery into cells are included.


MTB proteins or peptides, or subsequences, portions or modifications thereof can be employed in various methods and uses. Such methods and uses include, for example, use, contact or administration of one or more MTB proteins or peptides, or subsequences, portions or modifications thereof, such as the proteins, peptides and subsequences set forth herein (e.g., Table 1 or Table 5) in vitro and in vivo.


In other embodiments of the present invention, the MTB proteins or peptides described herein, or a subsequence, portion or modification thereof may be used as vaccine antigens or for treatment or diagnosis of a MTB infection or pathology, or one or more physiological conditions, disorders, illness, diseases or symptoms caused by or associated with MTB infection or pathology


In one aspect, there is presently provided methods comprising the MTB proteins or peptides, or subsequences, portions or modifications thereof described herein, as tools for identifying biomarkers to provide correlates of risk for, or protection against, one or more physiological conditions, disorders, illness, diseases or symptoms caused by or associated with MTB infection or pathology.


Thus, in one aspect, there is provided a method of diagnosing a subject having or at increased risk of having a MTB infection or pathology, or one or more physiological conditions, disorders, illness, diseases or symptoms caused by or associated with MTB infection or pathology comprising contacting a biological material or sample from a subject with a MTB protein or peptide, or subsequence, portion or modification thereof as described herein and assaying for an immune response in the subject to the MTB protein or peptide, or subsequence, portion or modification thereof, wherein an immune response in the subject indicates that the subject has or is at increased risk of having a MTB infection or pathology, or one or more physiological conditions, disorders, illness, diseases or symptoms caused by or associated with MTB infection or pathology. In particular embodiments of the method, the immune response is T cell reactivity (e.g. CD4+ T cell reactivity, including but not limited to a CXCR3+CCR6+ memory Th1 cell response).


In other embodiments of the present invention, the MTB proteins or peptides described herein, or a subsequence, portion or modification thereof may be used as vaccine antigens or for methods of diagnosis.


Thus, in accordance with the invention, there are provided methods for vaccination and immunization to protect against MTB infection, and methods for treatment of a MTB infection. Such methods are applicable to providing a subject with protection from MTB infection, and also are applicable to providing treatment to a subject having a MTB infection.


In one embodiment, there is provided a method of eliciting, stimulating, inducing, promoting, increasing or enhancing an immune response against M. tuberculosis (MTB) in a subject, the method comprising administering to the subject an amount of a MTB protein or peptide, described herein, or a subsequence, portion or modification thereof sufficient to elicit, stimulate, induce, promote, increase or enhance an immune response against MTB in the subject. Such immune response methods can in turn be used to provide a subject with protection against a MTB infection or pathology, or one or more physiological conditions, disorders, illness, diseases or symptoms caused by or associated with MTB infection or pathology.


In another embodiment, there is provided a method of providing a subject with protection against a M. tuberculosis (MTB) infection or pathology, or one or more physiological conditions, disorders, illnesses, diseases, symptoms or complications caused by or associated with MTB infection or pathology, the method comprising administering to the subject an amount of a MTB protein or peptide, described herein, or a subsequence, portion or modification thereof sufficient to provide the subject with protection against the MTB infection or pathology, or one or more physiological conditions, disorders, illnesses, diseases, symptoms or complications caused by or associated with MTB infection or pathology. In particular embodiments, the presently provided methods of providing a subject with protection against a M. tuberculosis (MTB) infection or pathology, or one or more physiological conditions, disorders, illnesses, diseases, symptoms or complications caused by or associated with MTB infection or pathology may comprise vaccinating the subject against a MTB infection,


As used herein, the terms “protection”, “protect” and grammatical variations thereof, when used in reference to a MTB infection or pathology, means preventing a MTB infection, or reducing or decreasing susceptibility to a MTB infection, or preventing or reducing one or more symptoms or pathologies caused by or associated with MTB infection or pathology.


In a further embodiment, there is provided a method of treating a subject for a MTB infection, the method comprising administering to the subject an amount of an MTB protein or peptide, described herein, or a subsequence, portion or modification thereof sufficient to treat the subject for the MTB infection. As will be understood by a person skilled in the art, treating a subject for a MTB infection may include decreasing, reducing, inhibiting, suppressing, limiting, controlling or clearing an MTB infection. Thus in certain embodiments, a method of treating a subject for a MTB infection comprises the elimination of an MTB infection from a subject. In other embodiments, a method of treating a subject for a MTB infection comprises reducing the number of MTB mycobacteria or the occurrence, frequency, severity, progression, or duration of MTB infection in the subject. In yet another embodiment, a method of treating a subject for a MTB infection comprises maintaining the level of MTB infection in a subject by preventing an increase in the number of MTB mycobacteria or occurrence, frequency, severity, progression, or duration of MTB infection in the subject. In still further embodiments, a method of treating a subject for a MTB infection comprises eliminating, reducing or maintaining the occurrence, frequency, severity, progression, or duration of physiological conditions, disorders, illnesses, diseases, symptoms or complications caused by or associated with MTB infection or pathology.


In certain embodiments, the subject of the methods provided herein may have been previously exposed to or infected with MTB. Thus, in certain embodiments, the present methods may be used for treating or protecting a subject from a secondary or subsequent MTB infection.


Physiological conditions, disorders, illnesses, diseases, symptoms or complications caused by or associated with MTB infection or pathology include but are not limited to tuberculosis disease, pulmonary tuberculosis, tuberculosis pleuritis, miliary tuberculosis, weight loss, loss of energy, loss of appetite, fever, productive cough, dry cough, night sweats, non-productive cough, chest pain, difficulty breathing, increase in mucus production, MTB infection lung infection, MTB infection lymph node infection, MTB infection genitourinary tract infection, MTB infection bone infection, MTB infection joint infection, MTB infection meninges infection and MTB infection gastrointestinal infection.


In accordance with the present invention, methods of treatment are provided that include therapeutic (following MTB infection) and prophylactic (prior to MTB exposure, infection or pathology) uses and methods. For example, therapeutic and prophylactic methods of treating a subject for a MTB infection include but are not limited to treatment of a subject having or at risk of having a MTB infection or pathology, treating a subject with a MTB infection, and methods of protecting a subject from a MTB infection (e.g., provide the subject with protection against MTB infection), to decrease or reduce the probability of a MTB infection in a subject, to decrease or reduce susceptibility of a subject to a MTB infection, to inhibit or prevent a MTB infection in a subject, and to decrease, reduce, inhibit or suppress transmission of the MTB from an infected host to a subject.


Such methods include, for example, administering a MTB protein or peptide or a subsequence, portion or modification thereof to therapeutically or prophylactically treat (vaccinate or immunize) a subject having or at risk of having a MTB infection or pathology. Accordingly, the presently provided methods can treat MTB infection or pathology, or provide a subject with protection from infection (e.g., prophylactic protection).


As described herein, MTB proteins or peptides, or a subsequence, portion or modification thereof, include T cell epitopes. In one embodiment, a method includes administering an amount of a MTB protein or peptide, or a subsequence, portion or modification thereof (e.g., a T cell epitope) to a subject in need thereof, sufficient to provide the subject with protection against MTB infection or pathology. In another embodiment, a method includes administering an amount of a MTB protein or peptide, or a subsequence, portion or modification thereof (e.g., a T cell epitope) to a subject in need thereof sufficient to treat, vaccinate or immunize the subject against the MTB infection or pathology.


In accordance with the invention, methods of eliciting, stimulating, inducing, promoting, increasing or enhancing anti-MTB activity of T cells, including but not limited to CD8+ T cells or CD4+ T cells, in a subject are provided. In one embodiment, a method includes administering to a subject an amount of MTB protein or peptide, or a subsequence, portion or modification thereof, such as a T cell epitope, sufficient to induce, increase, promote or stimulate anti-MTB activity of CD4+ T cells in the subject.


In methods of the invention, any appropriate MTB protein or peptide, or a subsequence, portion or modification thereof can be used or administered. In particular non-limiting examples, the MTB protein or peptide, or a subsequence, portion or modification thereof includes, comprises or consists of an amino acid sequence of a protein, peptide, subsequence, portion or modification of a MTB intermediary metabolism and respiration protein, cell wall and cell processes protein, lipid metabolism protein, information pathway protein, virulence, detoxification or adaptation protein, regulatory protein, PE/PPE protein, insertion sequence and phage protein, Esx protein, secreted protein, secretion system protein or conserved hypothetical protein.


In particular embodiment, the present methods may comprise a MTB protein or peptide, or a subsequence, portion or modification thereof, that includes, comprises or consists of an amino acid sequence of protein or peptide as set forth in Table 1 or Table 5 or a subsequence, portion or modification thereof. In further particular embodiments, the present methods may comprise a MTB protein or peptide, or a subsequence, portion or modification thereof, that includes, comprises or consists of an amino acid sequence of protein Rv3024c, Rv0289, Rv0290, Rv3330, Rv1788, Rv1791, Rv3125c, Rv0294, Rv2874, Rv3022c, Rv3135, Rv3876, Rv0124, Rv0291, Rv0292, Rv0293c, Rv0297, Rv0299, Rv3012c, Rv3025c, Rv0278c, Rv0279c, Rv0298, Rv0442c, Rv0690c, Rv0985c, Rv0987, Rv1172c, Rv1243c, Rv1317c, Rv1366, Rv1441c, Rv2490c or Rv2853, or a subsequence, portion or modification thereof.


The presently provided methods may comprise MTB protein or peptide, or subsequence, portion or modification thereof, derived from or based upon a sequence from any MTB strain, including but not limited to Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Ra. Mycobacterium tuberculosis F11, Mycobacterium tuberculosis KZN 1435, Mycobacterium tuberculosis KZN 605, Mycobacterium tuberculosis C, Mycobacterium tuberculosis str. Haarlem, Mycobacterium tuberculosis KZN 4207, Mycobacterium tuberculosis 94_M4241A, Mycobacterium tuberculosis 02_1987, Mycobacterium tuberculosis T92, Mycobacterium tuberculosis EAS054, Mycobacterium tuberculosis T85, Mycobacterium tuberculosis GM 1503, Mycobacterium tuberculosis T17, Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’, Mycobacterium tuberculosis T46, Mycobacterium tuberculosis CPHL_A or Mycobacterium tuberculosis K85.


In certain embodiments of the presently described methods, two or more MTB proteins or peptides may be administered to the subject. In particular embodiments, two or more of the MTB proteins or peptides set forth in Table 1 or Table 5, or a subsequence, portion or a modification thereof, may be administered to the subject. In certain embodiments of the present methods, a MTB protein or peptide, or subsequence, portion or modification thereof, including, comprising or consisting of an amino acid sequence of MTB protein Rv3024c, Rv0289, Rv0290, Rv3330, Rv1788, Rv1791, Rv3125c, Rv0294, Rv2874, Rv3022c, Rv3135, Rv3876, Rv0124, Rv0291, Rv0292, Rv0293c, Rv0297, Rv0299, Rv3012c, Rv3025c, Rv0278c, Rv0279c, Rv0298, Rv0442c, Rv0690c, Rv0985c, Rv0987, Rv1172c, Rv1243c, Rv1317c, Rv1366, Rv1441c, Rv2490c or Rv2853, or a subsequence, portion or modification thereof, is administered with one or more other MTB protein or peptide, or subsequence, portion or modification thereof. As will be understood by a skilled person two or more MTB proteins or peptides, or a subsequence, portion or modification thereof may be administered as a combination composition, or administered separately, such as concurrently or in series or sequentially. Different MTB proteins or peptides, or a subsequence, portion or modification thereof, may be administered to a subject in the same amount, volume or concentration or different amounts, volumes or concentrations. Thus in certain embodiments, the subject may be administered the same amount of two or more different MTB proteins or peptides, or a subsequence, portion or modification thereof. In other embodiments, the subject may be administered one MTB protein or peptide, or a subsequence, portion or modification thereof in a amount, volume or concentration greater than one or more other MTB protein or peptide, or a subsequence, portion or modification thereof administered to the subject.


In particular embodiments of the methods described herein, one or more disorders, diseases, physiological conditions, pathologies and symptoms associated with or caused by a MTB infection or pathology will respond to treatment. In particular embodiments, methods of treatment reduce, decrease, suppress, limit, control or inhibit MTB bacteria numbers or titer; reduce, decrease, suppress, limit, control or inhibit pathogen proliferation or replication; reduce, decrease, suppress, limit, control or inhibit the amount of a pathogen protein; or reduce, decrease, suppress, limit, control or inhibit the amount of a MTB nucleic acid. In additional particular embodiments of the present invention, methods of treatment include an amount of a MTB protein or peptide, or a subsequence, portion or modification thereof sufficient to elicit, stimulate, induce, promote, increase or enhance or augment an immune response against MTB; elicit, stimulate, induce, promote, increase or enhance or augment MTB clearance or removal; or decrease, reduce, inhibit, suppress, prevent, control, or limit transmission of MTB to a subject (e.g., transmission from an infected host to a subject). In further particular embodiments of the present invention, methods of treatment include an amount of a MTB protein or peptide, or a subsequence, portion or modification thereof sufficient to protect a subject from MTB infection or pathology, or reduce, decrease, limit, control or inhibit susceptibility to MTB infection or pathology.


Methods of the invention include methods of treatment that result in any therapeutic or beneficial effect. In various methods embodiments, MTB infection, proliferation or pathogenesis is reduced, decreased, inhibited, limited, delayed or prevented, or a method decreases, reduces, inhibits, suppresses, prevents, controls or limits one or more adverse (e.g., physical) symptoms, disorders, illnesses, diseases or complications caused by or associated with MTB infection, proliferation or replication, or pathology (e.g., tuberculosis disease, pulmonary tuberculosis, tuberculosis pleuritis, miliary tuberculosis, weight loss, loss of energy, loss of appetite, fever, productive cough, dry cough, night sweats, non-productive cough, chest pain, difficulty breathing, increase in mucus production, MTB infection lung infection, MTB infection lymph node infection, MTB infection genitourinary tract infection, MTB infection bone infection, MTB infection joint infection, MTB infection meninges infection and MTB infection gastrointestinal infection.). In additional various particular embodiments, methods of treatment include reducing, decreasing, inhibiting, delaying or preventing onset, progression, frequency, duration, severity, probability or susceptibility of one or more adverse symptoms, disorders, illnesses, diseases or complications caused by or associated with MTB infection, proliferation or replication, or pathology (e.g. tuberculosis disease, pulmonary tuberculosis, tuberculosis pleuritis, miliary tuberculosis, weight loss, loss of energy, loss of appetite, fever, productive cough, dry cough, night sweats, non-productive cough, chest pain, difficulty breathing, increase in mucus production, MTB infection lung infection, MTB infection lymph node infection, MTB infection genitourinary tract infection, MTB infection bone infection, MTB infection joint infection, MTB infection meninges infection and MTB infection gastrointestinal infection.). In further various particular embodiments, methods of treatment include improving, accelerating, facilitating, enhancing, augmenting, or hastening recovery of a subject from a MTB infection or pathogenesis, or one or more adverse symptoms, disorders, illnesses, diseases or complications caused by or associated with MTB infection, proliferation or replication, or pathology (e.g. tuberculosis disease, pulmonary tuberculosis, tuberculosis pleuritis, miliary tuberculosis, weight loss, loss of energy, loss of appetite, fever, productive cough, dry cough, night sweats, non-productive cough, chest pain, difficulty breathing, increase in mucus production, MTB infection lung infection, MTB infection lymph node infection, MTB infection genitourinary tract infection, MTB infection bone infection, MTB infection joint infection, MTB infection meninges infection and MTB infection gastrointestinal infection.). In yet additional various embodiments, methods of treatment include stabilizing infection, proliferation, replication, pathogenesis, or an adverse symptom, disorder, illness, disease or complication caused by or associated with MTB infection, proliferation or replication, or pathology, or decreasing, reducing, inhibiting, suppressing, limiting or controlling transmission of MTB from an infected host to an uninfected subject.


A therapeutic or beneficial effect of treatment is therefore any objective or subjective measurable or detectable improvement or benefit provided to a particular subject. A therapeutic or beneficial effect can but need not be complete ablation of all or any particular adverse symptom, disorder, illness, disease or complication caused by or associated with MTB infection, proliferation or replication, or pathology (e.g. tuberculosis disease, pulmonary tuberculosis, tuberculosis pleuritis, miliary tuberculosis, weight loss, loss of energy, loss of appetite, fever, productive cough, dry cough, night sweats, non-productive cough, chest pain, difficulty breathing, increase in mucus production, MTB infection lung infection, MTB infection lymph node infection, MTB infection genitourinary tract infection, MTB infection bone infection, MTB infection joint infection, MTB infection meninges infection and MTB infection gastrointestinal infection.) Thus, a satisfactory clinical endpoint is achieved when there is an incremental improvement or a partial reduction in an adverse symptom, disorder, illness, disease or complication caused by or associated with MTB infection, proliferation or replication, or pathology, or an inhibition, decrease, reduction, suppression, prevention, limit or control of worsening or progression of one or more adverse symptoms, disorders, illnesses, diseases or complications caused by or associated with MTB infection, MTB numbers or titers, MTB proliferation or replication, MTB protein or nucleic acid, or MTB pathology, over a short or long duration (hours, days, weeks, months, etc.).


A therapeutic or beneficial effect also includes reducing or eliminating the need, dosage frequency or amount of a second active such as another drug or other agent (e.g., anti-bacterial) used for treating a subject having or at risk of having a MTB infection or pathology. For example, reducing an amount of an adjunct therapy, for example, a reduction or decrease of a treatment for a MTB infection or pathology, or a vaccination or immunization protocol is considered a beneficial effect. In addition, reducing or decreasing an amount of MTB protein or peptide used for vaccination or immunization of a subject to provide protection to the subject is considered a beneficial effect.


Adverse symptoms and complications associated with MTB infection and pathology include, for example, e.g., tuberculosis disease, pulmonary tuberculosis, tuberculosis pleuritis, miliary tuberculosis, weight loss, loss of energy, loss of appetite, fever, productive cough, dry cough, night sweats, non-productive cough, chest pain, difficulty breathing, increase in mucus production, MTB infection lung infection, MTB infection lymph node infection, MTB infection genitourinary tract infection, MTB infection bone infection, MTB infection joint infection, MTB infection meninges infection and MTB infection gastrointestinal infection.) Additional symptoms of MTB infection or pathogenesis are known to one of skill in the art and treatment thereof in accordance with the invention is provided.


Methods and compositions of the invention also include eliciting, stimulating, inducing, promoting, increasing, enhancing or augmenting an anti-MTB T cell response (e.g. CD4+ T cell) in a subject, such as a subject with or at risk of a MTB infection or pathology. In one embodiment, the present methods includes administering to a subject an amount of a MTB protein or peptide, or a subsequence, portion or modification thereof sufficient to elicit, stimulate, induce, promote, increase, enhance or augment an anti-MTB CD4+ T cell response in the subject. In another embodiment, a method includes administering to a subject an amount of a nucleic acid encoding all or a portion (e.g., a T cell epitope) of any a MTB protein or peptide, or a subsequence, portion or modification thereof sufficient to elicit, stimulate, induce, promote, increase, enhance or augment an anti-MTB CD4+ T cell response in the subject.


The present inventors have surprisingly found that the CD4 response to MTB is highly heterogeneous and includes responses by the CXCR3+CCR6+ memory Th1 cell subset. Thus the methods of the invention additionally include, among other things, eliciting, stimulating, inducing, promoting, increasing, enhancing or augmenting an anti-MTB CXCR3+CCR6+ memory Th1 cell response. An anti-MTB CXCR3+CCR6+ memory Th1 cell response may include, among other things, increasing production of Th1 cytokines or other Th1 signalling molecule. Thus, in one embodiment, the present methods include a method of administering to a subject in need thereof an amount of a MTB protein or peptide, or a subsequence, portion or modification thereof sufficient to increase production of a Th1 cytokine or other Th1 signalling molecule in the subject.


Methods and compositions of the invention include administration of a MTB protein or peptide, or a subsequence, portion or modification thereof to a subject prior to contact, exposure or infection by MTB, administration prior to, substantially contemporaneously with or after a subject has been contacted by, exposed to or infected with MTB and administration prior to, substantially contemporaneously with or after MTB pathology or development of one or more adverse symptoms. Methods and compositions of the invention also include administration of a MTB protein or peptide, or a subsequence, portion or modification thereof to a subject prior to, substantially contemporaneously with or following an adverse symptom, disorder, illness or disease caused by or associated with MTB infection, or pathology. A subject infected with MTB may have an infection over a period of 1-5, 5-10, 10-20, 20-30, 30-50, 50-100 hours, days, months, or years.


Invention compositions (e.g., MTB proteins and peptides, or a subsequence, portion or modification thereof, including T cell epitopes) and methods can be combined with any compound, agent, drug, treatment or other therapeutic regimen or protocol having a desired therapeutic, beneficial, additive, synergistic or complementary activity or effect. Exemplary combination compositions and treatments include multiple MTB proteins or peptides or a subsequence, portion or modification thereof such as T cell epitopes as described herein, and second actives, such as anti-MTB compounds, agents, drugs, treatments and therapies, including but not limited to antibiotics, as well as agents that assist, promote, stimulate or enhance efficacy. Such anti-MTB drugs, agents, treatments and therapies can be administered or performed prior to, substantially contemporaneously with or following any method of the invention, for example, a therapeutic use or method of treating a subject for a MTB infection or pathology, or a method of prophylactic treatment of a subject for a MTB infection.


MTB proteins or peptides, or subsequences, portions or modifications thereof can be administered as a combination with a second active, or administered separately, such as concurrently or in series or sequentially (prior to or following) to administering a second active to a subject. The invention therefore provides combinations of one or more MTB proteins or peptides, or subsequences, portions or modifications thereof in combination with a second active, including but not limited to any compound, agent, drug, therapeutic regimen, treatment protocol, process, remedy or composition, such as an anti-bacterial or immune stimulating, enhancing or augmenting protocol, or pathogen vaccination or immunization (e.g., prophylaxis) set forth herein or known in the art. The compound, agent, drug, therapeutic regimen, treatment protocol, process, remedy or composition can be administered or performed prior to, substantially contemporaneously with or following administration of one or more MTB proteins or peptides, or subsequences, portions or modifications thereof, or a nucleic acid encoding all or a portion (e.g., a T cell epitope) of a MTB protein or peptide, or subsequence, portion or modification thereof, to a subject. Specific non-limiting examples of combination embodiments therefore include the foregoing or other compound, agent, drug, therapeutic regimen, treatment protocol, process, remedy or composition.


An exemplary combination is a MTB protein or peptide, or subsequence, portion or modification thereof, and a different MTB protein or peptide, or subsequence, portion or modification thereof, such as a MTB protein or T cell epitope, antigen. Another exemplary combination is a MTB protein or peptide, or subsequence, portion or modification thereof, and a T-cell stimulatory molecule, including for example an OX40 or CD27 agonist.


Such a MTB protein or peptide, or subsequence, portion or modification thereof, described herein forth herein include MTB proteins and peptides, or subsequences, portions or modifications thereof, that elicit, stimulate, induce, promote, increase, enhance or augment a proinflammatory or adaptive immune response, numbers or activation of an immune cell (e.g., T cell, natural killer T (NKT) cell, dendritic cell (DC), B cell, macrophage, neutrophil, eosinophil, mast cell, CD4+ or a CD8+ cell, B220+ cell, CD14+, CD11b+ or CD11c+ cells), an anti-MTB T cell response, production of a Th1 cytokine, a T cell mediated immune response, such as activation or induction of CD4+ T cells, or activation or induction of CXCR3+CCR6+ memory Th1 cells.


Combination methods of the present invention include, for example, second actives such as anti-pathogen drugs, such as protease inhibitors, reverse transcriptase inhibitors, antibiotics, antibodies to pathogen proteins, live or attenuated pathogen, or a nucleic acid encoding all or a portion (e.g., an epitope) of any protein or proteinaceous pathogen antigen, immune stimulating agents, etc., and include contact with, administration in vitro or in vivo, with another compound, agent, treatment or therapeutic regimen appropriate for pathogen infection, vaccination or immunization


Methods of the invention also include, among other things, methods that result in a reduced need or use of another compound, agent, drug, therapeutic regimen, treatment protocol, process, or remedy. For example, for a treatment of MTB infection or pathology, or vaccination or immunization, a method of the invention has a therapeutic benefit if in a given subject a less frequent or reduced dose or elimination of an anti-MTB treatment results. Thus, in accordance with the invention, methods of reducing need or use of a treatment or therapy for a MTB infection or pathology, or vaccination or immunization, are provided.


In invention methods in which there is a desired outcome, such as a therapeutic or prophylactic method that provides a benefit from treatment, vaccination or immunization, a MTB protein or peptide, or subsequence, portion or modification thereof, can be administered in a sufficient or effective amount.


As used herein, a “sufficient amount” or “effective amount” or an “amount sufficient” or an “amount effective” refers to an amount that provides, in single (e.g., primary) or multiple (e.g., booster) doses, alone or in combination with one or more other compounds, treatments, therapeutic regimens or agents (e.g., a drug), a long term or a short term detectable or measurable improvement in a given subject or any objective or subjective benefit to a given subject of any degree or for any time period or duration (e.g., for minutes, hours, days, months, years, or cured).


An amount sufficient or an amount effective can but need not be provided in a single administration and can but need not be achieved by a MTB protein or peptide, or subsequence, portion or modification thereof, alone, optionally in a combination composition or method that includes a second active. In addition, an amount sufficient or an amount effective need not be sufficient or effective if given in single or multiple doses without a second or additional administration or dosage, since additional doses, amounts or duration above and beyond such doses, or additional antigens, compounds, drugs, agents, treatment or therapeutic regimens may be included in order to provide a given subject with a detectable or measurable improvement or benefit to the subject. For example, to increase, enhance, improve or optimize immunization and/or vaccination, after an initial or primary administration of one or more MTB proteins or peptides, or subsequences, portions or modifications thereof, to a subject, the subject can be administered one or more additional “boosters” of one or more MTB proteins or peptides, or subsequences, portions or modifications thereof. Such subsequent “booster” administrations can be of the same or a different formulation, dose or concentration, route, etc.


An amount sufficient or an amount effective need not be therapeutically or prophylactically effective in each and every subject treated, nor a majority of subjects treated in a given group or population. An amount sufficient or an amount effective means sufficiency or effectiveness in a particular subject, not a group of subjects or the general population. As is typical for such methods, different subjects will exhibit varied responses to a method of the invention, such as immunization, vaccination and therapeutic treatments.


The term “subject” refers includes but is not limited to a subject at risk of MTB exposure or infection as well as a subject that has been exposed to or already infected with MTB. Such subjects, include mammalian animals (mammals), such as a non human primate (apes, gibbons, gorillas, chimpanzees, orangutans, macaques), a domestic animal (dogs and cats), a farm animal (poultry such as chickens and ducks, horses, cows, goats, sheep, pigs), experimental animal (mouse, rat, rabbit, guinea pig) and humans. Subjects include animal disease models, for example, mouse and other animal models of pathogen (e.g., MTB) infection known in the art.


Accordingly, subjects appropriate for treatment include those having or at risk of exposure to MTB infection or pathology, also referred to as subjects in need of treatment. Subjects in need of treatment therefore include subjects that have been exposed to or contacted with MTB, or that have an ongoing infection or have developed one or more adverse symptoms caused by or associated with MTB infection or pathology, regardless of the type, timing or degree of onset, progression, severity, frequency, duration of the symptoms.


Target subjects and subjects in need of treatment also include those at risk of MTB exposure, contact, infection or pathology or at risk of having or developing a MTB infection or pathology. The invention methods and compositions are therefore applicable to treating a subject who is at risk of MTB exposure, contact, infection or pathology, but has not yet been exposed to or contacted with MTB. Prophylactic uses and methods are therefore included. Target subjects for prophylaxis may be at increased risk (probability or susceptibility) of exposure, contact, infection or pathology, as set forth herein. Such subjects are considered in need of treatment due to being at risk.


Subjects for prophylaxis need not be at increased risk but may be from the general population in which it is desired to vaccinate or immunize a subject against a MTB infection, for example. Such a subject that is desired to be vaccinated or immunized against MTB infection can be administered a MTB protein or peptide, or subsequence, portion or modification thereof. In another non-limiting example, a subject that is not specifically at risk of exposure to or contact MTB, but nevertheless desires protection against infection or pathology, can be administered a MTB protein or peptide, or subsequence, portion or modification thereof. Such subjects are also considered in need of treatment.


“Prophylaxis” and grammatical variations thereof mean a method in which contact, administration or in vivo delivery to a subject is prior to contact with or exposure to MTB or a MTB infection. In certain situations it may not be known that a subject has been contacted with or exposed to MTB, but administration or in vivo delivery to a subject can be performed prior to infection or manifestation of pathology (or an associated adverse symptom, condition, complication, etc. caused by or associated with a MTB infection. For example, a subject can be immunized or vaccinated with a MTB protein or peptide, or subsequence, portion or modification thereof. In such case, a method can eliminate, prevent, inhibit, suppress, limit, decrease or reduce the probability of or susceptibility towards a MTB infection or pathology, or an adverse symptom, condition or complication associated with or caused by or associated with a MTB infection or pathology.


“Prophylaxis” can also refer to a method in which contact, administration or in vivo delivery to a subject is prior to a secondary or subsequent exposure or infection. In such a situation, a subject may have had a prior MTB infection, or have been contacted with or exposed to MTB. In such subjects, an acute MTB infection may but not need be resolved. Such a subject typically has developed anti-MTB antibodies due to the prior exposure or infection. Immunization or vaccination, by administration or in vivo delivery to such a subject, can be performed prior to a secondary or subsequent MTB infection or exposure. Such a method can eliminate, prevent, inhibit, suppress, limit, decrease or reduce the probability of or susceptibility towards a secondary or subsequent MTB infection or pathology, or an adverse symptom, condition or complication associated with or caused by or associated with a MTB infection or pathology.


Treatment of an infection can be at any time during the infection. A MTB protein or peptide, or subsequence, portion or modification thereof, can be administered as a combination (e.g., with a second active), or separately concurrently or in sequence (sequentially) in accordance with the methods described herein as a single or multiple dose e.g., one or more times hourly, daily, weekly, monthly or annually or between about 1 to 10 weeks, or for as long as appropriate, for example, to achieve a reduction in the onset, progression, severity, frequency, duration of one or more symptoms or complications associated with or caused by MTB infection, pathology, or an adverse symptom, condition or complication associated with or caused by MTB. Thus, a method can be practiced one or more times (e.g., 1-10, 1-5 or 1-3 times) an hour, day, week, month, or year. The skilled artisan will know when it is appropriate to delay or discontinue administration. A non-limiting dosage schedule is 1-7 times per week, for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more weeks, and any numerical value or range or value within such ranges.


Methods of the invention may be practiced by any mode of administration or delivery, or by any route, systemic, regional and local administration or delivery. Exemplary administration and delivery routes include intravenous (i.v.), intraperitoneal (i.p.), intrarterial, intramuscular, parenteral, subcutaneous, intra-pleural, topical, dermal, intradermal, transdermal, transmucosal, intra-cranial, intra-spinal, rectal, oral (alimentary), mucosal, inhalation, respiration, intranasal, intubation, intrapulmonary, intrapulmonary instillation, buccal, sublingual, intravascular, intrathecal, intracavity, iontophoretic, intraocular, ophthalmic, optical, intraglandular, intraorgan, or intralymphatic.


Doses can be based upon current existing protocols, empirically determined, using animal disease models or optionally in human clinical trials. Initial study doses can be based upon animal studies, e.g. a mouse, and the amount of MTB protein or peptide, or subsequence, portion or modification thereof, administered that is determined to be effective. Exemplary non-limiting amounts (doses) are in a range of about 0.1 mg/kg to about 100 mg/kg, and any numerical value or range or value within such ranges. Greater or lesser amounts (doses) can be administered, for example, 0.01-500 mg/kg, and any numerical value or range or value within such ranges. The dose can be adjusted according to the mass of a subject, and will generally be in a range from about 1-10 ug/kg, 10-25 ug/kg, 25-50 ug/kg, 50-100 ug/kg, 100-500 ug/kg, 500-1,000 ug/kg, 1-5 mg/kg, 5-10 mg/kg, 10-20 mg/kg, 20-50 mg/kg, 50-100 mg/kg, 100-250 mg/kg, 250-500 mg/kg, or more, two, three, four, or more times per hour, day, week, month or annually. A typical range will be from about 0.3 mg/kg to about 50 mg/kg, 0-25 mg/kg, or 1.0-10 mg/kg, or any numerical value or range or value within such ranges.


Doses can vary and depend upon whether the treatment is prophylactic or therapeutic, whether a subject has been previously exposed to, infected with our suffered from MTB, the onset, progression, severity, frequency, duration probability of or susceptibility of the symptom, condition, pathology or complication, or vaccination or immunization to which treatment is directed, the clinical endpoint desired, previous or simultaneous treatments, the general health, age, gender, race or immunological competency of the subject and other factors that will be appreciated by the skilled artisan. The skilled artisan will appreciate the factors that may influence the dosage and timing required to provide an amount sufficient for providing a therapeutic or prophylactic benefit.


Typically, for treatment, a MTB protein or peptide, or subsequence, portion or modification thereof, will be administered as soon as practical, typically within 1-2, 2-4, 4-12, 12-24 or 24-72 hours after a subject is exposed to or contacted with MTB, or within 1-2, 2-4, 4-12, 12-24 or 24-48 hours after onset or development of one or more adverse symptoms, conditions, pathologies, complications, etc., associated with or caused by a MTB infection or pathology. For prophylactic treatment in connection with vaccination or immunization, MTB proteins or peptides, or subsequences, portions or modifications thereof can be administered for a duration of 0-4 weeks, e.g., 2-3 weeks, prior to exposure to, contact or infection with MTB or at least within 1-2, 2-4, 4-12, 12-24, 24-48 or 48-72 hours prior to exposure to, contact or infection with MTB. For an acute infection, MTB proteins or peptides, or subsequences, portions or modifications thereof may be administered at any appropriate time.


The dose amount, number, frequency or duration may be proportionally increased or reduced, as indicated by the status of the subject. For example, whether the subject has a pathogen infection, whether the subject has been exposed to, contacted or infected with pathogen or is merely at risk of pathogen contact, exposure or infection, whether the subject is a candidate for or will be vaccinated or immunized. The dose amount, number, frequency or duration may be proportionally increased or reduced, as indicated by any adverse side effects, complications or other risk factors of the treatment or therapy.


In the methods of the invention, the route, dose, number and frequency of administrations, treatments, immunizations or vaccinations, and timing/intervals between treatment, immunization and vaccination, and viral challenge can be modified. Although rapid induction of immune responses is desired for developing protective emergency vaccines against MTB, in certain embodiments, a desirable MTB vaccine will elicit robust, long-lasting immunity. Thus, in certain embodiments, invention methods and compositions provide long-lasting immunity to MTB. Immunization strategies provided may provide long-lived protection against MTB challenge, depending on the level of vaccine-induced T cell response.


In certain embodiments, MTB proteins or peptides, or subsequences, portions or modifications thereof may be pharmaceutical compositions.


As used herein the term “pharmaceutically acceptable” and “physiologically acceptable” mean a biologically acceptable formulation, gaseous, liquid or solid, or mixture thereof, which is suitable for one or more routes of administration, in vivo delivery or contact. Such formulations include solvents (aqueous or non-aqueous), solutions (aqueous or non-aqueous), emulsions (e.g., oil-in-water or water-in-oil), suspensions, syrups, elixirs, dispersion and suspension media, coatings, isotonic and absorption promoting or delaying agents, compatible with pharmaceutical administration or in vivo contact or delivery. Aqueous and non-aqueous solvents, solutions and suspensions may include suspending agents and thickening agents. Such pharmaceutically acceptable carriers include tablets (coated or uncoated), capsules (hard or soft), microbeads, powder, granules and crystals. Supplementary active compounds (e.g., preservatives, antibacterial, antiviral and antifungal agents) can also be incorporated into the compositions.


Pharmaceutical compositions can be formulated to be compatible with a particular route of administration. Thus, pharmaceutical compositions include carriers, diluents, or excipients suitable for administration by various routes. Exemplary routes of administration for contact or in vivo delivery which a composition can optionally be formulated include inhalation, respiration, intranasal, intubation, intrapulmonary instillation, oral, buccal, intrapulmonary, intradermal, topical, dermal, parenteral, sublingual, subcutaneous, intravascular, intrathecal, intraarticular, intracavity, transdermal, iontophoretic, intraocular, opthalmic, optical, intravenous (i.v.), intramuscular, intraglandular, intraorgan, or intralymphatic.


Formulations suitable for parenteral administration comprise aqueous and non-aqueous solutions, suspensions or emulsions of the active compound, which preparations are typically sterile and can be isotonic with the blood of the intended recipient. Non-limiting illustrative examples include water, saline, dextrose, fructose, ethanol, animal, vegetable or synthetic oils.


To increase an immune response, immunization or vaccination, MTB proteins or peptides, or subsequences, portions or modifications thereof, can be coupled to another protein such as ovalbumin or keyhole limpet hemocyanin (KLH), thyroglobulin or a toxin such as tetanus or cholera toxin. MTB proteins or peptides, or subsequences, portions or modifications thereof can also be mixed with adjuvants.


Adjuvants include, for example: Oil (mineral or organic) emulsion adjuvants such as Freund's complete (CFA) and incomplete adjuvant (IFA) (WO 95/17210; WO 98/56414; WO 99/12565; WO 99/11241; and U.S. Pat. No. 5,422,109); metal and metallic salts, such as aluminum and aluminum salts, such as aluminum phosphate or aluminum hydroxide, alum (hydrated potassium aluminum sulfate); bacterially derived compounds, such as Monophosphoryl lipid A and derivatives thereof (e.g., 3 De-O-acylated monophosphoryl lipid A, aka 3D-MPL or d3-MPL, to indicate that position 3 of the reducing end glucosamine is de-O-acylated, 3D-MPL consisting of the tri and tetra acyl congeners), and enterobacterial lipopolysaccharides (LPS); plant derived saponins and derivatives thereof, for example Quil A (isolated from the Quilaja Saponaria Molina tree, see, e.g., “Saponin adjuvants”, Archiv. fur die gesamte Virusforschung, Vol. 44, Springer Verlag, Berlin, p 243-254; U.S. Pat. No. 5,057,540), and fragments of Quil A which retain adjuvant activity without associated toxicity, for example QS7 and QS21 (also known as QA7 and QA21), as described in WO96/33739, for example; surfactants such as, soya lecithin and oleic acid; sorbitan esters such as sorbitan trioleate; and polyvinylpyrrolidone; oligonucleotides such as CpG (WO 96/02555, and WO 98/16247), polyriboA and polyriboU; block copolymers; and immunostimulatory cytokines such as GM-CSF and IL-1, and Muramyl tripeptide (MTP). Additional examples of adjuvants are described, for example, in “Vaccine Design—the subunit and adjuvant approach” (Edited by Powell, M. F. and Newman, M. J.; 1995, Pharmaceutical Biotechnology (Plenum Press, New York and London, ISBN 0-306-44867-X) entitled “Compendium of vaccine adjuvants and excipients” by Powell, M. F. and Newman M.


Cosolvents may be added to a MTB protein or peptide, or subsequence, portion or modification thereof, composition or formulation. Non-limiting examples of cosolvents contain hydroxyl groups or other polar groups, for example, alcohols, such as isopropyl alcohol; glycols, such as propylene glycol, polyethyleneglycol, polypropylene glycol, glycol ether; glycerol; polyoxyethylene alcohols and polyoxyethylene fatty acid esters. Non-limiting examples of cosolvents contain hydroxyl groups or other polar groups, for example, alcohols, such as isopropyl alcohol; glycols, such as propylene glycol, polyethyleneglycol, polypropylene glycol, glycol ether; glycerol; polyoxyethylene alcohols and polyoxyethylene fatty acid esters.


Supplementary compounds (e.g., preservatives, antioxidants, antimicrobial agents including biocides and biostats such as antibacterial, antiviral and antifungal agents) can also be incorporated into the compositions. Pharmaceutical compositions may therefore include preservatives, anti-oxidants and antimicrobial agents.


Preservatives can be used to inhibit microbial growth or increase stability of ingredients thereby prolonging the shelf life of the pharmaceutical formulation. Suitable preservatives are known in the art and include, for example, EDTA, EGTA, benzalkonium chloride or benzoic acid or benzoates, such as sodium benzoate. Antioxidants include, for example, ascorbic acid, vitamin A, vitamin E, tocopherols, and similar vitamins or provitamins.


An antimicrobial agent or compound directly or indirectly inhibits, reduces, delays, halts, eliminates, arrests, suppresses or prevents contamination by or growth, infectivity, replication, proliferation, reproduction, of a pathogenic or non-pathogenic microbial organism. Classes of antimicrobials include antibacterial, antiviral, antifungal and antiparasitics. Antimicrobials include agents and compounds that kill or destroy (-cidal) or inhibit (-static) contamination by or growth, infectivity, replication, proliferation, reproduction of the microbial organism.


Exemplary antibacterials (antibiotics) include penicillins (e.g., penicillin G, ampicillin, methicillin, oxacillin, and amoxicillin), cephalosporins (e.g., cefadroxil, ceforanid, cefotaxime, and ceftriaxone), tetracyclines (e.g., doxycycline, chlortetracycline, minocycline, and tetracycline), aminoglycosides (e.g., amikacin, gentamycin, kanamycin, neomycin, streptomycin, netilmicin, paromomycin and tobramycin), macrolides (e.g., azithromycin, clarithromycin, and erythromycin), fluoroquinolones (e.g., ciprofloxacin, lomefloxacin, and norfloxacin), and other antibiotics including chloramphenicol, clindamycin, cycloserine, isoniazid, rifampin, vancomycin, aztreonam, clavulanic acid, imipenem, polymyxin, bacitracin, amphotericin and nystatin.


Particular non-limiting classes of anti-virals include reverse transcriptase inhibitors; protease inhibitors; thymidine kinase inhibitors; sugar or glycoprotein synthesis inhibitors; structural protein synthesis inhibitors; nucleoside analogues; and viral maturation inhibitors. Specific non-limiting examples of anti-virals include nevirapine, delavirdine, efavirenz, saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, zidovudine (AZT), stavudine (d4T), larnivudine (3TC), didanosine (DDI), zalcitabine (ddC), abacavir, acyclovir, penciclovir, ribavirin, valacyclovir, ganciclovir, 1,-D-ribofuranosyl-1,2,4-triazole-3 carboxamide, 9→2-hydroxy-ethoxy methylguanine, adamantanamine, 5-iodo-2′-deoxyuridine, trifluorothymidine, interferon and adenine arabinoside.


Pharmaceutical formulations and delivery systems appropriate for the compositions and methods of the invention are known in the art (see, e.g., Remington: The Science and Practice of Pharmacy (2003) 20th ed., Mack Publishing Co., Easton, Pa.; Remington's Pharmaceutical Sciences (1990) 18th ed., Mack Publishing Co., Easton, Pa.; The Merck Index (1996) 12th ed., Merck Publishing Group, Whitehouse, N.J.; Pharmaceutical Principles of Solid Dosage Forms (1993), Technonic Publishing Co., Inc., Lancaster, Pa.; Ansel ad Soklosa, Pharmaceutical Calculations (2001) 11th ed., Lippincott Williams & Wilkins, Baltimore, Md.; and Poznansky et al., Drug Delivery Systems (1980), R. L. Juliano, ed., Oxford, N.Y., pp. 253-315).


MTB proteins or peptides, or subsequences, portions or modifications thereof, along with any adjunct agent, compound drug, composition, whether active or inactive, etc., can be packaged in unit dosage form (capsules, tablets, troches, cachets, lozenges) for ease of administration and uniformity of dosage. A “unit dosage form” as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active ingredient optionally in association with a pharmaceutical carrier (excipient, diluent, vehicle or filling agent) which, when administered in one or more doses, is calculated to produce a desired effect (e.g., prophylactic or therapeutic effect). Unit dosage forms also include, for example, ampules and vials, which may include a composition in a freeze-dried or lyophilized state; a sterile liquid carrier, for example, can be added prior to administration or delivery in vivo. Unit dosage forms additionally include, for example, ampules and vials with liquid compositions disposed therein. Individual unit dosage forms can be included in multi-dose kits or containers. Pharmaceutical formulations can be packaged in single or multiple unit dosage form for ease of administration and uniformity of dosage.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described herein.


All applications, publications, patents and other references, GenBank citations and ATCC citations cited herein are incorporated by reference in their entirety. In case of conflict, the specification, including definitions, will control.


As used herein, the singular forms “a,” “and,” and “the” include plural referents unless the context clearly indicates otherwise. Thus, for example, reference to a “MTB protein or peptide, or subsequence, portion or modification thereof” or a “MTB infection” includes a plurality of MTB proteins or peptides, or subsequences, portions or modifications thereof, such as CD4+ T cell epitopes, or strains of MTB and reference to an “activity or function” can include reference to one or more activities or functions of a MTB protein or peptide, or subsequence, portion or modification thereof, including function as a T cell epitopes, an ability to elicit, stimulate, induce, promote, increase, enhance or activate a measurable or detectable anti-MTB CD4+ T cell response and so forth.


As used herein, numerical values are often presented in a range format throughout this document. The use of a range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the use of a range expressly includes all possible subranges, all individual numerical values within that range, and all numerical values or numerical ranges include integers within such ranges and fractions of the values or the integers within ranges unless the context clearly indicates otherwise. This construction applies regardless of the breadth of the range and in all contexts throughout this patent document. Thus, to illustrate, reference to a range of 90-100% includes 91-99%, 92-98%, 93-95%, 91-98%, 91-97%, 91-96%, 91-95%, 91-94%, 91-93%, and so forth. Reference to a range of 90-100%, includes 91%, 92%, 93%, 94%, 95%, 95%, 97%, etc., as well as 91.1%, 91.2%, 91.3%, 91.4%, 91.5%, etc., 92.1%, 92.2%, 92.3%, 92.4%, 92.5%, etc., and so forth. Reference to a range of 1-5 fold therefore includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, fold, etc., as well as 1.1, 1.2, 1.3, 1.4, 1.5, fold, etc., 2.1, 2.2, 2.3, 2.4, 2.5, fold, etc., and so forth. Further, for example, reference to a series of ranges of 2-72 hours, 2-48 hours, 4-24 hours, 4-18 hours and 6-12 hours, includes ranges of 2-6 hours, 2, 12 hours, 2-18 hours, 2-24 hours, etc., and 4-27 hours, 4-48 hours, 4-6 hours, etc.


As also used herein a series of range formats are used throughout this document. The use of a series of ranges includes combinations of the upper and lower ranges to provide a range. Accordingly, a series of ranges include ranges which combine the values of the boundaries of different ranges within the series. This construction applies regardless of the breadth of the range and in all contexts throughout this patent document. Thus, for example, reference to a series of ranges such as 5-10, 10-20, 20-30, 30-40, 40-50, 50-75, 75-100, 100-150, and 150-171, includes ranges such as 5-20, 5-30, 5-40, 5-50, 5-75, 5-100, 5-150, 5-171, and 10-30, 10-40, 10-50, 10-75, 10-100, 10-150, 10-171, and 20-40, 20-50, 20-75, 20-100, 20-150, 20-171, and so forth.


The invention is generally disclosed herein using affirmative language to describe the numerous embodiments and aspects. The invention also specifically includes embodiments in which particular subject matter is excluded, in full or in part, such as substances or materials, method steps and conditions, protocols, procedures, assays or analysis. Thus, even though the invention is generally not expressed herein in terms of what is not included, embodiments and aspects that expressly exclude compositions or method steps are nevertheless disclosed and included in the invention.


A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, the following examples are intended to illustrate but not limit the scope of invention described in the claims.


EXAMPLES

Materials and Methods


Study Subjects


Leukapheresis samples from 28 adults with LTBI and 28 control donors were obtained from the University of California, San Diego Antiviral Research Center clinic (age range 20-65 years). Subjects had a history of a positive tuberculin skin test (TST). LTBI was confirmed by a positive QuantiFERON-TB Gold In-Tube (Cellestis), as well as a physical exam and/or chest X-ray that was not consistent with active tuberculosis. None of the study subjects endorsed vaccination with BCG, or had laboratory evidence of HIV or Hepatitis B. The control donors had a negative TST, as well as a negative QuantiFERON-TB. Approval for all procedures was obtained from the Institutional Review Board (FWA #00000032) and informed consent was obtained from all donors.


Bioinformatic Analyses


Proteins from the 21 MTB genome projects available from the NCBI Protein database were downloaded into an in-house MySQL database. Of these, 5 were complete (CDC1551, F11, H37Ra, H37Rv, KZN 1435) and 16 were draft assemblies (Table 3). The protein sequences were parsed into all possible 15mer peptides (n=1,568,148), for each of which binding to 22 different HLA class II alleles (Table 4) was predicted using the IEDB HLA class II ‘consensus’ prediction method (Wang et al., 2010). The sequences of the H37Rv strain were used as a reference sequence. For each H37Rv protein, alignments were made of all orthologs identified in other genomes, as determined by a BLAST search. Because of the overall high sequence conservation among the proteins from all the 21 genomes, 1,220,829 (91.4%) of 15mers were completely conserved among all of the strains. For each protein, the best-predicted binders, as ranked by consensus percentile, were selected for synthesis. In order to ensure coverage of each of the proteins, the number of peptides selected per protein was no less than 2 and no more than 10, depending upon protein length (18,950 peptides). Any variants among the orthologs at the selected positions were also selected (1,660), for a total of 20,610 peptides.


Peptides


Sets of 15-mer peptides synthesized by Mimotopes (Victoria, Australia) and/or A and A (San Diego) as crude material on a small (1 mg) scale were combined into pools of 20 peptides. Peptides utilized for tetramers were synthesized as purified material (>95% by reversed phase HPLC). The IEDB submission number for the peptides is 1000505.


PBMC Isolation


PBMCs were obtained by density gradient centrifugation (Ficoll-Hypaque, Amersham Biosciences) from 100 ml of leukapheresis sample, according to manufacturer's instructions. Cell were suspended in fetal bovine serum (Gemini Bio-products) containing 10% dimethyl sulfoxide, and cryo-preserved in liquid nitrogen.


T Cell Library


CD4 T cells were isolated from PBMCs by positive selection with microbeads (Miltenyi Biotec). Memory CD4+ T cell subsets were sorted with a FACSAria (BD Biosciences) to over 98% purity excluding CD45RA+, CD25+, CD95+, CD8+, CD19+, and CD56+ cells. Antibodies used for positive selection were: anti-CCR6-PE or biotinylated (11A9; BD Biosciences) followed by streptavidin-allophycocyanin (APC) (Invitrogen) or streptavidin-APC-cyanine7 (APC-Cy7) (BD Biosciences); anti-CCR10-PE (314305, R&D Systems), anti-CCR4-PE-Cy7 (1G1; BD Pharmingen) and anti-CXCR3-APC (1C6; BD Pharmigen). Cells were cultured in RPMI 1640 medium supplemented with 2 mM glutamine, 1% (vol/vol) nonessential amino acids, 1% (vol/vol) sodium pyruvate, penicillin (50 U/ml), streptomycin (50 μg/ml) (all from Invitrogen) and 5% heat-inactivated human serum (Swiss Red Cross). T cells (1,000 cells/well) were stimulated polyclonally with 1 μg/ml PHA (Remel) in the presence of irradiated (45Gy) allogeneic feeder cells (1.0×105 per well) and IL-2 (500 IU/ml) in a 96-well plate format and T cell lines were expanded as previously described (Geiger et al., 2009). Library screening was performed at day 14-21 by culturing extensively washed T cells (˜2.5×105/well) with autologous monocytes (2.5×104), either unpulsed or pulsed for 3 h with MTB whole cell lysate (5 μg/ml, BEI Resources) or control antigens. In some experiments, T cells were cultured with peptide pools (2 μg/ml). Proliferation was measured on day 2-3 after 16 h incubation with 1 μCi/ml [methyl-3H]-thymidine (Perkin Elmer). Precursor frequencies were calculated based on numbers of negative wells according to the Poisson distribution and expressed per million cells.


Ex Vivo IFN-γ ELISPOT Assay


PBMCs incubated at a density of 2×105 cells/well were stimulated with peptide pools (5 μg/ml) or individual peptides (10 μg/ml), PHA (10 μg/ml) or medium containing 0.25% DMSO (corresponding to percent DMSO in the pools/peptides, as a control) in 96-well plates (Immobilon-P; Millipore) coated with 10 μg/ml anti-IFN-γ (AN18; Mabtech). Each peptide or pool was tested in triplicate. After 20 h incubation at 37° C., wells were washed with PBS/0.05% Tween 20 and incubated with 2 μg/ml biotinylated anti-IFN-γ (R4-6A2; Mabtech) for 2 h. The spots were developed using Vectastain ABC peroxidase (Vector Laboratories) and 3-amino-9-ethylcarbazole (Sigma-Aldrich) and counted by computer-assisted image analysis (KS-ELISPOT reader, Zeiss). Responses were considered positive if the net spot-forming cells (SFC) per 106 were ≥20, the stimulation index ≥2, and p<0.05 (Student's t-test, mean of triplicate values of the response against relevant pools or peptides vs. the DMSO control). For experiments utilizing depletion of CD4+ or CD8+ T cells, these cells were isolated by positive selection (Miltenyi Biotec) and effluent cells (depleted cells) were used for experiments.


Intracellular Cytokine Staining


PBMCs were cultured in the presence of 5 μg/ml MTB peptide and 4 μl/ml Golgiplug (BD Biosciences) in complete RPMI medium at 37° C. in 5% CO2. Unstimulated PBMCs were used to assess nonspecific/background cytokine production. 6 h, cells were harvested and stained for cell surface antigens CD4 (anti-CD4-PerCPCy5.5, OKT-4) and CD3 (anti-CD3-EFluor450, UCHT1). After washing, cells were fixed and permeabilized, using a Cytofix/Cytoperm kit (BD Biosciences) and then stained for IFN-γ (anti-IFN-γ-APC, 4S.B3), TNFα (anti-TNFα-FITC, MAb11) and IL-2 (anti-IL-2-PE, MQ1-17H12). All antibodies were from eBioscience. Samples were acquired on a BD LSR II flow cytometer. The frequency of CD4+ T cells responding to each MTB peptide was quantified by determining the total number of gated CD4+ and cytokine+ cells and background values subtracted (as determined from the medium alone control) using FlowJo software (Tree Star). A cut-off of 2 times the background was used. Combinations of cytokine producing cells were determined using Boolean gating in FlowJo software.


Tetramer Staining


HLA class II tetramers conjugated using PE labeled streptavidin were provided by the Tetramer Core Laboratory at Benaroya Research Institute. CD4 T cells were purified using the Miltenyi T cell isolation kit II according to manufacturer's instructions. Purified cells (˜10×106) were incubated in 0.5 ml PBS containing 0.5% BSA and 2 mM EDTA pH 8.0 (MACS buffer) with a 1:50 dilution of class II tetramer for 2 h at room temperature. Cells were then stained for cell surface antigens using anti-CD4-FITC (OKT-4), anti-CD3-Alexa Fluor 700 (OKT3), anti-CCR7-PerCPEFluor710 (3D12), anti-CD45RA-EFluor450 (HI100) (all from EBioscience) and Live/Dead Yellow (Life Technologies) to exclude dead cells. Tetramer-specific T cell populations were enriched by incubating cells with 50 μl of anti-PE microbeads (Miltenyi Biotech) for 20 min at 4° C. After washing, cells were resuspended in 5 ml MACS buffer and passed through a magnetized LS column (Miltenyi Biotec). The column was washed three times with 3 ml of MACS buffer, and after removal from the magnetic field, cells were collected with 5 ml of MACS buffer. Samples were acquired on an BD LSR II flow cytometer and analyzed using FlowJo software.


Antigen and IEDB Analysis


The identified epitopes were compared for sequence homology and the weakest epitopes sharing >90% homology were eliminated. The epitopes were mapped to the H37Rv genome allowing 1 substitution per peptide, to identify antigens. IEDB queries utilized criteria matching the experimental study (organism; MTB, host organism; human, latent disease, ex vivo, HLA class II). Epitopes were then mapped as above. To capture the most frequently recognized antigens the response frequency score (no. donors responded−Square root of no. donors responded/no. donors tested), was utilized (Kim et al., 2012).


Example 1

The T Cell Response to MTB is Restricted to a CXCR3+CCR6+ Memory Subset


To measure frequency and distribution of MTB-specific T cells, the present inventors used the T cell library method (Geiger et al., 2009). CD45RACD25CD4 T cells from donors latently infected with TB (LTBI) were stained with antibodies against chemokine receptors preferentially expressed on functionally distinct memory T cell subsets (Sallusto and Lanzavecchia, 2009). Five Th cell subsets were sorted: 1) CXCR3+CCR6; 2) CXCR3+CCR6+, both enriched in Th1 cells; 3) CCR4+CCR6 (Th2); 4) CCR4+CCR6+ (Th17); and 5) CCR6+CCR10+ (Th22) (Duhen et al., 2009). MTB-specific T cells were almost exclusively found in the CXCR3+CCR6+ subset, while Flu-specific T cells were in the CXCR3+CCR6 and CXCR3+CCR6+ subsets, and C. albicans-specific T cells were most prominent in the CCR4+CCR6+ subset, enriched in Th17 cells, but positive cultures were also detected in libraries from subsets enriched in Th1, Th2 and Th22 cells (FIG. 1, A and B). The narrow distribution of antigen-responding T cells in the CXCR3+CCR6+ subset was peculiar to MTB since S. pyogenes- or S. aureus-specific T cells were found in both CXCR3+CCR6+ and CCR4+CCR6+ subsets.


Based on these results, the present inventors sorted three memory CD4 Th cell subsets (FIG. 2, A and B): 1) CCR6+CXCR3, accounting for 24.3%±2.7 (mean±SD, n=4) of the memoryCD4+ T cell pool; 2) CCR6+CXCR3+ (30.8%±2.7) and 3) CCR6 (37.8%±4.0). For each donor a T cell library of 288 cultures was established. MTB-responding T cells were highly enriched in cultures derived from the CCR6+CXCR3+ T cell subset, and present at much lower frequency in the CCR6+CXCR3 and the CCR6 subsets (FIG. 2 C). This pattern of distribution was remarkable consistent: in all 4 donors analyzed more than 80% of the MTB-reactive memory CD4 T cell response resided in the CXCR3+CCR6+ subset (FIG. 2 D).


Example 2

Breadth and Dominance of a Genome-Wide Library of MTB-Derived Predicted HLA Class II Epitopes in LTBI Donors


Protein sequences from five complete MTB genomes (CDC1551, F11, H37Ra, H37Rv and KZN 1435) and sixteen draft assemblies from the NCBI Protein database (Table 3) were aligned. The binding capacity of all possible 15-mer peptides (n=1,568,148) was predicted for 22 HLA DR, DP and DQ class II alleles (FIG. 9 and Table 4) most commonly expressed in the general population (Oseroff et al., 2010), to select peptides predicted to bind multiple HLA class II alleles (promiscuous epitopes). This approach identifies the most dominant and prevalent responses, corresponding to approximately 50% of the total overall response (Oseroff et al., 2010).


A total of 20,610 peptides (2 to 10 per ORF, average 5), including 1,660 variants not totally conserved amongst the genomes considered in the analysis, were synthesized and arranged into 1,036 peptide pools of 20 peptides (FIG. 9). The ex vivo production of IFN-γ by PBMCs from 28 LTBI donors induced by each of the 1,036 pools was measured utilizing ELISPOT. Pools recognized by >10% of donors were deconvoluted, and 369 individual MTB epitopes were identified (Table 5). Individual donors recognized, on average, 24 epitopes, underlining the large breadth of response to MTB.


Epitope responses were ranked on the basis of magnitude to assess their relative dominance. The top 80 epitopes accounted for 75% of the total response and the top 175 epitopes accounted for 90% of the total response (FIG. 3A). Only occasional weak responses were detected in 28 TB uninfected/non-BCG vaccinated control donors, thus demonstrating that these responses were LTBI-specific (FIG. 3A). The epitopes were mapped to individual MTB antigens using the H37Rv as a reference genome. A total of 82 antigens were recognized by more than 10% of LTBI donors (FIG. 3 B). These 82 antigens accounted for approximately 80% of the total response in LTBI donors (FIG. 3C). Responses to the epitopes from the most frequently recognized antigens were further characterized utilizing PBMCs depleted of either CD4 or CD8 T cells. The majority (97%) of these epitopes were recognized exclusively by CD4 T cells (Table 5), as expected because of their identification on the basis of predicted HLA class II binding capacity.


Example 3

Novel MTB Antigens and Sources of CD4 T Cell Epitopes Recognized by LTBI Donors


Comparing these 82 most prevalently recognized antigens with antigens for which similar ex vivo epitope reactivity has been described (IEDB), the present inventors found that the majority (61/82 antigens, 74%) was novel. The present inventors performed a literature search for each individual antigen to further categorized them as novel, or as targets of CD4 Tcells, CD8 T cells or undefined T cell type. This revealed that 41% of the antigens identified had not previously been described as T cell targets (FIG. 10 A and Table 1).


Further analysis of the IEDB data revealed a limited overlap, (18%; 28/158) between antigens identified in this study and antigens known as sources of HLA class Iepitopes (FIG. 10 B). Finally, no significant correlation was found with the antigens recognized by serological responses from the MTB proteome (Kunnath-Velayudhan et al., 2010) (FIG. 10 C).


Example 4

HLA Class II Reactivity is Highly Focalized on MTB Antigenic Islands


Next, using the TubercuList database (Lew et al., 2011), the present inventors determined the protein category to which the identified antigens belong (FIG. 4). The identified antigens were associated with almost every category, with the exception of regulatory proteins and proteins of unknown function. The significant overrepresentation of PE/PPE proteins was notable, as well as the underrepresentation of proteins in the conserved hypotheticals, cellular metabolism and respiration categories.


The localization of antigens recognized was next visualized by plotting the recognition data on a linear map of the MTB genome. Analysis of either percent of donors responding or percent of total response revealed striking clusters of reactivity within certain regions of the genome (FIG. 5 A). When the MTB genome was parsed into 5-gene windows, significant antigenic clusters (defined by minimum 4 proteins within the 5-gene window being recognized by 7.1% of LTBI donors) could be identified using binomial distribution probability and Bonferroni correction. Three significant antigenic islands (FIG. 5 B), encoding 0.55% of the total ORFs, accounted for 42% of the total response (Table 2). One of the islands (Island 3) contains Rv3875 and Rv3874 antigens, which is an Esx protein pair secreted via a T7SS. Strikingly, the other two islands also contain Esx protein pairs. Moreover, two of the antigenic islands are part of the known T7SS systems Esx-1 (Island 3) and Esx-3 (Island 1). It is noteworthy that the proteins recognized included not only the proteins believed to be secreted, but also the proteins forming the actual secretion apparatus (Island 1). Indeed, the antigens identified within these islands correspond to proteins from several different protein categories, mostly assigned to the cell wall and cellular processes and the PE/PPE category, which is not surprising since several of these proteins are part of the T7SS.


Additionally, Rv3615c (Millington et al., 2011), which is functionally linked to Esx-1 (Fortune et al., 2005), was also prevalently recognized. However, it stands as a single antigen and not as part of an antigenic island.


Example 5

Antigenic Islands Rather than PE/PPE and Esx Proteins are the Major Determinant of Immunodominance


To dissect whether the main determinant of immunodominance was related to a given antigen being contained within an antigenic island or belonging to PE/PPE and Esx proteins families, the present inventors calculated the percentage of the total response for different groups of proteins as well as the percentage of the MTB genome associated with these protein groups (Table 2). To compare different protein groups, the present inventors calculated the ratio between % of response and % genome, as a percent enrichment.


The PE/PPE proteins were responsible for 19% of the total response, and when divided into PE/PPE proteins within an island compared to non-island, the island PE/PPE were more predictive of immunogenicity than the non-island ones (Table 2). Also, in the case of Esx proteins and T7SS, proteins within the antigenic islands were more likely to be immunogenic than those outside the islands. Proteins not in the antigenic islands, and not belonging to PE/PPE and T7SS categories, were responsible for 14% of the total response (Table 2). Thus, these data show that the antigenic islands identified are highly predictive of immunogenicity, and that to be contained within the antigenic islands is the most reliable predictor of the immunodominance of PE/PPE and Esx proteins.


Example 6

Similar Multifunctionality of T cell Responses to Different Categories of MTB Antigens


It has been proposed that some of the responses against secreted MTB proteins act as decoys (Baena and Porcelli, 2009), thereby supporting bacterial persistence. It has also been proposed that T cells differing in their degree of multifunctionality might differ in terms of protective potential (Beveridge et al., 2007; Day et al., 2008; Scriba et al., 2010; Sutherland et al., 2009). Definition of dominant antigens allows testing the validity of these hypotheses. To address these issues the present inventors detailed responses against PE/PPE, Esx and other proteins expressed in the three major antigenic islands, or elsewhere, by a variety of approaches, including multiparameter intracellular cytokine staining (ICS) assays, tetramer staining and T cell libraries.


The frequency of IFN-γ, TNFα, and IL-2 expressing CD4 T cells elicited by proteins from the PE/PPE and cell wall and cell processes category, and from within an island versus non-island, induced similar cytokine expression patterns (FIG. 6, A and C; gating strategy in FIG. 11). The vast majority of CD4+ T cells were IFN-γ+TNFα+IL-2+ or IFN-γ+TNFα+, followed by TNFα+ single producing CD4+ T cells. To a lesser extent, TNFα+IL-2+, single IFN-γ+, and single IL-2+ cells were also detected (FIG. 6, A and C).


Triple cytokine producers were found in 27-40% of cytokine-expressing CD4+ T cells, 30-43% expressed any 2 cytokines, and 23-44% produced a single cytokine (FIG. 6, B and D). The present inventors did not observe any donor-, antigen- or epitope-specific pattern of cytokine production (FIG. 6 E).


Example 7

Memory Phenotypes and T Cell Subsets Associated with Different Categories of MTB Antigens


CD4+ T cells were stained with selected HLA-epitope tetramer reagents and tetramer+ cells were enriched (Arlehamn et al., 2012; Barnes et al., 2004). Epitope specific T cell responses were detected in 16 donors at frequencies 0.25 to 24.3% (mean of 7.7±8.3 SD) for seven different HLA/T cell epitope tetramer combinations (FIG. 7 A).


Only a small number of tetramer-positive cells were detected with the epitope-specific tetramers in donors with a HLA mismatch (FIG. 7 A), which confirmed that tetramer specificity was derived from the epitope and HLA molecule combination. Memory subset phenotypes were determined using Abs to CD45RA and CCR7. Similar to the multifunctionality phenotype, the present inventors did not observe any differences in memory phenotype when comparing proteins from within an island vs. non-island (FIG. 7, B and C).


Rv0129c/Rv1886/Rv3804, Rv3418c and Rv1195 epitope-specific tetramer+ T cells predominantly consisted of CD45RACCR7+ central memory T cells in all donors analyzed, followed by effector memory (CD45RA-CCR7). Percentages ranged between 70.1 and 91.3% (SD ±6.9) for central memory T cells and 8.6-26.8% (SD ±6.4) for effector memory T cells. Only a minor fraction appeared to be naïve (CCR7+CD45RA+) or effector T cells (CCR7CD45RA+). For Rv0288/Rv3019c the percentages ranged between 49.5 to 84.5% (SD ±13.7) for central memory T cells, 9.8-37.1% (SD ±10.8) for naïve and 4.8-17.2% for effector memory T cells. Again, a minor fraction of the tetramer+ cells appeared to be effector T cells (FIG. 7, B and C).


The data presented in FIGS. 1 and 2 demonstrated that T cells restricted to a CXCR3+CCR6+ memory subset mediate responses to MTB lysate. Here, the present inventors set up T cell libraries from 4 representative donors and the CXCR3+CCR6+ subset were directly stimulated, after expansion, with 59 representative peptide pools. The results of this analysis are shown in FIG. 8 A, B, C and D. Using this approach, the present inventors were able to demonstrate that the results obtained with the MTB lysate also extended to responses specific for the various epitopes, and to confirm with a complementary approach the results of the ex vivo IFN-γ ELISPOT analysis utilizing the library of predicted HLA class II binding epitopes.


Example 8


FIG. 9 shows experimental design for the genome-wide screen of MTB. FIG. 10 shows novelty of the antigens identified as a source of CD4 epitopes in humans. FIG. 11 shows gating strategy for the intracellular cytokine staining assays. Table 3 shows MTB genomes used for peptide predictions. Table 4 shows haplotype and phenotype frequencies of HLA class II alleles used for peptide predictions. Table 5 shows epitopes and their characteristics identified in the genome-wide screen of MTB.









TABLE 1







Summary of characteristics of novel CD4 T cell antigens












Rv-
Resp.
Total





number
freq.
SFC
Protein category
Location
T7SS















Rv3024c
32%
1630
Information pathways
Island 2



Rv0289
29%
2298
Cell wall and cell
Island 1
Esx-3





processes




Rv0290
29%
1552
Cell wall and cell
Island 1
Esx-3





processes




Rv3330
29%
1595
Cell wall and cell
Non-island






processes




Rv1788
25%
347
PE/PPE
Non-island



Rv1791
25%
355
PE/PPE
Non-island



Rv3125c
21%
125
PE/PPE
Non-island



Rv0294
18%
1368
Intermediary metabolism
Island 1






and respiration




Rv2874
18%
798
Intermediary metabolism
Non-island






and respiration




Rv3022c
18%
109
PE/PPE
Island 2



Rv3135
18%
317
PE/PPE
Non-island



Rv3876
18%
1323
Cell wall and cell
Island 3
Esx-1





processes




Rv0124
14%
177
PE/PPE
Non-island



Rv0291
14%
1153
Intermediary metabolism
Island 1






and respiration




Rv0292
14%
708
Cell wall and cell
Island 1
Esx-3





processes




Rv0293c
14%
1073
Conserved hypotheticals
Island 1



Rv0297
14%
154
PE/PPE
Non-island



Rv0299
14%
467
Conserved hypotheticals
Non-island



Rv3012c
14%
233
Information pathways
Non-island



Rv3025c
14%
423
Intermediary metabolism
Island 2






and respiration




Rv0278c
11%
45
PE/PPE
Non-island



Rv0279c
11%
45
PE/PPE
Non-island



Rv0298
11%
783
Conserved hypotheticals
Non-island



Rv0442c
11%
232
PE/PPE
Non-island



Rv0690c
11%
233
Conserved hypotheticals
Non-island



Rv0985c
11%
70
Cell wall and cell
Non-island






processes




Rv0987
11%
133
Cell wall and cell
Non-island






processes




Rv1172c
11%
237
PE/PPE
Non-island



Rv1243c
11%
114
PE/PPE
Non-island



Rv1317c
11%
97
Information pathways
Non-island



Rv1366
11%
308
Conserved hypotheticals
Non-island



Rv1441c
11%
86
PE/PPE
Non-island



Rv2490c
11%
64
PE/PPE
Non-island



Rv2853
11%
85
PE/PPE
Non-island

















TABLE 2







Immunodominance of islands, PE/PPE, Esx and T7SS proteins.
















% of
% Enrich-



% donors
% of

total
ment (%



re-
total
No.
MTB
response/



sponding
response
proteins
genome
% genome)















Islands total
89
42.2
22
0.55
76.7


Island 1
79
20.4
9
0.23
88.7


Island 2
86
15.0
9
0.23
65.2


Island 3
50
6.8
4
0.10
68.0


PE/PPE total
71
19.2
38
0.95
20.2


PE/PPE non-
71
14.0
32
0.80
17.5


island







PE/PPE island
46
5.2
6
0.15
34.6


Esx proteina
75
19.6
11
0.28
70.0


total







Esx proteins
11
1.2
5
0.13
9.2


non-island







Esx proteins
75
18.5
6
0.15
123.3


island







T7SSb total
79
34.7
16
0.40
86.8


T7SS non-
39
7.0
6
0.15
46.6


island







T7SS island
75
27.7
10
0.25
110.8


Other
82
14.2
23
0.58
24.5






aEsx proteins include EsxA-W.




bT7SS includes the Esx proteins.














TABLE 3







Summary of MTB genomes used for peptide predictions













No. unique 15-


GenBank

No. protein
mer peptides


accession no.
Organism
sequencesa
in genome





NC_000962

Mycobacterium tuberculosis H37Rv

3,988
1,258,608


NC_002755

Mycobacterium tuberculosis CDC1551

4,189
1,252,098


NC_009525

Mycobacterium tuberculosis H37Ra

4,034
1,262,786


NC_009565

Mycobacterium tuberculosis F11

3,941
1,261,978


NC_012943

Mycobacterium tuberculosis KZN 1435

4,059
1,265,498


NZ_ABGN00000000

Mycobacterium tuberculosis KZN 605

3,972
1,097,739


NZ_AAKR00000000

Mycobacterium tuberculosis C

3,508
1,060,472


NZ_AASN00000000

Mycobacterium tuberculosis str. Haarlem

3,596
1,108,161


NZ_AAYK00000000

Mycobacterium tuberculosis H37Ra

4,438
1,133,553


NZ_ABGL00000000

Mycobacterium tuberculosis KZN 4207

4,068
1,147,062


NZ_ABLL00000000

Mycobacterium tuberculosis 94_M4241A

4,232
1,166,312


NZ_ABLM00000000

Mycobacterium tuberculosis 02_1987

4,266
1,181,241


NZ_ABLN00000000

Mycobacterium tuberculosis T92

4,254
1,085,346


NZ_ABOV00000000

Mycobacterium tuberculosis EAS054

4,101
1,167,286


NZ_ABOW00000000

Mycobacterium tuberculosis T85

4,206
1,130,366


NZ_ABQG00000000

Mycobacterium tuberculosis GM 1503

4,116
1,091,459


NZ_ABQH00000000

Mycobacterium tuberculosis T17

4,254
1,116,545


NZ_ABVM00000000

Mycobacterium tuberculosis ‘98-R604 INH-RIF-EM’

4,112
1,174,559


NZ_ACHO00000000

Mycobacterium tuberculosis T46

4,134
1,155,871


NZ_ACHP00000000

Mycobacterium tuberculosis CPHL_A

4,140
1,196,800


NZ_ACHQ00000000

Mycobacterium tuberculosis K85

4,196
1,201,360






aData available in GenBank as of December 2009














TABLE 4







Haplotype and phenotype frequencies of HLA


class II alleles used for Predictions












Percent
Phenotype


Locus
Allele
of haplotypes
frequency













DRB1
DRB1*01:01
2.8
5.4



DRB1*03:01
7.1
13.7



DRB1*04:01
2.3
4.6



DRB1*04:05
3.1
6.2



DRB1*07:01
7.0
13.5



DRB1*08:02
2.5
4.9



DRB1*11:01
6.1
11.8



DRB1*12:01
2.0
3.9



DRB1*13:02
3.9
7.7



Total
36.8



DRB3/4/5
DRB3*01:01
14.0
26.1



DRB4*01:01
23.7
41.8



DRB5*01:01
8.3
16.0



Total
46.0



DQA1/DQB1
DQA1*05:01/DQB1*02:01
5.8
11.3



DQA1*05:01/DQB1*03:01
19.5
35.1



DQA1*03:01/DQB1*03:02
10.0
19.0



DQA1*04:01/DQB1*04:02
6.6
12.8



DQA1*01:01/DQB1*05:01
7.6
14.6



Total
49.5



DPB1
DPA1*02:01/DPB1*01:01
8.4
16.0



DPA1*01:03/DPB1*02:01
9.2
17.5



DPA1*01:03/DPB1*04:01
20.1
36.2



DPA1*03:01/DPB1*04:02
23.6
41.6



DPA1*02:01/DPB1*05:01
11.5
21.7



Total
72.8









Average haplotype and phenotype frequencies for individual alleles are based on data available at dbMHC. dbMHC data considers prevalence in Europe, North Africa, North-East Asia, the South Pacific (Australia and Oceania), Hispanic North and South America, American Indian, South-East Asia, South-West Asia, and Sub-Saharan Africa populations. DP, DRB1 and DRB3/4/5 frequencies consider only the beta chain frequency, given that the DR alpha chain is largely monomorphic, and that differences in DPA are not considered to significantly influence binding. Frequency data are not available for DRB3/4/5 alleles, however, because of linkage with DRB1 alleles, coverage for these specificities may be assumed as follows: DRB3 with DR3, DR11, DR12, DR13 and DR14; DRB4 with DR4, DR7 and DR9; DRB5 with DR15 and DR16. Specific allele frequencies at each B3/B4/B5 locus is based on published associations with various DRB1 alleles, and assumes only limited variation at the indicated locus.









TABLE 5







Summary of epitope characteristics


(SEQ ID No: 35 to 403 in order of appearance)


















T cell



Category
Rv#
Sequence
Donor
SFC
phenotype
References
















Cell wall and cell
Rv0110
AMHLLLNMWALYVVG
TU21
21.7
n.d.



processes
Rv0192A
SLFAALNIAAVVAVL
TU2
48.3
n.d.




Rv0287, Rv3020c
AAFQGAHARFVAAAA
TU22
245.0
CD4






TU23
115.0
CD4






TU29
375.0
CD4






TU33
420.0
CD4






TU35
85.0
CD4






TU75
56.7
CD4






TU8
480.0
CD4






TU81
518.3
CD4






TU1
60.0
n.d.






TU70
23.3
undetectable





AAGTYVAADAAAASS
TU22
105.0
CD4






TU23
345.0
CD4






TU75
28.3
CD4






TU8
156.7
CD4






TU81
940.0
CD4






TU1
36.7
n.d.






TU33
36.7
undetectable






TU70
30.0
undetectable




Rv0288, Rv3019c
EDLVRAYHAMSSTHE
TU33
21.7
undetectable
(1)





TU8
96.7
undetectable






TU81
85.0
undetectable





LQSLGAEIAVEQAAL
TU11
60.0
undetectable
(1)





TU22
90.0
CD4






TU23
833.0
CD4






TU8
333.3
CD4






TU81
975.0
CD4






TU1
26.7
n.d.






TU46
61.7
undetectable




Rv0288, Rv3019c
MSQIMYNYPAMMAHA
TU11
86.7
CD4
(1, 2)





TU2
126.7
CD4






TU22
96.7
CD4






TU29
248.3
CD4






TU33
555.0
CD4






TU35
75.0
CD4






TU36
235.0
CD4






TU64
150.0
CD4






TU74
123.3
CD4






TU78
285.0
CD4






TU55
41.7
n.d.






TU13
126.7
undetectable






TU40
50.0
undetectable




Rv0289
DRWLDLRYVGPASAD
TU22
125.0
CD4






TU23
156.7
CD4






TU29
150.0
CD4






TU33
80.0
CD4






TU35
76.7
CD4






TU8
335.0
CD4






TU81
613.3
CD4






TU1
43.3
n.d.





EVVDYLGIPASARPV
TU23
30.0
CD4






TU81
241.7
CD4






TU8
21.7
undetectable





GNGVVALRNAQLVTF
TU22
33.3
CD4






TU23
65.0
CD4






TU81
301.7
CD4






TU8
25.0
undetectable




Rv0290
AAGAQLLWQLPLLSI
TU23
88.3
CD4






TU8
20.0
CD4






TU81
355.0
CD4






TU46
36.7
undetectable





AAGVAAWSLIALMIP
TU23
88.3
CD4






TU81
195.0
CD4






TU1
31.7
n.d.






TU22
33.3
undetectable






TU8
38.3
undetectable





GWYLVAATAAAATLR
TU81
20.0
undetectable




Rv0290
IPVMAYLVGLFAWVL
TU22
70.0
CD4






TU29
55.0
CD4






TU35
43.3
CD4






TU8
148.3
CD4






TU81
238.3
CD4






TU23
56.7
undetectable





QLSALWARFPLPVIP
TU81
33.3
CD4




Rv0292
AILRRRRRIAEPATC
TU81
61.7
CD4





EIGWEAGTAAPDEIP
TU23
138.3
CD4






TU8
40.0
CD4






TU81
445.0
CD4






TU1
23.3
n.d.




Rv0522
ARIVIFFVGSVFLLT
TU40
23.3
n.d.




Rv0544c
RRPLLVAVSWAIFAL
TU21
38.3
n.d.




Rv0985c
IDLNVLLSAAINFFL
TU64
20.0
CD4






TU22
21.7
undetectable






TU46
28.3
undetectable




Rv0987
CILAWILVRIINVRS
TU40
41.7
undetectable





IGLVTQTINDFYFVI
TU78
61.7
undetectable






TU81
30.0
undetectable




Rv0988
EPYAVWLDDWYARES
TU40
20.0
n.d.






TU46
21.7
n.d.




Rv1037c, Rv1198,
AEHQAIIRDVLTASD
TU29
320.8
CD4
(3)



Rv1793, Rv2346c,

TU33
105.0
CD4




Rv3619c

TU11
37.5
undetectable





AEHQAIVRDVLAAGD
TU11
31.7
n.d.
(3)





TU29
205.0
n.d.






TU33
33.3
n.d.




Rv1038c, Rv1197,
NQAFRNIVNMLHGVR
TU75
65.8
n.d.




Rv2347c, Rv3620c
NYEQQEQASQQILSS
TU25
66.7
n.d.




Rv1174c
TCNYGQVVAALNATD
TU29
50.0
n.d.




Rv1270c
TDAMRKVTGMHVRLA
TU35
33.3
n.d.




Rv1431
GDLRVIILEGQPIHV
TU10
20.0
n.d.






TU63
70.0
n.d.




Rv1565c
AEVIRLIRRLLPALV
TU64
25.0
n.d.




Rv1639c
LWIWVALTGAAATVL
TU46
50.0
n.d.






TU63
51.7
n.d.




Rv1877
AAVALGFFVWLEGRA
TU70
23.3
n.d.





AISVTAYALAAEVVP
TU1
25.0
n.d.




Rv2094c
TPVQSQRVDPSAASG
TU2
33.3
n.d.






TU22
45.0
n.d.




Rv2376c
NQGGWMLSRASAMEL
TU22
38.3
n.d.




Rv2575
FFQVLVTQFGSSGGP
TU11
26.7
n.d.




Rv2576c
ADSSKYMITLHTPIA
TU23
245.0
n.d.






TU64
36.7
n.d.




Rv2609c
ALGERRLVRLLRLGG
TU22
23.3
n.d.




Rv2869c
NLAICLVLIYAIALV
TU75
21.7
n.d.




Rv2873
AATIDQLKTDAKLLS
TU33
90.0
n.d.
(4)



Rv2873, Rv2875
AAFSKLPASTIDELK
TU8
90.0
CD4





ANATVYMIDSVLMPP
TU11
70.0
CD4
(5-7)





TU22
55.0
CD4






TU24
36.7
CD4






TU29
123.3
CD4






TU82
26.7
undetectable




Rv2963
AFIFADLLILPILNI
TU10
45.0
n.d.




Rv2999
AINGDFILIAPEVQE
TU40
48.3
n.d.





EEPRLFYMHYWAVDD
TU40
25.0
n.d.




Rv3000
IVVMYLLLAATAVAA
TU40
26.7
n.d.





LTAIRYQIVVMYLLL
TU40
26.7
n.d.




Rv3004
LLVIPVALSASIIRL
TU40
28.3
n.d.




Rv3006
GTVLVNLINTKLTVA
TU2
115.0
n.d.






TU40
35.0
n.d.




Rv3330
LENDNQLLYNYPGAL
TU11
78.3
CD4






TU29
163.3
CD4






TU33
593.3
CD4






TU35
160.0
CD4






TU64
133.3
CD4






TU74
145.0
CD4






TU78
235.0
CD4






TU55
58.3
n.d.





MAFLRSVSCLAAAVF
TU64
28.3
n.d.




Rv3615c
LRIAAKIYSEADEAW
TU2
68.3
CD4






TU23
481.7
CD4






TU25
628.3
CD4






TU70
173.3
CD4






TU74
35.0
CD4






TU8
158.3
CD4






TU81
263.3
CD4






TU5
56.7
undetectable





VDLAKSLRIAAKIYS
TU2
81.7
CD4






TU23
438.3
CD4






TU25
613.3
CD4






TU70
180.0
CD4






TU74
48.3
CD4






TU8
245.0
CD4






TU81
215.0
CD4






TU5
23.3
undetectable




Rv3616c
IISDVADIIKGTLGE
TU25
73.3
n.d.




Rv3823c
ADYNMLLISRLREEA
TU40
41.7
n.d.





AITILLLVILLIIYG
TU40
23.3
n.d.





DRSRIEFAITILLLV
TU40
26.7
n.d.





IIPEYLFIQSSTDLR
TU40
20.0
n.d.





LVILLIIYRNPITMV
TU40
28.3
n.d.




Rv3874
AAVVRFQEAANKQKQ
TU22
550.0
CD4
 (8-10)





TU33
518.3
CD4






TU74
381.7
CD4






TU78
136.7
CD4






TU55
51.7
n.d.






TU11
20.0
undetectable






TU29
56.7
undetectable




Rv3875
EQQWNFAGIEAAASA
TU22
78.3
CD4
(9, 11, 12)





TU70
66.7
CD4






TU74
216.7
CD4






TU75
105.0
CD4






TU81
476.7
CD4






TU25
118.3
undetectable




Rv3876
RQSGATIADVLAEKE
TU22
561.7
CD4






TU33
503.3
CD4






TU74
145.0
CD4






TU78
60.0
CD4






TU55
53.3
n.d.



Conserved
Rv0293c
AQAVYDFRSIVDYLR
TU81
53.3
CD4



hypotheticals

LDYLRRMTVFLQGLM
TU81
36.7
undetectable





LNYRPLLPKDRRMII
TU23
176.7
CD4






TU8
86.7
CD4






TU81
358.3
CD4






TU1
23.3
n.d.





RCALHWFPGSHLLHV
TU23
61.7
CD4






TU81
276.7
CD4




Rv0295c
IAYPVLWRHLTAIVA
TU81
31.7
n.d.




Rv0298
AYAQRVYQANRAAGS
TU23
56.7
CD4






TU81
196.7
CD4





VTVDAAVLAAIDADA
TU23
171.7
CD4






TU81
333.3
CD4






TU1
25.0
n.d.




Rv0299
EHELYVAVLSNALHR
TU81
38.3
undetectable





RVPEDLLAMVVAVEQ
TU23
93.3
CD4






TU81
283.3
CD4






TU1
23.3
n.d.






TU8
28.3
undetectable




Rv0371c
ATGIVLMLGDQPQVA
TU81
25.0
n.d.




Rv0372c
DNGVGYVGLVASTVR
TU81
20.0
n.d.




Rv0508
ICVRVAEQLAELSSE
TU23
26.7
n.d.




Rv0690c
AVPLRLLGGLHRMVL
TU46
20.0
undetectable






TU63
71.7
undetectable





MYRELLELVAADVES
TU63
90.0
CD8






TU46
28.3
undetectable






TU64
23.3
undetectable




Rv0776c
GDCLVAFDAPLVVAN
TU63
81.7
n.d.




Rv0854
SPEEILDVIADFEAM
TU63
66.7
n.d.




Rv1045
RRDIELIHEQLADAG
TU75
25.0
n.d.




Rv1186c
TVRYRIRRIEQLLST
TU22
33.3
n.d.




Rv1301
RELIRAFWPGALSLV
TU23
23.3
n.d.




Rv1339
ASVHVLLSHLHADHC
TU46
20.0
n.d.





LGALTIVPRLVAHPT
TU78
93.3
n.d.




Rv1366
AVHVWLRLPAGRVEI
TU63
58.3
CD4






TU46
45.0
undetectable





LQSLWANFYELLADA
TU63
101.7
CD4/CD8






TU22
50.0
undetectable






TU46
53.3
undetectable




Rv1367c
ADLILLYLIQHCPDL
TU46
38.3
n.d.





HPARRAILIEDLLTH
TU63
68.3
n.d.





MVWQREKLLQVNEIG
TU46
51.7
n.d.




Rv1503c
ELVAAFLWAQFEEAE
TU46
45.0
n.d.




Rv1535
HNDVVTVASAPKLRV
TU1
88.3
n.d.




Rv1765c, Rv2015c
SSTATSGAAVVSPAE
TU23
25.0
n.d.




Rv1870c
IAGMRLLVIKPEPLA
TU81
23.3
n.d.




Rv1871c
DYVYNIKANPAVRVR
TU23
53.3
n.d.






TU81
45.0
n.d.




Rv1873
LAVRYGISSLEEAQA
TU23
40.0
n.d.




Rv1879
AFNEILRRRAATAVA
TU22
75.0
n.d.





VDLIAHGTAARIYRL
TU23
58.3
n.d.





YLLDFLRQSGNTPIV
TU23
30.0
n.d.




Rv2226
VVSREHLIQQAIAAN
TU40
443.3
n.d.




Rv2567
KAGLDRLRSVVHSLI
TU63
61.7
n.d.





NPGLLRFLPQLSERL
TU63
46.7
n.d.




Rv2574
PALFVFRPLLNLALR
TU70
21.7
n.d.




Rv2627c
RRSFYRIFFDSGFTP
TU22
25.0
n.d.





RSAFRLSPPVLSGAM
TU22
23.3
n.d.




Rv2819c
LTLNEIHAFIKDPLG
TU63
41.7
n.d.




Rv2823c
AAFSRMLSLFFRQHI
TU11
38.3
CD4





FDREFTFGWDELLSK
TU1
98.3
n.d.





FYNEKAFLLTTFDVS
TU63
96.7
CD4




Rv2868c
VADIHFQPRYIFAAI
TU40
33.3
n.d.




Rv2955c
DFFVAADSAFSSLND
TU23
133.3
n.d.





HRDDRYCYFFIPSRK
TU21
28.3
n.d.




Rv3015c
AASLLDEDMDALEEA
TU33
50.0
CD4





YRIAARPGAVTRRAA
TU33
426.7
CD4






TU35
76.7
CD4






TU64
88.3
CD4






TU11
68.3
undetectable






TU78
200.0
undetectable




Rv3026c
LALLLVPGVPLVVMP
TU40
33.3
n.d.






TU64
28.3
n.d.




Rv3031
ADQILRETLLTVSSD
TU40
23.3
n.d.





EWLYQSWAAAYLPLL
TU33
85.0
n.d.




Rv3035
GQLLVFDTRRGMVVG
TU40
25.0
n.d.




Rv3142c
DDYNELVISVPLQLT
TU63
120.0
n.d.





DGLVLNFDDYNELVI
TU63
90.0
n.d.




Rv3267
DDGAIDILLVGLDSR
TU40
36.7
n.d.




Rv3268
DGLLAILAAGASLVQ
TU1
33.3
n.d.




Rv3856c
DIGCVFSIDTDAHAP
TU63
61.7
n.d.





EPEMLDRLDIVVASV
TU63
63.3
n.d.



Information
Rv0640
KKVAGLIKLQIVAGQ
TU46
28.3
n.d.



pathways
Rv0703
EKSYGLLDDNVYTFL
TU46
20.0
n.d.




Rv1210
LIILRKRENFRRAFS
TU63
50.0
n.d.




Rv1297
NQRQKFNPLVRLDSI
TU13
216.7
n.d.




Rv1312
AAFYRLSSLRLWPDR
TU64
26.7
n.d.




Rv1317c
AQLGYTIRQLERLLQ
TU63
50.0
CD4/CD8





IRQLERLLQAVVGAG
TU64
23.3
CD4






TU46
23.3
undetectable




Rv1420
AAQHRQIVADFCDFL
TU63
86.7
n.d.




Rv1641
GHVVRFLEAGSKVKV
TU22
33.3
n.d.




Rv1642
GKIVRQKANRRHLLE
TU22
53.3
n.d.






TU64
20.0
n.d.




Rv2069
DGDRHARGFEDLVEV
TU36
45.0
n.d.




Rv2191
EEIALIARWLAEPGV
TU23
130.0
n.d.




Rv2572c
DHGGVIFIDLRDASG
TU63
46.7
n.d.





FTQLDMEMSFVDAED
TU63
75.0
n.d.





FVDAEDIIAISEEVL
TU63
76.7
n.d.





MFVLRSHAAGLLREG
TU64
25.0
n.d.




Rv2736c
ALCLRLLTARSRTRA
TU21
63.3
CD8




Rv3012c
AVDGRFAVPQILGDE
TU33
126.7
CD4






TU78
38.3
CD4






TU11
26.7
undetectable






TU35
41.7
undetectable




Rv3014c
QAYLALRAWGLPVSE
TU33
58.3
n.d.






TU78
31.7
n.d.





VDHLERMLSLDNAFT
TU33
58.3
n.d.





VGGAGFATDFEPVDH
TU33
45.0
n.d.






TU78
58.3
n.d.




Rv3024c
AEKFKEDVINDFVSS
TU63
116.7
CD4






TU10
26.7
undetectable





AHGETVSAVAELIGD
TU33
130.0
CD4






TU78
35.0
CD4






TU35
36.7
undetectable






TU36
43.3
undetectable





QQIKFAALSARAVAL
TU11
65.0
CD4






TU13
101.7
CD4






TU33
560.0
CD4






TU35
86.7
CD4






TU36
85.0
CD4






TU64
123.3
CD4






TU78
220.0
CD4




Rv3062
ARVQIHRANDQVRIY
TU10
35.0
n.d.




Rv3598c
GDGTQLQVMISLDKV
TU64
36.7
n.d.





LGDIVYVHGAVISSR
TU64
48.3
n.d.




Rv3834c
SRFYFLTGRGALLQL
TU8
30.0
n.d.



Insertion
Rv0741, Rv1313c,
ESTNTKIRLLTRIAF
TU46
21.7
n.d.



sequences and
Rv3798







phages
Rv1036c
ALVAEGIEAIVFRTL
TU75
30.0
n.d.




Rv1047, Rv1199c,
AGWLAFFRDLVARGL
TU29
163.3
CD4




Rv2512c, Rv2666,

TU75
26.7
CD4




Rv3023c, Rv3115

TU40
30.0
undetectable






TU63
86.7
undetectable





LRGLLSTFIAALMGA
TU29
493.3
CD4






TU33
68.3
CD4






TU75
35.0
CD4






TU11
46.7
undetectable





QASPDLLRGLLSTFI
TU11
23.3
CD4






TU29
200.0
CD4






TU75
48.3
CD4




Rv1047, Rv1199c,
ARTDLLAFTAFPKQI
TU63
41.7
undetectable




Rv2512c, Rv3023c,
ASIIRLVGAVLAEQH
TU63
70.0
CD4




Rv3115

TU23
30.0
undetectable





FPDRASIIRLVGAVL
TU63
48.3
CD4/CD8





YLGLEVLTRARAALT
TU33
181.7
CD4






TU36
46.7
CD4






TU64
46.7
CD4






TU13
20.0
undetectable




Rv1313c, Rv3798
MRNVRLFRALLGVDK
TU46
36.7
n.d.






TU64
28.3
n.d.




Rv3427c
KPLVLILDDFAMREH
TU63
115.0
n.d.




Rv3428c
AVWAFVMVLAFSRHL
TU5
341.7
CD4






TU70
151.7
n.d.



Intermediary
Rv0291
AARLLSIRAMSTKFS
TU23
60.0
CD4



metabolism and


TU81
195.0
CD4



respiration


TU1
20.0
n.d.





ALSVLVGLTAATVAI
TU23
143.3
CD4






TU8
138.3
CD4






TU81
456.7
CD4






TU1
33.3
n.d.





ATEVVRRLTATAHRG
TU81
93.3
CD4




Rv0291, Rv1796
AAVDKDAVIVAAAGN
TU81
26.7
undetectable




Rv0294
AKLMRDIPFRVGAVV
TU23
105.0
CD4






TU81
368.3
CD4






TU8
36.7
undetectable





DESWQQFRQELIPLL
TU23
50.0
CD4






TU81
316.7
CD4





MWDPDVYLAFSGHRN
TU23
70.0
CD4






TU75
60.0
CD4






TU81
241.7
CD4





STIFPFRRLFMVADV
TU81
80.0
CD4






TU22
20.0
undetectable






TU23
20.0
undetectable




Rv0529
AYRTTIFAFPVFGFG
TU40
30.0
n.d.





FGVIFGAIWAEEAWG
TU22
20.0
n.d.





FLLVPVLILLTVSGR
TU40
21.7
n.d.




Rv0637
ILAKYVQLDFFRHVD
TU46
23.3
n.d.






TU63
58.3
n.d.




Rv0693
DSFFHLAPLGQSGAL
TU63
68.3
n.d.





QCKDIIDELERMQVF
TU46
20.0
n.d.






TU63
100.0
n.d.




Rv0694
MAEAWFETVAIAQQR
TU46
63.3
n.d.






TU63
85.0
n.d.




Rv0773c
GIVALIALGILEHFD
TU46
26.7
n.d.






TU63
81.7
n.d.




Rv0777
AAQEMMIALRRLREL
TU64
23.3
n.d.





LQVVLRGYASMVAEL
TU63
40.0
n.d.




Rv0853c
KAAIELIADHQLTVL
TU63
65.0
n.d.




Rv0993
GKDGVVAHFVEDLVL
TU64
23.3
n.d.




Rv1122, Rv1844c
GSGHFVKMVHNGIEY
TU40
40.0
n.d.




Rv1187
GSPLNLLRWTSARSI
TU29
76.7
n.d.




Rv1300
ELVRADVTTPCLLPE
TU13
53.3
n.d.




Rv1307
VYLVWRFIVPLVGRL
TU46
40.0
n.d.




Rv1308
AMDYTTIVAAAASES
TU22
26.7
n.d.





GKHVLIIFDDLTKQA
TU46
40.0
n.d.




Rv1310
DNLVRTISLQPTDGL
TU64
33.3
n.d.





FDHVPEQAFFLIGGL
TU64
30.0
n.d.





KDLQDIIAILGIDEL
TU64
26.7
n.d.




Rv1311
EGVSILAESAEFESE
TU64
20.0
n.d.




Rv1436
GRLKGILKYYDAPIV
TU36
25.0
n.d.





IGRNFYRALLAQQEQ
TU63
106.7
n.d.




Rv1568
CRRYEVLLIFDEIAT
TU35
41.7
n.d.






TU78
65.0
n.d.




Rv1785c
CLGSHLARLELTLLV
TU46
91.7
n.d.




Rv1844c
DLDSYLVEITAEVLR
TU64
23.3
n.d.





EPGDIIIDGGNALYT
TU40
35.0
n.d.




Rv1872c
AAFDYADGAAEDELS
TU23
21.7
n.d.





RARQGFRDIEFHPTI
TU23
45.0
n.d.






TU81
28.3
n.d.




Rv1876
AVLLEKIVADEEEHI
TU22
26.7
n.d.






TU23
28.3
n.d.




Rv1885c
AVSIGILLSLIAPLG
TU63
55.0
n.d.




Rv2096c
LLSTRGYITAEKIRS
TU22
35.0
n.d.




Rv2122c
SLAVKTFEDLFAELG
TU46
23.3
n.d.




Rv2200c
DVIHAFWVPEFLFKR
TU23
158.3
n.d.




Rv2215
DMTKIVGLRARAKAA
TU82
35.0
n.d.




Rv2476c
APPNLIRAILRAPVD
TU40
30.0
n.d.





EVNIKILIDSLVSAG
TU40
201.7
n.d.




Rv2495c
LRLLVIALKHNVILN
TU40
31.7
n.d.




Rv2855
DTQSMIVTDHRYVPA
TU23
33.3
n.d.





VDVEDGRVIVDEYQR
TU78
20.0
n.d.




Rv2861c
DSTVITDGDIVNIDV
TU40
31.7
n.d.





EKMRVAGRIAAGALA
TU78
20.0
n.d.




Rv2867c
AAVIVGSGRIASLYV
TU40
23.3
n.d.





AHESLCFAGANLIPL
TU40
25.0
n.d.




Rv2874
AALPLLFFALAGQRI
TU11
81.7
CD4






TU24
36.7
CD4






TU82
33.3
CD4






TU29
143.3
undetectable






TU40
45.0
undetectable





GTVVLTATFALGAAL
TU24
33.3
CD4






TU29
128.3
CD4






TU11
71.7
undetectable






TU82
30.0
undetectable





LALVGFLGGLITGIS
TU29
65.0
CD4






TU11
65.0
undetectable






TU40
36.7
undetectable






TU82
25.0
undetectable





RGKVVLIDFWAYPCI
TU11
35.0
undetectable




Rv2984
ARVFLDSVLPALGEE
TU40
38.3
n.d.




Rv2987c
FRVVISSRFGDIFRG
TU40
20.0
n.d.




Rv2988c
AVDAVFVGSCTNGRI
TU40
46.7
n.d.





DTEVYLDAASLSPFV
TU33
266.7
n.d.




Rv2996c
INLIIHYVDRPGALG
TU40
31.7
undetectable





IVQINGRHFDLRAQG
TU40
26.7
undetectable




Rv3001c
AGYPAELAYFEVLHE
TU40
23.3
n.d.





ALEMFYDDDADLSII
TU40
25.0
n.d.




Rv3002c
SQVIEAVNLFRANVI
TU40
33.3
n.d.




Rv3003c
AVITELIAMLRHHHI
TU81
40.0
n.d.





DDIPRVLAEAFHIAA
TU81
31.7
n.d.





QAARGIRPLFDDITE
TU81
21.7
n.d.




Rv3007c
CSEDLLYLSDLDFDV
TU10
33.3
n.d.




Rv3010c
AAHAGEYGQMVTLRG
TU40
23.3
n.d.




Rv3025c
ALQSHDDVALVSVMW
TU33
28.3
CD4






TU63
61.7
undetectable





ILPIAEMSVVAMEFG
TU63
111.7
CD4






TU10
26.7
undetectable






TU64
33.3
undetectable





SARLRLLRDRLVEGV
TU63
138.3
CD4






TU64
23.3
undetectable




Rv3028c
GSAENFSVVEALADS
TU33
138.3
n.d.






TU64
20.0
n.d.




Rv3029c
EGGNQIVQYLVAQKI
TU40
25.0
n.d.




Rv3032
LVAQEAAAAGTPLVT
TU35
23.3
n.d.




Rv3109
ELADLIEFARTVNEE
TU64
43.3
n.d.




Rv3146
KMAPVLRQIYDQMAE
TU63
66.7
n.d.




Rv3161c
AQTSQFVMAMINYED
TU40
26.7
n.d.




Rv3232c
AELFRLQTEFVKLQE
TU21
85.0
n.d.





EQMLIDDGILLRKYW
TU21
178.3
n.d.




Rv3247c
CRGYDVVILDRYVAS
TU64
21.7
n.d.




Rv3393
ALPRLLRRLVIMGGM
TU63
128.3
n.d.





RVIEDALRFYFESHE
TU63
141.7
n.d.




Rv3419c
ADVLTMKAVRAATAL
TU63
41.7
n.d.





TDNGAMIAAFAAQLV
TU63
203.3
n.d.






TU81
30.0
n.d.




Rv3634c
EIYLNTFRHLYGLDC
TU22
25.0
n.d.




Rv3775
LYRPGLVHIYHALTW
TU1
28.3
n.d.




Rv3859c
ENFFMFIAEEVREYL
TU40
23.3
n.d.






TU63
65.0
n.d.





QRPRMLYDYFHQLFA
TU63
141.7
n.d.





QTLVYKGMLTTPQLK
TU63
40.0
n.d.




Rv3883c
AQIIHRITATARHPG
TU29
53.3
n.d.



Lipid metabolism
Rv0129c
GQNYTYKWETFLTRE
TU75
26.7
CD4






TU23
66.7
undetectable






TU33
50.0
undetectable






TU70
33.3
undetectable






TU8
50.0
undetectable




Rv0129c, Rv1886c
DPMVQIPRLVANNTR
TU2
60.0
undetectable




Rv0129c, Rv1886c,
AGCQTYKWETFLTSE
TU2
60.0
CD4
(11, 13-15)



Rv3804c

TU23
55.8
CD4






TU75
36.7
CD4






TU8
51.7
CD4






TU33
36.7
undetectable





PSPSMGRDIKVQFQS
TU1
45.0
n.d.
(11, 13-17)





TU33
46.7
undetectable





QVPSASMGRDIKVQF
TU1
53.3
n.d.






TU33
48.3
undetectable




Rv0244c
FLMSVGALIIGWLLQ
TU40
26.7
n.d.




Rv0551c
AGISSLIIDPNPMFV
TU35
88.3
n.d.




Rv0644c, Rv3392c
RVLLAGWEQFDEPVD
TU63
101.7
n.d.




Rv1185c
EHIHRPNTNNVGPII
TU8
65.0
n.d.




Rv1493
SILDMRQLFDGIDLS
TU46
26.7
n.d.




Rv1886c
HPQQFIYAGSLSALL
TU64
35.0
n.d.
(6, 11, 15,








17, 18)



Rv2881c
IGLVLIAVLVFVPRV
TU40
38.3
n.d.




Rv3061c
SEFNEVFFNDVFVPD
TU10
41.7
n.d.




Rv3285
DPVKGADEVVAFAEE
TU8
813.3
n.d.




Rv3392c
EHFGHERYDAFFSLA
TU63
66.7
n.d.




Rv3824c
FSLVNFFDAQVGPLS
TU40
43.3
n.d.




Rv3825c
AVVVLKRLPDALADG
TU40
25.0
n.d.





ESVFAATVAELESLI
TU10
36.7
n.d.





ITPDEGAYAFEALLR
TU10
28.3
n.d.





LDWFCLFSSAAALTG
TU40
23.3
n.d.



PE/PPE
Rv0109, Rv0124,
AQEYQALSAQAAAFH
TU22
41.7
n.d.




Rv0278c, Rv0279c,








Rv0297, Rv0834c,








Rv1243c, Rv1788,








Rv2490c








Rv0124, Rv0278c,
GQQYQAMSAQAAAFH
TU81
50.0
n.d.




Rv0279c, Rv0297,








Rv0834c, Rv1243c,








Rv2490c








Rv0124, Rv0297,
AQIYQAVSAQAAAIH
TU75
225.0
CD4




Rv1243c, Rv1788,

TU81
86.7
CD4




Rv1791, Rv2490c








Rv0124, Rv2634c
GSTINAANAAAALPT
TU23
36.7
n.d.






TU81
190.0
n.d.




Rv0159c
ERYVGLYLPFLDMSF
TU33
23.3
n.d.




Rv0256c
AEAPAAAAAPEEQVQ
TU22
20.0
CD4




Rv0256c, Rv0280,
GAMVATNFFGINTIP
TU63
90.0
CD4




Rv0286, Rv0453,

TU81
393.3
CD4




Rv1387, Rv2123,

TU21
28.3
undetectable




Rv3018c, Rv3021c








Rv0256c, Rv0280,
AVLVATNFFGINTIP
TU70
102.5
CD4




Rv0286, Rv0453,

TU81
458.3
CD4




Rv1387, Rv3018c,

TU1
33.3
n.d.




Rv3021c, Rv3873

TU21
35.0
undetectable






TU23
36.7
undetectable





HTVLVATNFFGINTI
TU81
331.7
n.d.




Rv0256c, Rv0280,
QAVLTATNFFGINTI
TU81
341.7
n.d.




Rv0286, Rv1387,








Rv3018c, Rv3021c,








Rv3873








Rv0256c, Rv0280,
ARMWIQAATTMASYQ
TU22
428.3
CD4




Rv0453

TU46
158.3
CD4






TU78
31.7
CD4




Rv0256c, Rv3018c
LAWLVQASANSAAMA
TU46
25.0
undetectable




Rv0278c, Rv0279c
DPINEFFLANTGRPL
TU63
66.7
n.d.




Rv0280, Rv0286,
GINTIPIAINEAEYV
TU70
120.0
CD4




Rv0453, Rv1387,

TU81
201.7
CD4




Rv3018c, Rv3021c

TU20
20.0
n.d.






TU23
118.3
undetectable




Rv0286
QLSAEYASTAAELSG
TU22
26.7
n.d.




Rv0286, Rv0453
YAAALVAMPTLAELA
TU40
25.0
undetectable




Rv0297
LTVDAGAYASAEAAN
TU11
31.7
n.d.






TU22
58.3
n.d.




Rv0442c
APWQQVLRNLGIDIG
TU63
96.7
n.d.




Rv0442c, Rv1789
AWMSAAAAQAEQAAT
TU81
25.0
undetectable





YLAWLSTAAAQAEQA
TU29
145.0
n.d.






TU63
100.0
n.d.




Rv0453
GWSSLGREYAAVAEE
TU23
185.0
CD4




Rv0834c
AGAMGAYAAAEAANA
TU22
111.7
n.d.





AGGFGGAGAGIANFL
TU81
20.0
n.d.




Rv0834c, Rv1087,
GAYAAAEAANVSAAQ
TU22
176.7
n.d.




Rv1091








Rv0834c, Rv1243c,
SAAGSYAAAEAANAS
TU22
91.7
n.d.




Rv1441c

TU81
21.7
n.d.




Rv1172c
ALLPRAGAAAAAALP
TU22
45.0
CD4






TU74
26.7
CD4





ALSRVHSMFLGTGGS
TU22
71.7
CD4






TU74
43.3
CD4





APQINFFYYLGEPIV
TU40
20.0
undetectable




Rv1172c, Rv1788,
MSFVTTQPEALAAAA
TU22
121.7
CD4




Rv1791, Rv3812








Rv1195
MHVSFVMAYPEMLAA*
TU22
165.0
CD4






TU33
290.0
CD4






TU74
181.7
CD4






TU81
283.3
CD4




Rv1195, Rv1788,
SSYAATEVANAAAAS
TU81
60.0
CD4




Rv1791








Rv1196
LGGLWTAVSPHLSPL
TU22
38.3
CD4






TU74
25.0
CD4





LSPISNMVSMANNHM
TU22
70.0
CD4






TU29
115.0
undetectable






TU40
43.3
undetectable






TU75
28.3
undetectable




Rv1196, Rv1361c,
AELMILIATNLLGQN
TU78
33.3
CD4
(19) 



Rv3478

TU40
90.0
undetectable





AQNGVQAMSSLGSSL
TU22
46.7
CD4




Rv1243c, Rv1441c,
ASVGSYAAAEAANAS
TU22
38.3
n.d.




Rv1791








Rv1386
ESGASYAARDALAAA
TU33
45.0
n.d.




Rv1441c
ARFHQQFVQALTASV
TU82
35.0
n.d.




Rv1450c
IGSSIGAANAAAAGS
TU23
45.0
n.d.




Rv1705c
APYVAWMRATAIQAE
TU29
41.7
undetectable





WFINWYLPISQLFYN
TU40
40.0
undetectable




Rv1705c, Rv1706c,
AAAQASAAAAAYEAA
TU81
20.0
n.d.




Rv1789, Rv1802








Rv1705c, Rv1706c,
AATQARAAAAAFEAA
TU81
25.0
undetectable




Rv1789, Rv1802,








Rv3125c, Rv3135








Rv1705c, Rv1789,
FGQNTSAIAAAEAQY
TU70
161.7
CD4




Rv1802, Rv1808,

TU81
176.7
CD4




Rv2892c, Rv3136,








Rv3621c








Rv1705c, Rv1789,
FFGQNTAAIAATEAQ
TU70
193.3
CD4




Rv1808, Rv2892c,

TU81
165.0
CD4




Rv3136, Rv3621c









FGQNTASIAATEAQY
TU70
110.0
CD4






TU81
26.7
CD4




Rv1706c, Rv1800,
LAAAAAWDALAAELY
TU23
170.0
CD4




Rv1802, Rv1808,

TU8
78.3
CD4




Rv2892c, Rv3135,

TU81
411.7
CD4




Rv3621c








Rv1706c, Rv1808,
AAASWDALAAELASA
TU23
217.5
CD4




Rv3135, Rv3136

TU8
130.0
CD4






TU81
440.8
CD4




Rv1788, Rv1791
AAIHEMFVNTLQMSS
TU29
25.0
CD8






TU55
165.0
n.d.





AAIHEMFVNTLVASS
TU29
41.7
CD8






TU55
160.0
n.d.






TU40
26.7
undetectable






TU64
61.7
undetectable




Rv1789
NRASLMQLISTNVFG
TU55
21.7
n.d.




Rv1789, Rv1802,
FGQNTGAIAAAEARY
TU70
108.3
CD4




Rv1808, Rv2892c,

TU81
276.7
CD4




Rv3136








Rv1800, Rv2608,
PPEVNSARVFAGAGS
TU70
38.3
n.d.




Rv3125c

TU74
31.7
n.d.




Rv1802
YVAWMSATAALAREA
TU29
150.0
CD4






TU8
83.3
CD4






TU81
58.3
CD4






TU40
25.0
undetectable




Rv1806
AMNEAFVAMLGASAD
TU40
31.7
n.d.




Rv1808
AQLSQLISLLPSTLQ
TU40
50.0
undetectable






TU64
51.7
undetectable






TU81
23.3
undetectable




Rv1917c, Rv2892c
FFGQNAPAIAAIEAA
TU70
20.0
n.d.






TU8
21.7
n.d.




Rv2123, Rv3018c,
ADYLRMWIQAATVMS
TU22
375.0
CD4




Rv3021c

TU24
35.0
CD4






TU46
128.3
CD4






TU64
48.3
CD4






TU78
26.7
CD4






TU40
75.0
undetectable





DYVRMWVQAATVMSA
TU22
343.3
CD4






TU64
38.3
CD4






TU78
31.7
CD4






TU46
81.7
CD4/CD8






TU40
28.3
undetectable




Rv2608
LPLLVPLRAIPLLGN
TU64
20.0
n.d.




Rv2853
FVQALTTAAASYASV
TU40
26.7
undetectable






TU78
23.3
undetectable





YASVEAANASPLQVA
TU23
35.0
undetectable




Rv3018c
EIVQFLEETFAAYDQ
TU22
103.3
CD4






TU64
105.0
CD4






TU81
25.0
CD4






TU46
80.0
undetectable




Rv3018c, Rv3021c
AAVPAVGAAAGAPAA
TU22
203.3
CD4






TU46
28.3
CD4






TU70
20.0
undetectable






TU81
30.0
undetectable




Rv3018c, Rv3021c,
ALSAEYAAVAQELSV
TU81
31.7
CD4




Rv3022c

TU64
46.7
n.d.




Rv3018c, Rv3022c
ELFVAAYVPYVAWLV
TU8
25.0
n.d.
(20) 





TU40
20.0
undetectable






TU46
30.0
undetectable






TU64
21.7
undetectable






TU81
28.3
undetectable




Rv3021c
GWIISNIFGAIPVLG
TU22
195.0
CD4






TU46
41.7
undetectable






TU8
58.3
undetectable






TU81
26.7
undetectable





LLEFAVVLELAILSI
TU46
26.7
undetectable




Rv3125c
ASMSMAAAASPYV
TU29
78.3
n.d.





GW







Rv3125c, Rv3135,
IQARAAALAFEQAYA
TU22
23.3
CD4




Rv3136

TU25
33.3
undetectable




Rv3136
AAGGWDSLAAELATT
TU23
130.0
CD4






TU8
31.7
undetectable




Rv3812
AGTLSTFFGVPLVLT
TU75
21.7
n.d.





NPFPFLRQIIANQQV
TU75
26.7
n.d.




Rv3873
MDYFIRMWNQAAL
TU22
46.7
n.d.
(21, 22)




AM






Regulatory
Rv0339c
EMLSMLRAMLAPESL
TU21
40.0
n.d.



proteins
Rv0691c
TVAWTMLGVALSAYE
TU40
50.0
n.d.






TU46
25.0
n.d.




Rv0890c
GFTIANHNAAAVGEI
TU2
140.0
n.d.




Rv1027c
LVLVIDDEPQILRAL
TU63
81.7
n.d.




Rv1028c
ALLWLADQVDAALEK
TU63
48.3
n.d.





ESALFFIGVLIVALL
TU63
55.0
n.d.




Rv1453
AHLIHFAAANLRNPG
TU23
30.0
n.d.




Rv3143
ALRILVYSDNVQTRE
TU63
91.7
n.d.




Rv3173c
ALVEEYLRGLRQAAG
TU40
30.0
n.d.



Virulence,
Rv0350
ADKNPLFLDEQLTRA
TU33
45.0
n.d.



detoxification
Rv0440
AVLEDPYILLVSSKV
TU1
21.7
n.d.
(23, 24)


adaptation

MAKTIAYDEEARRGL
TU1
38.3
n.d.
(16, 25, 26)





TU25
56.7
n.d.




Rv2031c
AYGSFVRTVSLPVGA
TU63
271.7
CD4
(27-30)





TU75
45.0
CD4




Rv2865
ETLYWLAQPGIRESI
TU26
31.7
n.d.




Rv3418c
GEEYLILSARDVLAV
TU2
136.7
CD4
(31-34)





TU22
60.0
CD4






TU40
145.0
CD4






TU81
151.7
CD4






TU23
45.0
undetectable






TU82
53.3
undetectable




Rv3497c
TGIFGLVLVICVVLI
TU40
35.0
n.d.




Rv3500c
DVTIRFRRFFSRLQR
TU40
50.0
n.d.




Rv3617
APVVILAHGFPELAY
TU23
23.3
n.d.





QAFRSRFGENFFYIL
TU75
31.7
n.d.





n.d. indicates assay not done






REFERENCES



  • Aagaard, C., T. Hoang, J. Dietrich, P.-J. Cardona, A. Izzo, G. Dolganov, G. K. Schoolnik, J. P. Cassidy, R. Billeskov, and P. Andersen. 2011. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 17:189-194.

  • Abdallah, A. M., N. C. Gey van Pittius, P. A. DiGiuseppe Champion, J. Cox, J. Luirink, C. M. J. E. Vandenbroucke-Grauls, B. J. Appelmelk, and W. Bitter. 2007. Type VII secretion—mycobacteria show the way. Nat Rev Micro 5:883-891.

  • Abel, B., M. Tameris, N. Mansoor, S. Gelderbloem, J. Hughes, D. Abrahams, L. Makhethe, M. Erasmus, M. d. Kock, L. van der Merwe, A. Hawkridge, A. Veldsman, M. Hatherill, G. Schirru, M. G. Pau, J. Hendriks, G. J. Weverling, J. Goudsmit, D. Sizemore, J. B. McClain, M. Goetz, J. Gearhart, H. Mahomed, G. D. Hussey, J. C. Sadoff, and W. A. Hanekom. 2010. The Novel Tuberculosis Vaccine, AERAS-402, Induces Robust and Polyfunctional CD4+ and CD8+ T Cells in Adults. Am. J. Respir. Crit. Care Med. 181:1407-1417.

  • Acosta-Rodriguez, E. V., L. Rivino, J. Geginat, D. Jarrossay, M. Gattorno, A. Lanzavecchia, F. Sallusto, and G. Napolitani. 2007. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8:639-646.

  • Arlehamn, C. S., J. Sidney, R. Henderson, J. A. Greenbaum, E. A. James, M. Moutaftsi, R. Coler, D. M. McKinney, D. Park, R. Taplitz, W. W. Kwok, H. Grey, B. Peters, and A. Sette. 2012. Dissecting mechanisms of immunodominance to the common tuberculosis antigens ESAT-6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ). J Immunol 188:5020-5031.

  • Baena, A., and S. A. Porcelli. 2009. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens 74:189-204.

  • Barnes, E., S. M. Ward, V. O. Kasprowicz, G. Dusheiko, P. Klenerman, and M. Lucas. 2004. Ultra-sensitive class I tetramer analysis reveals previously undetectable populations of antiviral CD8+ T cells. Eur J Immunol 34:1570-1577.

  • Barnes, P. F., A. B. Bloch, P. T. Davidson, and D. E. Snider, Jr. 1991. Tuberculosis in patients with human immunodeficiency virus infection. N Engl J Med 324:1644-1650.

  • Bertholet, S., G. C. Ireton, M. Kahn, J. Guderian, R. Mohamath, N. Stride, E. M. Laughlin, S. L. Baldwin, T. S. Vedvick, R. N. Coler, and S. G. Reed. 2008. Identification of Human T Cell Antigens for the Development of Vaccines against Mycobacterium tuberculosis. J Immunol 181:7948-7957.

  • Bertholet, S., G. C. Ireton, D. J. Ordway, H. P. Windish, S. O. Pine, M. Kahn, T. Phan, I. M. Orme, T. S. Vedvick, S. L. Baldwin, R. N. Coler, and S. G. Reed. 2010. A Defined Tuberculosis Vaccine Candidate Boosts BCG and Protects Against Multidrug-Resistant Mycobacterium tuberculosis. Sci. Transl. Med. 2:53ra74.

  • Beveridge, N. E., D. A. Price, J. P. Casazza, A. A. Pathan, C. R. Sander, T. E. Asher, D. R. Ambrozak, M. L. Precopio, P. Scheinberg, N. C. Alder, M. Roederer, R. A. Koup, D. C. Douek, A. V. Hill, and H. McShane. 2007. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur J Immunol 37:3089-3100.

  • Blythe, M., Q. Zhang, K. Vaughan, R. de Castro, N. Salimi, H.-H. Bui, D. Lewinsohn, J. Ernst, B. Peters, and A. Sette. 2007. An analysis of the epitope knowledge related to Mycobacteria. Immunome Research 3:10.

  • Boesen, H., B. Jensen, T. Wilcke, and P. Andersen. 1995. Human T-cell responses to secreted antigen fractions of Mycobacterium tuberculosis. Infect. Immun. 63:1491-1497.

  • Chegou, N., G. Black, A. Loxton, K. Stanley, P. Essone, M. Klein, S. Parida, S. Kaufmann, T. M. Doherty, A. Friggen, K. Franken, T. Ottenhoff, and G. Walzl. 2012. Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infectious Diseases 12:10.

  • Cole, S., R. Brosch, J. Parkhill, T. Gamier, C. Churcher, D. Harris, S. Gordon, K. Eiglmeier, S. Gas, C. Barry, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. Osborne, M. Quail, M. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. Sulston, K. Taylor, S. Whitehead, and B. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537-544.

  • Covert, B. A., J. S. Spencer, I. M. Orme, and J. T. Belisle. 2001. The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis. PROTEOMICS 1:574-586.

  • Day, Cheryl L., N. Mkhwanazi, S. Reddy, Z. Mncube, M. van der Stok, P. Klenerman, and Bruce D. Walker. 2008. Detection of Polyfunctional Mycobacterium tuberculosis—Specific T Cells and Association with Viral Load in HIV-1—Infected Persons. J Infect Dis 197:990-999.

  • Del Prete, G. F., M. De Carli, C. Mastromauro, R. Biagiotti, D. Macchia, P. Falagiani, M. Ricci, and S. Romagnani. 1991. Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest 88:346-350.

  • Duhen, T., R. Geiger, D. Jarrossay, A. Lanzavecchia, and F. Sallusto. 2009. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 10:857-863.

  • Fortune, S., A. Jaeger, D. Sarracino, M. Chase, C. Sassetti, D. Sherman, B. Bloom, and E. Rubin. 2005. Mutually dependent secretion of proteins required for mycobacterialbvirulence. Proc Natl Acad Sci USA 102:10676-10681.

  • Garton, N. J., S. J. Waddell, A. L. Sherratt, S.-M. Lee, R. J. Smith, C. Senner, J. Hinds, K. Rajakumar, R. A. Adegbola, G. S. Besra, P. D. Butcher, and M. R. Barer. 2008. Cytological and Transcript Analyses Reveal Fat and Lazy Persister-Like Bacilli in Tuberculous Sputum. PLoS Med 5:e75.

  • Geiger, R., T. Duhen, A. Lanzavecchia, and F. Sallusto. 2009. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J Exp Med 206:1525-1534.

  • Gey van Pittius, N., J. Gamieldien, W. Hide, G. Brown, R. Siezen, and A. Beyers. 2001. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biology 2:research0044.0041-research0044.0018.

  • Gey van Pittius, N., S. Sampson, H. Lee, Y. Kim, P. van Helden, and R. Warren. 2006. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evolutionary Biology 6:95.

  • Gideon, H. P., K. A. Wilkinson, T. R. Rustad, T. Oni, H. Guio, R. A. Kozak, D. R. Sherman, G. Meintjes, M. A. Behr, H. M. Vordermeier, D. B. Young, and R. J. Wilkinson. 2010. Hypoxia Induces an Immunodominant Target of Tuberculosis Specific T Cells Absent from Common BCG Vaccines. PLoS Pathog 6:e1001237.

  • Havlir, D. V., R. S. Wallis, W. H. Boom, T. M. Daniel, K. Chervenak, and J. J. Ellner. 1991. Human immune response to Mycobacterium tuberculosis antigens. Infect. Immun. 59:665-670.

  • Kaech, S. M., E. J. Wherry, and R. Ahmed. 2002. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2:251-262.

  • Kim, Y., K. Vaughan, J. Greenbaum, B. Peters, M. Law, and A. Sette. 2012. A Meta-Analysis of the Existing Knowledge of Immunoreactivity against Hepatitis C Virus (HCV). PLoS ONE 7:e38028.

  • Kunnath-Velayudhan, S., H. Salamon, H.-Y. Wang, A. L. Davidow, D. M. Molina, V. T. Huynh, D. M. Cirillo, G. Michel, E. A. Talbot, M. D. Perkins, P. L. Felgner, X. Liang, and M. L. Gennaro. 2010. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci USA 107:14703-14708.

  • Lalvani, A., P. Nagvenkar, Z. Udwadia, A. A. Pathan, K. A. Wilkinson, J. S. Shastri, K. Ewer, A. V. S. Hill, A. Mehta, and C. Rodrigues. 2001. Enumeration of T Cells Specific for RD1-Encoded Antigens Suggests a High Prevalence of Latent Mycobacterium tuberculosis Infection in Healthy Urban Indians. J. Infect. Dis. 183:469-477.

  • Lew, J. M., A. Kapopoulou, L. M. Jones, and S. T. Cole. 2011. TubercuList—10 years after. Tuberculosis 91:1-7.

  • Leyten, E. M. S., M. Y. Lin, K. L. M. C. Franken, A. H. Friggen, C. Prins, K. E. van Meijgaarden, M. I. Voskuil, K. Weldingh, P. Andersen, G. K. Schoolnik, S. M. Arend, T. H. M. Ottenhoff, and M. R. Klein. 2006. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes and Infection 8:2052-2060.

  • Macia̧g, E. Dainese, G. M. Rodriguez, A. Milano, R. Provvedi, M. R. Pasca, I. Smith, G. Palù, G. Riccardi, and R. Manganelli. 2007. Global Analysis of the Mycobacterium tuberculosis Zur (FurB) Regulon. J Bacteriol 189:730-740.

  • M∪len, H., F. S. Berven, K. E. Fladmark, and H. G. Wiker. 2007. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. PROTEOMICS 7:1702-1718.

  • Miao, E. A., D. P. Mao, N. Yudkovsky, R. Bonneau, C. G. Lorang, S. E. Warren, I. A. Leaf, and A. Aderem. 2010. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 107:3076-3080.

  • Millington, K. A., S. M. Fortune, J. Low, A. Garces, S. M. Hingley-Wilson, M. Wickremasinghe, O. M. Kon, and A. Lalvani. 2011. Rv3615c is a highly immunodominant RD1 (Region of Difference 1)-dependent secreted antigen specific for Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA

  • Newport, M. J., C. M. Huxley, S. Huston, C. M. Hawrylowicz, B. A. Oostra, R. Williamson, and M. Levin. 1996. A Mutation in the Interferon-γ-Receptor Gene and Susceptibility to Mycobacterial Infection. N Engl J Med 335:1941-1949.

  • O'Shea, J. J., and W. E. Paul. 2010. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327:1098-1102.

  • Okkels, L., and P. Andersen. 2004. Protein-protein interactions of proteins from the ESAT-6 family of Mycobacterium tuberculosis. J Bacteriol 186:2487-2491.

  • Oseroff, C., F. Kos, H. H. Bui, B. Peters, V. Pasquetto, J. Glenn, T. Palmore, J. Sidney, D. C. Tscharke, J. R. Bennink, S Southwood, H. M. Grey, J. W. Yewdell, and A. Sette. 2005. HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation. Proc Natl Acad Sci USA 102:13980-13985.

  • Oseroff, C., J. Sidney, M. F. Kotturi, R. Kolla, R. Alam, D. H. Broide, S. I. Wasserman, D. Weiskopf, D. M. McKinney, J. L. Chung, A. Petersen, H. Grey, B. Peters, and A. Sette. 2010. Molecular determinants of T cell epitope recognition to the common Timothy grass allergen. J Immunol 185:943-955.

  • Pasquetto, V., H. H. Bui, R. Giannino, C. Banh, F. Mirza, J. Sidney, C. Oseroff, D. C. Tscharke, K. Irvine, J. R. Bennink, B. Peters, S. Southwood, V. Cerundolo, H. Grey, J. W. Yewdell, and A. Sette. 2005. HLA-A*0201, HLA-A*1101, and HLAB*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products. J Immunol 175:5504-5515.

  • Pathan, A. A., A. M. Minassian, C. R. Sander, R. Rowland, D. W. Porter, I. D. Poulton, A. V. Hill, H. A. Fletcher, and H. McShane. 2012. Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults. Vaccine 30:5616-5624.

  • Pathan, A. A., K. A. Wilkinson, P. Klenerman, H. McShane, R. N. Davidson, G. Pasvol, A. V. S. Hill, and A. Lalvani. 2001. Direct Ex Vivo Analysis of Antigen-Specific IFN-γ-Secreting CD4 T Cells in Mycobacterium tuberculosis-Infected Individuals: Associations with Clinical Disease State and Effect of Treatment. J Immunol 167:5217-5225.

  • Pheiffer, C., J. Betts, P. Lukey, and v. Helden Paul. 2002. Protein Expression in Mycobacterium tuberculosis Differs with Growth Stage and Strain Type. Clinical Chemistry and Laboratory Medicine 40:869.

  • Rodriguez, G., M. Voskuil, B. Gold, G. Schoolnik, and I. Smith. 2002. ideR, An essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70:3371-3381.

  • Rogerson, B. J., Y. J. Jung, R. LaCourse, L. Ryan, N. Enright, and R. J. North. 2006. Expression levels of Mycobacterium tuberculosis antigen-encoding genes versus production levels of antigen-specific T cells during stationary level lung infection in mice. Immunology 118:195-201.

  • Sallusto, F., and A. Lanzavecchia. 2009. Heterogeneity of CD4+ memory T cells: Functional modules for tailored immunity. Eur J Immunol 39:2076-2082.

  • Sallusto, F., D. Lenig, C. R. Mackay, and A. Lanzavecchia. 1998. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187:875-883.

  • Sampson, S. L. 2011. Mycobacterial PE/PPE Proteins at the Host-Pathogen Interface. Clinical and Developmental Immunology 2011:

  • Sani, M., E. N. G. Houben, J. Geurtsen, J. Pierson, K. de Punder, M. van Zon, B. Wever, S. R. Piersma, C. R. Jiménez, M. Daffé, B. J. Appelmelk, W. Bitter, N. van der Wel, and P. J. Peters. 2010. Direct Visualization by Cryo-EM of the Mycobacterial Capsular Layer: A Labile Structure Containing ESX-1-Secreted Proteins. PLoS Pathog 6:e1000794.

  • Sassetti, C. M., and E. J. Rubin. 2003. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989-12994.

  • Schuck, S. D., H. Mueller, F. Kunitz, A. Neher, H. Hoffmann, K. L. C. M. Franken, D. Repsilber, T. H. M. Ottenhoff, S. H. E. Kaufmann, and M. Jacobsen. 2009. Identification of T-Cell Antigens Specific for Latent Mycobacterium Tuberculosis Infection. PLoS ONE 4:e5590.

  • Scriba, T. J., M. Tameris, N. Mansoor, E. Smit, L. van der Merwe, F. Isaacs, A. Keyser, S. Moyo, N. Brittain, A. Lawrie, S. Gelderbloem, A. Veldsman, M. Hatherill, A. Hawkridge, A. V. Hill, G. D. Hussey, H. Mahomed, H. McShane, and W. A. Hanekom. 2010. Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol 40:279-290.

  • Simeone, R., D. Bottai, and R. Brosch. 2009. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opinion Microbiol 12:4-10.

  • Skeiky, Y. A., J. Dietrich, T. M. Lasco, K. Stagliano, V. Dheenadhayalan, M. A. Goetz, L. Cantarero, R. J. Basaraba, P. Bang, I. Kromann, J. B. McMclain, J. C. Sadoff, and P. Andersen. 2010. Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime-boost regimen. Vaccine 28:1084-1093.

  • Skjot, R. L. V., T. Oettinger, I. Rosenkrands, P. Ravn, I. Brock, S. Jacobsen, and P. Andersen. 2000. Comparative Evaluation of Low-Molecular-Mass Proteins from Mycobacterium tuberculosis Identifies Members of the ESAT-6 Family as Immunodominant T-Cell Antigens. Infect. Immun. 68:214-220.

  • Sun, Y. H., H. G. Rolan, and R. M. Tsolis. 2007. Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J Biol Chem 282:33897-33901.

  • Sutherland, J. S., I. M. Adetifa, P. C. Hill, R. A. Adegbola, and M. O. C. Ota. 2009. Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur J Immunol 39:723-729.

  • Sweeney, K. A., D. N. Dao, M. F. Goldberg, T. Hsu, M. M. Venkataswamy, M. Henao-Tamayo, D. Ordway, R. S. Sellers, P. Jain, B. Chen, M. Chen, J. Kim, R. Lukose, J. Chan, I. M. Orme, S. A. Porcelli, and W. R. Jacobs. 2011. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med 17:1261-1268.

  • van Dissel, J. T., D. Soonawala, S. A. Joosten, C. Prins, S. M. Arend, P. Bang, P. N. Tingskov, K. Lingnau, J. Nouta, S. T. Hoff, I. Rosenkrands, I. Kromann, T. H. Ottenhoff, T. M. Doherty, and P. Andersen. 2011. Ag85B-ESAT-6 adjuvanted with IC31(R) promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine 29:2100-2109.

  • Von Eschen, K., R. Morrison, M. Braun, O. Ofori-Anyinam, E. De Kock, P. Pavithran, M. Koutsoukos, P. Moris, D. Cain, M. C. Dubois, J. Cohen, and W. R. Ballou. 2009. The candidate tuberculosis vaccine Mtb72F/AS02A: Tolerability and immunogenicity in humans. Hum Vaccin 5:475-482.



Wang, Y. H., K. S. Voo, B. Liu, C. Y. Chen, B. Uygungil, W. Spoede, J. A. Bernstein, D. P. Huston, and Y. J. Liu. 2010. A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J Exp Med 207:2479-2491.

Claims
  • 1. A pharmaceutical composition comprising a peptide consisting of an amino acid sequence having a length of 15-50 residues which has a sequence therein that is identical to any of SEQ ID NOs 35-36, 42-57, 63-94, 97-395, 398-403 and 405, wherein the peptide, elicits, stimulates, induces, promotes, increases or enhances an anti-MTB immune response and a pharmaceutically acceptable adjuvant or excipient.
  • 2. The pharmaceutical composition of claim 1, further comprising one or more additional peptides consisting of an amino acid sequence having a length of 15-50 residues which has a sequence therein that is identical to any of SEQ ID NOs 35-36, 42-57, 63-94, 97-395, 398-403 and 405.
  • 3. The pharmaceutical composition of claim 1, further comprising one or more additional peptides of SEQ ID Nos 35-405, or a subsequence, portion, or modification thereof, wherein the one or more additional peptides, subsequence, portion, or modification thereof elicit, stimulate, induce, promote, increase or enhance an anti-MTB immune response.
  • 4. The pharmaceutical composition of claim 1, wherein the pharmaceutically acceptable adjuvant consists of an oil emulsion adjuvant.
  • 5. The pharmaceutical composition of claim 1, further comprising an anti-microbial agent.
  • 6. The pharmaceutical composition of claim 1, wherein the peptide further comprises a detectable label.
RELATED APPLICATION INFORMATION

This application claims priority to and provisional application 61/541,892, filed Sep. 30, 2011, and which application is expressly incorporated herein by reference in its entirety.

GOVERNMENT SUPPORT

This invention received government support from the National Institutes of Health Contract HHSN272200900042C. The government has certain rights in the invention.

US Referenced Citations (11)
Number Name Date Kind
6555653 Alderson Apr 2003 B2
7238359 Hasnain et al. Jul 2007 B2
7393539 James et al. Jul 2008 B2
7670609 Shafferman et al. Mar 2010 B2
20060002941 Mahairas Jan 2006 A1
20060078566 Hasnain et al. Apr 2006 A1
20060182685 Bishai et al. Aug 2006 A1
20060228712 Nakagawa et al. Oct 2006 A1
20080260763 Felgner et al. Oct 2008 A1
20090082296 James et al. Mar 2009 A1
20090285847 Felgner et al. Nov 2009 A1
Foreign Referenced Citations (3)
Number Date Country
WO9711966 Apr 1997 WO
WO2008124646 Oct 2008 WO
WO2009039854 Apr 2009 WO
Non-Patent Literature Citations (33)
Entry
Skjot, R.L.V., et al., Epitope Mapping of the Immunodominant Antigen TB10.4 and the Two Homologous Proteins TB10.3 and TB12.9, Which Constitute a Subfamily of the esat-6 Gene Family, Infect Immun, 2002, 70: 5446-5453.
Li Pira, G., et al., Evaluation of Antigen-Specific T-Cell Responses with a Miniaturized and Automated Method, Clin Vaccine Immunol, 2008, 15:1811-1818.
Alderson, M. R., et al., Expression Cloning of an immunodominant Family of Mycobacterium tuberculosis Antigens Using Human Cd4+ T Cells. J Exp Med, 2000, 191:551-560.
Mustafa, A. S., Comparative evaluation of MPT83 (Rv2873) for T helper-1 cell reactivity and identification of HLA-promiscuous peptides: studies in M. bovis BCG-vaccinated healthy subjects, Clin Vaccine Immunol, 2011, CVI.05260-05211.
Al-Attiya, R.F.A., et al., Synthetic Peptides Identify Promiscuous Human Th1 Cell Epitopes of the Secreted Mycobacterial Antigen MPB70, Infection and Immunity, 2003, 71:1953-1960.
De Groot, A.S., et al., Developing an epitope-driven tuberculosis (TB) vaccine, Vaccine, 2005, 23:2121-2131.
Mustafa, A. S., et al., ProPred analysis and experimental evaluation of promiscuous T-cell epitopes of three major secreted antigens of Mycobacterium tuberculosis, Tuberculosis, 2006, 86:115-124.
Arend, S.M., et al., Antigenic Equivalence of Human T-Cell Responses to Mycobacterium tuberculosis-Specific RD1-Encoded Protein Antigens ESAT-6 and Culture Filtrate Protein 10 and to Mixtures of Synthetic Peptides, Infect Immun, 2000, 68:3314-3321.
Shams, H.P., Characterization of a Mycobacterium tuberculosis Peptide That Is Recognized by Human CD4+ and CD8+ T Cells in the Context of Multiple HLA Alleles, J Immunol, 2004, 173:1966-1977.
Mustafa, A.S., et al., Multiple Epitopes from the Mycobacterium tuberculosis ESAT-6 Antigen Are Recognized by Antigen-Specific Human T Cell Lines. Clinical Infectious Diseases, 2000, 30:S201-S205.
Ulrichs, T.M., et al., Differential T cell responses to Mycobacterium tuberculosis ESAT6 in tuberculosis patients and healthy donors. European Journal of Immunology, 1998, 28:3949-3958.
Commandeur, S., et al., Identification of human T-cell responses to Mycobacterium tuberculosis resuscitation promoting factors in long-term latently infected individuals. Clin. Vaccine Immunol, 2011, CVI.00492-00410.
Launois, P., et al., T-cell-epitope mapping of the major secreted Mycobacterial antigen Ag85A in tuberculosis and leprosy. Infection and Immunity, 1994, 62:3879-3687.
Roche, P.W., et al., T-cell determinants and antibody binding sites on the major Mycobacterial secretory protein MPB59 of Mycobacterium bovis. Infection and Immunity, 1994, 62:5319-5326.
Hiemstra, H.S., et al., Definition of Natural T Cell Antigens with Mimicry Epitopes Obtained from Dedicated Synthetic Peptide Libraries. J Immunol, 1998, 161:4078-4082.
Silver, R. et al., Mapping of T cel epitopes of the 30-kDa alpha antigen of Mycobacterium bovis strain bacillus Calmette-Guerin in purified protein derivative (PPD)-positive individuals. J Immunol, 1995, 154:4665-4674.
Valle, M.T., Epitope focus, clonal composition and Th1 phenotype of the human CD4 response to the secretory Mycobacterial antigen Ag85. Clinical & Experimental Immunology, 2001, 123:226-232.
Dillon, D.C., et al., Molecular Characterization and Human T-Cell Responses to a Member of a Novel Mycobacterium tuberculosis mtb39 Gene Family. Infection and Immunity, 1999, 67:2941-2950.
Chaitra, M.G., et al., Characterization of T-cell immunogenicity of two PE/PPE proteins of Mycobacterium tuberculosis. J Med Microbiol, 2008, 57:1079-1086.
Mustafa, A.S., et al., Efficient Testing of Large Pools of Mycobacterium tuberculosis RD1 Peptides and Identification of Major Antigens and Immunodominant Peptides Recognized by Human Th1 Cells. Clin. Vaccine Immunol, 2008, 15:916-924.
Okkels, L., et al., PPE protein (Rv3873) from DNA segment RD1 of Mycobacterium tuberculosis: strong recognition of both specific T-cell epitopes and epitopes conserved within the PPE family. Infect Immun, 2003, 71:6116-6123.
Munk, M.E., et al., Epitopes of the Mycobacterial Heat Shock Protein 65 for Human T Cells Comprise Different Structures. Immunobiology, 1990, 180:272-277.
Oftung, F., et al., Epitopes of the Mycobacterium tuberculosis 65-kilodalton protein antigen as recognized by human T cells. J Immunol, 1988, 141:2749-2754.
Haanen, J.B., et al., Mycobacterium leprae-specific T cells from a tuberculoid leprosy patient suppress HLA-DR3-restricted T cell responses to an immunodominant epitope on 65-kDa hsp of Mycobacteria. J Immunol, 1990, 145:3898-3904.
Geluk, A., et al., Evolutionary conservation of major histocompatibility complex-DR/peptide/T cell interactions in primates. J Exp Med, 1993, 177:979-987.
Agrewala, J.N., et al., Influence of HLA-DR on the phenotype of CD4+ T lymphocytes specific for an epitope of the 16-kDa α-crystallin antigen of Mycobacterium tuberculosis. European Journal of Immunology, 1999, 29:1753-1761.
Caccamo, N., et al., Cytokine profile, HLA restriction and TCR sequence analysis of human CD4+ T clones specific for an immunodominant epitope of Mycobacterium tuberculosis 16-kDa protein. Clinical & Experimental Immunology, 2003, 133:260-266.
Friscia, G., et al., Human T cell responses to peptide epitopes of the 16-kD antigen in tuberculosis. Clin Exp Immunol, 1995, 102:53-57.
Wilkinson, D., et al., Human T- and B-Cell Reactivity to the 16 kDa &#x03B1;-Crystallin Protein of Mycobacterium tuberculosis. Scandinavian Journal of Immunology, 1998, 48:403-409.
Hussain, R., et al., Immune profiling of leprosy and tuberculosis patients to 15-mer peptides of Mycobacterium leprae and M. tuberculosis GroES in a BCG vaccinated area: implications for development of vaccine and diagnostic reagents. Immunology, 2004, 111:462-471.
Chua, I., et al., Predominant recognition of species-specific determinants of the GroES homologues from Mycobacterium leprae and M. tuberculosis. Immunology, 1998, 93:64-72.
Kim, J., et al., Determinants of T cell reactivity to the Mycobacterium leprae GroES homologue. J Immunol, 1997, 159:335-343.
Matsushita, S., et al., Evidence for self and nonself peptide partial agonists that prolong clonal survival of mature T cells in vitro. J Immunol, 1997, 158:5685-5691.
Related Publications (1)
Number Date Country
20140004151 A1 Jan 2014 US
Provisional Applications (1)
Number Date Country
61541892 Sep 2011 US