Antimicrobial, anti-inflammatory, wound-healing and disinfecting glass and use thereof

Abstract
The invention relates to an antimicrobial, anti-inflammatory and disinfecting glass, whereby the glass comprises: 30–95 wt. % SiO2,0–40 wt. % Na 2O, 0–40 wt. % K2O, 0–40 wt. % Li2O, 0–35 wt. % CaO, 0–10 wt. % MgO, 0–10 wt. % Al2O3, 0–15 wt. % P2O5 wt. % B2O3?, 0–10 wt. % NaF, 0–10 wt. % LiF, 0–10 wt. % KF, 0–10 wt. % CaF2, 0–5 wt. % Ag2O, 0–10 wt. % MgF2,0–2 wt. % Fe2O3and 0–10 wt. % XJy, where X═Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ag or Zn and y=1 or y=2 and the sum of XJy> is 10 ppm.
Description

The present invention relates to an antimicrobial, anti-inflammatory, wound-healing and disinfecting glass and a glass powder containing such a glass.


Glasses for biological or medical use which contain iodide or halides in general are known from the following patents:

  • German Patent 39 39 831
  • Japanese Patent 91146436
  • U.S. Pat. No. 5,807,641


German Patent 39 39 831 describes a crystalline glass or a glass ceramic, and especially a bio-compatible glass or a bio-compatible glass ceramic which is usable for the repair of the damaged or broken portion of a tooth. German Patent 39 39 831 provides for coloring using a dye, such as for example a noble metal halide. The halides were not however specified.


U.S. Pat. No, 5,807,641 identifies an antibacterial and anti-fungicidal glass composition for ceramic products, such as are known, for example, for sanitary materials, whereby the materials may contain a silver halide. The glasses described in U.S. Pat. No. 5,807,641 are used particularly as glazing materials.


Japanese Patent A-91146436 identifies a micro-biocidal glass for water treatment or elimination of algae and microorganisms in water. The glass according to Japanese Patent A-91148436 contains halides as raw material.


The object of the present invention is to make available an antimicrobial, anti-inflammatory and disinfecting glass which itself has an antimicrobial and anti-inflammatory effect and which benefits synergistically from the addition of iodide.


The object is achieved by means of iodide-containing glass compositions according to claim 1.


Iodine or iodide possesses an antimicrobial effect which has been exploited in the medical field for a long time. An iodide tincture is a clear brownish red liquid, which consists of 2.5 parts iodine, 2.5 parts potassium iodide, 28.5 parts water and 66.5 parts of 90% alcohol.


The small amount of iodide in the glass makes the present invention outstandingly suitable as a nutritional supplement. Glasses with higher quantities of iodide display a distinct antimicrobial effect as well as disinfecting and ant-inflammatory or wound healing properties, this effect synergisticaly exceeding the individual effects of the glasses and the iodide ions.


The glass contains between 30 and 80 wt % of SiO2 as a network former. At lower concentrations the hydrolytic resistance creases markedly, so that the grindings can no longer be guaranteed not to dissolve significantly in aqueous media. At higher values the crystallization stability decreases and the working temperature is markedly increased, so that the molten and hot formability are impaired.


Na2O is introduced as a flux material during melting of the glass. At total concentrations of less than 5% the behavior of the melt is adversely affected. Furthermore, the necessary ion exchange mechanism is no longer sufficient to achieve antibacterial action. At concentrations higher than 40 wt % deterioration of the chemical stability or, as the case may be, resistance to hydrolysis is observed especially in connection with a decrease in the SiO2 content.


P2O5 is a network former and can increase the crystallization stability. The concentrations should not be above 16 wt % as otherwise the chemical stability of silicate glasses decreases too strongly. P2O5 improves the surface stability of the glasses.


B2O3 is a network former and enhances the chemical stability. The reactivity of the glass and thereby its effectiveness may be controlled by varying its content.


CaO improves the chemical stability especially in the mildly alkaline range and is therefore necessary in order to prevent dissolution of the glass in aqueous media. Otherwise ion exchange with H+ can take place.


MgO improves the chemical resistance in the mildly alkaline range and is therefore necessary so as to prevent dissolution of the glass in aqueous media. Moreover, ion exchange with H+ can take place.


K2O and Li2O additions promote the interchangeability of sodium or potassium, and lithium can itself exchange with H+ ions.


Al2O3 may be added up to a maximum amount of 10 wt % to increase the crystallization stability.


Fluoride may be added to achieve a synergistic reinforcement of the iodide activity.


The glass according to the present invention may be manufactured on a large scale using standard methods.


In a preferred embodiment the glass contains 30–60 wt % SiO2, 2–40 wt % Na2O, 5–40 wt % CaO, 1–15 wt % P2O5 and XIy>100 ppm, whereby X, Li, Na, K, Rb, Cs, Be, Mg, Ca Sr, Ba, Ag, Zn and y=1 or y=2.


An especially preferred embodiment contains 30–60 wt % SiO2, 5–35 wt % Na2O, 2–10 wt % P2O5, and XIy>100 ppm whereby X, Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ag, Zn and y=1 or y=2. To achieve a disinfecting effect the amount of XIy is preferred to be >500 ppm, especially >1 wt %, >2 wt % being especially preferred.


As a food supplement as well as for use inside the human body XIy contents of 10 ppm to 1 wt %, are preferred especially 10 ppm to 500 ppm, the especially preferred content being 10 ppm to 250 pm


The glasses according to the present invention may also be obtained and products mixed in, in the form of powders. Therefore the glasses are advantageously suitable for grinding in different grinding media for example water, in other words the glass has adequate resistance to hydrolysis.


In addition to manufacturing by melt processes, alternative manufacturing methods by means of sol-gel or sintering are conceivable.


Particle sizes of <100 μm may be obtained by a grinding process. Particle sizes of less than 50 μm or 20 μm have proven to be convenient. Particle sizes of <10 μm as well as smaller than 5 μm are particularly suitable. Particle sizes of <1 μm were shown to be most suitable.


The grinding process may be carried out in aqueous and non-aqueous grinding media.


Mixtures of different glass powders from the range of compositions having different compositions and grain sizes are possible in order to combine specific effects.


The glasses that lie within the claimed composition ranges fulfill all requirements relative to their use in the areas of sanitary paper, cosmetics, dyes, lacquers, plasters, medicinal products, cosmetic applications, foodstuff additives as well as use in antiperspirants, for example deodorants.


The glass may be utilized in any suitable form including the mentioned powder form, mixtures of different powders from the range of compositions are likewise possible. Mixing with other glass powders is also possible in order to combine particular effects.


The invention is described below, with reference to exemplary embodiments.







EXEMPLARY EMBODIMENTS

A glass was melted from the raw materials then subsequently formed into ribbons. These ribbons were further processed by dry grinding to a powder with a particle size of d50–4 μm.


Table 1 presents compositions (synthesis values) [wt %] and properties of glasses according to the present invention.









TABLE 1







Glass Compositions













Example 1
Example 2
Example 3
Example 4
Example 5















SiO2
44.5
45
55
45.0
71.2


Al2O3



24.5
0.35


CaO
24.1
22.5
19.5

9.5


MgO




4.0


P2O5
5.8
6
6
6


Na2O
24.1
22.5
19.4
23.5
13.0


K2O




0.05


NaI
1.2
2.0
0.1
1.0
1.1


CaI2

2.0


AgI
0.3


Fe2O3




0.1









The antibacterial effects of the powders following Europ. Pharmakopoe (3rd edition) are shown for Exemplary Embodiment 1 in Table 2.









TABLE 2







Antibacterial Effect of Exemplary Embodiment 1:


Following European Pharmakopoe (Germ Strain Test).














E. Coli.


F. Aeruginosa


S. Aureus


C. Albicans


A. Niger






Start
0
0
0
0
0


 2 Days
0
0
0
0
0


 7 Days
0
0
0
0
0


14 Days
0
0
0
0
0


21 Days
0
0
0
0
0


28 Days
0
0
0
0
0









The antimicrobial, anti-inflammatory, wound-healing and disinfecting glasses or glass powders according to the present invention may be added as a foodstuff supplement, in cosmetic production, antiperspirant production, in medicinal products, plastics and polymers, sanitary paper, dyes, and lacquers as well as plaster and purification means.


Ion Release into Water (after 24 h) for Exemplary Embodiment 1




















0.01 wt %
0.1 wt %
1 wt %
10 wt %























Si

54
mg/L





Ca

24
mg/L



P

0.2
mg/L



Na

31
mg/L



Ag

<1
ppm



I

<30
mg/L









Claims
  • 1. An antimicrobial, anti-inflamatory and disinfecting glass, wherein the glass contains: 30–60 wt % SiO2 2–40 wt % Na2O0–40 wt % K2O0–40 wt % Li2O5–40 wt % CaO0–10 wt % MgO0–10 wt % Al2O3 1–15 wt % P2O5 0–5 wt % B2O3 0–10 wt % NaF0–10 wt % LiF0–10 wt % KF0–10 wt % CaF2 0–5 wt % Ag2O0–10 wt % MgF2 0–2 wt % Fe2O3 0–10 wt % XIy,
  • 2. The antimicrobial, anti-inflammatory and disinfecting glass, according to claim 1, wherein the sum of Na2O+K2O+Li2O≧5 wt %.
  • 3. The antimicrobial, anti-inflammatory and disinfecting glass, according to claim 1, wherein the glass contains: 5–35 wt % Na2O2–10 wt % P2O5 .
  • 4. The glass of claim 1 wherein the sum of XIy is >100 ppm.
  • 5. The glass of claim 1 wherein the sum of XIy is >500 ppm.
  • 6. The glass of claim 1 wherein the sum of XIy is >1 wt %.
  • 7. The glass of claim 1 wherein the sum of XIy is >2 wt %.
  • 8. An antimicrobial, anti-inflammatory and disinfecting glass powder wherein the glass powder consists of a glass of composition as follows: 30–60 wt % SiO2 2–40 wt % Na2O0–40 wt % K2O0–40 wt % Li2O5–40 wt % CaO0–10 wt % MgO0–10 wt % Al2O3 1–15 wt % P2O5 0–5 wt % B2O3 0–10 wt % NaF0–10 wt % LiF0–10 wt % KF0–10 wt % CaF2 0–5 wt % Ag2O0–10 wt % MgF2 0–2 wt % Fe2O3 0–10 wt % XIy,
  • 9. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8, wherein the glass particle size is ≦100 μm.
  • 10. The antimicrobial, anti-inflammatory and disinfecting glass powder according to claim 8, wherein the particle size is ≦20 μm.
  • 11. The glass of claim 8 wherein the particle size is ≦10 μm.
  • 12. The antimicrobial, anti-inflammatory and disinfecting glass powder according to claim 8, wherein the glass particle size is <5 μm.
  • 13. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8, wherein the glass particle size is <1 μm.
  • 14. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8, as a food preserving additive and as a foodstuff supplement.
  • 15. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8, for use in cosmetic products.
  • 16. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8, for use in deodorant products.
  • 17. The antimicrobial, anti-inflammatory and disinfecting glass powder, according claim 8, for use in antiperspiration means or antiperspirants.
  • 18. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8 for use in dyes and lacquers.
  • 19. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8 for use in medicinal products and preparations.
  • 20. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8 for use in plastics and polymers.
  • 21. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8 for use in sanitary paper.
  • 22. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8 for use in purification means.
  • 23. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8 for use in the field of medicine.
  • 24. The antimicrobial, anti-inflammatory and disinfecting glass powder according to claim 8, for use in the care of wounds.
  • 25. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8 for use in dental medicine.
  • 26. The antimicrobial, anti-inflammatory and disinfecting glass powder, according to claim 8 for use in the field of dental medicine as an antimicrobial and disinfecting additive in dental hygiene.
  • 27. The antimicrobial, ant-inflammatory and disinfecting glass powder, according to claim 8 for use in the field of dental medicine as an anti-inflammatory additive for avoidance of gum bleeding.
Priority Claims (3)
Number Date Country Kind
101 41 116 Aug 2001 DE national
101 56 577 Nov 2001 DE national
102 13 630 Mar 2002 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP02/09217 8/17/2002 WO 00 6/24/2004
Publishing Document Publishing Date Country Kind
WO03/018498 3/6/2003 WO A
US Referenced Citations (21)
Number Name Date Kind
3773530 Morgan Nov 1973 A
3926246 Corbett et al. Dec 1975 A
3954485 Seward et al. May 1976 A
4000998 Rittler Jan 1977 A
4092139 Ference May 1978 A
4567104 Wu Jan 1986 A
5034353 Shibuya et al. Jul 1991 A
5074916 Hench et al. Dec 1991 A
5290544 Shimono et al. Mar 1994 A
5639702 Imashita et al. Jun 1997 A
5807641 Oku et al. Sep 1998 A
5834008 Greenspan et al. Nov 1998 A
6074984 Demmel et al. Jun 2000 A
6123743 Carman et al. Sep 2000 A
6143318 Gilchrist et al. Nov 2000 A
6245732 Gallon Jun 2001 B1
20020086039 Lee et al. Jul 2002 A1
20040137075 Fechner et al. Jul 2004 A1
20040166172 Rosati et al. Aug 2004 A1
20050064193 Fechner et al. Mar 2005 A1
20050119105 Zimmer et al. Jun 2005 A1
Foreign Referenced Citations (24)
Number Date Country
1323527 Nov 2001 CN
2800145 Sep 1978 DE
3939831 Jun 1990 DE
195 03 167 Aug 1996 DE
425927 May 1991 EP
0921105 Jun 1999 EP
1 294 337 Oct 1972 GB
3-146436 Jun 1991 JP
7-25635 Jan 1995 JP
07026635 Jan 1995 JP
7-291654 Nov 1995 JP
8-2452240 Sep 1996 JP
10-218637 Aug 1998 JP
10-231187 Sep 1998 JP
11-209143 Aug 1999 JP
11-228173 Aug 1999 JP
2000-203876 Jul 2000 JP
2000-264674 Sep 2000 JP
WO9621628 Jul 1996 WO
WO 9727148 Jul 1997 WO
WO0015167 Mar 2000 WO
WO 0038552 Jul 2000 WO
WO0066086 Nov 2000 WO
WO0076486 Dec 2000 WO
Related Publications (1)
Number Date Country
20050064193 A1 Mar 2005 US