Antimicrobial compositions containing synergistic combinations of quaternary ammonium compounds and essential oils and/or constituents thereof

Abstract
The present invention relates to compositions comprising quaternary ammonium compounds and essential oils or individual constituents thereof which exhibit enhanced antimicrobial effects. Such combinations may be comprised in lotions, gels, creams, soaps, etc. for application to skin or mucous membranes. The invention is based, at least in part, on the observation that synergistic antimicrobial effects are achieved with combinations of essential oils or individual constituents thereof and low concentrations of quaternary ammonium compounds.
Description
2. INTRODUCTION

The present invention relates to compositions comprising combinations of quaternary ammonium compounds and essential oils and/or individual constituents thereof, and methods of using such compositions. It is based, at least in part, on the discovery that such combinations exhibit synergistically enhanced antimicrobial effects.


3. BACKGROUND OF THE INVENTION

Essential oils are volatile oils obtained from plant or animal sources and are composed of complex mixtures of several constituents, such as monoterpenes and sesquiterpene hydrocarbons, monoterpene and sesquiterpene alcohols, esters, ethers, aldehydes, ketones, oxides and the like. These essential oils and their isolated constituents are frequently utilized as fragrance and flavor agents, and have been widely used in folk medicine for wound healing properties.


Scientific research has corroborated the beneficial effects of essential oils. Essential oils of eucalyptus have been found to “possess central and peripheral analgesic effects as well as neutrophil-dependent and independent anti-inflammatory activities” (Silva et al., 2003, J. Ethnopharmacol. 89(2-3); 277-283), and similar activity has been observed in essential oils from Lavendula angustifolia Mill. (Hajhashemi et al., 2003, J. Ethnopharmacol. 89(1):67-71). Essential oils have been demonstrated to exhibit antibacterial (Bezic et al., 2003, Phytother. Res. 17(9:1037-1040; Goren et al., 2003, Z. Naturforsch. 58(9-10):687-690; de Abreu Gonzaga et al., 2003, Planta Med. 69(8):773-775; Valero and Salmera, 2003, Int. J. Food Microbiol. 85(1-2): 73-81) and antifungal (Paranagama et al., 2003, Lett. Appl. Microbiol. 37(1):86-90; Shin, 2003, Arch. Pharm. Res. 26(5):389-393; Velluti et al., 2003, Int. J. Food Microbiol. 89:145-154) activities. Virucidal activity of essential oils has also been observed, including direct virucidal effects against Herpes simplex viruses types 1 and 2 (Garcia et al., Phytother. Res. 17(9):1073-1075; Minami et al., 2003, Microbial Immunol. 47(a):681-684; Schuhmacher et al., 2003, Phytomedicine 10:504-510).


Quaternary ammonium compounds (“QAC”) are a group of ammonium salts in which organic radicals have been substituted for all four hydrogens of the original ammonium cation. They have a central nitrogen atom which is joined to four organic radicals and one acid radical. QACs have a tendency to distribute to the interface of two phases (liquid-liquid or solid-liquid) to introduce continuity between the two different phases. QACs are known to have potent antimicrobial activity, capable of disrupting bacterial cell processes. QACs have been used as antiseptics, disinfectants, preservatives, biocides, etc.


Johnson et al. (U.S. Pat. No. 6,319,958 and US20020165130) relates to the use of sesquiterpenoids to promote uptake of exogenous antimicrobial compounds. Similarly, a related article discloses the use of sesquiterpenoids, such as nerolidol, farnesol, bisabolol and apritone, in enhancing bacterial permeability and susceptibility to exogenous antimicrobial compounds, suggesting that sesquiterpenoids have a non-specific and general effect (Brehm-Stecher et al. 2003, Antimicrobial Agents and Chemotherapy, 47(10):3357-3360). In particular, Brehm-Stecher et al. report that nerolidol, farnesol, bisabolol and apritone enhanced the susceptibility of S. aureus to the antibiotics erythromycin, gentamicin, vancomycin, ciproflaxin, clindamycin, and tetracycline. In addition, Brehm-Stecher et al. does not disclose the use of QACs as antimicrobial agents.


There is a continuing desire for an antimicrobial composition that is non-irritating, safe, and effective for repeated use in various professional and non-professional settings.


4. SUMMARY OF THE INVENTION

The present invention relates to antimicrobial compositions comprising combinations of quaternary ammonium compounds and essential oils and/or individual constituents thereof. Such combinations may be comprised in lotions, gels, creams, soaps, etc. for application to skin or mucous membranes. The invention is based, at least in part, on the observation that synergistic antimicrobial effects are achieved with combinations of essential oils and/or individual constituents thereof and low concentrations of quaternary ammonium compounds.







5. DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to compositions and methods for their use, wherein the antimicrobial activities of gels, creams, ointments, lotions or soaps is enhanced by the inclusion of synergistic amounts of quaternary ammonium compounds and essential oils and/or one or more individual constituent(s) thereof. The formulations of the instant invention comprise a synergistically effective amount of at least one quaternary ammonium compound and at least one essential oil and/or individual constituent(s) thereof.


The use of the terms, “synergistic” and “synergistically effective,” are used in the present invention to mean a biological effect created from the application of two or more agents to produce a biological effect that is greater than the sum of the biological effects produced by the application of the individual agents.


Examples of quaternary ammonium compounds suitable for use in the instant invention include, but are not limited to, benzalkonium chloride (“BZK”), benzethonium chloride (“BZT”), other benzalkonium or benzethonium halides, including, but not limited to, benzalkonium or benzethonium bromide or fluoride, cetyl pyridinium chloride, alkylamidopropalkonium chloride, behenalkonium chloride, behentrimonium methosulphate, behenamidopropylethyldimonium ethosulphate, stearalkonium chloride, olealkonium chloride, cetrimonium chloride, dequalinium chloride, N-myristyl-N-methyl-morpholinium methyl sulfate, poly[N-[3-(dimethylammonio)propyl]-N′-[3-(ethyleneoxyethelenedimethylammoinio)propyl]urea dichloride], alpha-4-[1-tris(2-hydroxyethyl)ammonium chloride-2-butenyl]-omega-tris(2-hydroxyethyl)ammonium chloride, poly[oxyethylene(dimethyliminio)ethylene(dimethyliminio)-ethylene dichloride].


The concentrations of quaternary ammonium compound may be between about 0.01 and 0.5 percent; preferably the quaternary ammonium compound is benzethonium chloride or benzalkonium chloride at a concentration between 0.05 and 0.3 percent, more preferably between 0.1 and 0.2 percent. These percentages, and other percentages herein, unless specified otherwise, are weight/weight.


Essential oils (“EOs”), as defined herein, are volatile oils obtained from plant or animal sources, or their synthetic equivalents, and are composed of complex mixtures of several constituents as monoterpenes and sesquiterpene hydrocarbons, monoterpene and sesquiterpene alcohols, esters, ethers, aldehydes, ketones, oxides and the like. Examples of EOs include, but are not limited to, bergamot oil, clary sage oil, ylang-ylang oil, neroli oil, sandalwood oil, frankincense oil, ginger oil, peppermint oil, lavender oil, jasmine absolute, geranium oil bourbon, spearmint oil, clove oil, patchouli oil, rosemary oil, rosewood oil, sandalwood oil, tea tree oil, vanilla oil, lemongrass oil, cedarwood oil, balsam oils, tangerine oil, Hinoki oil, Hiba oil, ginko oil, eucalyptus oil, lemon oil, orange oil, and sweet orange oil.


Individual constituents (“ICs”) of essential oils may be isolated from the oil (natural) or entirely or partially synthetic, and include, but are not limited to, 1-citronellol, α-amylcinnamaldehyde, lyral, geraniol, farnesol, hydroxycitronellal, isoeugenol, eugenol, eucalyptol, linalool, citral, thymol, limonene and menthol.


Further examples of ICs include sesquiterpenoid compounds, which may be the active compounds in the essential oils. Sesquiterpenoid compounds, containing 15 carbons, are formed biosynthetically from three 5-carbon isoprene units. Sesquiterpenoid compounds include, but are not limited to, farnesol, nerolidol, bisabolol, apritone, chamazulene, santalol, zingiberol, carotol, and caryophyllen.


Mixtures of one or more EO, one or more IC, and one or more EO as well as one or more IC, are encompassed by the present invention.


The concentrations of EOs and ICs may be between about 0.01 and 10 percent; preferably between 0.05 and 1.0 percent or between 0.05 and 0.5 percent, and more preferably between 0.2 and 0.5 percent. In preferred embodiments, the EO is lemon oil and/or the IC is farnesol.


In certain specific, non-limiting embodiments, the present invention provides for formulations, including but not limited to gels, creams, lotions or ointments further comprising an amount of zinc that inhibits irritation of the skin or mucosa to which the formulation is applied. Zinc may be added counteract the irritating effects of essential oils. The use of zinc in topical compositions is known in the art and disclosed in the following patents: U.S. Pat. Nos. 5,708,023, 5,965,610, 5,985,918 and 6,037,386.


In a preferred embodiment of the invention, low concentrations of two or more water-soluble salts of zinc are used. The term “low concentration” means percentages of free zinc ions (Zn2+) in the gel or cream at less than 0.5% on a weight to weight (w/w) basis. Suitable zinc salts for use in these compositions include zinc acetate (molar solubility in water of 1.64 moles/l), zinc butyrate (molar solubility in water of 0.4 moles/l), zinc citrate (molar solubility in water of <0.1 moles/l), zinc gluconate (molar solubility in water of 0.28 moles/l), zinc glycerate (moderately water soluble), zinc glycolate (moderately water soluble), zinc formate (molar solubility in water of 0.33 moles/l), zinc lactate (molar solubility in water of 0.17 moles/l), zinc picolinate (moderately water soluble), zinc proprionate (molar solubility in water of 1.51 moles/l), zinc salicylate (low water solubility), zinc tartrate (moderately water soluble) and zinc undecylenate (moderately water soluble). In particularly preferred embodiments, the zinc salts comprise a combination of effective amounts of two or more of the following: zinc acetate (0.05-2.0%), zinc citrate (0.05-2.0%), zinc gluconate (0.05-2.0%) and zinc lactate (0.05-2.0%). In preferred embodiments, the zinc salts are 0.2-0.6% zinc gluconate, 0.1-0.3% zinc acetate and 0.1-0.3% zinc lactate. In particularly preferred embodiments, the zinc salts are 0.3% zinc gluconate, 0.1% zinc acetate, and 0.1% zinc lactate, or 0.2% zinc zinc lactate and 0.2% zinc gluconate. Additional compositions that may comprise the synergistic combinations of the invention are described in International Patent Application No. PCT/US03/03896, published on Aug. 14, 2003, as WO03/066001, incorporated by reference herein in its entirety.


The gels, ointments, lotions or creams of the invention may be applied topically to the skin or to the various mucous membranes of the body, including but not limited to those of the oral, nasal, vaginal or rectal cavities.


In preferred embodiments, the gel, lotion, ointment or cream may comprise a mixture of water, a gelling agent, a thickening agent, a hydrophilic or hydrophobic polymer, an emulsifying agent, an emollient, and/or alcohol, such as ethanol. In preferred embodiments, the presently claimed compositions comprise alcohol present at 10-90% w/w, water present at 15-70% w/w, thickeners and/or gelling agents present at 0.05-3.0% w/w, and emollients present at 0.1-3.0% w/w.


In preferred embodiments, if a thickener is present, it is not a polyacrylic acid-based thickener, such as but not limited to, carbomer, carbopol, or ultrez, as polyacrylic acid-based thickeners have been found to be incompatible with quaternary ammonium compounds. Without being bound by any particular theory, it is believed that anionic groups of such thickeners may interact with cationic groups of the quaternary ammonium compound. Preferably, if a gelling agent is used, it is not an anionic agent, but rather a non-ionic or cationic agent.


The compositions of the invention may optionally further include one or more additional antimicrobial agent such as, but not limited to, antiviral, antibacterial, or antifungal substances. Antimicrobial agents also include substances possessing any combination of virucidal or virustatic, bacteriocidal or bacteriostatic, or fingicidal or fungistatic properties. Antimicrobial agents are well known to those of ordinary skill in the art. Examples of antimicrobial agents include, but are not limited to, iodophors, iodine, benzoic acid, dehydroacetic acid, propionic acid, sorbic acid, methyl paraben, ethyl paraben, propyl paraben, butyl paraben, cetrimide, chlorhexidine (free base and/or salts), other biguanides, such as polyhexamethyl biguanide (PHMB) and chlorohexidine gluconate (CHG), chloroeresol, chlorxylenol, benzyl alcohol, bronopol, chlorbutanol, ethanol, phenoxyethanol, phenylethyl alcohol, 2,4-dichlorobenzyl alcohol, thiomersal, clindamycin, erythromycin, benzoyl peroxide, mupirocin, bacitracin, polymyxin B, neomycin, triclosan, parachlorometaxylene, foscarnet, miconazole, fluconazole, itriconazole, ketoconazole, and pharmaceutically acceptable salts thereof. These and further examples of antimicrobial agents useful in this invention can be found in such references as Goodman and Gilman's The Pharmacological Basis of Therapeutics (Goodman Gilman A, Rall T W, Nies A S, Taylor P, ed. (Pergamon Press; Elmsford, N.Y.: 1990)), the contents of which are hereby incorporated by reference.


In an embodiment, the compositions of the invention comprises a biguanide compound selected from the group consisting of chlorohexidine gluconate (CHG) and polyhexarnethyl biguanide (PHMB). Preferably, the biguande compound is present at a concentration of between 0.1 to 2.0% w/w.


Pharmaceutically acceptable chlorhexidine salts are well known to those of ordinary skill in the art and include, but are not limited to, chlorhexidine palmitate, chlorhexidine diphosphanilate, chlorhexidine digluconate (“CHG”), chlorhexidine diacetate, chlorhexidine dihydrochloride, chlorhexidine dichloride, chlorhexidine dihydroiodide, chlorhexidine diperchlorate, chlorhexidine dinitrate, chlorhexidine sulphate, chlorhexidine sulphite, chlorhexidine thiosulphate, chlorhexidine di-acid phosphate, chlorhexidine difluorophosphate, chlorhexidine diformate, chlorhexidine dipropionate, chlorhexidine di-iodobutyrate, chlorhexidine di-n-valerate, chlorhexidine dicaproate, chlorhexidine malonate, chlorhexidine succinate, chlorhexidine malate, chlorhexidine tartrate, chlorhexidine dimonoglycolate, chlorhexidine monodiglycolate, chlorhexidine dilactate, chlorhexidine di-α-hydroxyisobutyrate, chlorhexidine diglucoheptonate, chlorhexidine di-isothionate, chlorhexidine dibenzoate, chlorhexidine dicinnamate, chlorhexidine dimandelate, chlorhexidine di-isophthalate, chlorhexidine di-2-hydroxynapthoate, and chlorhexidine embonate.


In formulating compositions of this invention, it is contemplated that the formulations may further comprise ingredients which, while not having the activity of the above-named ingredients, will aid in the formulation and use of the composition as a whole. Examples of such ingredients are well-known to those of ordinary skill in the art of producing formulations for biological purposes. Examples of these ingredients include such substances as binders, emollients, preservatives (such as methyl paraben), lubricants, colorants, perfumes, and the like. Accordingly, when the surface contemplated is skin, the composition of this invention may contain ingredients which are added to known lotions or medicaments, which are physiologically acceptable to skin and which do not contain ingredients which will reverse or retard the action of the irritant-inactivating agent.


In certain non-limiting embodiments of the invention, the composition may be added to pre-existing formulations provided that the ingredients in those formulations do not prevent or retard the activity of the claimed composition. In a preferred embodiment, the claimed composition can be added to creams, ointments, gels or lotions which are commercially available. Examples of commercially available lubricants include, but are not limited to, those lubricants sold under the tradenames “KY JELLY,” “ASTROGLIDE,” and “PREVACARE.” Examples of commercially available lotions include, but are not limited to, those lotions sold under the tradenames “SOFT-SENSE,” “LOTION SOFT,” “CUREL,” and “KERI”. SOFT-SENSE (Johnson & Son, Inc., Racine, Wis.) is known to contain purified water, glycerin USP, distearyldimonium chloride, petrolatum USP, isopropyl palmitate, 1-hexadecanol, tocopheryl acetate (vitamin E USP), dimethicone, titanium dioxide USP, methyl paraben, propyl paraben, sodium chloride, and fragrance. LOTION SOFT (Calgon Vestal, St. Louise, Mo.) is a nonionic moisturizing lotion which is known to contain mucopolysaccharide. CUREL (Bausch & Lomb Incorporated, Rochester, N.Y.) is known to contain deionized water, glycerin, quaternium-5, petrolatum, isopropyl palmitate, 1-hexadecanol, dimethicone, sodium chloride, fragrance, methyl paraben, and propyl paraben.


The claimed compositions may be used in anti-perspirants, aftershave lotions, hydroalcoholic skin disinfectants, and therapeutic creams, etc.


Certain preferred embodiments of the invention comprise, for example but not by way of limitation, one or more of the following: alcohol (10-90% w/w), which could include one or more of ethanol, n-propanol and iso-propanol; one or more zinc compound in an anti-irritant amount; one or more polymeric quatemary ammonium salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide (Polyquatemium), such as U-care polymer such as Ucare JR125, JR 400, JR 30M, LR 400, LR30M, or Ucare polymer LK; hydroxypropyl methyl cellulose such as the Methocel A,E,K, and 40 series products as Methocell K4MS, Methocel K100, Methocell 40-202, Methocel K15MS and others; one or more quaternary ammonium compound such as BZK or BZT; cetyltrimethyl ammonium chloride (“CTAC”); cetyl trimethyl ammonium bromide (“CTAB”); olealkonium chloride; stearalkonium chloride; Incroquat BA 85 (babassuamidopropalkonium chloride); dibehenyldimonium methosulfate; IncroquatBES-35 S (Behenamidopropylethyldimonium Ethosulfate and stearyl alcohol); Incroquat B-65C (Behenalkonium chloride and cetyl alcohol); Incroquat Behenyl TMS (Behentrimonium methosulfate and cetearyl alcohol); and one or more emollient, such as Procetyl 10 PPG-10 cetyl ether, Procetyl 50 PPG-50 cetyl ether, Promyristyl PM-3 PPG-3Myristyl ether, PPG-3 benzyl ether myristate (Crodamol STS of Croda), PEG 20 Almond Glycerides, Probutyl DB-10, Glucam P20, Glucam E-10, Glucam P-10, Glucam E-20, Glucam P-20 distearate, glycerin, propylene glycol, cetyl acetate and acetylated lanolin alcohol (Acetulan), hydroxylated milk glycerides (Cremerol HMG); a silicone fluid such as Dow Corning Silicone Fluid 245, 244, 246, 344, 345, 556; an essential oil such as lemon oil, citronella oil, sandalwood oil, lemongrass oil, patchouli oil, clove oil, thyme oil, geranium oil, basil oil; an individual constituent of an essential oil, such as farnesol, citronellol, linalool, eugenol, citral, thymol, eucalyptol, menthol; and a biguanide such as chlorhexidine gluconate or polyhexamethyl biguanide.


The invention provides for methods of using the foregoing compositions to achieve an antimicrobial effect comprising applying an effective amount of the composition to the surface. An antimicrobial effect significantly diminishes the risk of infection or progression of existing infection by one or more pathogenic infectious agent. The risk of infection need not be reduced to zero, but preferably is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, or 90 percent. Examples of infectious agents against which protection may be afforded include, but are not limited to, Staphylococcus species such as Staphylococcus aureus and Staphylococcus epidermidis, Streptococcus species such as Streptococcus pneumoniae, Enterococcus species, Salmonella species such as Salmonella typh, Escherichia species such as Escherichia coli, Vibrio species, Neisseria species, such as Neisseria meningitidis and Neisseria gonnorhoea, Human Immunodeficiency Virus (HIV), Human Papilloma Virus (HPV), Herpes Simplex Virus (HSV), Chlamydia trachomatis, Trichomonas vaginalis, and Candida albicans.


In an embodiment of the invention, the compositions of the present invention do not contain antibiotics, including, but are not limited to, tetracycline, ampicillin, rifampin, vancomycin, amphotericin B, nystatin, and bacitracin.


The following are specific, non-limiting examples of formulations of the present invention with and without zinc salts.














FORMULATIONS WITHOUT ZINC SALTS










General Formula




Ingredients
Percent Range (w/w %)







Ethanol
50-90



Water
15-35



U-care polymers
01.-0.5



Germall +
0.15-0.3 



Quaternary ammonium compounds
0.05-0.2 



Quaternary conditioners
0.2-1.0



Emollients
0.3-1.0



Phenoxyethanol (if present)
0.5-1.0



Silicone fluids
0.2-1.0



Essential oils/individual
0.3-1.0



constituents



Biguanides (if present)
0.05-2.0 














Specific Formulas




Ingredients
Percent (w/w)







(A) Alcohol surgical hand prep-1



Ethanol
68



Babassuamidopropalkonium Chloride
0.5



Water
28.12



U-care JR 30
0.2



Panthenol
1.0



BZT
0.18



Silicone fluid (DC245)
0.5



Procetyl 10 (PPG-10, cetyl ether)
0.5



Farnesol
0.5



Phenoxyethanol
0.5



(B) Alcohol surgical hand prep-2



Ethanol
68



Babassuamidopropalkonium Chloride
0.5



Water
27.97



U-care JR 30
0.2



Panthenol
1.0



BZT
0.18



Silicone fluid (DC245)
0.5



Procetyl 10 (PPG-10, cetyl ether)
0.5



Farnesol
0.5



Phenoxyethanol
0.5



PHMB
0.15



(C) Alcohol surgical hand prep-3



Ethanol
68



Babassuamidopropalkonium Chloride
0.5



Water
28.12



U-care JR 30
0.2



Panthenol
1.0



BZT
0.18



Silicone fluid (DC245)
0.5



Procetyl 10 (PPG-10, cetyl ether)
0.5



Farnesol
0.25



Geranium oil
0.25



Phenoxyethanol
0.5



(D) Pre-op skin disinfectant-1



Ethanol
60



Povidone iodine
7.5



Water
31.07



U-care JR 30
0.2



BZT
0.18



CHG
0.05



Farnesol
0.5



Phenoxyethanol
0.5











FORMULATIONS WITH ZINC SALTS










General Formula




Ingredients
Percent range (w/w)







Ethanol
50-90



Water
15-35



U-care polymers
01.-0.5



Germall +
0.15-0.3 



Quaternary ammonium compounds
0.05-0.2 



Quaternary conditioners
0.2-1.0



Emollients
0.3-2.0



Phenoxyethanol (if present)
0.5-1.0



Silicone fluids
0.0-1.0



Essential oils/individual
0.3-1.0



ingredients



Biguanides (if present)
0.05-2.0 



Zinc gluconate
0.3-0.6



Zinc acetate
0.1-0.3



Zinc lactate
0.1-0.3














Specific formulas




Ingredients







(E) Alcohol hand disinfectant-1
Percent (w/w)



Ethanol
60



Babassuamidopropalkonium Chloride
0.3



Water
36.23



U-care JR 30
0.2



Zinc acetate
0.2



Zinc gluconate
0.3



Zinc lactate
0.1



Panthenol
1.0



Chlorhexidine gluconate (CHG)
0.05



BZK
0.12



Silicone fluid (DC245)
0.5



Procety-10 (PPG-10 cetyl ether)
0.5



Farnesol
0.5



(F) Alcohol hand disinfectant-2



Ethanol
60



Babassuamidopropalkonium Chloride
0.3



Water
36.08



U-care JR 30
0.2



Zinc acetate
0.2



Zinc gluconate
0.3



Zinc lactate
0.1



Panthenol
1.0



Chlorhexidine gluconate (CHG)
0.05



BZK
0.12



Silicone fluid (DC245)
0.5



Procety-10 (PPG-10 cetyl ether)
0.5



Farnesol
0.5



PHMB
0.15



(G) Alcohol surgical hand prep-1



Water
26.87



Zinc lactate
0.2



Zinc gluconate
0.2



Methocell K4MS
0.1



UcareJR 30
0.2



Panthenol 50W
1.0



Ethanol
68.0



CrodamolSTS
1.0



Babassuamidopropalkonium Chloride
0.3



Procetyl 10
0.5



PHMB
0.15



Farnesol
0.3



BZT
0.18



Propylene Glycol
1.0



(H) Alcohol surgical hand prep-2



Ethanol
68



Babassuamidopropalkonium Chloride
0.5



Water
27.32



U-care JR 30
0.2



Zinc acetate
0.2



Zinc gluconate
0.4



Zinc lactate
0.2



Panthenol
1.0



BZT
0.18



Silicone fluid (DC245)
0.5



Procety-10 (PPG-10 cetyl ether)
0.5



Farnesol
0.5



Phenoxyethanol
0.5



(I) Alcohol surgical hand prep-3



Ethanol
68



Babassuamidopropalkonium Chloride
0.5



Water
27.02



U-care JR 30
0.2



Zinc acetate
0.2



Zinc gluconate
0.4



Zinc lactate
0.2



Panthenol
1.0



BZT
0.18



Germall +
0.15



Silicone fluid (DC245)
0.5



Procety-10 (PPG-10 cetyl ether)
0.5



Farnesol
0.5



Phenoxyethanol
0.5



PHMB
0.15



(J) Alcohol surgical hand prep-3



Ethanol
68



Babassuamidopropalkonium Chloride
0.5



Water
27.27



U-care JR 30
0.2



Zinc acetate
0.2



Zinc gluconate
0.4



Zinc lactate
0.2



Panthenol
1.0



BZT
0.18



Silicone fluid (DC245)
0.5



Procety-10 (PPG-10 cetyl ether)
0.5



Farnesol
0.5



Phenoxyethanol
0.5



CHG
0.05



(K) Anti-irritant Surgical Hand Prep-4
Percentage (w/w)



Water
27.15



Zinc lactate
0.2



Zinc gluconate
0.2



Methocell K4MS
0.1



U Care-JR 30M
0.2



D,L-Panthenol
0.5



Benzethonium chloride
0.18



Ethanol
68.0



Crodamol STS
1.0



Procetyl
0.5



Babassuamidopropalkonium Chloride
0.3



Propylene Glycol
1.0



Farnesol
0.5



Polyhexamethylene biguanide
0.15



Fragrance
0.02



(L) Anti-irritant Surgical Hand Prep-5



Water
26.45



Zinc lactate
0.2



Zinc gluconate
0.2



Klucell MCS
0.8



U Care-JR 30M
0.2



D,L-Panthenol
0.5



Benzethonium chloride
0.18



Ethanol
68.0



Crodamol STS
1.0



Procetyl
0.5



Babassuamidopropalkonium Chloride
0.3



Propylene Glycol
1.0



Farnesol
0.5



Polyhexamethylene biguanide
0.15



Fragrance
0.02











(M) Alcohol Surgical Hand Prep Containing Zinc Gel


The following formulation is advantageously used by persons who wear latex gloves, but who have a latex allergy.
















Ingredients
Percent (w/w)



















Ethanol
68



Babassuamidopropalkonium Chloride
0.5



Water
22.93



U-care JR 30
0.6



Zinc acetate
0.2



Zinc gluconate
0.7



Zinc lactate
0.2



Zinc oxide
2.0



Panthenol
1.0



CHG
0.05



Incroquat TMS Behenyl
0.5



Silicone fluid (DC245)
0.5



Procety-10 (PPG-10 cetyl ether)
0.5



Glycerol
1.0



Farnesol
0.5



Germal Plus
0.2



Phenoxyethanol
0.5



Benzalkonium chloride
0.12



(N) Alcohol based anti-irritant



Surgical Prep



Water
26.87



Zinc lactate
0.2



Zinc gluconate
0.2



Methocell K4MS
0.1



UcareJR 30
0.2



Panthenol 50W
1.0



Alcohol.SDA-40B
68.0



CrodamolSTS
1.0



Babassuamidopropalkonium Chloride
0.3



Procetyl 10
0.5



PHMB
0.15



Farnesol
0.3



BZT
0.18



Propylene Glycol
1.0



(O) Topical cream-1



Incroquat TMS Behenyl
0.8



Polawax NF
0.8



Petroleum Jelly
3.0



Crothix
1.0



Crodomol MM
1.0



Cremerol HMG
1.0



Propylene glycol
2.0



Glycerin
8.0



Water
78.22



UCare JR30-M
0.2



Germall Plus
0.2



BZT
0.18



Geranium oil
0.5



Zinc acetate
0.2



Zinc gluconate
0.7



Zinc lactate
0.2



Zinc oxide
2.0



(P) Topical cream-2



Incroquat TMS Behenyl
0.8



Polawax NF
0.8



Petroleum Jelly
3.0



Crothix
1.0



Crodomol MM
1.0



Cremerol HMG
1.0



Propylene glycol
2.0



Glycerin
8.0



Water
78.22



UCare JR30-M
0.2



Germall Plus
0.2



BZT
0.18



Basil Oil
0.5



Zinc acetate
0.2



Zinc gluconate
0.7



Zinc lactate
0.2



Zinc oxide
2.0



(Q) Topical cream-3



Incroquat TMS Behenyl
0.8



Polawax NF
0.8



Petroleum Jelly
3.0



Crothix
1.0



Crodomol MM
1.0



Cremerol HMG
1.0



Propylene glycol
2.0



Glycerin
8.0



Water
78.22



UCare JR30-M
0.2



Germall Plus
0.2



BZT
0.18



Sandalwood oil
0.25



Farnesol
0.25



Zinc acetate
0.2



Zinc gluconate
0.7



Zinc lactate
0.2



Zinc oxide
2.0



(R) Topical cream-4



Incroquat TMS Behenyl
0.8



Polawax NF
0.8



Petroleum Jelly
3.0



Crothix
1.0



Crodomol MM
1.0



Cremerol HMG
1.0



Propylene glycol
2.0



Glycerin
8.0



Water
78.22



UCare JR30-M
0.2



Germall Plus
0.2



BZT
0.18



Thyme oil
0.5



Zinc acetate
0.2



Zinc gluconate
0.7



Zinc lactate
0.2



Zinc oxide
2.0



(S) Pre-op skin disinfectant-1



Ethanol
60



Povidone iodine
7.5



Water
30.47



U-care JR 30
0.2



Zinc acetate
0.2



Zinc gluconate
0.3



Zinc lactate
0.1



BZT
0.18



CHG
0.05



Farnesol
0.5



Phenoxyethanol
0.5



(T) Pre-op skin disinfectant-2



Ethanol
60



Povidone iodine
2.0



Water
35.97



U-care JR 30
0.2



Zinc acetate
0.2



Zinc gluconate
0.3



Zinc lactate
0.1



BZT
0.18



CHG
0.05



Farnesol
0.5



Phenoxyethanol
0.5



(U) Pre-op skin disinfectant-3



Ethanol
60



Povidone iodine
2.0



Water
35.52



U-care JR 30
0.2



Zinc acetate
0.2



Zinc gluconate
0.3



Zinc lactate
0.1



BZT
0.18



CHG
0.5



Farnesol
0.5



Phenoxyethanol
0.5



(V) Pre-op skin disinfectant-4



Ethanol
60



Povidone iodine
2.0



Water
34.02



U-care JR 30
0.2



Zinc acetate
0.2



Zinc gluconate
0.3



Zinc lactate
0.1



BZT
0.18



CHG
2.0



Farnesol
0.5



Phenoxyethanol
0.5



(W) Zinc gel hand wash #1



UCare JR30-M
0.05



Methocel K100
0.1



Water
36.08



Zinc gluconate
0.3



Zinc acetate
0.1



Zinc lactate
0.1



Germall Plus
0.2



Ethanol
58



Ispropanol
2.0



Silicone (Dimethicone)
0.2



Incroquat Behentyl TMS
0.7



Polawax A31
0.3



Glycerin
1.0



Cetyl ether (PPG10)
0.5



CHG
0.05



BZK
0.02



Farnesol
0.3



(X) Zinc Gel Hand Wash#2



Water
33.45



Ethanol
62.0



Farnesol
0.3



Propylene glycol
1.0



Polyhexamethylene biguanide
0.15



Babassuamidopropalkonium Chloride
0.3



Procetyl-10 (PPG-10 Cetyl ether
0.5



Crodamol STS
1.0



BZT
0.1



Zinc lactate
0.2



Zinc gluconate
0.2



D,L-Panthenol
0.5



UCare JR 30M
0.2



Methocel K4MS
0.1



(Y) Zinc gel cream/lotion for under



latex gloves



Ucare JR30-M
0.8



Methocel K100
0.3



Water
26.63



Zinc gluconate
0.6



Zinc acetate
0.2



Zinc lactate
0.2



Germall Plus
0.2



Zinc stearate
1.5



Zinc oxide
1.0



Glucate DO
5.0



Ethanol
55.0



Isopropanol
3.0



Silicone (Dimethicone)
0.5



Incroquat Behenyl TMS
1.0



Polawax A31
0.5



Glycerin
2.0



Cetyl ether (PPG10)
1.0



CHG
0.05



BZK
0.02



Farnesol
0.3



Vitamin E
0.2



(Z) Anti-irritant disinfectant soap



Polyox WSR 205
0.1



UCare Jr30-M
0.2



Germall Plus
0.2



Water
86.93



Pluronic F87
2.0



Cocoamidopropylbetaine
1.0



Mirapol A-15
1.0



Propylene glycol
2.0



Polyquaternium-47(Merquat 3330)
3.0



Glycerin
2.0



CHG
0.05



BZK
0.12



Triclosan
0.3



Farnesol
0.3



Lemon oil
0.3



Zinc acetate
0.1



Zinc lactate
0.1



Zinc gluconate
0.3










6. WORKING EXAMPLES
6.1. Example 1

Topical formulations containing zinc salts as anti-irritants were prepared in the presence and absence of EO and IC and in the presence and absence of antimicrobial compounds, such as benzalkonium chloride (BZK), chlorhexidine gluconate (CHG), zinc pyrithione (ZP) and triclosan (TC). The following EO and IC were evaluated: lemon oil as a representative essential oil, farnesol and linalool as representative terpene alcohols, and citral as a representative aldehyde. The resulting formulations then were evaluated for their antimicrobial activity.


6.1.1. Method


Preparation of Alcohol Based Zinc Gel


An alcohol based gel was prepared as follows, and the antimicrobials, EOs and/or ICs were added to this base:












BASE #1










Ingredient
% by weight














UCare JR30-M
0.1



Methocel K100
0.1



Water
36.4



Zinc gluconate
0.3



Zinc acetate
0.1



Zinc lactate
0.1



Germall Plus
0.2



Ethanol
58



Isopropanol
2.0



Silicone (Dimethicone)
0.2



Incroquat Behenyl TMS
0.7



Polawax A31
0.3



Glycerin
1.0



Cetyl ether (PPG10)
0.5











Evaluation of Rapid Antimicrobial Activity in Presence of Serum


To determine the efficacy of the antimicrobial composition on the skin, which may be contaminated with blood or other proteinaceous fluids containing bacteria, the antimicrobial activity was evaluated in the presence of serum as follows. Briefly, 0.5 ml of 108 CFU of S. aureus/ml was added to 0.5 ml of bovine adult serum in a sterile culture tube and mixed. 0.5 ml of the test formulation was added to each tube and vortexed. After 15 seconds, it was further diluted 1:100 with drug inactivating media (LTSB) and 0.5 ml was plated on a TSA plate. The plates were incubated at 37° C. for 24 hours and the colony count per ml of culture was determined.


6.1.2. Results


It was observed that farnesol, linanool, citral and lemon oil showed synergistic antimicrobial effects when combined with BZK. No such synergism was observed when farnesol was combined with other antimicrobial compounds, CHG, ZP or TC. See Table 1 below.









TABLE 1







Synergistic effect of EO and IC ingredients with


antimicrobial agents Test organism: S. aureus











Group
CFU/mL
Log10 reduction







Control (Base)
3.4 × 107




BZK
5.4 × 105
1.8



CHG
6.6 × 105
1.7



TC
1.5 × 106
1.3



ZP
1.4 × 106
1.4



F
8.4 × 106
0.6



LI
1.5 × 106
1.3



CI
1.5 × 106
1.3



LO
1.6 × 106
1.3



BZK + F
3.0 × 102
5.0



BZK + CI
2.0 × 102
5.2



BZK + LI
6.0 × 102
4.7



BZK + LO
1.4 × 103
4.4



CHG + BZK + F
2.3 × 102
5.2



CHG + BZK + LO
1.4 × 103
4.4



CHG + BZK + LI
2.0 × 102
5.2



CHG + BZK + CI
1.0 × 102
5.5



CHG + BZK + LO + TC
1.4 × 103
4.4



CHG + BZK + F + TC
1.5 × 102
5.3



CHG + BZK + F + ZP + LO
2.0 × 102
5.2



CHG + LO
1.6 × 105
2.3



TC + LO
1.4 × 106
1.4



ZP + LO
1.4 × 106
1.4



CHG + F
6.8 × 104
2.7



TC + F
1.2 × 106
1.4



ZP + F
1.3 × 106
1.4







Key:



BZK: Benzalkonium chloride (0.12%);



PHMB: Polyhexamethylenebiguanide hydrochloride (0.15%);



CHG: Chlorhexidene gluconate (0.05%);



TC: Triclosan (0.3%);



ZP: Zinc pyrithione (0.5%);



F: Farnesol (0.3%);



LO: Lemon oil (0.3%);



LI: Linalool; (0.3%);



CI: Citral (0.3%)






It can be seen from Table 1 that, among the antimicrobial compounds used, only the quaternary ammonium compound, benzalkonium chloride, exhibited significant synergistic activity in combination with EOs and ICs.


6.2. Example 2

The present example shows the antimicrobial activity of compositions comprising a quaternary ammonium compound, benzethonium chloride (BZT) and farnesol in the presence and absence of zinc salts. The antimicrobial activity was evaluated as described in Example 1.


Famesol and BZT were incorporated into Base #1 (containing zinc salts) and Base #2 (not containing zinc salts) shown below in proportions shown in Table 2.












BASE #2 (Without zinc salts)










Ingredient
% by weight














UCare JR30-M
0.1



Methocel K100
0.1



Water
36.9



Germall Plus
0.2



Ethanol
58



Ispropanol
2.0



Silicone (Dimethicone)
0.2



Incroquat Behenyl TMS
0.7



Polawax A31
0.3



Glycerin
1.0



PPG-10 Cetyl ether (Procetyl-10)
0.5

















TABLE 2







Test organism: S. aureus










Without zinc salts
With zinc salts











Quantity in Gel

log10

log10


(% w/w)
cfu/ml
reduction
cfu/ml
reduction














Control Gel
4.1 × 107
0.0
1.4 × 107
0.0


BZT (0.18%)
7.5 × 105
1.7
3.3 × 105
1.6


Farnesol (0.5%)
8.9 × 105
1.7
4.5 × 105
1.5


BZT (0.18%) +
2.0 × 102
5.4
6.7 × 101
5.3


Farnesol (0.5%)









These results demonstrate the synergistic antimicrobial effects of BZT and farnesol, which occur both in the presence or absence of zinc salts.


6.3. Example 3

The antimicrobial effects of varying proportions of farnesol and quaternary ammonium compounds, incorporated into Base #2, were evaluated using the same method described in Example 1. The results are shown in Table 3.









TABLE 3







Test organism: S. aureus











Groups in

log10



Gel Base (% w/w )
cfu/ml
reduction















Control Gel
1.4 × 107
0.0



BZT (0.18%) (preservative level)
3.3 × 105
1.6



BZT (0.12%)
4.7 × 105
1.5



BZT (0.06%)
5.7 × 105
1.4



BZK (0.12%) (preservative level)
5.4 × 105
1.4



BZK (0.06%)
1.8 × 106
0.9



Farnesol (0.5%)
4.5 × 105
1.5



Farnesol (0.3%)
4.6 × 105
1.5



BZT (0.18%) + Farnesol (0.5%)
6.7 × 101
5.3



BZT (0.18%) + Farnesol (0.3%)
6.7 × 101
5.3



BZT (0.12%) + Farnesol (0.3%)
1.0 × 102
5.1



BZT (0.06%) + Farnesol (0.3%)
1.0 × 102
5.1



BZK (0.12%) + Farnesol (0.5%)
2.0 × 102
4.8



BZK (0.12%) + Farnesol (0.3%)
3.7 × 103
3.6



BZK (0.06%) + Farnesol (0.3%)
7.9 × 103
3.2










These results demonstrate that both quaternary ammonium compounds, BZK and BZT, exhibit synergistic antimicrobial activity when used in combination with farnesol on S. aureus in a rapid serum-based assay.


6.4. Example 4

The antimicrobial effects of various EO and IC, in the presence or absence of quaternary ammonium compounds, BZK and BZT, incorporated into Base #2, were evaluated using the same assay described in Example 1. The amounts of various agents used are presented in Table 4. In addition to S. aureus, the rapid assay was also performed with E. coli. The results are shown in Table 4.












TABLE 4










S. aureus


E. coli














log10

log10


Group
cfu/ml
reduction
cfu/ml
reduction














Control (Base)
1.4 × 107
0.0
2.6 × 107
0.0


BZK
3.3 × 105
1.6
5.8 × 105
1.6


BZT
5.3 × 105
1.4
4.3 × 105
1.8


Farnesol
4.5 × 105
1.5
4.3 × 105
1.8


Patchouli oil
2.0 × 106
0.8
2.0 × 106
1.1


Basil oil
1.4 × 106
1.0
6.2 × 104
2.6


Eucalyptus oil
1.6 × 106
0.9
1.9 × 106
1.1


Thyme oil
1.3 × 106
1.0
4.9 × 105
1.7


Clove oil
1.6 × 106
0.9
1.4 × 105
2.3


Geranium oil
3.8 × 106
0.6
8.0 × 104
2.5


Orange oil
6.9 × 106
0.3
4.9 × 105
1.7


Mullein oil
6.1 × 105
1.4
6.2 × 105
1.6


Citronella oil
4.7 × 105
1.5
2.2 × 105
2.1


Sandalwood oil
7.4 × 105
1.3
4.9 × 105
1.7


Farnesol + BZK
2.0 × 102
4.8
3.4 × 104
2.9


Farnesol + BZT
5.3 × 102
4.4
6.8 × 104
2.6


Patchouli oil + BZT
6.7 × 101
5.3
1.1 × 104
3.4


Basil oil + BZT
3.3 × 101
5.6
6.7 × 101
5.6


Eucalyptus oil + BZT
3.3 × 101
5.6
4.2 × 103
3.8


Thyme oil + BZT
3.3 × 101
5.6
3.3 × 101
5.9


Clove oil + BZT
3.3 × 101
5.6
2.0 × 102
5.1


Geranium oil + BZT
3.3 × 101
5.6
3.3 × 101
5.9


Orange oil + BZT
3.3 × 103
3.6
3.5 × 104
2.9


Mullein oil + BZT
2.4 × 105
1.8
9.8 × 104
2.4


Citronella oil + BZT
6.7 × 102
5.3
2.8 × 103
4.0


Sandalwood oil + BZT
2.0 × 102
4.8
4.7 × 103
3.7





Key:


BZK: Benzalkonium chloride (0.12% w/w: preservative level);


BZT: Benzethonium chloride (0.18% w/w: preservative level);


all other EO/IC (0.5% w/w).






These results demonstrate that various essential oils, when used in combination with quaternary ammonium compounds, exhibit rapid synergistic antimicrobial activity on S. aureus in a rapid serum-based assay. In particular, patchouli oil, basil oil, eucalyptus oil, thyme oil, clove oil, geranium oil, and citronella oil show pronounced antimicrobial effects.


6.5. Example 5

The effect of the addition of various biguanide antimicrobial compounds to combinations of farnesol and quaternary ammonium compound, incorporated into Base #2 was tested using the assay described in Example 1. The results are shown in Table 5.












TABLE 5










S. aureus


E. coli














log10

log10


Group
cfu/ml
reduction
cfu/ml
reduction














Gel base
1.4 × 107
0.0
2.6 × 107
0.0


CHG (0.05%)
6.6 × 105
1.3
4.8 × 105
1.7


BZT (0.18%)
5.3 × 105
1.4
4.3 × 105
1.8


PHMB (0.15%)
4.3 × 104
2.9
6.0 × 105
1.6


Farnesol (0.5%)
4.5 × 105
1.5
4.3 × 105
1.8


Farnesol (0.5%) +
6.8 × 104
2.3
7.2 × 104
2.5


CHG (0.05%)


Farnesol (0.5%) +
2.7 × 103
4.1
6.5 × 102
4.6


PHMB (0.15%)


Farnesol (0.5%) +
5.3 × 102
4.4
6.8 × 104
2.6


BZT (0.18%)


Farnesol (0.5%) +
5.0 × 102
4.5
2.0 × 102
5.1


BZT (0.18%) +


CHG (0.05%)


Farnesol (0.5%) +
3.0 × 102
5.0
1.0 × 102
5.4


BZT (0.18%) +


PHMB (0.15%)





PHMB appears to enhance the activity of the combination of BZT and farnesol.






6.6. Example 6

This example demonstrates the antimicrobial activity of gels comprising farnesol in combination with various antimicrobial agents. The concentrations of the antimicrobial agents were selected in keeping with the permissible levels of these ingredients in leave-on skin care formulations. The antimicrobial activity was assayed using the method described in Example 1 using Gel Base #1. The data has been presented in Table 6.









TABLE 6







Test organism: S. aureus










Recommended
log10 reduction in


Ingredients in
range as
colony count from the


the Gel (% w/w)
preservatives (% w/w)
controla,b












Farnesol (0.3%)

0.6


CHG (0.05%)
  0.0-0.05
1.7


PHMB (0.15%)
 0.1-0.3
2.9


TC (0.3%)
 0.3-0.5
1.3


BZT (0.18%)
 0.1-0.2
1.6


BZK (0.12%)
  0.1-0.12
1.8


Farnesol (0.3%) +

2.7


CHG (0.05%)


Farnesol (0.3%) +

3.4


PHMB (0.15%)


Farnesol (0.3%) +

1.4


TC (0.3%)


Farnesol (0.3%) +

5.3


BZT (0.18%)


Farnesol (0.3%) +

5.0


BZK (0.12%)






aThe colony count of the Control Base experiment was 3.4 × 107 cfu/ml.




bFor Control, the same Gel Base as used for the Gels shown in Table 6, but without any antimicrobial agents.







The results show that farnesol's ability to enhance the activity of the antimicrobial agents ranges from compound to compound. Farnesol shows synergy with the quaternary ammonium compounds, benzalkonium chloride (BZT) and benzethonium chloride (BZK). Among biguanide antimicrobial compounds, it enhances the activity of polyhexamethylene biguanide hydrochloride (PHMB), but not that of chlorhexidine gluconate (CHG). Farnesol also does not show any synergy with triclosan, nor does it enhance triclosan's action. Therefore, the ability of farnesol to show synergy or enhance the action of biocides/preservatives is specific to the antimicrobial agents in question.


A similar study was performed using the same concentration of farnesol above in Table 6 (0.3% w/w, i.e. 1.35 mM per 100 g gel) and the various antimicrobial agents were added to the gel in the same molar concentration (0.06 mM per 100 g of gel). The data has been presented in Table 7 below.









TABLE 7







Test organism: S. aureus









log10 reduction in


Ingredients in the Gel
colony count from the


(gram millimoles per 100 g Gel)
controla,b











Farnesol (1.35 mM)
1.8


CHG (0.06 mM)
1.9


PHMB (0.06 mM)
2.1


TC (1.04 mM)c
1.3


BZT (0.06 mM)
1.9


Farnesol (1.35 mM) + CHG (0.06 mM)
2.0


Farnesol (1.35 mM) + PHMB (0.06 mM)
3.2


Farnesol (1.35 mM) + TC (1.04 mM)c
1.4


Farnesol (1.35 mM) + BZT (0.06 mM)
5.5






aThe colony count of the Control Base experiment was 6.4 × 107 cfu/ml.




bFor Control, the same Gel Base as used for the Gels shown in Table 7 but without any preservatives/biocides was used.




cSince Triclosan is not effective even at 1.04 mM concentration, experiment was not performed with 0.06 mM concentration.







Similar to the results shown in Table 6, farnesol has a varying effect on enhancement of the antimicrobial activity of the various antimicrobial agents. Farnesol appears to exhibit synergistic antimicrobial activity in combination with BZT, but not with triclosan. PHMB appears to enhance the acitivity of farnesol. The mechanism of farnesol to show synergy or enhance the activity of the antimicrobial agents varies for different compounds, but is the same for the same compound, irrespective of the concentration (whether the compound is taken in % w/w or in molar proportions).


Various references, patents, publications, product descriptions, etc., are cited throughout this specification, the disclosures of which are incorporated herein by reference in their entireties for all purposes.

Claims
  • 1. An antimicrobial composition for topical use comprising a quaternary ammonium benzethonium chloride compound present at a concentration of between 0.01 and 0.5% (w/w), a polyhexamethyl biguanide, an individual constituent of an essential oil present at a concentration of between 0.05 and 1.0 percent (w/w), and two or more zinc salts in an amount that reduces irritation, wherein the quaternary ammonium benzethonium chloride compound, the polyhexamethyl biguanide, and the individual constituent of an essential oil are present in amounts which exhibit synergistic antimicrobial activity, and wherein the polyhexamethyl biguanide is present at a concentration of between 0.1 to 2.0% w/w.
  • 2. The composition of claim 1, wherein the individual constituent of an essential oil is selected from the group consisting of 1-citronellol, α-amylcinnamaldehyde, lyral, geraniol, farnesol, hydroxycitronellal, isoeugenol, eugenol, eucalyptol, linalool and citral.
  • 3. The composition of claim 1, wherein the zinc salts are selected from the group consisting of zinc gluconate and zinc lactate.
  • 4. The composition of claim 1, wherein the zinc salts are each present at a concentration of between 0.1% and 0.5% w/w.
  • 5. The composition of claim 1, further comprising panthenol present at a concentration of between 0.5% and 2% w/w.
  • 6. The composition of claim 1, further comprising alcohol present at a concentration of between 10-90% w/w, water present at a concentration of between 15-70% w/w, thickeners and/or gelling agents present at a concentration of between 0.05-3.0% w/w, and emollients present at a concentration of between 0.1-3.0% w/w.
  • 7. An antimicrobial composition for topical use comprising a quaternary ammonium benzethonium chloride compound present at a concentration of between 0.01 and 0.5% (w/w), between 0.1 to 2.0% (w/w) of a polyhexamethyl biguanide, between 0.05 and 1.0 percent (w/w) farnesol, and two or more zinc salts in an amount that reduces irritation, wherein the quaternary ammonium benzethonium chloride compound, the polyhexamethyl biguanide, and the farnesol are present in amounts which exhibit synergistic antimicrobial activity.
1. CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of U.S. Provisional Application Ser. Nos. 60/488,349, and 60/530,864, filed Jul. 17, 2003, and Dec. 18, 2003, respectively, each of which are incorporated herein by reference in their entireties.

US Referenced Citations (110)
Number Name Date Kind
3257276 Broh-Kahn et al. Jun 1966 A
3485915 Gerstien et al. Dec 1969 A
3960745 Billany et al. Jun 1976 A
4243657 Okumura et al. Jan 1981 A
4318907 Kligman et al. Mar 1982 A
4393076 Noda et al. Jul 1983 A
4478853 Chaussee et al. Oct 1984 A
4587266 Verdicchio May 1986 A
4604384 Smith et al. Aug 1986 A
4814334 Salkin Mar 1989 A
4853978 Stockum Aug 1989 A
4868169 O'Laughlin et al. Sep 1989 A
4870108 Page Sep 1989 A
4889844 Silvetti, Sr. et al. Dec 1989 A
4910205 Kogan et al. Mar 1990 A
4919837 Gluck Apr 1990 A
4956170 Lee et al. Sep 1990 A
4963591 Fourman et al. Oct 1990 A
4966754 Purohit et al. Oct 1990 A
5031245 Milner Jul 1991 A
5059416 Cherukuri et al. Oct 1991 A
5073372 Turner et al. Dec 1991 A
5089205 Huang et al. Feb 1992 A
5110809 Wang et al. May 1992 A
5116602 Robinson et al. May 1992 A
5133090 Modak et al. Jul 1992 A
5147648 Bannert Sep 1992 A
5164107 Khan et al. Nov 1992 A
5208031 Kelly May 1993 A
5357636 Dresdner, Jr. et al. Oct 1994 A
5403864 Bruch et al. Apr 1995 A
5447930 Nayak Sep 1995 A
5516510 Beilfuss et al. May 1996 A
5591442 Diehl et al. Jan 1997 A
5599549 Wivell et al. Feb 1997 A
5612324 Guang Lin et al. Mar 1997 A
5624675 Kelly Apr 1997 A
5624962 Takeuchi et al. Apr 1997 A
5648389 Gans et al. Jul 1997 A
5658575 Ribier et al. Aug 1997 A
5705532 Modak et al. Jan 1998 A
5708023 Modak et al. Jan 1998 A
5736574 Burnier et al. Apr 1998 A
5750122 Evans et al. May 1998 A
5753270 Beauchamp et al. May 1998 A
5776430 Osborne et al. Jul 1998 A
5804203 Hahn et al. Sep 1998 A
5830488 Suzuki et al. Nov 1998 A
5885562 Lowry et al. Mar 1999 A
5888562 Hansen et al. Mar 1999 A
5902572 Luebbe et al. May 1999 A
5906808 Osborne et al. May 1999 A
5951993 Scholz et al. Sep 1999 A
5965137 Petrus Oct 1999 A
5965610 Modak et al. Oct 1999 A
5980477 Kelly Nov 1999 A
5980925 Jampani et al. Nov 1999 A
5985918 Modak et al. Nov 1999 A
5985931 Modak et al. Nov 1999 A
6022551 Jampani et al. Feb 2000 A
6037386 Modak et al. Mar 2000 A
6040347 Cupferman et al. Mar 2000 A
6045817 Ananthapadmanabhan et al. Apr 2000 A
6107261 Taylor et al. Aug 2000 A
6110908 Guthery Aug 2000 A
6136771 Taylor et al. Oct 2000 A
6183766 Sine et al. Feb 2001 B1
6187327 Stack Feb 2001 B1
6204230 Taylor et al. Mar 2001 B1
6211243 Johnson Apr 2001 B1
6248343 Jampani et al. Jun 2001 B1
6287577 Beerse Sep 2001 B1
6287583 Warren et al. Sep 2001 B1
6294186 Beerse et al. Sep 2001 B1
6319958 Johnson et al. Nov 2001 B1
6321750 Kelly Nov 2001 B1
6323171 Fonsny et al. Nov 2001 B1
6344218 Dodd Feb 2002 B1
6352701 Scholz et al. Mar 2002 B1
6376522 Holzl et al. Apr 2002 B1
6387357 Chopra et al. May 2002 B1
6403067 Schamper et al. Jun 2002 B1
6403071 Scavone et al. Jun 2002 B1
6414032 Johnson Jul 2002 B1
6420431 Johnson Jul 2002 B1
6426062 Chopra et al. Jul 2002 B1
6485716 Fei et al. Nov 2002 B1
6511657 Avendano et al. Jan 2003 B2
6582711 Asmus et al. Jun 2003 B1
6613312 Rizvi et al. Sep 2003 B2
6682749 Potechin et al. Jan 2004 B1
6723689 Hoang et al. Apr 2004 B1
6846846 Modak et al. Jan 2005 B2
7435429 Modak et al. Oct 2008 B2
7563461 Modak et al. Jul 2009 B2
20020022660 Jampani et al. Feb 2002 A1
20020098159 Wei et al. Jul 2002 A1
20020165130 Johnson et al. Nov 2002 A1
20030134780 Patt Jul 2003 A1
20030152644 Modak et al. Aug 2003 A1
20030157138 Eini et al. Aug 2003 A1
20030211066 Scholz Nov 2003 A1
20040102429 Modak et al. May 2004 A1
20040208908 Modak et al. Oct 2004 A1
20040253275 Eini et al. Dec 2004 A1
20050019431 Modak et al. Jan 2005 A1
20050048139 Modak et al. Mar 2005 A1
20050238602 Modak et al. Oct 2005 A1
20050281762 Modak et al. Dec 2005 A1
20060141017 King et al. Jun 2006 A1
Foreign Referenced Citations (55)
Number Date Country
4140474 Jun 1993 DE
4240674 Mar 1994 DE
195 23 320 Jan 1997 DE
19523320 Jan 1997 DE
0041448 Dec 1981 EP
304802 Mar 1989 EP
402078 Dec 1990 EP
0521455 Jan 1993 EP
0604848 Jul 1994 EP
0 674 896 Oct 1995 EP
0674896 Oct 1995 EP
0694310 Jan 1996 EP
0313302 Apr 1998 EP
1 001 012 May 2000 EP
1001012 May 2000 EP
2729050 Jul 1996 FR
10328284 Dec 1998 JP
2166309 May 2001 RU
833240 May 1981 SU
WO8400111 Jan 1984 WO
WO8704350 Jul 1987 WO
WO 8800795 Feb 1988 WO
WO8800795 Feb 1988 WO
WO8803799 Jun 1988 WO
WO8905645 Jun 1989 WO
WO9307903 Apr 1993 WO
WO9318745 Sep 1993 WO
WO9318852 Sep 1993 WO
WO9415461 Jul 1994 WO
WO 9418939 Sep 1994 WO
WO9526134 Oct 1995 WO
WO 9824426 Jun 1998 WO
WO9824426 Jun 1998 WO
WO 9851275 Nov 1998 WO
WO9903463 Jan 1999 WO
WO9938505 May 1999 WO
WO9938505 Aug 1999 WO
WO9938505 Aug 1999 WO
WO 9951192 Oct 1999 WO
WO 9960852 Dec 1999 WO
WO9960852 Dec 1999 WO
WO9963816 Dec 1999 WO
WO0037042 Jun 2000 WO
WO 0141573 Jun 2001 WO
WO0141573 Jun 2001 WO
WO03003896 Jan 2003 WO
WO 03034994 May 2003 WO
WO03034994 May 2003 WO
WO 03066001 Aug 2003 WO
WO03066001 Aug 2003 WO
WO 03083028 Oct 2003 WO
WO03083028 Oct 2003 WO
WO2004014416 Feb 2004 WO
WO2006099359 Sep 2006 WO
WO2007069214 Jun 2007 WO
Related Publications (1)
Number Date Country
20050019431 A1 Jan 2005 US
Provisional Applications (2)
Number Date Country
60488349 Jul 2003 US
60530864 Dec 2003 US