The present invention relates generally to implantable medical devices (IMDs).
At present, a wide variety of IMDs are commercially released or proposed for clinical implantation that include a housing that is implanted subcutaneously and typically include elongated medical electrical leads or drug delivery catheters that extend from the subcutaneous site to other subcutaneous sites or deeper into the body to organs or other implantation sites. Typically, the IMD includes a battery-powered implantable pulse generator (IPG) that is coupled with electrical medical leads, a battery-powered implantable monitor that may or may not be coupled with electrical medical leads, a battery-powered drug pump coupled with a drug delivery catheter, etc. Such IMDs include implantable cardiac pacemakers, cardioverter/defibrillators having pacing capabilities, other electrical stimulators including spinal cord, deep brain, nerve, and muscle stimulators, drug delivery systems, cardiac and other physiologic monitors, cochlear implants, etc. Typically, the battery-powered component of the IMD is implanted subcutaneously at a surgically prepared site, referred to as a “pocket”. The surgical preparation and initial or replacement IMD implantations are conducted in a sterile field, and the IMD components are packaged in sterile containers or sterilized prior to introduction into the sterile field. However, despite these precautions, there always is a risk of introduction of microbes into the pocket. Surgeons therefore typically apply disinfectant or antiseptic agents to the skin at the surgical site prior to surgery (e.g., Chlorhexidine, Gluconate, Povidone-Iodine, Isopropyl Alcohol, Ethyl Alcohol), directly to the site before the incision is closed (e.g., gentamicin, vancomycin), and prescribe oral antibiotics for the patient to ingest during recovery (e.g., sefuroxin, gentamicin, rifamycin, vancomycin).
Despite these precautions, infections do occur. In addition, once the pocket becomes infected, the infection can migrate along the lead or catheter to the, heart, brain, spinal canal or other location in which the lead or catheter is implanted. Such a migrating infection can become intractable and life-threatening, requiring removal of the IMD in the pocket and associated devices, such as leads and catheters. Removal of a chronically implanted lead or catheter can be difficult and dangerous. Aggressive systemic drug treatment is also provided to treat the infection. To prevent pocket infection and thus the ability of infection migration along a lead or catheter, there is a need to impart antimicrobial activity to the IMD residing in the pocket itself.
There is long history of the actual or proposed use of antimicrobial agents coated on IMDs for prevention of infection. However, applying coatings to surfaces of IMDs intended for long-term implantation can be problematic because the coatings can degrade and slough away over time. This may be particularly problematic with IMDs configured to be implanted in the pocket, which IMDs may contain metallic surfaces. Such IMDs, e.g., such as neurostimulatory pulse generators, cardiac pacemakers, drug infusion pumps, and the like, containing metallic surfaces can be more difficult to coat than polymeric surfaces. As such, there is a need to impart antimicrobial activity to active IMDs residing in subcutaneous pockets, where the vehicle containing the antimicrobial activity can withstand long-term implantation.
Various embodiments of the invention are directed to providing a simple, effective and long lasting anti-microbial agent into the subcutaneous implantation pocket that is surgically prepared to receive an IMD. This may be accomplished by disposing about the IMD a covering comprising an anti-infective agent. The covering may be a boot, jacket, etc. The anti-infective agent is present on the surface of the covering or is eluted from the covering in an amount sufficient to prevent infection in a subcutaneous pocket into which the IMD is implanted. The covering may be conformed to the shape of the IMD implanted into the pocket and may be attached to or detached from the IMD. In an embodiment, the covering is a polymeric boot that fits around at least a portion of an outer housing of the IMD.
Polymeric boots have been proven over long-term clinical use to not degrade significantly in the body despite the fact that they are relatively thin. Therefore, it is expected that anti-infective agent dispersed through the thin wall of the anti-microbial pad or boot component or other component will be beneficially present or released over time.
By using coverings as described herein, as opposed to coatings, it is not necessary for manufacturers to commit to manufacturing and clinical buyers to stock redundant models of expensive IMDs, one model with the anti-infective polymeric component and one without the anti-microbial polymeric component. Once it is determined that an IMD having anti-infective properties is desired, the coating may be placed about the IMD by the manufacturer, the consumer, or the user.
This summary of the invention has been presented here simply to point out some advantages over the prior art and is not intended to operate in any manner as a limitation on the interpretation of claims that are presented initially in the patent application and that are ultimately granted.
These and other advantages will be more readily understood from the following detailed description, when considered in conjunction with the drawings.
The drawings are not necessarily to scale.
In the following detailed description, references are made to illustrative embodiments of methods and apparatus for carrying out the invention. It is understood that other embodiments can be utilized without departing from the scope of the invention.
Anti-Infective Agents
Any anti-infective agent may be incorporated in or on a covering configured to be disposed about an IMD. Preferably, the anti-infective agent is present in or on the covering, or may be eluted from the covering, in an amount sufficient to prevent an infection from forming in a pocket into which the IMD is implanted. It is also desirable that the anti-infective agent, in the concentration present in the covering, be nontoxic when implanted in the pocket. It will be understood that more than one anti-infective agent may be present in or on the covering. As used herein, “anti-infective agent” means an agent that prevents an infection. Anti-infective agents include agents that kill or inhibit the growth of a microbe or a population of microbes. Non-limiting examples of such agents include antibiotics and antiseptics.
Any antibiotic suitable for use in a human may be used in accordance with various embodiments of the invention. As used herein, “antibiotic” means an antibacterial agent. The antibacterial agent may have bateriostatic and/or bacteriocidal activities. Nonlimiting examples of classes of antibiotics that may be used include tetracyclines (e.g. minocycline), rifamycins (e.g. rifampin), macrolides (e.g. erythromycin), penicillins (e.g. nafcillin), cephalosporins (e.g. cefazolin), other beta-lactam antibiotics (e.g. imipenem, aztreonam), aminoglycosides (e.g. gentamicin), chloramphenicol, sufonamides (e.g. sulfamethoxazole), glycopeptides (e.g. vancomycin), quinolones (e.g. ciprofloxacin), fusidic acid, trimethoprim, metronidazole, clindamycin, mupirocin, polyenes (e.g. amphotericin B), azoles (e.g. fluconazole) and beta-lactam inhibitors (e.g. sulbactam). Nonlimiting examples of specific antibiotics that may be used include minocycline, rifampin, erythromycin, nafcillin, cefazolin, imipenem, aztreonam, gentamicin, sulfamethoxazole, vancomycin, ciprofloxacin, trimethoprim, metronidazole, clindamycin, teicoplanin, mupirocin, azithromycin, clarithromycin, ofloxacin, lomefloxacin, norfloxacin, nalidixic acid, sparfloxacin, pefloxacin, amifloxacin, enoxacin, fleroxacin, temafloxacin, tosufloxacin, clinafloxacin, sulbactam, clavulanic acid, amphotericin B, fluconazole, itraconazole, ketoconazole, and nystatin. Other examples of antibiotics, such as those listed in Sakamoto et al., U.S. Pat. No. 4,642,104, which is herein incorporated by reference in its entirety, may also be used. One of ordinary skill in the art will recognize other antibiotics that may be used.
It is desirable that the antibiotic(s) selected kill or inhibit the growth of one or more bacteria that are associated with infection following surgical implantation of a medical device. Such bacteria are recognized by those of ordinary skill in the art and include Stapholcoccus aureus and Staphlococcus epidermis. Preferably, the antibiotic(s) selected are effective against strains of bacteria that are resistant to one or more antibiotic.
To enhance the likelihood that bacteria will be killed or inhibited, it may be desirable to combine one or more antibiotic. It may also be desirable to combine one or more antibiotic with one or more antiseptic. It will be recognized by one of ordinary skill in the art that antimicrobial agents having different mechanisms of action and/or different spectrums of action may be most effective in achieving such an effect. In a particular embodiment, a combination of rifampin and minocycline is used.
Any antiseptic sutable for use in a human may be used in accordance with various embodiments of the invention. As used herein, “antiseptic” means an agent capable of killing or inhibiting the growth of one or more of bacteria, fungi, or viruses. Antiseptic includes disinfectants. Nonlimiting examples of antiseptics include hexachlorophene, cationic bisiguanides (i.e. chlorhexidine, cyclohexidine) iodine and iodophores (i.e. povidone-iodine), para-chloro-meta-xylenol, triclosan, furan medical preparations (i.e. nitrofurantoin, nitrofurazone), methenamine, aldehydes (glutaraldehyde, formaldehyde), silver sulfadiazine and alcohols. One of ordinary skill in the art will recognize other antiseptics.
It is desirable that the antiseptic(s) selected kill or inhibit the growth of one or more microbe that are associated with infection following surgical implantation of a medical device. Such bacteria are recognized by those of ordinary skill in the art and include Stapholcoccus aureus, Staphlococcus epidermis, Pseudomonus auruginosa, and Candidia.
To enhance the likelihood that microbes will be killed or inhibited, it may be desirable to combine one or more antiseptics. It may also be desirable to combine one or more antiseptics with one or more antibiotics. It will be recognized by one of ordinary skill in the art that antimicrobial agents having different mechanisms of action and/or different spectrums of action may be most effective in achieving such an effect. In a particular embodiment, a combination of chlorohexidine and silver sulfadiazine is used.
An anti-infective agent, such as an antibiotic or antiseptic, may be present in the covering at any concentration effective, either alone or in combination with another anti-infective agent, to prevent an infection within a pocket into which the covering is implanted. Generally, an antiseptic agent may be present in the covering at a range of between about 0.5% and about 20% by weight. For example, the anti-infective agent may be present in the covering at a range of between about 0.5% and about 15% by weight or between about 0.5% and about 10% by weight.
Covering
An embodiment of the invention provides a covering configured to be placed about at least a portion of an implantable medical device. The covering may be in the form of a boot, jacket, gauze, wrap and the like. The covering is formed of a polymeric material into or onto which an anti-infective agent is incorporated. Any polymeric material may be used. Preferably the polymeric material is biocompatible and is capable of presenting or eluting the anti-infective agent to the implant pocket in an amount effective to prevent an infection.
Examples of suitable polymeric materials that may be used to form the covering include organic polymers such as silicones, polyamines, polystyrene, polyurethane, acrylates, polysilanes, polysulfone, methoxysilanes, and the like. Other polymers that may be utilized include polyolefins, polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers, ethylene-covinylacetate, polybutylmethacrylate; vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile, polyvinyl ketones; polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers; polyamides, such as Nylon 66 and polycaprolactam; polycarbonates; polyoxymethylenes; polyimides; polyethers; epoxy resins; polyurethanes; rayon; rayon-triacetate; cellulose; cellulose acetate, cellulose butyrate; cellulose acetate butyrate; cellophane; cellulose nitrate; cellulose propionate; cellulose ethers; carboxymethyl cellulose; polyphenyleneoxide; and polytetrafluoroethylene (PTFE). In an embodiment the covering comprises silicone. In an embodiment, the covering comprises polyurethane.
An anti-infective agent may be incorporated into or on the polymeric covering using any known or developed technique. For example, the anti-infective agent may be adhered to a surface of the covering, adsorbed into the covering, or compounded into the polymeric material that forms the covering. Accordingly, the anti-infective material may be embedded, coated, mixed or dispersed on or in the material of the covering. In various embodiments, the anti-infective agent may be incorporated into the polymeric covering as taught by U.S. Pat. Nos. 5,217,493 or 5,624,704.
In an embodiment, the covering is a boot. The boot may be molded into a shape to conform to that of at least a portion of an IMD using known or developed techniques. The IMD may be an active IMD, such as a cardiac pacemaker, a cardioverter/defibrillators, a neurostimulator, a drug infusion pump, and the like.
The remainder of this description may refer specifically to a silicone rubber boot 15, 215, 335, 340, etc. into which an anti-microbial metal ion zeolite is compounded. However, it will be understood that any covering may be substituted for the boot 15 and that any anti-infective agent may be substituted for the metal ion zeolite.
In an embodiment the covering is any covering as described herein, with the proviso that the anti-infective agent is not a metal ion zeolite.
In an embodiment the covering is any covering as describe herein, with the proviso that if the anti-infective agent is a metal ion zeolite, then the metal zeolite is not compounded into the covering.
In an embodiment of a detachable, elastic, boot 15 that is compounded of silicone rubber and the preferred anti-microbial metal ion zeolite and molded in a shape to be tatted over an IPG or monitor 50 implanted in patient 10 is depicted in
The boot 15 is fitted over the housing 55 and connector block 60 of the exemplary IPG or monitor and inserted into a subcutaneous pocket 140 at a distance from the heart 100 as shown in
The IPG 50 depicted in
The housing 55 and connector block 60 of IPG/monitor 50 can take any shape known in the art, and that shape dictates the shape and dimensions of the boot 15. The specifications and operating modes and other characteristics of the pacemaker IPG and the cardiac lead(s) coupled therewith can correspond to any of those known in the art. The monitor can correspond to the Medtronic® CHRONICLE® IHM (implantable hemodynamic monitor) that is coupled through a cardiac lead of the type described in commonly assigned U.S. Pat. No. 5,564,434 having capacitive blood pressure and temperature sensors as well as at least one EGM sense electrode.
The IPG/monitor 50 is slipped through the side opening 35 and the connector block 60 is oriented to be exposed through the edge opening 40. It will also be understood that the side opening 35 is necessary to expose the housing 55 for use as a remote indifferent stimulating and/or sensing electrode in either of a unipolar pacemaker IPG/monitor 50 or in a bipolar pacemaker IPG/monitor also having the capability of monitoring the far field EGM. The boot 15 having such a side opening 35 can still be efficaciously used over a typical bipolar pacemaker IPG/monitor not having such a far held sensing capability. These features of the boot 15 are applicable to the remaining boot embodiments illustrated in
An embodiment of a detachable, elastic, boot 215 that is compounded of silicone rubber and the preferred anti-microbial metal ion zeolite and molded in a shape to be fitted over a rectilinear ICD IPG 250 implanted in patient 10 is depicted in
The boot 215 is fitted over the housing 255 and connector block 260 of the exemplary ICD IPG 250 and inserted into a subcutaneous pocket 140 at a distance from the heart 100 as shown in
The ICD IPG 250 depicted in
A further lead 265 extends subcutaneously from a connection with connector block 260 to a rectilinear, pad-shaped, electrode 270 disposed in a further subcutaneous pocket 140′ selected by the surgeon to optimally apply shock therapies between selected pairs of the electrodes 230, 255, 270, and 290.
Typically the rectilinear electrode 270 is formed of a flexible silicone rubber or polyurethane pad supporting a electrode surface or array on one major side disposed toward heart 100 and a non-conductive side disposed toward the skin. A further detachable, elastic, boot 295 that is compounded of silicone rubber and the preferred anti-microbial metal ion neolith and molded in a shape to be fitted over the non-conductive major side of the rectilinear electrode 770 is shown in
The boot 295 can be affixed by sutures or other means to the silicone rubber or polyurethane pad to ensure that it does not move or detach from the non-conductive side within the pocket 140′.
More recently, it has been proposed that all components of an ICD be implanted subcutaneously distributed between two or more electrode bearing; modules implanted in subcutaneous pockets 140, 140′ around the thorax to deliver shock therapies between them and through the heart. Such ICDs are disclosed in U.S. Pat. Nos. 5,255,692, 5,314,451, and 5,342,407 and in U.S. patent application Publication Nos. 2002/0042634 and 2002/0035377. Such an arrangement is depicted in
First and second electrodes 320 and 325 are supported on one side of the ICD IPG modules 305 and 310, respectively, that are intended to be implanted in the subcutaneous pockets 140, 140′ facing the heart 100 and one another.
The hermetically sealed ICD IPG module 305 encloses the electronic sensing, pacing, and circuitry, including the relatively bulky high voltage capacitors that are charged and discharged to deliver shocks, as well as a low voltage battery employed for powering the circuitry and the delivered pacing pulses. The second hermetically sealed ICD IPG module 310 encloses a relatively bulky high power battery as well as a switch to enable selective connection with the high voltage capacitor charging circuitry within the first ICD IPG module 305 in the manner described in the above referenced '451 patent. The cable 315 encases conductors distributing power from the battery and exchanging signals and commands between circuitry in the first and second ICD IPG modules 305 and 310.
First and second detachable, elastic, boots 335 and 340 that are each compounded of silicone rubber and the preferred anti-microbial metal ion zeolite and molded in a shape to be fitted over the respective first and second ICD IPG modules 305 and 310 implanted in patient 10 are also depicted in
The first and second hermetically sealed ICD IPG modules 305 and 310 bearing the first and second detachable, elastic, boots 335 and 340 are preferably implanted subcutaneously in posterior and anterior positions through a single skin incision intermediate the illustrated posterior and anterior positions. Tunneling tools would be employed to displace the tissue and advance the first and second hermetically sealed housings to the depicted sites or other selected sites around the thorax. Tissue adhesive may be employed to secure the first and second hermetically sealed ICD IPG modules 305 and 310 bearing the first and second detachable, elastic, boots 335 and 340 at the sites and prevent migration. Alternatively, the sites may be exposed through minimal surgical exposures, and the first and second hermetically sealed ICD IPG modules 305 and 310 bearing the first and second detachable, elastic, boots 335 and 340 can be sutured at the sites through the boots 335 and 340 to prevent migration.
Therapeutic administration of pain suppressing electrical stimulation into the intraspinal space, that is to either the epidural space or to the intrathecal space, is also known in the art as illustrated in
An exemplary spinal cord stimulation (SCS) system 400 comprising a neurostimulator SCS IPG 450, an SCS lead 410, and a detachable, elastic, boot 415 that is each compounded of silicone rubber and the preferred anti-microbial metal ion zeolite and molded in a shape to be fitted over the housing and connector of the neurostimulator IPG 450 is depicted implanted in patient 10 in
Therapeutic administration of stimulation of the sacral nerves to control bladder function or treat sexual dysfunction is also alternatively illustrated in
The detachable, elastic, boot 415 corresponds to the detachable, elastic, boot described above with respect to
Therapeutic administration of pain suppression or therapeutic drugs into the intraspinal space as also known in the prior art is illustrated in
Intrathecal drug administration can avoid the inactivation of some drugs when taken orally as well and the systemic effects of oral or intravenous administration. Additionally, intrathecal administration permits use of an effective dose that is only a fraction of the effective dose required by oral or parenteral administration. Furthermore the intrathecal space is generally wide enough to accommodate a small catheter, thereby enabling chronic drug delivery systems. Thus, it is known to treat spasticity by intrathecal administration of baclofen. Additionally, it is known to combine intrathecal administration of baclofen with intramuscular injections of botulinum toxin for the adjunct effect of intramuscular botulinum for reduced muscle spasticity. Furthermore, it is known to treat pain by intraspinal administration of the opioids morphine and fentanyl. A drug pump is required because the antinociceptive or antispasmodic drugs in current use have a short duration of activity and must therefore be frequently re-administered, which re-administration is not practically carried out by daily spinal tap injections. The drug pump is surgically placed under the skin of the patient's abdomen. One end of a catheter is connected to the pump, and the other end of the catheter is threaded into a CSF filled subarachnoid or intrathecal space in the patient's spinal cord. The implanted drug pump can be programmed for continuous or intermittent infusion of the drug through the intrathecally located catheter.
Thus a fully implantable intrathecal drug delivery system 500, e.g., the Medtronic® SynchroMed® EL Infusion System, comprising a programmable SynchroMed® drug pump 550 and a drug delivery catheter 510, is depicted in
A detachable, elastic, boot 515 that is compounded of silicone rubber and the preferred anti-microbial metal ion zeolite and molded in a shape to be fitted over the housing and connector of the drug pump 550 is depicted implanted in patient 10 in
The drug pump 550 and boot 515 encasing the drug pump 550 are implanted just under the skin of the abdomen in a prepared subcutaneous pocket 140 so that the drug fill port is oriented outward to enable access to the drug fill port 555.
Turning to
The Activa® Tremor Control System stimulates targeted cells in the thalamus the brain's message relay center—via electrodes that are surgically implanted in the brain and connected to a neurostimulator IPG implanted near the collarbone. In the treatment of Parkinson's tremors, the electrodes are located at the subthalamic nucleus (STN) or globus pallidus interna (GPI) that control movement and muscle function. A lead with tiny electrodes is surgically implanted at these sites in the brain and connected by an extension that lies under the skin to a neurostimulator IPG implanted near the collarbone. The electrical stimulation can be non-invasively adjusted to meet each patient's needs.
The implanted components of the Activa® System 600 depicted in FIG.9 include the Medtronic® Itrel® II Model 7424 neurostimulator IPG 650, a DBS™ lead 670 and an extension 610 that connects the lead 670 to the neurostimulator IPG 650.
The lead 670 is implanted using a stereotactic headframe designed to keep the head stationary and help guide the surgeon in the placement of the lead 670 into the brain 130 to dispose the electrodes 680 at the desired site 135. The brain 130 and the placement of the lead 670 is imaged using CT (computed tomography) or MRI (magnetic resonance imaging) equipment. The Model 3387 DBS™ lead, with a plurality of widely spaced electrodes, and the Model 3389 DBS™ lead, with a plurality of narrowly spaced electrodes, provide physician options for precise placement and stimulation selectivity. Other components of the Activate System 60 include a neurostimulator control magnet, neurological test stimulator, physician programmer, lead frame kits, and Memory Mod software cartridge.
A detachable, elastic, boot 615 that is compounded of silicone rubber and the preferred anti-microbial metal ion zeolite and molded in a shape to be fitted over the housing and connector block of the neurostimulator IPG 650 is depicted implanted in patient 10 in
An implantable infusion pump (IIP) comprising an implantable drug pump and: catheter is disclosed in commonly assigned U.S. Pat. Nos. 5,643,207 and 5,782,798 for dispensing pancreatic polypeptide blockers and other drugs that decrease sensations of hunger and increase satiety into particular sites in the brain through a distal catheter segment that is implanted through the skull and extends to the specific sites. The delivery of other appetite influencing drugs directly into the brain for increasing appetite to treat anorexia is also proposed in the '207 patent. The drug that is dispensed from the infusion pump coupled to the catheter through the catheter lumen and into the brain is expected to induce or increase the feeling of satiety to treat: obesity by reducing caloric intake or to increase feelings of hunger to treat anorexia by increasing caloric intake. The system of the '798 patent can also be employed to apply electrical stimulation to the brain through catheter borne electrodes and conductors to increase feelings of satiety to treat obesity or to decrease feelings of satiety to treat anorexia presumably either with or without delivery of the identified drugs.
Such an implantable deep brain drug delivery system 700 is depicted in
An implantable EGM monitor for recording the cardiac electrogram from electrodes remote from the heart is disclosed in commonly assigned U.S. Pat. No. 5,331,966 and PCT publication WO 98/02209 and is embodied in the Medtronic® REVEAL® Model 9526 Insertable Loop Recorder having spaced housing EGM electrodes employed with a Model 6191 patient activator and a Model 9790 programmer. Such implantable monitors when implanted in patients suffering from cardiac arrhythmias or heart failure accumulate date and time stamped data that can be of use in determining the condition of the heart over an extended period of time and while the patient is engaged in daily activities. A wide variety of other IMDs have been proposed to monitor many other physiologic conditions as set forth in U.S. Pat. No. 6,221,011.
Therefore, a REVEAL® Insertable Loop Recorder 850 is depicted in
The boot 815 may be shaped to extend over at least the portions of the header 860 having the suture holes to enable using the same sutures to secure the boot to the Insertable Loop Recorder 850 and the Insertable Loop Recorder 850 to subcutaneous tissue.
Thus, a variety of subcutaneously implanted IMDs have been described having a variety of uses and shapes that are implanted in subcutaneous pockets 140, 140′ and over which a detachable anti-microbial component characterized as a pad or boot that fits around at least a portion of an outer housing of the IMD is placed. The: subcutaneous site is advantageously protected from microbial growth and infections of the types described above by inclusion of the anti-microbial polymeric component that is exposed to body fluids in the pockets 140, 140′ that is compounded of an antibiotic zeolite that elutes silver ions in concentrations exhibiting anti-microbial activity over a substantial period of time of implantation. In these embodiments depicted in
In an embodiment, the anti-microbial component comprises a permanently attached portion of any of the above-identified IMDs that are implanted into the prepared subcutaneous pocket 140. For example, a schematic partial view of an exemplary IPG/monitor 950 depicting the connector header 960 in partial cross section and an exemplary lead connector assembly 915 of an electrical medical lead 910 adapted to be fitted into a connector bore 965, is depicted in
Selected ones or all of the polymeric components of the IPG connector header 975 and/or the lead connector assembly 915 are compounded with metal ion zeolite as indicated by the cross-hatching in
Similarly, the polymeric header 860 of the implantable monitor 800, for example, the subcutaneously tunneled cable 315, for example, between subcutaneously implanted IMD components, and the polymeric component of the catheter connectors 560 and 760 with the implantable drug pumps 500 and 700, for example, can be molded from polymers compounded with metal ion zeolite.
All patents and publications referenced herein are hereby incorporated by reference in their entireties.
It will be understood that certain of the above-described structures, functions and operations of the above-described preferred embodiments are not necessary to practice the present invention and are included in the description simply for completeness of an exemplary embodiment or embodiments.
This application claims the benefit of priority of and is a Continuation-in-Part application of U.S. application Ser. No. 10/393,121, filed on 20 Mar. 2003 and published as US patent application No. 2004/0186528, which priority application is hereby incorporated herein by reference in its entirety. This application also claims the benefit of priority to U.S. Provisional Patent Application Ser. Nos. 60/529,461 and 60/529,424, both filed on Dec. 12, 2003, which provisional applications are hereby incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
60529461 | Dec 2003 | US | |
60529424 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10393121 | Mar 2003 | US |
Child | 11008664 | Dec 2004 | US |