Hanzlik et al., “Vinylogous Amino Acid Esters: A New Class of Inactivators for Thiol Proteases,” J. Med. Chem., vol. 27, No. 6, Jun. 1984, pp. 711-712. |
Thompson et al., “Carboxyl-Modified Amino Acids and Peptides as Protease Inhibitors,” J. Med. Chem., vol. 29, No. 1, 1986, pp. 104-111. |
Liu et al., “Structure-Activity Relationships for Inhibition of Papain by Peptide Michael Acceptors,” J. Med. Chem., vol. 35, 1992, pp. 1067-1075. |
White et al., Principles of Biochemistry, 6th Ed., McGraw Hill, 1978, pp. 893-895. |
Callahan et al., “Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14,” Proc. Natl. Acad. Sci. USA, vol. 82, Feb. 1985, pp. 732-736. |
Olson et al., “Structure of a human rhinovirus complexed with its receptor molecule,” Proc. Natl. Acad. Sci. USA, vol. 90, Jan. 1993, pp. 507-511. |
Hammerle et al., “Site-directed Mutagenesis of the Putative Catalytic Triad of Poliovirus 3C Proteinase,” J. Biol. Chem., vol. 266, No. 9, 1991, pp. 5412-5416. |
Orr et al., “Hydrolysis of a Series of Synthetic Peptide Substrates by the Human Rhinovirus 14 3C Proteinase, Cloned and Expressed in Escherichia coli,” J. gen. Virol, vol. 70, 1989, pp. 2931-2942. |
Leong et al., “Human Rhinovirus-14 Protease 3C (3Cpro) Binds Specifically to the 5′-Noncoding Region of the Viral RNA,” J. Biol. Chem., vol. 268, 1993, pp. 25735-25739. |
Comprehensive Medicinal Chem., vol. 2, C. Hansch, Eds., Pergamon Press, Oxford, 1990, pp. 431-433, 440-441. |
Shaw, “Cysteinyl Proteinases and Their Selective Inactivation,” Advance Enz, vol. 63, 1990, pp. 271-347. |
Matthews et al., “Structure of Human Rhinovirus 3C Protease Reveals a Trypsin-like Polypeptide Fold, RNA-Binding Site, and Means for Cleaving Precursor Polyprotein,” Cell, vol. 77, Jun. 1994, pp. 761-771. |
Allaire et al., “Picornaviral 3C cysteine proteinases having a fold similar to chymotrypsin-like serine proteinases,” Nature, vol. 369, May 1994, pp. 72-76. |
Bazan et al., “Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: Structural and functional implications,” Proc. Natl. Acad. Sci. USA, vol. 85, Nov. 1988, pp. 7872-7876. |
Cordingley et al., “Cleavage of Small Peptides In Vitro by Human Rhinovirus 14 3C Protease Expressed in Escherichia coli,” Journal of Virology, vol. 63, No. 12, Dec. 1989, pp. 5037-5045. |
Kaldor et al., “Glutamine-Derived Aldehydes for the Inhibition of Human Rhinovirus 3C Protease,” Bioorganic & Medicinal Chemistry Letters, vol. 5, No. 17, 1995, pp. 2021-2026. |
Malcom et al., “Peptide Aldehyde Inhibitors of Hepatitis A Virus 3C Proteinase,” Biochemistry, vol. 34, 1995, pp. 8172-8179. |
Skiles et al., “Spiro Indolinone Beta-Lactams, Inhibitors of Poliovirus and Rhinovirus 3C-Proteinases,” Tetrahedron Letters, vol. 31, No. 50, 1990, pp. 7277-7280. |
Singh et al., “Structure and Stereochemistry of Thysanone: A Novel Human Rhinovirus 3C-Protease Inhibitor from Thysanophora penicilloides,” Tetrahedron Letters, vol. 32, No. 39, 1991, pp. 5279-5282. |
Kadam et al., “Citrinin Hydrate and Radicinin: Human Rhinovirus 3C-Protease Inhibitors Discovered in a Target-Directed Microbial Screen,” The Journal of Antibiotics, vol. 47, No. 7, Jul. 1994, pp. 836-839. |
Palmer et al., “Vinyl Sulfones as Mechanism-Based Cysteine Protease Inhibitors,” J. Med. Chem., vol. 38, 1995, pp. 3193-3196. |
Maryanoff et al., “Molecular basis for the inhibition of human α-thrombin by the macryclic peptide cyclotheonamide A,” Proc. Natl. Acad. Sci. USA. vol. 90, Sep. 1993, pp. 8048-8052. |
Rich et al., “Synthesis of Analogues of the Carboxyl Protease Inhibitor Pepstatin. Effect of Structure on Inhibition of Pepsin and Renin,” J. Med. Chem., vol. 23, 1980, pp. 27-33. |
Hagihara et al., “Reassignment of Stereochemistry and Total Synthesis of the Thrombin Inhibitor Cyclotheonamide B,” J. Am. Chem. Soc., vol. 114, 1992, pp. 6570-6571. |
Barton et al., “Synthesis of Novel α-Amino-Acids and Derivatives Using Radical Chemistry: Synthesis of L- and D-α-Amino-Adipic Acids, L-α-Aminopimelic Acid and Appropriate Unsaturated Derivatives,” Tetrahedron, vol. 43, No. 19, 1987, pp. 4297-4308. |
Smith et al., “Synthesis and Renin Inhibitory Activity of Angiotensinogen Analogues Having Dehydrostatine, LeuΨ[Ch2S]Val, or LeuΨ[Ch2SO]Val at the P1-Pl' Cleavage Site,” J. Med. Chem., vol. 31, 1988, pp. 1377-1382. |
Meng et al., “Synthetic Approaches toward Glidobamine, the Core Structure of the Glidobactin Antibiotics,” Tetrahedron, vol. 47, No. 32, 1991, pp. 6251-6264. |
Kolter et al., “Configuratively Stable Dipeptide Aldehydes from D-Glucosamine Hydrochloride,” Angew. Chem. Int. Ed. Engl., vol. 31, No. 10, 1992, pp. 1391-1392. |
Reetz et al., “Stereoselective Nucleophilic Addition Reactions of Reactive Pseudopeptides,” Angew. Chem. Int. Ed. Engl., vol. 31, No. 12, 1992, pp. 1626-1629. |
Aoyagi et al., “Structures and Activities of Protease Inhibitors of Microbial Origin,” Institute of Microbial Chemistry, Tokyo, Japan, 1975, pp. 429-454. |
Rich, “Inhibitors of cysteine proteinases,” Proteinase Inhibitors, Barrett and Salvensen (eds.), Elsvier Science Publishers BV, 1986, pp. 154-178. |
Haberson, et al., “Inhibition of Aminopeptidases by Peptides Containing Ketomethylene and Hydroxyethylene Amide Bond Replacements,” J. Med. Chem., vol. 32 (1989), pp. 1378-1392. |
Herold, et al., “A Versatile and Stereocontrolled Synthesis of Hydroxyethylene Dipeptide Isosteres,” J. Org. Chem. vol. 54 (1989), pp. 1178-1185. |
Bradbury et al., “An Efficient Synthesis of the γ-Lactone Corresponding to a Hydroxyethylene Dipeptide Isostere Using Stereoselective Bromolactonisation of a Chiral Acyloxasolidinone,” Tetrahedron Letters, vol. 30, No. 29, (1989), pp. 3845-3848. |
Bradbury, et al., “1,2,4-Triazolo[4,3-α]pyrazine Derivatives with Human Renin Inhibitory Activity. 2. Synthesis, Biological Properties and Molecular Modeling of Hydroxyethylene Isostere Derivatives,” J. Med. Chem., vol. 33 (1990), pp. 2335-2342. |
Wuts, et al., “Synthesis of the Hydroxyethylene Isostere of Leu-Val,” J. Org. Chem., vol. 57 (1992), pp. 6696-6700. |
Jones, et al., “A Short Stereocontrolled Synthesis of Hydroxyethylene Dipeptide Isosteres,” J. Org. Chem., vol. 58 (1993), pp. 2286-2290. |
Pégorier, et al., “A General Stereocontrolled Synthesis of Hydroxyethylene Dipeptide Isosteres,” Tetrahedron Letters, vol. 36, No. 16 (1995), pp. 2753-2756. |
Dondoni, et al., “Thiazole-Based Stereoselective Routes to Leucine and Phenylalanine Hydroxyethylene Dipeptide Isostere Inhibitors of Renin and HIV-1 Aspartic Protease,” J. Org. Chem., vol. 60 (1995), pp. 7927-7933. |
Weislow, et al., “New Soluble-Formazan Assay for HIV-1 Cytopathic Effects: Application to High-Flux Screening of Synthetic and Natural Products for AIDS-Antiviral Activity,” Journal of the National Cancer Institute, vol. 81, No. 8 (1989), pp. 577-586. |
Vaillancourt, et al., “Synthesis of Novel Inhibitors of the HIV-Protease: Difunctional Enols of Simple N-Protected Amino Acids,” Bioorganic & Medicinal Chemistry, vol. 2, No. 5 (1994), pp. 343-354. |
Vaillancourt, et al., “Difunctional Enols of N-Protected Amino Acids as Low Molecular Weight and Novel Inhibitors of HIV-1 Protease,” Bioorganic & Medicinal Chemistry Letters, vol. 3, No. 6 (1993), pp. 1169-1174. |
Carpino, “1-Hydroxy-7-azabenzotriazole. An Efficient Peptide Coupling Additive,” Journal of the American Chemical Society, vol. 115, No. 10 (1993), pp. 4397-4398. |
Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods, vol. 65, Nos. 1-2 (1983), pp. 55-63. |