Pursuant to 35 U.S.C. §119 and the Paris Convention Treaty, this application claims the benefit of Chinese Patent Application No. 201310409889.4 filed on Sep. 10, 2013, the contents of which are incorporated herein by reference.
The invention relates to the communication technology field, and more particularly to an antipodal demodulation method and an antipodal demodulator for non-coherent unitary space-time modulation in MIMO wireless communication.
With fast development of wireless communication, it has become a core problem for next generation wireless communication systems to increase data transmission speeds without degrading the quality of service (QoS). Since Telatar found that multiple-input multiple-output (MIMO) systems are capable of linearly increasing channel capacity in 1995, research fever on wireless MIMO communication systems has been activated, and the MIMO technology has become a key technology in the next generation wireless communication systems. In addition, space-time codes are one of the main transmission technologies for long-term evolution (LTE) of the third-generation (3G) communication.
The MIMO communication system is divided into a coherent communication system and a non-coherent communication system based on requirement for channel estimation during demodulation. The non-coherent space-time code is divided into a differential space-time code and a unitary space-time code, and this invention is aimed at the unitary space-time code since there is very little research achievement for non-coherent unitary space-time demodulation methods. At present, experimental simulation platforms for designing the non-coherent space-time code mainly use a maximum likelihood algorithm as a demodulation algorithm. Maximum likelihood demodulation comprises calculating likelihood probabilities of all constellation points, and selecting a constellation point with the greatest likelihood probability as an output signal of a demodulator. However, a problem with the demodulation method traversing all the constellation points is that, calculation workload and complexity linearly increase as a constellation becomes larger.
It is an objective of the invention to provide an antipodal demodulation method for non-coherent unitary space-time modulation in MIMO wireless communication, the method finds an antipodal structure of a high-performance unitary space-time constellation and relationship between different antipodes by analyzing conventional non-coherent unitary space-time diagrams, and features the same demodulation performance as a maximum likelihood demodulation method with the number of constellation points half of that thereof during a demodulation process.
Provided is an antipodal demodulation method for non-coherent unitary space-time modulation in MIMO wireless communication, comprising steps of:
(1) dividing an antipode-based unitary space-time constellation
into two sub-constellation
and
where L represents the number of constellation points in the constellation, Φl and
(2) obtaining traces of a matrix product of L/2 constellation matrices in the sub-constellation
and a receiving signal matrix Y: ψl=tr(YHΦlΦlHY), l=1,2, . . . L/2, determining a maximum trace ψmax and a minimum trace ψmin therefrom, calculating the trace of a matrix product of said receiving signal matrix Y: σ=tr(YHY), and corresponding constellation matrices Φi and Φj in the sub-constellation C1={Φl}l=1L/2 according to the maximum trace ψmax and the minimum trace ψmin, obtaining an antipode matrix
according to relationship between the antipodes, calculating a maximum trace
according to a relationship among the constellation matrices Φj and
(3) comparing the maximum trace ψmax and the maximum trace
as a demodulated constellation matrix {circumflex over (ψ)}=Φi as ψmax>
as a demodulated constellation matrix {circumflex over (Φ)}=
The invention uses a method of dividing the antipodal sub-constellation: firstly, the non-coherent unitary space-time constellation is divided into two antipodal sub-constellations, there is no antipode pair in each sub-constellation, and there is one-to-one correspondence between two constellation points in different sub-constellations, then relationship between antipodal constellation points during the demodulation process is determined tr(YHΦΦHY)+tr(YH
Provided is an antipodal demodulator for non-coherent unitary space-time modulation in MIMO wireless communication, comprising an input buffer, a read-only memory module, a trace-calculating module, an extreme-value-calculating module, a register group, a maximum-calculating module, a comparing and selecting module, and an output buffer, the input buffer is configured to receive and save a receiving signal matrix Y, and to output the receiving signal matrix Y to the trace-calculating module, the receiving signal matrix Y representing a T×N complex matrix, and yαγ representing a signal received by the γth receiving antenna at time α, the read-only memory module is configured to save all the constellation matrices of two sub-constellations
and
of an antipode-based unitary space-time constellation
where L represents the number of constellation points in the constellation, Φl and
from the read-only memory module, and the receiving signal matrix Y from the input buffer, calculating traces ψl=tr(YHΦlΦlHY) and σ=tr(YHY), and transmitting L/2 traces ψl of the matrix YHΦlΦlHY to the extreme-value-calculating module, and the trace σ of the matrix YHY to the maximum-calculating module, where 1≦l≦L/2, and tr(□) represents obtaining a trace of a matrix within the brackets, the extreme-value-calculating module is configured to compare the L/2 traces ψl of the matrix YHΦlΦlHY, and to save a maximum trace ψmax and a minimum trace ψmin thereof, an address i1 of a constellation matrix Φi corresponding to the maximum trace ψmax in the read-only memory module, and an address j1 of an antipode matrix
in the read-only memory module into the register group, where 1≦l≦L/2, the maximum-calculating module is configured to receive the trace σ of the matrix YHY from the trace-calculating module, and the minimum trace ψmin from the register group, to calculate
In a class of this embodiment, the read-only memory module is configured to save the two sub-constellations
and
of the antipode-based unitary space-time constellation, there is no antipode pair in each sub-constellation, and there is one-to-one correspondence between two antipodes in different sub-constellations, the read-only memory module is configured to output L/2 constellation matrices in the sub-constellation
to the trace-calculating module, to receive the address from the register group indicating a corresponding constellation matrix in the read-only memory module is the demodulated constellation matrix {circumflex over (Φ)}, and to output {circumflex over (Φ)} to the output buffer.
In a class of this embodiment, the extreme-value-calculating module is configured to receive L/2 traces ψl of matrices YHΦlΦlHY output by ψl computing units in the trace-calculating module, to determine a maximum trace ψmax and a minimum trace ψmin therefrom, to output the maximum trace ψmax and the minimum trace ψmin to the register group, and to output the address it of the constellation matrix Φi corresponding to the maximum trace ψmax in the read-only memory module, and the address j1 of the antipode matrix
in the read-only memory module into the register group, where 1≦l≦L/2;
In a class of this embodiment, the maximum-calculating module is configured to receive the trace σ of the matrix YHY from σ computing unit in the trace-calculating module, to obtain the minimum trace ψmin from the register group, to calculate
In a class of this embodiment, the register group is configured to receive and to save ψmax and ψmin from the extreme-value-calculating module, and the address i1 of the constellation matrix Φi corresponding to the maximum trace ψmax in the read-only memory module, and the address j1 of the antipode matrix
in the read-only memory module, to output ψmin to the maximum-calculating module, to receive and save
In a class of this embodiment, the comparing and selecting module is configured to compare ψmax with
For clear understanding of the objectives, features and advantages of the invention, detailed description of the invention will be given below in conjunction with accompanying drawings and specific embodiments. It should be noted that the embodiments are only meant to explain the invention, and not to limit the scope of the invention.
Principle of the method of the invention will be described below:
(1) Maximum Likelihood Demodulation
Assume a MIMO wireless communication system comprises M transmission antennas and N receiving antennas, a symbol transmission interval thereof is T, and channel fading coefficient is constant in a cycle T, and varies in different cycles. Assume Φ represents a T×M transmission signal unitary matrix and a transmission symbol, Y represents a T×N receiving signal matrix and a receiving symbol, H is a M×N channel fading coefficient matrix, and W is a T×N additive white Gaussian noise (AWGN) matrix, and all elements in H and W are independently and identically distributed random variables which obey the CN(0,1) distribution, wherein ρ represents a signal-noise ratio (SNR) at each receiving antenna, and a normalization coefficient √{square root over (ρ/M)} ensures an average signal-noise ratio of each receiving antenna is ρ. A Rayleigh fast flat-fading channel model is defined as:
Assume C={Φl}l=1L represents the non-coherent unitary space-time diagram, tr(•) represents calculating a trace of a matrix within the brackets, (•)H represents a complex conjugate transpose of a matrix or a vector, p(Y|Φl) represents a conditional probability of the receiving symbol Y as the transmission symbol is Φl, {circumflex over (Φ)} represents a demodulated constellation matrix which is also the signal output matrix, arg max tr( ) represents calculating traces of all the constellation matrices and determining the maximum trace, and then obtaining the demodulated constellation matrix {circumflex over (Φ)} corresponding to the maximum trace, where ψl represents a conditional probability or a trace of the matrix product YHΦlΦlHY. A maximum likelihood demodulation algorithm of the receiver without channel estimation is:
Assume the trace of the matrix product YHΦlΦlHY is:
ψl=tr(YHΦlΦlHY) (3)
where 1≦l≦L.
(2) Antipodal Constellation
Assume U, V represent two T×M matrices on the complex domain space (where T=2M)), ΣU
d(U, V)=√{square root over (2M−2tr(ΣU
Two points Φα and Φβ with the biggest Frobenius chord distance are defined as antipodes, and it is obvious that the Frobenius chord distance therebetween is d(Φα,Φβ)=√{square root over (2M)}. The antipodal constellation is defined as follows: if the unitary space-time constellation comprises L/2 pairs of antipodes, this kind of constellation is referred to as the antipodal constellation.
(3) Relationship Between the Antipodal Constellation matrix and the Receiving Signal Matrix
For the antipodal constellation, two constellation matrix Φ and
tr(YHΦΦHY)+tr(YH
Assume σ represents a trace of an autocorrelation matrix YHY of the output matrix Y, then
σ=tr(YHY) (6)
Equation (5) can be proved as follows: Assume Φ=[φ1 φ2 . . . φM],
where I is a T×T unit matrix.
It can be deduced from the left part of equation (5) that:
tr(YHΦΦHY)+tr(YH
(4) Antipodal Demodulation Method
An antipodal demodulation method for non-coherent unitary space-time modulation in MIMO wireless communication of the invention comprises steps of:
(1) dividing an antipode-based unitary space-time constellation
into two sub-constellation
and
there is no antipode pair in each sub-constellation, and there is one-to-one correspondence between two antipodes in different sub-constellations;
(2) using equation (3) to traverse and calculate traces of a product of L/2 constellation matrices in the sub-constellation
and a receiving signal matrix Y: ψl=tr(YHΦlΦlHY), l=1,2, . . . L/2, determining a maximum trace ψmax and a minimum trace ψmin therefrom, and corresponding constellation matrices Φi and Φj in the sub-constellation
according to the maximum trace ψmax and the minimum trace ψmin respectively, obtaining an antipode matrix
according to relationship between the antipodes, calculating a maximum trace
according to a relationship among the constellation matrices Φj and
and
(3) comparing the maximum trace ψmax and the maximum trace
as a demodulated constellation matrix {circumflex over (Φ)}=Φi as ψmax>
as a demodulated constellation matrix {circumflex over (Φ)}=
So far, a maximum likelihood demodulation method traversing L constellation points is converted to an optimized maximum likelihood demodulation method traversing L/2 constellation points.
Based on the above-mentioned antipodal demodulation method, an antipodal demodulator for non-coherent unitary space-time modulation in MIMO wireless communication is provided for performing optimized maximum likelihood demodulation on the antipode-based non-coherent unitary space-time code, as shown in
The input buffer is configured to receive and save a receiving signal matrix Y, and to output the receiving signal matrix Y to the trace-calculating module, the receiving signal matrix Y representing a T×N complex matrix, and yαγ representing a signal received by the γth receiving antenna at time α, the read-only memory module is configured to save all the constellation matrices of two sub-constellation C1={Φl}l=1L/2 and
where L represents the number of constellation points in the constellation, Φi and
from the read-only memory module, and the receiving signal matrix Y from the input buffer, calculating traces ψl=tr(YHΦlΦlHY) and σ=tr(YHY), and transmitting L/2 traces ψl of the matrix YHΦlΦlHY to the extreme-value-calculating module, and the trace σ of the matrix YHY to the maximum-calculating module, where 1≦l≦L/2, and tr(□) represents obtaining a trace of a matrix within the brackets, the extreme-value-calculating module is configured to compare the L/2 traces ψl of the matrix YHΦlΦlHY, and to save a maximum trace ψmax and a minimum trace ψmin thereof, an address i1 of a constellation matrix Φi corresponding to the maximum trace ψmax in the read-only memory module, and an address j1 of an antipode matrix
in the read-only memory module into the register group, where 1≦l≦L/2, the maximum-calculating module is configured to receive the trace σ of the matrix YHY from the trace-calculating module, and the minimum trace ψmin from the register group, to calculate
The read-only memory module is configured to save the two sub-constellation
and
of the antipode-based unitary space-time constellation, there is no antipode pair in each sub-constellation, and there is one-to-one correspondence between two antipodes in different sub-constellations, the read-only memory module is configured to output L/2 constellation matrices in the sub-constellation
to the trace-calculating module, to receive the address from the register group indicating a corresponding constellation matrix in the read-only memory module is the demodulated constellation matrix {circumflex over (Φ)}, and to output {circumflex over (Φ)} to the output buffer.
The extreme-value-calculating module is configured to receive L/2 traces ψl of matrices YHΦlΦlHY output by ψl computing units in the trace-calculating module, to determine a maximum trace ψmax and a minimum trace ψmin therefrom, to output the maximum trace ψmax and the minimum trace ψmin to the register group, and to output the address i1 of the constellation matrix Φi corresponding to the maximum trace ψmax in the read-only memory module, and the address j1 of the antipode matrix
in the read-only memory module into the register group, where 1≦l≦L/2;
The maximum-calculating module is configured to receive the trace a of the matrix YHY from σ computing unit in the trace-calculating module, to obtain the minimum trace ψmin from the register group, to calculate
The register group is configured to receive and to save ψmax and ψmin from the extreme-value-calculating module, and the address i1 of the constellation matrix Φi corresponding to the maximum trace ψmax in the read-only memory module, and the address j1 of the antipode matrix
in the read-only memory module, to output ψmin to the maximum-calculating module, to receive and save
The comparing and selecting module is configured to compare ψmax with
While preferred embodiments of the invention have been described above, the invention is not limited to disclosure in the embodiments and the accompanying drawings. Any changes or modifications without departing from the spirit of the invention fall within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0409889 | Sep 2013 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
7817745 | Cioffi et al. | Oct 2010 | B2 |
20050084040 | Stewart et al. | Apr 2005 | A1 |
20080298531 | Troulis et al. | Dec 2008 | A1 |
20100046603 | McLaughlin | Feb 2010 | A1 |
20110255623 | Golitschek Edler Von Elbwart et al. | Oct 2011 | A1 |