The subject disclosure relates to methods for manufacturing a LIDAR (Light Detection and Ranging) chip and, in particular, to manufacturing an anti-reflection face on a structure of the LIDAR chip.
A LIDAR chip includes a photonic chip, an integrated laser and an optical coupling structure, among other components. An anti-reflection coating is generally placed between the optical coupling structure and the laser in order to reduce back-reflection of light from the optical coupling structure into the laser cavity which can degrade its linewidth and optical stability. During the manufacturing process, attempts to deposit the anti-reflection coating on the coupling structure prior to integrating the laser to the photonic chip can be slow and costly. Accordingly, it is desirable to provide an efficient method of depositing the anti-reflection coating at the optical coupler of the LIDAR chip.
In one exemplary embodiment, a method of manufacturing a LIDAR chip is disclosed. The method includes forming a coupling structure on a wafer, forming a pocket in the wafer adjacent the coupling structure, depositing an anti-reflection (AR) material on top of the wafer and coupling structure, and etching the AR material to form an AR coating on the coupling structure.
In addition to one or more of the features described herein, a sidewall of the pocket is coplanar with a vertical facet of the coupling structure and the AR coating is formed along the sidewall of the pocket and the vertical facet of the coupling structure. A laser die is attached in the pocket, and the pocket is formed to a depth at which a light emitted from the output port of the laser die is directed into an input port of the coupling structure. In an embodiment, the laser die is attached with a light port of the laser die at a distance of about 2 to 3 microns from the AR coating. The method further includes depositing the AR coating by performing one of spin-on deposition; and physical vapor deposition. The AR is a fluoropolymer in an embodiment.
In another exemplary embodiment, a method of applying an anti-reflection (AR) coating to a coupling structure of a LIDAR chip is disclosed. The method includes forming the coupling structure on a wafer, forming a pocket in the wafer adjacent the coupling structure, depositing an AR material on top of the wafer and coupling structure, and etching the AR material to form the AR coating on a vertical facet of the coupling structure.
In addition to one or more of the features described herein, a sidewall of the pocket is coplanar with the vertical facet of the coupling structure and the AR coating is formed along the sidewall of the pocket and the vertical facet of the coupling structure. A laser die is attached in the pocket, wherein the pocket is formed to a depth at which a light emitted from the output port of the laser die is directed into an input port of the coupling structure. The laser die is deposited with a light port of the laser die at a distance of about 2 to 3 microns from the AR coating. The AR coating is deposited by performing one of spin-on deposition, and physical vapor deposition. In an embodiment, the AR material is a fluoropolymer.
The above features and advantages, and other features and advantages of the disclosure are readily apparent from the following detailed description when taken in connection with the accompanying drawings.
Other features, advantages and details appear, by way of example only, in the following detailed description, the detailed description referring to the drawings in which:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
In accordance with an exemplary embodiment,
While the above disclosure has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from its scope. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiments disclosed, but will include all embodiments falling within the scope thereof.
This application claims the benefit of priority of U.S. Provisional Application No. 62/531,414 filed Jul. 12, 2017, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5139879 | Aharoni | Aug 1992 | A |
5283846 | Toyonaka | Feb 1994 | A |
5499132 | Tojo | Mar 1996 | A |
6122110 | Park | Nov 2000 | A |
6229947 | Vawter | May 2001 | B1 |
6480331 | Cao | Nov 2002 | B1 |
6962345 | Inciong | Nov 2005 | B2 |
7108810 | Nakamura | Sep 2006 | B2 |
7359593 | Little | Apr 2008 | B2 |
7481588 | Monte | Jan 2009 | B2 |
8116602 | Little | Feb 2012 | B2 |
8121450 | Webster | Feb 2012 | B2 |
9122037 | Shastri | Sep 2015 | B2 |
9310471 | Sayyah et al. | Apr 2016 | B2 |
9335480 | Celo | May 2016 | B1 |
9575162 | Owechko | Feb 2017 | B2 |
20010030807 | Ikari | Oct 2001 | A1 |
20020012167 | Wills | Jan 2002 | A1 |
20040070827 | Li | Apr 2004 | A1 |
20050018967 | Huang | Jan 2005 | A1 |
20050213979 | Nakashima | Sep 2005 | A1 |
20060002443 | Farber | Jan 2006 | A1 |
20100200898 | Lin | Aug 2010 | A1 |
20120152918 | Li | Jun 2012 | A1 |
20130209033 | Luff | Aug 2013 | A1 |
20150042992 | Cui | Feb 2015 | A1 |
20170153319 | Villeneuve | Jun 2017 | A1 |
20170184450 | Doylend | Jun 2017 | A1 |
20170336565 | Ryckman | Nov 2017 | A1 |
20170370676 | Volfson | Dec 2017 | A1 |
20180024299 | Leijtens | Jan 2018 | A1 |
Entry |
---|
Hobbs, Philip C. D. “Ultrasensitive laser measurements without tears”, Applied Optics, vol. 36, No. 4, Feb. 1, 1997, pp. 903-920. |
Schroedter et al., “Microcontroller based closed-loop control of a 2D quasi-static/resonant microscanner with on-chip piezo-resistive sensor feedback”, Proc. of SPIE, vol. 10116, 2017, pp. 1-12. |
Winter et al., “Micro-beamer based on MEMS micro-mirrors and laser light source”, Procedia Chemistry, vol. 1, Issue 1, 2009, pp. 1311-1314. |
Number | Date | Country | |
---|---|---|---|
20190052047 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62531414 | Jul 2017 | US |