Technical Field
The embodiments herein relate to optical systems, and more particularly to antireflective surfaces used in optical systems.
Description of the Related Art
In optical systems, Fresnel reflections from an optical surface have a variety of undesirable effects. These may include reduced transmittance, feedback into laser systems, stray reflections, and in the case of military applications, potential detection by enemy combatants. In bulk optics, Fresnel reflections are traditionally reduced using thin film dielectric stacks of materials with alternating high and low refractive indices. As a result of thin film interference effects, these stacks may be designed to behave as antireflective (AR) coatings for a range of wavelengths. Such coatings, however, may have several problems associated with them. For example, they may exhibit laser induced damage thresholds (LIDTs) significantly lower than those of the bulk optics, and may be subject to environmental degradations and delamination under thermal cycling, and may perform well only for a limited optical bandwidth and angular range. It is desirable to prevent these issues from occurring in an optical system.
In view of the foregoing, an embodiment herein provides a system for creating an anti-reflective surface structure on an optical device, the system comprising a shim comprising a textured pattern, wherein the shim is configured to stamp the optical device with the textured pattern; a connector configured to place the optical device in proximity to the shim and apply a force to the optical device against the shim; and a laser source configured to heat the optical device by generating and applying a laser beam to the optical device when the optical device is placed in proximity to the shim.
The shim may comprise a transparent material, and wherein the laser source is placed on an opposite side of the shim than the optical device. The system may further comprise a pair of lenses configured to focus the laser beam on the optical device. The laser source may be located on the same side of the shim as the optical device. The laser beam may be applied to the optical device from an oblique angle. The shim may comprise a release layer comprising a non-adhesive material.
The release layer may comprise a thickness less than approximately 20 nm. The laser source may comprise a CO2 laser source creating a wavelength of approximately 10.6 μm. The optical device may comprise an optical fiber, and wherein the anti-reflective surface structure may be created on a tip of the optical fiber. The optical fiber may comprise any of silicate glass, oxide glass, halide glass, and chalcogenide glass, wherein the oxide glass may comprise any of aluminate, phosphate, germanate, tellurite, bismuthate, and antimonate glasses, wherein the halide glass may comprise any of halogen elements, including fluorine, chlorine, bromine, and iodine, and wherein the chalcogenide glass may comprise any of chalcogen elements including sulfur, selenium, and tellurium.
The optical fiber may comprise a single crystal comprising any of yttrium aluminum garnet (YAG), sapphire, magnesium aluminate spinel, gadolinium gallium garnet (GGG), and lithium niobate. The optical fiber may be doped with rare earth ions of elements comprising any of cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), and ytterbium (Yb). The optical fiber may be doped with transition metal ions of elements comprising any of titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni).
An embodiment herein provides a system for creating a random anti-reflective surface structure on an optical fiber, the system comprising a holder, configured to hold the fiber optic, wherein the holder comprises any of a groove and a fiber connector, and wherein the fiber connector comprises any of a SMA, FC, and ST type connector; an adhesive material configured to hold the optical fiber in the holder and fill a gap between the optical fiber and the holder, wherein the adhesive material comprises a temporary adhesive material configured to be removed; glass configured to cover the adhesive material and the optical fiber; and a reactive ion etch device comprising plasma and configured to expose an end face of the optical fiber to the plasma, wherein the plasma is configured to etch the random anti-reflective surface structure on the end face of the optical fiber.
The plasma may comprise any of fluoride (F−), chloride (Cl−), C+4, oxide (O-2), B+3, sulfite (S−2), and argon (Ar) ions. The plasma may comprise an inductively coupled plasma (ICP). A pressure of the plasma may be maintained between approximately 15 and 100 mT, and wherein a gas flow of the plasma may be maintained between approximately 20 and 150 sccm. The etching may be carried out until a peak-to-valley surface roughness of the random anti-reflective surface structure is between approximately 150 nm and 2 μm. The system may further comprise an etch mask on the tips of the plurality of fibers, wherein the etch mask may comprise a layer of metal comprising a thickness less than approximately 1,000 nm, and wherein the metal may comprise any of gold (Au), silver (Ag), titanium (Ti), aluminum (Al), and chromium (Cr).
An embodiment herein provides a method for creating a random anti-reflective surface structure on a plurality of optical fibers, the method comprising placing the plurality of optical fibers in a plurality of groves; holding the plurality of optical fibers in place using an adhesive; placing glass on the plurality of optical fibers; coating tips of the plurality of optical fibers with a layer of metal, wherein the metal comprises any of gold (Au), silver (Ag), titanium (Ti), aluminum (Al), and chromium (Cr); and exposing the tips of the plurality of optical fibers to a plasma, wherein the plasma comprises any of fluoride (F−), chloride (Cl−), C+4, oxide (O−2), B+3, sulfite (S−2), and argon (Ar) ions.
These and other aspects of the embodiments herein will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following descriptions, while indicating preferred embodiments and numerous specific details thereof, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the embodiments herein without departing from the spirit thereof, and the embodiments herein include all such modifications.
The embodiments herein will be better understood from the following detailed description with reference to the drawings, in which:
The embodiments herein and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments that are illustrated in the accompanying drawings and detailed in the following description. Descriptions of well-known components and processing techniques are omitted so as to not unnecessarily obscure the embodiments herein. The examples used herein are intended merely to facilitate an understanding of ways in which the embodiments herein may be practiced and to further enable those of skill in the art to practice the embodiments herein. Accordingly, the examples should not be construed as limiting the scope of the embodiments herein.
An approach for reducing Fresnel reflections while reducing the problems associated with traditional AR coatings is direct nano-patterning of ARSS on the surface of an optical material. Processing of these structures does not involve a permanent coating on the optic but instead relies on nano-patterning of the surface of the optical material itself. Nano-patterning of the surface may result in antireflective performance of ARSS comparable to that of the traditional AR coatings, while adding significant advantages such as higher laser damage thresholds, wide spectral bandwidths, and large acceptance angles.
ARSS structures may include providing a gradual transition in refractive index from one medium (medium A) to another (medium B). As light passes from A to B, the effective index in a given plane that is parallel to the interface between A and B increases from that of A to that of B, as more of the area of a given plane is composed of medium B. ARSS structures may include arrays of nanoscale structures in which the period of the pattern is designed to be on a sub-wavelength scale in order to avoid undesired diffraction effects, while the height of the individual features is on the order of one-half the wavelength, in order to simulate a graded index variation between air and the optical substrate. An ARSS may have an ordered, repeating pattern. This is typically the case when an ARSS is created photolithographically or stamped with a patterned shim. Alternately, a random ARSS (rARSS) may be created via an etch process.
Fiber tips may also be coated with AR dielectric stacks, as is the case with bulk optics. Similar to reflections from bulk optics, reflections from fiber end faces are problematic for a variety of applications due to reduced transmittance and feedback into laser systems. These problems are especially severe in the case of high power laser applications where AR coatings suffer from low LIDT and are subject to adhesion problems.
ARSS on fiber tips could provide AR performance while increasing LIDT and environmental stability. In an example, ARSS may be implemented on fiber tips in chalcogenide glass. The low softening point of these glasses (typically less than approximately 300° C.) allows them to be heated and stamped with a patterned shim. In contrast, other types of optical fiber have much higher softening points. For example, silica fiber has a softening point greater than approximately 1400° C., making the stamping process provided by conventional techniques difficult.
An embodiment herein provides a method for patterning rARSS in an optical fiber. In some embodiments herein, the rARSS may be patterned on a fiber through an etch process. In some embodiments herein, a pattern may be stamped on a fiber using a shim and a stamping procedure. Referring now to the drawings, and more particularly to
In an embodiment, the fiber 102a may be held by a connector 124. In an embodiment, the fiber 102a may be held by the connector 124 as an alternative to one of the V-grooves 106. The connector 124 may comprise any of the FC, FC-APC, SMA, ST, and other commercially available or custom-designed optical fiber connectors.
In an exemplary embodiment, the fiber 200 comprises a single mode silica optical fiber (SMF28). In an exemplary embodiment herein, the fabrication of rARSS on the end faces of the single mode silica optical fiber (SMF28) 102 is achieved using the system 150 of
In an exemplary embodiment herein, the measured transmission per end face on a fiber with rARSS is increased to approximately 99.3% at approximately 780 nm wavelength, and approximately 99.4% at approximately 1,550 nm wavelength. This compares favorably to an untreated fiber, which has an end face transmittance of approximately 96.5% at these wavelengths.
In an exemplary embodiment herein, laser damage testing was performed at 1.06 μm on the end faces of the fiber 200 and untreated silica fibers. The laser parameters are a 20 nsec pulsewidth, a 20 Hz pulse repetition rate, and spot size of 8.7 μm (at 1/e2) which nearly matches the fiber core diameter (8.2 μm). A total of 600 laser shots irradiated the fiber end faces at increasing fluence until damage occurred. The results obtained, as summarized in Table 1, show remarkably high laser damage thresholds, up to 850 J/cm2 for silica fiber end faces with ARSS, which approaches that of the untreated fiber.
The laser beam 332 is created by a laser source 334. In an embodiment, the laser source 302 comprises a CO2 laser source that creates an emission at a wavelength of approximately 10.6 μm. In another embodiment, other laser sources with a wavelength readily absorbed by the optical fiber 306 may be used. If the shim 302 is completely or partially transparent to the laser radiation 332 (e.g., 10.6 μm radiation passing through a silicon shim), it may be focused on the fiber tip through the shim 302 using a pair of lenses 336.
Embodiments provided herein may dramatically reduce surface reflections from a fiber end face. For example, using the embodiments herein, the reflection from a silica fiber end face is reduced from approximately 3.5% to less than approximately 0.1%. Using embodiments herein, the anti-reflective property of the component remains optically broadband, with low reflection over a spectral range that is typically greater than approximately 500 nm.
The embodiments herein provide reduced surface reflection that serves to increase fiber throughput and prevent back reflections that can be detrimental to the performance of lasers and other optical components. The embodiments herein further result in a significantly higher LIDT in comparison to an AR-coated fiber.
In an embodiment herein, the fiber used, for example the fiber 102, 200, 306 may comprise any of a silicate glass. In some embodiments, the fiber may comprise any of an oxide glass other than a silicate glass. The oxide glass may comprise any of aluminate, phosphate, germanate, tellurite, bismuthate, and antimonate glasses. In an embodiment herein, the fiber may comprise a halide glass. Halide glasses comprise any of halogen elements, including fluorine, chlorine, bromine, and iodine, or combinations thereof. In an embodiment herein, the fiber may comprise a chalcogenide glass. Chalcogenide glasses comprise any of chalcogen elements including sulfur, selenium, and tellurium, or combinations thereof.
In an embodiment herein, the fiber may comprise a single crystal rather than glass. The single crystal may be any optically transmissive crystalline material that is readily drawn into a fiber form. The crystalline material may comprise any of yttrium aluminum garnet (YAG), sapphire, magnesium aluminate spinel, gadolinium gallium garnet (GGG), and lithium niobate. In an embodiment, the ARSS as described herein may be fabricated on a fiber doped with rare earth ions of elements comprising any of cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), and ytterbium (Yb). In an embodiment herein, the ARSS may be fabricated on a fiber doped with transition metal ions of elements comprising titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni).
In embodiments herein, the fiber 102, 200, 306 used may comprise an active or a passive optical fiber. In an embodiment, the fiber 102, 200, 306 may be removed from its holder, for example V-grooves 106 in
In an embodiment, a fiber tip that is composed of either a silicate glass or non-silicate material could be coated with a film of silica, with a thickness greater than approximately 500 nm, and this film may subsequently be patterned according to any of the embodiments provided herein.
The foregoing description of the specific embodiments will so fully reveal the general nature of the embodiments herein that others can, by applying current knowledge, readily modify and/or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Therefore, while the embodiments herein have been described in terms of preferred embodiments, those skilled in the art will recognize that the embodiments herein can be practiced with modification within the spirit and scope of the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 62/166,802 filed on May 27, 2015, the complete disclosure of which, in its entirety, is herein incorporated by reference.
The embodiments described herein may be manufactured, used, and/or licensed by or for the United States Government without the payment of royalties thereon.
Number | Name | Date | Kind |
---|---|---|---|
6208781 | Neuberger | Mar 2001 | B1 |
8187481 | Hobbs | May 2012 | B1 |
8865031 | Owen et al. | Oct 2014 | B2 |
20030035643 | Gao | Feb 2003 | A1 |
20030063889 | Lavallee | Apr 2003 | A1 |
20030095582 | Ackley | May 2003 | A1 |
20120034291 | Amsden | Feb 2012 | A1 |
20130189485 | Gupta | Jul 2013 | A1 |
20160011373 | Barwicz | Jan 2016 | A1 |
20180003859 | Morasse | Jan 2018 | A1 |
Entry |
---|
Hobbs et al., “Design, Fabrication, and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials”, Dec. 2005, Proceedings of SPIE, vol. 5786, pp. 349-364. |
Cowan et al., “Aztec surface-relief volume diffractive structure,” J. Opt. Soc. Am. A, 7, 8, 1529, Aug. 1990. |
Hobbs et al., “Laser Damage Resistant anti-Reflection Microstructures in Raytheon Ceramic YAG, Sapphire, ALON, and Quartz,” Proc. SPIE, 8016, 801628, Apr. 2011. |
Busse et al., “Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers,” Optical Mater. Exp., 4, 2504-2515, Nov. 2014. |
Number | Date | Country | |
---|---|---|---|
20170227715 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62166802 | May 2015 | US |