This application claims priority from European Patent Application No. 04023667.1 filed Oct. 5, 2004, the entire disclosure of which is incorporated herein by reference.
The present invention relates to an anti-trip device for a watch escapement, this escapement comprising, amongst other elements, a balance spring made up of several coils and a balance provided with at least one arm, the balance being pivotably mounted between a plate and a bridge, said device comprising a finger fixed to the balance arm, at least one column by which the finger can pass when the balance is moving, said column being secured to said balance bridge, and a locking arm fixed to the outer coil of the balance spring, the locking arm being able to insert itself between said column and said finger to prevent the sprung balance rotating beyond an angle outside its normal operating angle.
Such a device is known. It was disclosed in the work entitled “Der Chronometer Gang” by Professor Alois Irk and published by Deutsche Uhrmacher Zeitung, Berlin 1923. Reference will be made particularly to paragraphs 116 to 120 (pages 74 to 77) and to
This device is implemented in so called detent escapements which are suitable for timepieces of large dimensions such as marine chronometers. These timepieces are appreciated for their high level of precision, which is why they very often use a detent escapement, which itself famed for its high level of precision. This escapement has, however, a significant drawback, namely its sensitivity to shocks. Consequently, it is reputed to be unsuitable for wristwatches. In fact, a shock applied to the timepiece can cause its balance to rotate beyond a normal operating angle. This then produces tripping since unlocking and pulses occur twice in the same vibration.
When one wishes to fit a timepiece of small dimensions, for example a wristwatch, with a detent escapement to replace for example the conventional lever escapement and thus enable it to enjoy the advantages provided by such an escapement, new techniques will have to be used, different to those known to date if one wishes to avoid failure. Various solutions have been proposed recently to overcome the lack of energy developed by the sprung balance of a wristwatch to overcome the forces acting on the detent of a detent escapement. Nonetheless, the problem of tripping remains, and this has to be resolved when a balance spring of small dimensions, such as that mounted in a wristwatch, is used.
If one refers to the aforecited work, it can be seen that the locking arm proposed for the anti-trip device is suitable solely for a balance spring of large dimensions. It is in fact a part that has undergone machining several times including the machining of a bore through which the last coil of the balance spring will pass. This is ill suited to a balance spring of small dimensions, moreover it is difficult and complicated to make.
In order to overcome the aforecited drawbacks, the present invention, in addition to answering the generic definition of the first paragraph of this description, is characterized in that the locking arm is a clamp hooked onto the outer coil of the balance spring.
The features and advantages of the present invention will appear from the following description, made with reference to the annexed drawings, and giving by way of explanatory but non-limiting example, an advantageous embodiment of an anti-trip device for a wristwatch fitted with a detent escapement, in said drawings:
The anti-trip device will now be described with reference to
The detent escapement further includes the following elements that are not shown in the drawings: an escapement wheel provided with generally pointed teeth which rest in turn on a locking pallet stone, a brake-lever returned by a spring, the brake-lever carrying said locking face of the pallet stone at its first end and, at its second end, a first actuating finger able to be actuated by a second actuating finger carried by a plate secured to the balance, this plate further carrying an impulse pallet stone able to receive impulses from the teeth of the escapement wheel. At each oscillation of the balance, the locking pallet stone is released from the tooth of the escapement wheel and another tooth of the same wheel, acting on the impulse pallet stone, gives an impulse to the balance. It will be observed that the second actuating finger is arranged so as only to actuate the first finger of the brake-lever in one rotational direction of the balance, i.e. during the first vibration of the oscillation after the impulse occurs. When the balance rotates in the other direction, i.e. during the second vibration of the oscillation, the first finger of the brake-lever is not actuated since the second finger carried by the plate is arranged to retract after which no impulses are produced. It is clear from the explanations that have just been given that if the first vibration makes the balance rotate beyond a normal amplitude which is of the order of 320 degrees, for example following a shock applied to the watch, the first finger of the brake-lever can be actuated a second time. A second impulse is then produced during the same vibration, which causes the escapement to trip.
In order to prevent this phenomenon, the anti-trip device proposed in the aforecited work and illustrated in
As FIGS. 1 to 3 show, the present invention is characterized in that the locking arm 8 is a clamp hooked onto the outer coil 10 of balance spring 1. This method is perfectly suited to the balance springs of small dimensions encountered, for example, in wristwatches. The system envisaged does not require any complicated preparation and machining of the locking arm as is the case of the arm of the aforecited work. The clamp can be arranged on the outer coil without any difficultly, at the desired location, without it being necessary to thread it onto the balance spring and fix it thereto as provided in the aforecited work.
Clamp 8 can take different forms, including that illustrated in
It will be noted finally that the two columns 6 and 7 secured to bridge 4 could consist of two pins driven into the bridge. The present invention proposes, however, to simplify this passage by providing, as shown in
It will also be noted that the device of the invention can be envisaged with one column fixed to bridge 4.
Number | Date | Country | Kind |
---|---|---|---|
04023667.1 | Oct 2004 | EP | regional |