H. Hotoda, “Small-Molecule Inhibitors of HIV-1 Entry Via Chemokine Receptors,” Drugs of the Future, 24(12), pp. 1355-1362, 1999.* |
J. G. Sodroski, “HIV-1 Entry Inhibitors in the Side Pocket,” Cell, 9, pp. 243-246, 1999.* |
W. S. Blair, et al, “HIV-1 Entry—An Expanding Portal for Drug Discovery,” Drug Discovery Today, 5(5), pp. 183-194, 2000.* |
B. A. Larder, et al, “Multiple Mutations in HIV-1 Reverse Transcriptase Confer High-Level Resistance to Zidovudine (AZT),” Science, 246, pp. 1155-1158, 1989. |
R. M. Gulick, “Current Antiretroviral Therapy: An Overview,” Quality of Life Research, 6, pp. 471-474, 1997. |
D. R. Kuritzkes, “HIV Resistance to Current Therapies,” Antiviral Therapy, 2(Supplement 3), pp. 61-67, 1997. |
S. Morris-Jones, et al, “Antiretroviral Therapies in HIV-1 Infection,” Expert Opinion on Investigational Drugs, 6(8), pp. 1049-1061, 1997. |
R. F. Schinazi, et al, “Mutations in Retroviral Genes Associated with Drug Resistance,” International Antiviral News, 5, pp. 129-142, 1997. |
J. P. Vacca, et al, “Clinically Effective HIV-1 Protease Inhibitors,” Drug Discovery Today, 2(7), pp. 261-272, 1997. |
C. Flexner, “HIV-Protease Inhibitors,” Drug Therapy, 338(18), pp. 1281-1292, 1998. |
E. DeClercq, “The Role of Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI's) in the Therapy of HIV-1 Infection,” Antiviral Research, 38, pp. 153-179, 1998. |
M. Font, et al, “Indoles and Pyridazinol[4,5-b]indoles as Nonnucleoside Analog Inhibitors of HIV-1 Reverse Transcriptase,” Eur. J. Med. Chem., 30, pp. 963-971, 1995. |
D. L. Romero, et al, J. Med. Chem., 36, pp. 1505-1508, 1993. |
S. D. Young, et al, “2-Heterocyclic Indole-3-Sulfones as Inhibitors of HIV-1 Reverse Transcriptase,” Bioorg. Med. Chem. Lett., 5(5), pp. 491-496, 1995. |
M. J. Genin, et al, “Synthesis and Bioactivity of Novel Bis(Heteroaryl)Piperazine (BHAP) Reverse Transcriptase Inhibitors: Structure-Activity Relationships and Increased Metabolic Stability of Novel Substituted Pyridine Analogs,” J. Med. Chem., 39, pp. 5267-5275, 1996. |
R. Silvestri, et al, Antiviral Chem. Chemother., 9, pp. 139-148, 1998. |
A. Fredenhagen, et al, “Semicochliodinol A and B: Inhibitors of HIV-1 Protease and EGF-R Protein Tyrosine Kinease Related Asterriquinones Produced by the Fungus Chrysosporium Merdarium,” J. of Antibiotics, 50, pp. 395-401, 1997. |
K. Brewster, et al, “Antihypertensive 1,4-bis (2-Indol-3-Ylethyl) Piperazines,” Chim. Ther., 8, pp. 169-172, 1973. |
J. Archibald, et al, “1,4-Bis (2-Indol-3-Ylethyl) Piperazines,” J. Med. Chem., 17, pp. 745-747, 1974. |
T. J. Dueweke, et al, “The Binding of a Novel Bisheteroarylpiperazine Mediates Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase,” J. Biol. Chem., 267(1), pp. 27-30, 1992. |
T. J. Dueweke, et al, “U-90152, a Potent Inhibitor of Human Immunodeficiency Virus Type 1 Replication,” Antimicrob. Agent, Chemother., 37(5), pp. 1127-1131, 1993. |
G. W. Gribble, “Recent Developments in Indole Ring Synthesis-Methodology and Applications,” Contemp. Org. Synth., 1, pp. 145-172, 1994. |
Von Franz Lingens, et al, “Synthese von 3-[Indolyl-(3)]-Glycerin Und 3-[N-Methyl-Indolyl-(3)]-Glycerin,” Justus Liebigs Ann. Chem., 738, pp. 46-53, 1970. |
M. Desai, et al, “A Convenient Preparation of 1-Aroylpiperazines,” Org. Prep. Proced. In., 8(2), pp. 85-86, 1976. |
B. J. Potts, “Mini Reverse Transcriptase (RT) Assay,” In Aldovini, A., B. D. Walker (ed), Techniques in HIV Research, Stockton Press, NY pp. 103-106, 1990. |
O. S. Weislow, et al, “New Soluble-Formazan Assay for HIV-1 Cytopathic Effects: Application to High-Flux Screening of Synthetic and Natural Products for AIDS-Antiviral Activity,” Journal of National Cancer Institute, 81(8), pp. 577-586, 1989. |
V. A. Johnson, et al, Infectivity Assay, in Aldovini, A., B. D. Walker (ed), Techniques in HIV Research, Stockton Press, NY pp. 71-76, 1990. |
S. Harada, et al, “Infection of HTLV-III/LAV in HTLV-I-Carrying Cells MT-2 and MT-4 and Application in a Plaque Assay,” Science, 229, pp. 563-566, 1985. |
J. D. Behun, et al, “The Chemistry of Pyrazine and Its Derivatives. IV. the Alkylation and Arylation of Methylpyrazine,” J. Org. Chem., 26, pp. 3379-3381, 1961. |
K. Rossen, et al, Tetrahedron Letters, 36(36), pp. 6419-6422, 1995. |
L. W. Jenneskens, et al, “2-(Trifluoromethyl)Piperazine: Synthesis and Characterizatin Using NMR and X-Ray Photoelectron Spectroscopy,” J. Recl. Trav. Chim. PAYS-BAS, 114, pp. 97-102, 1995. |
T. Wang, et al, “Benzoylation of Dianions: Preparation of Mono-Benzoylated Symmetric Secondary Diamines,” J. Org. Chem., 64, pp. 7661-7662, 1999. |
M. Adamczyk, et al, “Synthesis of Procainamide Metabolites, N-Acetyl Desethylprocainamide and Desethylprocainamide,” Org. Prep. Proced. Int., 28(4), pp. 470-474, 1996. |
K. Masuzawa, et al, “Reduction of 4-Benzoyl-2-Piperazinone with Sodium Borohydride in Triethylamine,” Bull Chem. Soc. Jpn., 40(1), pp. 244, 1967. |
M. Furber, et al, “Studies Relating to the Immunosuppressive Activity of FK506,” Tetrahedron Lett., 34(8), pp. 1351-1354, 1993. |
G. Bartoli, et al, Tetrahedron Lett., 30(16), pp. 2129-2132, 1989. |
G. Bartoli, et al, J. Chem. Soc. Perkin Trans., 1, pp. 2757-2761, 1991. |
M. Bosco, et al, J. Chem. Soc. Perkin Trans., 2, pp. 657-663, 1991. |
B. K. Chen, et al, J. Virol, 68(2), pp. 654-660, 1994. |