BACKGROUND
A conventional anvil-type VSI rock crusher includes a plurality of anvils secured to an anvil ring in a circular configuration. A spinning rotor mounted on a vertical shaft positioned at the center of the anvil ring ejects material directed through the top of the rotor laterally through exit ports. The material ejected from the rotor impacts the anvils at extremely high velocity and shatters into smaller particle sizes.
Although anvil-type rock crushers are highly effective, the anvils experience substantial wear given the severe conditions under which they function and must be replaced regularly. The replacement operation is time consuming and expensive for the operator because replacement parts are expensive, the crusher is out of service, and a scrap fee is incurred for discarding the worn out anvils.
A conventional anvil assembly known in the prior art is shown in FIG. 1. With additional reference to FIGS. 2A and 2B, it can be seen that the anvil 1 comprises an impact body 2 connected to a mounting stob 3 via neck 4. The anvil 1 is attached to an anvil ring 5 using a slotted anchor plate 6 welded to the anvil ring. Gaps 7 between adjacent anvils 1 are blocked off using a smaller side anvil 8 secured to the anvil ring 5 with a second anchor plate 9.
When one side S1 of the anvil is fully consumed, the anvil can be pulled up, inverted, and reinstalled to expose the other side to wear. When the second side S2 of the anvil is consumed, as shown in FIG. 2C, the anvil is removed and replaced with a new one. Since the mounting stob 3 and neck 4 must be discarded along with the body 2, this results in high scrap loss and disposal expense to the end user. The scrap loss increases if the side anvil 8 must also be replaced. It will also be appreciated that the conventional anvil 1 is more expensive to manufacture because of the need to incorporate material to form the stab 3 and neck 4.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an upper perspective view of a prior art anvil assembly.
FIG. 2A is an upper perspective view of a prior art anvil.
FIG. 2B is a sectional view of the prior art anvil taken along line 2B-2B of FIG. 2A.
FIG. 2C is a sectional view of the prior art anvil of FIG. 2B showing worn areas.
FIG. 3 is an upper perspective view of an anvil assembly for a VSI crusher according to the invention.
FIG. 4 is a lower perspective thereof.
FIG. 5 is an exploded upper perspective view thereof.
FIG. 6A is an upper perspective view of the anvil, anvil holder, and fastening components thereof, shown assembled.
FIG. 6B is an exploded upper perspective view of the anvil, anvil holder, and fastening components shown in FIG. 6A.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT
An anvil assembly for a VSI crusher is referred to generally at numeral 10 in FIGS. 3 and 4. The anvil assembly comprises a plurality of anvils 12, firmly anchored in an annular arrangement to an anvil ring 14 with retaining plates 16 and fasteners 18. The anvils 12 are covered with an anvil cover plate 20 to minimize collection of dust and dirt on and behind the anvils. A conventional rotor 22 is mounted concentrically relative to the circular assembly of anvils 20 on a vertical shaft (not illustrated). As seen in FIG. 5 each anvil 12 is mounted on an anvil holder 24 which is anchored to the floor 26 of the anvil ring 14.
With additional reference now to FIG. 6B, it can be seen that the anvil holder 24 comprises a sturdy tapered anchor plate 28 from one side of which a stout buttress wall 30 extends perpendicularly. The anchor plate 28 includes dual oppositely facing tapered shoulders 31 giving the anchor plate 28 a wedge shape. The bottom edges of the anchor plate 28 and buttress wall 30 terminate in a truncated T-shaped foot 32 that is sized to fit in one of a plurality of corresponding T-shaped mounting openings 34 arranged in the floor 26 of the anvil ring 14 shown in FIG. 5. Each of the openings 34 is disposed at an angle relative to a radius line R taken from the center point C of the anvil ring 14, such that when the anvil holder 24 is positioned in the opening 34, the holder 24 is similarly disposed angularly relative to radius line R. The bottom end 28B of the anchor plate 28 is wider than the foot 32 and the bottom end 30B of the buttress wall 30 extends away from the anchor plate 28 farther than the foot 32, such that when the foot 32 is placed in opening 34, the lateral ends of the bottom end 28B of the anchor plate and the distal end of the bottom of the buttress wall 30B form stops 36 that seat the anvil holder 24 in a preset position and angular orientation on the floor 26 of the anvil ring 14.
As seen with reference now to FIGS. 4, 5 and 6B, the anvil holder 24 is anchored to the floor 26 of the anvil ring 14 using a fastener assembly comprising a retainer plate 16, washers 38 and bolts 18. Each retainer plate 16 includes a pair of apertures 40 sized to receive freely bolts 18, which when tightened in threaded bolt holes (not illustrated) in the bottom face 42 of foot 32, firmly secure the anvil holder 24 to the anvil ring 14. Those of skill in the art will appreciate that the invention is not limited to the fastener assembly illustrated.
It can be seen in FIGS. 5 and 6B that each anvil 12 comprises a front face 44, a rear portion 45 including two oppositely-disposed, mirror-image, angled, lateral surfaces 46, and side faces 48 extending between front face 44 and lateral surfaces 46. Each lateral surface 46 has an inner edge 49 extending between the top and bottom faces 58T, 58B. Top and bottom docking ports 50T, 50B formed in the rear portion of the anvil include a flat common wall 52 disposed parallel to the front face 44, and top and bottom pairs of opposing, inwardly-oriented side channels 54T, 54B. Each pair of side channels 54T, 54B is separated by a tapered width from a wider mouth in the top and bottom faces 58T, 58B, respectively, to a narrower gap 60 midway between the top and bottom of the anvil 12 where they converge as best seen in FIG. 6B. Tapered guide lips 56 extend inwardly from lateral surfaces 46 following the slope of the side channels 54T, 54B. In one embodiment of the invention top and bottom docking ports 50T, 50B form vertical mirror-images of each other.
FIG. 6A shows anvil 12 mounted on anvil holder 24. The side channels 54T, 54B of docking ports 50T, 50B are spaced apart by a tapered width that corresponds to the taper of the shoulders 31 of the anchor plate 28 of anvil holder 24, and the side channels are spaced apart by a width such that when they engage shoulders 31 the bottom face 58B of the anvil 12 is disposed above but in close proximity to the top end 62 of foot 32. Guide lips 56 wrap around and capture anchor plate 28 when it is disposed in either docking port 50T or 50B. The gap 60 between opposing side channels 54T, 54B is sized so that the upper portion 64 of buttress wall 30 passes freely through it such that when the anchor plate 28 is captured in docking port 50B, as shown, the upper portion 64 thereof extends into top docking port 50T. When anvil 12 is mounted on anvil holder 24 as described, the bottom face 58B or edge of the anvil 12 is positioned closely adjacent to the floor 26 of anvil ring 14. Anvils 12 are comprised of a durable metal, such as cast iron, and are quite heavy. Therefore, the force of gravity alone is sufficient to retain the anvil 12 on anvil holder 24 even when subject to the severe conditions experienced during operation of the crusher.
When a full complement of anvils 12 is assembled in the anvil ring 14, such as is shown in FIG. 5, the left side 66 of the front face 44 of each anvil 12 overlaps and protects the right side 68 of the left-adjacent anvil. In addition, the right corner 70 is disposed in adjacent alignment with the inner edge 49 of the left lateral surface 46 of the right-adjacent anvil 12 thereby closing off the area 74 behind the ring of anvils 12 from exposure to the stream of particles being ejected from the rotor 22 during operation of the crusher, thereby protecting the side wall 76 of the anvil ring 14 from being damaged.
FIG. 5 shows that, when the anvils 12 are assembled in the anvil ring 14, the left side face 48L and front face 44 together comprise impact faces against which matter ejected from the rotor strikes and is gradually worn away. When the left side face 48L and the left side 44L of the front face 44 of an anvil 12 wear down sufficiently, the anvil 12 easily can be detached from the anvil holder 24, inverted and quickly reinstalled on the anvil holder 24 upside down using the formerly top docking port 50T. This then positions the theretofore protected right side face 48R and the less worn right side 44R of the front face 44 of the anvil 12 to act as the impact faces.
A significant advantage of the anvil assembly disclosed herein is that scrap loss is appreciably reduced. The anvil component of the assembly according to the invention is less expensive to manufacture because docking ports are used instead of the rear-extending mounting stob and neck, thus requiring less material to manufacture each piece. A greater amount of the part is therefore consumed during operation of the crusher, reducing scrap loss. The replacement process is also simplified and shortened because only the one anvil need be replaced instead of replacing two anvils as in the prior art. Additionally, the anvil holder, being detachable from the floor of the anvil ring, can also be replaced as needed.
There have thus been described and illustrated certain embodiments of an anvil assembly for a VSI crusher according to the invention. Although the present invention has been described and illustrated in detail, it should be clearly understood that the disclosure is illustrative only and is not to be taken as limiting.