Aortic valve stenosis results in the narrowing of the aortic valve. Aortic valve stenosis may be exacerbated by a congenital defect where the aortic valve has one leaflet (unicuspid) or two leaflets (bicuspid) instead of three leaflets. In many cases, the narrowing of the aortic valve is the result of aortic valve calcification, where calcified plaque accumulates on the leaflets and/or annulus of the aortic valve. For example, calcium plaques deposited on the cusps of the leaflets may stiffen the leaflets, thereby narrowing the valve opening and interfering with efficient blood flow across the aortic valve.
Although research is underway in the development of a replacement aortic valve, one may prefer to soften the leaflets by modifying (e.g., reducing) or cracking the calcium deposits on the native valve instead of replacing it with an artificial valve. Accordingly, improved methods of softening a calcified aortic valve may be desirable.
Described herein are shock wave devices and methods for the treatment of calcified heart valves. The application of shock waves to a calcified region of a valve may help to crack and/or break the calcium deposits, thereby softening and/or loosening and/or removing calcium deposits that stiffen the mechanical properties of the valve. Softening and/or loosening and/or removing calcium deposits may allow the valve to regain at least a portion of its normal function. One embodiment of a shock wave device may comprise an elongated flexible tube carried by a sheath. The tube may have a fluid input end as well as fluid output end, which may be located near a proximal end of the sheath. The tube may include a loop portion located near a distal end of the sheath. The loop portion may be configured to be at least partially accommodated within a cusp of the heart valve. The tube may be fillable with a conductive fluid via the fluid input end of the tube. In some variations, the shock wave device may include an array of electrode pairs associated with a plurality of wires positioned within the loop portion of a tube. The electrode pairs may be electrically connectable to a voltage source and configured to generate shock waves in the conductive fluid in response to voltage pulses. Shock wave devices comprising at least two elongated flexible tubes and one or more electrode pairs may be used for treating unicuspid, bicuspid and/or tricuspid valves.
Methods for delivering shock waves to treat calcified lesions of a heart valve may comprise introducing a shock wave device into a patient's vasculature. The shock wave device may comprise an elongated flexible tube carried by a sheath. The tube may have a fluid input end. The fluid input end of the tube may be located near a proximal end of the sheath. The tube may include a loop portion located near a distal end of the sheath. The loop portion of the tube may be configured to be at least partially accommodated within a cusp of the heart valve. The tube may be fillable with a conductive fluid via the fluid input end of the tube. The shock wave device may comprise an array of electrode pairs associated with a plurality of wires positioned within the loop portion. The electrode pairs may be electrically connectable to a voltage source and configured to generate shock waves in the conductive fluid in response to voltage pulses. Methods for delivering shock waves to treat calcified lesions of a heart valve may further comprise advancing the shock wave device within the vasculature such that the loop portion of the tube is at least partially accommodated with a cusp of the heart valve; providing the tube of the shock wave device with conductive fluid; and activating the voltage source to apply a shock waves to treat the calcified lesions.
Other devices and methods that may be used to crack and/or break calcified deposits in an aortic valve (e.g., as part of a valvuloplasty procedure) are described in co-pending U.S. Pat. Pub. No. 2014/0046353 filed Aug. 8, 2013 (U.S. patent application Ser. No. 13/962,315); U.S. Pat. Pub. No. 2011/0295227 filed Aug. 10, 2011 (U.S. patent application Ser. No. 13/207,381, now U.S. Pat. No. 9,044,619), U.S. Pat. Pub. No. 2013/0116714 filed Nov. 8, 2011 (U.S. patent application Ser. No. 13/291,875, now U.S. Pat. No. 8,574,247), U.S. Pat. Pub. No. 2014/0163592 filed Aug. 1, 2013 (U.S. patent application Ser. No. 13/957,276, now U.S. Pat. No. 9,220,521 issued Dec. 29, 2015), which are hereby incorporated by reference in their entirety.
One variation for delivering shock waves to treat calcified lesions in a heart valve (e.g., a heart valve having a plurality of cusps each having a concave portion) may comprise an elongated flexible tube carried by a sheath. The tube may have a fluid input end, which may be located near a proximal end of the sheath. The tube may include a loop portion located near a distal end of the sheath. The loop portion may be configured to be at least partially accommodated within a cusp of the heart valve. The tube may be fillable with a conductive fluid via the fluid input end of the tube and subsequently purge used conductive fluid through the fluid output tube located on the sheath. The device may further comprise an elongated flexible support wire disposed within the tube and at least two insulated wires supported by the elongated flexible support wire. At least two insulated wires may be coiled around the flexible support wire. The device may further comprise at least two electrode pairs included in at least two insulated wires positioned within the loop portion. Each of the electrode pairs may comprise a plurality of spark-generating regions (or arc-generating regions) formed within interleaved portions of two insulated wires of the at least two insulated wires. The arc-generating regions are devoid of insulation. At least two electrode pairs may be electrically connectable to a voltage source and configured to generate shock waves in the conductive fluid in response to voltage pulses.
Any of the devices described herein may further comprise a plurality of spacers configured to space the array of electrode pairs away from the inner wall of the tube; a marker disposed in the loop portion of the tube; a fluid source, and a fluid pump. The fluid pump may be configured to deliver fluid from the fluid source to the fluid input end of the tube as well as remove fluid from the tube. To maintain the maximum shockwave output, it may be desirable to remove debris and air bubbles from the tube and replenish the tube with fresh conductive fluid. A pressure relief valve may be attached to the fluid output end so the pump can deliver the conductive fluid at a constant pressure. In some example, a pressure regulator may be attached at the fluid input end. Optionally, the device may further comprise at least one additional elongated flexible tube carried by the sheath, and a central anchor extending between and beyond the loop portions of the tubes and configured to pass through the leaflets of the heart valves and into the ventricle to stabilize the position of the sheath.
An elongated flexible tube 110 (e.g., tubes 110A-C) may comprise an inner wall and an outer wall. In some variations, the inner wall of the elongated flexible tube 110 may be heat treated such that the surface of the inner wall is smoother than a surface that is not heat-treated. A smoother inner wall may reduce the absorption of the shock wave generated by an electrode pair and therefore enhance the efficiency of delivering the shock wave to treat the calcium deposits in a heart valve. Moreover, a smoother surface may also reduce the resistance of circulating the fluid inside the elongated flexible tube 110. A smoother surface may also reduce air bubble forming and trapping, which can diminish the shock wave sonic output. A hydrophilic coating may eliminate or reduce this problem.
In some variations, the elongated flexible tube 110 may have a ring-shaped cross-section. For example, the inner wall of the elongated flexible tube 110 may form an inner cylinder to accommodate the wires, supporting wires, interleaved wire portions carrying electrode pairs, and the fluid. As an example, the inner diameter of the elongated flexible tube 110 may be ranging from about 0.04 inch to 0.08 inch; and the outer diameter of the elongated flexible tube 110 may be ranging from about 0.044 inch and about 0.088 inch; and the thickness of the wall of the elongated flexible tube 110 may be in the range of about 0.002 inch and about 0.02 inch. While increasing the wall thickness can improve strength, increasing the thickness of the wall of the elongated flexible tube 110 may also increase the absorption of energy generated by an electrode pair, thereby reducing the acoustic pressure and shear stress (induced by the acoustic pressure pulse) that are applied to the calcified deposits along the surface of cusps of a heart valve. It is appreciated that the elongated flexible tube 110 can have any desired cross-sectional shape and any desired dimensions for accommodate the components (e.g., wires, supporting wires, interleaved wire portions carrying electrode pairs, and the fluid) of a shock wave device for delivering the shock wave to treat the calcium deposits in a heart valve. In some variations, the material of the elongated flexible tube 110 may include nylon, rubber, plastic, aromatic polyurethane, and/or other materials having similar characteristics.
As illustrated in
As shown in
As will be discussed below with reference to
In some variations, the high voltage pulse generator 102 can generate high voltage pulses in the range of about 1 kV-6 kV peak to peak. In one variation, the high voltage pulse generator 102 generates a voltage of about 5.0 kV and delivers the voltage to a plurality of interleaved wire portions (e.g., the first interleaved wire portion 116, the second interleaved wire portion 120, and the third interleaved wire portion 124) carrying an array of electrode pairs. The array of electrode pairs can be configured to generate shock waves in the conductive fluid in response to the voltage pulses generated by the voltage pulse generator 102, as described in more detail below.
As shown in
In some variations, the elongated flexible tubes 210A-C may further comprise markers 252, 254, and 256, respectively. A marker may be disposed in the loop portion of the elongated flexible tube 210. For example, as shown in
As illustrated in
As described in more detail below, the electrode pairs may generate shock waves, which apply acoustic pulses of energy that propagate through the conductive fluid filled in the elongated flexible tubes 210A-C. The acoustic pulses of energy generated from the electrode pairs (e.g., electrode pairs carried the by interleaved wire portions 214, 216, 222, 226, 232, and 236) may propagate through the conductive fluid to apply acoustic pressure and shear stress on calcified deposits along the surface of the cusp. As described, in some variations, the thickness of the wall of an elongated flexible tube (e.g., 210A-C) may affect the absorption of the energy generated by an electrode pair. For example, increasing the thickness of the wall of the elongated flexible tube 110 may increase the absorption of energy generated by an electrode pair, thereby reducing the acoustic pressure (and the induced stress associated with it) that is available to be applied to the calcified deposits along the surface of cusps of a heart valve. The thickness of the wall of the elongated flexible tube 110 may range from, for example, about 0.002 inch to 0.02 inch. In some variations, the surface of the elongated flexible tubes 210A-C may be heat treated such that it may be smoother than a surface that is not heat-treated. A smooth surface of elongated flexible tubes 210A-C reduces or eliminates cavities or roughness to allow the pulses of energy to propagate in all directions. Moreover, as a result of the smooth surface, some of the energy may be reflected and redirected to the calcified deposits, thereby enhancing the efficacy of the treatment. In some variations, the thickness of the wall of an elongated flexible tube (e.g., 210A-C) may be reduced when the surface of the wall is heat treated. A thinner wall may reduce the absorption of energy generated by an electrode pair. A thinner wall may also reduce the reflection of energy generated by an electrode pair. Thus, a thinner wall of an elongated flexible tube (e.g., 210A-C) may increase the pressure or stress that is available to be applied to the calcified deposits along the surface of cusps of a heart valve, thereby enhances the efficacy of the treatment. A heat treated surface may also reduce the absorption of the pulses of energy and thus reduce the stress applied on the elongated flexible tubes 210A-C, thereby enhancing the life time of the tubes.
As shown in
As shown in
As shown in
As illustrated in
In some variations, the arc-generating regions may be devoid of insulation and may be configured to generate sparks (or plasma arcs) between two neighboring wire portions to convey the shock waves. As described, a wire (e.g., wire 328, 332, 336, and 340) may comprise a first layer that is electrically conductive and a second layer that is an electrical insulator. The first layer of a wire may be surrounded by the second layer. As shown in
As shown in
Similarly, as shown in
In some variations, plasma arcs may cause erosion of the insulation of the wires. Erosion may occur in the direction corresponding to the direction of increasing voltage or potential. For example, as shown in
In some variations, plasma arcs may cause erosion of the insulation of the wires. Erosion may occur in the direction corresponding to the direction of increasing voltage or potential. In order to reduce the bias of erosion, in some variations, a shock wave device with polarity switching may be used with a regular electrode configuration (similar to those described in co-pending U.S. patent application Ser. No. 15/138,147, filed Apr. 25, 2016, which is incorporated by reference in its entirety) to even the directional erosion mentioned above. Thus, the insulation erosion of the portion of the wire 332, as shown in
As illustrated in
In some variations, the shock wave device may comprise a self-expanding anchor, which may be expanded automatically after the anchor is deployed.
In some variations, the shock wave device may be advanced (504) within the vasculature such that the loop portion of the tube is at least partially accommodated with a cusp of the heart valve. The tube of the shock wave device may be provided (506) with conductive fluid. As described, the conductive fluid may be provided from a fluid source using a fluid pump. The voltage source may be activated (508) to apply shock waves to treat the calcified lesions of the heart valve. As described, using one or more elongated flexible tubes, one or more cusps of a heart valve may be treated in serial or in parallel.
In some variations, the elongated flexible tube 600 may comprise a fluid input end 312, a support wire 320, a first wire 340, a first interleaved wire portion 338, a second wire 336, a second interleaved wire portion 334, a third wire 332, a third interleaved wire portion 330, and a fourth wire 328. As depicted in
In some variations, the distal end of the elongated flexible tube 600 (e.g., end 614) may be sealed such that the conducive fluid flows in and out through the open proximal end of the elongated flexible tube 610 (e.g., fluid input end 312). Moreover, a wire associated with the electrode pair closest to the distal end of the tube is configured to extend at least from the sealed distal end of the tube to the open proximal end of the tube. As illustrated in
As discussed above, to maintain the maximum shockwave output, it would be desirable to remove debris and air bubbles from the tube and replenish the tube with fresh conductive fluid. For a tube having a horseshoe-shaped loop portion, a pressure relief valve may be attached to the fluid output end so the pump can deliver the conductive fluid at a constant pressure; additionally or alternatively, a pressure regulator may be attached at the fluid input end. For a tube having a sealed distal end such as a tube having a J-shaped loop portion (e.g., the elongated flexible tube 610) or a tube having a straight configuration (e.g., the elongated flexible tube 710), the elongated flexible tube may include an output port at the proximal end of the tube such that the fluid makes a U-turn through the separated lumen. In some examples, if the support wire is a nitinol tube, the nitinol tube can be used to flush the elongated flexible tube with fresh fluid, which enters the elongated flexible tube via the distal end of the nitinol tube. Suction may be applied at the output port at the proximal end of the elongated flexible tube to increase the outward flow of the fluid.
In some variations, when the elongated flexible tube 610 is being deployed via a sheath, the J-shaped curved portion is straightened out (i.e., the distal end of the elongated flexible tube is unfolded and is substantially straight against the wall of the sheath). During deployment, when the elongated flexible tube 610 is extended out of the sheath, the distal end of the elongated flexible tube is configured to curl into a loop-like shape to prevent the sealed distal end of the tube from lodging in the ostium of a coronary artery.
As depicted in
As depicted in
In some variations, the shaft portions above the loop portions of the elongated tubes may be biased such that they bend at an angle. As depicted in
As depicted in
Next, as depicted in
After a practitioner confirms that the curved portions of the tubes are located in the desired position, one or more of the electrode pairs in the tubes may be activated to produce shock waves. The mechanical force from the shock waves may propagate through the conductive fluid to apply a mechanical force on any calcified deposit along the surface of the cusps. In some methods, a single cusp of a valve may be treated at a time, while in other methods, two or more cusps of a valve may be treated simultaneously.
The central anchor 1007 includes a plurality of arms 1012, 1014, 1016, 1018, 1022, and 1024. One or more markers may be disposed in a unique configuration on each of the plurality of arms such that the location of each arm can be identified during a procedure. The markers may include marker bands wrapped around the arms, markers glued on or crimped onto the arms, or a combination thereof. The configurations of marker(s) on two given arms may be different in marker count, marker shape, marker length, marker arrangement on the arm, or a combination thereof. In the depicted example, a first configuration corresponding to arm 1012 includes a series of four markers arranged in a linear fashion, whereas the second configuration corresponding to arm 1014 includes a single marker that is longer than any of four markers on the first arm 1012.
In some variations, the different marker configurations on the arms of the central anchor 1007 help a practitioner to identify the locations/positions/orientations of the arms and to navigate the elongated tube(s) of the shock wave device (e.g., the single elongated flexible tube 1010) from one cusp to another during a procedure. In an exemplary procedure, the shock wave device 1000 is introduced into a patient's vasculature and advanced within the vasculature such that the central anchor 1007 is placed into the ventricle. Specifically, the anchor 1007 may be pushed through the valve orifice, expanded, and then pulled up against the heart valve leaflets to help further engage or contact the shock wave electrode pairs with the leaflets and/or cusps. Based on the marker configurations, the locations of the arms are determined. In some variations, the locations of the arms may be determined based on fluoroscopy and/or ultrasound using the markers configurations. For example, upon identifying a configuration including a series of four markers of a certain length based on fluoroscopy, the practitioner can determine the location of the arm 1012.
Based on the locations of the arms determined based on the marker configurations, the tube 1010 is deployed and positioned such that the distal end of the tube (e.g., the loop portion) is at least partially accommodated with a first cusp of the heart valve. The first cusp of the heart valve may be in proximity to a particular arm of the central anchor. As such, the tube 1010 is positioned in proximity to the particular arm based on the determined location of the particular arm. In some variations, the tube 1010 is filled with a pressurized conductive fluid such that the loop portion partially unfolds into a less curved portion, as discussed above with respect to
After treating the first cusp, the tube may be repositioned based on the determined locations of the arms of the central anchor such that the distal end of the tube is at least partially accommodated with a second cusp of the heart valve. Steps as described above are repeated such that the curved portion of the tube is located in the desired position, and the voltage source is activated to apply shock waves to treat the calcified lesions. It should be appreciated that the above-described method can be applied using any type of elongated flexible tube described herein.
In some variations, the distal end of the elongated flexible tube 710 (e.g., end 714) may be sealed such that the conducive fluid flows in and out through the fluid input end 312. Moreover, a wire associated with the electrode pair closest to the distal end of the tube is configured to extend at least from the sealed distal end of the tube to the open proximal end of the tube. As illustrated in
In some variations, the elongated flexible tube 1110 may comprise a fluid input end located near a proximal end of the sheath 1108. A fluid may be introduced via the fluid input end. For example, the fluid may be introduced to the elongated flexible tube 1110 by the fluid pump and fluid source 1106. The fluid pump and fluid source 1106 may fill the elongated flexible tube 1100 with a fluid such as saline or saline/contrast mixture. In some variations, the elongated flexible tube 1110 may have one fluid end, through which the fluid may be introduced to the tube and discharged from the tube.
In some variations, the elongated flexible tube 1100 has a loop portion 1130, which is configured to be at least partially accommodated within a cusp of the heart valve. In the depicted example, the shape of the loop portion may be set by the support wire 1160A and the elongated flexible tube 1110 may be configured to operate in a manner consistent with the method described with reference to
One or more shock wave generators are positioned within the loop portion 1130. As depicted in
Laser absorption in the fluid leads to a primary pressure wave (shock wave) emitted from the absorption region. After a low fluence threshold, a vapor bubble is also formed. The growth and subsequent collapse of the vapor cavity lead to secondary pressure waves (shock waves). One of ordinary skill in the art would recognize that this process is distinct from the generation of shock waves in
In some embodiments, as depicted in
While this invention has been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention. For all of the embodiments described above, the steps of the methods need not be performed sequentially.
This application claims priority to U.S. Provisional Patent Application No. 62/405,002, filed Oct. 6, 2016, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3413976 | Voolfovich | Dec 1968 | A |
3785382 | Schmidt-Kloiber | Jan 1974 | A |
3902499 | Shene | Sep 1975 | A |
4027674 | Tessler et al. | Jun 1977 | A |
4030505 | Tessler | Jun 1977 | A |
4662126 | Malcolm | May 1987 | A |
4671254 | Fair | Jun 1987 | A |
4685458 | Leckrone | Aug 1987 | A |
4809682 | Forssmann et al. | Mar 1989 | A |
4813934 | Engelson et al. | Mar 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4900303 | Lemelson | Feb 1990 | A |
4994032 | Sugiyama et al. | Feb 1991 | A |
5009232 | Hassler et al. | Apr 1991 | A |
5046503 | Schneiderman | Sep 1991 | A |
5057103 | Davis | Oct 1991 | A |
5057106 | Kasevich et al. | Oct 1991 | A |
5061240 | Cherian | Oct 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5103804 | Abele et al. | Apr 1992 | A |
5152767 | Sypal et al. | Oct 1992 | A |
5152768 | Bhatta | Oct 1992 | A |
5154722 | Filip et al. | Oct 1992 | A |
5176675 | Watson et al. | Jan 1993 | A |
5195508 | Muller et al. | Mar 1993 | A |
5245988 | Einars et al. | Sep 1993 | A |
5246447 | Rosen et al. | Sep 1993 | A |
5281231 | Rosen et al. | Jan 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5336234 | Vigil et al. | Aug 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5395335 | Jang | Mar 1995 | A |
5417208 | Winkler | May 1995 | A |
5425735 | Rosen et al. | Jun 1995 | A |
5472406 | De La Torre et al. | Dec 1995 | A |
5505702 | Arney | Apr 1996 | A |
5582578 | Zhong et al. | Dec 1996 | A |
5603731 | Whitney | Feb 1997 | A |
5609606 | O'Boyle | Mar 1997 | A |
5662590 | De La Torre et al. | Sep 1997 | A |
5846218 | Brisken et al. | Dec 1998 | A |
5893840 | Hull et al. | Apr 1999 | A |
5931805 | Brisken | Aug 1999 | A |
6007530 | Dornhofer et al. | Dec 1999 | A |
6033371 | Torre et al. | Mar 2000 | A |
6080119 | Schwarze et al. | Jun 2000 | A |
6083232 | Cox | Jul 2000 | A |
6113560 | Simnacher | Sep 2000 | A |
6146358 | Rowe | Nov 2000 | A |
6186963 | Schwarze et al. | Feb 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217531 | Reitmajer | Apr 2001 | B1 |
6267747 | Samson et al. | Jul 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6287272 | Brisken et al. | Sep 2001 | B1 |
6352535 | Lewis et al. | Mar 2002 | B1 |
6367203 | Graham et al. | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6406486 | De La Torre et al. | Jun 2002 | B1 |
6440061 | Wenner et al. | Aug 2002 | B1 |
6514203 | Bukshpan | Feb 2003 | B2 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6589253 | Cornish et al. | Jul 2003 | B1 |
6607003 | Wilson | Aug 2003 | B1 |
6638246 | Naimark et al. | Oct 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6689089 | Tiedtke et al. | Feb 2004 | B1 |
6736784 | Menne et al. | May 2004 | B1 |
6740081 | Hilal | May 2004 | B2 |
6755821 | Fry | Jun 2004 | B1 |
6939320 | Lennox | Sep 2005 | B2 |
6989009 | Lafontaine | Jan 2006 | B2 |
7066904 | Rosenthal et al. | Jun 2006 | B2 |
7241295 | Maguire | Jul 2007 | B2 |
7505812 | Eggers et al. | Mar 2009 | B1 |
7569032 | Naimark et al. | Aug 2009 | B2 |
7618432 | Pedersen et al. | Nov 2009 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7951111 | Drasier et al. | May 2011 | B2 |
8162859 | Schultheiss et al. | Apr 2012 | B2 |
8556813 | Cioanta et al. | Oct 2013 | B2 |
8574247 | Adams et al. | Nov 2013 | B2 |
8709075 | Adams et al. | Apr 2014 | B2 |
8728091 | Hakala | May 2014 | B2 |
8747416 | Hakala et al. | Jun 2014 | B2 |
8888788 | Hakala et al. | Nov 2014 | B2 |
8956371 | Hawkins | Feb 2015 | B2 |
8956374 | Hawkins et al. | Feb 2015 | B2 |
9005216 | Hakala | Apr 2015 | B2 |
9011462 | Adams et al. | Apr 2015 | B2 |
9011463 | Adams | Apr 2015 | B2 |
9044618 | Hawkins | Jun 2015 | B2 |
9044619 | Hawkins et al. | Jun 2015 | B2 |
9180280 | Hawkins | Nov 2015 | B2 |
9220521 | Hawkins et al. | Dec 2015 | B2 |
9289224 | Adams | Mar 2016 | B2 |
9421025 | Hawkins et al. | Aug 2016 | B2 |
9522012 | Adams | Dec 2016 | B2 |
9554815 | Adams | Jan 2017 | B2 |
9642673 | Adams | May 2017 | B2 |
20010044596 | Jaafar | Nov 2001 | A1 |
20020065512 | Fjield et al. | May 2002 | A1 |
20020177889 | Brisken et al. | Nov 2002 | A1 |
20030004434 | Greco et al. | Jan 2003 | A1 |
20030163081 | Constantz et al. | Aug 2003 | A1 |
20030176873 | Chernenko et al. | Sep 2003 | A1 |
20030229370 | Miller | Dec 2003 | A1 |
20040044308 | Naimark et al. | Mar 2004 | A1 |
20040082859 | Schaer | Apr 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040181160 | Rudy | Sep 2004 | A1 |
20040243107 | Macoviak | Dec 2004 | A1 |
20040249401 | Rabiner et al. | Dec 2004 | A1 |
20040254570 | Hadjicostis et al. | Dec 2004 | A1 |
20050015953 | Keidar | Jan 2005 | A1 |
20050021013 | Visuri et al. | Jan 2005 | A1 |
20050059965 | Eberl et al. | Mar 2005 | A1 |
20050075662 | Pedersen et al. | Apr 2005 | A1 |
20050090846 | Pedersen et al. | Apr 2005 | A1 |
20050090888 | Hines et al. | Apr 2005 | A1 |
20050113822 | Fuimaono et al. | May 2005 | A1 |
20050171527 | Bhola | Aug 2005 | A1 |
20050228372 | Truckai et al. | Oct 2005 | A1 |
20050245866 | Azizi | Nov 2005 | A1 |
20050251131 | Lesh | Nov 2005 | A1 |
20060004286 | Chang et al. | Jan 2006 | A1 |
20060069385 | Lafontaine et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060178685 | Melsheimer | Aug 2006 | A1 |
20060184076 | Gill et al. | Aug 2006 | A1 |
20060190022 | Beyar et al. | Aug 2006 | A1 |
20070016112 | Schultheiss et al. | Jan 2007 | A1 |
20070088380 | Hirszowicz et al. | Apr 2007 | A1 |
20070118168 | Lointier et al. | May 2007 | A1 |
20070129667 | Tiedtke et al. | Jun 2007 | A1 |
20070239082 | Schultheiss et al. | Oct 2007 | A1 |
20070239253 | Jagger et al. | Oct 2007 | A1 |
20070244423 | Zumeris et al. | Oct 2007 | A1 |
20070299481 | Syed et al. | Dec 2007 | A1 |
20080033425 | Davis et al. | Feb 2008 | A1 |
20080077165 | Murphy | Mar 2008 | A1 |
20080097251 | Babaev | Apr 2008 | A1 |
20080188913 | Stone et al. | Aug 2008 | A1 |
20090030503 | Ho | Jan 2009 | A1 |
20090041833 | Bettinger et al. | Feb 2009 | A1 |
20090247945 | Levit et al. | Oct 2009 | A1 |
20090254114 | Hirszowicz et al. | Oct 2009 | A1 |
20090312768 | Hawkins et al. | Dec 2009 | A1 |
20100016862 | Hawkins et al. | Jan 2010 | A1 |
20100036294 | Mantell et al. | Feb 2010 | A1 |
20100094209 | Drasler et al. | Apr 2010 | A1 |
20100114020 | Hawkins et al. | May 2010 | A1 |
20100114065 | Hawkins et al. | May 2010 | A1 |
20100121322 | Swanson | May 2010 | A1 |
20100179424 | Warnking et al. | Jul 2010 | A1 |
20100305565 | Truckai et al. | Dec 2010 | A1 |
20100324554 | Gifford et al. | Dec 2010 | A1 |
20110034832 | Cioanta et al. | Feb 2011 | A1 |
20110118634 | Golan | May 2011 | A1 |
20110166570 | Hawkins et al. | Jul 2011 | A1 |
20110257523 | Hastings et al. | Oct 2011 | A1 |
20110295227 | Hawkins et al. | Dec 2011 | A1 |
20120071889 | Mantell et al. | Mar 2012 | A1 |
20120095461 | Herscher et al. | Apr 2012 | A1 |
20120116289 | Hawkins et al. | May 2012 | A1 |
20120143177 | Avitall | Jun 2012 | A1 |
20120143179 | Avitall | Jun 2012 | A1 |
20120203255 | Hawkins et al. | Aug 2012 | A1 |
20120221013 | Hawkins et al. | Aug 2012 | A1 |
20120253358 | Golan | Oct 2012 | A1 |
20130030431 | Adams | Jan 2013 | A1 |
20130030447 | Adams | Jan 2013 | A1 |
20130116714 | Adams et al. | May 2013 | A1 |
20130150874 | Kassab | Jun 2013 | A1 |
20140005576 | Adams et al. | Jan 2014 | A1 |
20140039513 | Hakala et al. | Feb 2014 | A1 |
20140039514 | Adams et al. | Feb 2014 | A1 |
20140046229 | Hawkins et al. | Feb 2014 | A1 |
20140046353 | Adams | Feb 2014 | A1 |
20140052145 | Adams et al. | Feb 2014 | A1 |
20140052147 | Hakala et al. | Feb 2014 | A1 |
20140074111 | Hakala et al. | Mar 2014 | A1 |
20140074113 | Hakala et al. | Mar 2014 | A1 |
20140163592 | Hakala et al. | Jun 2014 | A1 |
20140214061 | Adams et al. | Jul 2014 | A1 |
20140243820 | Adams et al. | Aug 2014 | A1 |
20140243847 | Hakala et al. | Aug 2014 | A1 |
20140288570 | Adams | Sep 2014 | A1 |
20140316428 | Golan | Oct 2014 | A1 |
20150073430 | Hakala et al. | Mar 2015 | A1 |
20150223757 | Werneth | Aug 2015 | A1 |
20150238208 | Adams et al. | Aug 2015 | A1 |
20150238209 | Hawkins et al. | Aug 2015 | A1 |
20150320432 | Adams | Nov 2015 | A1 |
20160135825 | Toler | May 2016 | A1 |
20160135828 | Hawkins et al. | May 2016 | A1 |
20160151081 | Adams et al. | Jun 2016 | A1 |
20160324534 | Hawkins et al. | Nov 2016 | A1 |
20170065227 | Marrs | Mar 2017 | A1 |
20170086867 | Adams | Mar 2017 | A1 |
20170303946 | Ku et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2009313507 | Nov 2014 | AU |
1269708 | Oct 2000 | CN |
101043914 | Sep 2007 | CN |
102057422 | May 2011 | CN |
201906330 | Jul 2011 | CN |
102271748 | Dec 2011 | CN |
102765785 | Nov 2012 | CN |
3038445 | May 1982 | DE |
0442199 | Aug 1991 | EP |
0571306 | Nov 1993 | EP |
0623360 | Nov 1994 | EP |
2253884 | Nov 2010 | EP |
2362798 | Apr 2014 | EP |
60-191353 | Dec 1985 | JP |
62-99210 | Jun 1987 | JP |
62-275446 | Nov 1987 | JP |
3-63059 | Mar 1991 | JP |
6-125915 | May 1994 | JP |
7-47135 | Feb 1995 | JP |
8-89511 | Apr 1996 | JP |
10-99444 | Apr 1998 | JP |
10-314177 | Dec 1998 | JP |
10-513379 | Dec 1998 | JP |
2002-538932 | Nov 2002 | JP |
2004-81374 | Mar 2004 | JP |
2004-357792 | Dec 2004 | JP |
2005-95410 | Apr 2005 | JP |
2005-515825 | Jun 2005 | JP |
2005-518874 | Jun 2005 | JP |
2006-516465 | Jul 2006 | JP |
2007-532182 | Nov 2007 | JP |
2008-506447 | Mar 2008 | JP |
2011-513694 | Apr 2011 | JP |
2011-520248 | Jul 2011 | JP |
2011-524203 | Sep 2011 | JP |
2011-528963 | Dec 2011 | JP |
2012-505050 | Mar 2012 | JP |
2012-508042 | Apr 2012 | JP |
6029828 | Nov 2016 | JP |
6081510 | Feb 2017 | JP |
198911307 | Nov 1989 | WO |
199624297 | Aug 1996 | WO |
199902096 | Jan 1999 | WO |
2004069072 | Aug 2004 | WO |
2005099594 | Oct 2005 | WO |
2006006169 | Jan 2006 | WO |
2006127158 | Nov 2006 | WO |
2007088546 | Aug 2007 | WO |
2007149905 | Dec 2007 | WO |
2009121017 | Oct 2009 | WO |
2009126544 | Oct 2009 | WO |
2009136268 | Nov 2009 | WO |
2009152352 | Dec 2009 | WO |
2010014515 | Feb 2010 | WO |
2010054048 | May 2010 | WO |
2010014515 | Aug 2010 | WO |
2010054048 | Sep 2010 | WO |
2011069025 | Jun 2011 | WO |
2011143468 | Nov 2011 | WO |
2013059735 | Apr 2013 | WO |
2013070750 | May 2013 | WO |
2013085934 | Jun 2013 | WO |
2014025620 | Feb 2014 | WO |
2016077627 | May 2016 | WO |
Entry |
---|
Advisory Action received for U.S. Appl. No. 14/229,735, dated Nov. 3, 2015, 3 pages. |
Advisory Action received for U.S. Appl. No. 12/482,995, dated Jun. 2, 2014, 3 pages. |
Advisory Action received for U.S. Appl. No. 12/482,995, dated Sep. 29, 2011, 2 pages. |
Advisory Action received for U.S. Appl. No. 12/581,295, dated Jul. 3, 2014, 3 pages. |
Advisory Action received for U.S. Appl. No. 13/049,199, dated Jun. 7, 2012, 3 pages. |
Advisory Action received for U.S. Appl. No. 13/267,383, dated Jan. 6, 2014, 4 pages. |
Cleveland et al., “The Physics of Shock Wave Lithotripsy”, Extracorporeal Shock Wave Lithotripsy, Part IV, Chapter 38, 2012, pp. 317-332. |
Connors et al., “Renal Nerves Mediate Changes in Contralateral Renal Blood Flow after Extracorporeal Shockwave Lithotripsy”, Nephron Physiol, vol. 95, 2003, pp. 67-75. |
Decision of Appeals Notice received for Japanese Patent Application No. 2011-534914, dated Oct. 17, 2016, 2 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)). |
Decision to Grant received for European Patent Application No. 13756766.5, dated May 27, 2016, 2 pages. |
Decision to Grant received for European Patent Application No. 09825393.3, dated Mar. 13, 2014, 2 pages. |
Decision to Grant received for European Patent Application No. 13748228.7, dated Aug. 25, 2016, 2 pages. |
Decision to Grant received for Japanese Patent Application No. 2011-513694, dated Oct. 7, 2014, 3 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)). |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 09763640.1, dated Oct. 10, 2013, 5 pages. |
Extended European Search Report and Search Opinion received for European Patent Application No. 09825393.3, dated Feb. 28, 2013, 6 pages. |
Extended European Search Report received for European Patent Application No. 13827971.6, dated Apr. 12, 2016, 8 pages. |
Final Office Action received for U.S. Appl. No. 12/482,995, dated Jul. 22, 2011, 14 pages. |
Final Office Action received for U.S. Appl. No. 12/501,619, dated Feb. 21, 2012, 12 pages. |
Final Office Action received for U.S. Appl. No. 12/611,997, dated Dec. 11, 2012, 9 pages. |
Final Office Action received for U.S. Appl. No. 12/611,997, dated Nov. 10, 2011, 15 pages. |
Final Office Action received for U.S. Appl. No. 13/049,199, dated Apr. 4, 2012, 10 pages. |
Final Office Action received for U.S. Appl. No. 13/207,381, dated Nov. 2, 2012, 7 pages. |
Final Office Action received for U.S. Appl. No. 14/271,342 dated Feb. 27, 2015, 7 pages. |
Final Office Action received for U.S. Appl. No. 12/482,995, dated Feb. 20, 2014, 11 pages. |
Final Office Action received for U.S. Appl. No. 12/581,295, dated Jun. 5, 2014, 14 pages. |
Final Office Action received for U.S. Appl. No. 12/611,997, dated Oct. 24, 2013, 10 pages. |
Final Office Action received for U.S. Appl. No. 13/049,199, dated Aug. 11, 2014, 8 pages. |
Final Office Action received for U.S. Appl. No. 13/207,381, dated Nov. 7, 2013, 7 pages. |
Final Office Action received for U.S. Appl. No. 13/267,383, dated Oct. 25, 2013, 8 pages. |
Final Office Action received for U.S. Appl. No. 13/534,658, dated Aug. 23, 2016, 11 pages. |
Final Office Action received for U.S. Appl. No. 13/646,570, dated Dec. 23, 2014, 10 pages. |
Final Office Action received for U.S. Appl. No. 13/962,315, dated Mar. 10, 2016, 25 pages. |
Final Office Action received for U.S. Appl. No. 14/229,735, dated Aug. 27, 2015, 7 pages. |
Final Office Action received for U.S. Appl. No. 14/660,539, dated Aug. 3, 2017, 11 pages. |
Gambihler et al., “Permeabilization of the Plasma Membrane of L1210 Mouse Leukemia Cells Using Lithotripter Shock Waves”, The Journal of Membrane Biology, vol. 141, 1994, pp. 267-275. |
Grassi et al., “Novel Antihypertensive Therapies: Renal Sympathetic Nerve Ablation and Carotid Baroreceptor Stimulation”, Curr Hypertens Rep, vol. 14, Sep. 26, 2012, pp. 567-572. |
Intention to Grant received for European Patent Application No. 13748228.7, dated Mar. 23, 2016, 5 pages. |
Intention to Grant received for European Patent Application No. 09763640.1, dated Oct. 11, 2017, 8 pages. |
Intention to Grant received for European Patent Application No. 13756766.5, dated Jan. 8, 2016, 5 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/051606, dated May 14, 2013, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/047070, dated Dec. 23, 2010, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/063354, dated May 19, 2011, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/047070, dated Feb. 21, 2013, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/023172, dated Aug. 15, 2013, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/063925, dated May 22, 2014, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/031805, dated Feb. 19, 2015, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/039987 dated Nov. 20, 2014, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/048277 dated Jan. 8, 2015, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/053292, dated Feb. 19, 2015, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/054104, dated Feb. 19, 2015, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/055431, dated Feb. 26, 2015, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/059533, dated Mar. 26, 2015, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/060453, dated May 26, 2017, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/051606, dated Apr. 24, 2012, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/031805 dated May 20, 2013, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/039987, dated Sep. 23, 2013, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/048277, dated Oct. 2, 2013, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/053292, dated Nov. 4, 2013, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/054104, dated Oct. 22, 2013, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/055431, dated Nov. 12, 2013, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/059533, dated Nov. 7, 2013, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/060453, dated Jan. 21, 2016, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/055070, dated Dec. 14, 2017, 16 pages. |
International Search Report received for PCT Patent Application No. PCT/US2009/047070, dated Jan. 19, 2010, 4 pages. |
International Search Report received for PCT Patent Application No. PCT/US2009/063354, dated Jun. 11, 2010, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2012/023172, dated Sep. 28, 2012, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2012/063925, dated Mar. 25, 2013, 3 pages. |
International Written Opinion received for PCT Patent Application No. PCT/US2009/063354, dated Jun. 11, 2010, 4 pages. |
International Written Opinion received for PCT Patent Application No. PCT/US2011/047070, dated May 1, 2012, 5 pages. |
Kodama et al., “Shock wave-mediated molecular delivery into cells”, Biochimica et Biophysica Acta, vol. 1542, 2002, pp. 186-194. |
Lauer et al., “Shock Wave Permeabilization as a New Gene Transfer Method”, Gene Therapy, vol. 4, 1997, pp. 710-715. |
Non-Final Office Action received for U.S. Appl. No. 12/482,995, dated Aug. 13, 2014, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/482,995, dated Jul. 12, 2013, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/611,997, dated Nov. 26, 2014, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/207,381, dated Nov. 25, 2014, 5 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/465,264, dated Oct. 29, 2014, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/646,570, dated Oct. 29, 2014, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/079,463, dated Mar. 4, 2014, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/229,735, dated May 7, 2015, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/482,995, dated Feb. 11, 2011, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/501,619, dated Nov. 3, 2011, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/611,997, dated Apr. 8, 2013, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/611,997, dated Aug. 24, 2012, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/611,997, dated Jun. 21, 2011, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/049,199, dated Dec. 12, 2011, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/207,381, dated Feb. 22, 2013, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/207,381, dated Jun. 12, 2012, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/232,730, dated Apr. 23, 2013, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/291,875 dated Feb. 28, 2013, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/534,658, dated Mar. 11, 2016, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/515,130, dated Jan. 14, 2016, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/501,619, dated Jan. 28, 2014, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/581,295, dated Jan. 15, 2015, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/581,295, dated Mar. 10, 2014, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/611,997, dated Feb. 13, 2014, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/049,199, dated Feb. 4, 2014, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/207,381, dated Feb. 25, 2014, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/267,383, dated Feb. 25, 2015, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/465,264, dated Dec. 23, 2014, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/646,583, dated Oct. 31, 2014, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/962,315, dated Aug. 26, 2015, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/061,554, dated Mar. 12, 2014, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/271,276, dated Aug. 4, 2014, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/271,342, dated Sep. 2, 2014, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/660,539, dated Nov. 24, 2017, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/693,155, dated Jan. 15, 2016, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/213,105, dated Nov. 28, 2017, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/660,539, dated Mar. 6, 2017, 14 pages. |
Notice of Acceptance Received for Australian Patent Application No. 2009257368, dated Aug. 28, 2014, 2 pages. |
Notice of Acceptance Received for Australian Patent Application No. 2009313507, dated Nov. 17, 2014, 2 pages. |
Notice of Acceptance received for Australian Patent Application No. 2013299562, dated Jul. 3, 2017, 3 pages. |
Notice of Allowance received for Canadian Patent Application No. 2,727,429, dated May 26, 2015, 1 page. |
Notice of Allowance received for Canadian Patent Application No. 2,779,600, dated Jul. 7, 2017, 1 page. |
Notice of Allowance received for Japanese Patent Application No. 2015-036444, dated Jan. 13, 2017, 3 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)). |
Notice of Allowance received for Japanese Patent Application No. 2016-143049, dated Nov. 13, 2017, 3 pages (Official Copy Only) (See Communication under 37 CFR §1.98(a) (3)). |
Notice of Allowance received for U.S. Appl. No. 14/229,735, dated Nov. 17, 2015, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/515,130, dated May 2, 2016, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/515,130, dated May 25, 2016, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 12/611,997, dated Apr. 15, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/207,381, dated Apr. 14, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/465,264, dated May 8, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/957,276, dated Aug. 28, 2015, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/046,635, dated Dec. 17, 2013, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/271,276, dated Feb. 25, 2015, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 12/482,995, dated Dec. 24, 2014, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 13/049,199, dated Dec. 15, 2014, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/049,199, dated Jan. 13, 2015, 4 pages. |
Notice of Allowance received for U.S. Appl. No. 13/291,875, dated Sep. 17, 2013, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 13/646,570, dated Mar. 11, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/831,543, dated Oct. 8, 2014, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 13/962,315, dated Sep. 22, 2016, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 14/061,554, dated Apr. 25, 2014, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/079,463, dated Apr. 1, 2014, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/218,858, dated Aug. 26, 2016, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/271,342, dated Mar. 13, 2015, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/693,155, dated Apr. 26, 2016, 9 pages. |
Office Action received for Japanese Patent Application No. 2016-143049, dated Jul. 28, 2017, 7 pages (4 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Australian Patent Application No. 2009257368, dated Apr. 28, 2014, 4 pages. |
Office Action received for Australian Patent Application No. 2009257368, dated Jul. 31, 2013, 4 pages. |
Office Action received for Australian Patent Application No. 2009313507, dated Nov. 13, 2013, 3 pages. |
Office Action received for Australian Patent Application No. 2013299562, dated Jan. 20, 2017, 3 pages. |
Office Action received for Canadian Patent Application No. 2,727,429, dated Apr. 14, 2015, 4 pages. |
Office Action received for Canadian Patent Application No. 2,779,600, dated Jan. 4, 2016, 6 pages. |
Office Action received for Canadian Patent Application No. 2,779,600, dated Oct. 19, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 200980153687.X, dated Dec. 26, 2012, 11 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)). |
Office Action received for Chinese Patent Application No. 200980153687.X, dated Jul. 11, 2013, 11 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)). |
Office Action received for Chinese Patent Application No. 201380033808.3, dated Jul. 5, 2016, 9 pages (3 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201380041211.3, dated Aug. 14, 2017, 6 pages (2 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201380041211.3, dated Jul. 26, 2016, 12 pages (5 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201380041288.0, dated Jun. 20, 2016, 7 pages (4 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201380041656.1, dated Jul. 5, 2016, 9 pages (4 pages of English translation and 5 pages of Official Copy). |
Office Action Received for Chinese Patent Application No. 201380041211.3, dated Mar. 20, 2017, 11 pages (5 pages of English translation and 6 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201380042887.4, dated Aug. 8, 2016, 9 pages (4 pages of English translation and 5 pages of Official Copy). |
Office Action received for European Patent Application No. 09763640.1, dated Dec. 2, 2016, 4 pages. |
Office Action received for Japanese Patent Application No. 2011-513694, dated Aug. 27, 2013, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action Received for Japanese Patent Application No. 2011-513694, dated Jun. 10, 2014, 4 pages total (2 pages of English Translation and 2 pages of Official Copy). |
Office Action Received for Japanese Patent Application No. 2011-534914, dated Jan. 13, 2015, 9 pages (7 pages of English Translation and 2 pages of Official Copy). |
Office Action Received for Japanese Patent Application No. 2011-534914, dated Jul. 15, 2014, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2011-534914, dated May 10, 2016, 10 pages (6 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2011-534914, dated Oct. 1, 2013, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2014-158517, dated Feb. 15, 2017, 8 pages (5 pages of English Translation and 3 pages of Official Copy). |
Office Action Received for Japanese Patent Application No. 2014-158517, dated Jun. 22, 2017, 14 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)). |
Office Action received for Japanese Patent Application No. 2014-158517, dated May 19, 2015, 5 pages (2 pages of English Translation and 3 pages of Official Copy), |
Office Action received for Japanese Patent Application No. 2015-036444, dated Feb. 23, 2016, 3 pages (English Translation Only). |
Office Action received for Japanese Patent Application No. 2015-526700, dated Jun. 12, 2017, 14 pages (8 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2016-143049, dated Apr. 24, 2017, 5 pages (3 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2015-036444, dated Sep. 14, 2016, 5 pages (3 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2016-094326, dated Dec. 2, 2016, 4 pages (2 pages of English Translation and 2 pages Official Copy). |
Office Action received for Japanese Patent Application No. 2016-094326, dated Jul. 6, 2017, 2 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)). |
Rosenschein et al., “Shock-Wave Thrombus Ablation, a New Method for Noninvasive Mechanical Thrombolysis”, The American Journal of Cardiology, vol. 70, Nov. 15, 1992, pp. 1358-1361. |
Written Opinion received for PCT Patent Application No. PCT/US2012/023172, dated Sep. 28, 2012, 4 pages. |
Written Opinion received for PCT Patent Application No. PCT/US2012/063925, dated Mar. 25, 2013, 9 pages. |
Written Opinion received for PCT Patent Application No. PCT/US2009/047070, dated Jan. 19, 2010, 5 pages. |
Zhong et al., “Transient Oscillation of Cavitation Bubbles Near Stone Surface During Electrohydraulic Lithotripsy”, Journal of Endourology, vol. 11, No. 1, Feb. 1997, pp. 55-61. |
Advisory Action received for U.S. Appl. No. 14/940,029, dated Jan. 24, 2019, 3 pages. |
Final Office Action received for U.S. Appl. No. 14/940,029, dated Nov. 29, 2018, 17 pages. |
Final Office Action received for U.S. Appl. No. 15/377,090, dated Mar. 05, 2019, 12 pages. |
Intention to Grant received for European Patent Application No. 13750808.1, dated Mar. 7, 2018, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/055070, dated Apr. 18, 2019, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/940,029, dated Apr. 04, 2019, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/940,029, dated May 30, 2018, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/377,090, dated Sep. 5, 2019, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/377,090, dated Sep. 20, 2018, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20180098779 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
62405002 | Oct 2016 | US |