This disclosure relates in general to an aortic punch, and more specifically to an improved structure for such an aortic punch that is configured to open the aorta and punch a hole through the aortic wall in one step.
Known aortic punches are handheld devices that are used to create a circular hole in the aortic wall during coronary artery bypass graft surgery and other aortic procedures, such as a bypass of the mesenteric and renal arteries, and other bypass procedures that originate from large arteries. Patients with coronary artery disease and other arterial diseases often develop this disease over a course of decades. Deposits high in cholesterol, commonly referred to as plaque, builds up in the coronary arteries causing inflammation. The arterial disease tends not to be noticeable until significant blockage or symptoms, such as a heart attack, occurs. A coronary bypass graft surgery is a procedure used to treat coronary artery disease. An aortic punch is a tool used during this procedure to cut a hole accurately and precisely in the wall of the aorta.
Coronary artery disease is the most common heart disease type as well as the leading cause of death in both women and men in the United States, and coronary bypass graft surgery is one of the main treatments for coronary artery disease. There are more than 200,000 coronary bypass graft surgery procedures performed each year in the US.
However, coronary bypass graft surgery can be very intense as during the procedure the patient's heart is stopped temporarily and they are put on heart-lung bypass machine. It has been shown that more complications arise in patients that spend more time on the bypass machine. Also, because the surgery is not actually a cure for the underlining heart disease, there will be need of medications after the procedure and between 20 to 30 percent of patients will need a second procedure within 10 years. Part of the procedure is to connect a vein or an artery to the aorta which is a large blood vessel. Connecting a vein or an artery to the aorta requires opening a small incision in the aorta using a knife then enlarged and formed into a hole using another device, a puncher, in a two-step process—first making an incision, and then punching a hole.
The known two-step process used to open the aorta in preparation for anastomosis is time-consuming and may be complicated by dissection if the puncher is not negotiated through the proper plane. In addition, because two separate devices are used to create the desired round hole, there is a risk of different cut and punch diameters that results in a malformed punch geometry, for example undesirable notches N, as shown in
Thus, it would be desirable to provide an improved structure for an aortic punch that is configured to open the aorta and punch a hole through the aorta wall in one step. This avoids exchange of instruments and allows the puncher to be introduced in the same hole as the cutting part.
The present disclosure relates to an improved structure for an aortic punch that is configured to open the aorta and punch a hole through the aorta wall in one step. The aortic punch includes a cylindrical barrel, a cylindrical plunger movably mounted within the barrel, a blade shaft movably mounted within a distal end of the barrel and having a first cutting tool at a distal end thereof, the first cutting tool configured to form a first cut in a wall of a blood vessel, and a cylindrical punch body movably mounted within a distal end of the barrel and about the blade shaft and having a second, circular cutting tool configured to form a circular hole in the wall of a blood vessel around the first cut.
A method of forming a circular hole in a wall of an aorta includes providing an aortic punch including a cylindrical barrel, a cylindrical plunger movably mounted within the barrel, a blade shaft movably mounted within a distal end of the barrel and having a first cutting tool at a distal end thereof, the first cutting tool configured to form a first cut in a blade shaft movably mounted within a distal end of the barrel and having a first cutting tool at a distal end thereof, and a cylindrical punch body movably mounted within a distal end of the barrel and about the blade shaft and having a second, circular cutting tool configured to form a circular hole in the wall of a blood vessel around the first cut. A first opening is formed in the wall of the aorta with the first cutting tool, and a second opening is formed in the wall of the aorta with the circular cutting tool in a one-step process.
Various aspects of the present disclosure will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in view of the accompanying drawings.
Referring now to the drawings, there is illustrated in
The illustrated aortic punch 10 includes an elongated, cylindrical body or barrel 12 defining a longitudinally extending opening, and having a first end 14, a second end 16, a pair of arcuate finger holds 18, and opposing pin holes 20 formed through a wall of the barrel 12.
An elongated, cylindrical plunger 22 has a first end 24, a second end 26 having a plunger flange 28 formed thereon, and opposing, longitudinally extending pin slots 30 formed through a wall of the plunger 22. The plunger 22 has an outside diameter smaller than an inside diameter of the barrel 12 and is configured for slidable mounting within the barrel 12.
An elongated, cylindrical blade shaft 32 has a first end 34 having a blade flange 36 formed thereon, a first cutting tool or blade 38 extending longitudinally outwardly from the blade flange 36, and a second end 40. The blade shaft 32 has a first portion 42 having a first diameter, and a second portion 44 adjacent the blade flange 36 having a second diameter smaller than the first diameter. A tapered portion 46 extends between the first portion 42 and the second portion 44.
Although the illustrated blade shaft 32 has two diameters, it will be understood that the blade shaft 32 may be formed with one or more than two diameters. The illustrated blade shaft 32 may have any desired length L, such as within the range of about 10 mm to about 20 mm. It will be understood that the length of the blade shaft 32 may vary based on the size and condition of the aorta or other blood vessels through which a hole will be formed. Additionally, the aortic punch 10 may be configured such that the blade shafts of different lengths and having different blades, described below, may be interchangeably used with the aortic punch 10.
The first cutting blade 38, as shown in
A cylindrical punch body 48 has a first end 50, a second end 52, a first portion 54 having first diameter, and a second portion 56 having a second diameter smaller than the first diameter. A tapered portion 58 extends between the first portion 54 and the second portion 56. The circular first or distal end 50 of the punch body 48 defines a second or circular cutting tool or edge.
A coil spring 60 extends between the first end 24 of the plunger 22 and the second end 52 of the punch body 48. A punch engagement member 62 has a cylindrical body 64 having a first diameter and circular flange 66 formed on a first end thereof. The cylindrical body 64 is configured to be inserted into a first end of the coil spring 60 such that the flange 66 engages the second end 52 of the punch body 48. A locking pin 68 extends through the pin holes 20 of the barrel 12 and through the pin slots 30 formed in the plunger 22.
The illustrated aortic punch 10 combines the conventional steps of forming a first opening the aorta (or other blood vessels) and then punching a second opening or circular hole into a one-step process. Advantageously, the aortic punch 10, and the other embodiments of the aortic punch illustrated and described herein, may be used on blood vessels of different sizes.
As shown in
As shown in
Advantageously, the aortic punch 10 eliminates steps needed to create a hole H in the aorta or other blood vessel when using a conventional aortic punch, thus making coronary artery bypass graft surgery more stream-lined and efficient. The process of creating the hole H with the aortic punch 10 is smoother and does not require negotiating a previously cut incision in the artery with a conventional aortic punch and creating a risk for dissection.
Additional advantages are achieved by combining a knife blade, such as the blade 38, and a punching tool, such as the cutting edge 50, into one device, including: an operating room will require one fewer surgical instrument during coronary artery bypass graft surgery; the coronary artery bypass graft surgery will require fewer steps; the potential for injury to the surgeon or the staff is reduced; and the coronary artery bypass graft surgery procedure is more efficient that if using the conventional method, i.e., using a knife or scalpel and a conventional aortic punch.
The combination of the knife blade and punching tool into one device, the aortic punch 10, will also eliminate the risk of incorrect hole geometry. For example, the use of two separate devices, a scalpel and a conventional aortic punch, is known to result in the initial cut and the subsequent punch to have slightly different sizes or diameters, leading to malformed puncture geometry, for example as shown in
The principle and mode of operation of the invention have been explained and illustrated in its preferred embodiment. However, it must be understood that the invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
This application claims priority to U.S. Provisional Application No. 63/438,574, filed under 35 U.S.C. § 111(b) on Jan. 12, 2023, the entire disclosure of which is hereby incorporated by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
63438574 | Jan 2023 | US |