The disclosed systems and methods relate generally to systems and methods for aortic valve annuloplasty. More specifically, the disclosed systems and methods relate to annuloplasty rings and methods for deploying annuloplasty rings.
The aortic valve is situated at the junction of the left ventricle of the heart and the root of the aorta. The valve opens to admit blood ejected from the contracting heart into the ascending aorta, and closes to prevent regurgitation of the ejected blood back into the left ventricle. The valve opens and closes by the motion of its constituent leaflets, of which there are typically three (but occasionally two or, rarely, one). When the valve is functioning properly, the leaflets seal the valve by touching one another, referred to as “co-aption” or “coaption.”
A number of pathologic conditions, however, may prevent the perfect coaption of the leaflets. The two broad categories of pathology include disorders of the leaflets themselves and disorders of the fibrous skeletal ring (“annulus”) that supports the leaflets. Leaflet disorders include scarring, fibrosis, and calcification resulting from infection (rheumatic fever), hypertension, or congenital malformation. The resulting thickening or encrustation limits the leaflets' range of motion so that they cannot fully close. Blood is then able to leak through the imperfectly coapted leaflets.
Disorders of the annulus of the aortic valve may result from inherent defects in the annulus or from stretching caused by aortic dilation. Inherent defects may result from trauma to the annulus or from genetic disorders of connective tissue. Dilation of the aorta may result from a wide variety of etiologies, including trauma, genetic disorders (Marfan syndrome and Ehlers-Danlos syndrome), congenital malformation (coarctation of the aorta), infectious disease (syphilis and mycotic infections), inflammatory disorders (rheumatoid arthritis, Takayasu's arteritis), hypertension, and atherosclerosis. When the annulus is deformed, the value leaflets may not touch, even when fully closed.
Currently, aortic valve performance is restored by replacing the valve leaflets and the annulus with a prosthetic structure. The prosthetic structure may be a biomaterial (such as a porcine valve, a human cadaveric valve, or pericardial tissue) or a metallic implant (such as a pyrolite carbon bileaflet valve). Replacement of the aortic valve is a complex procedure necessitating cardiopulmonary bypass and its attendant risks.
The present disclosure provides systems and methods for restoring proper coaption of the aortic valve leaflets without subjecting a patient to valve replacement surgery. The inventors have found that the leaflets can be repositioned for proper coaption by engaging a ring around the aortic root, in a subcoronary position, to constrict the root. The applied compression may counteract the distortion of the stretched annulus. The compression can significantly ameliorate the effects of the underlying pathology and delay the need for a valve replacement. In some circumstances, compression can eliminate the need for valve replacement entirely.
In one embodiment, an aortic annuloplasty ring includes a ring, having a “C” shape and being so sized as to fit around and circumferentially engage an aortic root. The ring is formed at least in part of a biocompatible material so deformable as to permit manual adjustment of the ring but stiff enough to keep the shape into which it is adjusted.
In another embodiment, an aortic annuloplasty ring includes a collar having first and second ends that together form a fastener operable to secure the first and second ends together. The collar is thereby so shaped as to engage the aorta circumferentially. The ring further includes a flap depending from the collar for wrapping over the aorta, to prevent distal aneurismal changes. The ring is sized to fit around the aorta, and is transitionable between a first state, in which the fastener does not secure the first and second ends together, and a second state, in which the fastener so secures the first end to the second end that the collar is shaped to engage the aorta circumferentially.
In yet another embodiment, an aortic annuloplasty method includes disposing an aortic annuloplasty ring around the aortic root, and deforming the ring to circumferentially engage it. The ring has a “C” shape and is so sized as to fit around and circumferentially engage the aortic root, formed at least in part of a biocompatible material so deformable as to permit manual adjustment of the ring, and so nonresilient as to keep the shape into which it is deformed against blood pressure or the heart beat's force.
In still another embodiment, an aortic annuloplasty method includes disposing an aortic annuloplasty ring around an aorta, the ring including a collar having first and second ends, the first and second ends forming a fastener operable to secure the first and second ends together, the ring further including a flap depending from the collar; fastening the first and second ends of the collar, thereby so shaping the collar as to engage the aorta circumferentially; and wrapping the flap over the aorta.
The disclosed systems and methods facilitate aortic annuloplasty by providing aortic annuloplasty rings that are deployed around the aorta to improve coaption of the aortic valve leaflets.
In other embodiments, the catches 18 may be so shaped as to resist adjust in both directions, such as by having ends that are both raised from the surface of the collar 11. In one embodiment, the catches 18 fit lock-and-key with the aperture 16. Such an arrangement can facilitate precise adjustment of the ring during deployment and can also impede undesired tightening of the ring after deployment. Such tightening might otherwise occur, for example, if the ring is tugged by scar tissue.
In other embodiments, the catch 18 may facilitate continuous adjustment, as opposed to the illustrated discrete adjustment. For example, one of the collar's ends may form a slot, and a clamp that slides along the slot and affixes to the collar at a desired position may be attached to the collar's other end.
The ring shown in
The ring may be formed from a variety of materials. The material is preferably biocompatible so that the ring does not provoke an immune response or other adverse reaction. The material is also preferably non-biodegradable, so that the ring persists in the body until it is deliberately removed. Preferable materials include gold, silver, titanium, nickel-titanium alloy, and combinations of these. An alloy having at least 23-karat gold is preferred for its malleability, nonresilience, and consequent ease of adjustment; indeed, pure (i.e., 24-karat) gold is best in this regard. However, lesser amounts of gold may be used instead. For example, the gold may be alloyed with silver (preferably less than 10% silver). Other possible alloys are gold and titanium; gold, silver, and titanium, or other metals. Silver may provide bacteriostasis. Barium may provide radioopacity. Nickel-titanium may provide shape memory.
The material may include a thermoplastic elastomer. The shape and/or flexibility of such a material may be temperature-dependent. For example, the thermoplastic elastomer may be selected so that it is less flexible at body temperature (typically around 37° C.) than at room temperature (for example, in the range of 15° C. to 24° C.). A ring including such a material could be flexible enough to permit adjustment before it has warmed to body temperature and then could become inflexible enough at body temperature to impede further adjustment in response to blood pressure or the heart beat's force. In some embodiments, the thermoplastic elastomer may be selected so that the ring is manually deformable at a temperature below body temperature.
The material may be selected so that the ring is so rigid at body temperature as not to deform in response to arterial blood pressure (up to about 200 mm Hg), in response to repeated heart pressure cycles (up to about 160 beats per minute), or in response to motion of the heart or aortic root (from a heartbeat).
The “C” ring will typically be an arc of about 240 degrees to about 270 degrees. In other words, the gap defined by the ring will typically account for at least one fourth but usually less than one third of the ring's circumference.
When placing a “C” ring on the aorta of a particular patient, an operator typically selects a ring size that approximates or slightly exceeds the aorta's diameter. This maximizes contact between the ring and the aorta and also minimizes the adjusting required to improve leaflet coaption. Typical human aortas have diameters in the range of about 1 cm to about 3 cm, with some aortas as large as 5 cm or, rarely, larger still. Accordingly, rings will typically be made that have a major diameter D (
The ring stiffness depends on the ring material and ring's minor diameter d (
The ring may have edges. The edges are preferably rounded to prevent trauma to the surrounding tissue, particularly to the nearby coronary arteries. The edges of the ring may be slightly rounded so that a cross-section of a segment of the ring (taken, for example, at line 5-5 of
The rings described herein may be deployed in a number of ways. For example, during open thoracic surgery, the ring may be slipped around the exposed aorta. During a thoracoscopic procedure, a ring may be delivered through an endoscopic instrument and positioned using the appropriate tools. A ring may be introduced in a catheter that is advanced through the vasculature to the aorta and positioned around the aorta through an incision in the aortic wall.
Once positioned, a ring may be secured by tacking or other affixation (such as by detents 22 of
Once deployed, the rings described herein may be adjusted in a variety of ways. As described above, a ring may be adjusted manually. For example, a ring as shown in
A ring may be adjusted by pulling one or more strings, sutures, guidewires, or other filaments attached to one or both ends of the ring. As shown in
Additional adjustment systems are contemplated. For example, as depicted schematically in
The cuff may be inflatable by a liquid, a gas, or other fluid material. A line 46 may be coupled in fluid communication with the ring cuff 30′. In an embodiment, the line 46 can connect in fluid communication with a bladder 48. The bladder 48 may be disposed in a patient subcutaneously, with a port 50 accessible just beneath the skin. A source of fluid such as a syringe 52 may be applied to the port to introduce or withdraw fluid from the bladder 48, thereby inflating or deflating the ring 30′, respectively.
In yet another embodiment, depicted schematically in
Rings may be sealed shut to prevent undesired loosening or opening. A wide variety of sealing systems may be appropriate for this purpose. For example, the ends of a ring 30 may be glued together. Alternatively, as shown in
A ring sizer may be provided to determine the appropriate ring size to use with a particular patient. Aortic size may be difficult to determine prior to a surgery or other procedure, so a sizing system may be used during such surgery or procedure. A sizer may be a calibrated ring or strap that can be fitted around the aorta at the appropriate position, and a size read therefrom. The sizes indicated on the sizer may correspond to sizes of rings available. A kit may be provided that includes a sizer and a selection of rings of various sizes. If appropriate, the kit may also include an adjustment tool, such as a filament, a clamp, or a line/bladder system as described for
During the deployment and/or adjustment of an aortic annuloplasty ring, it may be desirable to monitor blood flow through the aortic valve to determine whether the ring is appropriately adjusted. For example, blood flow through the valve may be monitored to determine whether the ring has sufficiently coapted the valve leaflets to eliminate aortic regurgitation. If blood flow is not adequately corrected, the ring may be further adjusted. If blood flow is overcorrected (for example, by creating aortic stenosis), the ring may be loosened. A number of methods may be employed for assessment of blood flow, such as echocardiography (transesophageal and/or transthoracic), intraoperative leak tests, direct observation (e.g., through a catheter camera), and fluoroscopy.
This application is a continuation of International Application No. PCT/US2004/040517, filed Dec. 3, 2004, which claims the benefit of U.S. Provisional Application Ser. No. 60/526,887, filed Dec. 4, 2003. The entire contents of these applications are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60526887 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US04/40517 | Dec 2004 | US |
Child | 11422210 | Jun 2006 | US |