1. Field of the Invention
The instant disclosure relates to an image recording device; more particularly, to an image recording device having an improved blade assembly.
2. Description of Related Art
Conventional cameras and digital cameras of nowadays use aperture blades and shutter blades for exposure control. Specifically, the aperture blades control the amount of light that enters the camera during a period of time, and the shutter blades control the length of time that the light hits the recording surface. The aperture and shutter blades are important features for the lens unit while recording a photo.
However, the miniaturization of the digital cameras has put significant restraint in designing the camera base. For example, as shown in
The instant disclosure provides an image recording device, which includes a blade assembly. At least one blade of the blade assembly can lag behind other blade to form the desired blade pattern, and the blades are arranged in a stacked manner to save space. Thereby, a base plate of the image recording device can be reduced in size for miniaturizing the image recording device.
The image recording device of the instant disclosure comprises: a base plate; a blade assembly; and a driving mechanism. The base plate has an aperture, a guiding slot, and a first axle formed thereon. The blade assembly has a first blade and a second blade disposed in a stacked manner and hinged to the first axle. The first blade has a first pivot slot formed thereon, and the first pivot slot is defined by two opposing first inner walls. Similarly, the second blade has a second pivot slot formed thereon, and the second pivot slot is defined by two opposing second inner walls. The distance between the second inner walls is greater than the distance between the first inner walls. The driving mechanism includes a pin member, which is movably projected through the guiding slot, the first pivot slot, and the second pivot slot. The first and second blades are driven by the pin member.
For the instant disclosure, the first and second blades are hinged to the first axle, and the second inner walls are spaced further apart versus the first inner walls. Such design allows the stacked blades to rotate differently. The above configuration enables the image recording device to be miniaturized.
In order to further appreciate the characteristics and technical contents of the instant disclosure, references are hereunder made to the detailed descriptions and appended drawings in connection with the instant disclosure. However, the appended drawings are merely shown for exemplary purposes, rather than being used to restrict the scope of the instant disclosure.
Please refer to
An image recording device is shown in
An aperture 11 and a guiding slot 12 are formed on the base plate 1. In addition, a first axle 13, a first retaining block 14, and a second retaining block 15 are formed protrudingly on the base plate 1, and all preceding elements protrude in the same direction.
The blades assembly 2 includes a first blade 21 and a second blade 22. The blades are arranged in a stacked manner on the base plate 1 and hinged to the first axle 13.
The first blade 21 has an arm portion 213, which is extended in forming a covering portion 214. The arm portion 213 further has a first pivot slot 211 formed thereon. The first pivot slot 211 has a first inner gauge defined by the two opposing inner walls 212. The arm portion 213 is hinged to the first axle 13.
Similarly, the second blade 22 also has an arm portion 223, which is extended likewise in forming a covering portion 224. The arm portion 223 further has a second pivot slot 221 formed thereon. The second pivot slot 221 has a second inner gauge defined by two opposing inner walls 222. Notably, the distance between the two second inner walls 222 is greater than the distance between the two first inner walls 212. The arm portion 223 is hinged to the first axle 13.
The driving mechanism 3 includes a pin member 31, which is movably projected through the guiding slot 12, the first pivot slot 211, and the second pivot slot 221. By moving against the first inner walls 212 and the second inner walls 222, the pin member 31 can switch the blade assembly 2 between an open position X and a closed position Y over the aperture 11 (as shown in
Different operation states of the image recording device are illustrated in
Please refer to
Notably, the first blade 21 and the second blade 22 are arranged in an overlapping manner, which reduces the required occupying area over the base plate 1. Such configuration allows the image recording device to be miniaturized.
Please refer to
Although the first blade 21 and the second blade 22 are both hinged to the axle 13, the rotation of the second blade 22 lags behind the first blade 21. In other words, the turning angle of the second blade 22 is comparatively smaller than the first blade 21. Thereby, when the first and second blades 21 and 22 are rotated, the covering portions 214 and 224 can form the desired pattern over the aperture 11.
Please refer to
Please refer to
For explaining purposes, the blade assembly 2 of the instant embodiment includes two blades. However, when in use, the number of the blades is not restricted. For example, the blade assembly 2 may have at least three blades arranged in an overlapping manner.
Please refer to
As shown in
The aperture 11 and a guiding slot 12′ are formed on the base plate 1. A second axle 16′ is formed protrudingly on the base plate 1, in addition to a first axle 13′, the first retaining block 14, and a second retaining block 15′. All aforementioned elements protrude in the same direction.
The blade assembly 2′ includes a first blade 21′, a second blade 22′, a third blade 23, and a fourth blade 24. The first and second blades 21′ and 22′ are hinged to the first axle 13′ and arranged in an overlapping manner on the base plate 1, while the third and fourth blades 23 and 24 are hinged to the second axle 16 and stacked on the base plate 1.
The first blade 21′ has an arm portion 213′, which is extended in forming a covering portion 214′. The arm portion 213′ further has a first pivot slot 211′ formed thereon. The first pivot slot 211′ has two first inner walls 212′ formed apart oppositely. The arm portion 213′ is hinged to the first axle 13′.
The second blade 22′ also has an arm portion 223′, which is extended likewise in forming a covering portion 224′. The arm portion 223′ further has a second pivot slot 221′ formed thereon. The second pivot slot 221′ has two second inner walls 222′ formed apart oppositely. Notably, the distance between the two second inner walls 222′ is greater than the distance between the two first inner walls 212′. The arm portion 223′ is also hinged to the first axle 13′.
The third blade 23 has an arm portion 233, which is extended in forming a covering portion 234. The arm portion 233 further has a third pivot slot 231 formed thereon. The third pivot slot 231 has a third inner gauge defined by two opposing inner walls 232. The arm portion 233 is hinged to the second axle 16.
The fourth blade 24 also has an arm portion 243, which is extended likewise in forming a covering portion 244. The arm portion 243 further has a fourth pivot slot 241 formed thereon. The fourth pivot slot 241 has a fourth inner gauge defined by two opposing inner walls 242. Notably, the distance between the two fourth inner walls 242 is greater than the distance between the two third inner walls 232. The arm portion 243 is also hinged to the second axle 16.
The driving mechanism 3′ includes a pin member 31′, which is movably projected through the guiding slot 12′, the first pivot slot 211′, the second pivot slot 221′, the third pivot slot 231, and the fourth pivot slot 241. By moving against the first inner walls 212′, the second inner walls 222′, the third inner walls 232, and the fourth inner walls 242, the pin member 31′ can switch the blade assembly 2 between the open position X and the closed position Y over the aperture 11 (as shown in
Different operation states of the image recording device are illustrated in
Please refer to
Notably, the first blade 21′ and the second blade 22′ are arranged in a stacker manner. Same type of arrangement is also applied to the third and fourth blades 23 and 24. The stacked (overlapping) configuration reduces the required occupying area of the blades on the base plate 1, which allows the image recoding device to be downsized.
Please refer to
As illustrated, the first and second blades 21′ and 22′ are hinged to the first axle 13′, and the third and fourth blades 23 and 24 are hinged to the second axle 16. The rotation of the second and fourth blades 22′ and 24 are designed to lag behind the first and third blades 21′ and 23, respectively. In other words, the turning angle of the second and fourth blades 22′ and 24 are comparatively smaller than the first and third blades 21′ and 23. Thereby, when all the blades are rotated, the corresponding covering portions can form the desired pattern over the aperture 11.
Please refer to
Please refer to
For explaining purposes, the blade assembly 2′ of the instant embodiment includes four blades. However, when in use, the number of the blades is not restricted.
Regardless of the blade assembly 2, 2′ being a set of aperture blades or shutter blades, the stacked configuration of the blade assembly 2, 2′ allows the image recording device to be miniaturized.
In addition, the lagging operation between the overlapping blades of the blade assembly 2, 2′ allows the formation of different blade patterns to cover the aperture.
The descriptions illustrated supra set forth simply the preferred embodiments of the instant disclosure; however, the characteristics of the instant disclosure are by no means restricted thereto. All changes, alternations, or modifications conveniently considered by those skilled in the art are deemed to be encompassed within the scope of the instant disclosure delineated by the following claims.