This application is a 35 U.S.C. § 371 National Stage of International Patent Application No. PCT/EP2016/067643, filed Jul. 25, 2016, designating the United States.
The present disclosure relates to microwave antenna systems capable of transmitting and receiving microwave radiation, and in particular to an aperture coupled patch antenna arrangement for use in a microwave antenna system.
Aperture coupled patch antennas are often used in the field of microwave radio communication. Aperture coupled patch Antennas are known for good performance on e.g. cross polarization.
From U.S. Pat. No. 4,903,033 it is known that a dual polarization aperture coupled antenna usable for microwave signals. Orthogonal linearly polarized signals can be transmitted, and received, via a number of microstrip patches and a ground plane aperture which is in the shape of two orthogonal slots intersecting at their midpoints. Two identical fork shaped signal feed networks feed signals to and from the slots.
Aperture coupled antennas are often cavity backed, as the antenna described in U.S. Pat. No. 5,896,107. For antenna integrated radio products and Advanced Antenna System (AAS) products the radio is often located in a layer behind the antenna. The cavity solution in U.S. Pat. No. 5,896,107 gives a problem to connect the antenna to the radio located in the layer behind the antenna. Cables and/or connectors are needed and hence cost and power loss added.
Accordingly, there is a need for an improved antenna arrangement for use in the field of microwave radio communication.
In view of above-mentioned and other drawbacks of the prior art, it is an object of the present invention to provide an improved aperture coupled patch antenna arrangement for use in a microwave radio communication system.
According to a first aspect, it is provided an aperture coupled patch antenna comprising a substrate comprising a planar electrically conductive ground plane, an electrically conductive box arranged on and electrically connected to the ground plane to form an air filled cavity between the box and the ground plane, the box comprising an aperture in the form of at least one elongate slot. The antenna further comprises an electrically conductive patch arranged in parallel with the ground plane and at a distance from the box such that the aperture of the box is located between the patch and the ground plane and a distribution network comprising at least one elongate distribution element arranged in parallel with the ground plane between the ground plane and the patch, at a distance from the substrate and the ground plane and at a distance from the box such that a gap is formed between the distribution element and the box, wherein the extension of the distribution element intersects the extension of the aperture.
Hereby, a patch antenna including a distribution element is provided which exhibits reduced dielectric losses as a result of the distribution element being arranged at a distance from the box, i.e. free hanging, without the need for a supporting circuit board. Moreover, the antenna can be fabricated separately using known manufacturing techniques after which it can be mounted on a substrate such as a circuit board. An advantage of arranging the antenna directly on a circuit board is that there is no need for connectors between the circuit board and the antenna since the antenna feed can be connected directly to a transmission line of the circuit board, e.g. by soldering.
According to some aspects, the distribution element is located between the box and the ground plane.
By arranging a distribution element arranged inside the box, efficient shielding of the distribution element from adjacent antennas is provided, thereby leading to lower distortion. This is particularly advantageous when the antenna is used in an array of antennas.
According to some aspects, the antenna arrangement further comprises at least one support element arranged between the box and the distribution element to suspend the distribution element at a distance from the box.
Hereby, the support element provides mechanical support for the distribution element to enable various configurations of antennas comprising one or more distribution elements.
According to some aspects, the distribution element is arranged to be in contact with the substrate at one point of the substrate.
According to some aspects, the distribution element is arranged to be in contact with the substrate at two points of the substrate, thereby providing additional mechanical support for the distribution element.
According to some aspects, the aperture comprises two intersecting orthogonal slots, and the distribution network comprises two distribution elements, each distribution element intersecting a corresponding slot.
Hereby, a dual polarized aperture coupled patch antenna is provided.
The object stated above is further obtained by a method for manufacturing an aperture coupled patch antenna comprising: providing an electrically conductive box comprising an aperture in the form of at least one elongate slot, the box being open on the side opposing the side of the aperture; arranging an electrically conductive patch suspended on an outside of the box in parallel with the side of the box comprising the aperture and at a distance from the box; providing a distribution network comprising at least one elongate distribution element arranged in parallel with and at a distance from the side of the box comprising the aperture such that the aperture is located between the distribution element and the patch, wherein the extension of the distribution element intersects the extension of the aperture; providing a substrate comprising a planar electrically conductive ground plane; and arranging the conductive box on the ground plane to form an air filled cavity between the box and the ground plane.
Hereby, as discussed above in connection to the antenna as such, an improved aperture coupled patch antenna can be manufactured in an efficient manner at low cost and at high volumes. Further aspects discussed in relation to the antenna are equally applicable for the method for manufacturing an aperture coupled patch antenna.
Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to “a/an/the element, apparatus, component, means, step, etc.” are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated. Further features of, and advantages with, the present invention will become apparent when studying the appended claims and the following description. The skilled person realize that different features of the present invention may be combined to create embodiments other than those described in the following, without departing from the scope of the present invention.
The present technique is now described, by way of example, with reference to the accompanying drawings, in which:
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which certain aspects of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments and aspects set forth herein; rather, these embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout the description.
In the following detailed description, various aspects of the aperture coupled patch antenna according to the present technique are mainly described with reference to an antenna for use in a communications system.
Hereby, a low-loss aperture coupled patch antenna 100 is provided where the losses in the distribution element 112 are reduced as a result of the distribution element 112 being arranged at a distance from the box 106 such that a gap is formed. The gap is here illustrated as an air gap. Accordingly, there is no need for any additional element between the distribution element 112 and the box 106, or between the distribution element 112 and the ground plane 104. In particular, the distribution element 112 can be seen as free hanging or suspended since the distribution element 112 is not arranged on a circuit board or the like, thereby leading to reduced losses. Moreover, there is no need for a specific RF-connector to the antenna since the antenna is mounted directly on a substrate such as a circuit board, e.g. a radio board. The substrate may also be a metallic plate.
The ground plane 104 is typically provided in the form of a metallic layer on the substrate 102, the metallic layer being connected to a ground potential. Herein, the extension of distribution element 112 refers to the length direction of the elongate distribution element 112. Similarly, the extension of the aperture 108 refers to the length direction of the elongate aperture 108 as will be illustrated in further detail in the following.
The box 106 illustrated in
It should further be noticed that the described antenna operates according to well established principles for conventional aperture coupled patch antennas known by the skilled person. Therefore, dimensions and further properties of the antenna will not be discussed in detail in the present description.
As illustrated in
In the embodiments described herein, the distribution element 112 is a microstrip transmission line.
In
Even though the box 106 in
As can be seen in
The described antenna may advantageously be used in an antenna array comprising a plurality of antennas according to any one of the above described embodiments.
The described manufacturing method provides a straightforward and easily scalable manufacturing process suited for low cost high volume production of surface mounted aperture coupled antennas. The box 106 is similar to the type of box which is used for shielding box technologies, and well known shielding box manufacturing methods can easily be modified to provide a manufacturing process for the various embodiments of the antenna described herein.
In particular, by soldering the distribution network and the box to the circuit board, known production method can be used. The distribution network and the box can be individually mounted on the substrate as separate components. However, it may be even more preferable to assemble the distribution network and the box prior to mounting on the substrate such that only one step is required when soldering the antenna to the substrate.
This may for example be achieved by suspending the distribution element from the box by means of a suspension element.
Moreover, the distribution element can be made in many different ways. For example, the distribution element may be pre-mounted on the substrate with a box being subsequently arranged over the distribution element, the distribution element may be suspended from the inside or outside of the box by means of plastic support elements, and the distribution element may be made in metal or as metallized plastic.
Even though the invention has been described with reference to specific exemplifying embodiments thereof, many different alterations, modifications and the like will become apparent for those skilled in the art from a study of the drawings, the disclosure, and the appended claims. Also, it should be noted that parts of the connector arrangement may be omitted, interchanged or arranged in various ways, the connector arrangement yet being able to perform the functionality of the present invention. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measured cannot be used to advantage. Additionally, variations to the disclosed embodiments can be understood and effected by the skilled person in practicing the claimed invention. In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/067643 | 7/25/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/019357 | 2/1/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20050195124 | Puente Baliarda | Sep 2005 | A1 |
20150162663 | Boryssenko et al. | Jun 2015 | A1 |
20150381229 | Tzanidis | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
1 775 795 | Apr 2007 | EP |
2005041352 | May 2005 | WO |
Entry |
---|
International Search Report and Written Opinion dated Apr. 21, 2017 issued in International Application No. PCT/EP2016/067643. (10 pages). |
Ma, G. et al., “Local oscillator radiation from active integrated antennas”, Electronics Letters, vol. 35, No. 25 (Dec. 9, 1999). (2 pages). |
Number | Date | Country | |
---|---|---|---|
20190229422 A1 | Jul 2019 | US |