This invention relates generally to the field of liquid dispensing, and in particular to the aerosolizing of fine liquid droplets. More specifically, the invention relates to the formation and use of aperture plates employed to produce such fine liquid droplets.
A great need exists for the production of fine liquid droplets. For example, fine liquid droplets are used in for drug delivery, insecticide delivery, deodorization, paint applications, fuel injectors, and the like. In many applications, it may be desirable to produce liquid droplets that have an average size down to about 0.5 μl. For example, in many medical applications, such a size is needed to insure that the inhaled drug reaches the deep lung.
U.S. Pat. Nos. 5,164,740; 5,586,550; and 5,758,637, the complete disclosures of which are herein incorporated by reference, describe exemplary devices for producing fine liquid droplets. These patents describe the use of aperture plates having tapered apertures to which a liquid is supplied. The aperture plates are then vibrated so that liquid entering the larger opening of each aperture is dispensed through the small opening of each aperture to produce the liquid droplets. Such devices have proven to be tremendously successful in producing liquid droplets.
Another technique for aerosolizing liquids is described in U.S. Pat. No. 5,261,601 and utilizes a perforate membrane disposed over a chamber. The perforate membrane comprises an electroformed metal sheet using a “photographic process” that produces apertures with a cylindrical exit opening.
The invention provides for the construction and use of other aperture plates that are effective in producing fine liquid droplets at a relatively fast rate. As such, it is anticipated that the invention will find even greater use in many applications requiring the use of fine liquid droplets.
The invention provides exemplary aperture plates and methods for their construction and use in producing fine, liquid droplets at a relatively fast rate. In one embodiment, a method is provided for forming an aperture plate. The method utilizes a mandrel that comprises a mandrel body having a conductive surface and a plurality of nonconductive islands disposed on the conductive surface such that the islands extend above the conductive surface. The mandrel is placed within a solution containing a material that is to be deposited onto the mandrel. Electrical current is then applied to the mandrel to form an aperture plate on the mandrel, with the apertures having an exit angle that is in the range from about 30° to about 60°, more preferably from about 41° to about 49°, and still more preferably about 45°. Construction of the aperture plate to have such an exit angle is particularly advantageous in that it maximizes the rate of droplet production through the apertures.
In one particular aspect, the islands have a geometry that approaches a generally conical shape or a dome shape having a circular base, with the base being seated on the mandrel body. Conveniently, the islands may have a base diameter in the range from about 20 microns to about 200 microns, and a height in the range from about 4 microns to about 20 microns.
In another particular aspect, the islands are formed from a photoresistent material using a photolithography process. Conveniently, the islands may be treated following the photolithography process to alter the shape of the islands. In another aspect, the aperture plate is removed from the mandrel, and is formed into a dome shape. In still another aspect, the material in the solution that forms the aperture plate may be a material such as a palladium nickel alloy, palladium cobalt, or other palladium or gold alloys.
The invention further provides an exemplary aperture plate that comprises a plate body having a top surface, a bottom surface, and a plurality of apertures that taper in a direction from the top surface to the bottom surface. Further, the apertures have an exit angle that is in the range from about 30° to about 60°, more preferably about 41° to about 49°, and more preferably at about 45°. The apertures also have a diameter that is in the range from about 1 micron to about 10 microns at the narrowest portion of the taper. Such an aperture plate is advantageous in that it may produce liquid droplets having a size that are in the range from about 2 μm to about 10 μm, at a rate in the range from about 4 μL to about 30 μL per 1000 apertures per second. In this way, the aperture plate may be employed to aerosolize a sufficient amount of a liquid medicament so that a capture chamber that may otherwise be employed to capture the aerosolized medicament will not be needed.
The aperture plate may be constructed of a high strength and corrosion resistant material. As one example, the plate body may be constructed from a palladium nickel alloy. Such an alloy is corrosion resistant to many corrosive materials particularly solutions for treating respiratory diseases by inhalation therapy, such as an albuterol sulfate and ipratroprium solution, which is used in many medical applications. Further, the palladium nickel alloy has a low modulus of elasticity and therefore a lower stress for a given oscillation amplitude. Other materials that may be used to construct the plate body include gold, gold alloys, and the like.
In another aspect, the plate body has a portion that is dome shaped in geometry. In one particular aspect, the plate body has a thickness in the range from about 20 microns to about 70 microns.
In another embodiment, the invention provides a mandrel for forming an aperture plate. The mandrel comprises a mandrel body or plate having a conductive, generally flat top surface and a plurality of nonconductive islands disposed on the conductive surface. The islands extend above the conductive surface and have a geometry approaching a generally conical or dome shape. Such a mandrel is particularly useful in an electroforming process that may be employed to form an aperture plate on the mandrel body. The shaped nonconductive islands when used in such a process assist in producing apertures that have an exit angle in the range from about 30° to about 60°, more typically in the range from about 41° to about 49°, and still more typically at about 45°.
In one aspect, the islands have a base diameter in the range from about 20 microns to about 200 microns, and a height in the range from about 4 microns to about 20 microns. In another aspect, the islands may have an average slope in the range from about 15° to about 30° relative to the conductive surface. Conveniently, the islands may be formed from a photoresist material using a photolithography process. The islands may be treated following the photolithography process to further shape the islands.
In still another embodiment, the invention provides a method for producing a mandrel that may be employed to form an aperture plate. According to the method, an electroforming mandrel body is provided. A photoresist film is applied to the mandrel body, and a mask having a pattern of circular regions is placed over the photoresist film. The photoresist film is then developed to form an arrangement of nonconductive islands that correspond to the location of the holes in the pattern. Following this step, the mandrel body is heated to permit the islands to melt and flow into a desired shape. For example, the islands may be heated until they are generally conical or dome shaped in geometry and have a slope relative to the surface of the mandrel body. Optionally, the steps of applying the photoresist film, placing a mask having a smaller pattern of circular regions over the photoresist film, developing the photoresist film and heating the mandrel body may be repeated to form layers of a photoresist material and thereby further modify the shape of the nonconductive islands.
In one aspect, the photoresist film has a thickness in the range from about 4 microns to about 15 microns. In another aspect, the mandrel body is heated to a temperature in the range from about 50° C. to about 250° C. for about 30 minutes. Typically, the mandrel body will be heated to this temperature at a rate that is less than about 3° C. per minute.
The invention still further provides a method for aerosolizing a liquid. According to the method, an aperture plate is provided that comprises a plate body having a top surface, a bottom surface, and a plurality of apertures that taper in a direction from the top surface to the bottom surface. The apertures have an exit angle that is in the range from about 30° to about 60°, preferably in the range from about 41° to about 49°, more preferably at about 45°. The apertures also have a diameter that is in the range from about 1 micron to about 10 microns at the narrowest portion of the taper. A liquid is supplied to the bottom surface of the aperture plate, and the aperture plate is vibrated to eject liquid droplets from the top surface.
Typically, the droplets have a size in the range from about 2 μm to about 10 μm. Conveniently, the aperture plate may be provided with at least about 1,000 apertures so that a volume of liquid in the range from about 4 μL to about 30 μL may be produced within a time of less than about one second. In this way, a sufficient dosage may be aerosolized so that a patient may inhale the aerosolized medicament without the need for a capture chamber to capture and hold the prescribed amount of medicament.
In one particular aspect, the liquid that is supplied to the bottom surface is held to the bottom surface by surface tension forces until the liquid droplets are ejected from the top surface. In another aspect, the aperture plate is vibrated at a frequency in the range from about 80 KHz to about 200 KHz.
The invention provides exemplary aperture plates and methods for their construction and use. The aperture plates of the invention are constructed of a relatively thin plate that may be formed into a desired shape and includes a plurality of apertures that are employed to produce fine liquid droplets when the aperture plate is vibrated. Techniques for vibrating such aperture plates are described generally in U.S. Pat. Nos. 5,164,740; 5,586,550; and 5,758,637, previously incorporated herein by reference. The aperture plates are constructed to permit the production of relatively small liquid droplets at a relatively fast rate. For example, the aperture plates of the invention may be employed to produce liquid droplets having a size in the range from about 2 microns to about 10 microns, and more typically between about 2 microns to about 5 microns. In some cases, the aperture plates may be employed to produce a spray that is useful in pulmonary drug delivery procedures. As such, the sprays produced by the aperture plates may have a respirable fraction that is greater than about 70%, preferably more than about 80%, and most preferably more than about 90% as described in U.S. Pat. No. 5,758,637, previously incorporated by reference.
In some embodiments, such fine liquid droplets may be produced at a rate in the range from about 4 microliters per second to about 30 microliters per second per 1000 apertures. In this way, aperture plates may be constructed to have multiple apertures that are sufficient to produce aerosolized volumes that are in the range from about 4 microliters to about 30 microliters, within a time that is less than about one second. Such a rate of production is particularly useful for pulmonary drug delivery applications where a desired dosage is aerosolized at a rate sufficient to permit the aerosolized medicament to be directly inhaled. In this way, a capture chamber is not needed to capture the liquid droplets until the specified dosage has been produced. In this manner, the aperture plates may be included within aerosolizers, nebulizers, or inhalers that do not utilize elaborate capture chambers.
As just described, the invention may be employed to deliver a wide variety of drugs to the respiratory system. For example, the invention may be utilized to deliver drugs having potent therapeutic agents, such as hormones, peptides, and other drugs requiring precise dosing including drugs for local treatment of the respiratory system. Examples of liquid drugs that may be aerosolized include drugs in solution form, e.g., aqueous solutions, ethanol solutions, aqueous/ethanol mixture solutions, and the like, in colloidal suspension form, and the like. The invention may also find use in aerosolizing a variety of other types of liquids, such as insulin.
In one aspect, the aperture plates may be constructed of materials having a relatively high strength and that are resistant to corrosion. One particular material that provides such characteristics is a palladium nickel alloy. One particularly useful palladium nickel alloy comprises about 80% palladium and about 20% nickel. Other useful palladium nickel alloys are described generally in J. A. Abys, et al., “Annealing Behavior of Palladium-Nickel Alloy Electrodeposits,” Plating and Surface Finishing, August 1996, “PallaTech® Procedure for the Analysis of Additive IVS in PallaTech® Plating Solutions by HPLC” Technical Bulletin, Lucent Technologies, Oct. 1, 1996, and in U.S. Pat. No. 5,180,482, the complete disclosures of which are herein incorporated by reference.
Aperture plates constructed of such a palladium nickel alloy have significantly better corrosion resistance as compared to nickel aperture plates. As one example, a nickel aperture plate will typically corrode at a rate of about 1 micron per hour when an albuterol sulfate solution (PH 3.5) is flowing through the apertures. In contrast, the palladium nickel alloy of the invention does not experience any detectable corrosion after about 200 hours. Hence, the palladium nickel alloy aperture plates of the invention may be used with a variety of liquids without significantly corroding the aperture plate. Examples of liquids that may be used and which will not significantly corrode such an aperture plate include albuterol, chromatin, and other inhalation solutions that are normally delivered by jet nebulizers, and the like.
Another advantage of the palladium nickel alloy is that it has a low modulus of elasticity. As such, the stress for a given oscillation amplitude is lower as compared to a nickel aperture plate. As one example, the modulus of elasticity for such a palladium alloy is about 12×106 psi, whereas the modulus of elasticity for nickel is about 33×106 psi. Since the stress is proportional to the amount of elongation and the modulus of elasticity, by providing the aperture plate with a lower modulus of elasticity, the stress on the aperture plate is significantly reduced.
Alternative materials for constructing the aperture plates of the invention include pure palladium and gold, as well as those described in copending U.S. application Ser. No. 09/313,914, filed May 18, 1999, the complete disclosure of which is herein incorporated by reference.
To enhance the rate of droplet production while maintaining the droplets within a specified size range, the apertures may be constructed to have a certain shape. More specifically, the apertures are preferably tapered such that the aperture is narrower in cross section where the droplet exits the aperture. In one embodiment, the angle of the aperture at the exit opening (or the exit angle) is in the range from about 30° to about 60°, more preferably from about 41° to about 49°, and more preferably at about 45°. Such an exit angle provides for an increased flow rate while minimizing droplet size. In this way, the aperture plate may find particular use with inhalation drug delivery applications.
The apertures of the aperture plates will typically have an exit opening having a diameter in the range from about 1 micron to about 10 microns, to produce droplets that are about 2 microns to about 10 microns in size. In another aspect, the taper at the exit angle is preferably within the desired angle range for at least about the first 15 microns of the aperture plate. Beyond this point, the shape of the aperture is less critical. For example, the angle of taper may increase toward the opposite surface of the aperture plate.
Conveniently, the aperture plates of the invention may be formed in the shape of a dome as described generally in U.S. Pat. No. 5,758,637, previously incorporated by reference. Typically, the aperture plate will be vibrated at a frequency in the range from about 45 kHz to about 200 kHz when aerosolizing a liquid. Further, when aerosolizing a liquid, the liquid may be placed onto a rear surface of the aperture plate where the liquid adheres to the rear surface by surface tension forces. Upon vibration of the aperture plate, liquid droplets are ejected from the front surface as described generally in U.S. Pat. Nos. 5,164,740, 5,586,550 and 5,758,637, previously incorporated by reference.
The aperture plates of the invention may be constructed using an electrodeposition process where a metal is deposited from a solution onto a conductive mandrel by an electrolytic process. In one particular aspect, the aperture plates are formed using an electroforming process where the metal is electroplated onto an accurately made mandrel that has the inverse contour, dimensions, and surface finish desired on the finished aperture plate. When the desired thickness of deposited metal has been attained, the aperture plate is separated from the mandrel. Electroforming techniques are described generally in E. Paul DeGarmo, “Materials and Processes in Manufacturing” McMillan Publishing Co., Inc., New York, 5th Edition, 1979, the complete disclosure of which is herein incorporated by reference.
The mandrels that may be utilized to produce the aperture plates of the invention may comprise a conductive surface having a plurality of spaced apart nonconductive islands. In this way, when the mandrel is placed into the solution and current is applied to the mandrel, the metal material in the solution is deposited onto the mandrel. Examples of metals which may be electrodeposited onto the mandrel to form the aperture plate have been described above.
One particular feature of the invention is the shape of the nonconductive islands on the aperture plate. These islands may be constructed with a certain shape to produce apertures that have exit angles in the ranges as described above. Examples of geometric configurations that may be employed include islands having a generally conical shape, a dome shape, a parabolic shape, and the like. The nonconductive islands may be defined in terms of an average angle or slope, i.e., the angle extending from the bottom of the island to the top of the island relative to the conductive surface, or using the ratio of the base and the height. The magnitude of this angle is one factor to be considered in forming the exit angle in the aperture plate. For instance, formation of the exit angle in the aperture plate may depend on the electroplating time, the solution used with the electroplating process, and the angle of taper of the nonconductive islands. These variables may be altered alone or in combination to achieve the desired exit angle in the aperture plate. Also, the size of the exit opening may also depend on the electroplating time.
As one specific example, the height and diameter of the nonconductive islands may be varied depending on the desired end dimensions of the apertures and/or on the process employed to create the aperture plates. For instance, in some cases the rear surface of the aperture plate may be formed above the islands. In other cases, the rear surface of the aperture plate may be formed adjacent to the conductive surface of the mandrel. In the latter case, the size of the exit opening may be defined by the cross-sectional dimension of the non-conductive islands at the ending thickness value of the aperture plate. For the former process, the nonconductive islands may have a height that is up to about 30 percent of the total thickness of the aperture plate.
To construct the nonconductive islands, a photolithography process may be employed. For example, a photoresist film may be applied to the mandrel body and a mask having a pattern of circular regions placed over the photoresist film. The photoresist film may then be developed to form an arrangement of nonconductive islands that correspond to the location of the holes in the pattern. The nonconductive islands may then be further treated to produce the desired shape. For example, the mandrel may be heated to allow the photoresist material to melt and flow into the desired shape. Optionally, this process may be repeated one or more additional times to build up layers of photoresist materials. During each additional step, the size of the holes in the pattern may be reduced to assist in producing the generally conical shape of the islands.
A variety of other techniques may be employed to place a pattern of nonconducted material onto the electroforming mandrel. Examples of techniques that may be employed to produce the desired pattern include exposure, silk screening, and the like. This pattern is then employed to control where plating of the material initiates and continues throughout the plating process. A variety of nonconductive materials may be employed to prevent plating on the conductive surface, such as a photoresist, plastic, and the like. As previously mentioned, once the nonconducting material is placed onto the mandrel, it may optionally be treated to obtain the desired profile. Examples of treatments that may be used include baking, curing, heat cycling, carving, cutting, molding or the like. Such processes may be employed to produce a curved or angled surface on the nonconducting pattern which may then be employed to modify the angle of the exit opening in the aperture plate.
Referring now to
Referring now to
As best shown in
In operation, liquid is applied to rear surface 18. Upon vibration of aperture plate 10, liquid droplets are ejected through exit opening 22. In this manner, the liquid droplets will be propelled from front surface 16. Although exit opening 22 is shown inset from front surface 16, it will be appreciated that other types of manufacturing processes may be employed to place exit opening 22 directly at front surface 16.
Shown in
It will be appreciated that the invention is not intended to be limited by this specific example. Further, the rate of production of liquid droplets may be varied by varying the exit angle, the exit diameter and the type of liquid being aerosolized. Hence, depending on the particular application (including the required droplet size), these variables may be altered to produce the desired aerosol at the desired rate.
Referring now to
Disposed on conductive surface 30 are a plurality of nonconductive islands 32. Islands 32 are configured to extend above conductive surface 30 so that they may be employed in electroforming apertures within the aperture plate as described in greater detail hereinafter. Islands 32 may be spaced apart by a distance corresponding to the desired spacing of the resulting apertures in the aperture plate. Similarly, the number of islands 32 may be varied depending on the particular need.
Referring now to
As shown, island 32 is constructed of a bottom layer 34 and a top layer 36. As described in greater detail hereinafter, use of such layers assists in obtaining the desired conical or domed shape. However, it will be appreciated that islands 32 may in some cases be constructed from only a single layer or multiple layers.
Referring now to
As shown in step 46, the islands are then treated to form the desired shape by heating the mandrel to permit the islands to flow and cure in the desired shape. The conditions of the heating cycle of step 46 may be controlled to determine the extent of flow (or doming) and the extent of curing that takes place, thereby affecting the durability and permanence of the pattern. In one aspect, the mandrel is slowly heated to an elevated temperature to obtain the desired amount of flow and curing. For example, the mandrel and the resist may be heated at a rate of about 2° C. per minute from room temperature to an elevated temperature of about 240° C. The mandrel and resist are then held at the elevated temperature for about 30 minutes.
In some cases, it may be desirable to add photoresist layers onto the nonconductive islands to control their slope and further enhance the shape of the islands. Hence, as shown in step 48, if the desired shape has not yet been obtained, steps 40–46 may be repeated to place additional photoresist layers onto the islands. Typically, when additional layers are added, the mask will contain circular regions that are smaller in diameter so that the added layers will be smaller in diameter to assist in producing the domed shape of the islands. As shown in step 50, once the desired shape has been attained, the process ends.
Referring now to
To obtain the desired exit angle and the desired exit opening on aperture plate 10, the time during which electric current is supplied to the mandrel may be varied. Further, the type of solution into which the mandrel is immersed may also be varied. Still further, the shape and angle of islands 32 may be varied to vary the exit angle of the apertures as previously described. Merely by way of example, one mandrel that may be used to produce exit angles of about 45° is made by depositing a first photoresist island having a diameter of 100 microns and a height of 10 microns. The second photoresist island may have a diameter of 10 microns and a thickness of 6 microns and is deposited on a center of the first island. The mandrel is then heated to a temperature of 200° C. for 2 hours.
Referring now to
Referring to
Referring now to
As previously mentioned, aperture plate 10 may be constructed so that a volume of liquid in the range from about 4 microliters to about 30 microliters may be aerosolized within a time that is less than about one second per about 1000 apertures. Further, each of the droplets may be produced such that they have a respirable fraction that is greater than about 90 percent. In this way, a medicament may be aerosolized and then directly inhaled by a patient.
In some cases, the aperture plates described herein may be use in non-vibratory applications. For example, the aperture plates may be used as a non-vibrating nozzle where liquid is forced through the apertures. As one example, the aperture plates may be used with ink jet printers that use thermal or piezoelectric energy to force the liquid through the nozzles. The aperture plates of the invention may be advantageous when used as non-vibrating nozzles with ink jet printers because of their non-corrosive construction and because the apertures have a low resistance to flow due to their relatively short necked regions.
The invention has now been described in detail for purposes of clarity of understanding. However, it will be appreciated that certain changes and modifications may be practiced within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
550315 | Allen | Nov 1895 | A |
809159 | Willis et al. | Jan 1906 | A |
1680616 | Horst | Aug 1928 | A |
2022520 | Philbrick | Nov 1935 | A |
2101304 | Wright | Dec 1937 | A |
2158615 | Wright | May 1939 | A |
2187528 | Wing | Jan 1940 | A |
2223541 | Baker | Dec 1940 | A |
2266706 | Fox et al. | Dec 1941 | A |
2283333 | Martin | May 1942 | A |
2292381 | Klagges | Aug 1942 | A |
2360297 | Wing | Oct 1944 | A |
2375770 | Dahlberg | May 1945 | A |
2383098 | Wheaton | Aug 1945 | A |
2404063 | Healy | Jul 1946 | A |
2430023 | Longmaid | Nov 1947 | A |
2474996 | Wallis | Jul 1949 | A |
2512004 | Wind | Jun 1950 | A |
2521657 | Severy | Sep 1950 | A |
2681041 | Zodtner et al. | Jun 1954 | A |
2705007 | Gerber | Mar 1955 | A |
2735427 | Sullivan | Feb 1956 | A |
2764946 | Henderson | Oct 1956 | A |
2764979 | Henderson | Oct 1956 | A |
2779623 | Eisenkraft | Jan 1957 | A |
2935970 | Morse et al. | May 1960 | A |
3103310 | Lang | Sep 1963 | A |
3325031 | Singier | Jun 1967 | A |
3411854 | Rosler et al. | Nov 1968 | A |
3515348 | Coffman, Jr. | Jun 1970 | A |
3550864 | East | Dec 1970 | A |
3558052 | Dunn | Jan 1971 | A |
3561444 | Boucher | Feb 1971 | A |
3563415 | Ogle | Feb 1971 | A |
3680954 | Frank | Aug 1972 | A |
3719328 | Hindman | Mar 1973 | A |
3738574 | Guntersdorfer et al. | Jun 1973 | A |
3771982 | Dobo | Nov 1973 | A |
3790079 | Berglund et al. | Feb 1974 | A |
3804329 | Martner | Apr 1974 | A |
3812854 | Michaels et al. | May 1974 | A |
3838686 | Szekely | Oct 1974 | A |
3842833 | Ogle | Oct 1974 | A |
3865106 | Palush | Feb 1975 | A |
3903884 | Huston et al. | Sep 1975 | A |
3906950 | Cocozza | Sep 1975 | A |
3908654 | Lhoest et al. | Sep 1975 | A |
3950760 | Rauch et al. | Apr 1976 | A |
3951313 | Coniglione | Apr 1976 | A |
3958249 | DeMaine et al. | May 1976 | A |
3970250 | Drews | Jul 1976 | A |
3983740 | Danel | Oct 1976 | A |
3993223 | Welker, III et al. | Nov 1976 | A |
4005435 | Lundquist et al. | Jan 1977 | A |
4030492 | Simburner | Jun 1977 | A |
4052986 | Scaife | Oct 1977 | A |
4059384 | Holland et al. | Nov 1977 | A |
D246574 | Meierhoefer | Dec 1977 | S |
4076021 | Thompson | Feb 1978 | A |
4083368 | Freezer | Apr 1978 | A |
4094317 | Wasnich | Jun 1978 | A |
4101041 | Mauro, Jr. et al. | Jul 1978 | A |
4106503 | Rsenthal et al. | Aug 1978 | A |
4109174 | Hodgson | Aug 1978 | A |
4113809 | Abair et al. | Sep 1978 | A |
D249958 | Meierhoefer | Oct 1978 | S |
4119096 | Drews | Oct 1978 | A |
4121583 | Chen | Oct 1978 | A |
4159803 | Cameto et al. | Jul 1979 | A |
4207990 | Weiler et al. | Jun 1980 | A |
4210155 | Grimes | Jul 1980 | A |
4226236 | Genese | Oct 1980 | A |
4240081 | Devitt | Dec 1980 | A |
4240417 | Holever | Dec 1980 | A |
4248227 | Thomas | Feb 1981 | A |
4261512 | Zierenberg | Apr 1981 | A |
D259213 | Pagels | May 1981 | S |
4268460 | Boiarski et al. | May 1981 | A |
4294407 | Reichl et al. | Oct 1981 | A |
4298045 | Weiler et al. | Nov 1981 | A |
4299784 | Hense | Nov 1981 | A |
4300546 | Kruber | Nov 1981 | A |
4301093 | Eck | Nov 1981 | A |
4319155 | Makai et al. | Mar 1982 | A |
4334531 | Reichl et al. | Jun 1982 | A |
4336544 | Donald et al. | Jun 1982 | A |
4338576 | Takahashi et al. | Jul 1982 | A |
4368476 | Uehara et al. | Jan 1983 | A |
4368850 | Szekely | Jan 1983 | A |
4374707 | Pollack | Feb 1983 | A |
4389071 | Johnson, Jr. et al. | Jun 1983 | A |
4408719 | Last | Oct 1983 | A |
4428802 | Kanai et al. | Jan 1984 | A |
4431136 | Janner et al. | Feb 1984 | A |
4454877 | Miller et al. | Jun 1984 | A |
4465234 | Maehara et al. | Aug 1984 | A |
4474251 | Johnson, Jr. | Oct 1984 | A |
4474326 | Takahashi | Oct 1984 | A |
4475113 | Lee et al. | Oct 1984 | A |
4479609 | Maeda et al. | Oct 1984 | A |
4512341 | Lester | Apr 1985 | A |
4530464 | Yamamoto et al. | Jul 1985 | A |
4533082 | Maehara et al. | Aug 1985 | A |
4539575 | Nilsson | Sep 1985 | A |
4544933 | Heinzl | Oct 1985 | A |
4546361 | Brescia et al. | Oct 1985 | A |
4550325 | Viola | Oct 1985 | A |
4566452 | Farr | Jan 1986 | A |
4591883 | Isayama | May 1986 | A |
4593291 | Howkins | Jun 1986 | A |
4605167 | Maehara | Aug 1986 | A |
4613326 | Szwarc | Sep 1986 | A |
4620201 | Heinzl et al. | Oct 1986 | A |
4628890 | Freeman | Dec 1986 | A |
4632311 | Nakane et al. | Dec 1986 | A |
4658269 | Rezanka | Apr 1987 | A |
4659014 | Soth et al. | Apr 1987 | A |
4677975 | Edgar et al. | Jul 1987 | A |
4678680 | Abowitz | Jul 1987 | A |
4679551 | Anthony | Jul 1987 | A |
4681264 | Johnson, Jr. | Jul 1987 | A |
4693853 | Falb et al. | Sep 1987 | A |
4702418 | Carter et al. | Oct 1987 | A |
4722906 | Guire | Feb 1988 | A |
4790479 | Matsumoto et al. | Dec 1988 | A |
4793339 | Matsumoto et al. | Dec 1988 | A |
4796807 | Bendig et al. | Jan 1989 | A |
4799622 | Ishikawa et al. | Jan 1989 | A |
4805609 | Roberts et al. | Feb 1989 | A |
4819629 | Jonson | Apr 1989 | A |
4819834 | Thiel | Apr 1989 | A |
4826080 | Ganser | May 1989 | A |
4826759 | Guire et al. | May 1989 | A |
4828886 | Hieber | May 1989 | A |
4843445 | Stemme | Jun 1989 | A |
4849303 | Graham et al. | Jul 1989 | A |
4850534 | Takahashi et al. | Jul 1989 | A |
4865006 | Nogi et al. | Sep 1989 | A |
4871489 | Ketcham | Oct 1989 | A |
4872553 | Suzuki et al. | Oct 1989 | A |
4877989 | Drews et al. | Oct 1989 | A |
4888516 | Daeges et al. | Dec 1989 | A |
4922901 | Brooks et al. | May 1990 | A |
4926915 | Deussen et al. | May 1990 | A |
4934358 | Nilsson et al. | Jun 1990 | A |
4954225 | Bakewell | Sep 1990 | A |
4957239 | Tempelman | Sep 1990 | A |
4964521 | Wieland et al. | Oct 1990 | A |
D312209 | Morrow et al. | Nov 1990 | S |
4968299 | Ahlstrand et al. | Nov 1990 | A |
4971665 | Sexton | Nov 1990 | A |
4973493 | Guire | Nov 1990 | A |
4976259 | Higson et al. | Dec 1990 | A |
4979959 | Guire | Dec 1990 | A |
4994043 | Ysebaert | Feb 1991 | A |
5002048 | Makiej, Jr. | Mar 1991 | A |
5002582 | Guire et al. | Mar 1991 | A |
5007419 | Weinstein et al. | Apr 1991 | A |
5016024 | Lam et al. | May 1991 | A |
5021701 | Takahashi et al. | Jun 1991 | A |
5022587 | Hochstein | Jun 1991 | A |
5024733 | Abys et al. | Jun 1991 | A |
5046627 | Hansen | Sep 1991 | A |
5062419 | Rider | Nov 1991 | A |
5063396 | Shiokawa et al. | Nov 1991 | A |
5073484 | Swanson et al. | Dec 1991 | A |
5076266 | Babaev | Dec 1991 | A |
5080093 | Raabe et al. | Jan 1992 | A |
5080649 | Vetter | Jan 1992 | A |
5086765 | Levine | Feb 1992 | A |
5086785 | Gentile et al. | Feb 1992 | A |
5115803 | Sioutas | May 1992 | A |
5115971 | Greenspan et al. | May 1992 | A |
D327008 | Friedman | Jun 1992 | S |
5122116 | Kriesel et al. | Jun 1992 | A |
5129579 | Conte | Jul 1992 | A |
5134993 | Van Der Linden et al. | Aug 1992 | A |
5139016 | Waser | Aug 1992 | A |
5140740 | Weigelt | Aug 1992 | A |
5147073 | Cater | Sep 1992 | A |
5152456 | Ross et al. | Oct 1992 | A |
5157372 | Langford | Oct 1992 | A |
5164740 | Ivri | Nov 1992 | A |
5169029 | Behar et al. | Dec 1992 | A |
5170782 | Kocinski | Dec 1992 | A |
5180482 | Abys et al. | Jan 1993 | A |
5186164 | Raghuprasad | Feb 1993 | A |
5186166 | Riggs et al. | Feb 1993 | A |
5198157 | Bechet | Mar 1993 | A |
5201322 | Henry et al. | Apr 1993 | A |
5213860 | Laing | May 1993 | A |
5217148 | Cater | Jun 1993 | A |
5217492 | Guire et al. | Jun 1993 | A |
5227168 | Chvapil | Jul 1993 | A |
5230496 | Shillington et al. | Jul 1993 | A |
5245995 | Sullivan et al. | Sep 1993 | A |
5248087 | Dressler | Sep 1993 | A |
5258041 | Guire et al. | Nov 1993 | A |
5261601 | Ross et al. | Nov 1993 | A |
5263992 | Guire | Nov 1993 | A |
5279568 | Cater | Jan 1994 | A |
5297734 | Toda | Mar 1994 | A |
5299739 | Takahashi et al. | Apr 1994 | A |
5303854 | Cater | Apr 1994 | A |
5309135 | Langford | May 1994 | A |
5312281 | Takahashi et al. | May 1994 | A |
5313955 | Rodder | May 1994 | A |
5319971 | Osswald et al. | Jun 1994 | A |
5320603 | Vetter et al. | Jun 1994 | A |
5322057 | Raabe et al. | Jun 1994 | A |
5342011 | Short | Aug 1994 | A |
5342504 | Hirano et al. | Aug 1994 | A |
5347998 | Hodson et al. | Sep 1994 | A |
5348189 | Cater | Sep 1994 | A |
5350116 | Cater | Sep 1994 | A |
5355872 | Riggs et al. | Oct 1994 | A |
5357946 | Kee et al. | Oct 1994 | A |
5372126 | Blau | Dec 1994 | A |
5383906 | Burchett et al. | Jan 1995 | A |
5388571 | Roberts et al. | Feb 1995 | A |
5392768 | Johansson et al. | Feb 1995 | A |
5396883 | Knupp et al. | Mar 1995 | A |
5414075 | Swan et al. | May 1995 | A |
5415161 | Ryder | May 1995 | A |
5419315 | Rubsamen | May 1995 | A |
5426458 | Wenzel et al. | Jun 1995 | A |
5431155 | Marelli | Jul 1995 | A |
5435282 | Haber et al. | Jul 1995 | A |
5435297 | Klein | Jul 1995 | A |
5437267 | Weinstein et al. | Aug 1995 | A |
5445141 | Kee et al. | Aug 1995 | A |
D362390 | Weiler | Sep 1995 | S |
5449502 | Igusa et al. | Sep 1995 | A |
5452711 | Gault | Sep 1995 | A |
5458135 | Patton et al. | Oct 1995 | A |
5458289 | Cater | Oct 1995 | A |
5474059 | Cooper | Dec 1995 | A |
5477992 | Jinks et al. | Dec 1995 | A |
5479920 | Piper et al. | Jan 1996 | A |
5487378 | Robertson et al. | Jan 1996 | A |
5489266 | Grimard | Feb 1996 | A |
5497944 | Weston et al. | Mar 1996 | A |
D369212 | Snell | Apr 1996 | S |
5511726 | Greenspan et al. | Apr 1996 | A |
5512329 | Guire et al. | Apr 1996 | A |
5515841 | Robertson et al. | May 1996 | A |
5515842 | Ramseyer et al. | May 1996 | A |
5516043 | Manna et al. | May 1996 | A |
5518179 | Humberstone et al. | May 1996 | A |
5529055 | Gueret | Jun 1996 | A |
5533497 | Ryder | Jul 1996 | A |
5542410 | Goodman et al. | Aug 1996 | A |
5549102 | Lintl et al. | Aug 1996 | A |
5560837 | Trueba | Oct 1996 | A |
5563056 | Swan et al. | Oct 1996 | A |
D375352 | Bologna | Nov 1996 | S |
5579757 | McMahon et al. | Dec 1996 | A |
5582330 | Iba | Dec 1996 | A |
5584285 | Salter et al. | Dec 1996 | A |
5586550 | Ivri et al. | Dec 1996 | A |
5588166 | Burnett | Dec 1996 | A |
5601077 | Imbert | Feb 1997 | A |
5609798 | Liu et al. | Mar 1997 | A |
5632878 | Kitano | May 1997 | A |
5635096 | Singer et al. | Jun 1997 | A |
5637460 | Swan et al. | Jun 1997 | A |
5647349 | Ohki et al. | Jul 1997 | A |
5653227 | Barnes et al. | Aug 1997 | A |
5654007 | Johnson et al. | Aug 1997 | A |
5654162 | Guire et al. | Aug 1997 | A |
5654460 | Rong | Aug 1997 | A |
5657926 | Toda | Aug 1997 | A |
5660166 | Lloyd | Aug 1997 | A |
5664557 | Makiej, Jr. | Sep 1997 | A |
5664706 | Cater | Sep 1997 | A |
5665068 | Takamura | Sep 1997 | A |
5666946 | Langenback | Sep 1997 | A |
5670999 | Takeuchi et al. | Sep 1997 | A |
5685491 | Marks et al. | Nov 1997 | A |
5692644 | Gueret | Dec 1997 | A |
5707818 | Chudzik et al. | Jan 1998 | A |
5709202 | Lloyd et al. | Jan 1998 | A |
5714360 | Swan et al. | Feb 1998 | A |
5714551 | Bezwada et al. | Feb 1998 | A |
5718222 | Lloyd et al. | Feb 1998 | A |
D392184 | Weiler | Mar 1998 | S |
5724957 | Rubsamen et al. | Mar 1998 | A |
5744515 | Clapper | Apr 1998 | A |
5752502 | King | May 1998 | A |
5755218 | Johansson et al. | May 1998 | A |
5758637 | Ivri et al. | Jun 1998 | A |
5775506 | Grabenkort | Jul 1998 | A |
5788665 | Sekins | Aug 1998 | A |
5788819 | Onishi et al. | Aug 1998 | A |
5790151 | Mills | Aug 1998 | A |
5810004 | Ohkl et al. | Sep 1998 | A |
5819730 | Stone et al. | Oct 1998 | A |
5823179 | Grychowski et al. | Oct 1998 | A |
5823428 | Humberstone et al. | Oct 1998 | A |
5829723 | Brunner et al. | Nov 1998 | A |
5836515 | Fonzes | Nov 1998 | A |
5839617 | Cater et al. | Nov 1998 | A |
5842468 | Denyer et al. | Dec 1998 | A |
5862802 | Bird | Jan 1999 | A |
5865171 | Cinquin | Feb 1999 | A |
5878900 | Hansen | Mar 1999 | A |
5893515 | Hahn et al. | Apr 1999 | A |
5894841 | Voges | Apr 1999 | A |
5897008 | Hansen | Apr 1999 | A |
5910698 | Yagi | Jun 1999 | A |
5915377 | Coffee | Jun 1999 | A |
5918637 | Fleischman | Jul 1999 | A |
5925019 | Ljungquist | Jul 1999 | A |
5950619 | Van Der Linden et al. | Sep 1999 | A |
5954268 | Joshi et al. | Sep 1999 | A |
5960792 | Lloyd et al. | Oct 1999 | A |
5964417 | Amann et al. | Oct 1999 | A |
5970974 | Van Der Linden et al. | Oct 1999 | A |
5976344 | Abys et al. | Nov 1999 | A |
5993805 | Sutton et al. | Nov 1999 | A |
6000396 | Melker et al. | Dec 1999 | A |
6007518 | Kriesel et al. | Dec 1999 | A |
6012450 | Rubsamen | Jan 2000 | A |
6014970 | Ivri et al. | Jan 2000 | A |
6026809 | Abrams et al. | Feb 2000 | A |
6029666 | Aloy et al. | Feb 2000 | A |
6032665 | Psaros | Mar 2000 | A |
6037587 | Dowell et al. | Mar 2000 | A |
6045215 | Coulman | Apr 2000 | A |
6045874 | Himes | Apr 2000 | A |
6047818 | Warby et al. | Apr 2000 | A |
6055869 | Stemme et al. | May 2000 | A |
6060128 | Kim et al. | May 2000 | A |
6062212 | Davison et al. | May 2000 | A |
6068148 | Weiler | May 2000 | A |
6085740 | Ivri et al. | Jul 2000 | A |
6096011 | Trombley, III et al. | Aug 2000 | A |
6105877 | Coffee | Aug 2000 | A |
6106504 | Urrutia | Aug 2000 | A |
6116234 | Genova et al. | Sep 2000 | A |
6123413 | Agarwal et al. | Sep 2000 | A |
6139674 | Markham et al. | Oct 2000 | A |
6142146 | Abrams et al. | Nov 2000 | A |
6145963 | Pidwerbecki et al. | Nov 2000 | A |
6146915 | Pidwerbecki et al. | Nov 2000 | A |
6152130 | Abrams et al. | Nov 2000 | A |
6155676 | Etheridge et al. | Dec 2000 | A |
6158431 | Poole | Dec 2000 | A |
6161536 | Redmon et al. | Dec 2000 | A |
6163588 | Matsumoto et al. | Dec 2000 | A |
6182662 | McGhee | Feb 2001 | B1 |
6186141 | Pike et al. | Feb 2001 | B1 |
6196218 | Voges | Mar 2001 | B1 |
6196219 | Hess et al. | Mar 2001 | B1 |
6205999 | Ivri et al. | Mar 2001 | B1 |
6216916 | Maddox et al. | Apr 2001 | B1 |
6223746 | Jewett et al. | May 2001 | B1 |
6235177 | Borland et al. | May 2001 | B1 |
6254219 | Agarwal et al. | Jul 2001 | B1 |
6269810 | Brooker et al. | Aug 2001 | B1 |
6270473 | Schwebel | Aug 2001 | B1 |
6273342 | Terada et al. | Aug 2001 | B1 |
6318640 | Coffee | Nov 2001 | B1 |
6328030 | Kidwell et al. | Dec 2001 | B1 |
6328033 | Avrahami | Dec 2001 | B1 |
6341732 | Martin et al. | Jan 2002 | B1 |
6358058 | Strupat et al. | Mar 2002 | B1 |
6394363 | Arnott et al. | May 2002 | B1 |
6402046 | Loser | Jun 2002 | B1 |
6405934 | Hess et al. | Jun 2002 | B1 |
6427682 | Klimowicz et al. | Aug 2002 | B1 |
6443146 | Voges | Sep 2002 | B1 |
6443366 | Hirota et al. | Sep 2002 | B1 |
6467476 | Ivri et al. | Oct 2002 | B1 |
6530370 | Heinonen | Mar 2003 | B1 |
6540153 | Ivri | Apr 2003 | B1 |
6540154 | Ivri et al. | Apr 2003 | B1 |
6543443 | Klimowicz et al. | Apr 2003 | B1 |
6546927 | Litherland et al. | Apr 2003 | B1 |
6550472 | Litherland et al. | Apr 2003 | B1 |
6554201 | Klimowicz et al. | Apr 2003 | B1 |
6581595 | Murdock et al. | Jun 2003 | B1 |
6615824 | Power | Sep 2003 | B1 |
6629646 | Ivri | Oct 2003 | B1 |
6640804 | Ivri | Nov 2003 | B1 |
6651650 | Yamamoto et al. | Nov 2003 | B1 |
6732944 | Litherland et al. | May 2004 | B1 |
6755189 | Ivri et al. | Jun 2004 | B1 |
6769626 | Haveri | Aug 2004 | B1 |
6782886 | Narayan et al. | Aug 2004 | B1 |
6814071 | Klimowicz et al. | Nov 2004 | B1 |
6845770 | Klimowicz et al. | Jan 2005 | B1 |
6851626 | Patel et al. | Feb 2005 | B1 |
6860268 | Bohn et al. | Mar 2005 | B1 |
20010013554 | Borland et al. | Aug 2001 | A1 |
20010015737 | Truninger et al. | Aug 2001 | A1 |
20020011247 | Ivri et al. | Jan 2002 | A1 |
20020078958 | Stenzler | Jun 2002 | A1 |
20020104530 | Ivri et al. | Aug 2002 | A1 |
20020121274 | Borland et al. | Sep 2002 | A1 |
20020134372 | Loeffler et al. | Sep 2002 | A1 |
20020134374 | Loeffler et al. | Sep 2002 | A1 |
20020134375 | Loeffler et al. | Sep 2002 | A1 |
20020134377 | Loeffler et al. | Sep 2002 | A1 |
20020162551 | Litherland | Nov 2002 | A1 |
20030140921 | Smith et al. | Jul 2003 | A1 |
20030150445 | Power et al. | Aug 2003 | A1 |
20030150446 | Patel et al. | Aug 2003 | A1 |
20030226906 | Ivri | Dec 2003 | A1 |
20040000598 | Ivri | Jan 2004 | A1 |
20040004133 | Ivri et al. | Jan 2004 | A1 |
20040011358 | Smaldone et al. | Jan 2004 | A1 |
20040035413 | Smaldone et al. | Feb 2004 | A1 |
20040035490 | Power | Feb 2004 | A1 |
20040050947 | Power et al. | Mar 2004 | A1 |
20040139963 | Ivri et al. | Jul 2004 | A1 |
20040139968 | Loeffler et al. | Jul 2004 | A1 |
20040188534 | Litherland et al. | Sep 2004 | A1 |
20040256488 | Loeffler et al. | Dec 2004 | A1 |
20050011514 | Power et al. | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
477 855 | Sep 1969 | CH |
555 681 | Nov 1974 | CH |
0 049 636 | Apr 1982 | EP |
0 103 161 | Mar 1984 | EP |
0 134 847 | Mar 1985 | EP |
0 178 925 | Apr 1986 | EP |
0 387 222 | Sep 1990 | EP |
0 432 992 | Jun 1991 | EP |
0 476 991 | Mar 1992 | EP |
0 480 615 | Apr 1992 | EP |
0 510 648 | Oct 1992 | EP |
0 516 565 | Dec 1992 | EP |
0 542 723 | May 1993 | EP |
0 933 138 | Apr 1999 | EP |
0 923 957 | Jun 1999 | EP |
1 142 600 | Oct 2001 | EP |
2 692 569 | Dec 1993 | FR |
973 458 | Oct 1964 | GB |
1 454 597 | Nov 1976 | GB |
2 073 616 | Oct 1981 | GB |
2 101 500 | Jan 1983 | GB |
2 177 623 | Jan 1987 | GB |
2 240 494 | Jul 1991 | GB |
2 272 389 | May 1994 | GB |
2 279 571 | Jan 1995 | GB |
57-023852 | Feb 1982 | JP |
57-105608 | Jul 1982 | JP |
58-061857 | Apr 1983 | JP |
58-139757 | Aug 1983 | JP |
59-142163 | Aug 1984 | JP |
60-004714 | Jan 1985 | JP |
61-008357 | Jan 1986 | JP |
61-215059 | Sep 1986 | JP |
02-135169 | May 1990 | JP |
02-189161 | Jul 1990 | JP |
60-07721 | Jan 1994 | JP |
WO 9207600 | May 1992 | WO |
WO 9211050 | Sep 1992 | WO |
WO 9217231 | Oct 1992 | WO |
WO 9301404 | Jan 1993 | WO |
WO 93010910 | Jun 1993 | WO |
WO 9409912 | May 1994 | WO |
WO 9609229 | Mar 1996 | WO |
WO 9917888 | Apr 1999 | WO |
WO 0037132 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20010013554 A1 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09392180 | Sep 1999 | US |
Child | 09822573 | US |