The invention is generally directed to the field of minimally invasive methods of surgical procedures and particularly, to such procedures with an instrument port that facilitates access for a medical instrument into the interior of a patient's heart through an apical region of a wall of the patient's heart.
Medical procedures on the heart can be performed inside the heart (endocardial) and on the outside of the heart (epicardial). Endocardial procedures require access to the interior of the heart, which can be accomplished percutaneously through the vasculature or directly, through the patient's chest and heart wall.
For percutaneous access, a catheter is typically inserted at the femoral or carotid artery and threaded into the heart via the vasculature. Travel of the catheter is monitored using a fluoroscope. Percutaneous treatment has several issues that make it less than desirable. For one thing, the catheters and tools that are used for percutaneous cardiac procedures are limited in size because they must be threaded through the vasculature into the heart. When a guide catheter is used, only tools that are smaller than the guide catheter can be threaded through the catheter to the intended site of use. In cases where more than one type of tool is used, each tool must be threaded separately, adding to the length of the process.
Maneuverability of a catheter which is threaded such a long distance is limited, which means that it is difficult and sometimes impossible to locate the working end of the catheter exactly at the area in the heart where treatment is needed. This also adds to the total length of the procedure. Another issue with percutaneous access can be various vascular complications such as bleeding, dissection, and rupture of a blood vessel. Moreover, some areas of the heart are simply difficult to access percutaneously.
For direct access to the interior of the heart, physicians have traditionally used open heart surgical procedures. This involves a gross thoracotomy, usually in the form of a median sternotomy, to gain access to the thoracic cavity. A saw or other cutting instrument is used to cut the sternum longitudinally, allowing the rib cage to be spread apart. A large opening into the thoracic cavity is thus created, through which the surgeon can directly visualize and operate upon the heart. Of course, such an invasive procedure has consequences, such as typically an extended hospital stay and an increased risk of complications and pain.
Once the surgeon has accessed the thoracic cavity, and the exterior of the heart, he must gain access to the interior of the heart for endocardiac procedures. Opening up the heart surgically can only be done after placing the heart under cardioplegic arrest and maintaining circulation using cardiopulmonary bypass. Stopping the heart invites serious complications.
To avoid cardiac bypass, the surgeon must have a way to penetrate the heart wall with an instrument without losing a tremendous amount of blood. A hemostatic seal must be created around the instrument passed through the wall. One way to create a hemostatic seal is by using a purse-string suture around the instrument inserted through the heart wall. However, purse-string sutures are not always effective and do not easily allow the insertion of more than one instrument through a single incision.
From the above discussion it is apparent that there is a need for devices and methods to access the inside of the heart other than percutaneously and directly via open heart surgery. There is a need for methods and devices to access the interior of the heart minimally invasively. There is further a need for devices that allow instruments that have already been developed for percutaneous use to be used in minimally invasive endocardiac procedures.
Accordingly, to avoid the disadvantages of both open heart surgery and percutaneous access, the present invention provides a method for minimally invasive access to the interior of the heart (and to other areas and organs of the body). An area of the heart that is preferably accessed is the ventricular apex of the heart, which is the rounded inferior extremity of the heart formed by the left and right ventricles. In normal healthy humans it generally lies beneath the fifth left intercostal space from the mid-sternal line.
The present invention is directed to devices and methods for accessing the interior of the heart without having to stop the heart from beating and while minimizing blood loss. The devices and methods are useful for performing endocardiac treatments. The methods rely upon access to the interior of the heart through the heart wall using an instrument port.
In a preferred method, the instrument port is implanted into the heart wall using a minimally invasive opening in the chest wall. However, the port could also be installed after a more invasive procedure to open the chest wall and access the heart, such as a gross thoracotomy. The instrument port is installed in the heart wall and allows passage of instruments therethrough into a heart chamber. The port is anchored by a sealing device which also serves to reduce blood loss from the heart.
When the instrument port is implanted into the apical wall of the patient's heart a number of procedures may be performed. For example, a treatment instrument having an operative distal portion which is configured to repair a mitral valve in the patient's heart as described in U.S. Pat. No. 6,978,176 to Lattouf but the method taught therein is described as being useful for other procedures such as ablation.
In another example, the operative distal portion of the treatment instrument is configured to repair an aortic valve in the patient's heart. In yet another embodiment, the operative distal portion of the treatment instrument is configured to deliver a stent prosthesis through the interior of the patient's heart into the patient's aorta for aneurysm repair or partial aorta replacement. In a further embodiment, the operative distal portion of the treatment instrument is configured to repair a para valvular leak. Another embodiment has a treatment instrument with an operative distal portion configured to extract clots or masses from the interior of the patient's heart. In another exemplary embodiment, the operative distal portion of the treatment instrument is configured to deliver stem cells to an interior wall of the patient's heart. In yet another embodiment, the operative distal portion of the treatment instrument is configured to form a thermal or energy based ablation lesion to treat rhythm disturbances of the patient's heart. In other embodiments one or more treatment instrument is inserted through the inner lumen of the instrument port in order to advance a first portion of an artificial chordae tendenae into the left ventricle of the patient's heart, securing the first portion of the artificial chordae tendenae to a free edge of a valve leaflet with a torn or damaged chordae tendenae from within the patient's heart; and securing a second portion of the artificial chordae tendenae to a ventricular wall of the patient's heart
The invention will become more apparent from the following detailed description and accompanying exemplary drawings. These and other advantages of the invention will become more apparent from the following detailed description of embodiments when taken in conjunction with the accompanying exemplary drawings.
The instrument port embodying features of the invention allows a physician to gain access to the interior of the heart in a minimally invasive manner, so that a surgical procedure can be performed in the interior of the patient's heart. The instrument port is designed to be temporarily implanted through an apical region of the patient's heart wall and to allow passage of one or more instruments into the heart while minimizing blood loss out of the heart.
As described in more detail below and shown in
After the instrument port 10 is inserted through the heart wall, the sealing members 34 and 36 are activated (described below in detail), anchoring the instrument port 10 in place and sealing the opening to reduce blood loss therethrough. Any of a number of instruments can then be inserted through the instrument port and into the interior of the patient's heart.
As schematically shown in
If desired, the ablation catheter 18, or any other tool, can be used with an instrument guide, such as that described in application Ser. No. 11/784,385 incorporated herein. The instrument guide can help deliver the instrument to the desired area within the patient's heart or aorta.
Sealing members 34 and 36 are located on either side of the heart wall portion 32 of the instrument port 10. In the embodiment shown the sealing devices 34 and 36 are two inflatable balloons. The proximal sealing member 34 (a balloon) is on the outside of the apical heart wall 24 and the distal sealing member 36 (a balloon) is on the inside of the apical heart wall 24. The sealing members may however be a single balloon crimped in the middle, where the crimped part of the balloon is generally through the apical heart wall 24 and a portion of the balloon extends from either side of the heart wall. In another embodiment the sealing device of the port is a single balloon on the side of the port on the inside of the heart wall. Instead of a balloon sealing device on the outer side of the heart wall portion, the port can have a flange or other structure that serves to stabilize the device. In any case the sealing devices are desirably expandable balloons, wherein the inside balloon 36 is flat or pancake shaped and the outer balloon 34 may also be disc-shaped or more desirably is substantially spherical. This embodiment is particularly advantageous for use in the heart, and other places where interior space is limited, since the flat disc-shaped balloon 36 requires less space. The flat disc-shaped balloon 36 also provides better sealing against the tissue wall 24 to prevent blood from leaving the heart chamber. The sealing devices may also serve to hold the port in place within the heart wall.
In a preferred embodiment, the interior balloon 36 ranges in size in diameter from about 0.5 to 2.5 cm in diameter and in thickness from about 0.1 to 1.5 cm, although it may be smaller or larger, depending upon the application. The exterior balloon ranges in size up to about 3 cm in diameter. The balloons are desirably made of polyurethane, although they may be made of any suitable biocompatible material. They can be fastened to the port body by any suitable means. For example, one method of fastening the balloons to the port body is using an adhesive.
The instrument port cylindrical body 30 desirably measures from about 5 to 25 cm in length. The distal tip 40 of the port, measuring about 0.5 to 1 cm in length, is desirably tapered and is radiopaque for visualization.
Wall portion 32 of the instrument port 10 is defined by the sealing devices on either side, the balloons 34 and 36 as shown in
As shown in
The outer diameter of the instrument port 10 is desirably from about 1 to 20 mm and the inner diameter of the instrument lumen is desirably about 1 to 15 mm. This allows passage of an instrument guide or instrument through the port of up to 15 mm (45 Fr). Various sized ports may be desirable for ports employed for different purposes. The port 10 includes a one way valve (not shown) in the inner lumen so that blood is prevented from exiting the heart but an instrument can be inserted through the inner lumen. The valve is desirably a hemostatic valve, such as a duck-bill valve, and is desirably made of silicon although other types of valves and materials can be used.
The instrument port is desirably made of polyether block amides known as PEBAX® polymers or other plasticizer-free thermoplastic elastomers.
The balloon lumens 44, 46 lead to balloons 34 and 36 respectively, and to inflation tubes 54 and 56, respectively. A manifold 50 serves as a comfortable grip for the port 10 and also organizes the inflation tubes 54 and 56. The manifold desirably includes raised markings 64 and 66, that indicate which balloon is inflated with the corresponding inflation tube. This safety feature is shown in
In addition, the manifold may have a raised bump 72 on one side, to indicate to the handler which balloon he is inflating. This bump is shown in
As stated, the balloons 34 and 36 are filled via inflation tubes 54 and 56 via lumens 44 and 46. The embodiment is shown with separate inflation lines for each balloon but they could alternatively be filed via the same inflation port.
Cylindrical body 30 is held by manifold 50 and extends to the proximal end of manifold 50. A purge valve 74 on the proximal end of the port 10 is in fluid communication with the instrument lumen 42. This purge valve 74 can be used to flush the port 10 with saline or blood prior to insertion, or to allow air removal from the port 10 during insertion. Purge valve 74 could also be used for infusion of saline, blood, or active agents during the use of the port for the medical procedure, if desired.
Various alternative designs for the instrument port are described below.
In
Rather than the internal one-way valve as shown in
In the embodiment shown in
While particular forms of the invention have been illustrated and described herein, it will be apparent that various modifications and improvements can be made to the invention. Additional details of the instrument port and methods may be found in the patents and applications incorporated herein. To the extent not otherwise disclosed herein, materials and structure may be of conventional design.
Moreover, individual features of embodiments of the invention may be shown in some drawings and not in others, but those skilled in the art will recognize that individual features of one embodiment of the invention can be combined with any or all the features of another embodiment. Accordingly, it is not intended that the invention be limited to the specific embodiments illustrated. It is therefore intended that this invention be defined by the scope of the appended claims as broadly as the prior art will permit.
Terms such as “element”, “member”, “component”, “device”, “means”, “portion”, “section”, “steps” and words of similar import when used herein shall not be construed as invoking the provisions of 35 U.S.C §112(6) unless the following claims expressly use the terms “means for” or “step for” followed by a particular function without reference to a specific structure or a specific action. All patents and all patent applications referred to above are hereby incorporated by reference in their entirety.
This application is a continuation of application Ser. No. 12/006,967, filed Jan. 8, 2008, which is a continuation in part of application Ser. No. 11,784,385, filed on Apr. 6, 2007, which is a continuation in part of application Ser. No. 10/313,198, filed on Dec. 6, 2002 (now U.S. Pat. No. 7,373,207), which is a continuation in part of application Ser. No. 10/295,390, filed on Nov. 15, 2002 (now U.S. Pat. No. 6,978,176) which is related to and claims priority from provisional applications, Ser. No. 60/340,062, filed Dec. 8, 2001, Ser. No. 60/365,918, filed Mar. 20, 2002 and Ser. No. 60/369,988, filed Apr. 4, 2002. All of these applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60340062 | Dec 2001 | US | |
60365918 | Mar 2002 | US | |
60369988 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12006967 | Jan 2008 | US |
Child | 13247304 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11784385 | Apr 2007 | US |
Child | 12006967 | US | |
Parent | 10313198 | Dec 2002 | US |
Child | 11784385 | US | |
Parent | 10295390 | Nov 2002 | US |
Child | 10313198 | US |